
Defeating CAS-Unlock
Bicky Shakya

bshakya@ufl.edu
Xiaolin Xu *

xiaolin8@uic.edu
Mark Tehranipoor, Domenic Forte
{tehranipoor,dforte}@ece.ufl.edu

ECE Department, University of Florida
* ECE Department, University of Illinois at Chicago

1 Abstract
Recently, a logic locking approach termed ‘CAS-Lock’ was proposed to simulta-
neously counter Boolean satisfiability (SAT) and bypass attacks. The technique
modifies the AND/OR tree structure in Anti-SAT to achieve non-trivial output
corruptibility while maintaining resistance to both SAT and bypass attacks. An
attack against CAS-Lock (dubbed ‘CAS-Unlock’) was also recently proposed
on a naive implementation of CAS-Lock. It relies on setting key values to all
1’s or 0’s to break CAS-Lock. In this short paper, we evaluate this attack’s
ineffectiveness and describe a misinterpretation of CAS-Lock’s implementation.

(a) (b)

Figure 1: (a) Gate-level Structure of CAS-Lock (b) CAS-Lock integration into
a design.

1



2 CAS-Lock
With the globalization of the semiconductor industry, the fabrication of most in-
tegrated circuits (ICs) is being outsourced to untrusted and off-shore foundries.
To mitigate the hardware vulnerabilities caused by this new business model,
logic locking has been proposed as a solution. Most existing logic locking
schemes are implemented by inserting extra key-gates into the netlist of the
original circuit design. As a result, the locked circuit works correctly only when
the correct key is provided. However, recent work has shown that most locking
techniques are vulnerable to the so-called Boolean satisfiability (SAT) based at-
tacks [1]. In the SAT attack, a set of distinguishing input patterns (DIPs) are
collected from the locked circuit to rule out incorrect keys that do not satisfy
the DIPs and the corresponding known-good responses from an unlocked IC.

Recently, two logic locking methods: Anti-SAT [2] and CAS-Lock [3] have
been proposed to mitigate the threats from SAT attacks. Both Anti-SAT and
CAS-Lock use two complementary logical blocks: g and ḡ, which share a com-
mon input X but are locked by two different keys Kl1 and Kl2. These two blocks
g and ḡ are used to flip the outputs if a wrong key is applied. Bypass attack [4]
has also been proposed against Anti-SAT and other similar SAT resistant locking
schemes. In this attack, extra logic is embedded into the locked circuit to nullify
output corruptibility from a wrong key. In addition, removal attacks [5] have
also been proposed against regular and SAT-attack resistant locking schemes.
They exploit the gate-level implementation of these techniques, by identifying
structural features such as signal probability skew (SPS).

The basic gate-level structure of CAS-Lock is shown in Figure 1a. It only
differs from Anti-SAT [2] based on how the complementary logical blocks gcas

and ḡcas are constructed, i.e., the AND/OR gates are daisy-chained or cascaded
together instead of being connected in a tree structure. This logical structure
gives CAS-Lock its SAT attack resistance and also resistance against bypass and
removal attacks [4]. More proofs and technical details on how these properties
are achieved can be found in [3]. Here, we note that CAS-Lock varies from Anti-
SAT only in the logical structure of gcas and ḡcas. The XOR/XNOR of the key
bits (K0, K2n−1) with the primary inputs IN of the circuit can be followed in
the same way as Anti-SAT.

3 Defeating CAS-Unlock
The adversarial model of SAT-attack is defined in [1], in which an attacker has
access to (a) A locked netlist: This can either be obtained from a malicious
foundry or through reverse-engineering a chip obtained from the open market.
(b) Unlocked IC : An unlocked ‘golden’ IC can be purchased from the open mar-
ket or obtained through a malicious insider in the design house. Such a chip can
be used by the attacker to check whether the output for a given key from the
locked netlist is correct, i.e., he/she can perform chip-level functional/structural
tests to obtain golden responses. The goal of the attacker is to find the cor-

2



rect key by inquiring the least number of input patterns from the unlocked IC.
Without loss of generality, most of the recently proposed countermeasures, in-
cluding both Anti-SAT and CAS-Lock, use the same threat model from [1]. In
CAS-Lock, a logic block comprising of a cascade of key controlled AND/OR
gates is stitched into the original circuit. The block exponentially increases the
complexity of SAT attacks while simultaneously allowing the locked design to
maintain non-trivial output corruptibility for defeating bypass removal attacks.
Removal attacks, such as SPS-based, are prevented by increasing corruptibility
from the gcas / ḡcas function, as well as by modifying the original logic circuit.

CAS-Unlock has been recently proposed as a trivial yet highly effective at-
tack against CAS-Lock [6]. It specifically exploits the way the XOR/XNOR of
the 2n-length key is performed with the n primary inputs. In CAS-Unlock, the
following adversarial model is assumed:

• The attacker does not have access to the gate-level netlist of the locked
design, which has been re-synthesized after application of CAS-Lock.

• The attacker does not have access to an unlocked IC, unlike SAT attacks.
Therefore, no oracle exists or is needed to query correct input patterns.

• The attacker only loads key values into the design, through key registers.
The goal is to simply set the key that nullifies the effect of locking.

Thus, CAS-Unlock claims to break CAS-Lock under the strongest adversarial
model that has been proposed so far in all logic locking literature, i.e., the
attacker ONLY needs to load keys into the design.

From the construction of CAS-Lock, it is clear that such an attack would
work if and only if all bits of the input and key were only XOR’ed with each
other. A trivial attack would then work by setting both the gcas and ḡcas keys
to all 0’s or all 1’s. As a result, the output of both gcas and ḡcas would always be
complementary, leading to an output of Y = 0 for all input patterns. Therefore,
once integrated into the circuit, the CAS-Lock block would never flip the correct
output of the circuit for any input pattern, which would effectively invalidate
CAS-Lock. The same effect can be seen when only XNOR of the key and input
bits is used in both gcas and ḡcas. In either case, note that the attacker merely
needs to set the key to all 0’s or all 1’s. No further effort is claimed to be needed
to break CAS-Lock with CAS-Unlock.

It should be noted that this property is true of both CAS-Lock and Anti-
SAT [2]. If the output of gcas is never equal to that of ḡcas, no input patterns
will be corrupted. In other words, if the inputs (XOR’ed result of the key
and the primary inputs) to both gcas and ḡcas are the same, the output will
always be 0, since gcas and ḡcas are complementary. Thus, it is required that
both CAS-Lock and Anti-SAT use a combination of randomly chosen
XOR/XNORs, so that (1) the key for gcas is never equal to that of ḡcas, or (2)
the keys for gcas and ḡcas are not a string of all 1’s or 0’s. This is because of the
inherent characteristic of XOR/XNOR functions, and the fact that gcas and ḡcas

are logically complementary. Thus, any implementation or interpretation

3



of CAS-Lock/Anti-SAT that does not include XOR+XNORs of key
bits with the input bits would be incorrect 1. Once XOR/XNORs are
applied, CAS-Unlock would be defeated, as a key of all 0’s or all 1’s is no
longer able to provide a functionally correct circuit, as the correct key
bits for gcas and ḡcas are no longer the same. In fact, even if one single XOR
gates was changed to an XNOR, CAS-Unlock would be nullified. Of course, an
attacker could try to figure out the mapping of XOR/XNORs between gcas and
ḡcas, so that the outputs of both blocks are always complementary. However,
such an attack requires access to the gate-level netlist, which is not covered
under the CAS-Unlock adversarial model. Further, re-synthesis of the netlist
prevents such an attack, as detailed in [3].

4 Conclusion
In summary, the requirement of using asymmetric key gates or a combination
of XOR/XNORs for gcas and ḡcas was clearly established in Anti-SAT [2], and
further re-iterated in CAS-Lock [3]. Using all XORs or XNORs for the inputs
to gcas and ḡcas creates a naive attack vector, which can (and in fact, must
be) prevented by using a combination of random XOR/XNORs. Therefore,
we hope future papers that target on attacking any existing solutions compre-
hensively understand the correct implementation of the scheme first; otherwise,
misunderstandings about its susceptibility to attacks might be propagated.

References
[1] Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the secu-

rity of logic encryption algorithms. In 2015 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 137–143. IEEE,
2015.

[2] Yang Xie and Ankur Srivastava. Mitigating sat attack on logic locking. In In-
ternational Conference on Cryptographic Hardware and Embedded Systems,
pages 127–146. Springer, 2016.

[3] Bicky Shakya, Xiaolin Xu, Mark Tehranipoor, and Domenic Forte. Cas-
lock: A security-corruptibility trade-off resilient logic locking scheme. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 175–
202, 2020.

1The security proofs outlined in [3] regarding CAS-Lock, which illustrate XOR’ing of the
key bits with the primary inputs, are only shown for simplicity of explanation. Usage of
XORs, XNORs or a combination of both, only results in the permutation of the truth tables
for gcas and ḡcas. The security claims made in Lemmas 1 to 3 regarding SAT attack resistance
still hold. Bypass attack resistance is also maintained as either XOR or XNOR maintains the
same 0.5 probability at the inputs of gcas and ḡcas.

4



[4] Xiaolin Xu, Bicky Shakya, Mark M Tehranipoor, and Domenic Forte. Novel
bypass attack and bdd-based tradeoff analysis against all known logic lock-
ing attacks. In International Conference on Cryptographic Hardware and
Embedded Systems, pages 189–210. Springer, 2017.

[5] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavi-
jayan Rajendran. Security analysis of anti-sat. In 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 342–347. IEEE,
2017.

[6] Abhrajit Sengupta and Ozgur Sinanoglu. Cas-unlock: Unlocking cas-lock
without access to a reverse-engineered netlist.

5


