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Abstract

Massively Parallel Computation (MPC) is a model of computation widely believed to best
capture realistic parallel computing architectures such as large-scale MapReduce and Hadoop
clusters. Motivated by the fact that many data analytics tasks performed on these platforms
involve sensitive user data, we initiate the theoretical exploration of how to leverage MPC
architectures to enable efficient, privacy-preserving computation over massive data. Clearly if
a computation task does not lend itself to an efficient implementation on MPC even without
security, then we cannot hope to compute it efficiently on MPC with security. We show, on the
other hand, that any task that can be efficiently computed on MPC can also be securely computed
with comparable efficiency. Specifically, we show the following results:

• any MPC algorithm can be compiled to a communication-oblivious counterpart while asymp-
totically preserving its round and space complexity, where communication-obliviousness
ensures that any network intermediary observing the communication patterns learn no
information about the secret inputs;

• assuming the existence of Fully Homomorphic Encryption with a suitable notion of compact-
ness and other standard cryptographic assumptions, any MPC algorithm can be compiled to
a secure counterpart that defends against an adversary who controls not only intermediate
network routers but additionally up to 1/3 − η fraction of machines (for an arbitrarily
small constant η) — moreover, this compilation preserves the round complexity tightly, and
preserves the space complexity upto a multiplicative security parameter related blowup.

As an initial exploration of this important direction, our work suggests new definitions and
proposes novel protocols that blend algorithmic and cryptographic techniques.

1 Introduction

In the past decade, parallel computation has been widely adopted to manipulate and analyze
large-scale data-sets, and numerous programming paradigms such as MapReduce, Hadoop, and
Spark have been popularized to help program large computing clusters. This has partly served as
a driving force for the algorithms community to better understand the power and limitations of
such parallel computation models. The first theoretic model capturing modern parallel computation
frameworks was proposed by Karloff, Suri, and Vassilvitskii [79]. Since then, a flurry of results have
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appeared proposing refinements to the model as well as novel algorithms with better asymptotical
and practical efficiency [4, 40,76,79,80,83,89,99].

With these amazing efforts, the community has converged on a model called Massively Parallel
Computation (MPC), which is believed to best capture large computing clusters (e.g., those operated
by companies like Google and Facebook) consisting of a network of Random-Access Machines
(RAMs), each with a somewhat considerable amount of local memory and processing power — and
yet each individual machine is not powerful enough to store the massive amount of data available.
In the MPC model of computation, we typically assume a total of N data records where N is rather
large (in practice, the data size can range from tens of terabytes to a petabyte). Each machine can
locally store only s = N ε amount of data for some constant ε ∈ (0, 1); and the number of machines
m ≥ N1−ε such that all machines can jointly store the entire dataset. In many MPC algorithms it
is also desirable if m · s = Õ(N) or m · s ≤ N1+θ for some small constant θ ∈ (0, 1), i.e., the total
space consumed should not be too much larger than the dataset itself [2, 5, 79,83].

In the standard algorithms literature on MPC, a key focus has been the design of algorithms
that minimize the round complexity, partly by harnessing the reasonably large local memory that
is available on each processing unit. Using round complexity as a primary metric, a rich set of
computational tasks have been investigated in the MPC model, including graph problems [2,4–6,
10–13, 15, 19, 20, 29, 36, 40, 52, 60, 63, 81, 83, 93, 97], clustering [16, 17, 46, 61, 107] and submodular
function optimization [41,47, 80,90]. Interestingly, it is also known that a number of tasks (such
as sorting, parity, minimum spanning tree) that either suffered from an almost logarithmic depth
lower bound on a classical Parallel Random-Access Machine (PRAM) now can be accomplished in
O(1) or sublogarithmic number of rounds on an MPC framework [40,67,79,93]. Note that a PRAM
assumes that each processing unit has O(1) local storage and thus PRAM is not the best fit for
capturing modern parallel computing clusters.

1.1 Privacy-Preserving Data Analytics on MPC Frameworks

In this paper, we are the first to ask the question, how can we leverage an MPC cluster to facilitate
privacy-preserving, large-scale data analytics? This question is of increasing importance because
numerous data analytics tasks we want to perform on these frameworks involve sensitive user data,
e.g., users’ behavior history on websites and/or social networks, medical records, or genomic data.
We consider two primary scenarios:

Scenario 1: MPC with secure end-points. We may consider an MPC framework where the
end-points1 are secured by trusted processors such as Intel SGX. Without loss of generality, we
may assume that data is encrypted in memory or in transit such that all the secure processors can
decrypt them inside a hardware-enabled sandbox where computation will take place (to achieve this
the secure processors may employ standard cryptographic techniques to perform a secure handshake
and establish a shared encryption key). Finally, when the computation result is ready, the secure
processors can send encrypt results to an authorized analyst who has a corresponding key to decrypt
the results.

In this scenario, we consider a network adversary (e.g., compromised operating systems, inter-
mediate network routers, or system administrators) that can observe the communication patterns
between the end-points, and we would like to make sure that the MPC algorithm’s communication
pattern leak no information about the secret data.

1By end-points, we mean the machines, as opposed to the communication/network.
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Note that in Scenario 1, we make a simplifying assumption that the adversary cannot observe the
memory access patterns on end-points: since known works on efficient Oblivious RAM (ORAM) [64,
66, 100, 102] have in principle solved this problem; not only so, in recent work the first secure
processor with ORAM support has been taped out [50,51,98].

Scenario 2: MPC with insecure end-points. In the second scenario, imagine that the
adversary controls not only the intermediate network routers but also some of the end-points.
For example, the end-points may be legacy machines without trusted hardware support, and they
may have a comprised operating system. The adversary may also be a rogue system administrator
who has access to a subset of the machines. We assume, however, that the adversary controls only
a small subset of the end-points — such an assumption is reasonable if the end-points are hosted
by various organizations, or by the same organization but in different data centers, or if they have
diverse hardware/software configurations such that they are unlikely to be all hit by the same virus.

In this scenario, we would like to obtain a guarantee similar to that of cryptographic Secure
Multi-Party Computation (SMPC)2, i.e., an adversary controlling a relatively small subset of the
machines cannot learn more information beyond what is implied by the union of the corrupt
machine’s outputs. Note that in this scenario, all machines’ outputs can also be in encrypted format
such that only an authorized data analyst can decrypt the result; or alternatively, secret shared
such that only the authorized data analyst can reconstruct — in this case, the adversary should not
be able to learn anything at all from the computation.

With the aforementioned scenarios in mind, we ask, what computation tasks can be securely
and efficiently computed on an MPC architecture? Clearly, if a computation task does not lend
itself to efficient computation on MPC even without security, we cannot hope to attain an efficient
and secure solution on the same architecture. Therefore, the best we can hope for is the following:
for computational tasks that indeed have efficient MPC algorithms, we now want to compute the
same task securely on MPC while preserving the efficiency of the original insecure algorithm. In
other words, we ask the following important question:

Can we securely evaluate a function f on an MPC framework, while paying not too much
more overhead than evaluating f insecurely on MPC?

1.2 Our Results and Contributions

Conceptual and definitional contributions. We initiate the exploration of how to leverage
Massively Parallel Computation (MPC) to secure large-scale computation. The widespread empirical
success of MPC frameworks in practice, as well as the typically sensitive nature of the data involved
in the analytics provide strong motivations for our exploration. We hope that the formal definitions
and theoretical feasibility results in our work will encourage future work along this direction, and
hopefully leading to practical solutions for privacy-preserving large-scale data analytics.

In comparison, although earlier works originating from the cryptography community have
explored secure computation on parallel architectures, most known results [3, 24, 25, 32, 34, 35, 37, 38,
87,92] adopt PRAM as the model of computation. As discussed later in Section 2, known results
specialized for PRAMs do not directly lead to the type of results in this paper due to the discrepancy
both in model and in metrics. As mentioned, the PRAM model is arguably a mismatch for the
parallel computing architectures encountered in most practical scenarios. This is exactly why in the
past decade, the algorithms community have focused more on the modern MPC model which better

2In this paper, to avoid confusion, we use SMPC to mean cryptographic Secure Multi-Party Computation; and we
use MPC to mean Massively Parallel Computation.
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captures the massively parallel computing clusters deployed by companies like Google and Facebook.
Therefore, we hope that our work will bring the MPC model to the attention of the cryptography
community for exploring parallel secure computation.

We proceed to present a summary of our major results.

Communication-oblivious MPC. To securely compute a function in Scenario 1 and as a
stepping stone towards enabling Scenario 2, we first define a notion of communication obliviousness
for MPC algorithms. Informally speaking, we want that the adversary learns no information about
the secret inputs after observing an MPC algorithm’s communication patterns. In this paper we
require a very strong notion of communication obliviousness, where we simply want that the MPC
algorithm’s communication patterns be deterministic and input independent3.

We prove that any MPC algorithm Π can be compiled to a communication-oblivious counterpart
while asymptotically preserving its round complexity and space consumption.

Theorem 1 (Communication-oblivious MPC algorithms). Suppose that s = N ε and that m is upper
bounded by a fixed polynomial in N . Given any MPC algorithm Π that completes in R rounds where
each of the m machines has s local space, there is a communication-oblivious MPC algorithm Π̃ that
computes the same function as Π except with exp(−Ω(

√
s)) probability, and moreover Π̃ completes

in O(R) rounds, and consuming O(s) space on each of the m machines. Furthermore, only O(m · s)
amount of data are communicated in each round in an execution of Π̃.

Note that numerous interesting MPC algorithms known thus far have total communication
at least Ω(R ·m · s) where R denotes the protocol’s round complexity (ignoring polylogarithmic
factors) [6, 59, 62, 67, 77], and for this class of MPC algorithms, our compilation also introduces very
little asymptotical communication overhead.

Secure multi-party computation for MPC. We now turn to Scenario 2. In this setting
security means that a relatively small corrupt coalition cannot learn anything more beyond the
coalition’s joint outputs. We now ask the following natural question:

Can we compile any MPC protocol to a secure counterpart (where security is in the above sense),
allowing only O(1) blowup in round complexity and security parameter related blowup in the
total space4?

We answer this question affirmatively assuming that the adversary controls only 1
3 − η fraction

of machines for any arbitrarily small constant η. Note that 1
3 is necessary since the MPC model

assumes a point-to-point channel without broadcast, and in this model it is known that secure
computation cannot be attained in the presence of 1

3 or more corruptions [48,82].
To achieve this result, we need to assume the existence of a common random string and

appropriate cryptographic hardness assumptions, including the Learning With Errors (LWE)
assumption, enhanced trapdoor permutations, as well as the existence of a Fully Homomorphic
Encryption (FHE) scheme with an appropriate notion of compactness [55, 58]. It is well-known
that such compact FHE schemes are implied by a suitable circularly secure variant of the LWE
assumption [58], although our compiler can work in general given any such compact FHE scheme
(not necessarily based on LWE). Our result is summarized in the following theorem:

3We stress that the algorithm itself can be randomized, we just want its communication patterns to be deterministic
and fixed a-priori.

4Since many well-known MPC algorithms [2, 4–6,10–13,15–17,19, 20,29,36,40, 41,46,47,52, 60,61,63, 80,81,83,90,
93,97,107] incur only constant to sub-logarithmic rounds, we would like to preserve the round complexity tightly; and
thus we do not allow a security parameter related blowup for round complexity.
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Theorem 2 (Secure computation for MPC). Assume the existence of a common random string, the
Learning With Errors (LWE) assumption, enhanced trapdoor permutations, as well as the existence
of an FHE scheme with a suitable notion of compactness (see Appendix A.1 for a formal definition of
compactness). Suppose that s = N ε and that m is upper bounded by a fixed polynomial in N . Let κ
denote a security parameter, and assume that s ≥ κ. Given any MPC algorithm Π that completes in
R rounds where each of the m machines has s local space, there is an MPC algorithm Π̃ that securely
realizes the same function computed by Π in the presence of an adversary that statically corrupts
at most 1

3 − η fraction of the machines for an arbitrarily small constant η. Moreover, Π̃ completes
in O(R) rounds, consumes at most O(s) · poly(κ) space per-machine, and incurs O(m · s) · poly(κ)
total communication per round.

Now, one interesting question is whether the cryptographic assumptions we rely on in the above
theorem can be avoided. We show that if one can indeed achieve the same result with statistical
security, then it would imply (at least partial) solutions to long-standing open questions in the cryp-
tography literature. Specifically, in Appendix B, we show that if we could construct such a compiler,
it would immediately imply a constant-round Secure Multi-Party Computation protocol for a broad
class of circuits that can be computed in small space, achieving total communication complexity
that is (significantly) sublinear in the circuit size, regardless of the number of parties. As noted in
numerous works [26,39,44,45], the existence of such constant-round, sublinear-communication multi-
party computation (for circuits) with statistical security has been a long-standing open problem,
even for special (but nonetheless broad) classes of circuits.

Interestingly, we note that barring strong assumptions such as Indistinguishable Obfuscation [53],
the only known approach to construct constant-round, sublinear-communication multi-party com-
putation for circuits of unbounded polynomial size is also through compact FHE [55, 58]. We
stress, however, that even with a compact FHE scheme, constructing our “MPC to SMPC-for-MPC”
compiler is non-trivial and require the careful combination of several techniques.

2 Technical Roadmap

We now present a succinct and informal technical roadmap to capture our main ideas and new
techniques.

Recall that in the MPC model of computation, there are m machines each with s local space.
All machines will jointly compute a function over a large input containing N words. We assume
that s = N ε for some constant ε ∈ (0, 1), and that m ∈ [N1−ε, poly(N)]. Note that although our
results will hold as long as m is upper bounded by some polynomial function in N , in known MPC
algorithms typically we desire that m · s is not too much greater than N . At the beginning of the
first round, every machine receives an input whose size is bounded by s. In every other round,
each machine begins by receiving incoming messages from the network, and it is guaranteed that
no more than s words will be received such that the machine can write them down in its local
memory — henceforth this is referred to as the s-receiver-constraint. After receiving the inputs or
the network messages, all machines perform local computation, and then send messages to other
machines. These messages will then be received at the beginning of the next round.

As explained earlier, in the algorithms literature on MPC, the primary metric of performance is
the algorithm’s round complexity [2, 4–6,10–13,15–17,19,20, 29, 36, 40, 41, 46, 47, 52, 60, 61, 63, 80, 81,
83,90,93,97,107].
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2.1 Achieving Communication Obliviousness: Oblivious Routing

Many known MPC algorithms are not communication oblivious, and thus the communication
patterns of these algorithms can leak information about the secret inputs. For example, many
graph algorithms for MPC have communication patterns that will leak partial information about
the structure and properties of the graph, such as the degrees of nodes or the connectivity between
vertices [6, 40,62,81,93].

Our goal is to compile an MPC algorithm to a communication-oblivious counterpart while
preserving its round and space complexity. To achieve this, we will compile each communication
round of the original MPC to a constant-round, oblivious protocol that accomplishes the same
message routing. Interestingly, the compiled protocol will respect communication-obliviousness in a
very strong sense: its communication patterns are deterministic and independent of the input.

Sender and receiver constraints. In the MPC model of computation [6, 40,93], we typically
have that in each round, each machine sends at most s words and receives at most s words —
henceforth these are referred to as the s-sender-constraint and the s-receiver-constraint respectively.
Note that if a sender wants to send the same word to two machines, it is counted twice.

Oblivious routing. Oblivious routing basically aims to obliviously realize the message routing
as long as both the s-sender- and s-receiver-constraints are satisfied.

More specifically, suppose that each machine receives at most s send-instructions as input, where
each send-instruction contains an outgoing word to be sent and a destination machine for the
outgoing word. The joint inputs of all machines guarantee that each machine will receive no more
than s words. How can we design a constant-round, communication-oblivious protocol that routes
the outgoing words to the appropriate destinations?

Remark 1. It seems that some MPC works in the algorithms literature respect only the s-receiver
constraint but not the s-sender constraint. We think most likely, the folklore understanding is that
as long as we assume the s-receiver constraint, whether or not there is an s-sender constraint do not
really affect the expressive power of the computation model. For completeness, in Appendix C, we
describe a round- and space-preserving transformation that compiles any MPC protocol that satisfies
only the s-receiver-constraint to one that satisfies both O(s)-receiver- and O(s)-sender-constraints.
This means that all of our results would be applicable to MPC algorithms that satisfy only the
s-receiver-constraint but not the s-sender-constraint.

Background. Our approach is partly inspired by algorithmic techniques from the recent Oblivious
RAM and oblivious sorting line of work [7, 33, 49, 96, 101]. Specifically, these works propose a RAM
algorithm with a fixed memory access pattern that routes elements to random buckets and succeeds
with 1− exp(−Ω(Z)) probability where Z denotes each bucket’s capacity (and assuming that the
total number of elements is polynomially bounded). To accomplish this, imagine that initially all
N elements are divided into 2N/Z buckets each of capacity Z such that each bucket is at most
half-loaded. Every element is assigned a random label declaring which bucket it wants to go to.
Now, these prior works rely on a logarithmic-depth, butterfly network of buckets and move the
elements along this butterfly network based on their respective labels, until eventually every element
falls into its desired bucket — this is guaranteed to succeed with 1− exp(−Ω(Z)) probability where
a failure can only occur if in the middle some bucket in the butterfly network exceeds its capacity —
henceforth this is said to be an overflow event.
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In summary, the insight we can gain from this elegant construction is the following: roughly
speaking, a butterfly network of super-logarithmically sized buckets can obliviously route elements
to their desired buckets in the final layer with a deterministic communication pattern (determined
by interconnections in the butterfly network); but to ensure correctness, i.e., to ensure that overflow
does not happen except with negligible probability, the elements should have random destination
labels to achieve good load-balancing properties.

A first attempt. Our idea is to use such a butterfly-network to route the words to their
destinations — specifically, one can imagine that each bucket is relatively small such that every
machine holds Θ( sZ ) of the resulting buckets; and moreover, the buckets are numbered 1, 2, . . . , O(m ·
s/Z) respectively. For convenience, we will use the term “element” to mean an outgoing word to be
sent. Since every sender already knows the destination machines for each of its input elements, it
can basically assign the element to a random bucket within the destination machine. Henceforth,
by “destination label”, we mean the index of the destination bucket (as opposed to the destination
machine). We are, however, faced with two challenges which prevent us from adopting the known
approach in its current form:

• Load balancing challenge: First, in our setting, the destination labels of the input elements
are not completely random; and thus the load-balancing properties that hold in earlier
works [7, 33,49] for randomly assigned labels no longer hold in our case;

• Round complexity challenge: Second, the natural way to adopt the butterfly network is to
assign to each machine an appropriate subset of Θ( sZ ) buckets in each layer of the network.
However, if s

Z = Θ(1), then we will incur logarithmic number Ω(logm) of rounds (corresponding
exactly to the depth of the butterfly network). Later, we shall set Z to be small enough (e.g.,
Z = O(

√
s) in size) to reduce the number of rounds.

Overcoming the load balancing challenge. To overcome the load balancing challenge, our
idea is to run this butterfly network twice: the first time we use it to route every element a random
destination bucket just like in the earlier works; and the second time we use it to route every element
to a random destination bucket within the destination machine they originally wanted to go to. At
the end of the second phase, every element will be routed to the machine it wants to go to.

For the first phase, we can rely on the same load balancing arguments as in the previous
works [7, 33, 49] to prove that overflow events happen only with negligible probability. For the
second phase, we will prove a new stochastic bound showing that the same load-balancing properties
hold with a different starting condition (see Section 4.4): i) the starting condition must satisfy the
s-receiver-constraint; and ii) initially the elements are assigned to random input buckets, which is
guaranteed by phase 1.

It remains to overcome the round complexity challenge which we explain below.

Overcoming the round complexity challenge. The earlier works rely on a 2-way butterfly
network where in each layer i, a local 2-way routing decision is made for every element based on the
i-th bit of its destination label. In our new construction, we will compress r layers of work in the
original butterfly to a single round, exploiting the fact that each machine local space to store roughly
2r buckets, where 2r = Θ( sZ ).5 In this way our new approach requires O((log N

Z )/r) = O(1/ε)

5 Our techniques remotely reminiscient of the line of work on external-memory ORAM constructions with large,
N ε CPU private cache [33,68,69,96,101] — however, all previous works consider a sequential setting.
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rounds for Z = O(
√
s) and s = N ε. Effectively, in each round i, each machine would be looking at

the i-th r-bit-group of an element’s label to make a 2r-way routing decision for the element.
To make this idea work, the crux is to show that at the end of every round (corresponding to

r layers in the old 2-way butterfly), there is a communication-efficient way for the machines to
exchange messages and rearrange their buckets such that the interconnections in the graph are
“localized” in the next round too. In this way, within each round, each machine can perform 2r-way
routing on its local elements, simulating r layers of the old 2-way butterfly, without communicating
with any other machine. Fortunately, we can accomplish this by exploiting the structure of the
butterfly network. We defer the algorithmic details and proofs to Section 4.

2.2 SMPC for MPC

2.2.1 Informal Problem Statement

We now turn our attention to Scenario 2 where the adversary controls not just the intermediate
network routers but also a subset of the machines involved in large-scale computation. As before,
given a computation task f that has an efficient but insecure MPC algorithm, we now would like to
securely realize f also using the MPC model while preserving its efficiency. Here, our security goal
is to guarantee that the adversary learns nothing more than what is already implied by the joint
outputs of corrupt machines. Such a notion of security can be formally defined using a standard
simulation-based paradigm [30], requiring that the real-world protocol must “securely emulate” an
ideal-world protocol where all machines simply forward their inputs to a trusted ideal functionality
who performs the desired computation task and forwards the outputs to each machine. Intuitively,
we require that for any real-world attack that can be performed by a polynomially bounded adversary,
there is an ideal-world adversary that can essentially implement the same attack in the ideal world.
We refer the reader to Section 5 for a formal definition. Note that our definition follows the same
style as the Universal Composition framework [30]. Henceforth, a secure multi-party computation
protocol satisfying the aforementioned security notion is said to be an “SMPC-for-MPC” protocol.

Before we describe how to solve this problem, we need to clarify a few points about the model of
execution as we marry SMPC and MPC. Since we now have corrupt machines and corrupt machines
are allowed to send arbitrary messages to any machine, we can no longer guarantee that each honest
machine receive at most s words. Instead, we require that at the end of the every round r − 1,
every machine can write down in its local memory a receiving schedule for round r of the form
{(fj , wj)}j , where fj ∈ [m] denotes the index of a sender to anticipate a message from in round r
and wj denotes the number of words expected from fj . In this way, an honest machine will only save
the first wj words received from every anticipated sender fj contained in this receiving schedule; all
other received messages are discarded immediately.

Remark 2. Recall that since we showed how to compile any MPC protocol to one that has a fixed
communication schedule while asymptotically preserving round and space complexity (Section 2.1),
requiring that receivers be able to anticipate their receiving schedule does not reduce the expressive
power of the underlying computational model. However, somewhat more subtlely, we do not insist
that the communication patterns be deterministic (i.e., fully fixed a-priori) for our SMPC-for-MPC
protocols in order not to rule out interesting SMPC-for-MPC protocols — it suffices for an honest
machine to anticipate its receiving schedule of some round right before the round starts.

2.2.2 MPC to “SMPC-for-MPC” Compiler

Recall that we would like the compiled SMPC-for-MPC protocol to tightly preserve the original
MPC program’s round complexity, and for per-machine space we only allow a security parameter
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related blowup. Although in the cryptography literature, secure multi-party computation (SMPC)
techniques have been explored for various models of computation including circuits [21,55,65,105,106],
RAM [1,54,56,57,71,85,86,104], and PRAM [24,25,32,34,35,37,38,87,92], none of the existing
approaches can satisfy our efficiency requirements due to a discrepancy in both model and metric of
performance.

First, any approach whose round complexity depends at least on the depth of the circuit [9,22,65,
78] or on the parallel runtime of a PRAM [24] can be immediately ruled out, since MPC protocols
can have high circuit/PRAM depth (e.g., if each machine’s local computation is of a sequential
nature). We thus turn our attention to known approaches that achieve small round complexity. For
example, a line of works [18, 42, 84] showed a technique where multiple machines jointly garble
a circuit/PRAM in constant number of rounds, then each individual machine simply evaluates
the garbled circuit/PRAM locally. Although such a protocol would indeed complete in a small
number of rounds, the garbled circuit/PRAM’s size would be at least linear in the total computation
time of all parties (unless we make strong assumptions such as Indistinguishable Obfuscation [53]).
This means that the per-machine space blowup will be proportional to the number of machines m.
Similarly, other constant-round approaches, including those relying on Threshold Fully Homomorphic
Encryption [8] or Multi-Key Fully Homomorphic Encryption [14,28, 72, 75, 91], also do not directly
work due to a linear-in-m blowup in the per-machine space, e.g., due to the need to store all
machines’ encrypted inputs (although later in our construction we will indeed leverage FHE-based
MPC techniques as a building block, although this MPC will only be run among small committees).

Our approach. Henceforth we assume that the adversary controls only 1
3 − η fraction of the

machines where η may be an arbitrarily small constant. As explained earlier, this is nearly optimal
tolerance in a point-to-point network since an honest fraction of at least 2

3 is necessary for realizing
broadcast in a point-to-point network. Without loss of generality, we may also assume that
the original MPC has already been compiled to a communication-oblivious counterpart whose
communication patterns are deterministic and input independent.

Our idea is to directly emulate the original (communication-oblivious) MPC round by round, by
having a randomly elected small committee emulate each machine’s actions in the original MPC.
Henceforth the committee acting on behalf of machine i in the original MPC is called the i-th
committee. As long as the committee size is polylogarithmic in the security parameter, except with
negligible probability each committee must have at least a 2

3 -fraction of honest machines. Therefore,
we may employ an SMPC that tolerates less than 1

3 corruption (and satisfies suitable efficiency
requirements to be described below) to securely emulate the following actions — note that in all
cases this SMPC protocol will be executed among a small set of polylogarithmically many machines;
and thus we call this SMPC building block CommitteeSMPC:

1. Share input: initially each machine i secret shares its input with the i-th committee; the secret
sharing scheme must be robust such that correct reconstruction can be achieved in polynomial
time even when corrupt machines provide false shares. Note that to achieve this we may run
the aforementioned CommitteeSMPC protocol among machine i and the i-th committee;

2. Local compute: in every round’s computation step, the i-th committee employ CommitteeSMPC
to jointly evaluate what machine i’s is supposed to locally compute in the original MPC, and
the result is again robustly secret-shared among the committee;

3. Communicate: whenever machine i wants to send a message to machine j in the original MPC,
now the i-th committee and the j-th committee employ CommitteeSMPC to accomplish this.
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At the end of this small protocol, every member of the j-th committee will obtain a fresh
robust secret share of the message.

Instantiating CommitteeSMPC with suitable efficiency requirements. For our compilation
to satisfy the stated efficiency goals, the CommitteeSMPC employed must meet certain efficiency
requirements:

1. Constant round: the protocol must complete in constant number of rounds; and

2. Weakly space efficient: the space consumed by each machine in the CommitteeSMPC protocol
asypmtotically matches the RAM-space-complexity of the function being evaluated, allowing
only a security-parameter-related blowup6. In this paper, we assume that the RAM-space-
complexity accounts for the space for writing down the RAM program’s description and all
inputs and outputs.

Remark 3. Note that since the RAM-space-complexity accounts for writing down all machines’
inputs and outputs, by definition the RAM-space-complexity of the function being evaluated incur a
linear blowup in the number of machines. However, since CommitteeSMPC will only be run among
at most 2 committees, the number of machines participating is small in our case. In fact, by the weak
space efficiency condition, each machine’s space complexity may sometimes need to be sublinear in
the circuit size, runtime, or even depth of the function being evaluated (depending on the function
being evaluated).

The only known approach for achieving these guarantees simultaneously is through Threshold
Fully Homomorphic Encryption (TFHE) [8] or Multi-Key Threshold Fully Homomorphic Encryption
(MTFHE) [14,72,75] with a suitable notion of compactness (to be explained shortly after). Roughly
speaking, to perform an SMPC, the following takes place where the encryption scheme employed is
(M)TFHE:

(a) possibly after a setup phase, each machine encrypts their local input using the (M)TFHE
scheme and computes a zero-knowledge proof attesting to the well-formedness of the ciphertext;
now the machine broadcasts the ciphertext as well as the proof;

(b) now each machine homomorphically evaluates an encryption of all machines’ outputs;

(c) for every machine involved, compute the partial decryption share for that machine’s encrypted
output, along with a zero-knowledge proof attesting to the correctness of decryption; now
send the partial decryption share and the proof to the corresponding machine.

(d) a machine finally reconstructs the output after collecting enough decryption shares.

If the (M)TFHE scheme employed is compact in the sense that the public key, secret key, and
ciphertext sizes depend only on the security parameter κ but not the size or the depth of the circuit
being evaluated, then we can show that in the above steps each machine needs only O(m′ ·s) ·poly(κ)
space where m′ denotes the number of machines involved in the CommitteeSMPC protocol and s
denotes the RAM-space-complexity of the function being evaluated. Specifically, recall that any
RAM machine with space complexity s can be converted to a layered circuit with width s (and
moreover the circuit can be generated and written down layer by layer consuming space proportional
to the RAM’s next-instruction circuit size). Thus in the above, Step (b) can be accomplished

6We call this notion weakly space efficient, since one can imagine a stronger notion requiring that the total space
consumed by all parties asyptotically matches the RAM-space-complexity of the function being evaluted.
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using O(m′ · s) · poly(κ) space; and it is easy to verify that all other steps indeed consume at most
O(m′ · s) · poly(κ) too.

In existing (M)TFHE schemes [8,14,72], however, the key and ciphertext sizes are dependent on
the depth of the circuit being evaluated and thus they do not satisfy the aforementioned compactness
requirement. To make these schemes compact, we need to rely on the bootstrapping technique
described in the original Gentry work on FHE [55]; and it is well-known that to get provable security
with bootstrapping, we need to assume that the (M)TFHE scheme employed satisfies circular
security — informally speaking, ciphertexts must nonetheless remain semantically secure even when
we use the encryption scheme to encrypt the secret decryption key.

Since there are relatively few known (M)TFHE constructions [14,72], rather than assuming that
the existing constructions are circularly secure, we would like to further hedge our bet. Later in
our technical sections, we further relax the assumption and base our scheme instead on LWE and
the existence of any compact FHE. Note that compact FHE is known to exist assuming circularly
secure variants of LWE; but for our purpose, we can work with any compact FHE scheme including
ones that depend on different algebraic assumptions.

2.3 Related Work

As mentioned earlier, the cryptography literature has extensively considered secure computation on an
parallel architecture but most existing works focus on the PRAM model [3,24,25,32,34,35,37,38,87,92].
Since most real-world large-scale parallel computation is now done on an MPC architecture, we
hope that our work will bring the MPC computation model (which has been extensively studied
in the algorithms literature) to the attention of the cryptography community. Besides the PRAM
model, Parter and Yogev have considered secure computation on graphs in the so-called CONGEST
model of computation [94,95].

3 Preliminaries

3.1 Massively Parallel Computation Model

We now describe the Massively Parallel Computation (MPC) model. Let N be the input size in
words where each word consists of w = Ω(logN) bits, and ε ∈ (0, 1) be a constant. The MPC model
consists of m parallel machines, where m ∈ [N1−ε, poly(N)] and each machine has a local space of
s = N ε words. Hence, the total space of all machines is m · s ≥ N words. Often in the design of
MPC algorithms we also want that the total space is not too much larger than N , and thus many
works [2,5,79,83] assume that m · s = Õ(N), or m · s = O(N1+θ) for some small constant θ ∈ (0, 1).
Henceforth the m machines are numbered 1, 2, . . . ,m respectively. The m machines are pairwise
connected and every machine can send messages to every other machine.

In this paper we are interested in protocols (also called algorithms) in the MPC model. In this
model, the computation proceeds in rounds. At the beginning of each round, if this is the first round
then each machine receives N/m words as input; else each machine receives incoming messages from
the network, and a well-formed MPC algorithm must guarantee that each machine receives at most
s words since there is no additional space to store more messages. After receiving the incoming
messages or inputs, every machine now performs local computation; and we may assume that the
local computation is bounded by poly(s) and the choice of the polynomial poly is fixed once the
parameters s and m are fixed. After completing the local computation, every machine may send
messages to some other machines through a pairwise channel, and then all messages are received
at the beginning of the next round. When the algorithm terminates, the result of computation
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is written down jointly by all machines, i.e., by concatenating the outputs of all machines. Every
machine’s output is also constrained to at most s words. An MPC algorithm may be randomized, in
which case every machine has a sequential-access random tape and can read random coins from the
random tape. The size of this random tape is not charged to the machine’s space consumption.

In the standard literature on MPC, we are most concerned about the round complexity of an
MPC algorithm. Specifically, this model has been of interest to the algorithms community since
numerous tasks that are known to have logarithmic depth lower bounds on the classical Parallel
Random-Access Machine (PRAM) model are known to have sublogarithmic- or even constant-round
algorithms in the MPC model [40,67,79,93].

Useful notations and conventions. We introduce a couple useful notations and conventions:

• Given an MPC algorithm Π, we use the notation (y1, y2, . . . , ym) ← Π(x1, x2, . . . , xm) to
denote a possibly randomized execution of the algorithm where each machine i’s input is xi
and its output is yi for i ∈ [m].

• When we say the input to an MPC algorithm, we mean the concatenation of all machines’
inputs. When we say that an input array I is evenly spread across the m machines, we mean
that every machine but the last one obtains b|I|/mc elements and the last machine obtains
|I| mod m elements where |I| denotes the total number of elements in I.

• We use the term s-receiver-constraint to refer to the requirement that a well-formed MPC
algorithm must ensure that each machine receives no more than s words in each round. One
may also consider, symmetrically, an s-sender-constraint, that is, in each round every machine
can send at most s words (where sending the same word to two machines counts twice).
Many MPC algorithms in the literature respect both constraints. However, it seems that
some other works in the MPC literature require only the s-receiver-constraint but not the
s-sender-constraint.

It turns out that the two modeling approaches are equivalent in terms of expressive power
as we show in Appendix C. Therefore, in the main body of the paper, we simply assume
that both constraints must be respected, but our results also extend to MPC algorithms that
respect only the s-receiver-constraint.

• Like in the standard algorithms literature on MPC, we are concerned about asymptotical
complexity. For this reason, whenever convenient, we shall assume that each machine is allowed
O(s) local space rather than s. Similarly, the s-receiver-constraint is sometimes interpreted as
each machine receiving no more than O(s) data per-round.

• We assume that the original MPC protocol to be compiled runs in a fixed number of rounds.
If not, we can always pad its round complexity to be the worst case. This ensures that no
information will be leaked through the number of rounds.

3.2 Communication-Oblivious MPC Algorithms

Communication-oblivious MPC algorithms. To compile an MPC algorithm to a secure
counterpart, we go through an important stepping stone where we first compile the original
MPC algorithm to a communication-oblivious counterpart. As mentioned earlier in Section 1,
communication-oblivious MPC algorithms are also interesting in their own right, e.g., for MPC
clusters where the end points are secured with secure processors such as Intel SGX, such that the
adversary can observe only the communication patterns.
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Intuitively, an MPC algorithm is said to be communication-oblivious, iff an adversary who can
observe the communication patterns of the machines learn nothing about the secret input. When we
execute an MPC algorithm on some input I, the communication pattern incurred in the execution is
the concatenation of the following:

1. For each round r, a matrix Pr ∈ [s]m×m where Pr[i, j] ∈ [s] indicates how many words machine
i sends to machine j in round r;

2. An ordered list containing the number of words each machine outputs at the end of the
algorithm.

In this paper, we define a very strong notion of communication obliviousness: we say that
an MPC algorithm is communication-oblivious, iff the communication pattern of the algorithm is
deterministic, input independent, and known a-priori. Note that this also implies that the algorithm
must run for a deterministic number of rounds.

Defining correctness of MPC algorithms. We will define a notion of δ-correctness for an MPC
algorithm. Let (y1, y2, . . . , ym)← F(x1, x2, . . . , xm) be a (possibly randomized) ideal functionality
which, upon receiving inputs x1, x2, . . . , xm, outputs y1, y2, . . . , ym. Here xi represents machine i’s
input and yi represents machine i’s output for i ∈ [m]; without loss of generality we may assume
that each xi contains exactly s words (if not we can always pad it with dummies to exactly s words).
We say that an MPC algorithm denoted Π δ-correctly realizes the ideal functionality F iff for any
input I = (x1, . . . , xm) the statistical distance between Π(I) and F(I) is at most δ.

Definition 1 (δ-oblivious realization of an ideal functionality). We say that an MPC algorithm
Π δ-obliviously realizes an ideal functionality F , iff Π is communication-oblivious and moreover Π
δ-correctly realizes F .

Remark 4. One can alternatively consider a weaker notion for an MPC algorithm Π to “δ-oblivious
realize” the ideal functionality F , that is, we require that there exists a simulator Sim, such that for
any input I of appropriate length, the following distributions must have statistical distance at most
δ:

• RealΠ(1m, 1s, I): outputs the outcome of the MPC algorithm Π on input I and its communi-
cation patterns;

• IdealF (1m, 1s, I): outputs F(I) and Sim(1m, 1s). Notice that the simulator Sim is not given
the input I.

It is not hard to see that our notion (i.e., Definition 1) implies this weaker notion. This weakened
definition would permit the communication patterns to be randomized and also not necessarily
known a-priori. In this paper we focus on the stronger notion since we can achieve even the stronger
notion in an efficiency-preserving manner.

4 Oblivious Routing and Communication-Oblivious Compiler

4.1 Problem Definition

Recall that our first goal is to obtain an MPC protocol communication oblivious, and the crux of
the problem is to realize an oblivious form of routing. Imagine that in the original MPC protocol, in
some round, every machine has a list of at most s words that they want to send, and each outgoing
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word has an intended destination machine. It is also guaranteed that every machine will receive
no more than s words. The question is how to route these messages obliviously such that the
communication patterns leak no information.

More formally, the Routing problem has the following syntax:

• Input. Every machine i ∈ [m] has at most s send instructions where each send instruction
consists of a word to be sent, and the index of the recipient machine. All machines’ send
instructions must jointly satisfy the s-receiver-constraint, i.e., every machine receives no more
than s words.

• Output. Every machine outputs the list of words it is supposed to receive as uniquely defined
by the joint input (i.e., all machines’ send instructions); and moreover, these received words
are sorted based on a lexicographically increasing order. If fewer than s words are received,
the machine pads the output array with dummies to a length of exactly s.

The above abstraction defines a most natural ideal functionality FRouting which implements the
routing task correctly.

In the remainder of this section, we will devise an oblivious MPC protocol that accomplishes
routing. In the process we will need two intermediate building blocks called “Bucket Route” and
“Random Bucket Assignment” respectively.

Notational convention: a global Overflow indicator. Throughout this section, we shall assume
that each machine maintains a global variable denoted Overflow. Initially the Overflow bit is set to
0. During the algorithm’s execution, a machine may set the Overflow bit to 1. If at the end of the
algorithm, all machines’ Overflow indicators remain unset, we say that the algorithm is successful;
otherwise the algorithm is said to have failed.

4.2 Building Block: Bucket Route

4.2.1 Syntax

The goal is to classify elements into buckets based on each element’s label indicating its desired
destination bucket. The algorithm is not always guaranteed to succeed; however, should it succeed,
the final assignment should be correct. Recall that an algorithm is said to be successful if no machine
has set their Overflow indicator by the end of the algorithm. We consider both the input and output
configuration as a list of buckets spread evenly across the machines, where each bucket contains
either real or dummy elements.

More formally, a BucketRouteZ algorithm, parametrized by a bucket size Z, satisfies the following
syntax — recall that there are in total m machines each of which has local space O(s); without loss
of generality, we may assume that m and s are both powers of 2:

• Input. In the beginning, each machine stores 2r number of buckets each of capacity Z where
2r · Z = 2s. Each bucket contains Z elements, some of which are real and others are dummy.
Each real element carries an `-bit label where 2` = m · 2r — henceforth if a real element’s
label is k ∈ {0, 1}`, we say that the element wants to go to the k-th bucket out of a total of
2` = m · 2r buckets.

• Output. The machines jointly output a list of 2` = m · 2r buckets, each of capacity Z. We
require that if the algorithm is successful (i.e., no machine’s Overflow indicator is set), then
every bucket must contain all the real elements wanting to go there plus an appropriate
number of dummy elements.
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Algorithm 1 Bucket Route

Input: Let 2r · Z = 2s and let ` = log2m + r. The input consists of 2` buckets denoted
L := {Bi : i ∈ [2`]} each with capacity Z, where each real element in a bucket contains an `-bit
label. There are m = 2`−r parallel machines, each of which has enough memory to store and process
2r buckets.

1: procedure BucketRouteZ(L := {Bi : i ∈ [2`]}) . The input is a list of 2` buckets.
2: Each bucket in L receives an empty bit string as its label.
3: for

⌊
`
r

⌋
sequential iterations do

4: Partition the buckets in L into m groups of equal size 2r, where the buckets in each
group has the same label; a machine is assigned to each group.

. Step 4 requires the machines to exchange their buckets according to a predetermined fashion.

5: for each of m machines in parallel do
6: Every machine calls 2r-way LocalClassifyr,Z on its group of buckets to produce its

modified group of buckets (whose labels have lengths increased by r).

7: Update the list L to be the union of all machines’ modified groups of buckets.

8: if t := ` mod r 6= 0 then
9: In the last iteration, each machine receives 2r−t sub-groups of buckets, where each

sub-group contains 2t buckets with the same label.

10: for each of m machines in parallel do
11: Every machine calls 2t-way LocalClassifyt,Z on every of its sub-groups of buckets.

12: Let L be the union of all machines’ updated buckets.

13: return the list L of 2r buckets, each of which receives a unique label in {0, 1}r.
Recall that if any instance of multi-way LocalClassify encounters Overflow, the failure-
indicator Overflow will be set to 1 but the algorithm will continue after truncating
the excessive elements in the overflowing bucket(s).

4.2.2 Protocol

We now describe a BucketRouteZ algorithm that tries to move every real element to the desired
destination bucket but will possibly fail in the middle due to overflow events. Later in Section 4.4,
we will show that if the input configuration satisfies certain nice conditions, then the overflow
probability can be made negligibly small. Roughly speaking, by “nice conditions”, we want that all
input buckets are at most half-full; and moreover the input elements’ labels are randomly chosen.
In this section, we first focus on presenting the algorithm and we will worry about the probability
analysis in Section 4.4.

At a very high level, our BucketRouteZ algorithm will proceed in iterations such that at the end
of the i-th iteration, elements will be sorted based on the first i · r bits of their respective labels.
During each iteration i, every machine will obtain a list of buckets containing elements whose labels
all share the same ((i− 1) · r)-bit prefix, and the machine will locally further classify these elements
into buckets based on the next r bits of their respective labels. This subroutine is henceforth called
LocalClassify which is described more formally below. We will then describe the full BucketRouteZ

algorithm after specifying this subroutine.
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A multi-way LocalClassify subroutine. We introduce a subroutine called a 2t-way LocalClassifyt,Z .
The 2t-way LocalClassifyt,Z subroutine is always performed by a single machine locally which operates
on a list of 2t buckets:

• Imagine that a machine has as input a list of 2t buckets each of capacity Z where 2t · Z ≤ 2s.
All of the 2t buckets must have the same bucket-label x ∈ {0, 1}|x|, where |x| is the bit-length
of x. Moreover, every real element contained in the buckets has an `-bit label of the form x||y,
i.e., the element’s label must be prefixed by x, followed by a suffix denoted y (that has length
at least r). It is guaranteed that |x|+ r ≤ `.

• Now, the machine locally rearranges the input to form 2t output buckets as follows: for each
i ∈ {0, 1}t, the i-th output bucket has the bucket-label x||i, and contains all the real elements
from the input whose label is prefixed with x||i, padded with dummies to a capacity of Z.
Moreover, in each output bucket the real elements must appear before the dummies.

If the above rearrange fails due to the overflow of some output bucket, then set the indicator
Overflow to 1; moreover, truncate the bucket to a load of Z and continue with the algorithm.
Note that if Overflow is set, then some elements can be lost due to the truncation.

The BucketRoute algorithm. We describe the BucketRouteZ algorithm in Algorithm 1 which
calls LocalClassify as a subroutine. Assuming that no Overflow is encountered, then the algorithm
proceeds in the following way: first, using the 2r-way LocalClassify subroutine, all machines rearrange
their local 2r buckets of elements based on the first r bits of the elements’ labels, such that all
elements whose labels have the same r-bit prefix fall into the same bucket, and this common r-bit
prefix also become the bucket’s label. At the end of this iteration, for each r-bit bucket label, there
will be 2`−r buckets with the same bucket label. We will then assign 2`−2r machines to work on
buckets sharing each r-bit bucket label, and each machine now locally calls LocalClassify to further
classify the elements based on the next r-bits of their input labels; and this goes on. In general,
after the end of the i-th iteration, buckets will acquire labels of length i · r bits, and there will be
2`−i·r buckets sharing each unique (i · r)-bit label; we now assign all buckets with the same label to
2`−(i+1)·r machines which further classifies the elements based on the next r bits in the input labels.
The algorithm will have ended by iteration i if i · r ≥ `, i.e., after O(`/r) iterations — at the end,
all buckets across all machines will have a unique `-bit label. Algorithm 1 formalizes the above idea
and in particular, treats the last iteration more formally for the case when ` is not divisible by r.

Fact 3. Using the parameters in Algorithm 1, the number of rounds is O( `r ) = O( logm
r ).

Fact 4 (Communication pattern). The communication pattern of Algorithm 1 is deterministic, and
depends only on the parameters m, `, r and Z. Moreover, in every round, the total communication
is upper bounded by O(m · s).

Proof. Step 4 of Algorithm 1 is where the communication happens, and it is not hard to check that
this fact holds.

4.3 Building Block: Oblivious Random Bucket Assignment

Based on the BucketRouteZ primitive described above, we realize another intermediate building block
called “random bucket assignment”. The problem, henceforth denoted RandBucketZ , is parametrized
by an appropriate bucket size Z and is described below:
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• Input. The input is an array of m · s elements spread evenly across the machines where each
machine receives exactly s elements; each element can either be real or dummy. We assume that
each element can be stored in O(1) words.

• Output. Each machine receives 2r = 2s/Z output buckets each of capacity Z. The contents of
the buckets are determined below:

– Every real element in the input array is assigned to a random bucket out of the 2r ·m buckets;

– If a bucket receives more than Z real elements, choose the Z lexicographically smallest elements
to populate the bucket (and the remaining elements are lost);

– Else if a bucket receives Z or fewer real elements, then the bucket should contain all of these
elements, in a lexicographically increasing order, and padded at the end with an appropriate
number of dummies to a capacity of Z.

Note that the above abstraction also defines the most natural ideal functionality FZRandBucket which
correctly implements the above task.

Protocol. Using BucketRouteZ , we can obliviously realize random bucket assignment using the
following simple algorithm where we assume that m and s are powers of 2 without loss of generality
(if not, we can pad them to the nearest power of 2):

1. Choose r, ` based on Z, m, and s, such that 2r = 2s/Z and 2` = m · 2r. Henceforth 2r denotes
the number of buckets on each machine, and 2` denotes the total number of buckets across all
machines.

2. Each machine places Z/2 elements from the input array to each of its 2r buckets, and pads
each bucket with an additional Z/2 dummies to a capacity of Z — note that each bucket is at
most half full.

3. Every machine assigns a random `-bit label to each real element in its buckets, indicating
which bucket the element wants to go to.

4. Call BucketRouteZ (Algorithm 1) to produce the list of output buckets, and for each resulting
bucket, sort the elements in it based on a lexicographically increasing order, placing all
dummies at the end.

Recall that in the BucketRouteZ , a machine may encounter a bucket overflow exception which
will cause the Overflow indicator to be set. Below we bound the probability of seeing Overflow using
the fact that the initial labels are randomly chosen and that the initial buckets are at most half full

— this allows us to prove good load-balancing properties. We use the standard Chernoff Bound to
analyze overflow probability.

Fact 5 (Chernoff Bound). Suppose X is a sum of independent {0, 1}-random variables. Then, for

any β ≥ 2, Pr[X ≥ βE[X]] ≤ exp(−βE[X]
6 ).

Lemma 6 (Overflow probability for random bucket assignment algorithm). In the above algorithm,

the probability that some machine sets the Overflow indicator is at most O( `r ) · 2` · e−
Z
6 .

Proof. Observe that there are O( `r ) iterations in Algorithm 1. We fix some iteration and some
bucket B, and analyze the overflow event of that bucket after that iteration.
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Observe that if we assume that all buckets from previous iterations have infinite capacity, then
no element will be lost in previous iterations. Hence, the resulting number of elements ending up at
bucket B after this iteration in this alternate world will stochastically dominate that in the actual
world. The property of no overflow in previous iterations is used to ensure that different elements
do not influence one another so that we can apply Chernoff Bound. By stochastic dominance, it
suffices to analyze the overflow probability of bucket B after this iteration under this additional
assumption.

Suppose after this iteration, this bucket has received a label with k bits. This means that the
elements in this bucket could only have come from 2k possible input buckets, each of which contains
at most Z

2 elements.
Observe that each such element receives a random `-bit label, whose k-bit prefix coincides with

this bucket’s label with probability 1
2k

. Hence, the expected number of elements entering this bucket

after this iteration is at most Z
2 .

Therefore, using Chernoff Bound (Fact 5), after each iteration, each bucket overflows with

probability at most e−
Z
6 .

Finally, the union bound over all iterations and all buckets gives the result.

Lemma 7 (Correctness of random bucket assignment). The above algorithm, parametrized with

Z, δ-correctly realizes FZRandBucket where δ = O( `r ) · 2` · e−
Z
6 (note that the parameters ` and r are

determined once Z is determined).

Proof. Follows from Lemma 6 and the fact for every random string ρ assigning real elements to
destination buckets, if ρ does not cause Overflow in the algorithm, then the algorithm’s output must
correctly match that output by the ideal functionality FZRandBucket consuming the same randomness
ρ.

Fact 8. The communication patterns of the algorithm is deterministic and depends only on the
parameters m, `, r and Z.

Proof. The communication pattern of the algorithm stems from that of BucketRouteZ since all other
steps are performed locally on each machine and incur no communication. The fact now follows
directly from Fact 4.

4.4 Putting it Together: Oblivious Routing

Using the building blocks BucketRouteZ and RandBucketZ , we can realize oblivious routing as
follows:

(a) Without loss of generality, we may assume that both m and s are powers of 2 and s is a
perfect square. Choose the parameter Z = 2

√
s and 2r = 2s/Z, and ` := log2m+ r.

(b) Every machine does the following: let X be an input array containing all the words the
machine wants to send (also called outgoing words), padded with dummies to a length of s.
Each real outgoing word in the input array has a label of the form x||ρ where x ∈ {0, 1}log2m

encodes the identifier of the recipient machine, and ρ
$← {0, 1}`−log2m is chosen at random

and indicates the index of the destination bucket within machine x.

(c) Invoke an oblivious RandBucketZ algorithm to assign each outgoing word to a random bucket
among a total of 2` buckets, and recall that each machine stores 2r of these buckets.
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We emphasize that the labels selected earlier in Step (b) are not used as destination labels
for the RandBucketZ algorithm since the RandBucketZ algorithm itself internally assigns a
random bucket to each element. However, these labels selected earlier will be used in the next
step.

(d) Invoke an instance of BucketRouteZ to route each outgoing word to the destination bucket
encoded in the label chosen in Step (b). Now, every machine looks at the resulting 2r buckets
it stores and outputs all received (real) words in a lexicographically increasing order, padded
with an appropriate number of dummies to a length of s.

Fact 9. In the above routing algorithm, the communication pattern is deterministic and depends
only on the parameters Z,m, r, `.

Proof. The communication pattern of the above algorithm is determined by the communication
pattern of the RandBucketZ algorithm and the BucketRouteZ algorithm. The fact now follows
directly from Fact 4 and Fact 8.

Lemma 10 (Correctness of routing). Suppose that RandBucketZ δ-correctly realizes FZrandbucket.

Then, the above algorithm δ′-correctly realizes FRouting for some δ′ ≤ δ +O( `r ) · 2` · e−
Z
6 .

Proof. We consider a sequence of hybrids.

RealZ(I). We will use RealZ(I) to denote the outcome of the real-world algorithm.

HybZ1 (I). We now consider a hybrid execution denoted HybZ1 , which is defined almost the same
as the real-world execution, except that we now replace the RandBucketZ algorithm with FZrandbucket.
We define HybZ1 (I) to output the outcome of this hybrid execution upon the input I.

Since RandBucketZ δ-correctly realizes FZrandbucket, it holds that for any I, HybZ1 (I) has at most
δ statistical distance from RealZ(I).

Lemma 11. For any I, in the execution defined by HybZ1 (I), the probability that some machine

sets the Overflow indicator is bounded by O( `r ) · 2` · e−
Z
6 .

Proof. To prove this, we instead consider an execution Hyb∞1 where the parameters Z, `, and r are
chosen as before; however, we do not impose a Z-capacity limit on any of the buckets, including
the buckets in Frandbucket or any bucket in the hybrid execution HybZ1 . It is not hard to that the
probability of seeing Overflow in HybZ1 is upper bounded by the probability that there is some
bucket storing more than Z real elements in Hyb∞1 . This can be formally proven through a standard
stochastic domination argument.

Therefore, it suffices for us to prove that in Hyb∞1 , the probability that some bucket needs

to store more than Z real elements is upper bounded by O( `r ) · 2` · e−
Z
6 , and below we prove this

statement.
The analysis is similar to the proof of Lemma 6. We fix some iteration in Algorithm 1 and some

bucket B. Let Xi,B denote an indicator random variable indicating the contribution of the i-th
outgoing word in the input to the load of the bucket B. Our goal is to prove a tail bound for

∑
iXi,B

which denotes bucket B’s total load. Note that Xi,B depends only on the i-th outgoing word’s
destination bucket and the initial bucket placement chosen by FRandBucket for the i-th outgoing
word. Therefore, all of the random variables {Xi,B}i are independent which will allow us to apply
the standard Chernoff bound. To do so, we will first show that the expected number of real elements
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the bucket contains after this iteration is at most Z
2 . Hence, in the execution Hyb∞1 , we analyze

the expected number of elements for this bucket B after this iteration based on the number k of
bits of the label received by this bucket after this iteration. Let L be the list of buckets obtained
after Frandbucket.

1. Suppose k ≤ log2m. The k-bit label indicate a subset of 2m−k destination machines. Then,
only elements going to these 2m−k machines can end up in this bucket. There are totally at
most 2m−k · s such elements.

Moreover, only elements from 2k buckets in L can end up in bucket B after this iteration.
Due to Frandbucket, an element is in one of those 2k buckets independently with probability 2k

2`
.

Hence, the expected number of elements in bucket B after this iteration is at most 2m−k ·s· 2k
2`

=
s
2r = Z

2 .

2. Suppose k > log2m. The k-bit label then identifies 2`−k buckets within a certain destination
machine M .

Recall that at most s elements are supposed to go to machine M . In order for an element to
end up in bucket B after this iteration, it has to satisfy the following independent events:

(a) The element is in one of 2k buckets in L whose elements can end up in B after this

iteration. Due to Frandbucket, this happens with probability 2k

2`
.

(b) The element has chosen a destination bucket that is among those 2`−k buckets whose

identity agrees with the k-bit label of the bucket B. This happens with probability 2`−k

2r .

Hence, the expected of elements that enter this bucket B after this iteration is at most
s · 2k

2`
· 2`−k

2r = s
2r = Z

2 , as required.

Finally, we apply a standard Chernoff bound and then a union bound over all iterations and all
buckets just like in Lemma 6, which leads to the lemma statement.

Ideal(I). The experiment Ideal(I) outputs the result of FRouting upon the input I

We now show that for any I, Ideal(I) and HybZ1 have statistical distance at most O( `r ) ·2` ·e−
Z
6 .

Note that conditioned on 1) seeing no Overflow in HybZ1 and 2) that Frandbucket does not pick bad
randomness such that some bucket initially exceeds Z load, then the outcome obtained in HybZ1
would be the same as the output of Ideal(I). In Lemma 11, we have shown that the probability of

some machine setting the Overflow indicator in HybZ1 O( `r ) · 2` · e−
Z
6 , therefore it suffices to show

that the probability that Frandbucket internally exceeds Z load is upper bounded by O( `r ) · 2` · e−
Z
6 .

Due to a simple application of the Chernoff bound, we can show that the probability that some

fixed bucket exceeds load Z is at most e−
Z
6 . Now, applying a union bound over all 2` buckets, the

conclusion follows.
In summary, applying a standard hybrid argument, we can complete the proof of this lemma.

Corollary 12. The above algorithm δ-obliviously realizes FRouting by Definition 1 for δ = exp(−Ω(
√
s)).

Proof. Straightforward by Fact 9, Lemma 10 and Lemma 7 and the parameters chosen in the
algorithm.
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4.5 Oblivious Sorting

Given our oblivious routing primitive, one immediate and interesting application is to construct a
constant-round MPC algorithm that obliviously realizes sorting.

To achieve this, recall that Goodrich [67] constructed a non-oblivious MPC algorithm that
accomplishes sorting in O(1) rounds; and moreover, his algorithm satisfies both the s-receiver-
constraint and the s-sender-constraint.

Lemma 13 (Constant-round sorting, Theorem 3.5 of Goodrich [67]). Let m = N1−ε and s = O(N ε)
for any constant ε ∈ (0, 1). Suppose that each item to be sorted can be stored in O(1) words. There
exists a deterministic, comparison-based sorting algorithm that can correctly sort N items stored on
m machines each with s local space consuming an a-priori fixed constant number of rounds; and
moreover, the algorithm satisfies both the s-sender-constraint and the s-receiver-constraint.

The idea is to apply our Routing algorithm to realize each round of communication in Goodrich’s
algorithm. In this way, we obtain the following theorem:

Theorem 14 (Constant-round oblivious sorting on MPC). Let m = N1−ε and s = O(N ε) for any
constant ε ∈ (0, 1), and suppose that each items to be sorted can be represented in O(1) words. There
exists an MPC algorithm that obliviously sorts N items stored on s machines in O(1) number of
rounds and the result is correct with 1− exp(−Ω(

√
s)) probability.

Proof. Note that Goodrich’s algorithm runs for an apriori-fixed constant number of rounds. Thus,
if we apply our oblivious Routing algorithm to realize each round of communication in Goodrich’s
algorithm, the resulting algorithm has a deterministic communication pattern; and moreover, due to
Corollary 12, the resulting algorithm correctly sort the input with 1− exp(−Ω(

√
s)) probability.

Although our secure multi-party computation compiler later will not directly rely on oblivious
sorting as a building block, we state this result explicitly nonetheless since sorting is such an
important and fundamental algorithmic building block.

4.6 Communication-Oblivious Compiler

We can now arrive at Theorem 1 which we restate below for the reader’s convenience.

Theorem 15 (Communication-oblivious MPC algorithms: Restatement of Theorem 1). Suppose
that s = N ε and that m is upper bounded by a fixed polynomial in N . Given any MPC algo-
rithm Π that completes in R rounds where each of the m machines has s local space, there is
a communication-oblivious MPC algorithm Π̃ that computes the same function as Π except with
exp(−Ω(

√
s)) probability, and moreover Π̃ completes in O(R) rounds, and consuming O(s) space

on each of the m machines. Furthermore, only O(m · s) amount of data are communicated in each
round in an execution of Π̃.

Proof. We apply the oblivious Routing algorithm developed earlier in this section to realize every
communication round of the original MPC protocol Π. The theorem now follows directly from
Corollary 12.

5 Secure Multi-Party Computation for Massively Parallel Com-
puting

In this section, we consider how to perform secure computation on a Massively Parallel Computing
(MPC) architecture. As before, we consider a set of m machines each of which is s-space-bounded.
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Without loss of generality, we consider a setting where each machine receives some input denoted
x1, x2, . . . , xm respectively where each input contains at most s words. Now, these machines would
like to jointly evaluate a function (y1, y2, . . . , ym)← f(x1, x2, . . . , xm) such that at the end, the i-th
machine obtains the s-bounded output yi for i ∈ [m]. We would like to ensure that an adversary
controlling a relatively small subset of the machines will not learn anything beyond the outputs of
the machines in its control.

The question we are concerned about is the following: suppose that there is an efficient, insecure
MPC protocol Π to evaluate the function f . Can we now securely evaluate the function f while
preserving the efficiency relative to the insecure protocol Π?

5.1 Execution Model: SMPC for MPC

We consider an MPC protocol Π executing on m machines each with maximum space s. To define
Secure Multi-Party Computation (SMPC), we augment the protocol execution model used so-far
in the paper as follows to capture a polynomial-time adversary who can corrupt a subset of the
machines. Most of the definitions below directly follow the standard approach in the cryptography
literature — there is, however, one subtlety that needs to be clarified when we marry SMPC and
MPC: since corrupt machines can send arbitrary messages to honest machines, we must now redefine
the s-receiver-constraint (see details in the “communication model” paragraph).

• We now parametrize the protocol’s execution with a security parameter denoted κ. Therefore
we may write Π as Π(1κ, 1m, 1s), i.e., it is parametrized by the security parameter κ and the
MPC framework’s parameters 1m and 1s.

• A subset of the machines which are said to be corrupt are controlled by an adversary A(1κ).
We assume that corruption is static, i.e., A decides which machines to corrupt before the
protocol execution starts. All protocol messages received by corrupt machines are visible to
A, and A fully controls what messages corrupt machines send.

Machines that are not in A’s control are said to be honest, and honest machines faithfully
follow the prescribed protocol.

• All machines’ inputs are chosen by some environment denoted Z(1κ); and at the end of the
protocol, all honest machines send their respective output to Z.

• During the execution A and Z may communicate freely.

Communication model. The protocol proceeds in rounds and machines communicate with each
other through a pairwise point-to-point network. At the beginning of each round, honest machines
receive messages from the network; and afterwards they perform computation and send messages.
If an honest machine sends a message in round r, then an honest recipient will receive the message
at the beginning of the next round. We assume that honest machines communicate through a
pairwise secure channel such that the adversary can observe who is communicating with whom,
the length of each honest message sent, but not the contents of the message — note that since
we can realize secure channels from authenticated channels with key exchange and authenticated
encryption, assuming secure channels is without loss of generality.

Recall that in this new setting, some machines can be corrupt and corrupt machines send arbitrary,
unwanted messages to honest machines. We cannot guarantee that the s-receiver-constraint is
respected in the presence of corrupt nodes; instead, we require the following:
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at the end of the previous round, an honest machine must have written down in a designated
location in its memory a receiving schedule for the next round, i.e., a list of {(fj , wj)}j pairs
where fj ∈ [m] denotes the index of a sender and wj ∈ [s] denotes the number of words the
machine is expecting to receiver from machine fj . Additionally, it must hold7 that

∑
j wj ≤ s.

Every sender whose index appears in this receiving schedule is called an anticipated sender. Now, a
machine will save only the first wj words received from each anticipated sender fj ; it will ignore
all words received from unanticipated senders; and also ignore all excessive words received from
anticipated senders.

5.2 Security Definition

Security is defined through (computational) observational equivalence of the environment Z in an
ideal-world and a real-world execution. In the real-world execution, machines run the real protocol
Π. In the ideal-world execution, the computation task is performed by an ideal functionality Ff
which computes the intended function f and distributes the results to everyone.

Formally, we define a real-world and an ideal-world execution formally as below:

• RealA,Z,Π(1κ, 1m, 1s): Z(1κ) chooses and provides inputs x1, x2, . . . , xm for each of the m
machines. Now the m machines engage in a protocol execution as explained above, where
honest machines will faithfully execute the prescribed protocol Π using the input they obtained
from Z but corrupt machines that are controlled by A can behave arbitrarily. At the end of
the protocol, the honest machines send their output to Z.

• IdealS,Z,F
f
(1κ, 1m, 1s): The ideal-world execution involves the environment Z and an ideal-

world adversary denoted S. Z and S can communicate arbitrarily during the ideal-world
execution. Now the execution is defined as below where Honest ⊆ [m] denotes the set of
honest machines; and Crupt := [m]\Honest denotes the set of corrupt machines all of which
are controlled S:

1. First, Z chooses and provides inputs x1, x2, . . . , xm for each of the m machines.

2. Every honest machine i ∈ Honest sends the input xi received from Z to Ff , and Ff
records x̃i := xi;

3. For a corrupt machine j ∈ Crupt, Ff may receive an input x′j from j, and if so, it records
x̃j := x′j . Note that corrupt machines may use arbitrary inputs, and not necessarily the
ones provided by Z.

4. As soon as allmmachines have provided input, Ff computes the outputs (y1, y2, . . . , ym) :=
f(x̃1, x̃2, . . . , x̃m) and gives {yi}i∈Crupt to S.

5. Upon receiving deliver from the ideal-world adversary denoted S, if any corrupt
machine j has not yet provided input, set x̃j := ⊥ and compute (y1, y2, . . . , ym) :=
f(x̃1, x̃2, . . . , x̃m). Now for i ∈ [m], give yi to machine i.

6. Upon receiving an output from Ff , an honest machine forwards the output to Z.

In this paper, we define a notion of compositional security for multi-party computation analogous
to the guarantees of Universal Composability [30]; moreover, our definition captures the requirement
of guaranteed output, i.e., a small corrupted coalition should not be able to stop honest machines

7Later on, in our compiled protocol, s will actually be substituted with O(s) · poly(κ) where s is the per-machine
space complexity of the original MPC to be compiled.
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from producing output. The formal definition is provided below — note that the requirement of
guaranteed output is captured since we require that the ideal-world adversary S send deliver to
the ideal functionality:

Definition 2 (SMPC for MPC). We say that an MPC protocol Π securely realizes some ideal
functionality Ff against a t-bounded adversary where t < m iff for any non-uniform polynomial-
time adversary A that statically corrupts at most t out of m machines, there is a non-uniform
polynomial-time ideal-world adversary S which is required to send deliver to Ff , such that for any
non-uniform polynomial-time environment Z,{

ViewZ(RealA,Z,Π(1κ, 1m, 1s))
}
κ
≈
{

ViewZ(IdealS,Z,F
f
(1κ, 1m, 1s))

}
κ

where ViewZ(Expt) denotes the view of Z in the experiment Expt and ≈ denotes computational
indistinguishability of two probability ensembles.

Resilience assumption. Henceforth we will assume that the adversary controls no more than
1
3 − η fraction of the machines for an arbitrarily small constant η. Such a corruption threshold is
(almost) the best one can hope for in a pairwise point-to-point network, since it takes at least 2/3
honest to realize broadcast [48, 82] (note that multi-party computation with guaranteed output
implies broadcast).

5.3 Building Block: Constant-Round, Weakly Space-Efficient SMPC

We will leverage a universally composable SMPC protocol as a building block, and we would like
this protocol to be not only constant round, but also somewhat efficient in space. Specifically, if the
function f(x1, . . . , xm′) evaluated requires S ≥ |x1|+ |x2|+ . . . |xm′ | space to compute insecurely on
a RAM, then for m′ machines to securely compute the function f would require each machine to
expend about O(S) space, and moreover, allowing a poly(κ) blowup due to the use of cryptography.
While this seems somewhat conserving in terms of space from the perspective of each individual
machine, from the perspective of all m′ machines, we are expending m′ times more total space than
the original RAM — for this reason, we call this notion weakly space-efficient. More formally, we
require the following efficiency guarantees:

1. Constant round: the protocol must complete in O(1) rounds;

2. Weak space efficiency: suppose that the function f(x1, x2, . . . , xm′) can be computed insecurely
on a Random Access Machine (RAM) with S space where S must account for the space
needed to write down all m′ inputs and outputs, we would then like a protocol running on m′

machines that securely realize Ff , requiring only poly(κ,m′) ·O(S) space on each machine.

3. Communication efficiency: total communication must be asymptotically not more than the
total space of all machines;

Note that we cannot directly use this SMPC protocol to compile an MPC protocol to a secure
counterpart if we want to preserve the efficiency of the original (insecure) MPC, since weak space
efficiency still blows up each machine’s space complexity to at least the size of the whole input.
Looking ahead, we will run this SMPC building block within a randomly elected poly-logarithmic-
sized committee to emulate a MPC machine with small space.

On the other hand, since a machine cannot receive messages of length greater than its space
complexity, a constant-round, weakly space efficient SMPC protocol has communication complexity
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at most poly(κ)·O(m′ ·S), independent of the time complexity of the functionality f . Constant-round
protocols based on garbled circuits or garbled RAM do not achieve desired efficiency. Thus, we
consider FHE-based SMPC protocols, and furthermore, we would require the FHE schemes to
satisfy a strong notion of compactness [55, 58] to avoid dependency on the circuit depth complexity
of the functionality (which is the case if standard leveled FHE schemes are used). FHE schemes
with this compactness property can be achieved by assuming circular security for standard FHE
constructions [55,58] or using indistinguishability obfuscation [31,53].

There is a long line of work on constant-round FHE-based SMPC that construct SMPC protocols
based on threshold FHE (TFHE) or multi-key FHE (MKFHE) [14,28,72, 75,91]. For our purpose,
relying on these protocols would requires to assume above-mentioned compactness for TFHE or
MKFHE (and trusted setup for some of them). Ideally, we would like to construct a protocol based
on any compact (plain) FHE.

To achieve this goal, we follow the approach of constructing SMPC based on threshold FHE
(e.g., [8]) and obtain the threshold FHE in use by applying the universal thresholdizer of Boneh
et al. [23] to any compact FHE. We show that this yields a constant-round weakly space efficient
SMPC protocol, but it requires a trusted setup. We further remove the setup by invoking another
constant-round FHE-based SMPC protocol of Badrinarayanan et al. [14] to instantiate the setup.
The protocol of [14] does not require a trusted setup. Furthermore, since the setup of threshold
FHE has complexity independent of the complexity of the functionality, we do not need to assume
compactness for the underlying (multi-key) FHE in the protocol of [14] to achieve weak space
efficiency.

Later in our construction, we actually require that each machine receives different output in
this SMPC protocol. Namely, the functionality to be securely computed is f = (f1, . . . , fm′) where
each machine Mi receives output fi(x1, . . . , xm′). In this case, we consider the space complexity
as the maximal space complexity of f1, . . . , fm′ . Formally, we obtain the following theorem, which
will serve as the building block of our SMPC for MPC construction. We prove the theorem in
Appendix A.

Theorem 16 (Constant-round, weakly space-efficient, and communication efficient SMPC). Assume
that the LWE assumption holds, the existence of enhanced trapdoor permutations, and the existence of
FHE with an appropriate notion of compactness defined in Appendix A.1. Then, for any polynomial-
time computable functions f = (f1, . . . , fm′), there is a constant-round, weakly space-efficient, and
communication efficient protocol that securely realizes Ff on m′ machines against a t-bounded
adversary as long as m′ ≥ 3t+ 1.

Proof. Deferred to Appendix A.

5.4 Intuition

Given an original insecure MPC protocol that computes some function f over m machines’ respective
inputs, we would like to compile it to an SMPC protocol that securely realizes the functionality
Ff . We would like the compilation to be efficiency-preserving, that is, if the original MPC protocol
completes in R rounds consuming s space per machine, then the compiled SMPC protocol completes
in O(R) rounds, and consumes O(s) · poly log λ · poly(κ) space per machine. Specifically, κ and λ
denote a computational and a statistical security parameter respectively: the poly(κ) blowup is due
to the use of cryptography and the poly log λ blowup stems from random committee election.

Inspired by Boyle et al. [24, 27], our idea is to randomly elect a small, polylogarithmically sized
committee to securely emulate each machine of the original MPC protocol. We use m′ = poly log λ
to denote the size of each committee to distinguish from the total number of machines m. Suppose
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that (1/3− η)m machines are corrupt where η is an arbitrarily small constant, then by Chernoff
bound, within each committee, only t′ ≤ (1/3− η/2)m′ are corrupt except with negligible (in both
λ and κ) probability.

Without loss of generality, henceforth we may assume that the original MPC protocol is
communication-oblivious. If not, we can always take the compiler of Section 4.6 and compile the
protocol to a communication-oblivious counterpart incurring only constant round and space blowup.

The state of each machine i ∈ [m] in the original MPC protocol will now be secret shared
among the i-th committee using a t′-out-of-m′ robust secret sharing scheme. This means that at
the beginning of the protocol, after each machine i ∈ [m] receives an input it will invoke a protocol
to secret share its input among the i-th committee. To accomplish this, machine i and the i-th
committee will jointly perform a constant-round, weakly space-efficient, and communication efficient
SMPC (see Section 5.3) that realizes a robust secret-sharing functionality. Within each round,
each machine i ∈ [m] in the original MPC protocol must perform some local computation; in the
compiled secure protocol, this computation will now be jointly performed by the i-th committee
using a constant-round, weakly space-efficient, and communication efficient SMPC protocol (see
Section 5.3). At end of this SMPC protocol, every committee member obtains a robust secret-share
of machine i’s new state in the original MPC. Finally, for a machine i ∈ [m] to send a message to a
machine j ∈ [m] in the original MPC protocol, this communication will now also be implemented
by an instance of a constant-round, weakly space-efficient SMPC protocol among the i-th and the
j-th committees. At the end of the protocol, each member of the j-th committee should receive a
robust secret share of the message.

5.5 Assumptions and Notations

5.5.1 Assumptions on the Original MPC

Without loss of generality, we can make the following assumptions on the original MPC to be
compiled:

WLOG1: We assume that the original MPC to be compiled has a deterministic communication
pattern; and moreover, in every round every machine sends at most s words (where sending
the same word to two machines is counted twice). Not only so, we may assume that in
every round, every machine can compute on the fly and write down 1) an ordered list of
at most s machines it wants to send words to and 2) an ordered list of at most s machines
it is expecting to receive data from; and moreover this can be accomplished in O(s) space.

If this is not the case, we can always apply the oblivious-compiler of Section 4.6 to make
it so while incurring only constant blowup in round complexity and space.

WLOG2: We may in fact assume that in the original MPC, at the end of the computation step in
every round, every machine writes down at a designated location in memory (e.g., address
0) a list of at most s words to be sent. Recall that by WLOG1, the destinations of these
outgoing words are deterministic and a-priori known.

WLOG3: We assume that in each round, after receiving messages from the network, a machine
appends the received messages to its local memory in an arbitrary order. This is without
loss of generality since during the computation step, the machine can always sort the
received messages locally based on any order that is desired.
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5.5.2 Notations

We will use the following notations:

• Let mem′ ←M i
r(mem) be the description of the RAM corresponding to machine i’s computa-

tion in the r-th round in the original MPC; it takes in machine i’s current memory mem and
outputs a new memory state mem′.

• Let m′ = poly log λ denote each small committee’s size, let η be an arbitrarily small constant,
and let t′ = (1/3− η/2)m′ such that each committee has at most t′ corrupt nodes except with
negligible probability (see also the proof of Theorem 17).

• Let (Share,Recons) denote a t′-out-of-m′ robust secret sharing scheme (see Appendix D). If
the Share algorithm is provided with a string consisting of multiple words, we always assume
that Share will perform secret sharing word by word; and similarly Recons will be performed
word by word too.

• Later in our protocol, a small committee will be elected to emulate each machine in the
original MPC protocol. Henceforth the committee that is emulating machine i in the original
MPC is called the i-th committee.

5.5.3 Computing Relevant Committee Information on the Fly

To enable the pseudo-random committee election, a common reference string crs will be distributed
to all honest machines at protocol start, and thus crs is common knowledge. In our protocol,
committee election relies only on the crs. Specifically, the i-th committee is decided by PRFcrs(i)
where PRF is a pseudorandom function. At this point, it might seem safe to assume that the
members of all committees are common knowledge. There is a slight subtlety here in that a machine
in fact cannot store the members of all committees since this would consume too much space.
Fortunately, by consuming poly log λ ·O(s) additional space, a machine i can always compute on
the fly and temporarily store members of committees relevant to itself in some round, including

1. which committees it is serving on, and all members of every committee it is serving on — we
will show that every machine serves on at most Θ(m′) = poly log λ committees except with
negligible probability (see proof of Theorem 17);

2. all members of every committee it wants to communicate with in the present round: there
are at most 2s such committees due to the s-sender-constraint and the s-receiver-constraint

— note that to write this information down we rely on the fact that the original MPC to be
compiled has a deterministic and fixed communication pattern;

3. all members of the committee emulating machine i itself.

Because of the above observations, later in Section 5.6, for simplicity it is unambiguous to parametrize
our ideal functionalities that serve 1 or 2 committees with the relevant committee’s indices — if a
machine needs interact with some ideal functionality, it can be computed on-the-fly exactly which
other machines will also be involved. Except with negligible probability, the additional per-machine
space needed to compute on-the-fly and store the committee information relevant to the present
round is bounded by poly log λ ·O(s).
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5.6 Intermediate Building Blocks

We will adopt the constant-round, weakly space efficient, and communication efficient SMPC
protocol of Section 5.3 among one to two small committee(s) to securely realize a few useful ideal
functionalities which we can adopt as intermediate building blocks:

• F share[i] is the ideal functionality that allows machine i to secret share its state among the i-th
committee; F share[i] involves m′ + 1 participants among whom at most t′ + 1 can be corrupt;

• Fcompr[i] is the ideal functionality that allows the i-th committee to jointly emulate the
computation of machine i in the r-th round in the original MPC; Fcompr[i] involves m′

participants among whom at most t′ corruptions; and

• F send[i,i′] is the ideal functionality that emulates machine i sending a message to machine
i′ in the original MPC; F send[i,i′] involves 2m′ participants (i.e., the sending and receiving
committees), among whom at most 2t′ can be corrupt.

More formally, to define each of F share[i], Fcompr[i], and F send[i,i′], we only need to specify what
the functions share[i], compr[i], and send[i, i′] compute respectively and among which players.

1. share[i]: a function that anticipates inputs from machine i as well as members of the i-th
committee. The function ignores everyone’s input and looks at only machine i’s input henceforth
denoted x, and computes (x1, . . ., xm′)← Share(x). It outputs ⊥ to machine i, and xj to the
j-th member of the i-th committee for j ∈ [m′].

2. compr[i]: the function compr[i] anticipates inputs from members of the i-th committee de-
noted mem1, mem2, . . . ,memm′ . It internally evaluates mem′ ← M i

r(Recons({xj}j∈[m′])), and
(mem′1, . . . ,mem′m′)← Share(mem′). Now, the j-th member of the i-th committee is supposed to
get mem′j for j ∈ [m′].

3. send[i, i′]: this function anticipates inputs from the i-th committee and the i′-th committee.
It ignores the inputs from the i′-th committee, and looks at only inputs from the i-th com-
mittee henceforth denoted x1, . . . , xm′ . It internally evaluates x ← Recons(x1, . . . , xm′), and
y1, . . . , ym′ ← Share(x). Now, yj is meant as the output for the j-th member of the i′-th
committee for j ∈ [m′].

5.7 Compilation to a Hybrid Protocol

Since a machine may participate in multiple committees, henceforth when the machine we are
concerned with is clear from the context, we often use the notation memj a machine’s robust secret
share pertaining to the j-th committee (assuming that i indeed participates in the j-th committee).
Given an original communication-oblivious MPC protocol, our SMPC compiler works as follows
where PRF : {0, 1}κ × [m]→ [m]m

′
denotes a pseudo-random function:

• Initialize. At protocol start, a random common reference string denoted crs
$← {0, 1}κ is

chosen which will be used for committee election. Every machine i now receives an input xi
from the environment Z, and each machine is also informed of crs.

• Committee election. Now, the pseudo-random string PRFcrs(j) can be used to determine the
m′ members of the j-th committee for j ∈ [m]. Note that instead of storing all members of
every committee, relying on the observations in Section 5.5.3, machines will instead compute
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all the relevant committee information on the fly, in all of the subsequent steps of the protocol;
and this will not consume too much space. For simplicity, in our description below, we will
not explicitly describe how a machine computes the relevant committee information needed in
every round.

• Secret-share input. Each machine i ∈ [m] sends its input xi to F share[i]. For every committee
i serves on, machine i sends ⊥ to F share[i]. As a result every member of the i-th committee
obtains a robust secret share of xi from F share[i]. When a machine i participating in the j-th
committee receives a robust secret share v from F share[j], it sets memj := v.

• Emulate protocol. For every round r ∈ [R] where R denotes the worst-case round complexity
of the original MPC protocol, every machine i ∈ [m] does the following:

– Emulate computation: For each committee j ∈ [m] the machine i serves on, machine i
sends memj to Fcompr[i]. It will obtain from Fcompr[i] an updated share of the new memory
denoted mem′. Machine i overwrites its memj variable with mem′.

– Emulate sending: For each committee j ∈ [m] the machine i serves on, do the following:
recall that by WLOG2, shares of the words to be sent are written at a designated location
in memj . By WLOG1, the total number of words committee j wants to send in this round
s′ ≤ s is deterministic and a-priori known; and moreover the s′ destination machines can be
computed on the fly and written down in O(s) space. Henceforth let d1, d2, . . . , ds′ be the
s′ ≤ s destination machines’ identifiers, and let y1, . . . , ys′ denote the shares of the words
to send to them respectively. For each dk where k ∈ [s′], send yk to F send[j,dk].

– Emulate receiving: For every committee j′ that machine i serves on, if in the original MPC
machine j ∈ [m] is supposed to send message to machine j′ (all such j’s can be computed
and written down on the fly due to WLOG1), then for every such j:

1. send ⊥ to F send[j,j′] indicating participation as a receiver;

2. the machine i will receive a secret share y from F send[j,j′], now append y to its memj .

• Output. After emulating all rounds of the original MPC in the above manner, machine i
does the following: for every committee j it serves on, send memj to machine j. When each
machine i receives shares from at least 2m′/3 members of the i-th committee, call Recons with
the 2m′/3 shares received and output the corresponding output.

Theorem 17. Suppose that the PRF scheme employed is secure8, and that the MPC protocol Π to
be compiled obliviously realizes the ideal functionality f by Definition 1. Then, if we apply the above
compiler to Π to obtain a hybrid-world protocol Πhyb, Πhyb must securely realizes Ff by Definition 2,
as long as the adversary controls no more than 1/3− η fraction of the machines (for an arbitrarily
small constant η).

Proof. Let A be a PPT adversary and Crupt ⊂ [m] of size |Crupt| ≤ (1/3 − η) ·m be the set of
machines corrupted by A. We first show that except with negligible probability, (i) all the committees
elected by PRFcrs have at most (1/3−η/2)·m′ corrupted machines, and (ii) each machine participates
in at most 2m′ committees.9 Suppose the committees were elected using truly uniform randomness,
then the expected corrupted machines in a committee is m′ · |Crupt|/m ≤ (1/3 − η) ·m′ and the

8In fact, this hybrid-world theorem secures against even computationally unbounded adversaries despite the use of
the PRF, since the PRF is used to defeat only the polynomial checkable function whether some committee has 1/3 or
more corruption.

9In fact, property (ii) is not needed for proving security but we will use it to analyze efficiency of the protocol later.
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expected number of committees a machine participate is m′. By a Chernoff Bound and union
bound, both (i) and (ii) hold except with probability e−Ω(m′) = negl(λ). Since both properties can
be checked efficiently, by the security of PRF, the probability that the committees elected by PRFcrs

violates violate (i) or (ii) is at most negl(κ) + negl(λ). Hence, in the rest of the proof, we assume
both (i) and (ii) hold. We proceed to define a simulator S:

• Initialize and Committee election. S simply simulate a random crs. There is no communication
in the committee election step.

• Secret-share input. In this step, S extracts the adversary A’s input {xi}Crupt from F share[i]

for i ∈ Crupt. S sends {xi}Crupt to the ideal functionality. For the output of F share[·] that A
receives, since each committee has at most (1/3−η/2) ·m′ corrupted machines, S can simulate
the shares outputted by each F share[·] by generating a fresh Share(0).

• Emulate protocol. Note both Fcompr[·] and F send[·,·] also output shares, by the same reason, S
can simulate the shares outputted by each Fcompr[·] and F send[·,·] to A by fresh secret sharings
Share(0).

• Output. S sends deliver to the ideal functionality and receives the output {yi}i∈Crupt. For
each i ∈ Crupt, S generates Share(yi) and sends the shares that machine i should receive from
the honest machines in the i-th committee.

By perfect privacy of the RSS, it is clear that the shares outputted by F share[·], Fcompr[·] and
F send[·,·] are simulated perfectly.

Now, note that our protocol Πhyb emulate the underlying MPC protocol by committees, where
all the input and messages are stored by shares of the robust secret sharing scheme (RSS) in each
committee. Since all committee has at most (1/3−η) ·m′ < m′/3 corrupted machines, by robustness
of RSS, the adversary cannot change the value stored in the RSS. Hence the underlying MPC
protocol is emulated correctly, and at the end, each machine i ∈ Crupt receives shares of Share(yi)
from the i-th committee. Hence, S also simulates the shares in the output step perfectly.

Therefore, Πhyb securely realizes Ff , in fact, with statistical security in this hybrid model.

5.8 Compilation to a Real-World Protocol

In Section 5.7, we compiled a communication-oblivious MPC protocol Π to a secure counterpart
Πhyb assuming the existence of ideal functionalities F share[i], Fcompr[i], and F send[i,i′]. Eventually we
would like to replace these ideal functionalities with real-world building blocks. This is easy:

• Let Πshare[i], Πcompr[i], and Πsend[i,i′] be SMPC protocols that securely realize (by Definition 2)
F share[i], Fcompr[i], and F send[i,i′] respectively. Note that Πshare[i] is a protocol among machine
i and the i-th committee, Πcompr[i] is a protocol among the i-th committee, and Πsend[i,i′] is a
protocol among the i-th committee and the i′-th committee.

• In the compiled hybrid-world protocol in Section 5.7, whenever a machine invokes some ideal
functionality F share[i], Fcompr[i], or F send[i,i′] with the input x, it now invokes the corresponding
protocol, Πshare[i], Πcompr[i], or Πsend[i,i′] respectively, also with the input x.

• In the compiled hybrid-world protocol in Section 5.7, whenever a machine is to receive output
from the ideal functionality F share[i], Fcompr[i], or F send[i,i′], it now instead receives the output
from Πshare[i], Πcompr[i], or Πsend[i,i′] respectively.
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Note that due to the observations made in Section 5.5.3, at the beginning of every round, every
machine can compute on the fly and temporarily store members of all committees relevant to itself
in this round, including committees it serves on and committees it will interact with — and this
will only incur O(s) · poly log λ additional space. Therefore, for every protocol Πshare[i], Πcompr[i],
or Πsend[i,i′] invoked, the machine already knows exactly who are the other machines involved in
the protocol. Not only so, in fact, at the beginning of every round, a machine has written down a
receiving schedule for this round, again consuming O(s) · poly log λ additional space. As mentioned,
if a machine receives any message from unanticipated senders or excessive messages from anticipated
senders, these messages get discarded immediately and will not be stored or processed.

Efficiency of the compiled protocol. Let Πreal denote the compiled real-world protocol by
applying the compiler described above to an original MPC communication-oblivious protocol Π.
Since all of Πshare[i], Πcompr[i], and Πsend[i,i′] complete in constant number of rounds, clearly, the
round complexity of Πreal is only a constant factor more than the original Π.

We now analyze the per-machine space complexity. We will use the fact that Πshare[i], Πcompr[i],
and Πsend[i,i′] are weakly space efficient. We first focus on the space expended by each machine for
every committee it serves on. Recall that each robust secret share of a machine’s state in the original
MPC is only O(s) in size. The dominant part is the space consumed during Πshare[i], Πcompr[i], and
Πsend[i,i′] protocols. Note that all of the functions evaluated by Πshare[i], Πcompr[i], and Πsend[i,i′]

protocols have at most O(s) RAM-space complexity. Now, observe that a RAM consuming space s
can be converted to a layered circuit of width s. Recall also that at most 2m′ machines participate
in each of Πshare[i], Πcompr[i], and Πsend[i,i′]. Thus by weak space efficiency, the space consumed
by each Πshare[i], Πcompr[i], or Πsend[i,i′] instance is at most O(m′ · s) · poly(κ,m′). So far we have
focused on the space per machine per committee it serves on. The total space consumption of any
single machine is at most 2m′ ·O(m′ · s) · poly(κ,m′), where 2m′ is an upper bound on the number
of committees a machine can participate in by the proof of Theorem 17 (except for a negligible
probability). Since m′ = logc λ where c = Θ(1), the total space per machine is upper bounded by
poly log λ · poly(κ) ·O(s) (for some other suitable polynomial poly).

Finally, the total communication is asymptotically no more than the total space by the commu-
nication efficiency requirement.

Corollary 18. Suppose that the PRF employed is secure, and that the Πshare[i], Πcompr[i], and
Πsend[i,i′] protocols employed securely realize F share[i], Fcompr[i], and F send[i,i′] protocols respectively
by Definition 2 as long as at least 2/3 fraction of the machines participating in each protocol
instance are honest; and moreover suppose that they are constant-round, weakly space efficiency,
and communication efficient as defined in Section 5.3. Suppose that the MPC protocol Π obliviously
realizes the ideal functionality f by Definition 1. Then, if we apply the above compiler to Π to
obtain a real-world protocol Πreal, Πreal must securely realizes Ff by Definition 2. Moreover, Πreal’s
round complexity is asymptotically the same as Π; its per-machine space consumption is at most
O(s) · poly(κ) where κ denotes the security parameter and s is the per-machine space of the original
Π, and its total communication is upper bounded O(m · s) · poly(κ).

Proof. As shown in the proof of Theorem 17, indeed, in each committee at least 2/3 fraction of the
machines must be honest. Now, security follows from a standard compositional argument: for any
real-world adversary A attacking Πreal, we can construct a hybrid-world adversary A′ that basically
calls the simulators of all instances of Πshare[i], Πcompr[i], and Πsend[i,i′], and no polynomial-time
environment Z should be able distinguish whether it is in the real world interacting with A or
the hybrid world interacting with A′. Now, by Theorem 17, for this hybrid-world adversary A′
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corresponding to the real-world adversary A, we can construct an ideal-world adversary S, such
that no polynomial-time environment Z can distinguish whether it is in the hybrid world or the
ideal world. Thus we can conclude that no polynomial-time environment Z can distinguish whether
it is in the real world interacting with A or the ideal world interacting with S.

Finally, the efficiency statements follow from the analysis in the paragraph before the corollary.

Main theorem statement for SMPC-for-MPC. Recall that the main theorem statement
for our “MPC to SMPC-for-MPC” compiler is Theorem 2. We restate it below for the reader’s
convenience and complete our presentation with a proof.

Theorem 19 (Secure computation for MPC: Restatement of Theorem 2). Assume the existence
of a common random string, the Learning With Errors (LWE) assumption, enhanced trapdoor
permutations, as well as the existence of an FHE scheme with a suitable notion of compactness
(see Appendix A.1 for a formal definition of compactness). Suppose that s = N ε and that m is
upper bounded by a fixed polynomial in N . Let κ denote a security parameter, and assume that
s ≥ κ. Given any MPC algorithm Π that completes in R rounds where each of the m machines has
s local space, there is an MPC algorithm Π̃ that securely realizes the same function computed by
Π in the presence of an adversary that statically corrupts at most 1

3 − η fraction of the machines

for an arbitrarily small constant η. Moreover, Π̃ completes in O(R) rounds, consumes at most
O(s) · poly(κ) space per-machine, and incurs O(m · s) · poly(κ) total communication per round.

Proof. We may first apply the communication-oblivious compiler corresponding to Theorem 1 to
compile Π to a communication-oblivious counterpart Π′, we then apply the compiler corresponding
to Corollary 18 on Π′. The theorem then follows in a straightforward fashion due to Theorem 1 and
Corollary 18.
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[40] A. Czumaj, J.  La̧cki, A. Ma̧dry, S. Mitrović, K. Onak, and P. Sankowski. Round compression for
parallel matching algorithms. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 471–484,
2018.

[41] R. da Ponte Barbosa, A. Ene, H. L. Nguyen, and J. Ward. A new framework for distributed
submodular maximization. In FOCS, pages 645–654, 2016.

[42] I. Damg̊ard and Y. Ishai. Constant-round multiparty computation using a black-box pseudo-
random generator. In Proceedings of the 25th Annual International Conference on Advances
in Cryptology, CRYPTO’05, pages 378–394, Berlin, Heidelberg, 2005. Springer-Verlag.

[43] I. Damg̊ard and Y. Ishai. Scalable secure multiparty computation. In Proceedings of the 26th
Annual International Conference on Advances in Cryptology, CRYPTO’06, pages 501–520,
Berlin, Heidelberg, 2006. Springer-Verlag.

[44] I. Damg̊ard, K. G. Larsen, and J. B. Nielsen. Communication lower bounds for statistically
secure mpc, with or without preprocessing. In Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part II, pages 61–84, 2019.

[45] I. Damg̊ard, J. B. Nielsen, A. Polychroniadou, and M. A. Raskin. On the communication
required for unconditionally secure multiplication. In Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part II, pages 459–488, 2016.

[46] A. Ene, S. Im, and B. Moseley. Fast clustering using mapreduce. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
681–689. ACM, 2011.

35



[47] A. Ene and H. Nguyen. Random coordinate descent methods for minimizing decomposable
submodular functions. In International Conference on Machine Learning, pages 787–795,
2015.

[48] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus
problems. In Proceedings of the Fourth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’85, pages 59–70, New York, NY, USA, 1985. ACM.

[49] C. Fletcher, M. Naveed, L. Ren, E. Shi, and E. Stefanov. Bucket oram: Single online
roundtrip, constant bandwidth oblivious ram. Cryptology ePrint Archive, Report 2015/1065,
2015. https://eprint.iacr.org/2015/1065.

[50] C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, E. Stefanov, and S. Devadas. RAW Path
ORAM: A low-latency, low-area hardware ORAM controller with integrity verification. IACR
Cryptology ePrint Archive, 2014:431, 2014.

[51] C. W. Fletcher, L. Ren, X. Yu, M. van Dijk, O. Khan, and S. Devadas. Suppressing the
oblivious RAM timing channel while making information leakage and program efficiency
trade-offs. In HPCA, pages 213–224, 2014.
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A Proof of Theorem 16: the CommitteeMPC Protocol

In this section, we construct a constant-round, weakly space efficient, and communication efficient
SMPC protocol as stated in Theorem 16. Starting from a compact FHE, we first apply the universal
thresholdizer of Boneh et al. [23] to obtain a compact threshold FHE. We show that the resulting
threshold FHE has desired security by Definition 2. Thus we can use it to construct a semi-malicious
secure constant-round, weakly space efficient SMPC in a trusted setup model. The protocol can
then be converted to a maliciously secure one by a generic transformation [14,75], and the setup
can be removed by invoking the SMPC protocol of Badrinarayanan et al. [14]. We start with the
definitions.

Notation. We will use the variable m to denote the number of machines, although keep in mind
that when the SMPC protocol in this section is employed in our “MPC to SMPC-for-MPC” compiler,
this SMPC building block is in fact applied to at most 2m′ = poly log λ number of machines.

A.1 Preliminaries

Fully Homomorphic Encryption. We first define fully homomorphic encryption schemes
(FHE) with a strong compactness property. A FHE scheme is a tuple of PPT algorithms ΠFHE =
(FHE.KeyGen,FHE.Enc, FHE.Eval,FHE.Dec) defined as follows:

• FHE.KeyGen(1κ)→ (pk, sk): On input the security parameter κ, the key generation algorithm
outputs a public key pk and a secret key sk.

• FHE.Enc(pk, x) → ct: On input a public key pk and a message x ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct. For convenience, for a message x ∈ {0, 1}`, we use
FHE.Enc(pk, x) = FHE.Enc(pk, x1), . . .FHE.Enc(pk, x`) to denote the bit by bit encryptions of
x.

• FHE.Eval(pk, C, ct1, . . . , ct`)→ ĉt: On input a public key pk, a circuit C : {0, 1}` → {0, 1} and
ciphertexts ct1, . . . , ct`, the homomorphic evaluation algorithm outputs another ciphertext ĉt.

• FHE.Dec(sk, ĉt)→ µ̂: On input a secret key sk and a ciphertext ĉt, the decryption algorithm
outputs a bit µ̂.

Correctness. We require that for all κ ∈ N, (pk, sk) ← FHE.KeyGen(1κ), circuit C : {0, 1}` →
{0, 1} and corresponding inputs x1, . . . , x` ∈ {0, 1}, it holds that

Pr[FHE.Dec(sk,FHE.Eval(pk, C, ct1, . . . , ct`)) 6= C(x1, . . . , x`)] ≤ negl(κ)

where (pk, sk)← FHE.KeyGen(1k) and cti ← FHE.Enc(pk, xi).
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Security. We require the usual semantic security. Namely, we require that for all κ ∈ N,
(pk,Enc(pk, 0)) ≈c (pk,Enc(pk, 1)), where (pk, sk)← FHE.KeyGen(1k).

Compactness. We require the following strong compactness property. There exists a polynomial
poly such that the following holds. |pk|, |sk|, |ct| ≤ poly(κ) for the public and secret key, and any
ciphertext ct generated from the algorithms of FHE. Furthermore, for a layered circuit10 C with
width w, homomorphic evaluation of C can be done in space poly(κ) · w, independent of the size or
depth of the circuit.11

FHE schemes with this compactness property can be achieved by assuming circular security for
standard FHE constructions [55,58] or using indistinguishability obfuscation [31,53].

Universal Thresholdizer. The following definition of universal thresholdizer is taken from
Boneh et al. [23], who constructed universal thresholdizer based on the learning with error assumption.
For our purpose, we do not require the verification algorithm, so we omit it from the definition for
simplicity.

Definition 3. Fix a security parameter κ and a data space X . A universal thresholdizer scheme is
a tuple of algorithm ΠUT = (UT.Setup,UT.Eval,UT.Combine) defined as follows:

• UT.Setup(1κ, 1m, 1t, 1d, x)→ (pp, {ski}i∈[m]): On input the security parameter κ, a number of
users in the system m, a threshold t ∈ [m], a bound on the depth d, and a secret x ∈ X , the
setup algorithm generates the public parameters pp and a set of secret keys sk1, . . . , skm for
each user in the system.

• UT.Eval(pp, ski, C)→ pi: On input the public parameters pp, a secret key ski, and a circuit C,
the evaluation algorithm outputs a partial evaluation pi.

• UT.Combine(pp, {pi}i∈S)→ µ̂: On input the public parameter pp, and a set of partial evalua-
tions {pi}i∈S, the combining algorithm outputs the final evaluation µ.

Evaluation Correctness. We say that a universal thresholdizer scheme ΠUT = (UT.Setup,UT.Eval,
UT.Combine) satisfies evaluation correctness if the following conditions are true. For all κ,m, t, d ∈
N, x ∈ X , let (pp, {ski}i∈[m]) ← UT.Setup(1κ, 1m, 1t, 1d, x), S ⊂ [m] of size |S| = t, and circuit
C : X → {0, 1} of depth at most d, we have that

Pr[UT.Combine(pp, {UT.Eval(pp, ski, C)}i∈S) = C(x)] = 1− negl(κ),

where the probability is over the randomness of UT.Setup,UT.Eval, and UT.Combine.

Compactness. We want that all parameters and runtimes to be upper bounded by poly(κ,m).

Privacy. We say that a universal thresholdizer scheme ΠUT = (UT.Setup,UT.Eval,UT.Combine)
satisfies privacy if there exists a PPT simulator Sim such that for all κ ∈ N, polynomial m, t, d, PPT
adversary A = (A1,A2,A3), there exists a negligible function negl(κ) such that∣∣∣Pr[ExptRealΠUT,A(κ,m, t, d) = 1]− Pr[ExptRandΠUT,A(κ,m, t, d) = 1]

∣∣∣ ≤ negl(κ)

where the experiments ExptRealΠUT,A and ExptRandΠUT,A are defined as follows:

10A circuit is layered if the circuit can be represented as a layered graph with no wires crossing the layers.
11Here the space complexity measures the working space of FHE.Eval but not the description size of C. Looking

ahead, we will consider uniform circuits whose description can be generated in small space.
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• ExptRealΠUT,A(κ,m, t, d):

1. (x∗, st1)← A1(1κ).

2. (pp, {ski}i∈[m])← UT.Setup(1κ, 1m, 1t, 1d, x∗).

3. (S∗, st2)← A2(pp, st1) where |S∗| = t− 1.

4. b← A
OEval({ski}i∈[m],·,·)
3 ({ski}i∈S∗ , st2).

5. Output b.

• ExptRandΠUT,A(κ,m, t, d):

1. (x∗, st1)← A1(1κ).

2. (pp, {ski}i∈[m])← UT.Setup(1κ, 1m, 1t, 1d, 0|x
∗|).

3. (S∗, st2)← A2(pp, st1) where |S∗| = t− 1.

4. b← A
SimOSim(·)({ski}i∈S∗ ,·,·)
3 ({ski}i∈S∗ , st2).

5. Output b.

where the oracles OEval({ski}i∈[m], ·, ·) and OSim(·) are defined as follows

• OEval({ski}i∈[m], C, j): On input the set of key {ski}i∈[m], a circuit C, and an index j ∈ [m]\S∗,
outputs UT.Eval(pp, skj , C).

• OSim(C): On input a circuit C, if there exists a query (C, j) for some j ∈ [m]\S∗ previously
made by A3, the algorithm outputs C(x∗). Otherwise, it outputs ⊥.

A.2 Threshold FHE

We now define a notion of threshold FHE schemes with a simulation security that is sufficient to
directly construct a semi-malicious SMPC protocol in a trusted setup model. We then show that
applying the above universal thresholdizer to a FHE scheme yields such a threshold FHE scheme.

Syntax. A threshold FHE scheme is a tuple of PPT algorithms ΠTFHE = (TFHE.Setup,TFHE.SimSetup,
TFHE.Enc,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) defined as follows:

• TFHE.Setup(1κ, 1m, 1t)→ (tpk, {tski}i∈[m]): On input the security parameter κ, a number of
users in the system m, and a threshold t ∈ [m], the setup algorithm generates the public key
tpk and a set of secret keys tsk1, . . . , tskm for each user in the system.

• TFHE.SimSetup(1κ, 1m, 1t)→ (tpk, {tski}i∈[m]): On input the security parameter κ, a number
of users in the system m, and a threshold t ∈ [m], the simulation setup algorithm generates
the simulated public key tpk and a set of simulated secret keys tsk1, . . . , tskm for each user in
the system.

• TFHE.Enc(tpk, x)→ ct: On input a public key tpk and a message x ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct.

• TFHE.Eval(tpk, C, ct1, . . . , ct`)→ ĉt: On input a public key tpk, a circuit C : {0, 1}` → {0, 1}
and ciphertexts ct1, . . . , ct`, the homomorphic evaluation algorithm outputs another ciphertext
ĉt.
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• TFHE.PartDec(i, tpk, tski, ĉt) → pi: On input an index i ∈ [m], a secret key tski, and a
ciphertext ĉt, the partial decryption algorithm outputs a partial decryption pi.

• TFHE.FinDec(tpk, {pi}i∈S)→ µ̂: On input the public key tpk, and a set of partial decryptions
{pi}i∈S , the final decryption algorithm outputs the final decryption value µ̂.

Correctness. We require that for all κ,m, t ∈ N, S ⊂ [m], circuit C : {0, 1}` → {0, 1}
and corresponding input x1, . . . , x` ∈ {0, 1}, the following holds except with negligible prob-
ability in κ: Let (tpk, {tski}i∈[m]) ← TFHE.Setup(1κ, 1m, 1t), cti ← TFHE.Enc(tpk, xi) for i ∈
[`], let ĉt = TFHE.Eval(tpk, C, ct1, . . . , ct`), let pi ← TFHE.PartDec(i, tpk, tski, ĉt), and µ̂ ←
TFHE.FinDec(tpk, {pi}i∈S). Then µ̂ = C(x1, . . . , x`) if |S| ≥ t, and µ̂ = ⊥ otherwise.

Compactness. We want the following compactness requirement. There exists a polynomial poly
such that the following holds. |pk|, |sk|, |ct|, pi ≤ poly(κ,m), i.e., the public, secret key, ciphertext,
and partial decryption shares’ sizes must be at most poly(κ,m). Furthermore, for a layered circuit
C with width w, homomorphic evaluation of C can be done in space poly(κ,m) · w, independent of
the size or depth of the circuit.

Simulation Security. We require the following simulation-based security for the purpose of
constructing SMPC protocols. There exists PPT algorithms Sim1,Sim2 such that for all κ, polynomial
m, t, s ∈ N with m ≥ 3t+ 1, S ⊂ [m] of size |S| ≤ t, polynomial size circuits Cj : {0, 1}m·s → {0, 1}
for j ∈ S, PPT adversary A = (A1,A2,A3), there exists a negligible function negl(κ) such that∣∣∣Pr[ExptRealΠTFHE,A(κ,m, t, S, {Cj}j∈S) = 1]− Pr[ExptIdealΠTFHE,A(κ,m, t, S, {Cj}j∈S) = 1]

∣∣∣ ≤ negl(κ)

where the experiments ExptRealΠTFHE,A and ExptIdealΠTFHE,A are defined as follows:

• ExptRealΠTFHE,A(κ,m, t, S, {Cj}j∈S):

1. (tpk, {tski}i∈[m])← TFHE.Setup(1κ, 1m, 1t).

2. ({xi}i∈[m]\S , st1)← A1(tpk, {tski}i∈S) where xi ∈ {0, 1}βs.
3. cti ← TFHE.Enc(tpk, xi) for i ∈ [m]\S.

4. ({(xi, rEnci )}i∈S , st2)← A2(st1, {cti}i∈[m]\S).

5. cti ← TFHE.Enc(tpk, xi; r
Enc
i ) for i ∈ S; ĉtj ← TFHE.Eval(tpk, Cj , {cti}i∈[m]) for j ∈ S.

6. pj,i ← TFHE.PartDec(i, tpk, tski, ĉtj) for i ∈ [m]\S and j ∈ S.

7. b← A3(st2, {pj,i}i∈[m]\S,j∈S).

8. Output b.

• ExptIdealΠTFHE,A(κ,m, t, S, {Cj}j∈S):

1. (tpk, {tski}i∈[m])← TFHE.SimSetup(1κ, 1m, 1t).

2. ({xi}i∈[m]\S , st1)← A1(tpk, {tski}i∈S) where xi ∈ {0, 1}βs.
3. ({cti}i∈[m]\S , st1)← Sim1(tpk, {tski}i∈S)

4. ({(xi, rEnci )}i∈S , st2)← A2(st1, {cti}i∈[m]\S).

5. cti ← TFHE.Enc(tpk, xi; r
Enc
i ) for i ∈ S; ĉtj ← TFHE.Eval(tpk, Cj , {cti}i∈[m]) for j ∈ S.
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6. {pj,i}i∈[m]\S,j∈S ← Sim2(st1, {(xj , rEncj )}j∈S , {µ̂j}j∈S), where µ̂j = Cj(x1, . . . , xm) for
j ∈ S.

7. b← A3(st2, {pj,i}i∈[m]\S,j∈S).

8. Output b.

Construction. We show that applying the universal thresholdizer to a FHE scheme yields a
threshold FHE scheme with above security. Let ΠFHE = (FHE.KeyGen,FHE.Enc, FHE.Eval,FHE.Dec)
be a FHE scheme with circular security. Let ΠUT = (UT.Setup,UT.Eval,UT.Combine) be a universal
thresholdizer. Formally, we construct a threshold FHE scheme as follows.

• TFHE.Setup(1κ, 1m, 1t): Run (pk, sk)← FHE.KeyGen(1κ). Let d be the circuit depth of FHE
decryption algorithm FHE.Dec. Run (pp, {ski}i∈[m]) ← UT.Setup(1κ, 1m, 1t+1, 1d, sk). Let
tpk = (pp, pk) and tski = ski for i ∈ [m]. Output (tpk, {tski}i∈[m]).

• TFHE.SimSetup(1κ, 1m, 1t): Run (pk, sk) ← FHE.KeyGen(1κ). Let d be the circuit depth of
FHE decryption algorithm FHE.Dec. Run (pp, {ski}i∈[m]) ← UT.Setup(1κ, 1m, 1t+1, 1d, 0|sk|).
Let tpk = (pp, pk) and tski = ski for i ∈ [m]. Output (tpk, {tski}i∈[m]).

• TFHE.Enc(tpk, x): Output ct← FHE.Enc(pk, x).

• TFHE.Eval(tpk, C, ct1, . . . , ct`): Output ĉt← FHE.Eval(pk, C, ct1, . . . , ct`).

• TFHE.PartDec(i, tpk, tski, ĉt): Output pi ← UT.Eval(pp, tski,FHE.Dec(·, ĉt)).

• TFHE.FinDec(tpk, {pi}i∈S): Output µ̂← UT.Combine(pp, {pi}i∈S).

It is clear by inspection that correctness follows by that of the underlying FHE scheme and
universal thresholdizer. For compactness, note that universal thresholdizer is applied to evaluate
the FHE decryption circuit FHE.Dec, which has a fixed polynomial complexity in κ. Hence, the
complexity of universal thresholdizer is upper bounded by a fixed poly(κ) and compactness follows
by compactness of the underlying FHE scheme.

Security. We now show that the above construction satisfies simulation security defined above.
We define simulators Sim1, Sim2 using the simulator of the universal thresholdizer (denoted by
UT.Sim) as follows.

• Sim1(tpk, {tski}i∈S): Simply run cti ← FHE.Enc(pk, 0βs) for i ∈ [m]\S, store tpk, {tski}i∈S in
st1, and output ({cti}i∈[m]\S , st1).

• Sim2(st1, {(xi, rEnci )}i∈S , {µ̂j}j∈S): Run pj,i ← UT.SimOSim({ski}i∈S , Cj , i) for i ∈ [m]\S and
j ∈ S, where OSim on input query C ′ returns µ̂j if C ′ = Cj for j ∈ S, and ⊥ otherwise. Output
{pj,i}i∈[m]\S,j∈S .

Indistinguishability of ExptRealΠTFHE,A and ExptIdealΠTFHE,A follows by considering a hybrid experiment
that runs TFHE.SimSetup and Sim2 in Step 1 and 6 respectively as the ideal experiment, but still
encrypts xi in Step 3. Formally, we define

• ExptHyb
ΠTFHE,A(κ,m, t, C, S):

1. (tpk, {tski}i∈[m])← TFHE.SimSetup(1κ, 1m, 1t).
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2. ({xi}i∈[m]\S , st1)← A1(tpk, {tski}i∈S) where xi ∈ {0, 1}βs.
3. cti ← TFHE.Enc(tpk, xi) for i ∈ [m]\S.

4. ({(xi, rEnci )}i∈S , st2)← A2(st1, {cti}i∈[m]\S).

5. cti ← TFHE.Enc(tpk, xi; r
Enc
i ) for i ∈ S; ĉtj ← TFHE.Eval(tpk, Cj , {cti}i∈[m]) for j ∈ S.

6. {pj,i}i∈[m]\S,j∈S ← Sim2(st1, {(xj , rEncj )}j∈S , {µ̂j}j∈S), where µ̂j = Cj(x1, . . . , xm) for
j ∈ S.

7. b← A3(st2, {pj,i}i∈[m]\S,j∈S).

8. Output b.

We claim that indistinguishability of ExptRealΠTFHE,A and ExptHybΠTFHE,A follows directly by privacy of
universal thresholdizer. Indeed, observe that the difference between TFHE.Setup and TFHE.SimSetup
is in the call of UT.Setup, whereTFHE.Setup uses actual FHE secret key sk and TFHE.SimSetup uses
0|sk|. Also in Step 6, partial decryptions TFHE.PartDec of ĉtj for j ∈ S, which in turn are the partial
evaluations UT.Eval on the FHE decryption circuit FHE.Dec(·, sk), is replaced by the simulator of the
universal thresholdizer UT.Sim, where OSim is emulated correctly by returning µ̂j = Cj(x1, . . . , xm)

when queried by Cj for j ∈ S. Hence, ExptRealΠTFHE,A and ExptHybΠTFHE,A correspond to ExptRealΠUT,A and

ExptRandΠUT,A for universal thresholdizer, and the indistinguishability follows by privacy of universal
thresholdizer.

Now, observe that the difference between ExptHybΠTFHE,A and ExptIdealΠTFHE,A is only the messages
encrypted in Step 3 and that the FHE secret key is not used in the experiments. Hence, indis-
tinguishability of ExptHybΠTFHE,A and ExptIdealΠTFHE,A follows directly by semantic security of FHE. This
completes the proof of security for the constructed TFHE scheme.

A.3 Semi-Malicious Secure SMPC in a Trusted Setup Model

We proceed to construct a semi-malicious secure constant-round, weakly space efficient SMPC
in a trusted setup model using threshold FHE. We consider SMPC protocols over m machines.
Henceforth let β denote the bit-width of each word. Each machine holds input xi ∈ {0, 1}βs and
wishes to learn fi(x1, . . . , xm) for functions fi : {0, 1}m·β·s → {0, 1}.12 The construction is rather
straightforward: We use the setup to run the threshold FHE setup algorithm TFHE.Setup and
distribute the keys. Upon receiving the keys, each machine encrypts its input and output the
ciphertext. Then they locally evaluate the output ciphertexts homomorphically, partially decrypt
them, and send the partial decryptions to the corresponding machines, who can then learn their
own outputs.

Formally, let ΠTFHE = (TFHE.Setup, TFHE.SimSetup, TFHE.Enc, TFHE.Eval, TFHE.PartDec,TFHE.FinDec)
be a threshold FHE scheme. We construct the following SMPC protocol ΠSMPC over m machines.
Let t be an upper bound on the number of corrupted machines, where m ≥ 3t+ 1.

• Input and functionality:

– Each machine Mi has input xi ∈ {0, 1}βs and wishes to learn fi(x1, . . . , xm) for functions
fi : {0, 1}m·β·s → {0, 1}.

• Setup Stage:

12For notational simplicity, we consider functions with one-bit output. It is straightforward to extend the protocol
to handle long outputs.
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– Run (tpk, {tski}i∈[m])← TFHE.Setup(1κ, 1m, 1t).

– Send (tpk, tski) to each machine Mi for i ∈ [m].

• Round 1: Each machine Mi does the following:

– Run cti ← TFHE.Enc(tpk, xi).

– Broadcast cti.

• Round 2: Each machine Mi does the following:

– Record each ctj received from machineMj . IfMj aborts, then use ctj ← TFHE.Enc(tpk, 0βs; 0∗)
as a default ciphertext.

– Compute ĉtj ← TFHE.Eval(tpk, Cj , {cti}i∈[m]) for j ∈ [m].

– Compute pj,i ← TFHE.PartDec(i, tpk, tski, ĉtj) for j ∈ [m].

– Send pj,i to machine Mj for each j ∈ [m].

• Output Computation: Each machine Mi does the following:

– Record each pi,j received from machine Mj . Let Si be the set of partial decryptions
received by Mi.

– Compute µ̂i ← TFHE.FinDec(tpk, {pi,j}j∈Si).
– Output µ̂i.

Correctness. Correctness follows directly from the correctness of TFHE. Furthermore, since the
number of honest machines is greater than t+ 1, the honest machines always learn the output.

Weak Space Efficiency. We first note that by compactness, except for the homomorphic evalu-
ation TFHE.Eval, the remaining step takes space at most poly(κ,m) · O(s). Let SRAM denote the
space complexity for computing f1, . . . , fm using a RAM machine. It is not hard to see that we
can emulate the RAM computation by a uniform layered circuit of width O(SRAM): for example, a
näıve way is to emulate CPU and memory by circuits and for each RAM computation step, emulate
CPU accessing memory by constructing a linear-sized circuit gadget that goes over every memory
cell to selects the position requested. Thus, it follows by compactness that TFHE.Eval can be done
in space poly(κ,m) ·O(SRAM).

Semi-malicious Security. The security follows directly from the simulation security of TFHE.
For completeness, we formally define the simulator S for ΠSMPC as follows. Let Honest and Crupt
denote the set of honest and corrupted machines, respectively.

• Setup Stage: S simulates the setup by running TFHE.SimSetup instead of TFHE.Setup.
Namely,

– Run (tpk, {tski}i∈[m])← TFHE.SimSetup(1κ, 1m, 1t).

– Send {(tpk, tski)}i∈Crupt to the adversary A.

• Round 1:

– S simulates the honest machines’ messages by running Sim1 of TFHE. Namely, S runs
({cti}i∈Honest, st1)← Sim1(tpk, {tski}i∈Crupt). S sends {cti}i∈Honest to A.
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– Upon receiving ({(xi, rEnci )}i∈Crupt from A, S sends it to the ideal functionality. If any
corrupted machine i aborts, then S sends xi = 0βs to the ideal functionality.

– S receives the outputs {µ̂i}i∈Crupt from the ideal functionality.

• Round 2:

– S simulates the honest machines’ messages by running Sim2 of TFHE. Namely, S runs
{pj,i}i∈Honest,j∈Crupt ← Sim2(st1, {(xj , rEncj )}j∈Crupt, {µ̂j}j∈Crupt). S sends {pj,i}i∈Honest,j∈Crupt
to A.

– S sends deliver to the ideal functionality.

It is not hard to see that the real world and ideal world execution of ΠSMPC directly corresponds to
the experiments ExptRealΠTFHE,A and ExptIdealΠTFHE,A in the simulation security of TFHE with corresponding
adversary. Hence, indistinguishability of the simulation for ΠSMPC follows by the simulation security
of TFHE.

A.4 Achieving Malicious Security and Removing the Trusted Setup

Finally, we briefly discuss how to upgrade to malicious security and remove the trusted setup in
ΠSMPC. To upgrade to malicious security, we can apply the standard generic transformation using
a simulation-extractable multi-string NIZK which can be constructed from enhanced trapdoor
permutations without extra setup [14, 74, 75]. Note that NIZK is used to prove that TFHE.Enc
and TFHE.PartDec are done correctly, both statements have a fixed poly(κ) complexity. The NIZK
proofs can be generated in a fixed poly(κ) space as well. Thus, the transformation preserves weak
space efficiency.

To remove the setup, we rely on an SMPC protocol by Badrinarayanan et al. [14]. The protocol
of [14] (Theorem 10) is constant-round, achieves guaranteed output delivery, and does not require any
setup. We remove the trusted setup by invoking the protocol of Badrinarayanan et al. [14] to securely
realize the setup stage in ΠSMPC. Note that TFHE.Setup has a fixed poly(κ) complexity (independent
of the functionalities f1, . . . , fm). As a result, we obtain a malicious security, constant-round, weakly
space efficient and communication efficient SMPC protocol, as required in Theorem 16.

B Potential Barriers Towards Achieving Statistical Security

We have shown how to compile an MPC protocol to a secure counterpart that defends against
slightly less than 1/3 corruption while preserving its efficiency; but our compiler relied on a few
computational assumptions such as enhanced trapdoor permutations, LWE, and an appropriate
notion of compact FHE. One intriguing question is whether we can accomplish the same, but
unconditionally, i.e., without making any cryptographic hardness assumptions. Such protocols
are also said to be statistically secure. We now show that if one could achieve the same result
unconditionally, it will imply solutions to long-standing open questions in cryptography. Specifically,
we prove the following theorem:

Theorem 20. Let κ denote the security parameter. Suppose that there exists an compiler that
compiles any MPC protocol Π computing the function f among m machines into an SMPC-for-MPC
protocol Π′ among m machines that securely realizes Ff unconditionally, as long as m is polynomially
bounded by s and s ≥ κ. Furthermore, suppose that the compiler incurs only O(1) blowup in round
complexity and poly(κ) blowup in terms of per-machine space complexity.
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Then, for m ≥ κ, for any m-input, m-output uniform layered circuit C with width m, as long as
C’s size is a sufficiently large polynomial in m (related to the parameter α later), then there exists a
constant-round protocol that allows m parties to securely realize FC unconditionally, incurring total
communication that is |C|α for an arbitrarily small constant α ∈ (0, 1).

Proof. If such a compiler existed, we can use it to compile the following insecure 1-round MPC
protocol among m machines each of which has s = O(m) space. Every one now sends their input to
the first machine, the first machine computes the circuit C locally, and sends to each machine their
respective output. Note that since the circuit is uniform and layered with maximum width m, the
first machine can evaluate it in total space O(m).

Now consider the compiled protocol: it will complete in O(1) rounds, and moreover the total
communication must be upper bounded by the number of rounds multiplied by m ·O(s) · poly(κ) =
O(m2), which can be made |C|α as long as the circuit size is a sufficiently large polynomial in m
where |C| denotes the size of C.

As noted in numerous works in the cryptography literature [26,39, 44,45], the existence of such
constant-round, sublinear-communication multi-party computation (for circuits) with statistical
security has been a long-standing open problem, even for the special class of circuits that we consider.
To the best of our knowledge, the best known n-party, statistically secure computation protocol
achieves the following13

• O(n|C|) total communication and d number of rounds without preprocessing [43, 73] where d
denotes the circuit depth, and

• O(n|C|/ log log |C|) total communication and d/ log log |C| number of rounds with (polynomially-
bounded) preprocessing (for layered circuits) [39].

Interestingly, we note that barring strong assumptions such as Indistinguishable Obfuscation [53], the
only known approach to construct constant-round, sublinear-communication multi-party computation
for circuits of unbounded polynomial size is also through compact FHE [55, 58]. In our earlier
sections, we essentially showed that making a similar assumption, combined with other standard
cryptographic assumptions, we can construct an efficiency-preserving “MPC to SMPC-for-MPC”
compiler. From a technical perspective, the main new challenge we encountered is the fact that
the machines are now also space-constrained (which was not a concern in the standard multi-party
computation for circuit literature), and thus we could not just apply existing techniques to the
entire set of machines.

Besides the feasibility of achieving statistical security, another interesting direction is to weaken
the cryptographic assumption necessary in achieving such a compiler. Similarly, new results in
this vein would imply new breakthroughs for constant-round, sublinear-communication multi-party
computation for circuits too — and even partial results for special classes of circuits (like the family
we considered in Theorem 20) would be interesting.

C Removing the Sender Constraint

As mentioned earlier, some works in the MPC literature do not seem to respect the s-sender-
constraint, and only respect the s-receiver-constraint. In this section, we generalize our results even

13For this reason, in fact even if we relaxed the round complexity blowup in Theorem 20 to poly-logarithmically
many rounds or any number that does not depend on circuit depth, having such an MPC-to-SMPC compiler would
still imply improving the state-of-the-art for statistically secure MPC.
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to such MPC algorithms.
To achieve this, it suffices to show that given an MPC protocol denoted Π that respects only

the s-receiver-constraint, we can compile it to a counterpart denoted Π′ that satisfies not just the
O(s)-receiver-constraint, but also the O(s)-sender-constraint. Furthermore, the compilation should
preserve both round- and space-complexity; and moreover, the compiled protocol Π′ should run in a
fixed number of rounds (since the oblivious Routing primitive applied to emulate the communication
of Π′ will not hide total round complexity).

Intuition. The idea is the following: in the first phase (called the replication phase), if a sender
wants to send in total µ words in some communication round (where sending the same word to
two machines is counted twice), it will replicate all of its local memory to dµ/se helper-machines
where each helper is assigned a unique index from 1 to dµ/se. This must be accomplished using an
s-sender-bounded communication pattern. In the second phase (called the distribution phase), each
helper distributes s words on behalf of the sender it represents. Note that in the same round, many
machines may be trying to send data simultaneously. Thus the above procedure is performed in
parallel among all senders. It must be guaranteed that every machine serves as a helper at most for
one sender. In this way, the distribution phase will satisfy the s-sender-constraint.

C.1 Replication Protocol

A replication protocol allows senders to replicate their local memory to an appropriate number of
helpers.

Definition. Formally, replication, henceforth denoted Replicate, is the following problem.

• Input. Suppose that among the m machines, some machines are senders and others are
non-senders. Each machine i obtains an input pair (βi, ci) where βi ∈ {0, 1} is a bit indicating
whether machine i is a sender; and if βi = 1, ci ≥ 1 denotes the total number of machines to
replicate machine i’s state — henceforth we refer to ci as sender i’s multiplicity.

It is guaranteed that
∑m

i=1 βici ≤ m, i.e., in total there are enough machines around to act as
receivers.

• Output. At the end of the replication protocol, the following output configuration is produced:

– each sender i has its entire machine state (i.e., a total of s words) replicated on exactly
ci receivers;

– each machine acts as a receiver for at most 1 sender;

– suppose sender i has ci receivers, each of these receivers output i and also a unique index
j from the range [ci], i.e., each of these receiver knows that it acts as the j-th receiver for
its sender.

We will next construct a Replicate protocol. Note that the protocol need not be communication-
oblivious. The idea is that all machines will first perform a prefix sum computation which allows
each sender to discover a range of indices which are meant to become its helpers; moreover, all
senders’ helpers, identified by the range, are disjoint. It is well-known that prefix sum can be
accomplished on MPC in O(1) rounds with an s-sender-bounded communication style. Now, we
employ a RangeCast protocol for the sender to replicate its state to the range of machines discovered
above. Below we first explain how to construct the RangeCast building block and then describe our
Replicate protocol.
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Building block: RangeCast. As mentioned, RangeCast allows a sender to replicate its state to
a set of machines defined by a range [a, b] ⊆ [m]. To realize such a RangeCast primitive, we first
realize a weaker form denoted WeakRangeCast which only works if the range’s size is at most s.
Our RangeCast is similar to the “broadcast” algorithm in the “bulk-synchronous parallel (BSP)”
model [103], but we describe it again for completeness.

WeakRangeCast

Input: let a, b be any two machines such that 1 ≤ a ≤ b ≤ m, let I be an array of s words. The
machine a receives the input (I, a, b) where the range [a, b] is small enough such that b− a+ 1 ≤ s.
Output: every machine k ∈ [a, b] outputs I.

Protocol:

1. Let c := b − a + 1 and t := ds/ce. For each j ∈ [c], let Ij := I[(j − 1)t + 1 : jt] be the
substring of I where Ij consists of at most t words (if jt or (j − 1)t+ 1 is less than s, Ij is
by definition a shorter or empty string). In this round, the machine a sends to the machine
a+ j − 1 the message tuple (a, b, Ij) for each j ∈ [c], while all other machines send nothing.

2. In the next round, machine a+ j − 1 receives (a, b, Ij) for each j ∈ [c], and it sends the same
message (j, Ij) to every machine k ∈ [a, b].

3. Every machine k ∈ [a, b] receives a copy of (j, Ij) for all j ∈ [c], and it recovers I by
concatenating (Ij)j∈[c].

Lemma 21. For any 1 ≤ a ≤ b ≤ m such that b− a+ 1 ≤ s, WeakRangeCast correctly implements
range-cast in 2 rounds and satisfies both O(s)-sender- and O(s)-receiver-constraints, where each
machine takes O(s) space and time locally.

Proof. The correctness, rounds, and local-machine complexity follows directly. The O(s)-sender-
constraint holds because in Step 1, machine a sends to each machine O(s/c+ 2) words, and thus
the total number of words sent is O(s+ c) = O(s). The O(s)-receiver-constraint holds because in
Step 3, each machine receives c messages each consists of O(s/c+ 1) words.

Given WeakRangeCast as a building block, we can construct RangeCast where the range [a, b]
may be arbitrary in size. The protocol basically builds a distribution tree of fanout s such that the
sender first distributes to s machines, then the s machines distribute to upto s2 machines, and so
on. The protocol can be described formally below.
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RangeCast

Input and output: Same as WeakRangeCast but without any constraint on the range [a, b].

Protocol:

1. (Base case.) Let c := b− a+ 1. If c ≤ 1, then there is only one machine a and it outputs I
directly. Otherwise c > 1, continue with the following steps.

2. Let r := min(c, s). Run WeakRangeCast on the first r machines (i.e., in the range [a, a+r−1])
to copy I from machine a to machines [a, a+ r − 1].

3. The machine a computes a partition [a1, b1], [a2, b2], . . . , [ar, br] of the range [a, b] such that
the ranges [ai, bi] are as even as possible (i.e., for any i1, i2 ∈ [r], it holds that |(bi1 − ai1)−
(bi2 − ai2)| ≤ 1). The pair (ai, bi) is sent from machine a to both machines a+ i− 1 and ai;
Afterwards, machine a+ i− 1 sends the received I to machine ai for each i ∈ [r].

4. For each i ∈ [r], the machine ai performs recursively RangeCast on the received I and the
range [ai, bi].

Lemma 22. For any 1 ≤ a ≤ b ≤ m, RangeCast correctly implements range-cast in O( logm
log s ) rounds

and satisfies both O(s)-sender- and O(s)-receiver-constraints, where each machine takes O(s) space
and time locally.

Proof. In Step 3, if c < s, then r = c and all c machines receive I in O(1) rounds. Else, the
first s machines receive I and then forward I to groups of size dc/se, and it takes at most
O(logsm) = O( logm

log s ) iterations to divide any problem of size c ≤ m to a constant size. The
correctness follows directly. The local-machine complexity, O(s)-sender and O(s)-receiver constraints
follow by WeakRangeCast.

Protocol Replicate. We are now ready to describe the Replicate protocol. We will use the following
terminology: we use the term ball to refer to a machine’s entire state consisting of upto s words.
Each ball is always tagged the ball’s identifier denoted id ∈ [m], i.e., which machine’s state it
represents.

The building block PrefixSum is the following primitive: every machine starts with a number,
and machine i would like to learn the sum of machine 1 to machine i’s numbers. As described
by Goodrich et al. [70], this can be accomplished in O(1) rounds with an s-sender-bounded MPC
protocol, and consuming O(m) total communication.

1. Each ball is additionally tagged with its outputting range computed as follows.

(a) Given as input (βi, ci), each machine i ∈ [m] sets ci = 0 iff βi = 0. All m machines jointly
run the PrefixSum protocol on (ci)i∈[m]. As the result, each machine i gets the prefix sum
pi =

∑
j∈[i] cj .

(b) Let p0 = 0. Every machine i calculates pi−1 = pi−ci locally. For each machine i such that
ci ≥ 1 (i.e., the range [pi−1 + 1, pi] is non-empty), machine i tags the range [pi−1 + 1, pi]
to its ball and then sends the ball to machine pi−1 + 1.

2. Now each ball i is received by the first machine in its outputting range [pi−1 + 1, pi]. To
replicate the ball i to all machines in the range, for each ball i and the tagged range [pi−1+1, pi],
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the machine pi−1 + 1 performs RangeCast on the ball i and the range of machines [pi−1 + 1, pi].
This RangeCast is performed simultaneously for all balls and hence all machines. To ensure all
machines finish at the same round, every instance of RangeCast is programmed to finish at
the O( logm

log s )-th round specified in Lemma 22.

3. For each machine i such that has a ball tagged with a range [a, b], let j := i− a+ 1. Output
the ball and j.

Lemma 23. The MPC protocol Replicate is a correct replicate protocol such that takes O(1) rounds
and O(m · s) communication, satisfies O(s)-sender- and O(s)-receiver-constraints, and each machine
locally takes O(s) time and O(s) space.

Proof. The correctness holds as each ball i is replicated exactly ci copies and the ranges [pi−1 + 1, pi]
are disjoint. The complexities follow directly by PrefixSum [70] and RangeCast (Lemma 22).

C.2 Sender-Bounded Compiler

We will now compile any MPC protocol that respects only the s-receiver-constraint to one that
respects both the s-receiver- and s-sender-constraints.

Without loss of generality, we may assume that at the end of the local computation stage of each
round, there is a deterministic polynomial time algorithm14 that takes each machine’s local state
as input, and can write down sequentially in a stream a set of send instructions where each send
instruction contains an outgoing word to be sent and the destination machine’s identifier. Note that
the sender may not have space to write down all these instructions since each word sent multiple
times need to be duplicated multiple times, taking more than O(s) space. However, if the sender
replicates its state to enough helpers, every helper can locally repeat the same computation, and
write down the range of at most O(s) instructions it is responsible for implementing.

Sender-bounded compiler. Every communication round of the original MPC is replaced with
the following protocol:

1. Invoke an instance of the non-oblivious Replicate algorithm: if machine i is trying to send in
total µi words15, it replicates its local state onto dµi/se machines. At the end of this phase,
every machine i′ may receive the local state of at most one machine i and if so, it also learns
that it will act as the j-th helper for machine i.

2. If a machine i′ is the j-th helper for machine i, it uses machine i’s state to compute the
((j − 1)s+ 1)-th send instruction through the min(j · s, µi)-th send instruction.

3. Now, every machines executes all send instructions written down in the previous step.

Note that this sender-bounded compiler may not compile each round of the original MPC to a
fixed number of rounds. To obtain a compiler that always emits a protocol with a fixed number of
rounds, we can simply pad the resulting protocol to the worst-case number of rounds: if there is no
more work to be done, just execute empty rounds that do nothing.

14In the case that the algorithm for generating send instructions is randomized, we may assume that the randomness
is pseudo-randomly generated with a small seed using a cryptographically secure pseudo-random generator. This way,
the MPC’s outputs are computationally indistinguishable no matter whether true randomness or pseudorandomness is
used in determining the send instructions.

15This can be determined with polynomial-time computation based on its local state.
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Theorem 24 (Sender-bounded compiler with a fixed number of rounds). Assume that s = N ε

and m is upper bounded by a fixed polynomial in N . Given any m-machine MPC protocol Π that
completes in R rounds in the worst case and consuming s per-machine space, there is an MPC
protocol Π′ that computes the same function as Π, consuming O(R) rounds, O(s) per-machine
space, and O(m · s) total communication per round, and moreover Π′ additionally satisfies the
O(s)-sender-constraint, and executes for a fixed number of rounds. Note that for well-formedness,
both Π and Π′ must satisfy the s-receiver-constraint.

Proof. By Lemma 23, the above compiler replaces each round of the original MPC with O(1)
rounds of communication, and moreover the resulting protocol satisfies O(s)-sender- and O(s)-
receiver-constraints. The fixed total rounds is guaranteed due the padding mechanism mentioned
above.

D Additional Preliminary: Robust Secret Sharing

We recall the notion of robust secret sharing schemes [88]. Here, we only consider robust secret
sharing schemes with threshold t < m/3.

Definition 4 (Robust Secret Sharing). A t-out-of-m robust secret sharing scheme over a message
space M and share space S is a tuple (Share,Recons) of algorithms defined as follows:

• Share(msg) → (s1, . . . , sm): This is a randomized algorithm that takes as input a message
msg ∈M and output a sequence of shares s1, . . . , sm ∈ S.

• Recons(s1, . . . , sm) → msg′: This is a deterministic algorithm that takes as input m shares
(s1, . . . , sm) with si ∈ S ∪ {⊥} and outputs a message msg′ ∈M.

We require the following properties.

• Perfect Privacy: Any t out of m shares of a secret give no information on the secret itself.
Namely, for any msg,msg′ ∈M and S ⊂ [m] of size |S| = t, the distributions of Share(msg)S
and Share(msg′)S are identical. Here, Share(msg)S denotes the set of shares {si}i∈S generated
by Share(msg).

• Robustness: An adversary modifies up to t shares can cause the wrong secret to be recovered
with probability at most δ. Specifically, for any msg ∈ M, S ⊂ [m] of size |S| = t and
(unbounded) adversary A,

Pr[Recons(Share(msg)[m]\S ,A(Share(msg)S)) 6= msg] ≤ δ.

It is known that Shamir’s secret sharing scheme is an efficient t-out-of-m robust secret sharing
scheme for t < m/3.
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