
Compact Adaptively Secure ABE from k-Lin:

Beyond NC1 and towards NL

Huijia Lin Ji Luo

University of Washington
{rachel,luoji}@cs.washington.edu

February 2020

Abstract

We present a new general framework for constructing compact and adaptively secure attribute-
based encryption (ABE) schemes from k-Lin in asymmetric bilinear pairing groups. Previously,
the only construction [Kowalczyk and Wee, Eurocrypt ’19] that simultaneously achieves com-
pactness and adaptive security from static assumptions supports policies represented by Boolean
formulae. Our framework enables supporting more expressive policies represented by arithmetic
branching programs.

Our framework extends to ABE for policies represented by uniform models of computation
such as Turing machines. Such policies enjoy the feature of being applicable to attributes of
arbitrary lengths. We obtain the first compact adaptively secure ABE for deterministic and
non-deterministic finite automata (DFA and NFA) from k-Lin, previously unknown from any
static assumptions. Beyond finite automata, we obtain the first ABE for large classes of uniform
computation, captured by deterministic and non-deterministic logspace Turing machines (the
complexity classes L and NL) based on k-Lin. Our ABE scheme has compact secret keys of size
linear in the description size of the Turing machine M . The ciphertext size grows linearly in the
input length, but also linearly in the time complexity, and exponentially in the space complexity.
Irrespective of compactness, we stress that our scheme is the first that supports large classes
of Turing machines based solely on standard assumptions. In comparison, previous ABE for
general Turing machines all rely on strong primitives related to indistinguishability obfuscation.

Keywords: attribute-based encryption · adaptive security · compactness · arithmetic branching
program · logspace Turing machine · inner-product functional encryption

Contents

1 Introduction 1

2 Technical Overview 4

2.1 1-ABE from Arithmetic Key Garbling and IPFE Schemes 5

2.2 Full-Fledged ABE via IPFE . 7

2.3 1-ABE for Logspace Turing Machines 9

3 Preliminaries 15

3.1 Notational Conventions . 15

3.2 Bilinear Pairing and Matrix Diffie-Hellman Assumption 17

3.3 Attribute-Based Encryption . 18

3.4 Function-Hiding Slotted Inner-Product Functional Encryption 19

4 Computation Models 20

4.1 Arithmetic Branching Programs . 21

4.2 Turing Machines . 22

5 Arithmetic Key Garbling Scheme 23

5.1 Security Notions of AKGS . 24

6 ABE for ABPs 26

6.1 AKGS for ABPs . 26

6.2 1-Key 1-Ciphertext Secure Secret-Key ABE 29

6.3 KP-ABE for ABPs . 36

7 ABE for Uniform Logspace Turing Machines 44

7.1 AKGS for Turing Machines with Time/Space Bounds 44

7.2 1-ABE for L . 48

7.3 KP-ABE for L . 63

7.4 Extension to NL . 72

7.5 ABE for DFA/NFA . 76

References 78

Appendices
A Construction of Function-Hiding Slotted IPFE 84

B Key Delegation 88

B.1 1-ABE Supporting Conjunctions . 89

B.2 Perfectly Key-Homomorphic IPFE . 91

B.3 KP-ABE Supporting Delegation . 93

C Proof of Theorem 20 100

1 Introduction

Attribute-based encryption (ABE) [GPSW06] is an advanced form of public-key encryption that
enables fine-grained access control. The encryption algorithm using the master public key mpk
can encrypt a message m with a descriptive attribute x,1 producing a ciphertext ctx(m). The key
generation algorithm using the master secret key msk can produce a secret key sky associated with
an access policy y. Decrypting ctx(m) using sky reveals the message m if the attribute x satisfies
the policy y; otherwise, no information about m is revealed. The security requirement of ABE
stipulates resilience to collusion attacks — any group of users holding secret keys for different
policies learn nothing about the plaintext as long as none of them is individually authorized to
decrypt the ciphertext.

A primary goal of research on ABE is designing ABE schemes for expressive classes of policies,
usually defined by computation models or complexity classes. A beautiful and fruitful line of works
have constructed ABE for many different policy classes. For non-uniform computation, we have
ABE for Boolean [GPSW06,KW19] or arithmetic formulae, branching/span programs [LOS+10,
OT10,LW11,OT12,LW12,IW14,GV15,Att16,CGKW18], and circuits [GVW13,BGG+14,Att17]. For
uniform computation, we have ABE for deterministic finite automata [Wat12,Att14,Att16,AC17,
GWW19,AMY19b], non-deterministic finite automata [AMY19a], and even Turing machines [AM18,
AS17]. These constructions, however, achieve different trade-offs between security, efficiency, and
underlying computational assumptions. It is rare to have a construction that simultaneously achieves
the following natural desirata on all fronts:

• Security :Security : (full) adaptive security (as opposed to selective or semi-adaptive security);

• Efficiency :Efficiency : having compact secret key and ciphertext, whose sizes grow linearly with the
description size of the policy and the length of the attribute, respectively;

• Assumptions:Assumptions: relying on standard and simple assumptions, such as LWE and k-Lin or SXDH
in bilinear pairing groups (in particular, it is preferable to avoid the use of strong primitives
such as indistinguishability obfuscation, and instance-dependent assumptions such as q-type
assumptions, whose strength can be weakened by adversarially chosen parameters).

All previous constructions of ABE fail to achieve at least one of the desirable properties, except
for the recent construction of ABE for Boolean formulae from the k-Lin assumption by Kowalczyk
and Wee [KW19]. This raises the question:

Can we construct ABE schemes with all the desirable properties above
for more expressive classes of policies than Boolean formulae?

When it comes to uniform computation, the state of affairs is even less satisfactory. All constructions
of ABE for general Turing machines are based on strong primitives such as indistinguishability
obfuscation and multilinear map. Without these powerful tools, existing schemes can only handle
the weak computation model of finite automata.

Can we construct ABE schemes based on standard assumptions
for more expressive uniform computations than finite automata?

1Some works call x a set of attributes, and each bit or component of x an attribute. We treat the attribute
as a single vector.

1

Our Result. Via a unified framework, we construct compact and adaptively secure ABE schemes
based on the k-Lin assumption in asymmetric prime-order bilinear pairing groups for the following
classes of policies:

Arithmetic Branching Programs.Arithmetic Branching Programs. ABPs capture many functions of interest, including arithmetic
computations like sparse polynomials, mean, and variance, as well as combinatorial computations
like string-matching, finite automata, and decision trees. It is also known that Boolean/arithmetic
formulae and Boolean branching programs can all be converted into ABPs with polynomial blow-up
in description size. Thus, ABPs can be viewed as a more powerful computational model than them.

Previous ABE schemes for ABPs only provide selective security [GVW13,IW14] or do not have
compact ciphertexts [CGKW18].2 In addition to achieving both adaptive security and compactness,
our scheme is the first one that handles ABPs directly without converting it to circuits or arithmetic
span programs, which leads to an efficiency improvement in the size of the secret keys from up to
quadratic to linear in the size of the ABP.3

(Non-)Deterministic Logspace Turing Machines (L and NL).(Non-)Deterministic Logspace Turing Machines (L and NL). Here, a secret key is associated with a
Turing machine M , and the attribute in a ciphertext specifies an input x, a polynomial time bound
T , and a logarithmic space bound S. Decryption succeeds if and only if M accepts x within time T
and space S. Our scheme is unbounded in the sense that the public parameters do not restrict the
sizes of the Turing machine M and input x, nor the time/space bounds T, S. Furthermore, it enjoys
the advantage of ABE for uniform computation that a secret key for M can decrypt ciphertexts
with arbitrarily long inputs and arbitrary time/space bounds. This stands in contrast with ABE
for non-uniform computation (like ABPs), where a program or circuit f takes inputs of a specific
length n, and a secret key for f decrypts only ciphertext of length-n inputs. Achieving this feature
is precisely the challenge in constructing ABE for uniform models of computation.

Our scheme is the first ABE for large classes of Turing machine computation, captured by the
complexity classes L and NL, without using the heavy machineries of multilinear map, extractable
witness encryption, or indistinguishability obfuscation as in previous works [GKP+13a,AS16,AM18,
KNTY19]. In addition, our scheme is adaptively secure and half-compact. The secret keys are
compact, of size O(|M |) linear in the description size of M , while the ciphertext size depends
linearly in |x|TS2S (both ignoring fixed polynomial factors in the security parameter). Note that
the same secret key decrypt cipheretxts with different parameters |x|, T, S.

Removing the dependency on 2S or T is an interesting open problem that requires technical
breakthrough. In particular, removing the dependency on 2S would give an ABE for polynomial-
time Turing machine computation from pairing, a long sought-after goal that has remained elusive
for more than a decade. Removing the dependency of encryption time on T even only in the 1-key 1-
ciphertext setting implies a succinct message-hiding encoding [KLW15],4 which is only known from
strong primitives like indistinguishability obfuscation or functional encryption [KLW15,CHJV15,

2More precisely, they construct ABE for read-once branching programs. For general branching programs,
one can duplicate each component in the attribute for the number of times it is accessed [KLMM19]. As
such, the ciphertext size grows linearly with the size of the branching program.

3An ABP is specified by a directed graph, with edges weighted by affine functions of the input. The size
of an ABP is measured by the number of vertices (instead of edges) in the graph.

4Message-hiding encodings [KLW15] are a weaker variant of randomized encodings that allow encoding
a public computation f, x with a secret message m such that the encoding reveals m if and only if f(x) = 1.
Such encodings are succinct if the time to encode is much smaller than the running time of the computation.
A pair of ABE secret key for predicate f and ciphertext for attribute x and message m is a message-hiding
encoding.

2

BGL+15,KNTY19]. Removing the dependency of ciphertext size on T might be an easier task, but
would need new techniques different from ours.

Finite Automata.Finite Automata. As a special case of ABE for L and NL, we obtain ABE for deterministic finite
automata (DFA) and non-deterministic finite automata (NFA).5 This simply follows from the fact
that DFA and NFA can be represented as simple deterministic and non-deterministic Turing ma-
chines with space complexity 1 and time complexity N that always move the input tape pointer to
the right and never use the work tape.

Previous schemes for DFA based on pairing either achieve only selective security [Wat12,
GWW19,AMY19b] or rely on q-type assumptions [Att14,Att16,AC17]. The only direct construction
of ABE for NFA [AMY19a] based on LWE, however, is symmetric-key and only selectively secure.
We settle the open problem of constructing adaptively secure ABE for DFA from static assump-
tions [GWW19] and that of constructing ABE for NFA that is public-key, adaptively secure, or
based on assumptions other than LWE [AMY19a].

New Techniques for Constructing Adaptively Secure ABE. Constructing adaptively secure
ABE is a challenging task. Roughly speaking, previous constructions proceed in two steps. First,
a secure core secret-key ABE component for a single ciphertext and a single secret key — termed
1-ABE — is designed. Then, dual system encryption framework, originally proposed in [Wat09] and
refined in [Att14,Wee14,CGW15,Att16,AC17], provides guidance on how to lift 1-ABE to the public-
key and multi-secret-key setting. The main technical challenge lies in the first step: Adaptively se-
cure schemes prior to that of Kowalczyk and Wee [KW19] either impose a read-once restriction on
the attribute6 [LOS+10,Wee14] or rely on q-type assumptions [LW12,BSW07,Att14,AC17]. Kowal-
czyk and Wee [KW19] elegantly applied the “partial selectivization” framework [ACC+16,JKK+17]
for achieving adaptive security in general to constructing 1-ABE. In particular, they used a variant
of the secret-sharing scheme for Boolean formulae in [JKK+17] whose selective simulation security
can be proven via a sequence of hybrids, each only requiring partial information of the input to be
chosen selectively. Then, to show adaptive security, the reduction can guess this partial information
while incurring only a polynomial security loss.

However, secret-sharing schemes as needed in [KW19] are only known for Boolean formulae.
When dealing with computation over arithmetic domains of potentially exponential size, we have
the additional challenge that it is hard to guess even a single component of the input, except
with exponentially small probability, rendering the partial selectivization framework ineffective.
When dealing with uniform computation, we further encounter the challenge that neither the
secret key nor the ciphertext is as large as the secret-sharing, making it impossible to directly use
information-theoretically secure secret-sharing schemes. We develop new techniques to overcome
these challenges.

1. First, we present a generic framework for constructing adaptively secure 1-ABE from i) an
information theoretic primitive called arithmetic key garbling, and ii) a computational primi-
tive called function-hiding inner-product functional encryption (IPFE) [BJK15,TAO16,Lin17,
KLM+18]. Our arithmetic key garbling schemes are partial garbling schemes [IW14] with
special structures, which act as the counterpart of secret-sharing schemes for arithmetic
computation. Our framework is modular: It decomposes the task of constructing 1-ABE to

5DFA and NFA both characterize regular languages, yet a DFA recognizing a language could have expo-
nentially more states than an NFA recognizing the same language. In this work, by ABE for DFA/NFA, we
mean ABE schemes that run in time polynomial in the description size of the finite automata.

6As mentioned in Footnote 2, read-once restriction can be circumvented by duplicating attribute compo-
nents at the cost of losing ciphertext compactness.

3

first designing an arithmetic key garbling scheme for the computation class of interest, and
second applying a generic transformation depending solely on structural properties of the
garbling and agnostic of the underlying computation. In particular, the security proof of the
transformation does not attempt to trace the computation, unlike [KW19,GWW19].

2. Second, we formulate structural properties of arithmetic key garbling schemes — called piece-
wise security — sufficient for achieving adaptive security. The properties are natural and sat-
isfied by the garbling scheme for ABPs in [IW14]. For logspace Turing machine computation,
we present a simple arithmetic key garbling scheme for L and NL, inspired by the garbling
schemes in [AIK11,BGG+14].

3. Third, we present a new method of lifting 1-ABE to full-fledged ABE using function-hiding
IPFE. Our method can be cast into the dual system encryption framework, but is natural on
its own, without seeing through the lens of dual system encryption. One feature of IPFE is
that it provides a conceptually simple abstraction which allows moving information between
ABE keys and ciphertexts easily, and hides away lower-level details on how to guarantee
security. This feature makes it a convenient tool in many other parts of the security proof as
well.

4. Lastly, to overcome the unique challenge related to ABE for uniform computation, we further
enhance our generic method to be able to use partial garbling generated with pseudoran-
domness so that the total size of the secret keys and ciphertexts can be smaller than the
garbling.

Organization. In Section 2, we give an overview of our framework for constructing compact
adaptively secure ABE schemes for ABPs, logspace Turing machines and finite automata, using as
tools IPFE and arithmetic key garbling schemes (AKGS, a refinement of partial garbling schemes).
After introducing basic notations and definitions in Section 3, we define AKGS and its security in
Section 5. In Section 6, we construct the AKGS for ABPs, show how to construct 1-ABE (the core
component of our ABE schemes) from an AKGS and how to lift a 1-ABE to a full-fledged ABE. In
Section 7, we construct ABE for L, NL, DFA and NFA. In Appendix A, we show how to construct
slotted IPFE from bilinear groups assuming k-Lin. Lastly, in Appendix B we show how to support
key delegation.

2 Technical Overview

We now give an overview of our technique, starting with introducing the two key tools arithmetic
key garbling schemes and IPFE. Below, by bilinear pairing groups, we mean asymmetric prime-
order bilinear pairing groups, denoted as (G1, G2, GT, g1, g2, e) and implicitly, gT = e(g1, g2). We
use [[a]]b to represent the encoding gab of a in group Gb.

Arithmetic Key Garbling Scheme. We use a refinement of the notion of partial garbling
schemes [IW14] (which in turn is based on the notion of garbling and randomized encoding [Yao86,
IK02,AIK04]). An arithmetic key garbling scheme (AKGS) is an information-theoretic partial gar-
bling scheme for computing αf(x) + β that hides the secrets α, β ∈ Zp, but not f,x:

• A garbling procedure (L1, . . . ,Lm) ← Garble(f, α, β; r) turns f and two secrets α, β (using
randomness r) into m affine label functions L1, . . . , Lm, described by their coefficient vectors

4

L1, . . . ,Lm over Zp. The label functions specify how to encode an input x to produce the
labels for computing f(x) with secrets α, β:

f̂(x)α,β = (`1, . . . , `m), where `j = Lj(x) = 〈Lj , (1,x)〉 over Zp. (1)

• A linear evaluation procedure γ ← Eval(f,x, `1, . . . , `m) recovers the sum γ = αf(x) + β
weighted by the function value f(x).

AKGS is a partial garbling as it only hides information of the secrets α and β beyond the weighted
sum αf(x) + β, and does not hide (f,x), captured by a simulation procedure (`′1, . . . , `

′
m)

$←
Sim(f,x, αf(x) + β) that produces the same distribution as the honest labels.

Ishai and Wee [IW14] proposed a partial garbling scheme for ABPs, which directly implies an
AKGS for ABPs. It is also easy to observe that the (fully secure) garbling scheme for arithmetic
formulae in [AIK11] can be weakened [BGG+14] to an AKGS. Later, we will introduce additional
structural and security properties of AKGS needed for our 1-ABE construction. These properties
are natural and satisfied by both schemes [IW14,AIK11].

Inner-Product Functional Encryption. A function-hiding (secret-key) inner-product functional
encryption (IPFE)7 enables generating many secret keys isk(vj) and ciphertexts ict(ui) associated
with vectors vj and ui such that decryption yields all the inner products {〈ui,vj〉}i,j (mod p) and
nothing else. In this work, we need an adaptively secure IPFE, whose security holds even against
adversaries choosing all the vectors adaptively. Such an IPFE scheme can be constructed based on
the k-Lin assumption in bilinear pairing groups [Wee17,LV16]. The known scheme also has nice
structural properties that will be instrumental to our construction of ABE:

• isk(v)
$← IPFE.KeyGen(msk, [[v]]2) operates linearly on v (in the exponent of G2) and the size

of the secret key isk(v) grows linearly with |v|.

• ict(u)
$← IPFE.Enc(msk, [[u]]1) also operates linearly on u (in the exponent of G1) and the size

of the ciphertext ict(u) grows linearly with |u|.

• IPFE.Dec(sk(v), ct(u)) simply invokes pairing to compute the inner product [[〈u,v〉]]T in the
exponent of the target group.

2.1 1-ABE from Arithmetic Key Garbling and IPFE Schemes

1-ABE is the technical heart of our ABE construction. It works in the setting where a single
ciphertext ct(x) for an input vector x and a single secret key sk(f, µ) for a policy y = f6=0 and a
secret µ are published. Decryption reveals µ if f(x) 6= 0; otherwise, µ is hidden.8

1-ABE. To hide µ conditioned on f(x) = 0, our key idea is using IPFE to compute an AKGS

garbling f̂(x)µ,0 of f(x) with secrets α = µ and β = 0. The security of AKGS guarantees that only
µf(x) is revealed, which information theoretically hides µ when f(x) = 0.

The reason that it is possible to use IPFE to compute the garbling is attributed to the
affine input-encoding property of AKGS — the labels `1, . . . , `m are the output of affine func-
tions L1, . . . , Lj of x as described in Equation (1). Since f, α, β are known at key generation time,

7Some works use “inner-product encryption” (IPE) to refer to IPFE [BJK15,DDM16,LV16,Lin17] and
some others [KSW13,SSW09,OT09,OT10,OT12,CGW18] use it for inner-product predicate encryption.

8We can also handle policies of the form f=0 so that µ is revealed if and only if f(x) = 0. For simplicity,
we focus on one case in this overview.

5

the ABE key can be a collection of IPFE secret keys, each encoding the coefficient vector Lj of
one label function Lj . On the other hand, the ABE ciphertext can be an IPFE ciphertext encrypt-
ing (1,x). When put together for decryption, they reveal exactly the labels L1(x), . . . , Lm(x), as
described below on the left.

Honest Algorithms Hybrid for Selective Security

ct(x): ict((1,x) ‖ 0) ct(x): ict((1,x) ‖ 1 ‖ 0)
sk(f, µ): j ∈ [m]: iskj(Lj ‖ 0) sk(f, µ): j ∈ [m]: iskj(0 ‖ `j ‖ 0)

We note that the positions or slots at the right end of the vectors encoded in isk and ict are set
to zero by the honest algorithms — 0 denotes a vector (of unspecified length) of zeros. These slots
provide programming space in the security proof.

It is extremely simple to prove selective (or semi-adaptive) security, where the input x is chosen
before seeing the sk. By the function-hiding property of IPFE, it is indistinguishable to switch the
secret keys and the ciphertext to encode any vectors that preserve the inner products. This allows

us to hardwire honestly generated labels f̂(x)µ,0 = {`j ← 〈Lj , (1,x)〉}j∈[m] in the secret keys as
described above on the right. The simulation security of AKGS then implies that only µf(x) is
revealed, i.e., nothing about µ is revealed.

Achieving Adaptive Security. When it comes to adaptive security, where the input x is chosen

after seeing sk, we can no longer hardwire the honest labels f̂(x)µ,0 in the secret key, as x is
undefined when sk is generated, and hence cannot invoke the simulation security of AKGS. Our
second key idea is relying on a stronger security property of AKGS, named piecewise security, to
hardwire simulated labels into the secret key in a piecemeal fashion.

Piecewise security of AKGS requires the following two properties: i) reverse sampleability —
there is an efficient procedure RevSamp that can perfectly reversely sample the first label `1 given
the output αf(x) + β and all the other labels `2, . . . , `m, and ii) marginal randomness — each `j
of the following labels for j > 1 is uniformly distributed over Zp even given all subsequent label
functions Lj+1, . . . ,Lm. More formally,

{
`1 ← 〈L1, (1,x)〉, L2, . . . ,Lm

}
≡
{
`′1

$← RevSamp(· · ·), L2, . . . ,Lm
}
, (2){

`j ← 〈Lj , (1,x)〉, Lj+1, . . . ,Lm
}
≡
{
`′j

$← Zp , Lj+1, . . . ,Lm
}
. (3)

In Equation (2), `′1
$← RevSamp(f,x, αf(x) + β, `2, . . . , `m). These properties are natural and sat-

isfied by existing AKGS for ABPs and arithmetic formulae [IW14,AIK11].

Adaptive Security via Piecewise Security.Adaptive Security via Piecewise Security. We are now ready to prove adaptive security of our 1-
ABE. The proof strategy is to first hardwire `1 in the ciphertext and sample it reversely as `1

$←
RevSamp(f,x, 0, `2, . . . , `m), where `j = 〈Lj , (1,x)〉 for j > 1 and µf(x) = 0 by the constraint, as
described in hybrid k = 1 below. The indistinguishability follows immediately from the function-
hiding property of IPFE and the reverse sampleability of AKGS. Then, we gradually replace each
remaining label function Lj for j > 1 with a randomly sampled label `j

$← Zp in the secret key, as
described in hybrids 1 ≤ k ≤ m+ 1. It is easy to observe that in the final hybrid k = m+ 1, where
all labels `2, . . . , `m are random and `1 reversely sampled without µ, the value µ is information-
theoretically hidden.

6

Hybrid 1 ≤ k ≤ m+ 1 Hybrid k : 1 or k : 2

sk(f, µ): isk1(0 ‖ 1 ‖ 0 ‖ 0)
1 < j < k: iskj(0 ‖ 0 ‖ `j ‖ 0)

iskk(Lk ‖ 0 ‖ 0 ‖ 0) iskk(0 ‖ 0 ‖ 0 ‖ 1)

j > k: iskj(Lj ‖ 0 ‖ 0 ‖ 0)
ct(x): ict((1,x) ‖ `1 ‖ 1 ‖ 0) ict((1,x) ‖ `1 ‖ 1 ‖ `k)

`1
$← RevSamp(· · ·) and for 1 < j < k: `j

$← Zp `k ← 〈Lk, (1,x)〉 or `k
$← Zp

To move from hybrid k to k + 1, we want to switch the kth IPFE secret key iskk from encoding
the label function Lk to a simulated label `k

$← Zp. This is possible via two moves. First, by the
function-hiding property of IPFE, we can hardwire the honest `k = 〈Lk, (1,x)〉 in the ciphertext
as in hybrid k : 1 (recall that at encryption time, x is known). Then, by the marginal randomness
property of AKGS, we switch to sample `k as random in hybrid k : 2. Lastly, hybrid k : 2 is
indistinguishable to hybrid k + 1 again by the function-hiding property of IPFE.

1-ABE for ABPs. Plugging in the AKGS for ABPs by Ishai and Wee [IW14], we immediately
obtain 1-ABE for ABPs based on k-Lin. The size of the garbling grows linearly with the number
of vertices |V | in the graph describing the ABP, i.e., m = O(|V |). Combined with the fact that
IPFE has linear-size secret keys and ciphertexts, our 1-ABE scheme for ABPs has secret keys
of size O(m|x|) = O(|V ||x|) and ciphertexts of size O(|x|). This gives an efficiency improvement
over previous 1-ABE or ABE schemes for ABPs [IW14,CGKW18], where the secret key size grows
linearly with the number of edges |E| in the ABP graph, due to that their schemes first convert
ABPs into an arithmetic span program, which incurs the efficiency loss.

Discussion. Our method for constructing 1-ABE is generic and modular. In particular, it has the
advantage that the proof of adaptive security is agnostic of the computation being performed and
merely carries out the simulation of AKGS in a mechanic way. Indeed, if we plug in an AKGS for
arithmetic formulae or any other classes of non-uniform computation, the proof remains the same.
(Our 1-ABE for logspace Turing machines also follows the same blueprint, but needs additional
ideas.) Furthermore, note that our method departs from the partial selectivization technique used
in [KW19], which is not applicable to arithmetic computation as the security reduction cannot
afford to guess even one component of the input x. The problem is circumvented by using IPFE to
hardwire the labels (i.e., `1, `k) that depend on x in the ciphertext.

2.2 Full-Fledged ABE via IPFE

From 1-ABE for the 1-key 1-ciphertext setting to full-fledged ABE, we need to support publish-
ing multiple keys and make encryption public-key. It turns out that the security of our 1-ABE
scheme directly extends to the many-key 1-ciphertext (still secret-key) setting via a simple hybrid
argument. Consider the scenario where a ciphertext ct and multiple keys {skq(fq, µq)}q∈[Q] that
are unauthorized to decrypt the ciphertext are published. Combining the above security proof for
1-ABE with a hybrid argument, we can gradually switch each secret key skq from encoding honest
label functions encapsulating µq to ones encapsulating an independent secret µ′q

$← Zp. Therefore,
all the secrets {µq}q∈[Q] are hidden.

The security of our 1-ABE breaks down once two ciphertexts are released. Consider publish-
ing just a single secret key sk(f, µ) and two ciphertexts ct1(x1), ct2(x2). Since the label functions

L1, . . . , Lm are encoded in sk, decryption computes two AKGS garblings f̂(x1)µ,0 and f̂(x2)µ,0

7

generated using the same label functions. However, AKGS security does not apply when the label
functions are reused.

What we wish is that IPFE decryption computes two garblings f̂(x1)µ,0 = (L1(x1), . . . , Lm(x1))

and f̂(x2)µ,0 = (L′1(x2), . . . , L′m(x2)) using independent label functions. This can be achieved in
a computational fashion relying on the fact that the IPFE scheme encodes the vectors and the
decryption results in the exponent of bilinear pairing groups. Hence we can rely on computational
assumptions such as SXDH or k-Lin, combined with the function-hiding property of IPFE to argue
that the produced garblings are computationally independent. We modify the 1-ABE scheme as
follows:

• If SXDH holds in the pairing groups, we encode in the ciphertext (1,x) multiplied by a random
scalar s

$← Zp. As such, decryption computes (sL1(x), . . . , sLm(x)) in the exponent. We argue
that the label functions sL1, . . . , sLm are computationally random in the exponent : By the
function-hiding property of IPFE, it is indistinguishable to multiply s not with the ciphertext
vector, but with the coefficient vectors in the secret key as depicted below on the right; by
DDH (in G2) and the linearity of Garble (i.e., the coefficients Lj depend linearly on the secrets
α, β and the randomness r used by Garble), sLj are the coefficients of pseudorandom label
functions.

Algorithms based on SXDH Hybrid

≈L′j (fresh)

sk(f, µ): j ∈ [m]: iskj(Lj ‖ 0) iskj(Lj ‖ sLj ‖ 0)
ct(x): ict(s(1,x) ‖ 0) ict(0 ‖ (1,x) ‖ 0)

• If k-Lin holds in the pairing groups, we encode in the secret key k independent copies of
label functions Lt1, . . . , L

t
m for t ∈ [k], and in the ciphertexts k copies of (1,x) multiplied with

independent random scalars s[t] for t ∈ [k]. This way, decryption computes a random linear
combination of the garblings (

∑
t∈[k] s[t]Lt1(x), . . . ,

∑
t∈[k] s[t]Ltm(x)) in the exponent, which

via a similar hybrid as above corresponds to pseudorandom label functions in the exponent.

Algorithms based on k-Lin

sk(f, µ): j ∈ [m]: iskj(L1
j ‖ · · · ‖ Lkj ‖ 0)

ct(x): ict(s[1](1,x) ‖ · · · ‖ s[k](1,x) ‖ 0)

Hybrid
≈ L′j (fresh)

sk(f, µ): j ∈ [m]: iskj(L1
j ‖ · · · ‖ Lkj ‖

∑
t∈[k] s[t]Ltj ‖ 0)

ct(x): ict(0 ‖ · · · ‖ 0 ‖ (1,x) ‖ 0)

The above modification yields a secret-key ABE secure in the many-ciphertext many-key setting.
The final hurdle is how to make the scheme public-key, which we resolve using slotted IPFE.

Slotted IPFE. Proposed in [LV16], slotted IPFE is a hybrid between a secret-key function-hiding
IPFE and a public-key IPFE. Here, a vector u ∈ Znp is divided into two parts (upub,upriv) with

upub ∈ Znpub
p in the public slot and upriv ∈ Znpriv

p in the private slot (npub + npriv = n). Like a
usual secret-key IPFE, the encryption algorithm IPFE.Enc using the master secret key msk can
encrypt to both the public and private slots, i.e., encrypting any vector u. In addition, there is an

8

IPFE.SlotEnc algorithm that uses the master public key mpk, but can only encrypt to the public
slot, i.e., encrypting vectors such that upriv = 0. Since anyone can encrypt to the public slot, it
is impossible to hide the public slot part vpub of a secret-key vector v. As a result, slotted IPFE
guarantees function-hiding only w.r.t. the private slot, and the weaker indistinguishability security
w.r.t. the public slot. Based on the construction of slotted IPFE in [Lin17], we obtain adaptively
secure slotted IPFE based on k-Lin.

The aforementioned secret-key ABE scheme can be easily turned into a public-key one with
slotted IPFE: The ABE encryption algorithm simply uses IPFE.SlotEnc and mpk to encrypt to the
public slots. In the security proof, we move vectors encrypted in the public slot of the challenge
ciphertext to the private slot, where function-hiding holds and the same security arguments outlined
above can be carried out.

Discussion. Our method can be viewed as using IPFE to implement dual system encryption [Wat09].
We believe that IPFE provides a valuable abstraction, making it conceptually simpler to design
strategies for moving information between the secret key and the ciphertext, as done in the proof of
1-ABE, and for generating independent randomness, as done in the proof of full ABE. The benefit
of this abstraction is even more prominent when it comes to ABE for logspace Turing machines.

2.3 1-ABE for Logspace Turing Machines

We now present ideas for constructing 1-ABE for L, and then its extension to NL and how to handle
DFA and NFA as special cases for better efficiency. Moving to full-fledged ABE follows the same
ideas in the previous subsection, though slightly more complicated, which we omit in this overview.

1-ABE for L enables generating a single secret key sk(M,µ) for a Turing machine M and secret
µ, and a ciphertext ct(x, T, S) specifying an input x of length N , a polynomial time bound T =
poly(N), and a logarithmic space bound S = O(logN) such that decryption reveals µM |N,T,S(x),
where M |N,T,S(x) represents the computation of running M(x) for T steps with a work tape of size
S, which outputs 1 if and only if the computation lands in an accepting state after T steps and
has never exceeded the space bound S. A key feature of ABE for uniform computation is that a
secret key sk(M,µ) can decrypt ciphertexts with inputs of unbounded lengths and unbounded time
/ (logarithmic) space bounds. (In contrast, for non-uniform computation, the secret key decides the
input length and time/space bounds.) Our 1-ABE for L follows the same blueprint of combining
AKGS with IPFE, but uses new ideas in order to implement the unique feature of ABE for uniform
computation.

Notations for Turing Machines. We start with introducing notations for logspace Turing ma-
chines (TM) over the binary alphabet. A TM M = (Q, qacc, δ) consists of Q states, with the initial
state being 1 and an accepting state9 qacc ∈ [Q], and a transition function δ. The computation of
M |N,T,S(x) goes through a sequence of T + 1 configurations (x, (i, j,W, q)), where i ∈ [N] is the

input tape pointer, j ∈ [S] the work tape pointer, W ∈ {0, 1}S the content of the work tape, and
q ∈ [Q] the state. The initial internal configuration is thus (i = 1, j = 1,W = 0S , q = 1), and the
transition from one internal configuration (i, j,W, q) to the next (i′, j′,W′, q′) is governed by the
transition function δ and the input x. Namely, if δ(q,x[i],W[j]) = (q′, w′,∆i,∆j),

(i, j,W, q)→ (i′ = i+ ∆i, j′ = j + ∆j, W′ = overwrite(W, j, w′), q′).

In other words, the transition function δ on input state q and bits x[i], W[j] on the input and
work tape under scan, outputs the next state q′, the new bit w′ ∈ {0, 1} to be written to the work

9For simplicity, in this overview, we assume there is only one accepting state.

9

tape, and the directions ∆i,∆j ∈ {0,±1} to move the input and work tape pointers. The next
internal configuration is then derived by updating the current configuration accordingly, where
W′ = overwrite(W, j, w′) is a vector obtained by overwriting the jth cell of W with w′ and keeping
the other cells unchanged.

AKGS for Logspace Turing Machines. To obtain an AKGS for L, we represent the TM compu-
tation algebraically as a sequence of matrix multiplications over Zp, for which we design an AKGS.
To do so, we represent each internal configuration as a basis vector e(i,j,W,q) of dimension NS2SQ
with a single 1 at position (i, j,W, q). We want to find a transition matrix M(x) (depending on δ
and x) such that moving to the next state e(i′,j′,W′,q′) simply involves (right) multiplying M(x),
i.e., eT

(i,j,W,q)M(x) = eT

(i′,j′,W′,q′)
. It is easy to verify that the correct transition matrix is

M(x)[(i, j,W, q), (i′, j′,W′, q′)] = CanTransit[(i, j,W), (i′, j′,W′)]×Mx[i],W[j],W′[j],i′−i,j′−j [q, q
′],

(4)

CanTransit[(i, j,W), (i′, j′,W′)] = 1 iff W′[6= j] = W[6= j] and i′ − i, j′ − j ∈ {0,±1},
Mx,w,w′,∆i,∆j [q, q

′] = 1 iff δ(q, x, w′) = (q′, w′,∆i,∆j). (5)

Here, CanTransit[(i, j,W), (i′j′,W′)] indicates whether it is possible, irrespective of δ, to move from
an internal configuration with (i, j,W) to one with (i′, j′,W′). If possible, then Mx[i],W[j],W′[j],∆i,∆j [q, q

′]
indicates whether δ permits moving from state q with current read bits x = x[i], w = W[j] to state
q′ with overwriting bit w′ = W′[j] and moving directions ∆i = i′ − i,∆j = j′ − j. Armed with
this, the TM computation can be done by right multiplying the matrix M(x) for T times with
the initial configuration eT

(1,1,0,1), reaching the final configuration eT

(iT ,jT ,WT ,qT), and then testing
whether qT = qacc. More precisely,

M |N,T,S(x) = eT

(1,1,0,1)

(
M(x)

)T
t for t = 1NS2S ⊗ eqacc .

To construct AKGS for L, it boils down to construct AKGS for matrix multiplication. Our
construction is inspired by the randomized encoding for arithmetic NC1 scheme of [AIK11] and the
garbling mechanism for multiplication gates in [BGG+14]. Let us focus on garbling the computation
M |N,T,S(x) with secrets α = µ and β = 0 (the case needed in our 1-ABE). The garbling algorithm
Garble produces the following affine label functions of x:

`init = Linit(x) = eT

(1,1,0,1)r0,

t ∈ [T]: `t = (`t,z) =
(
Lt,z(x)

)
z

= − rt−1 + M(x)rt,

`T+1 = (`T+1,z)z =
(
LT+1,z(x)

)
z

= − rT + µt.

Here, z = (i, j,W, q) runs through allNS2SQ possible internal configurations and rt
$← Z[N]×[S]×{0,1}S×[Q]

p .
The evaluation proceeds inductively, starting with `init = eT

(1,1,0,1)r0, going through eT

(it,jt,Wt,qt)
rt for

every t ∈ [T] using the identity below, and completing after T steps by combining eT

(iT ,jT ,WT ,qT)rT
with `T+1 to get eT

(iT ,jT ,WT ,qT)µt = µM |N,T,S(x) as desired:

eT

(it+1,jt+1,Wt+1,qt+1)rt+1 = eT

(it,jt,Wt,qt)
rt + eT

(it,jt,Wt,qt)
(−rt + M(x)rt+1︸ ︷︷ ︸

`t+1

).

We now show that the above AKGS is piecewise secure. First, `init is reversely sampleable. Since Eval
is linear in the labels and `init has coefficient 1, given all but the first label `init, one can reversely

10

compute `init – the value uniquely determined by the linear equation10 imposed by the correctness
of Eval. Second, the marginal randomness property holds because every label `t is random due to
the random additive term rt−1 that is not used in subsequent label functions Lt′,z for all t′ > t and
z, nor in the non-constant terms of Lt,z’s — we call rt−1 the randomizers of `t (highlighted in the
box). Lastly, we observe that the size of the garbling is (T + 1)NS2SQ+ 1.

1-ABE for L. We now try to construct 1-ABE for L from AKGS for L, following the same blueprint
of using IPFE. Yet, applying the exact same method for non-uniform computation fails for multiple
reasons. In 1-ABE for non-uniform computation, the ciphertext ct contains a single IPFE ciphertext
ict encoding (1,x), and the secret key sk contains a set of IPFE secret keys iskj encoding all the
label functions. However, in the uniform setting, the secret key sk(M,µ) depends only on the
TM M and the secret µ, and is supposed to work with ciphertexts ct(x, T, S) with unbounded
N = |x|, T, S. Therefore, at key generation time, the size of the AKGS garbling, (T +1)NS2SQ+1,
is unknown, let alone generating and encoding all the label functions. Moreover, we want our
1-ABE to be compact, with secret key size |sk| = O(Q) linear in the number Q of states and
ciphertext size |ct| = O(TNS2S) (ignoring polynomial factors in the security parameter). The total
size of secret key and ciphertext is much smaller than the total number of label functions, i.e.,
|sk|+ |ct| � (T + 1)NS2SQ+ 1.

To overcome these challenges, our idea is that instead of encoding the label functions in the secret
key or the ciphertext (for which there is not enough space), we let the secret key and the ciphertext
jointly generate the label functions. For this idea to work, the label functions cannot be generated
with true randomness which cannot be “compressed”, and must use pseudorandomness instead.
More specifically, our 1-ABE secret key sk(M,µ) contains ∼ Q IPFE secret keys {isk(vj)}j , while
the ciphertext ct(x, T, S) contains ∼ TNS2S IPFE ciphertexts {ict(ui)}i, such that decryption
computes in the exponent ∼ TNS2SQ cross inner products 〈ui,vj〉 that correspond to a garbling
of M |N,T,S(x) with secret µ. To achieve this, we rely crucially on the special block structure of the
transition matrix M (which in turn stems from the structure of TM computation, where the same
transition function is applied in every step). Furthermore, as discussed above, we replace every truly
random value rt[i, j,W, q] with a product rx[t, i, j,W]rf [q], which can be shown pseudorandom in
the exponent based on SXDH.11

Block Structure of the Transition Matrix.Block Structure of the Transition Matrix. Let us examine the transition matrix again (cf. Equa-
tions (4) and (5)):

M(x)[(i, j,W, q), (i′, j′,W′, q′)] = CanTransit[(i, j,W), (i′, j′,W′)]×Mx[i],W[j],W′[j],i′−i,j′−j [q, q
′].

We see that that every block M(x)[(i, j,W,), (i′, j′,W′,)] either is the Q × Q zero matrix or
belongs to a small set T of a constant number of transition blocks:

T =
{
Mx,w,w′,∆i,∆j

∣∣x,w,w′ ∈ {0, 1}, ∆i,∆j ∈ {0,±1}
}
.

Moreover, in the i = (i, j,W)th “block row”, M(x)[(i,), (, , ,)], each transition block Mx,w,w′,∆i,∆j

either does not appear at all if x 6= x[i] or w′ 6= W[j], or appears once as the block M(x)[(i,), (i′,)],
where i′ is the triplet obtained by updating i appropriately according to (w′,∆i,∆j):

i′
def
== i� (w′,∆i,∆j) = (i+ ∆i, j + ∆j, W′ = overwrite(W, j, w′)),

M(x)[(i,), (i′,)] = Mx[i],W[j],w′,∆i,∆j .

10This means RevSamp is deterministic, and we can reversely compute `init in the exponent and when the
randomness is not uniform, which is important for our construction.

11Our scheme readily extends to be based on k-Lin. However, that makes the scheme more complex to
present. We choose to present this scheme using SXDH in this paper.

11

Thus we can “decompose” every label `t[i, q] as an inner product 〈ut,i,vq〉 as

`t[i, q] = −rt−1[i, q] + M(x)[(i, q)(, , ,)]rt

= −rt−1[i, q] +
∑

w′,∆i,∆j

(
Mx[i],W[j],w′,∆i,∆jrt[i

′,]
)
[q]

(
i′ = i� (w′,∆i,∆j)

)
= −rx[t− 1, i]rf [q] +

∑
w′,∆i,∆j

rx[t, i′]
(
Mx[i],W[j],w′,∆i,∆jrf

)
[q]

= 〈ut,i,vq〉,
↖(

rt′′ [i
′′, q′′] = rx[t′′, i′′]rf [q

′′]
)

where vectors ut,i and vq are as follows, with 1{· · ·} indicating if the conditions (its argument) are
true:

ut,i = (rx[t− 1, i] ‖ · · · ‖ rx[t, i′] · 1{x = x[i], w = W[j]} ‖ · · · ‖ 0),
vq = (−rf [q] ‖ · · · ‖ (Mx,w,w′,∆i,∆jrf)[q] ‖ · · · ‖ 0).

Similarly, we can “decompose” `init = eT
1,1,0,1r0 as 〈rx[0, 1, 1,0], rf [1]〉. (For simplicity in the discus-

sion below, we omit details on how to handle `T+1.) Given such decomposition, our semi-compact
1-ABE scheme follows immediately by using IPFE to compute the garbling:

Honest Algorithms

sk(M,µ): iskinit(rf [1] ‖ 0), ∀q: iskq(ut,i ‖ 0)
ct(x, T, S): ictinit(rx[0, 1, 1,0] ‖ 0), ∀t, i: icti,i(vq ‖ 0)

Decrypting the pair iskinit, ictinit (generated using one master secret key) gives exactly the first label
`init, while decrypting iskq, ictt,i (generated using another master secret key) gives the label `t[i, q]
in the exponent, generated using pseudorandomness rt[i, q] = rx[t, i]rf [q]. Note that the honest
algorithms encode rf [q] (in vq) and rx[t, i] (in ut,i) in IPFE secret keys and ciphertexts that use the
two source groups G1 and G2 respectively. As such, we cannot directly use the SXDH assumption
to argue the pseudorandomness of rt[i, q]. In the security proof, we will use the function-hiding
property of IPFE to move both rx[t, i] and rf [q] into the same source group before invoking SXDH.

Adaptive Security. To show adaptive security, we follow the same blueprint of going through a
sequence of hybrids, where we first hardcode `init and sample it reversely using RevSamp, and next
simulate the other labels `t[i, q] one by one. Hardwiring `init is easy by relying on the function-hiding
property of IPFE. However, it is now more difficult to simulate `t[i, q] because i) before simulating
`t[i, q], we need to switch its randomizer rt−1[i, q] = rx[t− 1, i]rf [q] to truly random rt−1[i, q]

$← Zp,
which enables us to simulate the label `t[i, q] as random; and ii) to keep simulation progressing, we
need to switch the random `t[i, q] back to a pseudorandom value `t[i, q] = sx[t, i]sf [q], as otherwise,
there is not enough space to store all ∼ TNS2SQ random labels `t[i, q].

We illustrate how to carry out above proof steps in the simpler case where the the adversary
queries for the ciphertext first and the secret key second. The other case where the secret key is
queried first is handled using similar ideas, but the technicality becomes much more delicate.

In hybrid (t, i), the first label `init is reversely sampled and hardcoded in the secret key iskinit, i.e.,
ictinit encrypts (1 ‖ 0) and iskinit encrypts (`init ‖ 0) with `init ← RevSamp(· · ·). All labels `t′ [i

′, q]
with (t′, i′) < (t, i) have been simulated as sx[t′, i′]sf [q] — observe that the ciphertext ictt′,i′ encodes
only sf [t

′, i′] in the second slot, which is multiplied by sf [q] in the second slot of iskq. On the other
hand, all labels `t′ [i

′, q] with (t′, i′) ≥ (t, i) are generated honestly as the honest algorithms do.

12

Hybrid (t, i), (t, i) : 1 , and (t, i) + 1

ct(x, T, S): (t′, i′) < (t, i): ictt′,i′(0 ‖ sx[t′, i′] ‖ 0)

(t′, i′) = (t, i): ictt ,i (ut,i 0 0 ‖ 0 0 sx[t, i] ‖ 0 1 0)

(t′, i′) > (t, i): ictt′,i′(ut′,i′ ‖ 0 ‖ 0)

sk(M,µ): q ∈ [Q]: iskq(vq ‖ sf [q] ‖ 0 `t[i, q] 0)

Moving from hybrid (t, i) to its successor (t, i) + 1, the only difference is that labels `t[i, q] are
switched from being honestly generated 〈ut,i,vq〉 to pseudorandom sx[t, i]sf [q], as depicted above
with values in the solid line box (the rest of the hybrid is identical to hybrid (t, i)). The transition
can be done via an intermediate hybrid (t, i) : 1 with values in the dash line box. In this hybrid, all
labels `t[i, q] produced as inner products of all vq’s and ut,i are temporarily hardcoded in the secret
keys iskq, using the third slot (which is zeroed out in all the other u(t′,i′) 6=(t,i)’s). Furthermore, ut,i
is removed from ictt,i. As such, the random scalar rx[t− 1, i] (formerly embedded in ut,i) no longer
appears in the exponent of group G1, and `init ← RevSamp(· · ·) can be performed using rx[t− 1, i],
rf [q], rt−1[i, q] in the exponent of G2. Therefore, we can invoke the SXDH assumption in G2 to
switch the randomizers rt−1[i, q] = rx[t− 1, i]rf [q] to be truly random, and hence so are the labels
`t[i, q]

$← Zp. By a similar argument, this intermediate hybrid (t, i) : 1 is also indistinguishable to
(t, i) + 1, as the random `t[i, q] can be switched to sx[t, i]sf [q] in hybrid (t, i) + 1, relying again on
SXDH and the function-hiding property of IPFE. This concludes our argument of security in the
simpler case where the ciphertext is queried first.

AKGS and 1-ABE for NL. Our construction of AKGS and 1-ABE essentially works for NL
without modification, because the computation of a non-deterministic logspace Turing machine
M = ([Q], qacc, δ) on an input x can also be represented as a sequence of matrix multiplications.
We briefly describe how by pointing out the difference from L. The transition function δ of a non-
deterministic TM dost not instruct a unique transition, but rather specifies a set of legitimate
transitions. Following one internal configuration (i, j,W, q), there are potentially many legitimate
successors:

(i, j,W, q)→
{

(i′ = i+ ∆i, j′ = j + ∆j,W′ = overwrite(W, j, w′), q′)
∣∣ (q′, w′,∆i,∆j) ∈ δ(q,x[i],W[j])

}
.

The computation is accepting if and only if there exists a path with T legitimate transitions starting
from (1, 1,0, 1), through (it, jt,Wt, qt) for t ∈ [T], and landing at qT = qacc.

Naturally, we modify the transition matrix as below to reflect all legitimate transitions. The
only difference is that each transition block determined by δ may map a state q to multiple states
q′, as highlighted in the solid line box:

M(x)[(i, j,W, q), (i′, j′,W′, q′)] = CanTransit[(i, j,W), (i′, j′,W′)]×Mx[i],W[j],W′[j],i′−i,j′−j [q, q
′],

Mx,w,w′,∆i,∆j [q, q
′] = 1 iff (q′, w′,∆i,∆j) ∈ δ(q, x, w′).

Let us observe the effect of right multiplying M(x) to an ei,q indicating configuration (i, q): eT
i,qM(x)

gives a vector c1 such that c1[i′, q′] = 1 if and only if (i′, q′) is a legitimate next configuration.

Multiplying M(x) one more time, eT
i,q

(
M(x)

)2
gives c2 where c2[i′, q′] is the number of length-2

paths of legitimate transitions from (i, q) to (i′, q′). Inductively, eT
i,q

(
M(x)

)t
yields ct that counts

the number of length-t paths from (i, q) to any other internal configuration (i′, q′). Therefore, we
can arithmetize the computation of M on x as

M |N,T,S(x) = eT

(1,1,0,1)

(
M(x)

)T
t for t = 1NS2S ⊗ eqacc . (6)

13

Right multiplying t in the end sums up the number of paths to (i, qacc) for all i in cT (i.e., accepting
paths).

If the computation is not accepting — there is no path to any (i, qacc) — the final sum would be 0
as desired. If the computation is accepting — there is a path to some (i, qacc) — then the sum should
be non-zero (up to the following technicality). Now that we have represented NL computation as
matrix multiplication, we immediately obtain AKGS and 1-ABE for NL using the same construction
for L.

A Technicality in the Correctness for NL.A Technicality in the Correctness for NL. The correctness of our scheme relies on the fact that when
the computation is accepting, the matrix multiplication formula (Equation (6)) counts correctly
the total number of length-T accepting paths. However, a subtle issue is that in our 1-ABE, the
matrix multiplications are carried out over Zp, where p is the order of the bilinear pairing groups.
This means if the total number of accepting paths happens to be a multiple of p, the sequence of
matrix multiplications mod p carried out in 1-ABE would return 0, while the correct output should
be non-zero. This technicality can be circumvented if p is entropic with ω(log n) bits of entropy and
the computation (M,x, T, S) is independent of p. In that case, the probability that the number of
accepting paths is a multiple of p is negligible. We can achieve this by letting the setup algorithm of
1-ABE sample the bilinear pairing groups from a distribution with entropic order. Then, we have
statistical correctness for computations (M,x, T, S) chosen statically ahead of time (independent of
p). We believe such static correctness is sufficient for most applications where correctness is meant
for non-adversarial behaviors. However, if the computation (M,x, T, S) is chosen adaptively to make
the number of accepting paths a multiple of p, then an accepting computation will be mistakenly
rejected. We stress that security is unaffected since if an adversary chooses M and (x, T, S) as such,
it only learns less information.

The Special Cases of DFA and NFA. DFA and NFA are special cases of L and NL, respectively,
as they can be represented as Turing machines with a work tape of size S = 1 that always runs
in time T = N , and the transition function δ always moves the input tape pointer to the right.
Therefore, the internal configuration of a finite automaton contains only the state q, and the
transition matrix M(x) is determined by δ and the current input bit x under scan. Different from
the case of L and NL, here the transition matrix no longer keeps track of the input tape pointer
since its move is fixed — the tth step uses the transition matrix M(x[t]) depending on x[t]. Thus,
the computation can be represented as follows:

M(x) = eT
1

N∏
t=1

M(x[t]) · eqacc = eT
1

N∏
t=1

(
M0(1− x[t]) + M1x[t]

)
· eqacc ,

where Mb[q, q
′] = 1{δ(q, b) = q′}. Our construction of AKGS directly applies:

`init = Linit(x) = eT
1r0,

t ∈ [N]: `t =
(
Lt,q(x)

)
q∈[Q]

= −rt−1 + M(x[t]) rt,
(
rt−1, rt

$← ZQp
)

`N+1 =
(
LN+1,q(x)

)
q∈[Q]

= −rN + µeqacc .

When using pseudorandomness rt[q] = rf [q]rx[t], the labels `t[q] can be computed as 〈ut,vq〉 with

vq = (−rf [q] ‖ (M0rf)[q] ‖ (M1rf)[q] ‖ 0),
ut = (rx[t− 1] ‖ (1− x[t])rx[t] ‖ x[t]rx[t] ‖ 0).

Applying our 1-ABE construction with respect to such “decomposition” gives compact 1-ABE for
DFA and NFA with secret keys of size O(Q) and ciphertexts of size O(N).

14

Discussion. Prior to our work, there have been constructions of ABE for DFA based on pair-
ing [Wat12,Att14,Att16,AC17,GWW19,AMY19b] and ABE for NFA based on LWE [AMY19a].
However, no previous scheme achieves adaptive security unless based on q-type assumptions [Att14,
Att16]. The work of [BL15] constructed ABE for DFA, and that of [AFS18] for random access
machines, both based on LWE, but they only support inputs of bounded length, giving up the
important advantage of uniform computation of handling unbounded-length inputs. There are also
constructions of ABE (and even the stronger generalization, functional encryption) for Turing
machines [GKP+13b,AS16,AM18,KNTY19] based on strong primitives such as multilinear map,
extractable witness encryption, and indistinguishability obfuscation. However, these primitives are
non-standard and currently not well-understood.

In terms of techniques, our work is most related to previous pairing-based ABE for DFA, in
particular, the recent construction based on k-Lin [GWW19]. These ABE schemes for DFA use a
linear secret-sharing scheme for DFA first proposed in [Wat12], and combining the secret key and
ciphertext produces a secret-sharing in the exponent, which reveals the secret if and only if the DFA
computation is accepting. Proving (even selective) security is complicated. Roughly speaking, the
work of [GWW19] relies on an entropy propagation technique to trace the DFA computation and
propagate a few random masks “down” the computation path, with which they can argue that secret
information related to states that are backward reachable from the final accepting states is hidden.
The technique is implemented using the “nested two-slot” dual system encryption [CGKW18,
HKS15,LW10,LW11,OT12,Wat09] combined with a combinatorial mechanism for propagation.

Our AKGS is a generalization of Waters’ secret-sharing scheme to L and NL, and the optimized
version for DFA is identical to Waters’ secret-sharing scheme. Furthermore, our 1-ABE scheme from
AKGS and IPFE is more modular. In particular, our proof (similar to our 1-ABE for non-uniform
computation) does not reason about or trace the computation, and simply relies on the structure
of AKGS. Using IPFE enables us to design sophisticated sequences of hybrids without getting lost
in the algebra, as IPFE helps separating the logic of changes in different hybrids from how to
implement the changes. For instance, we can easily manage multiple slots in the vectors encoded
in IPFE for holding temporary values and generating pseudorandomness.

3 Preliminaries

3.1 Notational Conventions

Let λ be the security parameter that runs through N, the set of natural numbers. Except in the
definitions, we suppress the security parameter for convenience. A function ε : N→ R is negligible
if ε(λ) = O(λ−k) as λ→∞ for all k ∈ N. Throughout the paper, let p be a prime number.

Efficient algorithms in the schemes are always probabilistic polynomial-time (PPT) Turing
machines. We stress that the running time is polynomial in the total length of its input, not just
the security parameter. Efficient adversaries are families of polynomial-sized probabilistic interactive
circuits. Adversaries always and only receive the security parameter in unary as its input, so its
size (thus running time) is polynomial in the security parameter.

Let Exp be an interactive experiment that interacts with an adversary, varies by the security
parameter and has binary outcome (we refer to such object as “experiments” or “hybrids” there-
after) and let A be some adversary. We define “ExpA(1λ) → 1” to be the event that the outcome
of running Exp with A and security parameter λ is 1. Let Exp0,Exp1 be two experiments. The

15

distinguishing advantage of A against Exp0,Exp1 is defined as

AdvA
Exp0,Exp1(λ) = Pr[ExpA,0(1λ)→ 1]− Pr[ExpA,1(1λ)→ 1].

We write Exp0 ≈ Exp1 if they are computationally indistinguishable (or simply indistinguishable):
For all efficient adversary A, its distinguishing advantage against them is negligible. We write
Exp0 ≈s Exp1 if they are statistically indistinguishable: For all (even unbounded) adversary A, its
distinguishing advantage against them is negligible. We write Exp0 ≡ Exp1 if they are identically
distributed (or simply identical): For all (even unbounded) adversaryA, its distinguishing advantage
against them is 0.

The same notations can be used for sequences of distributions. Let D0 = {D0
λ}λ∈N, D1 =

{D1
λ}λ∈N be two sequences of distributions indexed by the security parameter. ExpA,b(1λ) works

by sampling x
$← Db

λ, running A(1λ, x), and using the output bit of A as the outcome. We write
D0 ≈ D1 (resp. D0 ≈s D1, D0 ≡ D1) if Exp0 ≈ Exp1 (resp. Exp0 ≈s Exp1, Exp0 ≡ Exp1).

Sets and Indexing. For m,n ∈ N, denote by [m..n] the set {m, . . . , n} (when m > n, this is the
empty set) and [n] the set [1..n]. Let Zp be the finite field of integers modulo p. We use I, s to
denote finite sets of indices from some index universe specified in context.

In this paper, objects might be indexed with many indices. To avoid confusion, we always write
vectors and matrices in boldface. To index into a vector or a matrix, we write v[i] or A[i, j]. In
contrast, to index into some collection of objects that is not regarded as a vector or a matrix, we
use subscripts or superscripts. As an example, the notation vt represents a vector, not a component
of some vector. If t runs through [k], this means there are k vectors, v1, . . . ,vk. If the k objects are
instead scalars, we will write v1, . . . , vk.

For ease of exposition, we might use non-integer indices for vectors. Let S be any set, we write
SI for the set of vectors whose entries are in S and indexed by I, i.e., SI = {(v[i])i∈I |v[i] ∈ S}.
For example, let I = [n] and S = Zp, then Z[n]

p is just Znp . Suppose s1, s2 are two index sets with
s1 ⊆ s2. For any vector v ∈ Zs1

p , we write u = v|s2 for its zero-extension into Zs2
p , i.e., u ∈ Zs2

p and

u[i] =

{
v[i], i ∈ s1;

0, otherwise.

Conversely, for any vector v ∈ Zs2
p , we write u = v|s1 for its canonical projection onto Zs1

p , i.e.,
u ∈ Zs1

p and u[i] = v[i] for i ∈ s1. Lastly, let u,v ∈ Zsp , denote by 〈u,v〉 their inner product, i.e.,∑
i∈s u[i]v[i].
Similarly, non-integer indices can be used for matrices. Let S be a set and I1, I2 two index sets,

we write SI1×I2 for the set of matrices whose entries are in S and indexed by I1 in the row and I2

in the column. Matrix multiplication and multiplication between matrices and vectors take their
natural semantics so that the inner (common) index set is summed over. For example, a matrix
M ∈ ZI1×I2p can multiply a vector in ZI2p to the left yielding a vector in ZI1p and any matrix in

ZI2×I3p to the left yielding a matrix in ZI1×I3p .
We use 0I (resp. 0I1×I2) to represent the zero vector (resp. matrix) indexed by I (resp. I1 and

I2), and 1I for the vector whose entries are indexed by I and are all 1. The index sets I and I1, I2

can be suppressed if they are clear from the context.
To make transposition of vectors meaningful, we equate SI with SI×{0} and S with S{0} (here

{0} can be any singleton set). For example, suppose u ∈ ZI1p ,v ∈ ZI2p and M ∈ ZI1×I2p , then u,v
are also matrices of shape I1 × {0} and I2 × {0}, respectively. The expression uTMv is a chained
multiplication of matrices of shapes {0} × I1, I1 × I2, I2 × {0}, so the value of the expression is a

16

matrix in Z{0}×{0}p , which is just a Zp element, the same as in the case where u,v,M are vectors
and matrices indexed by integers.

Tensor Product. Let v1 ∈ Zs1
p and v2 ∈ Zs2

p be two vectors, their tensor product v = v1 ⊗ v2 is a
vector in Zs1×s2

p (not a matrix) with entries defined by v[(s1, s2)] = v1[s1]v2[s2]. For two matrices

M1 ∈ ZI1×I
′
1

p and M2 ∈ ZI2×I
′
2

p , their tensor product M = M1 ⊗M2 is a matrix in Z(I1×I2)×(I′1×I′2)
p

with entries defined by M[(i1, i2), (j1, j2)] = M1[i1, j1]M2[i2, j2].

Currying. Currying is the procedure of partially applying a function or specifying part of the
indices of a vector/matrix, which yields another function with fewer arguments or another vec-
tor/matrix with fewer indices. We use the usual syntax for evaluating a function or indexing
into a vector/matrix, except that unspecified variables are represented by “ ”. For example, let

M ∈ Z([A]×[B])×([C]×[D])
p and a ∈ [A], d ∈ [D], then M[(a,), (, d)] is a matrix N ∈ Z[B]×[C]

p such
that N[b, c] = M[(a, b), (c, d)] for all b ∈ [B], c ∈ [C].

Coefficient Vector. An affine function f : ZIp → Zp is conveniently associated with its coefficient
vector f ∈ Zsp (written as the same letter in boldface) for s = {const} ∪ {coefi | i ∈ I} such that

f(x) = f [const] +
∑
i∈I

f [coefi]x[i].

3.2 Bilinear Pairing and Matrix Diffie-Hellman Assumption

Throughout the paper, we use a sequence of bilinear pairing groups

G = {(Gλ,1, Gλ,2, Gλ,T, gλ,1, gλ,2, eλ)}λ∈N,

where Gλ,1, Gλ,2, Gλ,T are groups of prime order p = p(λ), and Gλ,1 (resp. Gλ,2) is generated by
gλ,1 (resp. gλ,2). The maps eλ : Gλ,1 ×Gλ,2 → Gλ,T are

• bilinear: eλ(gaλ,1, g
b
λ,2) =

(
eλ(gλ,1, gλ,2)

)ab
for all a, b; and

• non-degenerate: eλ(gλ,1, gλ,2) generates Gλ,T.

Implicitly, we set gλ,T = e(gλ,1, gλ,2). We require the group operations as well as the bilinear maps
be efficiently computable.

Bracket Notation. Fix a security parameter, for i = 1, 2,T, we write [[A]]i for gAλ,i, where the
exponentiation is element-wise. When bracket notation is used, group operation is written addi-
tively, so [[A + B]]i = [[A]]i + [[B]]i for matrices A,B. Pairing operation is written multiplicatively
so that [[A]]1[[B]]2 = [[AB]]T. Furthermore, numbers can always operate with group elements, e.g.,
[[A]]1B = [[AB]]1.

Matrix Diffie-Hellman Assumption. In this work, we rely on the MDDH assumptions defined
in [EHK+13].

Definition 1 (MDDHq
k,` [EHK+13]). Let k ≥ 1 be an integer constant and ` = `(λ), q = q(λ) some

polynomials. For a sequence of pairing groups G of order p(λ), MDDHq
k,` holds in Gi (i = 1, 2,T) if

{([[A]]i, [[S
TA]]i)}λ∈N ≈ {([[A]]i, [[C

T]]i)}λ∈N for A
$← Zk×`(λ)

p(λ) ,S
$← Zk×q(λ)

p(λ) ,C
$← Z`(λ)×q(λ)

p(λ) .

17

When ` is omitted, it is implicit that `(λ) = k+1, and when q is omitted, it is implicit that q(λ) = 1.
It is known that the k-Lin assumption implies MDDHk, which will be the main assumption we base
our schemes on. Moreover, MDDHk implies MDDHq

k,` for any `, q:

Lemma 2 ([EHK+13]). For any polynomial ` = `(λ) and q = q(λ), the MDDHq
k,` assumption in

Gi (i = 1, 2,T) is reducible to MDDHk with a multiplicative security loss min{`, q} plus an additive
security loss O(1/p).

We choose to present more complex schemes using the SXDH assumption (DDH assumption in
both G1, G2).

Definition 3 (DDH). For a sequence of pairing groups G of order p(λ), DDH holds in Gi (i =
1, 2,T) if {[[a, b, ab]]i}λ∈N ≈ {[[a, b, c]]i}λ∈N for a, b, c

$← Zp(λ).

Remarks.Remarks. The above definition is DDH with respect to the fixed generator and MDDH1 is DDH
with respect to a random generator. The latter is implied by the former [EHK+13], and the recent
work of [BMZ19] separates the two in the generic group model. Our schemes do not rely on the
generator being fixed (they generalize to MDDHk), yet fixing the generator helps focusing on the
high-level ideas.

3.3 Attribute-Based Encryption

Definition 4. LetM = {Mλ}λ∈N be a sequence of message sets. Let P = {Pλ}λ∈N be a sequence of
families of predicates, where Pλ = {P : XP × YP → {0, 1}}. An attribute-based encryption (ABE)
scheme for message space M and predicate space P consists of 4 efficient algorithms:

• Setup(1λ, P ∈ Pλ) generates a pair of master public/secret key (mpk,msk).

• KeyGen(1λ,msk, y ∈ YP) generates a secret key sky associated with y.

• Enc(1λ,mpk, x ∈ XP , g ∈Mλ) generates a ciphertext ctx,g for g associated with x.

• Dec(1λ, sk, ct) outputs either ⊥ or a message in Mλ.

Correctness requires that for all λ ∈ N, all P ∈ Pλ, g ∈ Mλ, and all y ∈ YP , x ∈ XP such that
P (x, y) = 1,

Pr

(mpk,msk)
$← Setup(1λ, P)

sk
$← KeyGen(1λ,msk, y)

ct
$← Enc(1λ,mpk, x, g)

: Dec(1λ, sk, ct) = g

 = 1.

The basic security requirement of an ABE scheme is IND-CPA security, which stipulates that no
information about the message can be inferred as long as each individual secret key the adversary
receives does not allow decryption.

Definition 5 (IND-CPA for ABE). Let (Setup,KeyGen,Enc,Dec) be an ABE for message space
M and predicate space P. The scheme is IND-CPA secure if Exp0

CPA ≈ Exp1
CPA, where ExpbCPA for

b ∈ {0, 1} is defined as follows:

• Setup. Run the adversary A(1λ) and receive a predicate P ∈ Pλ from it. Run (mpk,msk)
$←

Setup(1λ, P) and return mpk to A.

18

• Query I. Repeat the following for arbitrarily many rounds determined by A: In each round,
A submits yq ∈ YP for a secret key. Upon this query, run skq

$← KeyGen(1λ,msk, yq) and
return skq to A.

• Challenge. A submits a challenge attribute x ∈ XP and two messages g0, g1 ∈ Mλ. Run
ct

$← Enc(1λ,mpk, x, gb) and return ct to A.

• Query II. Same as Query I.

• Guess. A outputs a bit b′. Suppose A makes Q key queries in total. The outcome of the
experiment is b′ if P (x, yq) = 0 for all q ∈ [Q]. Otherwise, the outcome is 0.

3.4 Function-Hiding Slotted Inner-Product Functional Encryption

In this paper, we rely on a hybrid variant between secret-key and public-key inner-product functional
encryption (IPFE) schemes, called slotted IPFE [LV16,Lin17]. Here, the index set s of vectors is
partitioned into two subsets, spub and spriv, referred to as the public/private slot, respectively. Like
in a secret-key IPFE, using the master secret key, one can generate ciphertexts and keys encoding
any vectors. In addition, similar to a public-key IPFE, using the master public key, one can generate
ciphertexts, however, only for vectors u with values set to zero in the private slot (u|spriv = 0). In
other words, master public key allows for encrypting into the public slot only.

We also incorporate the property that the scheme encodes vectors and inner products in the
exponent of pairing groups into the definition. As we shall see later, pairing-based slotted IPFE
allows us to employ techniques akin to dual system encryption [Wat09,LW10,Att16].

Definition 6 (pairing-based slotted IPFE). Let G be a sequence of pairing groups of order p(λ).
A slotted inner-product functional encryption (IPFE) scheme based on G consists of 5 efficient
algorithms:

• Setup(1λ, spub, spriv) takes as input two disjoint index sets, the public slot spub and the private
slot spriv, and outputs a pair of master public key and master secret key (mpk,msk). The whole
index set s is spub ∪ spriv.

• KeyGen(1λ,msk, [[v]]2) generates a secret key skv for v ∈ Zsp(λ).

• Enc(1λ,msk, [[u]]1) generates a ciphertext ctu for u ∈ Zsp(λ) using the master secret key.

• Dec(1λ, skv, ctu) is supposed to compute [[〈u,v〉]]T.

• SlotEnc(1λ,mpk, [[u]]1) generates a ciphertext ct for u|s when given input u ∈ Zspub

p(λ) using the
master public key.

Decryption correctness requires that for all λ ∈ N, all index set s, and all vectors u,v ∈ Zsp(λ),

Pr

msk
$← Setup(1λ,s)

sk
$← KeyGen(1λ,msk, [[v]]2)

ct
$← Enc(1λ,msk, [[u]]1)

: Dec(1λ, sk, ct) = [[〈u,v〉]]T

 = 1.

19

Slot-mode correctness requires that for all λ ∈ N, all disjoint index sets spub, spriv, and all vector

u ∈ Zspub

p(λ) , the following distributions should be identical:{
(mpk,msk)

$← Setup(1λ,spub,spriv)

ct
$← Enc(1λ,msk, [[u|s]]1)

: (mpk,msk, ct)

}
,{

(mpk,msk)
$← Setup(1λ,spub,spriv)

ct
$← SlotEnc(1λ,mpk, [[u]]1)

: (mpk,msk, ct)

}
.

Slotted IPFE generalizes both secret-key and public-key IPFEs: A secret-key IPFE can be obtained
by setting spub = ∅ and spriv = s; a public-key IPFE can be obtained by setting spub = s and
spriv = ∅.

We now define the adaptive function-hiding property.

Definition 7 (function-hiding slotted IPFE). Let (Setup,KeyGen,Enc,Dec,SlotEnc) be a slotted
IPFE. The scheme is function-hiding if Exp0

FH ≈ Exp1
FH, where ExpbFH for b ∈ {0, 1} is defined as

follows:

• Setup. Run the adversary A(1λ) and receive two disjoint index sets spub, spriv from A. Let
s = spub ∪ spriv. Run (mpk,msk)

$← Setup(1λ, spub, spriv) and return mpk to A.

• Challenge. Repeat the following for arbitrarily many rounds determined byA: In each round,
A has 2 options.

– A can submit [[v0
j]]2, [[v

1
j]]2 for a secret key, where v0

j ,v
1
j ∈ Zsp . Upon this query, run

skj
$← KeyGen(1λ,msk, [[vbj]]2) and return skj to A.

– A can submit [[u0
i]]1, [[u

1
i]]1 for a ciphertext, where u0

i ,u
1
i ∈ Zsp . Upon this query, run

cti
$← Enc(1λ,msk, [[ubi]]1) and return cti to A.

• Guess. A outputs a bit b′. The outcome is b′ if v0
j |spub

= v1
j |spub

for all j and 〈u0
i ,v

0
j 〉 =

〈u1
i ,v

1
j 〉 for all i, j. Otherwise, the outcome is 0.

Lemma 8 ([ALS16,Wee17,LV16,Lin17]). Let G be a sequence of pairing groups and k ≥ 1 an
integer constant. If MDDHk holds in both G1, G2, then there is an (adaptively) function-hiding
slotted IPFE scheme based on G.

We present the construction in Appendix A, which is inspired by the selectively secure slotted IPFE
scheme from SXDH in [LV16,Lin17].

4 Computation Models

We will be considering computation models computing arithmetic functions, i.e., functions with
domain ZIp for some prime p and index set I and with codomain Zp. Since we will construct ABE
schemes for certain arithmetic functions, we first associate them with predicates. There are two
natural ways of associating arithmetic functions with predicates — whether or not the output is
zero, and whether or not the output is non-zero.

Definition 9 (zero-test predicates). Let f : ZIp → Zp be a function, define the zero-test predicates
for f as

f6=0 : ZIp → {0, 1},x 7→

{
0, f(x) = 0;

1, f(x) 6= 0;
f=0 : ZIp → {0, 1},x 7→ ¬f6=0(x).

20

4.1 Arithmetic Branching Programs

Arithmetic branching program12 (ABP) is a computation model introduced by Nisan [Nis91] and
later studied in [BG98,IK97,IK00,IK02,IW14]. We focus on the variant over Zp in this paper.

Definition 10. An arithmetic branching program (ABP) over ZIp is a weighted directed acyclic
graph (V,E,w, s, t) with two distinguished vertices, where V is the set of vertices, E is the set of
edges, w : E → (ZIp → Zp) specifies an affine weight function for each edge, and s, t ∈ V are the
distinguished vertices. The in-degree of s and the out-degree of t are 0. Such a program computes
a function f : ZIp → Zp defined by

f(x) =
∑

s-t path
e1···ei

i∏
j=1

w(ej)(x).

The size of the ABP is |V |, the number of vertices. Lastly, denote by ABP the class of all ABPs:

ABP =
{
f
∣∣ f is an ABP over ZIp for some prime p and index set I

}
.

When there is no ambiguity, we use f to represent both the ABP and the function it computes,
and ABP both the class of all ABPs and the class of all functions computed by some ABP.

ABP as Restricted Multiplication. Alternatively, one can think of an ABP as a straight-line
program with addition and restricted multiplication where one multiplicand must be affine in the
input. Let f = (V,E,w, s, t) be some ABP of size m. Let s = v0, v1, . . . , vm−1 = t be the vertices
sorted topologically. The function f(x) can be computed by the following recurrence:

y0 = 1, yj =
∑

(vi,vj)∈E

w(vi, vj)(x) · yi, f(x) = ym−1.

Note that in the recurrence relation, we have i < j by the sorting.

ABP as Determinant. It is known [IK97,IK02] that one can compute an ABP by computing the
determinant of a special matrix:

Lemma 11 (Lemma 1 in [IK02]). Let f = (V,E,w, s, t) be an ABP of size m and s = v0, v1, . . . ,
vm−1 = t be sorted topologically. Let M be an (m− 1)× (m− 1) matrix whose entries are

M[i+ 1, j] =


0, i > j;

−1, i = j;

0, i < j, (vi, vj) /∈ E;

w(vi, vj)(x), i < j, (vi, vj) ∈ E.

Then the entries of M are affine in x and f(x) = det M.

12The model is also known as algebraic branching programs or mod-p counting branching programs, though
the precise definitions vary.

21

4.2 Turing Machines

The other computation model we consider in this work is Turing machines with a read-only input
tape and a read-write work tape. This type of Turing machine is used to define space-bounded
complexity classes of decision problems, and in this work, we construct an ABE scheme for uniform
logspace predicates. One tricky issue with handling Turing machines is that the time and space
complexity of a Turing machine is uncomputable. However, our ABE construction can only handle
computation with polynomial time complexity and logarithmic space complexity. Below we define
time/space bounded computation of a Turing machine. Correspondingly, in our ABE scheme, the
attribute specifies, in addition to an input to the Turing machine, upper bounds on the concrete time
complexity T and space complexity S, and decryption succeeds if and only if the machine accepts
the input within this time/space bound. We will also confine ourselves to the binary alphabet. The
definition below captures these features explicitly.

Definition 12 (Turing machine & time/space bounded computation). A (deterministic) Turing
machine (over {0, 1}) is a triplet M = (Q,yacc, δ), where Q ≥ 1 is the number of states (we use
[Q] as the set of states and 1 as the initial state), yacc ∈ {0, 1}

Q indicates whether each state is
accepting, and

δ : [Q]× {0, 1} × {0, 1} → [Q]× {0, 1} × {0,±1} × {0,±1},
(q, x, w) 7→ (q′, w′,∆i,∆j)

is the state transition function, which, given the current state q, the symbol x on the input tape
under scan, and the symbol w on the work tape under scan, specifies the new state q′, the symbol
w′ overwriting w, the direction ∆i to which the input tape pointer moves, and the direction ∆j to
which the work tape pointer moves. The machine is required to hang (instead of halting) once it
reaches an accepting state, i.e., for all q ∈ [Q] such that yacc[q] = 1 and all x,w ∈ {0, 1}, it holds
that δ(q, x, w) = (q, w, 0, 0).

For input length N ≥ 1 and space complexity bound S ≥ 1, the set of internal configurations of
M is

CM,N,S = [N]× [S]× {0, 1}S × [Q],

where (i, j,W, q) ∈ CM,N,S specifies the input tape pointer i ∈ [N], the work tape pointer j ∈ [S],

the content of the work tape W ∈ {0, 1}S and the machine state q ∈ [Q].
For any bit-string x ∈ {0, 1}N for N ≥ 1 and time/space complexity bounds T, S ≥ 1, the

machine M accepts x within time T and space S if there exists a sequence of internal configurations
(computation path of T steps) c0, . . . , cT ∈ CM,N,S with ct = (it, jt,Wt, qt) such that

i0 = 1, j0 = 1, W0 = 0S , q0 = 1 (initial configuration);

for 0 ≤ t < T :

{
δ(qt,x[it],Wt[jt])

Wt+1[j]

= (qt+1,Wt+1[jt], it+1 − it, jt+1 − jt),
= Wt[j] for all j 6= jt (valid transitions);

yacc[qT] = 1 (accepting).

Denote by M |N,T,S the function {0, 1}N → {0, 1} mapping x to whether M accepts x in time T
and space S. Define TM = {M |M is a Turing machine} to be the set of all Turing machines.

Remarks.Remarks. The above definition disallows moving off the input/work tape. For example, if δ specifies
moving the input tape pointer to the left when it is already at the leftmost position, there is no
valid next internal configuration.

22

We can avoid the problem of moving off the input tape by encoding the input string ab · · · cd
as 1a0b0 · · · 0c0d1. Here, the 1’s at the ends indicate moving to one direction (the last direction
to which the input tape pointer moved, or left initially) should be avoided, and the interleaving
0’s indicate that both directions are allowed. The machine uses 2 additional bits in its state to
remember

• whether it is reading an indicator bit or an input bit (initially “indicator”), and

• to which direction the input tape pointer last moved (initially “left”).

The machine can maintain those bits and avoid moving off the input tape accordingly.

We can also eliminate the problem of moving off the work tape to the left by encoding ab · · · cd
on the work tape as 1a0b0 · · · 0c0d000 · · · , where the leading 1 indicates moving to the left should
be avoided, and the interleaving 0’s indicate both directions are allowed. The machine uses one
additional bit in its state and avoids moving off the work tape to the left accordingly.

The problem of moving off the work tape to the right is undetectable by the machine, and this
is intended. When the space bound is violated, the input is silently rejected.

Relations Among Computation Models. A Boolean (resp. arithmetic) formula can be con-
verted to a Boolean (resp. arithmetic) branching program in linear time, and a Boolean branching
program (BP) can be trivially converted into an ABP. Therefore, ABP is a model that generalizes
all the three without degrade in efficiency. Moreover, if a non-deterministic BP is unambiguous (i.e.,
there is at most one accepting path), it can be trivially converted to an ABP; otherwise, it can be
approximated by an ABP of the same size with random weights. Lastly, a family of polynomial-sized
ABPs can decide languages in NL/poly [BG98]. Note that this does not mean ABE for ABP trivially
implies ABE for NL. In the former, each secret key is associated with a specific ABP instance thus
only works for a specific input length, whereas in the latter, each secret key is associated with a
Turing machine and can work for any input length.

5 Arithmetic Key Garbling Scheme

Arithmetic key garbling scheme (AKGS) is an information-theoretic primitive related to random-
ized encodings [AIK11] and partial garbling schemes [IW14]. It is the information-theoretic core
in our construction of one-key one-ciphertext ABE (more precisely 1-ABE constructed in Sec-
tion 6.2). Given a function f : ZIp → Zp and two secrets α, β ∈ Zp, an AKGS produces label

functions L1, . . . , Lm : ZIp → Zp that are affine in x. For any x, one can compute αf(x) + β from
L1(x), . . . , Lm(x) together with f and x, while all other information about α, β are hidden.

Definition 13 (AKGS, adopted from Definition 1 in [IW14]). An arithmetic key garbling scheme
(AKGS) for a function class F = {f}, where f : ZIp → Zp for some p, I specified by f , consists of
two efficient algorithms:

• Garble(f ∈ F , α ∈ Zp, β ∈ Zp) is randomized and outputs m affine functions L1, . . . , Lm :
ZIp → Zp (called label functions, which specifies how input is encoded as labels). Pragmatically,
it outputs the coefficient vectors L1, . . . ,Lm.

• Eval(f ∈ F ,x ∈ ZIp , `1 ∈ Zp, . . . , `m ∈ Zp) is deterministic and outputs a value in Zp (the input
`1, . . . , `m are called labels, which are supposed to be the values of the label functions at x).

23

Correctness requires that for all f : ZIp → Zp ∈ F , α, β ∈ Zp,x ∈ ZIp ,

Pr

[
(L1, . . . ,Lm)

$← Garble(f, α, β)

`j ← Lj(x) for j ∈ [m]
: Eval(f,x, `1, . . . , `m) = αf(x) + β

]
= 1.

We also require that the scheme have deterministic shape, meaning that m is determined solely by
f , independent of α, β and the randomness in Garble. The number of label functions, m, is called
the garbling size of f under this scheme.

Definition 14 (linear AKGS). An AKGS (Garble,Eval) for F is linear if the following conditions
hold:

• Garble(f, α, β) uses a uniformly random vector r
$← Zm′p as its randomness, where m′ is

determined solely by f , independent of α, β.

• The coefficient vectors L1, . . . ,Lm produced by Garble(f, α, β; r) are linear in (α, β, r).

• Eval(f,x, `1, . . . , `m) is linear in (`1, . . . , `m).

Later in this paper, AKGS refers to linear AKGS by default.

5.1 Security Notions of AKGS

The basic security notion of AKGS requires the existence of an efficient simulator that draws a
sample from the real labels’ distribution given f,x, αf(x) + β. We emphasize, as it’s the same case
in [IW14], that AKGS does not hide x and hides all other information about α, β except the value
αf(x) + β.

Definition 15 ((usual) simulation security, Definition 1 in [IW14]). An AKGS (Garble,Eval) for F
is secure if there exists an efficient algorithm Sim such that for all f : ZIp → Zp ∈ F , α, β ∈ Zp,x ∈
ZIp , the following distributions are identical:{

(L1, . . . ,Lm)
$← Garble(f, α, β)

`j ← Lj(x) for j ∈ [m]
: (`1, . . . , `m)

}
,

{ (`1, . . . , `m)
$← Sim(f,x, αf(x) + β) : (`1, . . . , `m)}.

As discussed in Section 2.1, the usual simulation security suffices for selective (or semi-adaptive)
security. To achieve adaptive security, we need the following stronger property.

Definition 16 (piecewise security). An AKGS (Garble,Eval) for F is piecewise secure if the fol-
lowing conditions hold:

• The first label is reversely sampleable from the other labels together with f and x. This
reconstruction is perfect even given all the other label functions. Formally, there exists an ef-
ficient algorithm RevSamp such that for all f : ZIp → Zp ∈ F , α, β ∈ Zp,x ∈ ZIp , the following
distributions are identical:{

(L1, . . . ,Lm)
$← Garble(f, α, β)

`1 ← L1(x)
: (`1,L2, . . . ,Lm)

}
,

(L1, . . . ,Lm)
$← Garble(f, α, β)

`j ← Lj(x) for j ∈ [m], j > 1

`1
$← RevSamp(f,x, αf(x) + β, `2, . . . , `m)

: (`1,L2, . . . ,Lm)

 .

24

• For the other labels, each is marginally random even given all the label functions after it.
Formally, this means for all f : ZIp → Zp ∈ F , α, β ∈ Zp,x ∈ ZIp and all j ∈ [m], j > 1, the
following distributions are identical:{

(L1, . . . ,Lm)
$← Garble(f, α, β)

`j ← Lj(x)
: (`j ,Lj+1, . . . ,Lm)

}
,{

(L1, . . . ,Lm)
$← Garble(f, α, β)

`j
$← Zp

: (`j ,Lj+1, . . . ,Lm)

}
.

Lemma 17. A piecewise secure AKGS (Garble,Eval) for some function class F is also secure.

Proof.Proof. Assuming the AKGS is piecewise secure, we let the simulator Sim(f,x, γ) sample `j
$← Zp

for 1 < j ≤ m, reversely sample `1
$← RevSamp(f,x, γ, `2, . . . , `m), and output (`1, . . . , `m). It is

readily verified that Sim efficiently and perfectly simulates the labels. Therefore, the AKGS is also
secure. �

Special Piecewise Security. We identify a special structural form of AKGS, referred to as special
piecewise security. It is equivalent to piecewise security, and has the advantage of being easier to
verify. In particular, all AKGS schemes considered in this work have this form.

Definition 18. An AKGS (Garble,Eval) for F is special piecewise secure if it has the following
special form:

• For all f : ZIp → Zp in F and all x ∈ ZIp , Eval(f,x,

`1
↓
1,

`2
↓
0, . . . ,

`m
↓
0) 6= 0.

• For all f : ZIp → Zp ∈ F , α, β ∈ Zp, let r
$← Zm′p be the randomness Garble(f, α, β) uses. For

all j ∈ [m], j > 1, the label function Lj produced by Garble(f, α, β; r) can be written as

Lj(x) = kjr[j − 1] + L′j(x;α, β, r[≥ j]),

where kj ∈ Zp is a non-zero constant (not depending on x, α, β, r) and L′j is an affine function
of x whose coefficient vector is linear in (α, β, r[j], r[j + 1], . . .). The component r[j − 1] is
called the randomizer of Lj and `j.

We note that the first requirement of special piecewise security, on top of Eval being linear in the
labels (always required as a linear AKGS), simply says the coefficient of `1 is always non-zero. An
AKGS with the special form is clearly piecewise secure.

Lemma 19. A special piecewise secure AKGS (Garble,Eval) for some function class F is also
piecewise secure. Moreover, the RevSamp algorithm (required in piecewise security) obtained for
a special piecewise secure AKGS is linear in γ, `2, . . . , `m and perfectly recovers `1 even if the
randomness of Garble is not uniformly sampled.

Proof.Proof. Assuming the AKGS is special piecewise secure, we first show that the first label is reversely
sampleable. Since Eval is linear in the labels, we have

Eval(f,x, `1, `2, . . . , `m) = `1Eval(f,x, 1, 0, . . . , 0) + Eval(f,x, 0, `2, . . . , `m).

Define the reverse sampling algorithm as

RevSamp(f,x, γ, `2, . . . , `m) =
(
Eval(f,x, 1, 0, . . . , 0)

)−1(
γ − Eval(f,x, 0, `2, . . . , `m)

)
,

25

which is clearly efficient and linear in γ, `2, . . . , `m. Note that given f,x, γ = αf(x) + β, `2, . . . , `m,
the first label `1 is uniquely determined due to the requirement of Eval in special piecewise security,
and the algorithm RevSamp defined above computes this value. Since `1 is uniquely determined, it
does not matter if the label functions L2, . . . ,Lm are revealed, nor if the garbling is not generated
using uniform randomness.

For marginal randomness property, for all 1 < j ≤ m, given the label functions Lj+1, . . . ,Lm,
the label `j = kjr[j − 1] + L′j(x) is uniformly random since r[j − 1] is a uniformly random value
independent of L′j ,Lj+1, . . . ,Lm. �

A piecewise secure AKGS can be converted into a special piecewise secure one. We present the
proof of the following theorem in Appendix C:

Theorem 20. A piecewise secure AKGS is also special piecewise secure after an appropriate change
of variable for the randomness used by Garble.

6 ABE for ABPs

In this section, we show how to construct a KP-ABE for ABPs in three steps: i) construct a
piecewise secure AKGS for ABPs; ii) build a 1-key 1-ciphertext secure secret-key ABE (1-ABE)
using a piecewise secure AKGS and a function-hiding secret-key IPFE; iii) lift the 1-ABE into a
full-fledged ABE using slotted IPFE.

The first step is specific to the class of predicates for which we want to construct an ABE. The
second and third steps are independent of the predicates as long as all the predicates share the
same domain.

6.1 AKGS for ABPs

Our piecewise secure AKGS for ABPs is a special case of the partial garbling scheme for ABPs
in [IW14], which is in turn built upon randomizing polynomials [IK00,IK02]. In a partial garbling
scheme (PGS), the input of a function f : ZIxp ×ZIzp → Zp is divided into two parts, the public part

x ∈ ZIxp and the private part z ∈ ZIzp . The labels for f with input x, z in a secure PGS contain no
other information about z except the value f(x, z), but might otherwise completely reveal x.

More specifically, our AKGS garbling for computation f(x) with secrets α, β is essentially a
PGS garbling for the computation αf(x) + β, where x is the the public input and α, β are the
private inputs. In this special case (slightly more generally, when the computation has degree 1
in the private inputs), the PGS garbling of [IW14] satisfies the linearity structure and the (usual)
simulation security of AKGS. We further show that it also satisfies the piecewise security.

AKGS and PGS have slightly different syntax. In an AKGS, the label functions Lj ’s are regarded
as affine functions of x with (α, β, r) hardwired, and the coefficient vectors Lj are linear in (α, β, r).
In a PGS, Lj ’s are regarded as affine functions of (x, α, β) with r hardwired, and the coefficient
vectors Lj are affine in r. Below, we recall the PGS for ABPs [IW14] in the syntax of an AKGS.

Construction 21 (AKGS for ABPs [IW14]). Let F = ABP be the class of all ABPs. The AKGS
(Garble,Eval) for F operates as follows: (We inline comments to and explanation of the scheme in
italics.)

• Garble(f, α, β) takes an ABP f ∈ F = ABP and two secrets α, β as input. Suppose f is over
ZIp and of size m, and α, β ∈ Zp. The algorithm computes the matrix M in Lemma 11 (whose

26

determinant is the output of the function) and augments it into an m×m matrix M′:

M
↓

M′ =



∗ ∗ · · · ∗ ∗
−1 ∗ · · · ∗ ∗
−1 · · · ∗ ∗

. . .
...

...
0 −1 ∗

β
0
0
...
0

0 0 · · · 0 −1 α


=

(
M m1

mT
2 α

)
.

Here, the augmented matrix M′ is the matrix for an ABP computing αf(x) + β. It then

samples r
$← Zm−1

p as its randomness, sets N =

(
Im−1 r

0 1

)
, and defines the label functions by

M̂ = M′N =

M Mr + m1

mT
2 mT

2r + α

 =


M

L1(x)
L2(x)

...
Lm−1(x)

0 0 · · · 0 −1 Lm(x)


.

The algorithm collects the coefficient vectors L1, . . . ,Lm of L1, . . . , Lm and returns them.

Note: We show Garble satisfies the required properties of a linear AKGS (Definitions 13
and 14):

– L1, . . . , Lm are affine functions of x:L1, . . . , Lm are affine functions of x: M′ is affine in x and N is constant with respect to
x, therefore, the label functions L1, . . . , Lm (the last column of M′N) are affine in x.

– Shape determinism holds:Shape determinism holds: The garbling size of f is its size as an ABP.

– Garble is linear in (α, β, r),Garble is linear in (α, β, r), i.e., the coefficients of L1, . . . , Lm are linear in (α, β, r): M
is constant with respect to (α, β, r), and r,m1, α are linear in (α, β, r), so Mr + m1 and
Mr + α (hence the coefficients of L1, . . . , Lm−1 and Lm) are linear in (α, β, r).

• Eval(f,x, `1, . . . , `m) takes an ABP f ∈ F = ABP (over ZIp and of size m), an input x ∈ ZIp
and m labels `1, . . . , `m as input. It computes M (with the value of x substituted) in Lemma 11
and sets

M̂ =


M

`1
`2
...

`m−1

0 0 · · · 0 −1 `m


.

The algorithm returns det M̂.

27

Note: We show the correctness of the scheme. Since `j = Lj(x) for all j ∈ [m], the matrix M̂

in Eval is the matrix M̂ in Garble with x plugged into it, and we have

det M̂ = det (M′N) = det M′ det N(
Laplace expansion in

the last column of M′

) = det M′

= α det M + β

(Lemma 11) = αf(x) + β.

Eval is also linear in `1, . . . , `m. This follows by the Laplace expansion of det M̂ in the last
column.

Security. Ishai and Wee [IW14] observed that in Garble in Construction 21, all the possible N’s
form a matrix subgroup

H =

{(
Im−1 r

0 1

) ∣∣∣∣ r ∈ Zm−1
p

}
.

Moreover, the labels are the last column of a uniformly random element from the left coset M′H =
{M′N |N ∈ H}. The (usual) simulation security follows from the observation that each such left
coset has a canonical representative M′′ determined by f,x and αf(x) + β:

M′′ =


M

αf(x) + β
0
...
0

0 0 · · · 0 −1 0


∈M′H.

By the properties of cosets, M′′H = M′H, therefore, given f,x, αf(x) + β, one can sample a
uniformly random element from M′′H = M′H to simulate the labels.

We now proceed to proving the stronger security notions introduced in this work.

Theorem 22. Construction 21 is special piecewise secure.

Proof.Proof. Adopt the notations in Construction 21. We first show that the coefficient of `1 in Eval is
non-zero. Recall that

M
↓

M̂ =



∗ ∗ · · · ∗ ∗
−1 ∗ · · · ∗ ∗
−1 · · · ∗ ∗

. . .
...

...
0 −1 ∗

`1
`2
`3
...

`m−1

0 0 · · · 0 −1 `m


.

Consider the Laplace expansion of det M̂ in the the last column:

Eval(f,x, `1, . . . , `m) = det M̂ = A1`1 +A2`2 + · · ·+Am`m,

28

where Aj is the (j,m)-cofactor of M̂. Observe that by definition, each Aj is solely determined by
(f,x), so the above expansion expresses Eval as a linear function of the labels, and in particular,
the coefficient of `1 is A1 = (−1)1+m(−1)m−1 = 1 6= 0.

Now we show that the label functions are in the special form. Recall that the label functions
are defined by the last column of

M̂ = M′N =



M[1, 1] M[1, 2] · · ·M[1,m− 2] M[1,m− 1] β
−1 M[2, 2] · · ·M[2,m− 2] M[2,m− 1] 0

−1 · · ·M[3,m− 2] M[3,m− 1] 0
. . .

...
...

...
−1 M[m− 1,m− 1] 0

−1 α





1 r[1]
1 r[2]

1 r[3]
. . .

...
1 r[m− 1]

1


.

Computing the label functions L2, . . . , Lm, we get

kj = −1
↓

L′j(x;α, β, r≥j)

↓

for 1 < j < m: Lj(x) = −r[j − 1] +
m−1∑
j′=j

r[j′]M[j, j′],

Lm(x) = −r[m− 1] + α.
↑

km = −1
↑

Lm(x;α, β)

They are in the required special form (the randomizer of Lj is r[j − 1]).
Combining the two, we conclude that Construction 21 is special piecewise secure. �

6.2 1-Key 1-Ciphertext Secure Secret-Key ABE

At the core of our adaptively secure ABE is a construction for the simple case of 1-key 1-ciphertext
secure secret-key ABE — we call it 1-ABE. (For technical reasons, it is more convenient to define
it as a key encapsulation mechanism.) It captures our key ideas for achieving adaptive security
using AKGS and function-hiding IPFE while keeping the ciphertext compact. Below we start with
defining the syntax and security of 1-ABE.

Definition 23. Let G be a sequence of pairing groups of order p(λ). A 1-ABE scheme based on G
has the same syntax as an ABE scheme in Definition 4, except that

• There is no message space M.

• Setup outputs a master secret key msk, without a mpk.

• KeyGen(1λ,msk, y, µ) outputs a secret key sk for policy y that encapsulates a pad µ ∈ Zp(λ).

• Enc(1λ,msk, x) uses msk and outputs a ciphertext ct for attribute x without encrypting a
message.

• Dec(sk, ct) outputs ⊥ or some [[µ′]]T.

• Correctness requires that µ = µ′ if the decapsulation should be successful, i.e., P (x, y) = 1.

Such a scheme is 1-key 1-ciphertext secure (or simply secure) if Exp0
1-sk,1-ct ≈ Exp1

1-sk,1-ct, where

Expb1-sk,1-ct is defined similarly to ExpbCPA in Definition 5:

29

• In Setup, the adversary A chooses a predicate P but does not receive a mpk.

• In Query I/II, when A submits a key query y, sample two random pads µ0, µ1 $← Zp(λ), run

sk
$← KeyGen(1λ,msk, y, µ0), and return (sk, µb) to A.

• In Challenge, when A submits a challenge attribute x, run ct
$← Enc(1λ,msk, x), and return

ct to A.

• In Guess, A outputs a bit b′. The outcome of the experiment is b′ if the adversary makes
only a single key query for some y and P (x, y) = 0. Otherwise, the outcome is 0.

For any function class F (e.g., arithmetic branching programs), we show how to construct a 1-ABE
for the class of zero-test predicates in F (i.e., predicates of form f6=0, f=0 that computes whether
f(x) evaluates to zero or non-zero), using a piecewise secure AKGS for F and a function-hiding
secret-key IPFE scheme.

Construction 24 (1-ABE). We describe the construction for any fixed value of the security pa-
rameter λ and suppress the appearance of λ below for simplicity of notations. Let (Garble,Eval)
be an AKGS for a function class F , G pairing groups of order p, and (IPFE.Setup, IPFE.KeyGen,
IPFE.Enc, IPFE.Dec) a secret-key IPFE based on G. We construct a 1-ABE scheme based on G for
the predicate space P induced by F :

Xn = Znp , Yn = {f6=0, f=0 | f ∈ F , f : Znp → Zp},
P = {Pn : Xn × Yn → {0, 1}, (x, y) 7→ y(x) |n ∈ N}.

The 1-ABE scheme (Setup,KeyGen,Enc,Dec) operates as follows:

• Setup(1n) takes the attribute length in unary (i.e., Pn is encoded as 1n) as input. It gen-
erates an IPFE master secret key msk

$← IPFE.Setup(s1-ABE) for the index set s1-ABE =
{const, coef1, . . . , coefn, sim1, sim?}. The algorithm returns msk as the master secret key.

Note: The positions indexed by const, coef1, . . . , coefn in the secret key encode the coefficient
vectors Lj of the label functions Li produced by garbling f with secrets α, β, and these positions
encode (1,x) in the ciphertext. The positions indexed by sim1, sim? are set to zero by the honest
algorithms, and are only used in the security proof.

• KeyGen(msk, y ∈ Yn, µ ∈ Zp) samples η
$← Zp and garbles the function f underlying y as

follows: {
α

α

← µ, β ← 0, if y = f6=0;

← η, β ← µ, if y = f=0;
(L1, . . . ,Lm)

$← Garble(f, α, β).

It generates an IPFE key iskj
$← IPFE.KeyGen(msk, [[vj]]2) for the following vector vj encoding

each label function Lj :

vector const coefi sim1 sim?

vj Lj [const] Lj [coefi] 0 0

The algorithm returns sky = (y, isk1, . . . , iskm) as the secret key.

30

• Enc(msk,x ∈ Znp) generates an IPFE ciphertext ict
$← IPFE.Enc(msk, [[u]]1) encrypting the

vector u that contains 1,x:

vector const coefi sim1 sim?

u 1 x[i] 0 0

It returns ct = (x, ict) as the ciphertext.

• Dec(sk, ct) parses sk as (y, isk1, . . . , iskm) and ct as (x, ict), and returns ⊥ if y(x) = 0. Other-
wise, it does the following:

for j ∈ [m]: [[`j]]T ← IPFE.Dec(iskj , ict),

[[µ′]]T ←

{
1

f(x)Eval(f,x, [[`1]]T, . . . , [[`m]]T), if y = f6=0;

Eval(f,x, [[`1]]T, . . . , [[`m]]T), if y = f=0.

The algorithm returns [[µ′]]T as the decapsulated pad.

Note: We show the correctness of the scheme. First, by the correctness of IPFE and the
definition of vectors vj ,u, we have `j = 〈u,vj〉 = Lj(x) for all j ∈ [m]. Next, by the linearity
of Eval in `1, . . . , `m, we can evaluate the garbling in the exponent of the target group and
obtain Eval(f,x, `1, . . . , `m) = αf(x)+β in the exponent. In the two cases where decapsulation
should succeed, we have

αf(x) + β =

{
µf(x), if y = f6=0 and f(x) 6= 0;

µ, if y = f=0 and f(x) = 0.

In both cases, the µ′ above equals to µ. Therefore, Dec correctly decapsulates the pad.

Theorem 25. Suppose in Construction 24, the AKGS is piecewise secure and the IPFE scheme
is function-hiding, then the constructed 1-ABE scheme is 1-key 1-ciphertext secure.

Proof.Proof. Let A be any efficient adversary. We want to show that the advantage of A in distinguishing
Exp0

1-sk,1-ct and Exp1
1-sk,1-ct is negligible. Recall that in Expb1-sk,1-ct for b ∈ {0, 1}, the adversary is

allowed to obtain a single key sk for a policy y with µ0 encapsulated, and a single ciphertext ct for
an attribute x, where the policy y and the attribute x are chosen adaptively by A and satisfy that
either y = f=0 and f(x) 6= 0, or y = f6=0 and f(x) = 0. (If these constraints are not satisfied, the
outcome of the experiment is set to 0.) In addition, A receives µb with sk and wants to distinguish
the two experiments.

Since the views of A in Exp0
1-sk,1-ct and Exp1

1-sk,1-ct are identical before A receives (sk, µb), we can
analyze the indistinguishability of these two experiments in two cases:

• Case 1: The ciphertext challenge x appears before the secret key query y.Case 1: The ciphertext challenge x appears before the secret key query y. In this case, adap-
tive security collapses down to selective security. This is because by the time the secret key sk
needs to be generated, the challenge attribute x is already known. The proof then proceeds
in two simple steps: i) By the function-hiding property of IPFE, we can remove the coeffi-
cient vectors Lj of the label functions Lj encoded in iskj , and hardwire directly the labels
`j = Lj(x) in iskj . (Such hardwiring is possible thanks to the fact that sk contains many
IPFE secret keys, which provide sufficient space for embedding `j ’s.) ii) After replacing Lj ’s
with `j ’s, by the (usual) simulation security of AKGS, the hardwired labels {`j}j∈[m] is inde-
pendent of µ0 whenever decapsulation should fail. Since µ0 and µ1 are identically distributed,
the two hybrids are identical.

31

• Case 2: The ciphertext challenge x appears after the secret key query y.Case 2: The ciphertext challenge x appears after the secret key query y. In this case, at the
time sk needs to be generated, the adversary has not chosen the challenge attribute x. As a
result, the above argument breaks down at the step of hardwiring: We can no longer hardwire
the labels {`j = Lj(x)}j∈[m] in sk, as x is not yet known. Nor can we hardwire the labels
in ct, as ct contains only a single IPFE ciphertext ict and does not have enough space for
embedding {`j}j∈[m]. We resolve this by relying on the piecewise security of AKGS. Roughly
speaking, it allows us to gradually switch the coefficient vectors Lj of the label functions Lj
to simulated labels `j

$← Zp via a series of hybrids. Between neighboring hybrids, only 2 label
functions/labels are changed, which can be hardwired in ict.

Below, we first prove security in the simpler Case 1, and then move to the proof of Case 2.

Proof of Case 1.Proof of Case 1. Consider the following hybrids:

• Hybrid Hb0Hybrid Hb0 proceeds identically to Expb1-sk,1-ct, where the vector u encrypted in the IPFE
ciphertext ict (in the ABE ciphertext ct) and the vectors vj encoded in the IPFE secret keys
iskj (in the 1-ABE secret key sk) are described in Figure 1. Note that u appears before vj in
the experiment.

• Hybrid Hb1Hybrid Hb1 proceeds identically to Hb0, except that it sets vj [const] to the desired inner product
of vj with u — the honest labels `j = Lj(x) — and other positions to 0, as described in
Figure 1. Since the inner products 〈u,vj〉 are the same in Hb1 and Hb0, it follows directly from
the function-hiding property of IPFE that these two hybrids are indistinguishable.

• Hybrid Hb2Hybrid Hb2 proceeds identically to Hb1, except that the hardwired labels (`1, . . . , `m) are now
simulated using Sim(f,x, αf(x) + β). By the usual security of AKGS, Hb2 and Hb1 are identi-
cally distributed.

hybrid vector const coefi sim1 sim?

Hb0 ≡ Expb1-sk,1-ct

u 1 x[i] 0 0

vj Lj [const] Lj [coefi] 0 0

Hb1

u 1 x[i] 0 0

vj `j = Lj(x) 0 0 0

Hb2

u 1 x[i] 0 0

vj simulated `j 0 0 0

Simulation in Hb2: (`1, . . . , `m)
$← Sim(f,x, αf(x) + β).

Figure 1: Hybrids in the security proof of 1-ABE for ABPs
for the case where the ciphertext challenge comes
before the secret key query.

We further argue that H0
2 and H1

2 are identically distributed. In these hybrids, the labels are simu-
lated as Sim(f,x, αf(x) + β). In the two cases where decapsulation should fail, we have

αf(x) + β =

{
0, if y = f6=0 and f(x) = 0;

ηf(x) + µ0 (η
$← Zp), if y = f=0 and f(x) 6= 0.

32

In both cases, αf(x) + β is independent of µ0, hence µ0 is a uniform random value independent
of everything else in H0

2 — so is µ1 in H1
2. In addition, everything except µ0, µ1 are identically

distributed in H0
2 and H1

2. Therefore, they are identical.
By a hybrid argument, we conclude that Exp0

1-sk,1-ct ≈ Exp1
1-sk,1-ct conditioned on Case 1.

Proof of Case 2.Proof of Case 2. We prove Exp0
1-sk,1-ct ≈ Exp1

1-sk,1-ct conditioned on Case 2 via a series of hybrids.
The hybrids are logically divided into 3 groups: i) The first few hybrids remove the first label
function, and hardwire the first label that is reversely sampled; ii) The middle hybrids are a loop,
and in each iteration one label function is replaced by a simulated label; iii) In the final hybrid, all
the labels are simulated, and the encapsulated pad µ0 is information-theoretically hidden.

We start with the first few hybrids.

• Hybrid Hb0Hybrid Hb0 proceeds identically to Expb1-sk,1-ct, where the vector u encrypted in the IPFE
ciphertext ict (in the ABE ciphertext ct) and the vectors vj encoded in the IPFE secret keys
iskj (in the ABE secret key sk) are described in Figure 2. Different from Case 1, the vector u
appears after vj in the experiment.

• Hybrid Hb1Hybrid Hb1 proceeds identically to Hb0, except that it removes the coefficients of the first label
function L1 from v1[const],v1[coefi], and hardwires the honest first label `1 = L1(x) in
u[sim1] as described in Figure 2. Since the inner product remains the same as in Hb0, by the
function-hiding property of IPFE, we have that Hb1 and Hb0 are indistinguishable.

• Hybrid Hb2Hybrid Hb2 proceeds identically to Hb1, except that the hardwired first label is now reversely
sampled as

`1
$← RevSamp(f,x, αf(x) + β, `2, . . . , `m),

where `j = Lj(x) for j > 1 are the honest labels. By the reverse sampleability of AKGS
(Definition 16), Hb2 and Hb1 are identically distributed.

Hybrid Hb4Hybrid Hb4 is our final hybrid, which proceeds identically to Hb2, except that for all j > 1, the
coefficient vector Lj of the label function Lj is removed from vj , and a simulated label `j

$← Zp
is hardwired in vj [const], as depicted in Figure 2. Correspondingly, the first label `1 is reversely
sampled using these simulated labels. The hybrid is similar to Hb2 in Case 1, except for the location
where `1 is embedded. However, we cannot move from Hb2 to Hb4 in one shot. Instead, we go through
a loop consisting of Hb3,j,1, . . . ,H

b
3,j,4 for 1 < j ≤ m:

• Hybrid Hb3,j,1Hybrid Hb3,j,1 proceeds identically to Hb2, except that for all j′ s.t. 1 < j′ < j, the coefficient
vector Lj′ of the label function Lj′ is removed from vj′ , and a simulated label `j′

$← Zp
is hardwired in vj′ [const], as described in Figure 3. In Hb3,j,1, `1 is reversely sampled using
simulated `2, . . . , `j−1 and honest `j , . . . , `m.

• Hybrid Hb3,j,2Hybrid Hb3,j,2 proceeds identically to Hb3,j,1, except that it removes the coefficient vector of

the jth label function Lj from vj , and hardwires the honest jth label `j = Lj(x) in u[sim?].
Note that Lj is gone in Hb3,j,2 and the honest label `j is left. The modified vectors vj and u
are described in Figure 3. Since the inner products remain the same, by the function-hiding
property of IPFE, Hb3,j,2 and Hb3,j,1 are indistinguishable.

• Hybrid Hb3,j,3Hybrid Hb3,j,3 proceeds identically to Hb3,j,2, except that the jth label is simulated as `j
$← Zp.

Note that in hybrids Hb3,j,2 and Hb3,j,3, only the coefficient vectors Lj′ of the label functions

33

hybrid vector const coefi sim1 sim?

v1 L1[const] L1[coefi] 0 0

Hb0 ≡ Expb1-sk,1-ct j > 1: vj Lj [const] Lj [coefi] 0 0

u 1 x[i] 0 0

v1 0 0 1 0

Hb1 j > 1: vj Lj [const] Lj [coefi] 0 0

u 1 x[i] `1 = L1(x) 0

v1 0 0 1 0

Hb2 ≡ Hb3,2,1 j > 1: vj Lj [const] Lj [coefi] 0 0

u 1 x[i] `1
$← RevSamp(· · ·) 0

Hb3,2∼m,1∼4 · · · · · ·

v1 0 0 1 0

Hb4 ≡ Hb3,m,4 j > 1: vj `j
$← Zp 0 0 0

u 1 x[i] `1
$← RevSamp(· · ·) 0

Reverse sampling in Hb2,H
b
4: `1

$← RevSamp(f,x, αf(x) + β, `2, . . . , `m).
In Hb2, the labels `j (j > 1) are computed honestly as Lj(x) using IPFE.
In Hb4, they are simulated as random and hardwired in sk.

Figure 2: The first few hybrids and the final hybrid in the security
proof of 1-ABE for ABPs for the case where the ciphertext
challenge comes after the secret key query.

34

hybrid vector const coefi sim1 sim?

v1 0 0 1 0
1 < j′ < j: vj′ `j′

$← Zp 0 0 0

Hb3,j,1 vj Lj [const] Lj [coefi] 0 0

j′ > j: vj′ Lj′ [const] Lj′ [coefi] 0 0

u 1 x[i] `1 0

v1 0 0 1 0
1 < j′ < j: vj′ `j′

$← Zp 0 0 0

Hb3,j,2 vj 0 0 0 1

j′ > j: vj′ Lj′ [const] Lj′ [coefi] 0 0

u 1 x[i] `1 `j = Lj(x)

v1 0 0 1 0
1 < j′ < j: vj′ `j′

$← Zp 0 0 0

Hb3,j,3 vj 0 0 0 1

j′ > j: vj′ Lj′ [const] Lj′ [coefi] 0 0

u 1 x[i] `1 `j
$← Zp

v1 0 0 1 0
Hb3,j,4 1 < j′ < j: vj′ `j′

$← Zp 0 0 0

≡ vj `j
$← Zp 0 0 0

Hb3,j+1,1 j′ > j: vj′ Lj′ [const] Lj′ [coefi] 0 0

u 1 x[i] `1 0

In this iteration, the labels `j′ are...
j′ = 1: simulated as RevSamp(f,x, αf(x) + β, `2, . . . , `m)

and hardwired in ct
1 < j′ < j: simulated as random and hardwired in sk

j′ = j: computed as Lj(x) using IPFE
→ computed as Lj(x) and hardwired in ct
→ simulated as random and hardwired in ct
→ simulated as random and hardwired in sk

j′ > j: computed as Lj′(x) using IPFE

Figure 3: The loop hybrids in the security proof of 1-ABE for
ABPs for the case where the ciphertext challenge
comes after the secret key query.

35

Lj′ for j′ > j appear. For 1 < j′ < j, a simulated label `j′ is hardwired in vj′ [const]. In
both hybrids, the first label `1 can be efficiently computed from `2, . . . , `j−1 (simulated), `j
(honest or simulated) and Lj+1, . . . ,Lm (producing honest labels). Therefore, by the marginal
randomness property of AKGS (Definition 16), Hb3,j,3 and Hb3,j,2 are identically distributed.

• Hybrid Hb3,j,4Hybrid Hb3,j,4 proceeds identically to Hb3,j,3, except that the simulated jth label `j is moved
from u[sim?] to vj [const] as described in Figure 3 (so that u[sim?] is free to be used in the next
iteration of hybrids Hb3,j+1,1 to Hb3,j+1,4). Since the inner products remain the same, by the

function-hiding property of IPFE, Hb3,j,4 and Hb3,j,3 are indistinguishable. In addition, observe

that Hb3,j,4 ≡ Hb3,j+1,1.

Moreover, Hb2 ≡ Hb3,2,1 and Hb4 ≡ Hb3,m,4. Thus, by a hybrid argument, we have Hb2 ≈ Hb4. We further

argue that H0
4 and H1

4 are identically distributed. Observe that in these hybrids, the labels are
simulated as

`j′
$← Zp for j′ = 2, . . . ,m,

`1
$← RevSamp(f,x, αf(x) + β, `2, . . . , `m).

In the two cases where decapsulation should fail, we have

αf(x) + β =

{
0, if y = f6=0 and f(x) = 0;

ηf(x) + µ0 (η
$← Zp), if y = f=0 and f(x) 6= 0.

In both cases, αf(x) + β is independent of µ0, hence µ0 is a uniform random value independent
of everything else in H0

4 — so is µ1 in H1
4. In addition, everything except µ0, µ1 are identically

distributed in H0
4 and H1

4. Therefore, they are identical.
By a hybrid argument, Exp0

1-sk,1-ct ≈ Exp1
1-sk,1-ct conditioned on Case 2. �

6.3 KP-ABE for ABPs

We now lift the 1-ABE scheme to a full-fledged ABE by implementing the ideas discussed in
Section 2.2.

Construction 26 (KP-ABE). We describe the construction for any fixed value of the security
parameter λ and suppress the appearance of λ below for simplicity of notations. Let (Garble,Eval)
be an AKGS for a function class F , G pairing groups of order p such that MDDHk holds in G2,
and (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a slotted IPFE based on G. We construct an
ABE scheme for message space M = GT, the target group of the pairing, and the predicate space
P induced by F :

Xn = Znp , Yn = {f6=0, f=0 | f ∈ F , f : Znp → Zp},
P = {Pn : Xn × Yn → {0, 1}, (x, y) 7→ y(x) |n ∈ N}.

The ABE scheme (Setup,KeyGen,Enc,Dec) operates as follows:

• Setup(1n) takes the attribute length in unary (i.e., Pn is encoded as 1n) as input. It generates
IPFE master public/secret key pair (msk,mpk)

$← IPFE.Setup(spub, spriv) for the following
slots:

spub = {pad, constt, coefti | t ∈ [k], i ∈ [n]},
spriv = {const, coefi, sim1, sim? | i ∈ [n]} (= s1-ABE).

36

It returns (mpk,msk) as the master public/secret key pair.

Note: We explain the names of the indices. For each t ∈ [k], the positions indexed by constt,
coeft1, . . . , coef

t
n encode the coefficient vectors Ltj of the label functions of one garbling in the

secret key, and encrypt a random multiple of (1,x) in the ciphertext. The position indexed by
pad encodes 1 in the secret key and encrypts a random pad h

$← Zp in the ciphertext. The
private slot is reserved for the security proof and values at those indices are set to 0 by the
honest algorithms.

• KeyGen(msk, y ∈ Yn) samples µ
$← Zkp,η

$← Zkp and creates k garblings of the function f un-
derlying y as follows: {

α← µ, β

α← η, β

← 0, if y = f6=0;

← µ, if y = f=0;

for t ∈ [k]: (Lt1, . . . ,L
t
m)← Garble(f,α[t],β[t]; rt).

The randomness vectors r1, . . . , rk for garbling f are independently sampled and written
explicitly. It sets the vector vpad ∈ Zsp to encode the random pads µ, and the vector vj ∈ Zsp
for j ∈ [m] to encode the jth label function in all the k instances of garbling:

vector pad constt coefti in spriv

vpad 1 µ[t] 0
0

vj 0 Ltj [const] Ltj [coefi]

The algorithm then generates IPFE secret keys for them:

iskpad
$← IPFE.KeyGen(msk, [[vpad]]2),

for j ∈ [m]: iskj
$← IPFE.KeyGen(msk, [[vj]]2).

It returns sk = (iskpad, y, isk1, . . . , iskm).

• Enc(mpk,x ∈ Xn, g ∈M) samples a random pad h
$← Zp and random multipliers s

$← Zkp,
and sets the vector u ∈ Zspub

p to encode them as follows:

vector pad constt coefti

u h s[t] s[t]x[i]

The algorithm generates an IPFE ciphertext ict
$← IPFE.SlotEnc(mpk, [[u]]1) and returns ct =

(g + [[h]]T,x, ict).

• Dec(sk, ct) parses sk as (iskpad, y, isk1, . . . , iskm) and ct as ([[z]]T,x, ict). It returns ⊥ if y(x) = 0.
Otherwise, it does the following:

[[z′]]T ← IPFE.Dec(iskpad, ict),

for j ∈ [m]: [[`j]]T ← IPFE.Dec(iskj , ict),

[[µ′]]T ←

{
1

f(x)Eval(f,x, [[`1]]T, . . . , [[`m]]T), if y = f6=0;

Eval(f,x, [[`1]]T, . . . , [[`m]]T), if y = f=0.

37

The algorithm returns [[z]]T + [[µ′]]T − [[z′]]T as the decrypted message.

Note: We show the correctness of the scheme. Consider the random linear combination Lj of
label functions L1

j , . . . , L
k
j with weights s:

for j ∈ [m]: Lj(x) =
∑
t∈[k]

s[t]Ltj(x), Lj =
∑
t∈[k]

s[t]Ltj .

The coefficient vector of Lj is exactly Lj defined above. Furthermore, by the linearity of
Garble, we know (L1, . . . ,Lm) = Garble(f, α, β; r), where α, β, and r are the random linear
combinations (with the same weights s) of the components of α, the components of β, and
the randomness vectors {rt}t∈[k] in the k instances of garbling, i.e.,

α = 〈s,α〉, β = 〈s,β〉, r =
∑
t∈[k]

s[t]rt.

Observe that by the definition of vpad,vj ,u and the correctness of the IPFE scheme,

z′ = 〈u,vpad〉 = h+ 〈s,µ〉 = h+ µ,

for j ∈ [m]: `j = 〈u,vj〉 =
∑
t∈[k]

s[t]Ltj(x) = Lj(x),

where µ = 〈s,µ〉 is the random linear combination of the components of µ with weights s. By
the linearity of Eval in `1, . . . , `m, we can evaluate the garbling in the exponent of the target
group and obtain Eval(f,x, `1, . . . , `m) = αf(x) + β in the exponent. In the two cases where
decryption should succeed, we have

αf(x) + β =

{
αf(x) = µf(x), if y = f6=0 and f(x) 6= 0;

β = µ, if y = f=0 and f(x) = 0.

In both cases, we have µ′ = µ, hence [[z]]T + [[µ′]]T − [[z′]]T = g + [[h]]T + [[µ]]T − [[h+ µ]]T = g,
i.e., Dec correctly recovers the message.

Theorem 27. Suppose in Construction 26, the AKGS is piecewise secure, the MDDHk assumption
holds in G2, and the slotted IPFE is function-hiding, then the construction is a secure ABE scheme.

Proof.Proof. Let A be any efficient adversary. We show that the distinguishing advantage of A against
Exp0

CPA and Exp1
CPA is negligible. Recall that in ExpbCPA, the adversary can receive many secret

keys skq for different policies yq and a ciphertext ct for attribute x and message gb, where {yq}q∈[Q]

and (x, g0, g1) are chosen adaptively by A, subject to the constraint that no individual key should
decrypt the challenge ciphertext, i.e., P (x, yq) = 0 for all q ∈ [Q]. (The output of the experiment
is set to 0, if the constraint is not satisfied.)

We start with the high-level ideas of the proof. Recall that by construction, ct and skq contain
respectively a slotted IPFE ciphertext ict and many IPFE secret keys iskq,pad, {iskq,j}j∈[mq] such

that decryption computes in the exponent i) a garbling Lq(x) that reveals a random pad µq from

the evaluation result αqfq(x) + βq if the policy is satisfied (P (x, yq) = 1), and ii) a sum h + µq.
Revealing any [[µq]]T allows one to recover the message gb from gb + [[h]]T in ct. Therefore, to

show Exp0
CPA ≈ Exp1

CPA, we want to argue that when no policy is satisfied, all the pads µq are
pseudorandom and hide h.

38

To do so, the proof proceeds in three steps via a sequence of hybrids. In the first step — hybrids
Hb0 ≡ ExpbCPA to Hb3 — we embed in the private slot of ict the vector (1,x), in the private slot of
iskq,pad randomly and independently sampled pads µ̂q, and in the private slot of iskq,j randomly and

independently generated label functions L̂q,j embedding µ̂q. In the second step — hybrids Hb4,1 ≡ Hb3
to Hb4,Q+1 ≡ Hb5 — we observe that the private slots of ict and iskq,j match exactly the ciphertext and
secret keys of our 1-ABE scheme (i.e., they encode the same vectors and have the function-hiding
property). Therefore, using the same argument as the security proof of 1-ABE, we can switch the
random pads µ̂q encoded in iskq,pad to independent random values µ̂′q. Lastly, in the third step —

Hb5 to Hb6 — we remove h from ict and µ̂′q from iskq,pad, and embed h+ µ̂′q in skq,pad. This allows us
to argue that h is hidden by µ̂′q, and the message gb is also hidden.

Next, we proceed to describing the hybrids formally.

• Hybrid Hb0Hybrid Hb0 proceeds identically to ExpbCPA, where the vector u encrypted in the IPFE cipher-
text ict (in ct), the vectors vq,j encoded in the IPFE secret keys iskq,j (in skq), and the vectors
vq,pad in iskq,pad (in skq) are described in Figure 4. In particular, note that the values in the
private slot of u are set to 0 and ict is generated using IPFE.SlotEnc (depicted as ⊥ in the
private slot of u).

• Hybrid Hb1Hybrid Hb1 proceeds identically to Hb0, except that the IPFE ciphertext ict is generated using
IPFE.Enc with values in the private slot set to 0. In Figure 4, the “⊥” values in Hb0 change into
0 in Hb1. By the slot-mode correctness of the slotted IPFE scheme, Hb0 and Hb1 are identically
distributed.

• Hybrid Hb2Hybrid Hb2 proceeds identically to Hb1, except that how the pad µq and labels Lq,j(x) for
q ∈ [Q], j ∈ [mq] are computed (as inner products) is changed — instead of combining k
independent garblings (in the secret keys) with weights s (in the ciphertext), we put the k
independent garblings as well as their linear combinations in the secret keys and the ciphertext
only uses that linear combination.

Recall that in Hb1 (the same as in ExpbCPA), µq and Lq,j(x) are linear combinations of {µq[t]}t∈[k]

and {Ltq,j(x)}t∈[k] with weights s ∈ Zkp, which are computed using IPFE as these inner prod-
ucts:

µq = 〈µq, s〉,
Lq,j(x) =

〈(
L1
q,j , . . . ,L

k
q,j

)
,
(
s[1](1,x), . . . , s[k](1,x)

)〉
,

where the random multiples of the attribute
(
s[1](1,x), . . . , s[k](1,x)

)
are encoded in the

public slot of u, µq in the public slots of vq,pad, and the coefficients
(
L1
q,j , . . . ,L

k
q,j

)
of the k

label functions in the public slots of vq,j . In Hb2, µq and Lq,j(x) are instead computed as

µq = 〈µq, 1〉,

Lq,j(x) = 〈Lq,j , (1,x)〉, Lq,j =
∑
t∈[k]

s[t]Ltq,j ,

where (1,x) is encoded in the private slot u, µq in the private slots of vq,pad, and Lq,j in
the private slots of vq,j . Furthermore, to keep the inner products 〈u,vq,pad〉 and 〈u,vq,j〉 the
same as those in Hb1, the random multiples of the attribute

(
s[1](1,x), . . . , s[k](1,x)

)
in the

public slot of u are replaced by zero (while the public slots of vq,pad,vq,j remain unchanged).
By the function-hiding property of IPFE, Hb2 is indistinguishable from Hb1.

39

hybrid vector pad constt coefti const coefi sim1, sim?

skq: vq,pad 1 µq[t] 0 0 0 0

Hb0 ≡ ExpbCPA skq: vq,j 0 Ltq,j [const] Ltq,j [coefi] 0 0 0

ct : u h s[t] s[t]x[i] ⊥ ⊥ ⊥

skq: vq,pad 1 µq[t] 0 0 0 0

Hb1 skq: vq,j 0 Ltq,j [const] Ltq,j [coefi] 0 0 0

ct : u h s[t] s[t]x[i] 0 0 0

skq: vq,pad 1 µq[t] 0 µq 0 0

Hb2 skq: vq,j 0 Ltq,j [const] Ltq,j [coefi] Lq,j [const] Lq,j [coefi] 0

ct: u h 0 0 1 x[i] 0

skq: vq,pad 1 µq[t] 0 µ̂q 0 0

Hb3 ≡ Hb4,1 skq: vq,j 0 Ltq,j [const] Ltq,j [coefi] L̂q,j [const] L̂q,j [coefi] 0

ct: u h 0 0 1 x[i] 0

Hb4,1∼Q+1 · · · · · ·

skq: vq,pad 1 µq[t] 0 µ̂′q
$← Zp 0 0

Hb5 ≡ Hb4,Q+1 skq: vq,j 0 Ltq,j [const] Ltq,j [coefi] L̂q,j [const] L̂q,j [coefi] 0

ct: u h 0 0 1 x[i] 0

skq: vq,pad 1 µq[t] 0 h+ µ̂′q 0 0

Hb6 skq: vq,j 0 Ltq,j [const] Ltq,j [coefi] L̂q,j [const] L̂q,j [coefi] 0

ct: u 0 0 0 1 x[i] 0

The hybrids are illustrated with ciphertext challenge coming after the key queries (as
in the more difficult case for 1-ABE). In reality, the key queries can be made before
and after the ciphertext challenge, and the proof is unaffected.

In Hb2, the linearly combined Lq,j =
∑
t∈[k] s[t]Ltq,j are valid garblings

for the linearly combined pads µq = 〈s,µq〉.
In Hb3, the garblings L̂q,j are fresh and are for freshly sampled pads µ̂q.
In Hb5,H

b
6, the pads µ̂′q in skq,pad are independent of the pads (µ̂q) being garbled.

Figure 4: The hybrids (with the loop contracted) in the proof of
IND-CPA security of our KP-ABE scheme for ABPs.

40

• Hybrid Hb3Hybrid Hb3 proceeds identically to Hb2, except that the random linear combinations µq,Lq,j in
the private slots of the secret keys are replaced by randomly and independently generated
pads and garblings µ̂q, L̂q,j , as shown in Figure 4.

Recall that in both hybrids, the k instances of garblings in the public slot are generated by

µq
$← Zkp, ηq

$← Zkp,

{
αq ← µq, βq ← 0, if yq = fq,6=0;

αq ← ηq, βq ← µq, if yq = fq,=0;

for t ∈ [k]: (Ltq,1, . . . ,L
t

q,mq
) = Garble(fq,αq[t],βq[t]; rq,t).

In Hb2, the private slots of ABE secret keys contain linear combinations of the garblings. By
the linearity of AKGS, they can also be generated as follows:{

αq = 〈s,αq〉 = µq = 〈s,µq〉, βq = 〈s,βq〉 = 0 = 〈s,0〉, if yq = fq,6=0;

αq = 〈s,αq〉 = ηq = 〈s,ηq〉, βq = 〈s,βq〉 = µq = 〈s,µq〉, if yq = fq,=0;

rq =
∑
t∈[k]

s[t]rq,t, (Lq,1, . . . ,Lq,m) = Garble(fq, αq, βq; rq).

In Hb3, L̂q,j ’s are generated for randomly and independently sampled pad µ̂q with secrets α̂q, β̂q
set according to µ̂q and independent randomness r̂q:

µ̂q
$← Zp, η̂q

$← Zp,

{
α̂q ← µ̂q, β̂q ← 0, if y = fq,6=0;

α̂q ← η̂q, β̂q ← µ̂q, if y = fq,=0;

(L̂q,1, . . . , L̂q,m) = Garble(fq, α̂q, β̂q; r̂q).

Note that the only difference between Hb2 and Hb3 is that the former uses linear combinations
µq, ηq, rq to set the the secrets and the randomness for the garbling in the private slot. In

contrast, Hb3 uses fresh randomness. Note that in Hb2, the weights s and µq,ηq, rq,t are only used
in the exponent of the second source group G2 (since they are only encoded in IPFE secret
keys). Therefore, by the MDDHk assumption, µq, ηq, rq are pseudorandom in the exponent of
G2, i.e.,

{[[µq,ηq, {rq,t}t∈[k]︸ ︷︷ ︸
A

, µq, ηq, rq︸ ︷︷ ︸
sTA

]]2}q∈[Q] ≈ {[[µq,ηq, {rq,t}t∈[k], µ̂q, η̂q, r̂q︸ ︷︷ ︸
cT

]]2}q∈[Q].

Furthermore, by the linearity of Garble, given these randomness encoded in G2, the hybrids
Hb2 and Hb3 can be efficiently generated. Thus, the two hybrids are indistinguishable.

We now have completed the first step of the proof. Observe that in Hb3, for each q ∈ [Q], the

private slots of {iskq,j}j∈[mq] encode (the coefficients of) label functions L̂q,j and the private slot
of ict encodes (1,x), identical to that in the secret key and ciphertext of our 1-ABE scheme. The
security of 1-ABE (Theorem 25) ensures that the adversary cannot distinguish the pad µ̂q encoded

in the secret key from another independent pad µ̂′q (inconsistent with L̂q,j ’s). Next, in hybrids

Hb4,1, . . . ,H
b
4,Q+1, we use syntactically the same proof to gradually switch each µ̂q to µ̂′q.

• Hybrid Hb4,qHybrid Hb4,q proceeds identically to Hb3, except that in the first q − 1 secret keys, the random
pads µ̂q′ (q′ < q) in the private slot of vq′,pad are replaced by an independent random value
µ̂′q′ , as illustrated in Figure 5. The only difference between Hb4,q and Hb4,q+1 is whether vq,pad

contains the pad µ̂q consistent with L̂q,j ’s or an independent one µ̂′q.

41

hybrid vector in spub const coefi sim1, sim?

Hb4,q

q′ < q
{vq′,pad

normal

µ̂′q′
$← Zp 0 0

vq′,j L̂q′,j [const] L̂q′,j [coefi] 0

skq

{
vq,pad µ̂q 0 0

vq,j L̂q,j [const] L̂q,j [coefi] 0

q′ > q
{vq′,pad µ̂q′ 0 0

vq′,j L̂q′,j [const] L̂q′,j [coefi] 0

ct: u h,0,0 1 x[i] 0

Hb4,q+1

q′ < q
{vq′,pad

normal

µ̂′q′
$← Zp 0 0

vq′,j L̂q′,j [const] L̂q′,j [coefi] 0

skq

{
vq,pad µ̂′q

$← Zp 0 0

vq,j L̂q,j [const] L̂q,j [coefi] 0

q′ > q
{vq′,pad µ̂q′ 0 0

vq′,j L̂q′,j [const] L̂q′,j [coefi] 0

ct: u h,0,0 1 x[i] 0

The proof is unaffected by whether each sk appears before/after ct.
The “normal” in v|spub

represents the values specified by the honest
KeyGen (the same as in Figure 4).

The garblings L̂q′,j are fresh and are for freshly sampled pads µ̂q′ ,
and µ̂′q′ are independent of them.

In this iteration, skq is made apparently useless for decrypting ct.

Figure 5: The loop hybrids in the proof of IND-CPA security
of our KP-ABE scheme for ABPs.

42

The indistinguishability of Hb4,q and Hb4,q+1 follows by syntactically the same proof of 1-ABE security
(Theorem 25). Recall that the proof of 1-ABE goes through a sequence of hybrids where the
coefficients of the label functions L̂q,j ’s are gradually removed from vq,j |s1-ABE

and replaced by a
simulated label hardcoded in either vq,j [const] (using u[sim?] as a relay) or u[sim1]. Simulated labels
are sampled randomly `q,j

$← Zp for every j > 1, except that the first one is reversely sampled

`q,1
$← RevSamp(fq,x, α̂qfq(x) + β̂q, `q,2, . . . , `q,mq).

If decryption should fail, α̂qfq(x) + β̂q perfectly hides µ̂q, and µ̂q can be switched to µ̂′q. The
indistinguishability of neighboring hybrids follows either from the AKGS piecewise security or the
function-hiding property of IPFE.

The only differences between 1-ABE security proof and Hb4,q / Hb4,q+1 are that in the latter
the IPFE secret keys and ciphertext encode vectors with additional public slots, and that there
are many (namely, Q) ABE secret keys. These differences do not affect the application of AKGS
piecewise security nor the function-hiding property of IPFE. First, the piecewise security of AKGS
is information-theoretic — given that L̂q,j is randomly generated and independent of the other
variables in Hb4,q and Hb4,q+1, it still applies. Second, the hybrids in 1-ABE security proof only
modify the values in vq,j |s1-ABE

and u[sim1],u[sim?], all of which are in the private slot. Moreover,
the vectors vq′,j ,vq′,pad in the additional secret keys (for q′ 6= q) have values at sim1, sim? set to
zero, and cannot “detect” the changes in u[sim1],u[sim?]. Hence, all the inner products are kept
the same and the function-hiding property of IPFE still applies. Therefore, Hb4,q and Hb4,q+1 are
indistinguishable.

We now have completed the second step of the proof. Observe that Hb3 and Hb4,1 are identical.
We need another invocation of the function-hiding property of IPFE to remove h from u (in ict):

• Hybrid Hb5Hybrid Hb5 proceeds identically to Hb3, except that all the pads µ̂q in vq,pad’s are replaced by
independent random values µ̂′q, as illustrated in Figure 4. Observe that Hb4,Q+1 ≡ Hb5, i.e., the

loop hybrids connect Hb3 and Hb5.

Note that in this hybrid, the inner products of u and vq,pad’s are h + µ̂′q, which hide h.
However, h still appears in u. In the next hybrid, we remove h from u and directly hardwire
the inner products h+ µ̂′q in vq,pad’s so that h becomes information-theoretically hidden.

• Hybrid Hb6Hybrid Hb6 proceeds identically to Hb5, except that the pads h and µ̂′q are removed from u[pad]
and vq,pad[const] respectively, and that their sums h+ µ̂′q are put in vq,pad[const]. The change

is illustrated in Figure 4. Since the inner products remain the same as in Hb5, by the function-
hiding property of IPFE, Hb5 and Hb6 are indistinguishable.

Finally, we argue that H0
6 ≡ H1

6: The secret keys are independent of h since each µ̂q perfectly hides h.
The only other place where h appears is for hiding the message: gb + [[h]]T in ct. This means gb is
information-theoretically hidden by h.

By a hybrid argument, we have Exp0
CPA ≈ Exp1

CPA, i.e., Construction 26 is IND-CPA secure. �

Combining Theorems 22 and 27, we obtain compact and adaptively secure ABE for ABP:

Corollary 28. Assuming MDDHk in pairing groups, there is a compact and adaptively secure
KP-ABE for ABP.

43

7 ABE for Uniform Logspace Turing Machines

In this section, we construct a KP-ABE scheme for L, uniform deterministic log-space computation.
Here, each secret key is associated with a Turing machine M (with an arbitrary number of states
Q), and each ciphertext is associated with an input x (of arbitrary length N) and time/space
complexity bounds T, S ≥ 1. Decryption succeeds if and only if M accepts x within time T and
space S. More formally, the scheme handles a single predicate P :

X =
{

(x, 1T , 12S)
∣∣x ∈ {0, 1}N for some N ≥ 1, T, S ≥ 1

}
, Y = TM,

P : X × Y → {0, 1},
(
(x, 1T , 12S),M

)
7→M |N,T,S(x) for x ∈ {0, 1}N ,

where M |N,T,S (Definition 12) indicates whether M accepts x within time T and space S. In our
scheme, the size of a secret key is linear in Q and the size of a ciphertext is linear in TNS2S .

Given our construction of ABE for L, we can derive ABE for DFA as a special case, since DFA
can be viewed as a Turing machine with time complexity T = N and space complexity S = 1, which
always moves the input tape pointer to the right and never uses the work tape. Moreover, our ABE
scheme for L extends immediately to non-deterministic, unambiguous logspace Turing machines
(the complexity class UL). Such machines have at most one accepting path for any input. In fact,
our construction handles all non-deterministic logspace Turing machines (the class NL), except
when the number of accepting paths is exactly a multiple of p, the order of the pairing groups.

Below, we start with our AKGS for Turing machines, then build a 1-ABE scheme based on the
AKGS and a function-hiding secret-key IPFE, and lastly lift it to a full-fledged KP-ABE scheme
using slotted IPFE. For simplicity of exposition, we describe our construction based on the SXDH
assumption in the pairing groups. It readily extends to be based on the MDDHk assumption for
any k ≥ 1.

7.1 AKGS for Turing Machines with Time/Space Bounds

To obtain our AKGS for Turing machines with time/space bounds, we first represent the compu-
tation of Turing machines as a sequence of matrix multiplications, and then design an AKGS for
matrix multiplication. See Section 2.3 for an overview of our AKGS.

Transition Matrix. Given a Turing machine M = (Q,yacc, δ), upper bounds of time and space
complexity T, S ≥ 1, and an input x ∈ {0, 1}N for some N ≥ 1, we consider the length-T compu-
tation path of M with input x and space bound S. Recall that the set of internal configurations
is

CM,N,S = [N]× [S]× {0, 1}S × [Q].

An internal configuration z = (i, j,W, q) ∈ CM,N,S specifies that the input and work tape pointers
are at positions i and j respectively, the work tape has content W, and the current state is q. In
particular, the initial configuration is (1, 1,0S , 1): the input/work tape pointers point to the first
cell, the work tape is all-0, and the state is the initial state 1. An accepting configuration satisfies
that yacc[q] = 1.

We construct a transition matrix MN,S(x) ∈ {0, 1}CM,N,S×CM,N,S such that MN,S(x)[z, z′] is 1 if
and only if the internal configuration of M is z′ after 1 step of computation starting from internal
configuration z. According to how the Turing machine operates in each step depending on the

44

transition function δ, the entries of MN,S are defined as follows:

MN,S(x)[(i, j,W, q), (i′, j′,W′, q′)] =


1, if δ(q,x[i],W[j]) = (q′,W′[j], i′ − i, j′ − j)

and W′[j′′] = W[j′′] for all j′′ 6= j;

0, otherwise;

= x[i]×


1, if δ(q, 1,W[j]) = (q′,W′[j], i′ − i, j′ − j)

and W′[j′′] = W[j′′] for all j′′ 6= j;

0, otherwise;

(1− x[i])×


1, if δ(q, 0,W[j]) = (q′,W′[j], i′ − i, j′ − j)

and W′[j′′] = W[j′′] for all j′′ 6= j;

0, otherwise.

With the transition matrix, we can now write the computation of Turing machine as a sequence of
matrix multiplication. We represent internal configurations using one-hot encoding — the internal
configuration z is represented by the basis vector ez ∈ {0, 1}CM,N,S whose z-entry is 1 and other
entries are 0. Observe that multiplying eT

z on the right by the transition matrix MN,S(x) produces
exactly the next internal configuration: If there is no valid internal configuration of M after 1 step
of computation starting from z, we have eT

zMN,S(x) = 0; otherwise, the next internal configuration
z′ is unique and eT

zMN,S(x) = eT
z′ . The function M |N,T,S(x) can be written as

M |N,T,S(x) = eT

(1,1,0S ,1)

(
MN,S(x)

)T (
1[N]×[S]×{0,1}S ⊗ yacc

)
,

where e(1,1,0S ,1) represents the initial internal configuration. The sequence of multiplication ad-
vances the computation by T steps and tests whether the final internal configuration is in an
accepting state. We elaborate on the last step: The tensor product 1[N]×[S]×{0,1}S ⊗yacc is a vector

in {0, 1}CM,N,S such that its (i, j,W, q)-entry is 1 if and only if yacc[q] = 1, i.e., q is an accepting

state. Therefore, taking the inner product of eT

(1,1,0S ,1)

(
MN,S(x)

)T
= eT

z′ (z′ is the final internal

configuration) or 0 with the tensor product indicates whether M accepts x within time T and space
S.

Transition Blocks. We observe that the transition matrix has the following two useful properties:

• MN,S(x) is affine in x when regarded as an integer matrix.

• MN,S(x) has the following block structure: There is a finite set {Mτ}τ of Q × Q matrices
defined by the transition function δ, called the transition blocks, such that for every (i, j,W)
and (i′, j′,W′) in [N] × [S] × {0, 1}S , the submatrix MN,S(x)[(i, j,W,), (i′, j′,W′,)] is
either some Mτ or 0.

We define the transition blocks below.

Definition 29. Let M = (Q,yacc, δ) be a Turing machine and T = {0, 1}3 × {0,±1}2 the set
of transition types. The transition blocks of M consist of 72 matrices Mτ ∈ {0, 1}Q×Q for τ =
(x,w,w′,∆i,∆j) ∈ T , each encoding the possible transitions among the states given the following
information: the input tape symbol x under scan, the work tape symbol w under scan, the symbol
w′ overwriting w, the direction ∆i to which the input tape pointer moves, and the direction ∆j to
which the work tape pointer moves. Formally,

Mx,w,w′,∆i,∆j [q, q
′] =

{
1, if δ(q, x, w) = (q′, w′,∆i,∆j);

0, otherwise.

45

In MN,S(x), each Q×Q block is either one of the transition blocks or 0:

MN,S(x)[(i, j,W,), (i′, j′,W′,)] =


Mx[i],W[j],W′[j],i′−i,j′−j , if i′ − i, j′ − j ∈ {0,±1} and

W[j′′] = W′[j′′] for all j′′ 6= j;

0, otherwise.

Observe further that in MN,S(x)[(i, j,W,), (, , ,)], each transition block appears at most
once.

AKGS for Turing machines. Above, we have represented the Turing machine computation as
a sequence of matrix multiplication over the integers:

M |N,T,S(x) = eT

(1,1,0S ,1)

(
MN,S(x)

)T (
1[N]×[S]×{0,1}S ⊗ yacc

)
for x ∈ {0, 1}N . (7)

We can formally extend13 M |N,T,S : {0, 1}N → {0, 1} to a ZNp → Zp function using the same matrix

multiplication formula, preserving its behavior when the input comes from {0, 1}N . When p is clear
from the context, we use M |N,T,S to represent its extension over Zp.

We now construct an AKGS for Turing machine computations and prove its special piecewise
security. It is constructed via a recursive mechanism for garbling matrix multiplications, which is
inspired14 by the garbling scheme for arithmetic NC1 circuits in [AIK11] and the garbling mechanism
for multiplication gates in [BGG+14].

Construction 30 (AKGS for M |N,T,S). Let

F =
{
M |N,T,S : ZNp → Zp

∣∣M ∈ TM, N, T, S ≥ 1, p prime
}

be the set of time/space bounded Turing machine computations. The AKGS (Garble,Eval) for the
function class F operates as follows:

• Garble
(
(M, 1N , 1T , 12S , p), α, β

)
takes a function M |N,T,S over Zp from F and two secrets

α, β ∈ Zp as input. Suppose M = (Q,yacc, δ), the algorithm samples r as the randomness by

for t ∈ [0..T]: rt
$← ZCM,N,Sp

(
CM,N,S = [N]× [S]× {0, 1}S × [Q]

)
,

r ∈ Z[0..T]×CM,N,S
p , r[(t, i, j,W, q)] = rt[(i, j,W, q)].

It computes the transition matrix MN,S(x) as a function of x and defines the label functions
by

Linit(x) = β + eT

(1,1,0S ,1)r0,

for t ∈ [T]:
(
Lt,z(x)

)
z∈CM,N,S

= −rt−1 + MN,S(x)rt,(
LT+1,z(x)

)
z∈CM,N,S

= −rT + α1[N]×[S]×{0,1}S ⊗ yacc.

It collects the coefficients of these label functions and returns them.

Note: We show Garble satisfies the required properties of a linear AKGS (Definitions 13
and 14):

13This is done to arithmetize the computation, adhering to the formalism of AKGS.
14As a historical fact, the authors first came up with the AKGS for arithmetic formulae, abstracted out

piecewise security, and only verified that the PGS for ABPs [IW14] is also a piecewise secure AKGS.

46

– The label functions are affine in x:The label functions are affine in x: Linit and LT+1,z for all z ∈ CM,N,S are constant with
respect to x. The rest are Lt,z(x) =

(
−rt−1 + MN,S(x)rt

)
[z]. Since MN,S(x) is affine in

x and rt−1, rt are constant with respect to x, these label functions are also affine in x.

– Shape determinism holds:Shape determinism holds: The garbling size of M |N,T,S is 1 + (T + 1)NS2SQ.

– Garble is linear in (α, β, r),Garble is linear in (α, β, r), i.e., the coefficients of the label functions are linear in (α, β, r).
Observe that MN,S(x), e(1,1,0S ,1) and yacc are constant with respect to (α, β, r), and α, β
and rt for all t ∈ [0..T] are linear in (α, β, r). By the definition of the label functions,
their coefficients are linear in (α, β, r).

• Eval
(
(M, 1N , 1T , 12S , p),x, `init, (`t,z)t∈[T+1],z∈CM,N,S

)
takes a function M |N,T,S over Zp from

F , an input string x ∈ ZNp and the labels as input. It first computes the transition matrix
MN,S(x) with x substituted into it and sets `t = (`t,z)z∈CM,N,S for t ∈ [T + 1]. The algorithm
computes and returns

`init + eT

(1,1,0S ,1)

T+1∑
t=1

(
MN,S(x)

)t−1
`t.

Note: We show the correctness of the scheme. Plugging `t,z = Lt,z(x) and the formula for
M |N,T,S into the summation, we find that it is a telescoping sum:

eT

(1,1,0S ,1)

T+1∑
t=1

(
MN,S(x)

)t−1
`t = eT

(1,1,0S ,1)

T∑
t=1

(
MN,S(x)

)t−1(−rt−1 + MN,S(x)rt
)

+ eT

(1,1,0S ,1)

(
MN,S(x)

)T (−rT + α1[N]×[S]×{0,1}S ⊗ yacc

)
= eT

(1,1,0S ,1)

T∑
t=1

(
−
(
MN,S(x)

)t−1
rt−1 +

(
MN,S(x)

)t
rt

)
− eT

(1,1,0S ,1)

(
MN,S(x)

)T
rT + αM |N,T,S(x)

= −eT

(1,1,0S ,1)r0 + αM |N,T,S(x).

The value returned by Eval is

`init + eT

(1,1,0S ,1)

T+1∑
t=1

(
MN,S(x)

)t−1
`t =

(
β + eT

(1,1,0S ,1)r0

)
+
(
−eT

(1,1,0S ,1)r0 + αM |N,T,S(x)
)

= β + αM |N,T,S(x).

Therefore, the scheme is correct. Moreover, Eval is linear in the labels, as seen from the
formula of Eval.

Theorem 31. Construction 30 is special piecewise secure. More specifically, the label functions
are ordered as Linit, (L1,z)z∈CM,N,S , (L2,z)z∈CM,N,S , . . . , (LT+1,z)z∈CM,N,S , the randomness is ordered
as r0, r1, . . . , rT , and the randomizer of Lt,z is rt−1[z]. For each t ∈ [T + 1], the ordering of the
components in (Lt,z)z∈CM,N,S and rt−1 can be arbitrary, as long as the two are consistent.

Proof.Proof. By definition, the coefficient of `init in Eval is 1 6= 0. Now we prove the marginal randomness
property. Recall that all the other label functions are grouped by time step t ∈ [T + 1]:

for t ∈ [T]:
(
Lt,z(x)

)
z∈CM,N,S

= −rt−1 + MN,S(x)rt,(
LT+1,z(x)

)
z∈CM,N,S

= −rT + α1[N]×[S]×{0,1}S ⊗ yacc.

47

Fix a group t ∈ [T + 1] of the label functions. Each Lt,z (for z ∈ CM,N,S), aside from rt−1[z] (which
is in the constant), only uses components in rt (if t ≤ T) as randomness. Moreover, all the label
functions in groups t + 1, t + 2, . . . , T + 1 only use components in rt, rt+1, . . . , rT as randomness.
Therefore, all those label functions are in the special form, the randomizer of Lt,z is rt−1[z], and
the components in each group of Lt,z’s and rt−1 can be reordered as long as they are consistent. �

7.2 1-ABE for L

With the AKGS for Turing machines, we are ready to construct our 1-ABE for L and prove its
security. To focus on the core idea, we present our construction assuming SXDH in the pairing
groups and briefly discuss how to generalize the construction to be based on MDDHk for any k ≥ 1.

New Challenge. As discussed in the technical overview (see Section 2.3), building ABE for L from
AKGS faces new challenges comparing with ABE for ABPs. In particular, the size of the AKGS
garbling is roughly TNS2SQ. While the key generation algorithm knows Q and the encryption
algorithms knows N,T, S, neither of them alone has full information of the size of the AKGS
garbling. Furthermore, the total size of a pair of secret key and ciphertext is way smaller than the
garbling size. Therefore, it is impossible to encode the label functions of AKGS in either the secret
key or the ciphertext (in contrast, in ABE for ABPs, the label functions are completely encoded
in the secret key). To overcome this challenge, we will i) let the secret key and ciphertext jointly
generate the label functions, and ii) use pseudorandomness in the exponent.

An Exercise of Algebra. Recall that the AKGS for L samples randomness r ∈ Z[0..T]×CM,N,S
p .

We will use “structured” elements r = rx ⊗ rf for rx
$← Z[0..T]×[N]×[S]×{0,1}S

p and rf
$← ZQp as

the randomness for the AKGS garbling. Before laying out the construction, we first show that
MN,S(x)rt (a central part of the label functions) can be expressed as a bilinear function of x, rx,x⊗
rx (known at encryption time) and Mτrf , rf ’s (known at key generation time), and hence can be
computed as the inner products of vectors depending on these two groups of variables separately.

By our choice of randomness, rt = r[t, , , ,] is a block vector with each block being a
multiple of rf . More precisely, rt[i, j,W,] = rx[(t, i, j,W)]rf . We compute each block of the product
MN,S(x)rt:

(
MN,S(x)rt

)
[(i, j,W,)](

row r of AB is
row r of A times B

)
= MN,S(x)[(i, j,W,), (, , ,)]rt(

block matrix
multiplication

)
=
∑

i′∈[N],j′∈[S]

W′∈{0,1}S

MN,S(x)[(i, j,W,), (i′, j′,W′,)]rt[(i
′, j′,W′,)]

=
∑

i′∈[N],j′∈[S]

W′∈{0,1}S

MN,S(x)[(i, j,W,), (i′, j′,W′,)]rx[(t, i′, j′,W′)]rf .

Recall that in MN,S(x)[(i, j,W,), (, , ,)], each transition block appears at most once, and the
otherQ×Q blocks are 0. More specifically, Mx,w,w′,∆i,∆j appears at MN,S(x)[(i, j,W,), (i′, j′,W′,)]
if x = x[i], w = W[j], ∆i = i′ − i, ∆j = j′ − j, and W′ is W with its jth entry changed to w′.

48

Therefore, we have(
MN,S(x)rt

)
[(i, j,W,)] =

∑
w′∈{0,1}

∆i,∆j∈{0,±1}
i+∆j∈[N],j+∆j∈[S]

Mx[i],W[j],w′,∆i,∆jrx[(t, i+ ∆i, j + ∆j,W′)]rf

=
∑

x,w,w′∈{0,1}
∆i,∆j∈{0,±1}

Mx,w,w′,∆i,∆jrf ×


rx[(t, i+ ∆i, j + ∆j,W′)], if x = x[i], i+ ∆i ∈ [N],

w = W[j], j + ∆j ∈ [S];

0, otherwise.

(8)

Here, W′[j] = w′ and W′[j′′] = W[j′′] for all j′′ 6= j. Note that in the last summation formula,
there are exactly 72 summands. Moreover, each summand is Mx,w,w′,∆i,∆jrf (depending only on rf

and the transition blocks) multiplied by an entry in rx or 0 (depending only on x, rx). To simplify
notations, we define transition coefficients:

Definition 32. Let T = {0, 1}3×{0,±1}2 be the set of transition types. For all τ = (x,w,w′,∆i,∆j) ∈ T ,

N,T, S ≥ 1, and x ∈ {0, 1}N , t ∈ [T], i ∈ [N], j ∈ [S],W ∈ {0, 1}S , rx ∈ Z[0..T]×[N]×[S]×{0,1}S
p , define

the transition coefficient as

cx,w,w′,∆i,∆j(x; t, i, j,W; rx) =


rx[(t, i+ ∆i, j + ∆j,W′)], if x = x[i], i+ ∆i ∈ [N],

w = W[j], j + ∆j ∈ [S];

0, otherwise;

where W′ ∈ {0, 1}S, W′[j] = w′, and W′[j′′] = W[j′′] for all j′′ 6= j.

With the above definition, Equation (8) can be restated as(
MN,S(x)rt

)
[(i, j,W,)] =

∑
τ∈T

cτ (x; t, i, j,W; rx)Mτrf . (9)

We are now ready to construct 1-ABE for L.

Construction 33 (1-ABE for L). We describe the construction for any fixed value of the security
parameter λ and suppress the appearance of λ below for simplicity of notations. Let the function
class F be

F =
{
M |N,T,S : ZNp → Zp

∣∣M ∈ TM, N, T, S ≥ 1, p prime
}
.

Let (Garble,Eval) be the AKGS for F in Construction 30, G pairing groups of order p, and
(IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a secret-key IPFE based on G. We construct a 1-
ABE scheme based on G for the following singleton predicate space P:

X =
{

(x, 1T , 12S)
∣∣x ∈ {0, 1}N for some N ≥ 1, T, S ≥ 1

}
, Y = TM,

P : X × Y → {0, 1},
(
(x, 1T , 12S),M

)
7→M |N,T,S(x) for x ∈ {0, 1}N ,

P = {P}.

The 1-ABE scheme (Setup,KeyGen,Enc,Dec) operates as follows:

• Setup(P) takes the only predicate as input. It generates an IPFE master secret key msk
$←

IPFE.Setup(s1-ABE) for the index set

s1-ABE =
{
init, rand, randcomp, randtemp, randtemp,comp, acc, acctemp, sim, simtemp, simcomp

}
∪
{
tbτ , tb

comp
τ , tbtemp

τ , tbtemp,comp
τ

∣∣ τ ∈ T }.
49

The algorithm returns msk as the master secret key.

Note: Let us explain the names of the indices: The index init is used for computing `init. It
is also used in the security proof. The indices tbτ (short for “transition blocks”) are used
for computing MN,S(x)rt in `t,z’s, rand (short for “randomizer”) for −rt−1, and acc (for
“acceptance vector”) for α1[N]×[S]×{0,1}S ⊗yacc in `T+1,z’s. Values at all the other indices are
set to zero by the honest algorithms, and those indices are only used in the security proof.
Jumping ahead, sim is used for simulating the labels, and the rest of the indices are used for
holding temporary values in the hybrids; temp (resp. comp) is short for “temporary” (resp.
“compensation”). More details in the proof.

• KeyGen(msk,M, µ) takes the master secret key, a Turing machine M = (Q,yacc, δ) ∈ TM = Y ,
and a pad µ ∈ Zp as input. It computes the transition blocks Mτ for τ ∈ T from δ, samples

rf
$← ZQp , and sets the vectors vinit and vq for q ∈ [Q] as follows:

vector init rand acc tbτ
the other
indices

vinit rf [1] 0 0 0
0

vq 0 −rf [q] µyacc[q] (Mτrf)[q]

The algorithm generates an IPFE secret key for each vector defined above:

iskinit
$← IPFE.KeyGen(msk, [[vinit]]2),

for q ∈ [Q]: iskq
$← IPFE.KeyGen(msk, [[vq]]2).

It returns skM = (M, iskinit, isk1, . . . , iskQ) as the secret key for M encapsulating µ.

Note: KeyGen creates the garbling (or rather, half of it) with secrets α = µ, β = 0 so that µ
can be recovered using Eval if and only if M |N,T,S(x) 6= 0.

• Enc
(
msk, (x, 1T , 12S)

)
takes the master secret key, an input string x ∈ {0, 1}N for some N ≥ 1,

and time/space complexity bounds T, S ≥ 1 (encoded as 1T and 12S) as input. It samples

rx
$← Z[0..T]×[N]×[S]×{0,1}S

p and sets the vectors uinit and ut,i,j,W for t ∈ [T + 1], i ∈ [N], j ∈ [S],

W ∈ {0, 1}S as follows:

vector init rand acc tbτ
the other
indices

uinit rx[(0, 1, 1,0S)] 0 0 0
0t ≤ T : ut,i,j,W 0 rx[(t− 1, i, j,W)] 0 cτ (x; t, i, j,W; rx)

uT+1,i,j,W 0 rx[(T, i, j,W)] 1 0

The algorithm then generates IPFE ciphertexts for the vectors defined above:

ictinit
$← IPFE.Enc(msk, [[uinit]]1),

for t ∈ [T + 1], i ∈ [N], j ∈ [S],W ∈ {0, 1}S : ictt,i,j,W
$← IPFE.Enc(msk, [[ut,i,j,W]]1).

It returns ctx,T,S =
(
(x, T, S), ictinit, (ictt,i,j,W)t∈[T+1],i∈[N],j∈[S],W∈{0,1}S

)
as the ciphertext for

input x with time/space bounds T, S.

50

• Dec(sk, ct) takes a secret key sk and a ciphertext ct as input. It parses

sk as
(
M, iskinit, isk1, . . . , iskQ

)
with M = (Q,yacc, δ) ∈ TM and

ct as
(
(x, T, S), ictinit, (ictt,i,j,W)t∈[T+1],i∈[N],j∈[S],W∈{0,1}S

)
with x ∈ {0, 1}N .

The algorithm returns ⊥ if M |N,T,S(x) = 0. Otherwise, it computes the labels (recall that

CM,N,S = [N]× [S]× {0, 1}S × [Q])

[[`init]]T ← IPFE.Dec(iskinit, ictinit),

for t ∈ [T + 1], (i, j,W, q) ∈ CM,N,S : [[`t,i,j,W,q]]T ← IPFE.Dec(iskq, ictt,i,j,W),

and recovers the encapsulated pad by

[[µ′]]T ← Eval
(
(M, 1N , 1T , 12S , p),x, [[`init]]T, ([[`t,z]]T)t∈[T+1],z∈CM,N,S

)
.

The algorithm returns [[µ′]]T as the decapsulated pad.

Note: We show the correctness of the scheme, which follows by an observation that `init,
(`t,z)t∈[T+1],z∈CM,N,S is a valid garbling of M |N,T,S with secrets α = µ and β = 0. Consider

α = µ, β = 0, r = rx ⊗ rf , rt = r[(t, , , ,)] (t ∈ [0..T]),(
Linit, (Lt,z)t∈[T+1],z∈CM,N,S

)
= Garble

(
(M, 1N , 1T , 12S , p), α, β; r

)
,

where the randomness used by Garble is explicitly written. Let Linit and Lt,z’s be the label
functions (affine in x with coefficient vectors Linit and Lt,z’s, respectively). First, by the
correctness of IPFE and the definition of vectors vinit and uinit, we have

`init = rx[(0, 1, 1,0S)]rf [1] = r0[(1, 1,0S , 1)] = β + eT

(1,1,0S ,1)r0 = Linit(x).

Next, by the correctness of IPFE and the definition of vectors vq and ut,i,j,W, we have

`t,i,j,W,q = −rx[(t− 1, i, j,W)]rf [q] +
∑
τ∈T

cτ (x; t, i, j,W; rx)(Mτrf)[q]

= −rt−1[(i, j,W, q)] +

(∑
τ∈T

cτ (x; t, i, j,W; rx)Mτrf

)
[q]

(Equation (9)) = −rt−1[(i, j,W, q)] +
(
MN,S(x)rt

)
[(i, j,W,)][q]

= −rt−1[(i, j,W, q)] +
(
MN,S(x)rt

)
[(i, j,W, q)]

= Lt,i,j,W,q(x) for all t ∈ [T], (i, j,W, q) ∈ CM,N,S ,

`T+1,i,j,W,q = −rx[(T, i, j,W)]rf [q] + αyacc[q]

= −rT [(i, j,W, q)] + α
(
1[N]×[S]×{0,1}S ⊗ yacc

)
[(i, j,W, q)]

= LT+1,i,j,W,q(x) for all (i, j,W, q) ∈ CM,N,S .

Lastly, by the linearity of Eval in the labels, we can evaluate the garbling in the exponent of
the target group and obtain µ′ = αM |N,T,S(x) + β = µ (note that M |N,T,S(x) is either 0 or 1

for x ∈ {0, 1}N) in the exponent. Therefore, Dec correctly decapsulates the pad.

51

Remarks.Remarks. The 1-ABE scheme for L based on MDDHk can be obtained by modifying the above

scheme to use pseudorandomness r = RT
xRf for Rx

$← Z[k]×([0..T]×[N]×[S]×{0,1}S)
p and Rf

$← Zk×Qp .

Theorem 34. Suppose in Construction 33, the SXDH assumption holds in G and the IPFE scheme
is function-hiding, then the constructed 1-ABE scheme is 1-key 1-ciphertext secure.

Proof Idea. We discuss the high-level ideas of the proof.

Recall that in the proof of adaptive security of 1-ABE for ABPs (Theorem 25), for the case
where the secret key query appears before the ciphertext challenge, we gradually replace the label
functions in the secret key by labels simulated as random values, except that the first label is
reversely sampled.

That approach, however, fails for Construction 33 for two reasons: i) the garbling uses pseudo-
randomness instead of true randomness; ii) there is not enough space in the ciphertext, the secret
key, or both to embed Ω(TNS2SQ) labels simulated as random values. We make two tweaks to the
proof of Theorem 25 to solve the problems: i) we rely on the SXDH assumption to gradually switch
pseudorandomness to true randomness so that by special piecewise security, we can simulate the
labels as random; ii) in the final hybrid, the labels are simulated as pseudorandom values, which
can be embedded in the ciphertext and the secret key.

At a high level, the proof involves 3 groups of hybrids manipulating the vectors encrypted by
IPFE:

1. The first few hybrids replace the first label function Linit jointly encoded in uinit,vinit by
the reversely sampled first label `init hardwired in either uinit or vinit, whichever is generated
later.

2. The middle hybrids are a loop. Along the hybrids, we gradually replace the label functions
Lt,i,j,W,q (jointly encoded in ut,i,j,W’s and vq’s) generated using pseudorandomness by sim-

ulated labels `t,i,j,W,q = sx[(t, i, j,W)]sf [q], where sx
$← Z[T+1]×[N]×[S]×{0,1}S

p is embedded in

ut,i,j,W’s and sf
$← ZQp is embedded in vq’s. How the loop works depends on whether the

ciphertext challenge comes first or second.

3. The last few hybrids do some clean-up work to completely remove µ0 from the vectors so that
it is information-theoretically hidden.

We elaborate on the loop hybrids. The reason why the strategy depends on whether the ciphertext
challenge comes first or second is that we need to invoke the DDH assumption to temporarily make
some label, say `t,i,j,W,q, truly random. The reduction algorithm (reducing neighboring indistin-
guishability to DDH) needs to reversely sample `init using RevSamp, which takes as input M,x, T, S
and all the other labels `t′,i′,j′,W′,q′ , including `t,i,j,W,q. On one hand, since M,x, T, S are only fully
specified after both the key and ciphertext queries are made, `init can only be embedded in the key
if it comes after the ciphertext, and in the ciphertext otherwise. On the other hand, since `t,i,j,W,q

is being switched from pseudorandom to random by DDH, the reduction only has access to `t,i,j,W,q

in the exponent of the group Gb where DDH is invoked. Thus, `init must be reversely sampled in
the exponent of Gb. Adding these requirements together necessitates that DDH must be invoked
in the same group where `init is hardcoded:

• Case 1: The ciphertext challenge appears before the secret key query.Case 1: The ciphertext challenge appears before the secret key query. In this case, `init
$← RevSamp(· · ·)

is hardwired in vinit (in iskinit, encoded in G2). The middle hybrids loop over (t, i, j,W) in
lexicographical order. In each iteration, we first move everything from ut,i,j,W to all the

52

vq’s in one shot, hardwiring the honest labels `t,i,j,W,q into vq for all q. Next, we invoke
DDH in G2 to switch rt[(i, j,W, q)] from rx[(t, i, j,W)]rf [q] to truly random for all q, which
makes the labels `t,i,j,W,q truly random for all q. Then, we invoke DDH in G2 again to make
`t,i,j,W,q = sx[(t, i, j,W)]sf [q] pseudorandom for all q. Lastly, we move sx[(t, i, j,W)] from all
vq’s back to ut,i,j,W.

• Case 2: The secret key query appears before the ciphertext challenge.Case 2: The secret key query appears before the ciphertext challenge. In this case, `init
$←

RevSamp(· · ·) is hardwired in uinit (in ictinit, encoded in G1). The middle hybrids form a
two-level loop with outer loop over t in increasing order and inner loop over q in increasing
order. In each iteration, we first move all occurrences of rf [q] and sf [q] into all the ut′,i′,j′,W′ ’s
in one shot (using the extra indices) and hardwire the honest labels `t,i,j,W,q into ut,i,j,W’s
for all i, j,W. Next, we invoke DDH in G1 to switch rt[(i, j,W, q)] from rx[(t, i, j,W)]rf [q] to
truly random for all i, j,W, making the labels `t,i,j,W,q truly random for all i, j,W. Then, we
invoke DDH in G1 again to make `t,i,j,W,q = sx[(t, i, j,W)]sf [q] pseudorandom for all i, j,W.
Lastly, we move rf [q] and sf [q] back from all the ut′,i′,j′,W′ ’s.

The values must be carefully embedded in appropriate places, subject to the compactness require-
ment and the constraint that labels are still correctly computed, so that all the invocations of DDH
are indeed valid.

We start with the first/last few hybrids, for which the two cases can be handled together, and
then complete the proof by connecting the hybrids in two separate claims for the two cases.

Proof (Theorem 34).Proof (Theorem 34). Let A be any efficient adversary. We want to show that the distinguishing
advantage of A against Exp0

1-sk,1-ct and Exp1
1-sk,1-ct is negligible. In these two experiments, the ad-

versary receives a single secret key sk encoding M = (Q,yacc, δ) and secret µ0, and a ciphertext

ct encoding (x, 1T , 12S). The only difference between these two experiments is that the adversary
additionally receives either µ0 or µ1 and wants to distinguish them. Recall that by construction of
our 1-ABE, the ciphertext ct contains a set of IPFE ciphertexts ictinit and ictt,i,j,W’s encrypting
uinit and ut,i,j,W’s, and sk contains IPFE secret keys iskinit and iskq’s encrypting vinit and vq’s,
respectively.

The first/last few hybrids are illustrated in Figure 6. The indices with superscripts are sup-
pressed as they are only used in the loop hybrids. Note that though v’s (in isk’s) are listed before
u’s (in ict’s), the argument about these hybrids is unaffected by whether the ciphertext challenge
comes first or second.

• Hybrid Hb0Hybrid Hb0 proceeds identically to Expb1-sk,1-ct, where v’s contain µ0, rf and the transition
blocks, and u’s contain x and rx.

• Hybrid Hb1Hybrid Hb1 proceeds identically to Hb0, except that `init is hardwired in uinit or vinit, whichever

is generated later, and that sf
$← ZQp is embedded in vq[sim]’s. More specifically, the first

change is implemented as follows:

– If the ciphertext challenge comes first, uinit[init] is set to 1 (at encryption time) and
vinit[init] is set to rx[(0, 1, 1,0S)]rf [1] (at key generation time).

– If the secret key query comes first, vinit[init] is set to 1 (at key generation time) and
uinit[init] is set to rx[(0, 1, 1,0S)]rf [1] (at encryption time).

The first change prepares `init to be reversely sampled starting in the next hybrid by hard-
wiring it. The second change prepares the `t,i,j,W,q’s to be simulated as pseudorandom values

53

hybrid vector init rand, acc, tbτ sim

Hb0
≡

Expb1-sk,1-ct

vinit rf [1]

vq normal 0

uinit rx[(0, 1, 1, 0S)]

ut,i,j,W normal 0

Hb1

vinit 1 or rx[(0, 1, 1, 0S)]rf [1]

vq normal sf [q]

uinit rx[(0, 1, 1, 0S)]rf [1] or 1

ut,i,j,W normal 0

Hb2

vinit 1 or `init ← RevSamp(· · ·)
vq normal sf [q]

uinit `init ← RevSamp(· · ·) or 1

ut,i,j,W normal 0

loop · · · · · ·

Hb4

vinit 1 or `init ← RevSamp(· · ·)

vq normal sf [q]

uinit `init ← RevSamp(· · ·) or 1

ut,i,j,W 0, 0, 0 sx[(t, i, j,W)]

Hb5

vinit 1 or `init ← RevSamp(· · ·)

vq 0, 0, 0 sf [q]

uinit `init ← RevSamp(· · ·) or 1

ut,i,j,W 0, 0, 0 sx[(t, i, j,W)]

The “normal” in... rand acc tbτ
t ≤ T,ut,i,j,W: rx[t− 1, i, j,W] 0 c(x; t, i, j,W)

uT+1,i,j,W: rx[T, i, j,W] 1 0
vq: −rf [q] µ0yacc[q] (Mτrf)[q]

In Hb1, sk before ct ct before sk

vinit[init] = 1 rx[(0, 1, 1,0S)]rf [1]
uinit[init] = rx[(0, 1, 1,0S)]rf [1] 1

In Hb2,H
b
4,H

b
5, sk before ct ct before sk

vinit[init] = 1 RevSamp(· · ·)
uinit[init] = RevSamp(· · ·) 1

The reverse sampling works by (by the constraint, µ0M |N,T,S(x) = 0)

`init ← RevSamp
(
(M, 1N , 1T , 12S),x, 0, (`t,z)t∈[T+1],z∈CM,N,S

)
.

In Hb2, `t,i,j,W,q = Lt,i,j,W,q(x) are computed honestly using IPFE.
The garbling randomness is r = rx ⊗ rf with rx in ct and rf in sk.

In Hb4, `t,i,j,W,q = sx[(t, i, j,W)]sf [q] are simulated and computed using
IPFE with sx in ct and sf in sk.

In Hb5, the labels are simulated and µ0 does not appear.

Figure 6: The first/last few hybrids in the security proof of 1-ABE for L.

54

in the loop hybrids — it has no effect at this moment since the newly embedded values in v’s
multiply with 0 in u’s. The inner products in Hb0 and Hb1 remain unchanged, therefore, by the
function-hiding property of IPFE, Hb0 and Hb1 are indistinguishable.

• Hybrid Hb2Hybrid Hb2 proceeds identically to Hb1, except that `init (was rx[(0, 1, 1,0S)]rf [1]) in uinit or
vinit is reversely sampled from the other labels. By the special piecewise security of AKGS,
Hb1 and Hb2 are identical.

• Hybrid Hb4Hybrid Hb4 proceeds identically to Hb2, except that the inner products between ut,i,j,W’s and
vq’s change from the honest labels to simulated labels sx[(t, i, j,W)]sf [q]. In Figure 6, this
is reflected by the ut,i,j,W’s having their values at rand, acc and tbτ ’s cleared and embedding

sx
$← Z[T+1]×[N]×[S]×{0,1}S

p at sim. We will show Hb2 ≈ Hb4 as two separate claims.

Claim 35. Hb2 ≈ Hb4 conditioned on Case 1.

Claim 36. Hb2 ≈ Hb4 conditioned on Case 2.

• Hybrid Hb5Hybrid Hb5 proceeds identically to Hb4, except that all the vq’s have their (leftover) values at
rand, acc and tbτ ’s cleared. These values multiply with 0 in u’s in Hb4, so the inner products
remain unchanged, and Hb5 ≈ Hb4 by the function-hiding property of IPFE.

Observe that H0
5 ≡ H1

5 — since µ0 never appears in the vectors, both µ0 and µ1 are just uniformly
random values independent of everything else in the hybrids. By a hybrid argument, we conclude
Exp0

1-sk,1-ct ≈ Exp1
1-sk,1-ct. �

Proof (Claim 35).Proof (Claim 35). For Case 1, we show Hb2 ≈ Hb4 via a series of hybrids H3,t,i,j,W,1, . . . ,H
b
3,t,i,j,W,5

for (t, i, j,W) ∈ [T + 1]× [N]× [S]×{0, 1}S in lexicographical order. Denote by (t, i, j,W) + 1 the
next tuple of indices in increasing order.

The hybrids are illustrated in Figure 7. Note that the u’s are listed before the v’s, as in Case
1, the ciphertext is generated before the secret key. In the figure, all the indices with superscripts
except simtemp (temp means “temporary”) are suppressed as they are not used.15

• Hybrid Hb3,t,i,j,W,1Hybrid Hb3,t,i,j,W,1 proceeds identically to Hb2, except that for all (t′, i′, j′,W′) < (t, i, j,W),

ut′,i′,j′,W′ has its values in rand, acc and tbτ ’s cleared, and that a random value sx[t′, i′, j′,W′]
is embedded in ut′,i′,j′,W′ [sim]. This means all the labels with (t′, i′, j′,W′) < (t, i, j,W) are
simulated, the first label `init is reversely sampled, and the rest are honestly computed.

• Hybrid Hb3,t,i,j,W,2Hybrid Hb3,t,i,j,W,2 proceeds identically to Hb3,t,i,j,W,1, except that the values in ut,i,j,W are
zeroed out, and its inner products with all vq’s — the labels `t,i,j,W,q for all q’s — are
hardcoded into vq’s:

– The values of ut,i,j,W at rand, acc and tbτ ’s are set to 0.

– ut,i,j,W[simtemp] is set to 1 to pick up the values vq[sim
temp] for all q.

– The honest labels `t,i,j,W,q = −rx[(t− 1, i, j,W)]rf [q] + · · · are embedded in vq[sim
temp]

for each q ∈ [Q], where “· · · ” is either µ0yacc[q] (if t = T+1) or
∑

τ∈T cτ (x; t, i, j,W; rx)(Mτrf)[q]
(if t ≤ T ; it is (MN,Srt)[(t, i, j,W, q)] for pseudorandom rt = rx[t, , ,]⊗ rf).

15Case 1 is the simpler case, though it is already not simple. Note that this coincides with the selective
(or semi-adaptive) case, but the simplicity is more of a consequence of the AKGS structure than that of
selectivity.

55

hybrid vector rand acc tbτ sim simtemp

Hb3,t,i,j,W,1

ut′,i′,j′,W′
<(t,i,j,W)

0 0 0 sx[(t′, i′, j′,W′)] 0

ut,i,j,W rx[(t− 1, i, j,W)] 0 or 1 cτ (x; t, i, j,W; rx) or 0 0 0

ut′,i′,j′,W′
>(t,i,j,W)

rx[(t′ − 1, i′, j′,W′)] 0 or 1 cτ (x; t′, i′, j′,W′; rx) or 0 0 0

vq −rf [q] µ0yacc[q] (Mτrf)[q] sf [q] 0

Hb3,t,i,j,W,2

ut,i,j,W 0 0 0 0 1

vq −rf [q] µ0yacc[q] (Mτrf)[q] sf [q]
honest `t,i,j,W,q=

−rx[(t−1,i,j,W)]rf [q]+···

Hb3,t,i,j,W,3

ut,i,j,W 0 0 0 0 1

vq −rf [q] µ0yacc[q] (Mτrf)[q] sf [q] `t,i,j,W,q
$← Zp

Hb3,t,i,j,W,4

ut,i,j,W 0 0 0 0 1

vq −rf [q] µ0yacc[q] (Mτrf)[q] sf [q]
simulated `t,i,j,W,q=

sx[(t,i,j,W)]sf [q]

Hb3,t,i,j,W,5

≡
Hb

3,t′,i′,j′,W′,1

for

(t′, i′, j′,W′)
=

(t, i, j,W) + 1

ut′,i′,j′,W′
<(t,i,j,W)

0 0 0 sx[(t′, i′, j′,W′)] 0

ut,i,j,W 0 0 0 sx[(t, i, j,W)] 0

ut′,i′,j′,W′
>(t,i,j,W)

rx[(t′ − 1, i′, j′,W′)] 0 or 1 cτ (x; t′, i′, j′,W′; rx) or 0 0 0

vq −rf [q] µ0yacc[q] (Mτrf)[q] sf [q] 0

For brevity, uinit and vinit are suppressed. The reversely sampled `init is hardwired in vinit,
and is only needed (and can only be computed so by the reduction) in the exponent of G2:

[[`init]]2 ← RevSamp
(
(M, 1N , 1T , 12S),x, [[0]]2, ([[`t,z]]2)t∈[T+1],z∈CM,N,S

)
.

In the intermediate hybrids, ut′,i′,j′,W′ ’s are suppressed. They remain unchanged in this iteration.
The choices between “0 or 1” and “cτ (· · ·) or 0” are the former if t′ ≤ T , and the latter if t′ = T + 1.

In this interation, the labels `t′,i′,j′,W′,q with (t′, i′, j′,W′)... are...

< (t, i, j,W): simulated as sx[(t′, i′, j′,W′)]sf [q] and computed using IPFE
= (t, i, j,W): computed honestly using IPFE

→ computed honestly and hardwired in sk
→ simulated as random and hardwired in sk
→ simulated as sx[(t, i, j,W)]sf [q] and hardwired in sk
→ simulated as sx[(t, i, j,W)]sf [q] and computed using IPFE

> (t, i, j,W): computed honestly using IPFE
When a label is computed honestly, the garbling randomness is r = rx ⊗ rf .
When a label is computed using IPFE, rx, sx components are in ct and rf , sf components are in sk.

Figure 7: The loop hybrids in the security proof of 1-ABE for L for the case
where the ciphertext challenge comes before the secret key query.

56

As depicted in Figure 7, the inner products in Hb3,t,i,j,W,1 and Hb3,t,i,j,W,2 remain unchanged,
so they are indistinguishable by the function-hiding property of IPFE.

• Hybrid Hb3,t,i,j,W,3Hybrid Hb3,t,i,j,W,3 proceeds identically to Hb3,t,i,j,W,2, except that the labels `t,i,j,W,q are re-

placed by truly random values. Observe that in both Hb3,t,i,j,W,2 and Hb3,t,i,j,W,3, the random
values rx[(t− 1, i, j,W)] and rf [q]’s only appear in G2 (the group encoding secret key vec-
tors). The indistinguishability between them reduces to the DDH assumption in G2: Given
an MDDH1,q challenge

[[rf [1], . . . , rf [Q]; z1, . . . , zQ]]2

with

{
zq = rx[(t− 1, i, j,W)]rf [q], if a DDH tuple is given;

zq
$← Zp, if a truly random tuple is given;

we compute the labels `t,i,j,W,q as −zq + · · ·. If a DDH tuple is given, these labels use pseu-
dorandom randomizers rt−1[(i, j,W,)] = rx[(t− 1, i, j,W)]rf as in Hb3,t,i,j,W,2. If a truly

random tuple is given, these labels use truly random randomizers rt−1[(i, j,W,)]
$← ZQp ,

thus are themselves truly random (as in Hb3,t,i,j,W,3) due to the special piecewise security
of AKGS. Note that everything else in the two hybrids can be efficiently computed — in
particular, the value [[`init]]2 ← RevSamp(· · ·) can be computed efficiently in the exponent.

• Hybrid Hb3,t,i,j,W,4Hybrid Hb3,t,i,j,W,4 proceeds identically to Hb3,t,i,j,W,3, except that the truly random labels

`t,i,j,W,q for all q ∈ [Q] are replaced by pseudorandom values sx[(t, i, j,W)]sf [q] with16

sx[(t, i, j,W)]
$← Zp. The indistinguishability between the two hybrids reduces to the DDH

assumption in G2.

• Hybrid Hb3,t,i,j,W,5Hybrid Hb3,t,i,j,W,5 proceeds identically to Hb3,t,i,j,W,4, except that the pseudorandom labels

`t,i,j,W,q = sx[(t, i, j,W)]sf [q] hardwired in vq[sim
temp]’s are split into ut,i,j,W[sim] (embedding

the factor sx[(t, i, j,W)]) and vq[sim]’s (embedding the factor sf [q]), as shown in Figure 7. The
inner products in Hb3,t,i,j,W,4 and Hb3,t,i,j,W,5 remain unchanged, so the two hybrids are indis-

tinguishable by the function-hiding property of IPFE. Moreover, Hb3,t,i,j,W,5 ≡ Hb
3,t′,i′,j′,W′,1

for (t′, i′, j′,W′) = (t, i, j,W) + 1.

By a hybrid argument, we have Hb3,1,1,1,0S ,1 ≈ Hb3,T+1,N,S,1S ,5
. Lastly, observe that Hb3,1,1,1,0S ,1 ≡ Hb2

and Hb3,T+1,N,S,1S ,5
≡ Hb4. Therefore, Hb2 ≈ Hb4 conditioned on Case 1. �

Proof (Claim 36).Proof (Claim 36). The proof of Hb2 ≈ Hb4 is more involved in Case 2. In this case, the ciphertext
challenge appears after the secret key query, and we must hardwire the reversely sampled `init in
the ciphertext.

Suppose at some point, we want to make `t,i,j,W,q truly random by invoking DDH. In Case 1,
we move rx[(t− 1, i, j,W)] into the secret key vectors, which is easy because by the time we need to
invoke DDH on rx[(t− 1, i, j,W)], it only appears in one place (namely, in ut,i,j,W[rand]) and goes
away after the invocation of DDH. In Case 2, since `init ← RevSamp(· · ·) must be computed in the
exponent in G1, the only option is to move rf [q] into the ciphertext vectors. However, depending
on the transition blocks, rf [q] might appear in (Mτrf)[q

′] of any vq′ . There are many limitations to
take into consideration when sorting out the proof:

16Note that this is the first hybrid in which sx[(t, i, j,W)] appears — each such value is introduced only
when needed.

57

• The special piecewise security only allows us to simulate `t,i,j,W,q’s in increasing order of t.

• To simulate `t,i,j,W,q, all occurrences of rf [q] must be in the ciphertext.

• There is not enough space in the ciphertext to embed all the rf [q]’s at the same time.

• The value rf [q] must not go away until all `t,i,j,W,q’s are simulated. Indeed, rf [q] still resides
in vq′ ’s in Hb4, the end hybrid (for this claim).

Combining these factors, a feasible strategy is to switch (in increasing order of t, q) batches of NS2S

label functions (i.e., for fixed t, q and all i, j,W) into simulated labels by moving rf [q]’s back and
forth in each iteration (to keep the labels correctly computed) until all the labels are simulated.
The above also applies to sf [q] when we consider invoking DDH again to make truly random labels
only pseudorandom.

More specifically, in iteration t, q, when moving rf [q] into the ciphertext vectors, we erase all its
occurrences in the secret key vectors and must compensate some `t′,i,j,W,q′ ’s for their loss of rf [q]
using the indices with superscript comp. This is done by separating out the terms with rf [q]. See
the compensation identity in the notes of Figure 9 for details.

To better understand the procedure, we define the modes of a label `t′,i,j,W,q′ . There are three
orthogonal groups of modes. Each label has one mode in each group. We will refer to these modes in
the description of hybrids below, their meaning will also become clearer in the context of hybrids.

• The first group is about the value of the label. A label is honest if its value is Lt′,i,j,W,q′(x)
with garbling randomness set to r = rx⊗ rf . It is random if its value is sampled uniformly at
random. It is simulated if its value is sx[(t′, i, j,W)]sf [q

′].

• The second group is about where the terms rf , sf of a label resides. A label is normal (this
is the default) if rf , sf resides in the secret key. It is compensated if rf [q], sf [q] are in the
ciphertext with the other components of rf , sf in the secret key. It is hardwired if the value (in
its entirety) is hardwired in the ciphertext (for conceptual simplicity, this mode only applies
to the labels with t′ = t, q′ = q). A non-normal label will use indices with superscript comp.

• The last group is a highly technical one. A label is normal (default) if it is computed without
indices with superscript temp. It is temporary if it is computed with indices with superscript
temp (a label can be in this mode only when t′ = t).

The loop hybrids are a two-level loop with outer loop over t = 1, . . . , T + 1 (Figure 8) and inner
loop over q = 1, . . . , Q (Figure 9). In these hybrids, u’s (in ict’s) appear after v’s (in isk’s). The
outer loop consists of the following hybrids:

• Hybrid Hb3,t,1Hybrid Hb3,t,1 proceeds identically to Hb2, except that for all t′ < t and all i, j,W, the vectors
ut′,i,j,W have their values at rand, acc and tbτ ’s cleared and embed sx[(t′, i, j,W)] at sim. In
this hybrid, labels with t = t′ are in the honest mode.

• Hybrid Hb3,t,2Hybrid Hb3,t,2 proceeds identically to Hb3,t,1, except that the mode of `t,i,j,W,q’s (for all i, j,W, q)
are changed to honest and temporary, and that a random value sx[(t, i, j,W)] is embedded in
ut,i,j,W[simtemp] for all i, j,W. The first change is implemented as follows:

– For all q, the values of vq’s at rand, acc and tbτ are copied to their counterparts with
superscript temp.

58

hybrid vector rand, acc, tbτ randtemp, acctemp, tbtemp
τ sim simtemp

Hb3,t,1

vq normal 0, 0, 0 sf [q] 0

ut′<t,i,j,W 0, 0, 0 0, 0, 0 sx[(t′, i, j,W)] 0

u t,i,j,W normal 0, 0, 0 0 0

ut′>t,i,j,W normal 0, 0, 0 0 0

Hb3,t,2
≡

Hb3,t,3,1,1

vq normal normal sf [q] 0

ut′<t,i,j,W 0, 0, 0 0, 0, 0 sx[(t′, i, j,W)] 0

u t,i,j,W 0, 0, 0 normal 0 sx[(t, i, j,W)]

ut′>t,i,j,W normal 0, 0, 0 0 0

Hb3,t,3,1∼Q,1∼5 · · · · · ·

Hb3,t,4
≡

Hb3,t,3,Q,5

vq normal 0, 0, 0 sf [q] sf [q]

ut′<t,i,j,W 0, 0, 0 0, 0, 0 sx[(t′, i, j,W)] 0

u t,i,j,W 0, 0, 0 normal 0 sx[(t, i, j,W)]

ut′>t,i,j,W normal 0, 0, 0 0 0

Hb3,t,5
≡

Hb3,t+1,1

vq normal 0, 0, 0 sf [q] 0

ut′<t,i,j,W 0, 0, 0 0, 0, 0 sx[(t′, i, j,W)] 0

u t,i,j,W 0, 0, 0 0, 0, 0 sx[(t, i, j,W)] 0

ut′>t,i,j,W normal 0, 0, 0 0 0

For brevity, uinit and vinit are suppressed.
The reversely sampled `init is hardwired in uinit:

`init ← RevSamp
(
(M, 1N , 1T , 12S),x, 0, (`t,z)t∈[T+1],z∈CM,N,S

)
.

The “normal” in... rand, randtemp acc, acctemp tbτ , tb
temp
τ

vq: −rf [q] µ0yacc[q] (Mτrf)[q]
t′ ≤ T,ut′,i,j,W: rx[t′ − 1, i, j,W] 0 c(x; t′, i, j,W)

uT+1,i,j,W: rx[T, i, j,W] 1 0

In this iteration, the modes of `t′,i,j,W,q are...
t′ < t: simulated
t′ = t: honest → honest and temporary → simulated and temporary → simulated
t′ > t: honest

Figure 8: The outer loop hybrids in the security proof of 1-ABE for L for the case
where the ciphertext challenge comes after the secret key query.

59

– For all i, j,W, the values of ut,i,j,W’s at rand, acc and tbτ are moved to their counterparts
with superscript temp.

This way, the labels are still correctly computed, i.e., the inner products remain unchanged.
The second change prepares `t,i,j,W,q’s to be simulated and currently has no effect — the newly
embedded values multiply with 0 in the vq’s. Since the inner products remain unchanged,
Hb3,t,1 ≈ Hb3,t,2 by the function-hiding property of IPFE.

• Hybrid Hb3,t,4Hybrid Hb3,t,4 proceeds identically to Hb3,t,2, except that the mode of `t,i,j,W,q’s (for all i, j,W, q)
is switched from honest and temporary to simulated and temporary. In Figure 8, this is re-
flected by vq’s (for all q) having their values at randtemp, acctemp and tbtemp

τ ’s cleared and
embedding sf [q] at simtemp. We will show Hb3,t,2 ≈ Hb3,t,4 via a subseries of hybrids (the inner
loop hybrids).

• Hybrid Hb3,t,5Hybrid Hb3,t,5 proceeds identically to Hb3,t,4, except that the mode of `t,i,j,W,q’s is switched
from simulated and temporary to simulated and some clean-up work is done in preparation
for the next iteration:

– vq’s (for all q) have their values at simtemp cleared.

– ut,i,j,W’s (for all i, j,W) have sf [(t, i, j,W)]’s moved from simtemp into sim.

– ut,i,j,W’s (for all i, j,W) have their values at randtemp, acctemp and tbtemp
τ ’s cleared.

It is easy to check that the inner products remain unchanged, so Hb3,t,4 ≈ Hb3,t,5 by the

function-hiding property of IPFE. Furthermore, we have Hb3,t,5 ≡ Hb3,t+1,1.

Observe that Hb3,1,1 ≡ Hb2 and Hb3,T+2,5 ≡ Hb4. Once we prove Hb3,t,2 ≈ Hb3,t,4, we can conclude Hb2 ≈ Hb4
by a hybrid argument.

The inner loop hybrids connect Hb3,t,2 and Hb3,t,4 by switching `t,i,j,W,q from honest and temporary
to simulated and temporary one by one for q = 1, . . . , Q:

• Hybrid Hb3,t,3,q,1Hybrid Hb3,t,3,q,1 proceeds identically to Hb3,t,2, except that for q′ < q, all the vq′ have their
values at randtemp, acctemp and tbtemp

τ ’s cleared, and the value sf [q
′] is embedded at simtemp,

i.e., the labels `t,i,j,W,q′ for all i, j,W and all q′ < q have been switched from honest and
temporary to simulated and temporary.

• Hybrid Hb3,t,3,q,2Hybrid Hb3,t,3,q,2 proceeds identically to Hb3,t,3,q,1, except that all occurrences of rf [q] and sf [q]
are moved from vq′ ’s into vt′,i,j,W’s according to the compensation identity. The implementa-
tion is illustrated in Figure 9. The labels with q′ = q or t′ > t or t′ = t, q′ > q gain compensated
mode on top of their existing modes, and the labels `t,i,j,W,q for all i, j,W become honest and
hardwired (hardwired in ut,i,j,W[simcomp]). The inner products (the labels) remain unchanged,
so Hb3,t,3,q,1 ≈ Hb3,t,3,q,2 by the function-hiding property of IPFE.

• Hybrid Hb3,t,3,q,3Hybrid Hb3,t,3,q,3 proceeds identically to Hb3,t,3,q,2, except the labels `t,i,j,W,q (for all i, j,W)
hardwired in ut,i,j,W[simcomp] become random and hardwired. The indistinguishability between
Hb3,t,3,q,2 and Hb3,t,3,q,3 reduces to the DDH assumption in G1.

• Hybrid Hb3,t,3,q,4Hybrid Hb3,t,3,q,4 proceeds identically to Hb3,t,3,q,2, except the labels `t,i,j,W,q (for all i, j,W)
hardwired in ut,i,j,W[simcomp] are changed to be pseudorandom sx[(t, i, j,W)]sf [q], which
makes them simulated and hardwired. The indistinguishability between Hb3,t,3,q,2 and Hb3,t,3,q,3
again reduces to the DDH assumption in G1.

60

hybrid vector rand,randcomp,
acc,tbτ ,tb

comp
τ

randtemp,randtemp,comp,

acctemp,tbtemp
τ ,tbtemp,comp

τ
sim simtemp simcomp

Hb3,t,3,q,1

vq′<q normal 0, 0, 0, 0, 0 sf [q
′] sf [q

′] 0

v q normal normal sf [q] 0 0

vq′>q normal normal sf [q
′] 0 0

ut′<t,i,j,W 0, 0, 0, 0, 0 0, 0, 0, 0, 0 sx[(t′, i′, j′,W′)] 0 0

u t,i,j,W 0, 0, 0, 0, 0 normal 0 sx[(t, i, j,W)] 0

ut′>t,i,j,W normal 0, 0, 0, 0, 0 0 0 0

Hb3,t,3,q,2

vq′<q 7 rf [q] 0, 0, 0, 0, 0 sf [q
′] sf [q

′] 0

v q 7 rf [q] 0, 0, 0, 0, 0 0 0 1

vq′>q 7 rf [q] 7 rf [q] sf [q
′] 0 0

ut′<t,i,j,W 0, 0, 0, 0, 0 0, 0, 0, 0, 0 sx[(t′, i′, j′,W′)] 0 sx[(t′, i′, j′,W′)]sf [q]

u t,i,j,W 0, 0, 0, 0, 0 3 rf [q] 0 sx[(t, i, j,W)]
honest `t,i,j,W,q=

−rx[(t−1,i,j,W)]rf [q]+···

ut′>t,i,j,W 3 rf [q] 0, 0, 0, 0, 0 0 0 0

Hb3,t,3,q,3

vq′<q 7 rf [q] 0, 0, 0, 0, 0 sf [q
′] sf [q

′] 0
v q 7 rf [q] 0, 0, 0, 0, 0 0 0 1
vq′>q 7 rf [q] 7 rf [q] sf [q

′] 0 0

ut′<t,i,j,W 0, 0, 0, 0, 0 0, 0, 0, 0, 0 sx[(t′, i′, j′,W′)] 0 sx[(t′, i′, j′,W′)]sf [q]

u t,i,j,W 0, 0, 0, 0, 0 3 rf [q] 0 sx[(t, i, j,W)] `t,i,j,W,q
$← Zp

ut′>t,i,j,W 3 rf [q] 0, 0, 0, 0, 0 0 0 0

Hb3,t,3,q,4

vq′<q 7 rf [q] 0, 0, 0, 0, 0 sf [q
′] sf [q

′] 0

v q 7 rf [q] 0, 0, 0, 0, 0 0 0 1

vq′>q 7 rf [q] 7 rf [q] sf [q
′] 0 0

ut′<t,i,j,W 0, 0, 0, 0, 0 0, 0, 0, 0, 0 sx[(t′, i′, j′,W′)] 0 sx[(t′, i′, j′,W′)]sf [q]

u t,i,j,W 0, 0, 0, 0, 0 3 rf [q] 0 sx[(t, i, j,W)]
simulated `t,i,j,W,q=

sx[(t,i,j,W)]sf [q]

ut′>t,i,j,W 3 rf [q] 0, 0, 0, 0, 0 0 0 0

Hb3,t,3,q,5
≡

Hb3,t,3,q+1,1

vq′<q normal 0, 0, 0, 0, 0 sf [q
′] sf [q

′] 0

v q normal 0, 0, 0, 0, 0 sf [q] sf [q] 0

vq′>q normal normal sf [q
′] 0 0

ut′<t,i,j,W 0, 0, 0, 0, 0 0, 0, 0, 0, 0 sx[(t′, i′, j′,W′)] 0 0

u t,i,j,W 0, 0, 0, 0, 0 normal 0 sx[(t, i, j,W)] 0

ut′>t,i,j,W normal 0, 0, 0, 0, 0 0 0 0

Figure 9: The inner loop hybrids in the security proof of 1-ABE for L for the case
where the ciphertext challenge comes after the secret key query (notes).

61

For brevity, uinit and vinit are suppressed. The reversely sampled `init is hardwired in uinit,
and is only needed (and can only be computed so by the reduction) in the exponent of G1:

[[`init]]1 ← RevSamp
(
(M, 1N , 1T , 12S),x, [[0]]1, ([[`t,z]]1)t∈[T+1],z∈CM,N,S

)
.

The “normal” in... rand, randtemp acc, acctemp tbτ , tb
temp
τ

randcomp,randtemp,comp,

tbcomp
τ ,tbtemp,comp

τ

vq: −rf [q] µ0yacc[q] (Mτrf)[q] 0
t′ ≤ T,ut′,i,j,W: rx[t′ − 1, i, j,W] 0 c(x; t′, i, j,W) 0

uT+1,i,j,W: rx[T, i, j,W] 1 0 0

The compensation (7 rf [q], 3 rf [q]) components in...
rand? rand?,comp acc? tb?

τ tb?,comp
τ

q′ 6= q,vq′ : −rf [q
′] 0 µ0yacc[q′] (Mτ (rf − rf [q]eq))[q

′] (Mτeq)[q′]
vq : 0 −1 µ0yacc[q] (Mτ (rf − rf [q]eq))[q] (Mτeq)[q]

when t ≤ T
ut ,i,j,W: rx[(t − 1, i, j,W)] 0 0 cτ (x; t , i, j,W; rx) cτ (x; t , i, j,W; rx)rf [q]

t′ < t ≤ T,ut′,i,j,W: rx[(t′ − 1, i, j,W)] rx[(t′ − 1, i, j,W)]rf [q] 0 cτ (x; t′, i, j,W; rx) cτ (x; t′, i, j,W; rx)rf [q]
uT+1,i,j,W: rx[(T, i, j,W)] rx[(T, i, j,W)]rf [q] 1 0 0

when t = T + 1
uT+1,i,j,W: rx[(T, i, j,W)] 0 1 0 0

In the table above, “?” is either nothing or “temp”, i.e., if the values are set in both non-temporary slots
and temporary slots, they are the same. Note that rf − rf [q]eq is simply rf with its qth entry changed to
0, whence rf [q] does not appear. The compensation is governed by the following identity:

`t′,i,j,W,q′ = −rx[(t′ − 1, i, j,W)]rf [q
′] +

∑
τ∈T

cτ (x; t′, i, j,W; rx)(Mτ (rf − rf [q]eq + rf [q]eq))[q
′]

= −rx[(t′ − 1, i, j,W)]rf [q
′] +

∑
τ∈T

cτ
(
x; t′, i, j,W; rx

)
·
(
Mτ (rf − rf [q]eq)

)
[q′]

+
∑
τ∈T

cτ (x; t′, i, j,W; rx)rf [q] · (Mτeq)[q
′].

In this iteration, the modes of `t′,i,j,W,q′ are...
q′ < q q′ = q q′ > q

t′ < t S S → SC → S S

t′ = t ST HT → HW → RW → SW → ST HT → HCT → HT

t′ > t H → HC → H H → HC → H H → HC → H

The shorthands are Honest, Random, Simulated, Compensated, hardWired, Temporary.
For three-mode chains, the middle one spans Hb3,t,3,q,2∼4.
The net effect is that `t,i,j,W,q’s change from honest and temporary to simulated and temporary.

Figure 9 (continued) — Notes.

62

• Hybrid Hb3,t,3,q,5Hybrid Hb3,t,3,q,5 proceeds identically to Hb3,t,3,q,4, except that all occurrences of rf [q] and sf [q]
are moved back to vq′ ’s (including putting sf [q] back to vq[sim]) — compensation is undone —
and that some clean-up work is done to prepare for the next iteration. More specifically, the
clean-up work involves clearing the values of vq,ut,i,j,W at simcomp for all i, j,W and putting
sf [q] into vq[sim

temp]. As a result, all the labels lose their compensated mode, and the labels
`t,i,j,W,q for all i, j,W become simulated and temporary. Note that Hb3,t,3,q,5 ≡ Hb3,t,3,q+1,1.

Lastly, observe that Hb3,t,3,1,1 ≡ Hb3,t,2 and Hb3,t,3,Q,5 ≡ Hb3,t,4. By a hybrid argument over the inner

loop hybrids, we have Hb3,t,2 ≈ Hb3,t,4.

Hybriding over the outer loop hybrids yields Hb2 ≈ Hb4 in Case 2. �

Remarks.Remarks. For the version based on MDDHk, the labels are simulated as

`t,i,j,W,q = (ST
xSf)[(t, i, j,W), q] for Sx

$← Z[k]×([T+1]×[N]×[S]×{0,1}S)
p , Sf

$← Zk×Qp .

The proof for Case 1 goes by invoking MDDHk instead of DDH. We discuss the change in the proof
for Case 2. At some point, we need to switch the randomizers of the labels with some specific t, q
to truly random. Invoking MDDHk apparently requires completely removing the qth column of Rf ,
yet this column is used to compute the randomizers for the labels with q′ = q that are still honest.
We got away with this when assuming DDH because both distributions give us access to rf [q] (a
convenient shortcut), i.e., [[

rx[(t− 1, , ,)], rf [q], rx[(t− 1, , ,)]rf [q]
]]

1

(DDH) ≈
[[
rx[(t− 1, , ,)], rf [q], r[(t− 1, , , , q)]

]]
1
.

A näıve attempt to generalize the proof to work with MDDHk is to say[[
Rx[, (t− 1, , ,)],Rf [, q], (Rx[, (t− 1, , ,)])TRf [, q]

]]
1

??
≈
[[
Rx[, (t− 1, , ,)],Rf [, q], r[(t− 1, , ,), q]

]]
1
,

which does not follow by MDDHk (and is false for symmetric pairing groups). The correct proof
uses

[[
Rx[, (, , ,)], {

in ut′′, , , at randcomp, tbcomp
τ ’s

and in ut, , , at tbtemp,comp
τ ’s︷ ︸︸ ︷

(Rx[, (t′ − 1, , ,)])TRf [, q]}t′>t,

in ut, , , at simcomp︷ ︸︸ ︷
(Rx[, (t− 1, , ,)])TRf [, q]

]]
1

(MDDHk) ≈
[[
Rx[, (, , ,)], { r[(t′ − 1, , ,), q] }t′>t, r[(t− 1, , ,), q]

]]
1

(MDDHk) ≈
[[
Rx[, (, , ,)], {(Rx[, (t′ − 1, , ,)])TRf [, q]}t′>t, r[(t− 1, , ,), q]

]]
1
.

In other words, we first switch all the randomizers of the labels with q′ = q to truly random, then
switch back the randomizers of the labels with t′ > t, q′ = q to pseudorandom (the randomizers for
the labels with t′ < t are already gone in that iteration, because those labels are already simulated).
A similar strategy is used for Sx,Sf when we switch the truly random labels to pseudorandom
simulated ones.

7.3 KP-ABE for L

We use the same technique in Section 6.3 to convert 1-ABE for L into a full-fledged ABE for L.
The only difference is that we will need two copies of the indices in the private slot.

63

In the security proof of KP-ABE for ABPs, the private slot can be thought as a compartment
isolating the interaction between all the secret keys and the challenge ciphertext from the other
ciphertexts (which can be generated by the adversary using the master public key in the public
slot). All the secret keys can share the same private slot because the security of 1-ABE for ABPs is
unaffected by the extra keys. However, the security of 1-ABE for L does not automatically extend
to the multi-key setting, and we need an extra copy of the indices to further isolate the interaction
between the challenge ciphertext and the secret key being modified from the other secret keys.

Construction 37 (KP-ABE for L). We describe the construction for any fixed value of the security
parameter λ and suppress the appearance of λ below for simplicity of notations. Let the function
class be

F =
{
M |N,T,S : ZNp → Zp

∣∣M ∈ TM, N, T, S ≥ 1, p prime
}
.

Let (Garble,Eval) be the AKGS for F in Construction 30, G pairing groups of order p, and
(IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a slotted IPFE based on G. We construct an ABE
scheme for the following singleton predicate space P:

X =
{

(x, 1T , 12S)
∣∣x ∈ {0, 1}N for some N ≥ 1, T, S ≥ 1

}
, Y = TM,

P : X × Y → {0, 1},
(
(x, 1T , 12S),M

)
7→M |N,T,S(x) for x ∈ {0, 1}N ,

P = {P}.

The ABE scheme (Setup,KeyGen,Enc,Dec) operates as follows:

• Setup(P) takes the only predicate as input. It generates IPFE master public/secret key pair
(msk,mpk)

$← IPFE.Setup(spub, spriv) for the following slots:

spub =
{
padct, padsk, initpub, randpub, accpub

}
∪
{
tbpub
τ

∣∣ τ ∈ T },
scopy =

{
initcopy, randcopy, acccopy

}
∪
{
tbcopy
τ

∣∣ τ ∈ T },
spriv = scopy ∪ s1-ABE ∪ {padcopy, padtemp},

where s1-ABE is the index set defined in Construction 33. The algorithm returns (mpk,msk) as
the master public/secret key pair.

Note: The indices padct, padsk are used to compute h+µ in the exponent, where h (resp. µ) is
the random pad in ct (resp. sk) embedded at padct (resp. padsk). The values in spriv are set to
0 by the honest algorithms and reserved for the security proof. The names of the other indices
follow the convention in 1-ABE.

• KeyGen(msk,M) takes the master secret key and a Turing machine M = (Q,yacc, δ) ∈ TM =

Y as input. It computes the transition blocks Mτ for τ ∈ T from δ, samples µ
$← Zp, rf

$← ZQp ,
and sets the vectors vpad,vinit and vq ∈ Zsp for q ∈ [Q] as follows:

vector padct padsk initpub randpub accpub tbpub
τ in spriv

vpad 1 µ 0 0 0 0

0
vinit 0 0 rf [1] 0 0 0
vq 0 0 0 −rf [q] µyacc[q] (Mτrf)[q]

64

The algorithm generates an IPFE secret key for each vector defined above:

iskpad
$← IPFE.KeyGen(msk, [[vpad]]2),

iskinit
$← IPFE.KeyGen(msk, [[vinit]]2),

for q ∈ [Q]: iskq
$← IPFE.KeyGen(msk, [[vq]]2).

It returns sk = (iskpad,M, iskinit, isk1, . . . , iskQ).

Note: Same as in 1-ABE for L, KeyGen creates the garbling with secrets α = µ, β = 0.

• Enc
(
mpk, (x, 1T , 12S), g

)
takes the master public key, an input x ∈ {0, 1}N for some N ≥ 1,

time/space complexity bounds T, S ≥ 1 (encoded as 1T and 12S), and a message g ∈M = GT

as input. It samples h
$← Zp, s

$← Zp, rx
$← Z[0..T]×[N]×[S]×{0,1}S

p and sets the vectors upad,uinit

and ut,i,j,W ∈ Zspub
p for t ∈ [T + 1], i ∈ [N], j ∈ [S],W ∈ {0, 1}S as follows:

vector padct padsk initpub the other
indices

upad h s 0
0

uinit 0 0 srx[(0, 1, 1,0S)]

vector randpub accpub tbpub
τ

the other
indices

t ≤ T : ut,i,j,W srx[(t− 1, i, j,W)] 0 scτ (x; t, i, j,W; rx)
0

uT+1,i,j,W srx[(T, i, j,W)] s 0

The algorithm then generates IPFE ciphertexts for the vectors defined above:

ictpad
$← IPFE.SlotEnc(mpk, [[upad]]1), ictinit

$← IPFE.SlotEnc(mpk, [[uinit]]1),

for t ∈ [T + 1], i ∈ [N], j ∈ [S],W ∈ {0, 1}S : ictt,i,j,W
$← IPFE.SlotEnc(mpk, [[ut,i,j,W]]1).

It returns ct =
(
g + [[h]]T, ictpad, (x, T, S), ictinit, (ictt,i,j,W)t∈[T+1],i∈[N],j∈[S],W∈{0,1}S

)
.

• Dec(sk, ct) takes a secret key sk and a ciphertext ct as input. It parses

sk as
(
iskpad,M, iskinit, isk1, . . . , iskQ

)
and

ct as
(
[[z]]T, ictpad, (x, T, S), ictinit, (ictt,i,j,W)t∈[T+1],i∈[N],j∈[S],W∈{0,1}S

)
,

where M = (Q,yacc, δ) ∈ TM and x ∈ {0, 1}N . The algorithm returns ⊥ if M |N,T,S(x) = 0.

Otherwise, it does the following (recall that CM,N,S = [N]× [S]× {0, 1}S × [Q]):

[[z′]]T ← IPFE.Dec(iskpad, ictpad), [[`init]]T ← IPFE.Dec(iskinit, ictinit),

for t ∈ [T + 1], (i, j,W, q) ∈ CM,N,S : [[`t,i,j,W,q]]T ← IPFE.Dec(iskq, ictt,i,j,W),

[[µ′]]T ← Eval
(
(M, 1N , 1T , 12S , p),x, [[`init]]T, ([[`t,z]]T)t∈[T+1],z∈CM,N,S

)
.

The algorithm returns [[z]]T + [[µ′]]T − [[z′]]T as the decrypted message.

Note: By combining the arguments for the correctness of 1-ABE for L (Construction 33) and
KP-ABE for ABPs (Construction 26), it is readily verified that µ′ = sµM |N,T,S(x) = sµ and
z′ = h + sµ. Therefore, [[z]]T + [[µ′]]T − [[z′]]T = g + [[h]]T + [[sµ]]T − [[h+ sµ]]T = g, i.e., Dec
correctly recovers the message.

65

Theorem 38. Suppose in Construction 37, the SXDH assumption holds in G and the slotted IPFE
is function-hiding, then the construction is a secure ABE scheme.

Proof.Proof. Let A be any efficient adversary. We want to show that the distinguishing advantage of
A against Exp0

CPA and Exp1
CPA is negligible. Suppose A makes Φ secret key queries, it receives

skϕ encoding half a garbling for machine Mϕ in the public slot and ct encrypting message gb and

encoding half a garbling for input string x ∈ {0, 1}N and time/space bounds T, S in the public slot,
where Mϕ’s,x, T, S are chosen adaptively by A subject to the constraint that Mϕ|N,T,S(x) = 0 for
all ϕ ∈ [Φ]. The goal of the proof is thus to show the message gb is computationally hidden.

At a high level, the proof involves three steps, similar to those in the proof of IND-CPA security
of KP-ABE for ABPs (Theorem 27):

• First, the garblings (in both ct and skϕ) as well as the secret key pads µϕ are removed from
spub. Instead, ct embeds in scopy (half of) the garbling without s, and each skϕ embeds in
scopy (half) a garbling generated with pad µ̂0

ϕ and randomness r̂ϕ,f independent of those in
spub.

• Next, we go through a loop of Φ iterations. In the ϕth iteration, we replace µ̂0
ϕ in vϕ,pad by

an independent random value µ̂1
ϕ (inconsistent with µ̂0

ϕ used to generate vϕ,init and vϕ,q’s).
However, this is not as simple as the case of KP-ABE for ABPs, because the security of 1-
ABE for L (Theorem 34) does not automatically generalize to the case of multiple secret key
queries, which can be regarded as a consequence of reusing the randomness in the ciphertext
vectors. We employ the trick of temporary mode to resolve the problem. Roughly speaking,
s1-ABE is used for the interaction between skϕ (the secret key being modified) and ct, while
scopy is used for the interaction between all other secret keys and ct. The ciphertext uses
two sets of independent randomness — rx in scopy and r̂x in s1-ABE — so that the proof of
Theorem 34 can be invoked in s1-ABE.

• When all the secret keys have their pads µ̂0
ϕ replaced by µ̂1

ϕ, we move the random pad h from
the ciphertext into all the secret keys, by which point h will be perfectly hidden by the pads
µ̂1
ϕ and perfectly hide the message.

We start with the first step, which is the first step in Theorem 27 with DDH instead of MDDH:

• Hybrid Hb0Hybrid Hb0 proceeds identically to ExpbCPA, where the ict’s (in ct) are generated using SlotEnc.
In Figure 10, this is depicted as “⊥” in the u’s.

• Hybrid Hb1Hybrid Hb1 proceeds identically to Hb0, except that the ict’s are generated using Enc with u|spriv

set to 0. By the slot-mode correctness of the slotted IPFE, we have Hb1 ≡ Hb0.

• Hybrid Hb2Hybrid Hb2 proceeds identically to Hb1, except with how the (secret key) pads and the labels are
computed (as inner products) is changed — instead of multiplying with s in the ciphertext, s
is multiplied in the secret key (which prepares the secret key randomness to be rerandomized):

– In the ciphertext vectors, values at padsk, initpub, randpub, accpub and tbpub
τ ’s (in the public

slot) are moved to padcopy, scopy (in the private slot), and the multiplier s is removed.

– In the secret key vectors, values at padsk, initpub, randpub, accpub and tbpub
τ ’s (in the public

slot) are copied to padcopy, scopy (in the private slot), and s is multiplied to the copy in
the private slot.

66

hybrid vector padct,
padsk

initpub,randpub,

accpub,tbpub
τ

padcopy in scopy

Hb0 ≡ ExpbCPA

vϕ,pad 1, µϕ 0

vϕ,init,vϕ,q ∝ (µϕ, rϕ,f) 0

upad h, s ⊥

uinit,ut,i,j,W ∝ (s, srx) ⊥

Hb1

vϕ,pad 1, µϕ 0

vϕ,init,vϕ,q ∝ (µϕ, rϕ,f) 0

upad h, s 0

uinit,ut,i,j,W ∝ (s, srx) 0

Hb2

vϕ,pad 1, µϕ sµϕ

vϕ,init,vϕ,q ∝ (µϕ, rϕ,f) ∝ (sµϕ, srϕ,f)

upad h, 0 1

uinit,ut,i,j,W 0 ∝ (1, rx)

Hb3 ≡ Hb4,1

vϕ,pad 1, µϕ µ̂0
ϕ

vϕ,init,vϕ,q ∝ (µϕ, rϕ,f) ∝ (µ̂0
ϕ, r̂ϕ,f)

upad h, 0 1

uinit,ut,i,j,W 0 ∝ (1, rx)

Hb4,1∼Φ+1 · · · · · ·

Hb5 ≡ Hb4,Φ+1

vϕ,pad 1, µϕ µ̂1
ϕ

$← Zp
vϕ,init,vϕ,q ∝ (µϕ, rϕ,f) ∝ (µ̂0

ϕ, r̂ϕ,f)

upad h , 0 1

uinit,ut,i,j,W 0 ∝ (1, rx)

Hb6

vϕ,pad 1, µϕ h+ µ̂1
ϕ

vϕ,init,vϕ,q ∝ (µϕ, rϕ,f) ∝ (µ̂0
ϕ, r̂ϕ,f)

upad 0 , 0 1

uinit,ut,i,j,W 0 ∝ (1, rx)

For brevity, the vectors for computing the labels are not spelled out.
The shorthand “∝ z” means that the components there are linear in z

and efficiently computable given z in the exponent, and that there is
only one natural way of computing them (cf. Construction 37).

Figure 10: The first/last few hybrids in the proof of IND-CPA
security of our KP-ABE scheme for L.

67

The hybrid is illustrated in Figure 10. Since the inner products remain the same and the
secret key vectors have their values in the public slot unchanged, we have Hb2 ≈ Hb1 by the
function-hiding property of IPFE. An alternative view of this hybrid is that in each secret
key skϕ, two (half) garblings are embedded, one generated for µϕ using randomness rϕ,f in
the public slot, the other generated for sµϕ using randomness srϕ,f in the private slot.

• Hybrid Hb3Hybrid Hb3 proceeds identically to Hb2, except that the garbling in the private slots of the secret
key vectors are generated for independent pad µ̂0

ϕ with independent randomness r̂ϕ,f . Note

that the only difference between Hb2 and Hb3 is that in the former, the randomness and the
pads of the garblings in the private slot are random multiples of those in the public slot, and
that in the latter, those in the private slot are independently sampled. The DDH assumption
in G2 says {

[[µϕ, rϕ,f ; sµϕ, srϕ,f]]2
}
ϕ∈[Φ]

≈
{

[[µϕ, rϕ,f ; µ̂
0
ϕ, r̂ϕ,f]]2

}
ϕ∈[Φ]

.

Given [[µϕ, rϕ,f]]2 and either [[sµϕ, srϕ,f]]2 or [[µ̂0
ϕ, r̂ϕ,f]]2, the secret key vectors can be efficiently

computed in the exponent, and everything else can be efficiently computed. Therefore, Hb2 ≈ Hb3
by the DDH assumption in G2.

We have completed the first step of the proof. Now we proceed to the second step, in which we
switch µ̂0

ϕ to independent random values µ̂1
ϕ (inconsistent with vϕ,init and vϕ,q’s) one by one:

• Hybrid Hb4,ϕHybrid Hb4,ϕ proceeds identically to Hb3, except that for ϕ′ < ϕ (the first ϕ − 1 secret keys),

vϕ′,pad (in iskϕ′,pad) stores an independent random value µ̂1
ϕ

$← Zp at padcopy.

Observe that Hb4,1 ≡ Hb3. We show Hb4,ϕ ≈ Hb4,ϕ+1 for all ϕ ∈ [Φ], b ∈ {0, 1} as a separate claim:

Claim 39. Hb4,ϕ ≈ Hb4,ϕ+1 for all ϕ ∈ [Φ], b ∈ {0, 1}.

For now, we focus on the last step:

• Hybrid Hb5Hybrid Hb5 proceeds identically to Hb3, except that all the pads µ̂0
ϕ in vϕ,pad[padcopy] are re-

placed by independent random values µ̂1
ϕ

$← Zp. The hybrid is shown in Figure 10. Observe

that Hb5 ≡ Hb4,Φ+1.

Note that in this hybrid, the inner products of upad and vϕ,pad’s are h + µ̂1
ϕ, which hide h.

However, h still appears in upad. In the next hybrid, we remove h from upad and directly
hardwire the inner products h + µ̂1

ϕ in vϕ,pad’s so that h becomes information-theoretically
hidden.

• Hybrid Hb6Hybrid Hb6 proceeds identically to Hb5, except that the random pad h is removed from upad[padct]
and all the vϕ,pad stores h + µ̂1

ϕ at padcopy. Since the inner products and the public slot of

the secret key vectors remain unchanged, we have Hb5 ≈ Hb6 by the function-hiding property
of IPFE.

We have H0
6 ≡ H1

6 because h is perfectly hidden by each µ̂1
ϕ and perfectly hides the message.

Therefore, by a hybrid argument, we conclude Exp0
CPA ≈ Exp1

CPA. �

Proof (Claim 39).Proof (Claim 39). Fix some ϕ ∈ [Φ], b ∈ {0, 1} and we want to show Hb4,ϕ ≈ Hb4,ϕ+1, for which we
must modify skϕ. There are three key ideas in the proof, which are logically chained in an anadiplosis
fashion:

68

• To modify skϕ, we temporarily use padtemp and s1-ABE exclusively for the interaction between
ct and skϕ, and use padcopy and scopy for the interaction between ct and the other secret keys,
similar to the temporary mode in the proof of Claim 36. With the interaction between ct and
skϕ isolated, we could hope to syntactically invoke 1-ABE security for them.

• To invoke 1-ABE security in s1-ABE, we must make sure that in s1-ABE, the ciphertext vectors
use randomness independent of those in scopy. This is done by invoking the DDH assumption
twice in a row to make ct use rx in padcopy, scopy and independent r̂x in padtemp, s1-ABE, similar
to how the labels are simulated in the proof of Theorem 34 by invoking the DDH assumption
twice in a row.

• To invoke the DDH assumption to rerandomize rx, there needs to be a random value multiplied
to it. However, in Hb4,ϕ, nothing is multiplied to µ’s, rf ’s, µ̂’s, r̂f’s nor rx. This can be resolved
by a change of variable introducing a negligible statistical error:

(µ̂0
ϕ, µ̂

1
ϕ, r̂ϕ,f)←→ (ŝ µ̂0

ϕ, ŝ µ̂
1
ϕ, ŝ r̂ϕ,f) for ŝ

$← Zp.

Having changed the variable, we move ŝ to rx using the function-hiding property of IPFE,
after which DDH can be invoked.

We now implement these ideas in the following hybrids Gβ0 , . . . ,G
β
6 :

• Hybrid Gβ0Hybrid Gβ0 proceeds identically to Hb4,ϕ+β, where the first ϕ − 1 secret keys have their µ̂0
ϕ′

replaced by µ̂1
ϕ′ in vϕ′,pad[padcopy], the ϕth secret key stores either µ̂0

ϕ (consistent with vϕ,init

and vϕ,q’s) or µ̂1
ϕ (inconsistent). The hybrid is shown in Figure 11.

• Hybrid Gβ1Hybrid Gβ1 proceeds identically to Gβ0 , except that a random multiplier ŝ
$← Zp is multiplied to

the values at padcopy, scopy for skϕ. Conditioned on ŝ 6= 0 (which happens with overwhelming

probability), Gβ1 and Gβ0 are identically distributed. Therefore, Gβ1 ≈s G
β
0 taking into account

the case ŝ = 0.

• Hybrid Gβ2Hybrid Gβ2 proceeds identically to Gβ1 , except that the interaction between ct and skϕ is
isolated from those between ct and the other secret keys, and that s is multiplied in ct instead
of skϕ:

– In the vectors in the ϕth secret key skϕ, values at padcopy, scopy are moved to padtemp, s1-ABE,
and the multiplier ŝ is removed.

– In the ciphertext vectors, values at padcopy, scopy are copied to padtemp, s1-ABE, and ŝ is
multiplied to the new copy.

As illustrated in Figure 11, the inner products and the public slots of the secret key vectors
remain unchanged, so Gβ2 ≈ Gβ1 by the function-hiding property of IPFE.

• Hybrid Gβ3Hybrid Gβ3 proceeds identically to Gβ2 , except that in the ciphertext vectors, the ŝ rx in s1-ABE

is replaced by an independent and uniformly random ŝ. The indistinguishability between Gβ2
and Gβ3 follows by the DDH assumption in G1:

[[rx, ŝ, ŝ rx]]1 ≈ [[rx, ŝ, ŝ]]1 for rx, ŝ
$← Z[0..T]×[N]×[S]×{0,1}S

p , ŝ
$← Zp.

69

hybrid vector in spub padcopy in scopy padtemp in s1-ABE

Gβ0
≡

Hb4,ϕ+β

ϕ′<ϕ

{
vϕ′,pad

vϕ′,init,vϕ′,q

µ, rf ’s(independent
of µ̂,̂rf’s

)
and h

µ̂1
ϕ′

$← Zp 0

∝ (µ̂0
ϕ′ , r̂ϕ′,f) 0

vϕ,pad µ̂βϕ 0

vϕ,init,vϕ,q ∝ (µ̂0
ϕ, r̂ϕ,f) 0

ϕ′>ϕ

{
vϕ′,pad

vϕ′,init,vϕ′,q

µ̂0
ϕ′ 0

∝ (µ̂0
ϕ′ , r̂ϕ′,f) 0

upad 1 0
uinit,ut,i,j,W ∝ (1, rx) 0

Gβ1

vϕ,pad

µ, rf ’s
and h

ŝ µ̂βϕ 0

vϕ,init,vϕ,q ∝ (ŝ µ̂0
ϕ, ŝ r̂ϕ,f) 0

upad 1 0

uinit,ut,i,j,W ∝ (1, rx) 0

Gβ2

vϕ,pad

µ, rf ’s
and h

0 µ̂βϕ

vϕ,init,vϕ,q 0 ∝ (µ̂0
ϕ, r̂ϕ,f)

upad 1 ŝ

uinit,ut,i,j,W ∝ (1, rx) ∝ (ŝ, ŝ rx)

Gβ3

vϕ,pad

µ, rf ’s
and h

0 µ̂βϕ

vϕ,init,vϕ,q 0 ∝ (µ̂0
ϕ, r̂ϕ,f)

upad 1 ŝ

uinit,ut,i,j,W ∝ (1, rx) ∝ (ŝ, ŝ)

Gβ4

vϕ,pad

µ, rf ’s
and h

0 µ̂βϕ

vϕ,init,vϕ,q 0 ∝ (µ̂0
ϕ, r̂ϕ,f)

upad 1 ŝ

uinit,ut,i,j,W ∝ (1, rx) ∝ (ŝ, ŝ r̂x)

Gβ5

vϕ,pad

µ, rf ’s
and h

0 ŝ µ̂βϕ

vϕ,init,vϕ,q 0 ∝ (ŝ µ̂0
ϕ, ŝ r̂ϕ,f)

upad 1 1

uinit,ut,i,j,W ∝ (1, rx) ∝ (1, r̂x)

Gβ6

vϕ,pad

µ, rf ’s
and h

0 µ̂βϕ

vϕ,init,vϕ,q 0 ∝ (µ̂0
ϕ, r̂ϕ,f)

upad 1 1

uinit,ut,i,j,W ∝ (1, rx) ∝ (1, r̂x)

For brevity, the vectors for computing the labels are not spelled out, and

the secret key vectors other than those for skϕ are suppressed except in Gβ0 .
See Figure 10 for the meaning of “∝ z”.

Figure 11: The hybrids for showing Hb4,ϕ ≈ Hb4,ϕ+1 in the proof of IND-CPA
security of our KP-ABE scheme for L.

70

• Hybrid Gβ4Hybrid Gβ4 proceeds identically to Gβ3 , except that in the ciphertext vectors, the ŝ in s1-ABE

is replaced by ŝ r̂x. The indistinguishability between Gβ3 and Gβ4 again follows by the DDH
assumption in G1:

[[ŝ, ŝ]]1 ≈ [[ŝ, ŝ r̂x]]1 for ŝ, r̂x
$← Z[0..T]×[N]×[S]×{0,1}S

p , ŝ
$← Zp.

• Hybrid Gβ5Hybrid Gβ5 proceeds identically to Gβ4 , except that the multiplier ŝ is moved from u’s back
to vϕ’s as depicted in Figure 11. The indistinguishability between the two hybrids follows by
the function-hiding property of IPFE.

• Hybrid Gβ6Hybrid Gβ6 proceeds identically to Gβ5 , except that the multiplier ŝ is removed. We have Gβ6 ≈s
Gβ5 .

Lastly, observe that in Gβ6 , only the ciphertext vectors and the vectors for the ϕth secret key have
non-zero values in s1-ABE, and those values are generated exactly as specified by the 1-ABE for L
(Construction 33). We use syntactically the same proof of the security of the 1-ABE scheme for L
(Theorem 34) to argue G0

6 ≈ G1
6:

• Each step in the proof of Theorem 34 uses the function-hiding property, the DDH assumption
or the special piecewise security, all of which are still valid when translated into the case
of G0

6 and G1
6 in the only natural way. More specifically, i) the function-hiding property is

unaffected by the public slot, scopy,padcopy and the additional vectors (in the other secret
keys), as the values being manipulated during the proof are all in s1-ABE in the private slot, and
the additional vectors (having values 0 in s1-ABE) cannot “detect” the changes in s1-ABE; and
ii) the applications of the DDH assumptions and the special piecewise security still go through,
because the garbling in s1-ABE is generated using randomness independent of everything else
in Gβ6 .

• In the translated version of the proof of Theorem 34, vϕ,pad[padtemp] is always set to µ̂βϕ. In
the final hybrids, both µ̂0

ϕ and µ̂1
ϕ are uniformly random and independent of everything else,

so they can replace each other.

Therefore, G0
6 ≈ G1

6, and by a hybrid argument, we conclude Hb4,ϕ ≡ G0
0 ≈ G1

0 ≡ Hb4,ϕ+1. �

Remarks.Remarks. The natural way to generalize Construction 37 to MDDHk is to let the public slot store
k independent garblings and let the private slot provide space for k + 1 garblings — among the
k + 1 copies in the private slot, k of them are the counterpart of scopy, and the last one of them is
the counterpart of s1-ABE. Of course, the underlying 1-ABE scheme must also be based on MDDHk.
This natural generalization uses vectors of dimension Θ(k2), because each copy of the garbling
already needs Θ(k) indices.

A simple optimization that shortens the vectors to only Θ(k) is to realize that the rerandomiza-
tion of the (half) garblings in the security proof of ABE can be done without creating k copies of
1-ABE, essentially because each 1-ABE already uses k copies of random values to jointly generate
the label functions. For this optimization to work, the copy in spub needs to embed k independent
pads in the secret keys and k independent random multipliers in the ciphertext, and decapsulation
gives the inner product of the two. For the other two “compartments”, scopy and s1-ABE, each only
needs to provide space for one pad.

The ABE scheme still uses 3 copies, and we use (X ‖ Y ‖ Z) to represent an ABE key/ciphertext
generated with randomness X,Y,Z for the spub, scopy, s1-ABE copies (0 means no copy is there; pads

71

are omitted). Roughly speaking, the first step (isolating the interaction between sk’s and ct from
the other ciphertexts) is done as follows:

Real Hybrid 1 Hybrid 2 Hybrid 3

skϕ: (Rf,ϕ ‖ 0 ‖ 0) skϕ: (Rf,ϕ ‖ 0 ‖ 0) skϕ: (Rf,ϕ ‖ATRf,ϕ ‖ 0) skϕ: (Rf,ϕ ‖ R̂f,ϕ ‖ 0)
ct: (Rx ‖ 0 ‖ 0) ct: (ARx ‖ 0 ‖ 0) ct: (0 ‖ Rx ‖ 0) ct: (0 ‖ Rx ‖ 0)

Here, Rf,ϕ, R̂f,ϕ
$← Zk×Qϕp ,Rx

$← Z[k]×([0..T]×[N]×[S]×{0,1}S)
p and A

$← Zk×kp . The first transition is
a change of variable introducing only a negligible statistical error. The second one is due to the
function-hiding property of IPFE. The third reduces to MDDHk

k,Φ+Q1+···+QΦ
.

The second step is to change the pads in scopy to be inconsistent one by one. Similar to the
proof of Claim 39, we achieve this via a loop of Φ iterations, one for each secret key. In the ϕth

iteration, we i) introduce a random multiplier (this time a k× k matrix) in scopy of skϕ, ii) isolate
the interaction between ct and skϕ into s1-ABE with the multiplier moved into ct, iii) switch the
randomness in s1-ABE of ct to be sampled independently from that in scopy in ct, and iv) invoke
1-ABE security.

The last step is to remove the ciphertext pad from ct and hide it using the inconsistent pads in
sk’s, which is straightforward.

7.4 Extension to NL

Applying our construction of KP-ABE for L to non-deterministic Turing machines yields a KP-ABE
for NL. In this section, we discuss what modifications need to be made to handle NL.

Non-Deterministic Turing Machines. The definitions of non-deterministic Turing machines
(NTMs) and time/space bounded computation are the same as Definition 12, except with these
changes:

• The transition criterion δ can be any relation between (i.e., any subset of the Cartesian
product of) [Q] × {0, 1}2 and [Q] × {0, 1} × {0,±1}2, where

(
(q, x, w), (q′, w′,∆i,∆j)

)
∈ δ

means that if the current state is q, the input tape symbol under scan is x and the work tape
symbol under scan is w, then it is valid to transit into state q′, overwrite w with w′, and move
the input and work tape pointer by offsets ∆i and ∆j respectively.

• The definition of hanging in accepting states is that for all q ∈ [Q] such that yacc[q] = 1 and
all x,w ∈ {0, 1},

δ ∩
(
{(q, x, w)} × ([Q]× {0, 1} × {0,±1}2)

)
=
{(

(q, x, w), (q, w, 0, 0)
)}
.

• In the definition of acceptance,

δ(qt,x[it],Wt[jt]) = (qt+1,Wt+1[jt], it+1 − it, jt+1 − jt)
is changed to

(
(qt,x[it],Wt[jt]), (qt+1,Wt+1[jt], it+1 − it, jt+1 − jt)

)
∈ δ.

Note that in the case of non-deterministic machines, the machine might move off the tapes with
certain choices of transitions, but that does not necessarily lead to rejection — it is just that
particular path that is silently dropped. As long as one valid path does not exceed the space bound
and land in an accepting state after T steps, the input is accepted.

72

Arithmetizing NTM Computation. The same matrix multiplication formula (thus the same
AKGS) works for non-deterministic computation. We just need to use the non-deterministic version
of the transition matrix, which share the same block structure as the deterministic ones.

Let M = (Q,yacc, δ) be an NTM. The transition blocks of M are

Mx,w,w′,∆i,∆j ∈ ZQ×Qp for x,w,w′ ∈ {0, 1},∆i,∆j ∈ {0,±1}:

Mx,w,w′,∆i,∆j [q, q
′] =

{
1, if

(
(q, x, w), (q′, w′,∆i,∆j)

)
∈ δ;

0, otherwise.

The transition matrix of M for input of length N and space bound S is MN,S ∈ {0, 1}CM,N,S×CM,N,S :

MN,S(x)[(i, j,W,), (i′, j′,W′,)] =


Mx[i],W[j],W′[j],i′−i,j′−j , if i′ − i, j′ − j ∈ {0,±1} and

W[j′′] = W′[j′′] for all j′′ 6= j;

0, otherwise.

It is readily verified that in MN,S(x)[(i, j,W,), (, , ,)], each transition block appears at most
once. The matrix multiplication formula finds the number of accepting paths:

Lemma 40. Let M = (Q,yacc, δ) be an NTM, x ∈ {0, 1}N for some N ≥ 1 and T, S ≥ 1. The
number of valid computation paths reaching internal configuration (i, j,W, q) when running M
starting from the initial configuration (1, 1,0S , 1) with input x ∈ {0, 1}N and space bound S for T
steps is (

eT

(1,1,0S ,1)

(
MN,S(x)

)T)T

[(i, j,W, q)].

Moreover, computing eT

(1,1,0S ,1)

(
MN,S(x)

)T (
1[N]×[S]×{0,1}S⊗yacc

)
over the integers yields the num-

ber of accepting computation paths when running M starting from the initial configuration (1, 1,0S , 1)
with input x ∈ {0, 1}N within time T and space S, which is non-zero if and only if M accepts x
within time T and space S.

Given the above lemma, we arithmetize time/space bounded computation of M by defining

M |N,T,S(x) = eT

(1,1,0S ,1)

(
MN,S(x)

)T (
1[N]×[S]×{0,1}S ⊗ yacc

)
over Zp for x ∈ ZNp , (10)

which evaluates to 0 if (but not necessarily only if) x ∈ {0, 1}N is not accepted by M within time
T and space S.

Discussion on Correctness. The arithmetization is precise for the complexity class modZpL [BDHM92]
(restricted logspace counting class mod p). Each language L ∈ modZpL is associated with a non-
deterministic logspace Turing machine M such that

x ∈ L =⇒ #[accepting paths of M(x)] 6≡ 0 (mod p),

x /∈ L =⇒ #[accepting paths of M(x)] = 0 (as an integer).

As a special case, UL ⊆ modZpL for all p, where UL means unambiguous logspace — these are
languages recognized by a logspace NTM such that for any input, there is at most 1 accepting
path.

However, it is not known whether NL ⊆ modZpL for any p. Indeed, if the number of accepting
paths is a non-zero multiple of p, the computation will be mistakenly rejected under our arith-
metization. We circumvent this correctness issue by sampling an instance of pairing groups with
entropic order.

73

Definition 41. A family of pairing groups is G with an efficient algorithm G.Setup(1λ) (called
pairing group sampler) that samples an instance (p, G1, G2, GT, g1, g2, e) from some distribution
of pairing groups such that

• G1, G2, GT are groups of the same prime order p;

• G1, G2 are generated by g1, g2, respectively;

• e : G1 ×G2 → GT is bilinear and non-degenerate; and

• the group operations and e are efficiently computable, given the instance description.

The family has entropic order if the min-entropy of p is ω(log λ):

Hλ = − log2 max
p?

Pr
[
(p,G1, G2, GT, g1, g2, e)

$← Setup(1λ) : p = p?
]
.

Bracket notations are meaningful once an instance is fixed. The definitions of MDDH and DDH
(Definitions 1 and 3) are changed accordingly so that the groups are sampled by G.Setup and
the description is given to the distinguisher along with the challenge. Moreover, the definition of
IPFE (Definition 6) can easily generalize to work with families of pairing groups (still with perfect
correctness). The construction (see Appendix A) implying Lemma 8 also works with families of
pairing groups and retains perfect correctness.

For 1-ABE and ABE, we relax the correctness requirement so that decapsulation or decryption
only needs to succeed with overwhelming probability for polynomial-sized inputs.

Definition 42 (1-ABE, altered). Let G be a pairing group sampler. A 1-ABE scheme based on G
has the same syntax as in Definition 23, except that

• Setup additionally takes an instance of pairing groups as input.

• The correctness requirement is that for all sequence {zλ = (Pλ ∈ Pλ, yλ ∈ YPλ , xλ ∈ XPλ)}λ∈N
such that the description of zλ is polynomially long in λ and Pλ(xλ, yλ) = 1 for all λ ∈ N, the
following probability is negligible in λ:

Pr



groups = (p, G1, G2, GT, g1, g2, e)
$← G.Setup(1λ)

msk
$← Setup(1λ, groups, Pλ)

µ
$← Zp

sk
$← KeyGen(1λ,msk, y, µ)

ct
$← Enc(1λ,msk, x)

: Dec(1λ, sk, ct) 6= [[µ]]T


.

In the security experiments, the adversary additionally receives the instance description used to set
up the 1-ABE scheme before making any queries.

It is also straightforward to relax the correctness requirement of ABE likewise. We now proceed to
AKGS, 1-ABE and ABE schemes for NL.

AKGS, 1-ABE and ABE for NL. We simply plug in the matrix multiplication formula for NTM
into AKGS, 1-ABE and ABE constructions.

74

Construction 43 (AKGS, 1-ABE and ABE for NL). Let G be a family of pairing groups. The
AKGS, 1-ABE and ABE for NL is obtained by plugging Equation (10) into Constructions 30
(AKGS), 33 (1-ABE) and 37 (ABE) with (secret-key or slotted) IPFE based on G. Formally, 1-
ABE and ABE work for the following singleton predicate space:

X =
{

(x, 1T , 12S)
∣∣x ∈ {0, 1}N for some N ≥ 1, T, S ≥ 1

}
, Y =

{
M
∣∣M is an NTM

}
,

P : X × Y → {0, 1},
(
(x, 1T , 12S),M

)
7→


1, if M accepts x within

time T and space S;

0, otherwise;

Pλ = {P}, P = {Pλ}λ∈N.

In 1-ABE and ABE, Dec returns ⊥ if M |N,T,S(x) ≡ 0 (mod p); otherwise, it recovers µ or µ by
dividing the Eval result by M |N,T,S(x). In ABE, the message space is chosen so that it is efficiently
encodable and decodable in the target group given the instance description.

Theorem 44. The AKGS in Construction 43 is linear, correct, and special piecewise secure with
the same ordering of label functions and randomizers as described in Theorem 31.

Suppose in Construction 43, G has entropic order, SXDH holds in G and the IPFE schemes
are function-hiding, then the constructed 1-ABE and ABE are correct (in the relaxed sense) and
secure.

Proof.Proof. The AKGS linearity, correctness and special piecewise security (and ordering) are straight-
forward. The security of 1-ABE and ABE also generalizes from the proof of Theorems 34 and 38 —
by Lemma 40, M |N,T,S for non-deterministic Turing machine M always evaluates to 0 if the input
is not accepted within the time/space bounds. We focus on the (relaxed) correctness of 1-ABE and
ABE, which amounts to showing that M |N,T,S(x) ≡ 0 (mod p) with only negligible probability for
accepting computations.

Let the sequence in the correctness test be17

zλ = (P, Mλ, xλ, 1
Tλ , 12Sλ), P is the only predicate, Mλ = (Qλ,yacc,λ, δλ), xλ ∈ {0, 1}Nλ .

Since zλ can only be polynomially long, the number of possible transitions (i.e., |δλ|) and the time
constraint Tλ are bounded by polynomial of λ, which implies that

Aλ
def
== #[accepting paths of M(x) in T steps]

≤ #[valid computation paths of M(x) in T steps]

≤ |δλ|Tλ ≤ 2c+λ
c

for some constant c > 0. In particular, this means Aλ has no more than c+ λc prime factors. Let
the min-entropy of group order p be Hλ = ω(log λ). By our assumption, Mλ accepts xλ within
time Tλ and space Sλ, so Aλ > 0 and

Pr
[
(p, . . .)

$← G.Setup(1λ) : p | Aλ
]
≤
∑

p′ prime
p′|Aλ

Pr
[
(p, . . .)

$← G.Setup(1λ) : p = p′
]
≤ (c+ λc)2−Hλ

is negligible in λ. �

Remarks.Remarks. If the non-deterministic machine in question is unambiguous, the schemes can be instan-
tiated with a sequence of pairing groups with perfect correctness.

17In case of ABE, there is also a message, but it does not affect the argument.

75

7.5 ABE for DFA/NFA

A deterministic finite automaton (DFA) can be converted (in polynomial time) to a deterministic
Turing machine with space complexity 1 and time complexity N , where N is the length of the input.
Similarly, an NFA can be converted to an NTM with space complexity 1 and time complexity N .
Therefore, ABE schemes for DFA and NFA are just special cases of our ABE for L and NL.

As an optimization, DFA and NFA do not need to keep track of the input tape pointer in their
internal configurations — it is always the current time step. This corresponds to a simpler formula
(thus a simpler AKGS) for arithmetizing DFA and NFA. We formally define NFA (with DFA as
a special kind of NFA), present the AKGS for it, and discuss how to construct 1-ABE and ABE
for NFA. Again, we only consider the binary alphabet. The schemes readily extend to handle any
polynomial-sized alphabet fixed at set-up time.

Definition 45. A non-deterministic finite automaton is a tuple (Q,yacc, δ), where Q ≥ 1 is the
number of states (we use [Q] as the set of states and 1 the initial state), yacc ∈ {0, 1}

Q indicates
whether each state is accepting, and δ is a relation (state transition relation) between [Q]× {0, 1}
and [Q]. For x ∈ {0, 1}N for some N ≥ 1, the NFA accepts x if there exists q0, . . . , qN ∈ [Q] (called
an accepting path) such that

q0 = 1,
(
(qi−1,x[i]), qi

)
∈ δ, yacc[qN] = 1.

A path without the last condition is a computation path. An NFA is deterministic, if δ is a function
relation. An NFA is unambiguous, if for any input x, there is at most 1 accepting path.

Clearly, a DFA is always unambiguous.

Transition Matrix and Blocks. We use eq ∈ {0, 1}Q to represent the current state of an NFA.
For an NFA M = (Q,yacc, δ), its transition matrix is

M(x)[q, q′] =

{
1, if

(
(q, x), q′

)
∈ δ;

0, otherwise.

For all q ∈ [Q] and x ∈ {0, 1}, consider cT = eT
qM(x) — we have c ∈ {0, 1}Q and c[q′] = 1 if and

only if q′ is a valid state after the NFA reads x in state q. Inductively, eT
qM(x1) · · ·M(xn) is a vector

that counts the number of computation paths reaching each state starting from state q after reading
x1, . . . , xn. Let the transition blocks be Mx = M(x) for x ∈ {0, 1}, then M(x) = (1− x)M0 +xM1.
We arithmetize the computation of NFA by defining

M |N (x) = eT
1

N∏
i=1

(
(1− x[i])M0 + x[i]M1

)
· yacc over Zp for x ∈ ZNp . (11)

In case the NFA is unambiguous, M |N is binary over {0, 1}N and indicates whether M accepts the
input.

AKGS for NFA. Garbling M |N using the recursive mechanism for garbling matrix multiplication
yields a special piecewise secure AKGS for NFA.

Construction 46. Let F = {(M, 1N , p) |M is an NFA, p prime} be the function class, i.e., M |N
over Zp is encoded as (M, 1N , p). The AKGS (Garble,Eval) for F operates as follows:

76

• Garble
(
(M, 1N , p), α, β

)
takes the NFA and the secrets as input. It computes the transition

blocks M0,M1 for M , samples r0, . . . , rN
$← ZQp , and defines the label functions by

Linit(x) = β + eT
1r0,

for i ∈ [N]:
(
Li,q(x)

)
q∈[Q]

= −ri−1 +
(
(1− x[i])M0 + x[i]M1

)
ri,(

LN+1,q(x)
)
q∈[Q]

= −rN + αyacc.

The algorithm collects the coefficient vectors and outputs them.

• Eval
(
(M, 1N , p),x, `init, (`i,q)i∈[N+1],q∈[Q]

)
takes the NFA, the input string x ∈ ZNp and the

labels as input. It computes the transition blocks M0,M1 of M , sets `i = (`i,q)q∈[Q] for
i ∈ [N + 1], and computes and returns

`init + eT
1

N+1∑
i=1

i−1∏
j=1

(
(1− x[j])M0 + x[j]M1

)
· `i.

Note: It is straightforward to verify the construction satisfies the syntax of a linear AKGS.
The evaluation correctness can be readily verified (similar to Construction 30).

Remarks.Remarks. Construction 46 coincides with the secret-sharing scheme for DFA by Waters [Wat12].
However, extending it to NFA via path-tracking makes the secret-sharing scheme insecure due to
backtracking attacks, as observed in [Wat12]. In contrast, generalizing it to NFA via path-counting
using the matrix multiplication formula retains the special piecewise security.

Theorem 47. Construction 46 is special piecewise secure with Linit being the first label function,
the other label functions sorted in increasing order of i, and the randomness sorted in the same
order as the label functions.

ABE for NFA. ABE for NFA can be obtained following the same blueprint of Constructions 33
and 37 and using a family of pairing groups with entropic order. With the pseudorandomness set

to ri = rx[i]rf for rx
$← Z[0..N]

p sampled at encryption time and rf
$← ZQp sampled at key generation

time, the labels for α = µ, β = 0 can be computed as

`init = r0[1] = rx[0]rf [1] = 〈uinit,vinit〉,
for i ∈ [N], q ∈ [Q]: `i,q = −ri−1[q] +

(
((1− x[i])M0 + x[i]M1)ri

)
[q]

= −rx[i− 1]rf [q] + rx[i](1− x[i])(M0rf)[q] + rx[i]x[i](M1rf)[q]

= 〈ui,vq〉,
for q ∈ [Q]: `N+1,q = −rN [q] + µyacc[q] = −rx[N]rf [q] + µyacc[q] = 〈uN+1,vq〉,

where the vectors are as follows:

vector init rand acc tb0 tb1
the other
indices

uinit rx[0] 0 0 0 0

0
vinit rf [1] 0 0 0 0

i ∈ [N]: ui 0 rx[i− 1] 0 rx[i](1− x[i]) rx[i]x[i]
uN+1 0 rx[N] 1 0 0

q ∈ [Q]: vq 0 −rf [q] µyacc[q] (M0rf)[q] (M1rf)[q]

77

As is the case for the other 1-ABE schemes, 1-ABE for NFA will need extra indices for the security
proof, the exact number of which can be figured out easily but tediously. Likewise, the ABE scheme
will need more copies of the indices for computing the labels (cf. Construction 37).

Corollary 48. Assuming a family of pairing groups with entropic order in which SXDH holds, there
is a compact and adaptively secure ABE for NFA (satisfying the relaxed correctness requirement).
If the NFA are restricted to unambiguous ones, the scheme can be instantiated in a sequence of
pairing groups with perfect correctness. Moreover, SXDH can be relaxed to MDDHk in both of the
source groups for any integer k ≥ 1.

Acknowledgments. The authors were supported by NSF grants18 CNS-1528178, CNS-1929901,
CNS-1936825 (CAREER). The authors thank Hoeteck Wee for helpful discussions and the anony-
mous reviewers for insightful comments.

References

[AC17] Shashank Agrawal and Melissa Chase. Simplifying design and analysis of complex
predicate encryption schemes. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 627–656. Springer,
Heidelberg, April / May 2017.

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin.
Delegating RAM computations with adaptive soundness and privacy. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 3–30.
Springer, Heidelberg, October / November 2016.

[AFS18] Prabhanjan Ananth, Xiong Fan, and Elaine Shi. Towards attribute-based encryption
for RAMs from LWE: Sub-linear decryption, and more. Cryptology ePrint Archive,
Report 2018/273, 2018. https://eprint.iacr.org/2018/273.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
FOCS, pages 166–175. IEEE Computer Society Press, October 2004.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic cir-
cuits. In Rafail Ostrovsky, editor, 52nd FOCS, pages 120–129. IEEE Computer Society
Press, October 2011.

[ALS16] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption
for inner products, from standard assumptions. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 333–362. Springer,
Heidelberg, August 2016.

[AM18] Shweta Agrawal and Monosij Maitra. FE and iO for turing machines from minimal
assumptions. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II,
volume 11240 of LNCS, pages 473–512. Springer, Heidelberg, November 2018.

18The views expressed are those of the authors and do not reflect the official policy or position of the
Department of Defense, the National Science Foundation, or the U.S. Government.

78

https://eprint.iacr.org/2018/273

[AMY19a] Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryption (and
more) for nondeterministic finite automata from LWE. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages
765–797. Springer, Heidelberg, August 2019.

[AMY19b] Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryption for
deterministic finite automata from DLIN. In Dennis Hofheinz and Alon Rosen, edi-
tors, TCC 2019, Part II, volume 11892 of LNCS, pages 91–117. Springer, Heidelberg,
December 2019.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for turing ma-
chines. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562
of LNCS, pages 125–153. Springer, Heidelberg, January 2016.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 152–181. Springer, Heidelberg, April / May 2017.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Frame-
work, fully secure functional encryption for regular languages, and more. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 557–577. Springer, Heidelberg, May 2014.

[Att16] Nuttapong Attrapadung. Dual system encryption framework in prime-order groups via
computational pair encodings. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part II, volume 10032 of LNCS, pages 591–623. Springer, Heidelberg,
December 2016.

[Att17] Nuttapong Attrapadung. Dual system framework in multilinear settings and applica-
tions to fully secure (compact) ABE for unbounded-size circuits. In Serge Fehr, editor,
PKC 2017, Part II, volume 10175 of LNCS, pages 3–35. Springer, Heidelberg, March
2017.

[BDHM92] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel. Structure
and importance of logspace-MOD class. Mathematical Systems Theory, 25(3):223–237,
September 1992.

[BG98] Amos Beimel and Anna Gal. On arithmetic branching programs. In IN PROC. OF
THE 13TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEX-
ITY, pages 68–80, 1998.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Rocco A. Servedio and Ronitt Ru-
binfeld, editors, 47th ACM STOC, pages 439–448. ACM Press, June 2015.

79

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product
encryption. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I,
volume 9452 of LNCS, pages 470–491. Springer, Heidelberg, November / December
2015.

[BL15] Xavier Boyen and Qinyi Li. Attribute-based encryption for finite automata from LWE.
In Man Ho Au and Atsuko Miyaji, editors, ProvSec 2015, volume 9451 of LNCS, pages
247–267. Springer, Heidelberg, November 2015.

[BMZ19] James Bartusek, Fermi Ma, and Mark Zhandry. The distinction between fixed and
random generators in group-based assumptions. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 801–830.
Springer, Heidelberg, August 2019.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In 2007 IEEE Symposium on Security and Privacy (SP ’07), pages 321–
334, May 2007.

[CGKW18] Jie Chen, Junqing Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE via
bilinear entropy expansion, revisited. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 503–534. Springer,
Heidelberg, April / May 2018.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order
groups via predicate encodings. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595–624. Springer, Heidelberg,
April 2015.

[CGW18] Jie Chen, Junqing Gong, and Hoeteck Wee. Improved inner-product encryption with
adaptive security and full attribute-hiding. In Thomas Peyrin and Steven Galbraith,
editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 673–702. Springer,
Heidelberg, December 2018.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 429–437. ACM Press, June
2015.

[DDM16] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for in-
ner product with full function privacy. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume 9614 of LNCS, pages
164–195. Springer, Heidelberg, March 2016.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg,
August 2013.

[GKP+13a] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
536–553. Springer, Heidelberg, August 2013.

80

[GKP+13b] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
555–564. ACM Press, June 2013.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98.
ACM Press, October / November 2006. Available as Cryptology ePrint Archive Report
2006/309.

[GV15] Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry: Efficient
ABE for branching programs. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part I, volume 9452 of LNCS, pages 550–574. Springer, Heidelberg,
November / December 2015.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryp-
tion for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 545–554. ACM Press, June 2013.

[GWW19] Junqing Gong, Brent Waters, and Hoeteck Wee. ABE for DFA from k-lin. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of
LNCS, pages 732–764. Springer, Heidelberg, August 2019.

[HKS15] Dennis Hofheinz, Jessica Koch, and Christoph Striecks. Identity-based encryption with
(almost) tight security in the multi-instance, multi-ciphertext setting. In Jonathan
Katz, editor, PKC 2015, volume 9020 of LNCS, pages 799–822. Springer, Heidelberg,
March / April 2015.

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with ap-
plications. In In Proc. of 5th ISTCS, pages 174–183, 1997.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st FOCS, pages 294–
304. IEEE Computer Society Press, November 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Peter Widmayer, Francisco Triguero Ruiz,
Rafael Morales Bueno, Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo,
editors, ICALP 2002, volume 2380 of LNCS, pages 244–256. Springer, Heidelberg, July
2002.

[IW14] Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors,
ICALP 2014, Part I, volume 8572 of LNCS, pages 650–662. Springer, Heidelberg, July
2014.

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof
Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommitting. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
133–163. Springer, Heidelberg, August 2017.

81

[KLM+18] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David J.
Wu. Function-hiding inner product encryption is practical. In Dario Catalano and
Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages 544–562. Springer,
Heidelberg, September 2018.

[KLMM19] Lucas Kowalczyk, Jiahui Liu, Tal Malkin, and Kailash Meiyappan. Mitigating the
one-use restriction in attribute-based encryption. In Kwangsu Lee, editor, ICISC 18,
volume 11396 of LNCS, pages 23–36. Springer, Heidelberg, November 2019.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, 47th ACM STOC, pages 419–428. ACM Press, June 2015.

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adaptively
secure and succinct functional encryption: Improving security and efficiency, simulta-
neously. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 521–551. Springer, Heidelberg, August 2019.

[KSW13] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. Journal of Cryptology, 26(2):191–
224, April 2013.

[KW19] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for NC1 from
k-lin. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 3–33. Springer, Heidelberg, May 2019.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5
PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume
10401 of LNCS, pages 599–629. Springer, Heidelberg, August 2017.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hierarchi-
cal) inner product encryption. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 62–91. Springer, Heidelberg, May / June 2010.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th FOCS,
pages 11–20. IEEE Computer Society Press, October 2016.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010,
volume 5978 of LNCS, pages 455–479. Springer, Heidelberg, February 2010.

[LW11] Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages
547–567. Springer, Heidelberg, May 2011.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryp-
tion: Achieving full security through selective techniques. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 180–198. Springer,
Heidelberg, August 2012.

82

[Nis91] Noam Nisan. Lower bounds for non-commutative computation (extended abstract).
In 23rd ACM STOC, pages 410–418. ACM Press, May 1991.

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for
inner-products. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS,
pages 214–231. Springer, Heidelberg, December 2009.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 191–208. Springer, Heidelberg, August
2010.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product
and attribute-based encryption. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 349–366. Springer, Heidelberg, December
2012.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 457–473. Springer,
Heidelberg, March 2009.

[SW08] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems.
In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of
LNCS, pages 560–578. Springer, Heidelberg, July 2008.

[TAO16] Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. Efficient functional encryp-
tion for inner-product values with full-hiding security. In Matt Bishop and Anderson
C. A. Nascimento, editors, ISC 2016, volume 9866 of LNCS, pages 408–425. Springer,
Heidelberg, September 2016.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 619–636. Springer, Heidelberg, August 2009.

[Wat12] Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 218–235.
Springer, Heidelberg, August 2012.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell, ed-
itor, TCC 2014, volume 8349 of LNCS, pages 616–637. Springer, Heidelberg, February
2014.

[Wee17] Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In
Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 206–233. Springer, Heidelberg, November 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

83

A Construction of Function-Hiding Slotted IPFE

In this section, we construct the function-hiding slotted IPFE promised in Lemma 8 by applying the
double encryption technique [LV16,Lin17] to the adaptively secure public-key encryption scheme
in [ALS16,Wee17].

First, we recall the adaptively secure public-key IPFE scheme in [ALS16,Wee17] in our syntax.
Note that it suffices to consider index sets being s = [n].

Construction 49 ([ALS16,Wee17]). We describe the construction for any fixed value of the security
parameter λ and suppress the appearance of λ below for simplicity of notations. Let G be pairing
groups of order p such that the MDDHk assumption holds in G1. The public-key IPFE scheme
(Setup,KeyGen,Enc,Dec) based on G operates as follows:

• Setup(1n) takes the dimension of vectors in unary (i.e., [n] is encoded as 1n) as input and
generates the master public/secret key pair by

A
$← Zk×(k+1)

p , W
$← Z(k+1)×n

p ,
mpk = ([[A]]1, [[AW]]1), msk = W.

• KeyGen(msk, [[v]]2) takes the master secret key msk = W and a vector v ∈ Znp (encoded in
G2) as input. It returns sk = (−W[[v]]2, [[v]]2) as the secret key for v.

• Enc(mpk, [[u]]1) takes the master public key mpk = ([[A]]1, [[AW]]1) and a vector u ∈ Znp
(encoded in G1) as input. It generates the ciphertext for u by

s
$← Zkp, ct = (sT[[A]]1, s

T[[AW]]1 + [[uT]]1).

• Dec(sk, ct) takes a secret key and a ciphertext as input. It parses sk as ([[y]]2, [[w]]2) and ct as
([[zT]]1, [[x

T]]1) and returns [[zT]]1[[y]]2 + [[xT]]1[[w]]2 as the decryption result.

Note: The correctness of the scheme is readily verified by the equation

zTy + xTw = (sTA)(−Wv) + (sTAW + uT)v = uTv.

The (standard) IND-CPA security of a public-key IPFE scheme can be defined using the experi-
ments for function-hiding security of slotted IPFE (Definition 7) by setting spriv = ∅ and spub = s
— this means v0

j = v1
j in the challenges, i.e., only the ciphertext vector may vary. The above

construction satisfies this notion.

Lemma 50 ([ALS16,Wee17]). Construction 49 is IND-CPA secure.

Remarks.Remarks. In [ALS16,Wee17], Construction 49 is presented in a (not necessarily pairing) group in
which MDDHk holds. In particular, the secret key vector and the secret key are vectors encoded
in Zp instead of G2. We encode them in G2 only to adhere to the formalism used in this work.
Moreover, for any group G1 of order p, we can build a “pairing group” by setting G2 = Zp (additive
group of integers modulo p) and e(g, h) = gh. The additional benefit of using this formalism, as
we shall see soon, is that certain preconditions of applying the technique in [LV16,Lin17] can be
simplified.

We note that Construction 49 has four special properties:

84

• A secret key is a vector (of dimension (k + 1) + n) encoded in G2.

• A ciphertext is a vector (of dimension (k + 1) + n) encoded in G1.

• The secret key for 0 is 0 (encoded in G2) (or rather, any distribution known with only mpk).

• The decryption algorithm simply computes the inner product of the secret key and the ci-
phertext using the pairing operation.

The first two properties suggest that it is syntactically possible to nest IPFE schemes. The last
property guarantees that nesting preserves correctness. The key idea of the double encryption
technique in [LV16,Lin17] is to nest IPFE schemes, one using G1 for ciphertexts and the other
using G1 for secret keys, so that both secret keys and ciphertexts in the resulting scheme are
protected by one instance of public-key IPFE.

Definition 51. Let G = (G1, G2, GT, g1, g2, e) be pairing groups. Its opposite is

Gop = (G2, G1, GT, g2, g1, e
op), eop(h2, h1) = e(h1, h2).

Clearly, given a sequence of pairing groups, taking the opposite yields another sequence of pairing
groups whose operations are still efficient (using the algorithms for the original sequence). Armed
with this notion, we are ready to apply the double encryption technique tailored to our needs.

Construction 52 (slotted IPFE [LV16,Lin17]). We describe the construction for any fixed value
of the security parameter λ and suppress the appearance of λ below for simplicity of notations. Let
G be pairing groups of order p such that the MDDHk assumption holds in both G1 and G2, and let
Gop be its opposite. Instantiate Construction 49 to obtain

(outer scheme) (Setupout,KeyGenout,Encout,Decout) based on G
and (inner scheme) (Setupin,KeyGenin,Encin,Decin) based on Gop.

The slotted IPFE scheme based on G operates as follows:

• Setup(1npub , 1npriv) takes the public/private slot lengths in unary as input (i.e., spub = [npub]
and spriv = [npub + npriv] \ [npub]). It generates master public/secret key pairs for both inner
and outer public-key IPFE schemes:

(mpkin,mskin)
$← Setupin(12npriv), (mpkout,mskout)

$← Setupout(1
npub+(k+1)+2npriv).

The algorithm returns mpk = mpkout and msk = (mpkin,mskin,mpkout,mskout).

Note: We explain the choice of parameters. The inner scheme is used to encrypt the pri-
vate slot, and only the first npriv components are used in the honest algorithms — the extra
npriv components provide programming space in the security proof. The outer scheme is used
to encrypt the whole vector. The first npub components store the public slot, and the other
(k + 1) + 2npriv components store the secret key/ciphertext of the private slot.

For notational simplicity, we will suppress the master secret (resp. public) key as an input to
key generation (resp. encryption) algorithms of the inner/outer schemes — there is only one
natural choice for each of them.

• KeyGen(msk, [[v]]2) takes the master secret key msk and a vector v ∈ Znpub+npriv
p (encoded in

G2) as input. It separates v by slots, i.e., v = (vpub,vpriv) with vpub ∈ Znpub
p and vpriv ∈

Znpriv
p , and generates the secret key by

sk
$← KeyGenout

(
[[vpub]]2,Encin([[vpriv]]2, [[0npriv]]2)

)
.

85

• Enc(msk, [[u]]1) takes the master secret key msk and a vector u ∈ Znpub+npriv
p (encoded in G1)

as input. It separates u by slots into upub ∈ Znpub
p and upriv ∈ Znpriv

p , and generates the
ciphertext by

ct
$← Encout

(
[[upub]]1,KeyGenin([[upriv]]1, [[0npriv]]1)

)
.

• Dec(sk, ct) returns Decout(sk, ct).

Note: We verify the correctness of the scheme. By the correctness of the outer scheme,

Decout(sk, ct) = [[〈upub,vpub〉+ 〈x,y〉]]T,

where x,y are the vectors encoded in the secret key/ciphertext of the inner scheme. By the
correctness of the inner scheme and the fact that decryption computes 〈x,y〉 in the exponent
in the target group, we have

〈x,y〉 = 〈(upriv,0npriv), (vpriv,0npriv)〉 = 〈upriv,vpriv〉.

Combining the two gives Dec(sk, ct) = [[〈upub,vpub〉+ 〈upriv,vpriv〉]]T = [[〈u,v〉]]T.

• SlotEnc(mpk, [[upub]]1) takes the master public key mpk and a vector upub ∈ Znpub
p (encoded

in G1) as input. It generates the ciphertext by

ct
$← Encout

(
[[upub]]1, [[0(k+1)+2npriv

]]1
)
.

Note: SlotEnc and Enc generates identically distributed ciphertexts if upriv = 0npriv — this
is because the secret key for the zero vector in Construction 49 is the zero vector. This con-
struction can be instantiated as long as the distribution of the secret key for the zero vector
is efficiently sampleable given mpkin (and mpk will include mpkin).

Theorem 53 (Lemma 8). Construction 52 is function-hiding (Definition 7).

Proof.Proof. We show Exp0
FH ≈ Exp1

FH by going through several hybrids responding to the challenges in
different ways. For z1 ∈ Znpub

p and z2, z3 ∈ Znpriv
p , we write

sk ∼ z1 z2 z3 for sk
$← KeyGenout

(
[[z1]]2,Encin([[z2]]2, [[z3]]2)

)
and ct ∼ z1 z2 z3 for ct

$← Encout
(
[[z1]]1,KeyGenin([[z2]]1, [[z3]]1)

)
.

Consider the hybrids illustrated in Figure 12. Observe the vectors encoded by the inner scheme:

in ski,in (in cti,out) in ctj,in (in skj,out)

H0 → H1: 〈(u0
i,priv , 00), (v0

j,priv , 0→ v1
j,priv)〉,

H2 → H3: 〈(00 , u1
i,priv), (v0

j,priv → v1
j,priv , v1

j,priv)〉,

H4 → H5: 〈(u1
i,priv , 00), (v1

j,priv , v1
j,priv → 0)〉.

For those three transitions, we only modify the ciphertext vectors of the inner scheme, and the
modified part only multiplies with 0 (underlined) in the secret keys (of the inner scheme). Therefore,
H0 ≈ H1, H2 ≈ H3 and H4 ≈ H5 reduce to the IND-CPA security of the inner scheme. (The reduction
will run Setupout on its own.)

86

hybrid respond to the challenges by...

Exp0
FH ≡ H0

skj ∼ vj,pub v0
j,priv 0

cti ∼ u0
i,pub u0

i,priv 0

H1

skj ∼ vj,pub v0
j,priv v1

j,priv

cti ∼ u0
i,pub u0

i,priv 0

H2

skj ∼ vj,pub v0
j,priv v1

j,priv

cti ∼ u1
i,pub 0 u1

i,priv

H3

skj ∼ vj,pub v1
j,priv v1

j,priv

cti ∼ u1
i,pub 0 u1

i,priv

H4

skj ∼ vj,pub v1
j,priv v1

j,priv

cti ∼ u1
i,pub u1

i,priv 0

Exp1
FH ≡ H5

skj ∼ vj,pub v1
j,priv 0

cti ∼ u1
i,pub u1

i,priv 0

Figure 12: Hybrids for proving the function-hiding property of Construction 52.

87

The other two transitions follow by the IND-CPA security of the outer scheme, taking advantage
of the fact that the decryption of the inner scheme is computing the inner product of the secret
key and the ciphertext — this means the outer decryption implicitly decrypts the inner instance.
In H1, the inner products (for the outer scheme) are〈(

u0
i,pub,KeyGenin(u0

i,priv,0)
)
,
(
vj,pub,Encin(v0

j,priv,v
1
j,priv)

)〉
= 〈u0

i,pub,vj,pub〉+
〈
KeyGenin(u0

i,pub,0),Encin(v0
j,priv,v

1
j,priv)

〉
(Decin is inner product) = 〈u0

i,pub,vj,pub〉+ 〈(u0
i,pub,0), (v0

j,priv,v
1
j,priv)〉

= 〈u0
i,pub,vj,pub〉+ 〈u0

i,priv,v
0
j,priv〉.

In H2, the inner products are 〈u1
i,pub,vj,pub〉 + 〈u1

i,priv,v
1
j,priv〉, which remain unchanged by the

constraint. Moreover, as far as the outer scheme is concerned, only the ciphertext vectors are
changed, so H1 ≈ H2 reduces to the IND-CPA security of the outer scheme. Same for H3 and H4.
(The reduction will run Setupin on its own.)

By a hybrid argument, we conclude Exp0
FH ≡ H0 ≈ H5 ≡ Exp1

FH. �

B Key Delegation

Key delegation in the context of ABE is the ability to securely create a more restrictive key from
a secret key without the master secret key. This ability is characterized by a syntactical change of
KeyGen and a generalized correctness requirement with respect to arbitrarily delegated keys. The
experiments in the basic security notion (IND-CPA) are also adapted to take key delegation into
account. In this section, we define the notion of key delegation and IND-CPA-DLG security for
ABE, and show to how to tweak our basic KP-ABE scheme for ABPs to achieve these notions.

Definition 54 (key delegation). In an ABE for message space M and predicate space P that sup-
ports delegation, the key generation algorithm KeyGen takes a generalized syntax and the correctness
requirement is strengthened:

• KeyGen(1λ,mpk, skD:y1,...,yD , yD+1) takes the master public key, a secret key skD:y1,...,yD , and
a new policy yD+1 ∈ YP as input, where P is the predicate in use. Here, D represents the
number of times the key is delegated and y1, . . . , yD the previously imposed policies. The master
secret key msk is alternatively denoted by sk0, i.e., a key delegated for 0 times. The algorithm
outputs a delegated key skD+1:y1,...,yD+1

.

• Correctness holds with respect to arbitrarily delegated keys. Formally, for all λ ∈ N, all P ∈
Pλ, all x ∈ XP , g ∈Mλ, and all D ∈ N, y1, . . . , yD ∈ YP such that P (x, y1) = · · · = P (x, yD) =
1, it holds that

Pr


(mpk,msk

def
== sk0)

$← Setup(1λ, P)

d ∈ [D]: skd
$← KeyGen(1λ,mpk, skd−1, yd)

ct
$← Enc(1λ,mpk, x, g)

: Dec(1λ, skD, ct) = g

 = 1.

In the security game taking delegation into account [SW08], the adversary, instead of making key
queries, makes key delegation and key revelation queries. The former creates a delegated key, and
the latter reveals a delegated key to the adversary. Security should hold as long as the challenge
attribute is not permitted by any individual secret key that is revealed to the adversary. Note
that in IND-CPA-DLG, merely creating a secret key does not impose restrictions on the challenge
attribute.

88

Definition 55 (IND-CPA-DLG [SW08]). Let (Setup,KeyGen,Enc,Dec) be an ABE for message
space M and predicate space P supporting delegation. The scheme is IND-CPA-DLG secure if
Exp0

CPA-DLG ≈ Exp1
CPA-DLG, where ExpbCPA-DLG is defined as follows:

• Setup. Run A(1λ) and receive a predicate P ∈ Pλ from it. Run (mpk,msk)
$← Setup(1λ, P),

define sk0 = msk, Z0 = (), and let H ← {0}, R← ∅. Return mpk to A.

Note: Elements in H are key handles, each of which corresponds to a (delegated) secret key.
The set R keeps track of the handles whose corresponding keys are revealed. For each handle
h ∈ H, the list Zh ∈ Y ∗P consists of the policies imposed on skh.

• Query I. Repeat the following for arbitrarily many times determined by A: In each round,
A has 2 options.

– A can submit h ∈ H, y ∈ YP to delegate skh with y. Upon this query, let h′ ← |H| and
set H ← H ∪{h′}. Define Zh′ = (Zh, y) and run skh′

$← KeyGen(1λ,mpk, skh, y). Resume
the experiment without returning any information to A.

– A can submit h ∈ H to have skh revealed. Upon this query, let R← R∪ {h} and return
skh to A.

• Challenge. A submits x ∈ XP , g0, g1 ∈ Mλ. Run ct
$← Enc(1λ,mpk, x, gb) and return ct to

A.

• Query II. Same as Query I.

• Guess. A outputs a bit b′. The outcome of the experiment is b′ if for all h ∈ R, there exists
y in Zh such that P (x, y) = 0. Otherwise, the outcome is 0.

Our approach to ABE supporting delegation builds on top of the basic ABE and adds two in-
gredients: i) secret-sharing the pads to support conjunction of policies; ii) key-homomorphism
from IPFE to support generating delegated keys without master secret key. We first discuss them
separately, then put them together to obtain the ABE scheme supporting delegation.

B.1 1-ABE Supporting Conjunctions

To construct ABE supporting delegation, secret keys must be capable of expressing arbitrary con-
junction of policies in YP . We start by showing how to tweak 1-ABE (Construction 24) to achieve
this. To begin, we make these modifications to 1-ABE and its security definition:

• A 1-ABE supporting conjunction for predicate space P has the same syntax as a usual 1-
ABE, except that KeyGen now takes in an arbitrary number of policies y1, . . . , yD ∈ YP , and
generates a key for them, and that Dec must decapsulate the pad only when P (x, y1) = · · · =
P (x, yD) = 1.

• In 1-key 1-ciphertext security experiment, the adversary submits an arbitrary number of
policies (in one shot) to request a secret key for the conjunction of them. The restriction on
the challenge attribute is that there exists yd ∈ {y1, . . . , yD} (among the submitted policies)
such that P (x, yd) = 0.

Tweaking Construction 24. To support conjunctions, KeyGen secret-shares the pad µ to encap-
sulate into µ1, . . . , µD among the policies, and garbles yd with pad µd. To decapsulate the pad, Dec
first recovers each share µd in the exponent, then sums them to get µ.

89

Formally, recall that in Construction 24, the predicate space is induced by some function class
F with AKGS (Garble,Eval):

Xn = Znp , Yn = {f6=0, f=0 | f ∈ F , f : Znp → Zp},
P = {Pn : Xn × Yn → {0, 1}, (x, y) 7→ y(x) |n ∈ N}.

Setup(1n) simply runs msk
$← IPFE.Setup(1n) to set up a function-hiding secret-key IPFE scheme

as before.
The tweaked version of KeyGen(msk, y1, . . . , yD, µ) first samples µ1, . . . , µD−1, η1, . . . , ηD

$← Zp
and sets µD ← µ−

∑D−1
d=1 µd. Next, it garbles the functions underlying each policy, i.e., for d ∈ [D]:{

αd

αd

← µd, βd ← 0, if yd = fd, 6=0;

← ηd, βd ← µd, if yd = fd,=0;
(Ld,1, . . . ,Ld,md)

$← Garble(fd, αd, βd).

Then, the algorithm generates IPFE secret keys iskd,j
$← IPFE.KeyGen(msk,vd,j) to encrypt the

coefficient vectors:

vector const coefi sim1 sim?

vd,j Ld,j [const] Ld,j [coefi] 0 0

It returns sk = (y1, isk1,1, . . . , isk1,m1 ; . . . ; yD, iskD,1, . . . , iskD,mD) as the secret key encapsulating
µ.

Enc remains the same, and an ABE ciphertext consists of the attribute x itself and an IPFE
ciphertext encrypting (1,x, 0, 0). The decapsulation algorithm Dec(sk, ct) first parses

sk as (y1, isk1,1, . . . , isk1,m1 ; . . . ; yD, iskD,1, . . . , iskD,mD),

and ct as (x, ict).

It returns ⊥ if yd(x) = 0 for some d ∈ [D]. Otherwise, it recovers µd’s in the exponent, i.e., for all
d ∈ [D]:

for j ∈ [md]: [[`j,d]]T ← IPFE.Dec(iskj,d, ict),

[[µ′d]]T ←

{
1

fd(x)Eval(fd,x, [[`d,1]]T, . . . , [[`d,md]]T), if yd = fd, 6=0;

Eval(fd,x, [[`d,1]]T, . . . , [[`d,md]]T), if yd = fd,=0.

The algorithm returns
∑D

d=1 [[µ′d]]T as the decapsulated pad.
For correctness, following the same argument for Construction 24, we know that µ′d = µd for

all d ∈ [D], whence
∑D

d=1 µ
′
d = µ.

Security Proof. We give the idea of the security proof and leave the formalism to the reader.
Recall that in (the more interesting case of) the security proof for Construction 24 (Theorem 25),
we first hardwire the reversely sampled first label into ict, then replace each subsequent label
function encoded in iskj by a randomly simulated label, until all the other labels are simulated and
the first label is reversely sampled, at which point ict, iskj ’s are independent of the encapsulated
pad.

The security of the tweaked version requires that the encapsulated pad be hidden when yd(x) = 0
for some d ∈ [D], where y1, . . . , yD,x are chosen adaptively by the adversary. We first consider a
selective-violation version of the security experiments, where the adversary commits to an index

90

d∗ ∈ N such that yd∗(x) = 0 for its later choices of y1, . . . , yD,x. The proof of selective-violation
security follows by the same argument for Theorem 25 — we simulate the labels for fd∗ to show
that the (d∗)th share µd∗ is hidden, and so is the encapsulated pad.

Now, we can prove 1-key 1-ciphertext security of the tweaked construction by a random guess-
ing argument and reduction to selective-violation security. For any adversary A against 1-key 1-
ciphertext security, we construct B against selective-violation security. Suppose A makes the key
query for at most D policies. B first guesses d∗

$← [D], uses it as the commitment, and then runs A.
The new adversary B aborts if d∗ is not the smallest d such that yd(x) = 0 for y1, . . . , yD,x chosen
adaptively by A. This reduction loses a factor of D in the advantage.

B.2 Perfectly Key-Homomorphic IPFE

In our KP-ABE supporting delegation, the secret key has structures similar to that in the usual
KP-ABE (an IPFE key for computing the sum of the pads) with the additional features in the
tweaked 1-ABE (one set of IPFE keys for each policy for computing the labels). To be able to
delegate, one must be able to generate new IPFE secret keys using the (new) master public key.
Furthermore, we will rerandomize the delegated key so that it is identically distributed to a freshly
generated one, with randomness independent of the key being delegated — this ensures that a
delegated key leaks no information about the randomness in the key from which it is created, thus
making security proof simpler. We rely on an additional property, called key-homomorphism, of the
slotted IPFE scheme to achieve the above.

Definition 56 (perfect key-homomorphism). A slotted IPFE scheme (Setup,KeyGen,Enc,Dec, SlotEnc)
based on pairing groups of order p = p(λ) is (perfectly) key-homomorphic if it is endowed with an
efficient algorithm Subtract(1λ,mpk, sk1, sk2) that takes the master public key and two secret keys
sk1, sk2 as input, and outputs a new secret key sk3 encrypting the difference of the vectors encrypted
in sk1, sk2. Formally, for all λ ∈ N, all disjoint index sets spub, spriv (let s = spub ∪ spriv) and all
v1,v2 ∈ Zsp(λ), the following distributions are identical:

(mpk,msk)
$← Setup(1λ,spub,spriv)

sk1
$← KeyGen(1λ,msk, [[v1]]2)

sk2
$← KeyGen(1λ,msk, [[v2]]2)

sk3
$← Subtract(1λ,mpk, sk1, sk2)

: (mpk,msk, sk1, sk2, sk3)

 ,


(mpk,msk)

$← Setup(1λ,spub,spriv)

sk1
$← KeyGen(1λ,msk, [[v1]]2)

sk2
$← KeyGen(1λ,msk, [[v2]]2)

sk3
$← KeyGen(1λ,msk, [[v1 − v2]]2)

: (mpk,msk, sk1, sk2, sk3)

 .

Note that a key-homomorphic and function-hiding IPFE must use a randomized subtraction algo-
rithm. For a key-homomorphic IPFE, given secret keys sk1, sk2 and coefficient k ∈ Zp, we abuse the
notation sk1 + ksk2 for the implicit application of Subtract to compute a secret key for the linearly
combined vector.

Achieving Key-Homomorphism. It turns out the IPFE scheme in Construction 52 can be made
prefectly key-homomorphic by publishing some additional components in mpk. First, notice that
the secret key in that scheme is linear in (vpub,vpriv, s), where vpub,vpriv are the public/private
part of the vector and s is the randomness used by the (inner) scheme. Therefore, to subtract two

91

keys, it suffices to subtract the group elements and add a random key of 0. The internal workings
opened up, Setup of the IPFE scheme samples

Ain,Aout
$← Zk×(k+1)

p , Win
$← Z(k+1)×2npriv

p , Wout
$← Z(k+1)×(npub+(k+1)+2npriv)

p .

Unwinding the abstraction, a secret key for 0 in the scheme has the following form:

sk = KeyGenout([[0npub
]]2,Encin([[02npriv]]2)) = KeyGenout([[0npub

]]2, [[A
T
ins]]2, [[W

T
inA

T
ins]]2)

=

u

wwwwww
v

−Wout

 0npub

AT
ins

WT
inA

T
ins


0npub

AT
ins

WT
inA

T
ins

}

������
~

2

=

[[(
−WoutZ

Z

)]]
2

s,

where Z =

0npub×k
AT

in

WT
inA

T
in

 ∈ Z(npub+(k+1)+2npriv)×k
p and s

$← Zkp. Therefore, it suffices to set the master

public key as (the newly added part is highlighted in the box)

mpk =
(

[[Aout]]1, [[AoutWout]]1︸ ︷︷ ︸
mpkout

, [[−WoutZ]]2, [[Z]]2

)
.

The master secret key stays the same as in Construction 52. Subtract(mpk, sk1, sk2) computes

sk1 − sk2︸ ︷︷ ︸
group operation

+

(
[[−WoutZ]]2

[[Z]]2

)
s with s

$← Zkp

as the resultant key.

Security Revisited. We observe that the newly published information does not jeopardize the
function-hiding property. Again we just give the ideas and leave the formalism to the reader.

Recall that in the security proof of Construction 52 (Theorem 53), between each pair of neigh-
boring hybrids, we rely on either the IND-CPA security of the inner scheme or that of the outer
scheme. It suffices to show that in either case, the reduction algorithm can efficiently obtain the
newly added components, [[−WoutZ]]2 and [[Z]]2. First, note that the entries of Z are either 0 or
from Ain,AinWin, the master public key of the inner scheme.

If the indistinguishability is reduced to the IND-CPA security of the inner scheme, the reduction
algorithm receives mpkin from the CPA experiments of the inner scheme, from which it can form
[[Z]]2. It sets up the outer scheme by itself, so it knows Wout and can compute −Wout[[Z]]2 efficiently.

If the indistinguishability is reduced to the IND-CPA security of the outer scheme, the reduction
algorithm sets up the inner scheme itself and knows Ain,Win thus Z. It also receives mpkout from
the CPA experiments of the outer scheme. The reduction algorithm then requests secret keys for
each column of [[Z]]2 from the outer scheme, which gives it exactly [[−WoutZ]]2. This will not violate
the constraints of the CPA experiments, because any vector for which the reduction algorithm
requests a ciphertext will have inner product 0 with the columns of Z — recall that each column
of Z is a possible vector fed into KeyGenout when generating a secret key of 0, that the reduction
algorithm only requests ciphertexts for vectors that are potentially fed into Encout when generating
ciphertexts in the slotted scheme, and that the inner product must be 0 by the correctness of the
slotted scheme.

92

B.3 KP-ABE Supporting Delegation

We now combine secret-sharing of the pads and key-homomorphism of IPFE to obtain ABE sup-
porting delegation. Recall that in our basic ABE scheme (Construction 26), we use a slotted IPFE as
the underlying primitive. An ABE ciphertext consists of the padded message, the attribute, and an
IPFE ciphertext, i.e., ct = ([[h]]T +g,x, ict), where ict encrypts u, consisting of h and random multi-
ples of (1,x). An ABE secret key consists of several IPFE secret keys, sky = (iskpad, y, isk1, . . . , iskm),
where iskj encodes the label functions vj in the garblings of the function f underlying y = f6=0, f=0,
and iskpad encodes a vector vpad, decrypting ict to the sum of the pads. We refer to iskpad as the
pad key, and iskj ’s as the label keys. The vectors are summarized below:

vector pad constt coefti in spriv

vpad 1 µ[t] 0
0

vj 0 Ltj [const] Ltj [coefi]

u h s[t] s[t]x[i] 0

Expressing conjunction is done by having multiple sets of label keys, each for a share of the pad in
the pad key, as demonstrated in the tweaked version of 1-ABE. Delegating a key requires creating
new label keys with non-zero (potentially arbitrary) values at constt, coefti without using the master
secret key. A natural idea is to publish a set of keys for a basis for these indices (called the basis
keys) in the (new) master public key and use key-homomorphism to combine them as needed.
These keys do not help computing the pad h by simply using them to decrypt ict.

Näıve Attempt. A näıve attempt is to publish the keys for the natural (standard) basis in these
indices. However, doing so ruins the security proof (see Theorem 27). To see this, recall that the
first step of the security proof is to move the computation of the labels from the public slot of ict
to the private slot, and s from ict to the isk’s. Let us consider adding the standard basis keys for
constt. In the security proof, when we modify ict, we must also modify the basis keys to keep the
inner products the same. Pragmatically, the vectors will transform as follows:

vector pad constt coefti in spriv

econstt′ 0 1[t = t′] 0
0vpad 1 µ[t] 0

vj 0 Ltj [const] Ltj [coefi]

u h s[t] s[t]x[i] 0

−→

pad constt coefti const coefi group

0 1[t = t′] 0 s[t′] 0
G21 µ[t] 0 〈µ, s〉 0

0 Ltj [const] Ltj [coefi] · · · · · ·

h 0 0 1 x[i] G1

Here, the expression for the label keys are suppressed for brevity — they are the linear combinations
of Ltj ’s with coefficients s (combined over t ∈ [k]).

The next step in the security proof is to replace the pad 〈µ, s〉 and the label functions in the
private slot by independent randomly generated ones. For this, we rely on the MDDHk assumption
in G2:

[[A, sTA]]2 ≈ [[A, cT]]2, where A
$← Zk×Np , s

$← Zkp, c
$← ZNp .

Here, N counts the total amount of randomness used in the secret keys, and A consists of the
randomness used in the public slot garblings. However, this assumption can no longer be used if we
want to publish the basis keys as above, because the right-hand side distribution does not contain
[[s]]2, which is necessary to generate the basis keys.

93

Random Basis. To mitigate the above issue, we notice that for the purpose of delegation, it
suffices to publish a set of basis keys for any basis. The delegation procedure can use the freshly
generated label functions to combine the basis keys, which corresponds to implicitly applying an
invertible linear transformation over the label functions. The combined keys still follow the correct
distribution (having the label functions from k independent garblings), thanks to the linearity of
AKGS Garble.

If we publish the basis keys for a random basis B ∈ Zk×kp , it is valid to invoke MDDHk in G2

to rerandomize the garblings in the private slot. In the first hybrid, the basis keys will have values
from B in the public slot, and values from sTB in the private slot. Now, we can apply MDDHk to
argue

[[A,B, sTA, sTB]]2 ≈ [[A,B, cT,dT]]2, where A
$← Zk×Np ,B

$← Zk×kp , s
$← Zkp, c

$← ZNp ,d
$← Zkp,

and in the second hybrid, the basis keys will have values from dT in the private slot.

Construction 57 (KP-ABE supporting delegation). We describe the construction for any fixed
value of the security parameter λ and suppress the appearance of λ below for simplicity of notations.
Let (Garble,Eval) be an AKGS for a function class F , G pairing groups of order p such that MDDHk

holds in G2, and (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec, IPFE.SlotEnc, IPFE.Subtract) a key-
homomorphic slotted IPFE based on G. We construct an ABE scheme supporting delegation for
message space M = GT, the target group of the pairing, and the predicate space P induced by F :

Xn = Znp , Yn = {f6=0, f=0 | f ∈ F , f : Znp → Zp},
P = {Pn : Xn × Yn → {0, 1}, (x, y) 7→ y(x) |n ∈ N}.

For a better exposition, we simultaneously consider two ABE schemes. The helper scheme, (Setup1-shot,
KeyGen1-shot,Enc,Dec), supports conjunction with a key generation algorithm conforming to the
basic ABE syntax.19 The main scheme, (Setup,KeyGen,Enc,Dec), supports delegation and shares
much of its codebase with the helper. They operate as follows:

• Setup1-shot(1
n) takes the attribute length in unary (i.e., Pn is encoded as 1n) as input. It

generates IPFE master public/secret key pair (impk, imsk)
$← IPFE.Setup(spub, spriv) for the

following slots:

spub = {pad, constt, coefti | t ∈ [k], i ∈ [n]},
spriv = {const, coefi, sim1, sim? | i ∈ [n]}.

The algorithm samples B
$← Zk×kp conditioned on B being invertible and sets the basis vectors

as follows:

vector pad constt coefti in spriv

bconstt′ 0 B[t, t′] 0
0

b
coeft

′
i′

0 0 B[t, t′]1[i = i′]

It then generates the basis keys as

bskz
$← IPFE.KeyGen(imsk, [[bconstt]]2) for z ∈ {constt, coefti | i ∈ [n], t ∈ [k]}.

19To keep the formalism happy, the predicates should be changed to work with Xn and Y ∗n by mapping
(x, (y1, . . . , yD)) to the conjunction of yd(x)’s.

94

The algorithm returns mpk =
(
impk, (bskz)z∈{coeft,constti | i∈[n],t∈[k]}

)
and msk1-shot = imsk.

Note: This procedure generates the basis keys on top of the basic ABE scheme. As far as the
helper scheme (supporting conjunction without delegation) is concerned, it is not necessary
to include the basis keys. It is also not harmful, and we will be able to reuse the IND-CPA
security of the helper scheme for proving the IND-CPA-DLG security of the main scheme if
the basis keys are included.

• KeyGen1-shot(msk1-shot, y1, . . . , yD) takes in the master secret key msk1-shot = imsk and D poli-
cies y1, . . . , yD ∈ Yn as input. It starts by garbling the functions underlying the policies, i.e.,
for all d ∈ [D]:

µd,ηd
$← Zkp,

{
αd ← µd, βd

αd ← ηd, βd

← 0, if yd = fd, 6=0;

← µd, if yd = fd,=0;

for t ∈ [k]: (Ltd,1, . . . ,L
t
d,md

)← Garble(fd,αd[t],βd[t]; rd,t).

The algorithm sets µ =
D∑
d=1

µd and assigns vpad,vd,j for d ∈ [D], j ∈ [md] as follows:

vector pad constt coefti in spriv

vpad 1 µ[t] 0
0

vd,j 0 Ltd,j [const] Ltd,j [coefi]

It generates the IPFE secret keys for those vectors and returns the secret key:

iskpad
$← IPFE.KeyGen(imsk, [[vpad]]2),

for d ∈ [D], j ∈ [md]: iskd,j
$← IPFE.KeyGen(imsk, [[vd,j]]2),

skD:y1,...,yD = (iskpad; y1, isk1,1, . . . , isk1,m1 ; . . . ; yD, iskD,1, . . . , iskD,mD).

Note: KeyGen1-shot is a mixture of the basic ABE KeyGen (Construction 26) and the tweaked
1-ABE KeyGen (Appendix B.1) to support conjunctions.

• Setup(1n) takes the attribute length as input. It runs (mpk,msk1-shot)
$← Setup1-shot(1

n) and
generates the master secret key as msk = KeyGen1-shot(msk1-shot).

Note: The master secret key is simply a secret key with 0 policies (and thus pads 0). The
only component of msk is its pad key, which will decrypt any ict to the pad used to hide the
message, giving unconditional decryption of ABE ciphertexts.

• KeyGen(mpk, skD:y1,...,yD , yD+1) takes the master public key, a secret key, and a policy yD+1 ∈
Yn as input. It parses mpk as

(
impk, (bskz)z∈{coeft,constti | i∈[n],t∈[k]}

)
and

skD:y1,...,yD as
(
iskold

pad; y1, isk
old
1,1 , . . . , isk

old
1,m1

; . . . ; yD, isk
old
D,1, . . . , isk

old
D,mD

)
.

The algorithm generates fresh garblings for all the D + 1 policies, i.e., for all d ∈ [D + 1]:

µnew
d ,ηnew

d
$← Zkp,

{
αnew
d ← µnew

d , βnew
d

αnew
d ← ηnew

d , βnew
d

← 0, if yd = fd,6=0;

← µnew
d , if yd = fd,=0;

for t ∈ [k]: (Lt,new
d,1 , . . . ,Lt,new

d,md
)← Garble(fd,α

new
d [t],βnew

d [t]; rnew
d,t).

95

It then uses IPFE key-homomorphism to combine the old and new label functions as well as
the pads, forming the delegated key:

iskpad
$← iskold

pad +

k∑
t=1

µnew[t]bskconstt , where µnew ←
D+1∑
d=1

µnew
d ,

for d ∈ [D + 1], j ∈ [md]: isknew
d,j

$←
k∑
t=1

(
Lt,new
d,j [const]bskconstt +

n∑
i=1

Lt,new
d,j [coefi]bskcoefti

)
,

iskd,j
$←

{
iskold

d,j + isknew
d,j , if d ∈ [D];

isknew
D+1,j , if d = D + 1;

skD+1:y1,...,yD+1
=
(
iskpad; y1, isk1,1, . . . , isk1,m1 ; . . . ; yD+1, iskD+1,1, . . . , iskD+1,mD+1

)
.

Note: We will show (Lemma 58) that the secret key output by KeyGen is identically distributed
to one by KeyGen1-shot for the same list of policies, provided that the input secret key is well-
formed.

• Enc(mpk,x, g) takes the master public key mpk = (impk, . . .), the attribute x ∈ Xn = Znp ,
and the message g ∈ GT as input. It generates the ciphertext in the same way as the basic
ABE construction. The algorithm samples s

$← Zkp and sets u as follows:

vector pad constt coefti

u h s[t] s[t]x[i]

It returns the following ciphertext:

ict
$← IPFE.SlotEnc(impk, [[u]]1), ct = ([[h]]T + g,x, ict).

• Dec(sk, ct) parses ct as ([[z]]T,x, ict) and sk as
(
iskpad; y1, isk1,1, . . . , isk1,m1 ; . . . ; yD, iskD,1, . . . , iskD,mD

)
.

It returns ⊥ if yd(x) = 0 for some d ∈ [D]. Otherwise, it does the following:

[[z′]]T ← IPFE.Dec(iskpad, ict),

for d ∈ [D], j ∈ [md]: [[`d,j]]T ← IPFE.Dec(iskd,j , ict),

[[µ′d]]T ←

{
1

fd(x)Eval(fd,x, [[`d,1]]T, . . . , [[`d,md]]T), if yd = fd,6=0;

Eval(fd,x, [[`d,1]]T, . . . , [[`d,md]]T), if yd = fd,=0.

The algorithm returns [[z]]T +

D∑
d=1

[[µ′d]]T − [[z′]]T as the decrypted message.

Note: By generalizing the argument for the correctness of the basic ABE scheme (Construc-
tion 26) in the same way as for the tweaked 1-ABE scheme, we know that Dec correctly
recovers the message in the scheme (Setup1-shot,KeyGen1-shot,Enc,Dec). Once we show the
equivalence between KeyGen1-shot and KeyGen, we obtain the correctness of (Setup,KeyGen,
Enc,Dec).

96

Lemma 58. Suppose in Construction 57, the IPFE scheme is perfectly key-homomorphic, then
for all λ ∈ N, n ∈ N, D ∈ N and all y1, . . . , yD, yD+1 ∈ Yλ,n, the following distributions are identical:

(mpk,msk1-shot)
$← Setup1-shot(1

λ, 1n)

skD
$← KeyGen1-shot(msk1-shot, y1, . . . , yD)

skD+1
$← KeyGen1-shot(msk1-shot, y1, . . . , yD, yD+1)

: (mpk,msk1-shot, skD, skD+1)

 ,


(mpk,msk1-shot)

$← Setup1-shot(1
λ, 1n)

skD
$← KeyGen1-shot(msk1-shot, y1, . . . , yD)

skD+1
$← KeyGen(mpk, skD, yD+1)

: (mpk,msk1-shot, skD, skD+1)

 .

Proof (sketch).Proof (sketch). Recall that KeyGen creates new garblings, and uses key-homomorphism and the
basis keys to combine the new garblings into the old keys. Since key-homomorphism is perfect and
every old key takes part in some operation to form the new key, it suffices to show that the vectors
encrypted in the keys in skD+1 follows the same distribution in the two cases.

Combining the linearity of Garble, B being invertible, and the fact that KeyGen generates fresh
garblings for all the policies and combines the newly generated one (with a change of basis deter-
mined by B) with the old ones (which are valid garblings), the vectors encrypted in skD+1 generated
by KeyGen encode independently generated garblings for independently sampled pads, which are
the same as the ones created using KeyGen1-shot. The verification is easy in principle but tedious to
practice. We omit it here. �

Lemma 59. Suppose in Construction 57, the AKGS is piecewise secure, the MDDHk assump-
tion holds in G2, and the slotted IPFE is function-hiding, then the helper scheme (Setup1-shot,
KeyGen1-shot,Enc,Dec) is IND-CPA secure.

Proof (sketch).Proof (sketch). The proof is similar to that of Theorem 27 (IND-CPA of the basic ABE), except
that we need one extra preparation step and have to take care of the basis keys. We highlight them
and leave the rest to the reader.

Recall that in ExpbCPA, the adversary receives mpk (consisting of impk and bskz’s), skq for
the conjunction of yq,1, . . . , yq,Dq , and ct encrypting gb under attribute x, where y1,1, . . . , y1,D1 ;
. . . ; yQ,1, . . . , yQ,DQ and g0, g1,x are chosen adaptively by A subject to the constraint that each
queried key should not decrypt the ciphertext, i.e., for all q ∈ [Q], there exists dq ∈ [Dq] such that
yq,dq(x) = 0. The basis keys bskz’s encrypt a basis determined by a random invertible matrix B for
the indices constt, coefti. The adversary needs to distinguish the two cases.

As before, the proof goes by moving the computation of the garblings for the challenge ciphertext
to the private slot, invoking MDDHk to argue the garblings in the private slot are indistinguishable
from independently generated garblings for independently sampled pads, and lastly reducing IND-
CPA security to 1-ABE security.

We describe the first few hybrids (the indices are aligned with those in the proof of Theorem 27):

• Hybrid Hb0Hybrid Hb0 proceeds identically to ExpbCPA. As shown in Figure 13, ict in the challenge cipher-
text is generated using IPFE.SlotEnc (with ⊥ values in the private slot), the basis keys bskz
and the secret keys skq are generated normally.

• Hybrid Hb1Hybrid Hb1 proceeds identically to Hb0, except that the IPFE ciphertext in the challenge ci-
phertext is generated using IPFE.Enc with 0 values in the private slot. By the slot-mode
correctness, we have Hb0 ≡ Hb1.

97

hybrid vector pad constt coefti const coefi sim1, sim?

Hb0 ≡ ExpbCPA

bskconstt′ 0 B[t, t′] 0 0 0 0
bskcoeft′

i′
0 0 B[t, t′]1[i = i′] 0 0 0

skq: vq,pad 1 µq[t] 0 0 0 0

skq: vq,d,j 0 Ltq,d,j [const] Ltq,d,j [coefi] 0 0 0

ct : u h s[t] s[t]x[i] ⊥ ⊥ ⊥

Hb1

bskconstt′ 0 B[t, t′] 0 0 0 0

bskcoeft′
i′

0 0 B[t, t′]1[i = i′] 0 0 0

skq: vq,pad 1 µq[t] 0 0 0 0

skq: vq,d,j 0 Ltq,d,j [const] Ltq,d,j [coefi] 0 0 0

ct : u h s[t] s[t]x[i] 0 0 0

Hb2

bskconstt′ 0 B[t, t′] 0 (BTs)[t′] 0 0

bskcoeft′
i′

0 0 B[t, t′]1[i = i′] 0 (BTs)[t′]1[i = i′] 0

skq: vq,pad 1 µq[t] 0 µq 0 0

skq: vq,d,j 0 Ltq,d,j [const] Ltq,d,j [coefi] Lq,d,j [const] Lq,d,j [coefi] 0

ct: u h 0 0 1 x[i] 0

Hb2.71828···

bskconstt′ 0 B[t, t′] 0 (BTs)[t′] 0 0

bskcoeft′
i′

0 0 B[t, t′]1[i = i′] 0 (BTs)[t′]1[i = i′] 0

skq: vq,pad 1 µq[t] 0 µq 0 0

skq: vq,d,j 0 Ltq,d,j [const] Ltq,d,j [coefi] Lq,d,j [const] Lq,d,j [coefi] 0

ct: u h 0 0 1 x[i] 0

Hb3

bskconstt′ 0 B[t, t′] 0 d[t′] 0 0

bskcoeft′
i′

0 0 B[t, t′]1[i = i′] 0 d[t′]1[i = i′] 0

skq: vq,pad 1 µq[t] 0 µ̂q 0 0

skq: vq,d,j 0 Ltq,d,j [const] Ltq,d,j [coefi] L̂q,d,j [const] L̂q,d,j [coefi] 0

ct: u h 0 0 1 x[i] 0

The hybrids are illustrated with ciphertext challenge coming after the key queries (as in
the more difficult case for 1-ABE). In reality, the key queries can be made before and
after the ciphertext challenge, and the proof is unaffected.

In Hb2, the linearly combined Lq,j =
∑
t∈[k] s[t]Ltq,j are valid garblings for µq = 〈s,µq〉.

In Hb2.71828···,H
b
3, the matrix B is uniformly random (not conditioned on being invertible).

In Hb3, the garblings L̂q,j are fresh and are for freshly sampled pads µ̂q.

Figure 13: The first few hybrids the proof of IND-CPA security of
(Setup1-shot,KeyGen1-shot,Enc,Dec) in Construction 57 (cf. Figure 4).

98

• Hybrid Hb2Hybrid Hb2 proceeds identically to Hb1, except that we hardwire the linear combination coeffi-
cients s into the IPFE keys. We refer the readers to the proof of Theorem 27 for the handling
of the ABE secret keys and the challenge ciphertext, and focus on the basis keys. In Hb1, the
inner product between the vector in the basis key bskconstt′ and the challenge ciphertext was

k∑
t=1

B[t, t′]s[t] =
k∑
t=1

BT[t′, t]s[t] = (BTs)[t′].

So it suffices to put (BTs)[t′] at index const of the vector in bskconstt′ . Similarly, in bsk
coeft

′
i′

,

we should embed (BTs)[t′] at index coefi′ to keep the inner product unchanged, as depicted
in Figure 13. Since we make sure the inner products do not change, Hb1 ≈ Hb2 by the function-
hiding property.

• Hybrid Hb2.71828···Hybrid Hb2.71828··· proceeds identically to Hb2, except that we do not condition B on being
invertible. This step does not appear in the proof for the basic ABE, and is a preparation
step for invoking MDDHk. A random square matrix over Zp is invertible with overwhelming
probability, so Hb2 ≈s Hb2.71828···.

• Hybrid Hb3Hybrid Hb3 proceeds identically to Hb2.71828···, except that in the private slot of the secret keys,
the garblings are generated independent of the public slot garblings and for freshly sampled
pads, and that in the private slot of the basis keys, BTs is replaced by d

$← Zkp. Similar to the
proof of Theorem 27, we rely on the MDDHk assumption in G2 (IPFE secret key encoding
group) to argue Hb2.71828··· ≈ Hb3. The only difference is that we invoke MDDHk,N+k instead of
MDDHk,N , where N is the total number of random elements used in the public slot garblings.
The MDDHk assumption implies

[[A,B, sTA, sTB]]2 ≈ [[A,B, cT,dT]]2 for A
$← Zk×Np ,B

$← Zk×kp , s
$← Zkp, c

$← ZNp ,d
$← Zkp.

Given A,B and cT,dT that are either sTA, sTB or random, we use B,d to form the public/pri-
vate slots of the basis keys, and A, c as the randomness of the garblings in the public/private
slots of the queried secret keys. The latter part is again attributed to the linearity of AKGS
Garble. If cT,dT are sampled as sTA, sTB, the created keys follow the distribution specified
in Hb2.71828···; otherwise, the distribution is that specified in Hb3. Therefore, Hb2.71828··· ≈ Hb3 by
the MDDHk assumption in G2.

The proof then proceeds the same as that of Theorem 27, and we omit the rest. �

Corollary 60. Suppose in Construction 57, the AKGS is piecewise secure, the MDDHk assumption
holds in G2, and the slotted IPFE is function-hiding and perfectly key-homomorphic, then the main
scheme (Setup,KeyGen,Enc,Dec) is IND-CPA-DLG secure.

Proof (sketch).Proof (sketch). We prove the corollary by reduction to the IND-CPA security of the helper scheme.
Recall that in the IND-CPA-DLG experiments, the adversary A can delegate and reveal secret

keys, and request a ciphertext encrypting one of the two messages under some attribute. The
policies to delegate, the secret keys to reveal, the messages and the attribute are chosen adaptively
by A, subject to the constraint that any revealed key has some policy that disallows the challenge
attribute. The task of A is to tell which message is being encrypted.

By Lemma 58 (and a hybrid argument over D), instead of delegating the secret keys (from msk
and other delegated keys) and revealing them as requested, it is identical to remember the policies

99

for the would-be-delegated keys and generate the secret key using KeyGen1-shot and msk1-shot when
it is requested for revelation for the first time. With this change made, the IND-CPA-DLG security
experiments of the main scheme is exactly the IND-CPA security experiments of the helper scheme
(plus some bookkeeping), and we conclude security by Lemma 59. �

C Proof of Theorem 20

Proof.Proof. Suppose (Garble,Eval) is a piecewise secure AKGS.
We first show that `1 has non-zero coefficient in Eval. Consider a function f : Znp → Zp of garbling

size m. By Lemma 17, for any α, β, the labels for a garbling of f with secrets α, β can be simulated
as `2, . . . , `m

$← Zp and `1
$← RevSamp(f,x, γ, `2, . . . , `m). In particular, `2 = · · · = `m = 0 is

a possible assignment of the labels for α = 0, β = 1 with positive probability. By the (perfect)
correctness, for this assignment, we have

1 = `1Eval(f,x, 1, 0, . . . , 0) =⇒ Eval(f,x, 1, 0, . . . , 0) 6= 0.

Now we show how to find the change of variable for the randomness to write the labels in
the special form with randomizers. Let r be the randomness used by Garble and L1, . . . ,Lm the
coefficients of the label functions as functions of α, β, r. By the linearity requirement,

Lj [z] = uj,zα+ vj,zβ + 〈wj,z, r〉

for some uj,z, vj,z,wj,z determined by f . Consider the following process that computes a basis B
for the dual space of r:

B ← ∅
for j = m,m− 1,m− 2, . . . , 2:

for i = 1, . . . , n:
if wj,coefi is linearly independent of B:

B ← B ∪ {wj,coefi}
B ← B ∪ {wj,const}

complete B into a basis if it is not yet a basis

We claim that B is always a linearly independent set. Clearly, initially B = ∅ is linearly indepen-
dent. By how we add wj,coefi ’s, none of these steps change B from being linearly independent to
being linearly dependent. Consider each time we add some wj∗,const and suppose (for the sake of
contradiction) that wj∗,const were already in the span of B by the time we add it, then we would
have

wj∗,const =
n∑
i=1

aiwj∗,coefi +
∑
j>j∗,z

bj,zwj,z for some ai, bj,z ∈ Zp.

Now consider garbling f with secrets α = β = 0 and setting x[i] = −ai. Given Lj∗+1, . . . ,Lm, the
label `j∗ would be determined, contradicting the marginal randomness property:

`j∗ =

n∑
i=1

x[i]〈wj∗,coefi , r〉+

n∑
i=1

ai〈wj∗,coefi , r〉+
∑
j>j∗,z

bj,z〈wj∗,z, r〉

=
∑
j>j∗,z

bj,zLj [z] (since x[i] + ai = 0). →|

\
\
\
\

100

Therefore, no step of adding wj,const makes B linearly dependent.
Given the basis B = {bt, . . . ,b1} (with bt being the first vector added to B), we change the

randomness to be r̃ for r̃[t] = 〈bt, r〉, which amounts to a change of basis of r (to the dual basis of
B). Note that since B is efficiently computable, so is the bijection between r and r̃. The garbling
scheme now uses r̃ as the randomness, and garbles by first computing r then using the underlying
procedure with r.

For all j > 1, the label function Lj(x) is in the special form with randomizer r̃[tj] for some tj
— r̃[tj] = 〈wj,const, r〉 appears in the constant term as +r̃[tj], the non-constant coefficients and the
coefficients of any label function Lj′ with j′ > j only use r̃[t] with t > tj . �

101

	Introduction
	Technical Overview
	1-ABE from Arithmetic Key Garbling and IPFE Schemes
	Full-Fledged ABE via IPFE
	1-ABE for Logspace Turing Machines

	Preliminaries
	Notational Conventions
	Bilinear Pairing and Matrix Diffie-Hellman Assumption
	Attribute-Based Encryption
	Function-Hiding Slotted Inner-Product Functional Encryption

	Computation Models
	Arithmetic Branching Programs
	Turing Machines

	Arithmetic Key Garbling Scheme
	Security Notions of AKGS

	ABE for ABPs
	AKGS for ABPs
	1-Key 1-Ciphertext Secure Secret-Key ABE
	KP-ABE for ABPs

	ABE for Uniform Logspace Turing Machines
	AKGS for Turing Machines with Time/Space Bounds
	1-ABE for L
	KP-ABE for L
	Extension to NL
	ABE for DFA/NFA

	References
	Construction of Function-Hiding Slotted IPFE
	Key Delegation
	1-ABE Supporting Conjunctions
	Perfectly Key-Homomorphic IPFE
	KP-ABE Supporting Delegation

	Proof of Theorem 20

