
Defeating NewHope with a Single Trace?

Dorian Amiet1, Andreas Curiger2, Lukas Leuenberger1, and Paul Zbinden1

1 IMES Institute for Microelectronics and Embedded Systems
HSR Hochschule für Technik Rapperswil, Switzerland

dorian.amiet@hsr.ch, lukas.leuenberger@hsr.ch, paul.zbinden@hsr.ch
2 Securosys SA, Zürich, Switzerland, curiger@securosys.ch

Abstract. The key encapsulation method �NewHope� allows two par-
ties to agree on a secret key. The scheme includes a private and a public
key. While the public key is used to encipher a random shared secret,
the private key enables to decipher the ciphertext. NewHope is a can-
didate in the NIST post-quantum project, whose aim is to standardize
cryptographic systems that are secure against attacks originating from
both quantum and classical computers. While NewHope relies on the
theory of quantum-resistant lattice problems, practical implementations
have shown vulnerabilities against side-channel attacks targeting the ex-
traction of the private key. In this paper, we demonstrate a new attack
on the shared secret. The target consists of the C reference implementa-
tion as submitted to the NIST contest, being executed on a Cortex-M4
processor. Based on power measurement, the complete shared secret can
be extracted from data of one single trace only. Further, we analyze
the impact of di�erent compiler directives. When the code is compiled
with optimization turned o�, the shared secret can be read from an os-
cilloscope display directly with the naked eye. When optimizations are
enabled, the attack requires some more sophisticated techniques, but the
attack still works on single power traces.

Keywords: Post-quantum cryptography · Side-channel attack ·NewHope

· Message encoding

1 Introduction

A key encapsulation mechanism (KEM) is a scheme including public and pri-
vate keys, where the public key is used to create a ciphertext (encapsulation)
containing a randomly chosen symmetric key. The private key is used to decrypt
the ciphertext. This allows two parties to share a secret key. Traditional KEMs
such as RSA [1] rely on the di�culty of factoring large integer numbers. This
problem is widely regarded to be infeasible for large numbers with classical com-
puters. The factoring problem can be solved in polynomial time with quantum
computers [2]. It is, however, not yet clear, whether quantum computer with

? This paper is published at PQCrypto 2020. The �nal authenticated version is avail-
able online at https://doi.org/10.1007/978-3-030-44223-1_11

https://doi.org/10.1007/978-3-030-44223-1_11

2 D. Amiet et al.

enough computation power to break current cryptographic schemes may ever be
built [3]. However, the sole risk that such a machine may eventually be built
justi�es the e�ort in �nding alternatives to today's cryptography [4].

In 2017, the National Institute of Standards and Technology (NIST) started
a standardization process [5] for post-quantum algorithms, i.e. cryptographic al-
gorithms able to withstand attacks that would bene�t from the processing power
of quantum computers. Proposed algorithms in this process include digital sig-
nature schemes, key exchange mechanisms and asymmetric encryption. In 2019,
26 of the primary 69 candidates were selected to move to the second round [6].
A remaining KEM candidate is NewHope [7], which was submitted by Thomas
Pöppelmann et al. Compared to other key-establishment candidates in the NIST
process,NewHope has competitive performance in terms of bandwidth (amount
of bits needed to be transmitted between both parties) and clock cycles (time
required for computing).

The NewHope submission to NIST is based on NewHope-Simple [8], which
is a variant of the prior workNewHope-Usenix [9]. All theseNewHope schemes
are based on the assumption that the ring-learning with errors (RLWE) prob-
lem is hard. RLWE �rst came to prominence with the paper by Lyubashevsky et
al. [10]. It is a speed-up of an earlier scheme, i.e. the learning with errors (LWE)
problem, which allows for a security reduction from the shortest vector problem
(SVP) on arbitrary lattices [11]. Cryptosystems based on LWE typically require
key sizes in the order of n2. In contrast, RLWE-based cryptosystems have signif-
icantly smaller key sizes of almost linear size n [12]. Besides shrinking of the key
size, the computation speeds up. For NewHope, the variables are polynomials
of degree n. The parameters are chosen in such a way that computations can be
performed in the domain of the number-theoretic transform (NTT). The price
is being payed with a reduction in security, because RLWE adds some algebraic
structures into the lattice that might be utilized by an attacker. However, it
is reasonable to conjecture that lattice problems on such lattices are still hard.
There is currently no known way to take advantage of that extra structure [12].

Whenever an algorithm is executed on any sort of processor, the device will
consume electrical power. Depending on the algorithm and input data, the con-
sumed power will �uctuate. This power variation might be used to attack the
algorithm running on the device. To apply such an attack, a time-resolved mea-
surement of the executed instructions is required. Information collected by such
measurements are often referred to as side channels and may re�ect the timing
of the processed instructions [13], the power consumption [14], the electromag-
netic emission [15], or any other measurement carrying information about the
processed operations. One can then draw conclusions about this side channel.
Usually this information includes private data, but it may also contain other in-
formation, for example how the algorithm is implemented. These kinds of attacks
are often referred to as passive side-channel attacks.

There exist some publications addressing side-channel attacks related to
NewHope. Some of them require only a single power trace measurement. Pri-
mas et al. introduced an attack on the NTT computation [16], which relies on

Defeating NewHope with a Single Trace 3

timing information. However, the NewHope reference implementation submit-
ted to the NIST process (we call it �refC� in this paper) executes the NTT in
constant time. Therefore, this attack will not work on refC. Another attack that
requires only a single power trace is introduced by Aysu et al. [17]. The at-
tack targets the polynomial multiplication implemented in schoolbook manner.
The refC implementation speeds up the polynomial multiplication by making
use of the NTT. Instead of n multiplications per value, only one multiplication
per value remains during polynomial multiplication. This makes the attack, as
described in [17], infeasible for the refC implementation.

In this paper, we demonstrate that the refC implementation is vulnerable
to a simple power attack. It might be the �rst documented passive attack on
refC which requires only one power trace to be performed. Another di�erence to
previous attacks is the target. Instead of identifying the private key, our attack
addresses the message. In the case of KEM, the attack will leak the shared
secret. The side channel is measured during message encoding, i.e. when the
shared secret is translated from a bit string into its polynomial representation.

In the next Section, we recall the NewHope KEM and summarize existing
attacks. Section 3 consists of the attack description and demonstration includ-
ing power trace measurements. Finally, possible mitigations are discussed in
Section 4.

2 Background

The main idea behind RLWE is based on the idea of small and big polynomial
rings of integers modulo q. In NewHope, the polynomials have n ∈ {512, 1204}
dimensions, and the modulus is q = 12289. Small polynomials have coe�cients
in the range −8 ≤ c ≤ 8 (mod q) in every dimension. Big polynomials can have
equally distributed coe�cients between 0 and q − 1. The polynomials can be
added, subtracted and multiplied. The e�ect of the polynomial ring on multipli-
cation is as follows: After (schoolbook) polynomial multiplication, the coe�cients
of all dimensions i ≥ n are added to the coe�cient in dimension i mod n. E.g.
for n = 2, the product (ax+b)◦(cx+d) will result in (ad+bc mod q)x+(ac+bd
mod q).

In the following demonstration of the RLWE principle, upper-case letters
represent big polynomials and lower-case letters represent small polynomials.
To generate a key pair, the server randomly samples A, s, and e. The server
calculates

B = As+ e. (1)

Both big polynomials A and B form the public key, and s is the private key. The
client side randomly samples the message µ and the small polynomials t, e′ and
e′′. The message µ is encoded into the big polynomial V . The client calculates

U = At+ e′ (2)

and
V ′ = Bt+ e′′ + V. (3)

4 D. Amiet et al.

U and V ′ are then sent to the server. The �nal calculation on the server side is

V ′ − Us = Bt+ e′′ + V −Ats− e′s (4)

= Ats+ et+ e′′ + V −Ats− e′s (5)

= et+ e′′ + V − e′s. (6)

Because V is the only remaining big polynomial, the server can decode µ, as
long as the other polynomials remain small enough.

2.1 NewHope-CPA

The passively secure NewHope version (CPA) implements RLWE as described
above. Beside RLWE, an important concept in NewHope includes the NTT.
It is somehow related to the FFT. The main advantage of the NTT is calcula-
tion speedup. A polynomial multiplication implemented in schoolbook manner
requires n2 single coe�cient multiplications. In the NTT domain, the polyno-
mial multiplication requires n coe�cient multiplications only. Further, the do-
main transformation requires n log2(n) coe�cient multiplications. Even for a
single polynomial multiplication, the way through the NTT domain results in a
speedup. NewHope forces all implementations to use the NTT, as parts of the
public key and ciphertext are de�ned in the NTT domain only.

Server: Key Generation
Input: random data rand
z ← SHAKE256(64, rand)
publicseed← z[0 : 31]
noise← z[32 : 63]
Â← GenA(publicseed)
s← PolyBitRev(Sample(noise, 0))
ŝ← NTT(s)
e← PolyBitRev(Sample(noise, 1))
ê← NTT(e)
B̂ ← Â ◦ ŝ+ ê
pk ← EncodePK(B̂, publicseed)
sk ← EncodePolynomial(ŝ)

Client: Message Encryption
Input: pk, message µ, random data coin
(B̂, publicseed)← DecodePk(pk)
Â← GenA(publicseed)
s′ ← PolyBitRev(Sample(coin, 0))
e′ ← PolyBitRev(Sample(coin, 1))
e′′ ← Sample(coin, 2))
t̂← NTT(s′)
Û ← Â ◦ t̂+NTT(e′)
V ← Encode(µ)
V ′ ← NTT−1(B̂ ◦ t̂) + e′′ + V
H ← Compress(V ′)
ct← EncodeC(Û ,H)

Server: Message Decryption
Input: ct, sk
(Û ,H)← DecodeC(ct)
ŝ← DecodePolynomia(sk)
V ′ ← Decompress(H)
µ← Decode(V ′− NTT−1(Û ◦ ŝ))

pk

ct

sk

Fig. 1. NewHope-CPA message encapsulation.

Defeating NewHope with a Single Trace 5

Figure 1 shows the NewHope CPA message encapsulation. From an attacker
perspective with access to a device and the possibility to measure power traces,
the processing of several parts in the scheme are somehow a�ected by private
data. The following parts are potential targets for a passive side-channel attack:

� Random data generation
� SHAKE256
� Generation of s and e (e.g. PolyBitRev(Sample(seed, 0)))
� Polynomial multiplication and addition (e.g. Â ◦ ŝ+ ê)
� Both NTT and NTT−1

� Message encoding and decoding

2.2 Known Attacks

Some of the potential targets have already been exploited and corresponding
attacks were already published. Passive side-channel attacks that require only
single measurements are the most interesting from a practical view, because such
attacks work on ephemeral keys (a fresh NewHope key pair is generated for all
key encapsulations) and masking does not prevent these attacks.

[17] introduces a horizontal attack on the polynomial multiplication a ◦ s on
NewHope-Usenix and Frodo [18]. The target in [17] is the polynomial multipli-
cation implemented in a schoolbook manner: Each coe�cient of s is multiplied
n times. The attack extracts the coe�cients of s out of these n multiplications.
It is unclear, if the attack would work on refC with single measurement traces,
because in the NTT domain, only one multiplication per coe�cient remains.

Another publication describes an attack on the NTT transformation [16].
In this attack, an NTT implementation is exploited that does not execute in
constant time. TheNewHope refC implementation, however, does not have such
a timing leakage. Other related passive attacks on lattice-based key encapsulation
schemes include [19�21]. However, we are not aware of any publication that
directly targets the message encoding in any lattice-based scheme.

This fact re�ects also in publications that cover countermeasures against pas-
sive attacks. [22] and [23] introduce masked decryption. The masked operations
are NTT−1, polynomial arithmetic operations, and message decoding. Further
masking includes also encryption on client side [24]. This scheme masks also
message encoding. The message m is split into two shares m = m′ ⊕m′′, and
the encoding function is executed on both shares m′ and m′′.

An active attack that might be applicable on all RLWE schemes in CPA mode
uses several forged ciphertexts to reconstruct the private key [25�28]. Because
NewHope-CPA is prone to these active attacks, the CPA version is only eligible
for ephemeral keys. For all other applications, NewHope-CCA should be used.
NewHope-CCA is a superset of NewHope-CPA. The main di�erence is an
additional encryption step after the decryption on the server side. The server
calculates the ciphertext by itself and compares it to the ciphertext received
from the client side. A forged ciphertext from the client will then be detected.
IND-CCA2 security is traded o� with processing time (mainly on server side)

6 D. Amiet et al.

and a ciphertext whose size is slightly increased (by 3% or 1.4%, respectively,
depending on n).

3 Attack Description

The attack is performed during message encoding. If an active secureNewHope-
CCA instance is chosen, the attack works on both server and client side. Con-
cerning the NewHope-CPA instances, message encoding is called on client side
only.

The message encoding function translates a 256-bit message or an encapsu-
lated key into its polynomial representation. This encoded polynomial V has
a zero in every dimension i, if the corresponding message bit µi−k·256 is zero.
Otherwise, if the message bit µi−k·256 is one, the corresponding polynomial co-
e�cients are set to q/2 = 6144.

A straightforward implementation might use a for-loop over all message bits
containing an if-condition which sets the polynomial coe�cients to either 0 or
q/2. Such an implementation would be susceptible to timing attacks. The refC
implements the message encoding in a way that the code inside the for-loop
always runs in constant time. Listing 1 shows the corresponding function from
refC.

1 // Name : poly_frommsg
2 // Desc r ip t i on : Convert 32−byte message to polynomial
3 // Arguments : − poly * r : po in t e r to output polynomial
4 // − const unsigned char *msg : input message
5

6 void poly_frommsg (poly * r , const unsigned char *msg)
7 {
8 unsigned i n t i , j , mask ;
9 f o r (i =0; i <32; i++)
10 {
11 f o r (j =0; j <8; j++)
12 {
13 mask = −((msg [i] >> j)&1) ;
14 r−>c o e f f s [8* i+j+ 0] = mask & (NEWHOPE_Q/2) ;
15 r−>c o e f f s [8* i+j +256] = mask & (NEWHOPE_Q/2) ;
16 #i f (NEWHOPE_N == 1024) // I f c l au s e d i s s o l v ed at compi le time
17 r−>c o e f f s [8* i+j +512] = mask & (NEWHOPE_Q/2) ;
18 r−>c o e f f s [8* i+j +768] = mask & (NEWHOPE_Q/2) ;
19 #end i f
20 }
21 }
22 }

Listing 1. Message Encoding in refC

A mask, containing 0 or -1 (= 0xFFFF...), replaces the if-condition. The
mask calculation is shown in Listing 1 at line 13. The processed message bit is
leaked neither in a branch, nor in an address-index look-up nor in di�erences

Defeating NewHope with a Single Trace 7

in execution time. However, power consumption might di�er between processing
a logical zero or logical one, especially because the mask either contains ones
or zeroes only. Chances that processed values can be detected by analyzing the
power consumption of the device are high.

A side-channel measurement can be used to di�erentiate between processed
ones and zeroes. If a single trace is su�cient to do so, the attack would be
applicable on ephemeral keys. In the case of CPA or message encryption, the
attack does not require any public data (i.e. monitoring of the insecure channel
is not required), as the attack directly leaks the shared secret.

Note that this type of attack not only works on message encoding of NewHope.
A check of NIST submissions indicates several candidates, especially other lattice-
based KEMs. Crystals-Kyber [29], for example, uses an almost identical approach
to encode the message.

3.1 Experimental Analysis

In this section, we demonstrate a successful attack based on current measure-
ments on a Cortex M4 processor. We use the publicly available platform CW308-
STM32F4 from NewAE Technology to execute all our attacks. A 40Gsps Wa-
veRunner 640Zi oscilloscope from LeCroy was used to record power traces. The
processor core runs at 59MHz.

The STM32CubeIDE together with an ST programmer from STMicroelec-
tronics was used to compile and program the device. The underlying C compiler
is gcc. When the message encoding function according to Listing 1 is compiled,
the resulting assembler code and thus the program execution di�ers depend-
ing on compiler settings, in particular on the chosen optimization strategy. To
cover various cases, we present results for the case when optimization is disabled
(-O0), and when maximum optimization is applied (-O3). All measurements are
recorded as follows:

1. A test message is generated in which byte 1 is set to a test value. All other
bytes contain random data.

2. A loop, covering test values from 0 to 255, is executed. In this loop, the
message encoding function is called and the voltage at the shunt resistor is
recorded.

3.2 No Optimization

Message encoding requires 109 clock cycles per bit (Listing 1, lines 13 - 18) when
the code is compiled with optimization turned o�. The resulting assembly code
is shown in Appendix 1.

As mentioned before, the power consumption should depend on the processed
message bits. The question is, however, whether the di�erences in power con-
sumption are big enough to be exploited. To answer this question, all possible
values for message byte 1 have been recorded and plotted on top of each other.
To obtain a clear and sharp image, 100 traces per value have been averaged.

8 D. Amiet et al.

0 2 4 6 8 10 12 14
1.2

1.22

1.24

1.26

1.28

1.3

1.32

Time [µs]

V
s
h
u
n
t

Bit 4 = 1
Bit 4 = 0

Fig. 2. Measurement traces on top of each other. Every trace is 100 times averaged.
Code compiled with optimization disabled.

0 2 4 6 8 10 12 14
1.2

1.22

1.24

1.26

1.28

1.3

1.32

b0 = 1 b1 = 1 b2 = 0 b3 = 0 b4 = 1 b5 = 0 b6 = 1 b7 = 0

Time [us]

V
s
h
u
n
t

Fig. 3. A single trace measurement where message byte 1 is set to the value 83 (binary
0101 0011). Code compiled with optimization disabled.

Defeating NewHope with a Single Trace 9

The plot in Figure 2 shows the power traces during processing of message
byte 1. The traces are color-separated by the two possible values of bit 4. The
�uctuation of the amplitude is signi�cantly higher when the value of the pro-
cessed message bit is one. The di�erence is so large that it is even possible to
read the processed message bit directly from the oscilloscope's display. Hence,
the attack can be classi�ed as a simple power attack (SPA). Figure 3 shows a
single power trace. The message byte 83 can directly be read out.

3.3 Optimization Enabled

Message encoding requires 9 clock cycles per bit (Listing 1, lines 13 - 18) when
the code is compiled with maximum optimization setting O3. The assembly code
is provided in Appendix 2.

We use the same approach as before to estimate the di�erences in power
consumption depending on individual message bits. Figure 4 shows traces of
di�erent test values on top of each other. The power traces still di�er, but less
obvious than before, when optimization was turned o�. A direct read-out of the
bit values might be hard to accomplish. Note that the traces plotted in Figure 4
are 1000 times averaged in order to reduce the noise. In a single-trace setting,
the additional noise would make it even more di�cult to read out the message
bits directly.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1.22

1.24

1.26

1.28

1.3

Time [µs]

V
s
h
u
n
t

Bit 4 = 1
Bit 4 = 0

Fig. 4. All measurement traces on top of each other. Every trace is 1000 times averaged.
Code compiled with optimization enabled (O3).

Because an SPA might not be applicable, a di�erential-power attack (DPA)
might work. The attack requires a two-stage process. Before the actual attack

10 D. Amiet et al.

can start, reference traces are required. These traces are the same power mea-
surements as within the attack, but with known message values. To obtain these
traces, an attacker has two possibilities: If the device under attack works as
server, the attack is only applicable to NewHope-CCA. The upside for the at-
tacker is that he can perform the attack as client. The attacker creates valid
ciphertexts for which he can choose the messages. When the device under attack
performs the re-encryption step, the attacker obtains such reference traces. In
the reversed case, where the device under attack is the client and the attacker
is the server, the attacker is unable to choose the messages: The client executes
message encoding with random messages. However, since the attacker performs
as server, he knows the private key and can therefore calculate the messages in
use. In the following, the attacker can repeat these steps until he has obtained
enough reference traces.

For all 256 possible values that a message byte can take on, we record 1,000
reference traces and average them to reduce the impact of noise. After collecting
the reference traces, the actual attack is ready to begin. Our treat model assumes
that the message changes on every call. Therefore, we try to extract the message
byte values from a single power trace only. When an attack trace is available, the
trace is cut into 32 power traces, each containing the processing of one message
byte. These sliced traces are then compared to all 256 reference traces. The
known value of the reference trace which is most similar to the attack trace will
then be taken as the corresponding value for the message byte.

One method to calculate the similarity S between a reference trace Vref and
the attacked trace Vattack is the sum of squares

S =

nsamples−1∑
i=0

(Vref[i]− Vattack[i])2. (7)

Although the attack will work like this, the signal-to-noise ratio (SNR) may be
increased when the noise is �ltered out. A single measurement trace contains
noise in all frequencies while the information about the processed value lies
somewhere below the clock frequency. In our experiment, the SNR is better, if
a bandpass �lter is applied on both, Vref and Vattack, before S is calculated. We
used a bandpass �lter at 1.5− 10MHz (with the core clock running at 59MHz).
The frequencies were heuristically evaluated. Because the encoding of a single
message bit takes 9 clock cycles, a passband around 59MHz/9 = 6.56MHz is
reasonable.

Equation 7 is calculated 256 times (once per reference trace) to get an S per
possible message byte. The smallest S corresponds to the correct byte. To test
if the attack works with all possible messages, the attack has been performed
over all possible values. The result is illustrated in Figure 5. The diagram can
be read as follows: On the x-axis are the reference traces, whereas on the y-axis
traces from the attack can be found. For instance, the horizontal line at y = 50
represents all similarities S from the attacked byte value 50 compared to the
reference traces. Blue represents high similarity or a small S, respectively. Since
S is the smallest at x = 50, the attack worked for this message value, because

Defeating NewHope with a Single Trace 11

0 50 100 150 200 250
0

50

100

150

200

250

Byte value of reference trace

B
yt
e
va
lu
e
of

si
n
gl
e
tr
ac
e
fr
om

at
ta
ck

←
S
im
il
ar

D
i�
er
en
t
→

Fig. 5. Similarity between a single power trace compared to the reference traces.

the correct value could be identi�ed. The diagonal blue line indicates that the
attack works for (almost) all message values.

In Figure 5, an outlier can be identi�ed. The attacked message value 138 is
the only one where the smallest S is not the correct guess. Generally, value 138
sticks out as indicated by the yellow horizontal line. The corresponding power
trace, when inspected in the time domain, shows a disturbance pulse with an
amplitude of ≈ 150mV. The pulse has a duration of roughly 250 ns plus some
re�ections during another 500 ns. The pulse disturbs side-channel information for
approximately four message bits. All our measurements contain some of these
pulses. They must be somehow related to our measurement setup, because the
frequency of these pulses decreases with the time our system is turned on. At
start-up, the pulse frequency is ≈ 50 kHz and falls down to ≈ 1 kHz within a
second. The origin of the pulses is not fully clear. Due to the observations, we
suspect the supply voltage regulator as the culprit.

3.4 Success Rate

When all measurements containing disturbing pulses are excluded, the attack
success rate gets very close to 100% (we did not �nd any measurement without
outlier and false message bit guess).

When optimization is enabled, about 4% of the attacked message encodings
contain an outlier. Depending on timing, this results in one or two false message
byte guesses. The minimum similarity S of a faulty key byte guess is more than

12 D. Amiet et al.

1,000 times higher than S of a correct key byte guesses. Therefore, outliers
can easily be identi�ed. In the case where a pulse provokes two false message-
byte guesses, the message value of the two suspected bytes can be determined
by a brute-force attack. The requirement to execute the brute-force attack is
knowledge of the public data, public key and ciphertext. The computational
e�ort is 216 = 65,536 message encryptions in the worst case. To sum up, the
attack has a success rate of ≥ 96% in our setup. When the public data is known,
most of the remaining 4% can be calculated with a brute-force attack. This
results in an overall success rate of > 99%.

In case of optimization turned o�, about 47% of the attacked message en-
codings contain at least one outlier pulse. However, the e�ect of these pulses is
marginal. Even key guesses that contain such a pulse are mostly guessed correct.
Without any post-processing (brute-force of potentially false bits), the overall
success rate is 99.5%.

4 Countermeasures

An approach to make the attack more di�cult is to decrease the number of bits
that change their value during encryption. This can be achieved by removing
the mask calculation. The coe�cient in the encoded message can be calculated
by a multiplication of the message bit to q/2. Lines 13 and 14 from Listing 1 are
replaced by Listing 2.

13 tmp = (NEWHOPE_Q/2) * ((msg [i] >> j)&1) ;
14 r−>c o e f f s [8* i+j+ 0] = tmp ;

Listing 2. Message Encoding with multiplication

Compiled with optimization enabled, this results in assembly code (see Ap-
pendix 3) in which only two bits are set at a time (in contrast to 32 bits in the
reference code). Nevertheless, the single power trace DPA from Section 3.3 is
still applicable, though the SNR is approximately cut in half. Therefore, this
small change is not su�cient to prevent the attack. Note that even if a way to
hide the message bit to q/2 encoding was found, there would still be leakage
from storing (lines 4 to 7 in Appendix 2).

Oder et al. [24] introduced a masking scheme for encryption. Instead of using
one message, two di�erent messages µ′ and µ′′ are encrypted. These messages
are later xored, or rather summed together in the Rq space, thus forming the
�nal message µ. However, this approach only makes the presented attack slightly
more di�cult, as the message encoding must be attacked twice.

A more promising countermeasure which is mentioned in [24] is the use of
the Fisher-Yates algorithm [30]. It generates a random list, di�erent for every
encryption, which contains all values between 0 and 255. This list then deter-
mines the order in which the individual bits of the message are encoded. The
initial two for loops are further replaced with one for loop, counting from 0 to
255. In Listing 3, the updated mask calculation (line 13 from Listing 1) is shown.

Defeating NewHope with a Single Trace 13

13 mask = −((msg [f yL i s t [i] >> 3] >> (f yL i s t [i]&7))&1)

Listing 3. Message encoding with Fisher-Yates shu�e

The proposed attack can still be performed. However, as the bits are encoded
in a random order, an attacker can only determine the total number of ones
and zeroes in a message, but not which value would correspond to which bit.
To accomplish this, both the message encoding as well as the shu�ing must be
attacked to recover the message. Combining the shu�ing algorithm together with
masking might provide adequate side-channel protection: An attacker would have
to attack the message encoding on two shares and twice the shu�ing algorithm
to determine the message, all on a single side-channel trace.

In reference to existing side-channel attacks on lattice-based encryption schemes
[31], not only message encoding, but all linear processed parts of NewHope that
contain somehow sensitive data should be protected.

5 Conclusion

The NewHope reference C implementation execution time does not depend
on private data. However, our experiments show that constant time execution
does not prevent power attacks. The complete shared secret can be extracted
from data of one single trace only. Depending on the compiler directive, even
simple-power attacks are possible. Prior work about passive side-channel attacks
on lattice-based key encapsulations mechanisms usually have the private key as
target. We demonstrated that an implementation, which protects all parts of
the algorithm in which the private key is processed, is not secure. All parts
in the NewHope algorithms that process somehow private data, including the
message, must be protected in order to obtain a secured NewHope implemen-
tation.

Acknowledgment

We thank the anonymous reviewers for their accurate reviews and valuable com-
ments. This work was supported by Innosuisse, the federal agency responsible
for encouraging science-based innovation in Switzerland.

14 D. Amiet et al.

Appendix 1

1 ; mask = −((msg [i] >> j)&1) :
2 l d r r2 , [r7 , #0] ; r2 = memory [r7]
3 l d r r3 , [r7 , #20] ; r3 = memory [r7 + 20]
4 add r3 , r2 ; r3 = r2 + r3
5 ld rb r3 , [r3 , #0] ; r3 = memory [r3]
6 mov r2 , r3 ; r2 = r3
7 l d r r3 , [r7 , #16] ; r3 = memory [r3 + 16]
8 asr .w r3 , r2 , r3 ; r3 = r2 >> r3 : s h i f t r i g t h r2 by r3
9 and.w r3 , r3 , #1 ; r3 = r3 & 1
10 negs r3 , r3 ; r3 = (−1)* r3
11 s t r r3 , [r7 , #12] ; memory(r7 + #12) = r3 ;
12 ; r−>c o e f f s [8* i+j+ 0] = mask & (NEWHOPE_Q/2) :
13 l d r r3 , [r7 , #12] ; r3 = memory [r7 + 12)]
14 uxth r3 , r3 ; r3 = zero−extend r3 [1 5 : 0] to 32 b i t s
15 l d r r2 , [r7 , #20] ; r2 = memory [r7 + 20]
16 l s l s r1 , r2 , #3 ; r1 = r2 << 3 : s h i f t l e f t by 3 b i t s
17 l d r r2 , [r7 , #16] ; r2 = memory [r7 + 16]
18 add r2 , r1 ; r2 = r2 + r1
19 and.w r3 , r3 , #6144 ; r3 = r3 & 6144
20 uxth r1 , r3 ; r1 = zero−extend r3 [1 5 : 0] to 32 b i t s
21 l d r r3 , [r7 , #4] ; r3 = memory [r7 + 4]
22 s t rh .w r1 , [r3 , r2 , l s l #1] ; memory [r3 + 2 * r2] = r1
23 ; r−>c o e f f s [8* i+j +256] = mask & (NEWHOPE_Q/2) :
24 l d r r3 , [r7 , #12] ; r3 = memory [r7 + 12)]
25 uxth r3 , r3 ; r3 = zero−extend r3 [1 5 : 0] to 32 b i t s
26 l d r r2 , [r7 , #20] ; r2 = memory [r7 + 20]
27 l s l s r1 , r2 , #3 ; r1 = r2 << 3 : s h i f t l e f t by 3 b i t s
28 l d r r2 , [r7 , #16] ; r2 = memory [r7 + 16]
29 add r2 , r1 ; r2 = r2 + r1
30 add.w r2 , r2 , #256 ; r2 = r2 + 256
31 and.w r3 , r3 , #6144 ; r3 = r3 & 6144
32 uxth r1 , r3 ; r1 = zero−extend r3 [1 5 : 0] to 32 b i t s
33 l d r r3 , [r7 , #4] ; r3 = memory [r7 + 4]
34 s t rh .w r1 , [r3 , r2 , l s l #1] ; memory [r3 + 2 * r2] = r1
35 ; l i n e 24 − 34 r epea t s twice (immediate va lue at l i n e 30 i s

r ep l aced by 512 and 768)

Listing 4. Assembly with optimization turned o� (O0), original refC

Defeating NewHope with a Single Trace 15

Appendix 2

1 ld rb r2 , [r3 , #0] ; r2 = memory [r3]
2 sb fx r2 , r2 , #0, #1 ; r2 = ex t r a c t b i t 0 (1 b i t) o f r2

and s ign−extend i t to 32 b i t s (i f b i t 0 (r2) == 0 , then
r2 = 0 x0000 . . . , e l s e r2 = 0 x f f f f . . .)

3 and.w r2 , r2 , #6144 ; r2 = r2 & 6144
4 s t rh r2 , [r0 , #0] ; memory [r0] = r2
5 s t rh .w r2 , [r0 , #512] ; memory [r0 + 512] = r2
6 s t rh .w r2 , [r0 , #1024] ; memory [r0 + 1024] = r2
7 s t rh .w r2 , [r0 , #1536] ; memory [r0 + 1536] = r2

Listing 5. Assembly with maximal optimization O3, original refC

Appendix 3

1 ld rb r2 , [r3 , #0] ; r2 = memory [r3]
2 ubfx r4 , r2 , #0, #1 ; r4 = ex t r a c t b i t 0 (1 b i t) o f r2

and zero−extend i t to 32 b i t s
3 l s l s r2 , r4 , #1 ; r2 = r4 << 1 : s h i f t l e f t by 1 b i t
4 add r2 , r4 ; r2 = r2 + r4
5 l s l s r2 , r2 , #11 ; r2 = r3 << 11 (now we have r2 =

6144 when b i t 0 was 1 , e l s e r2 remains 0)
6 s t rh r2 , [r0 , #0] ; memory [r0] = r2
7 s t rh .w r2 , [r0 , #512] ; memory [r0 + 512] = r2
8 s t rh .w r2 , [r0 , #1024] ; memory [r0 + 1024] = r2
9 s t rh .w r2 , [r0 , #1536] ; memory [r0 + 1536] = r2

Listing 6. Assembly with maximal optimization O3, mask construction replaced
by multiplication

References

1. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. Commun. ACM 21(2), 120�126 (1978).
https://doi.org/10.1145/359340.359342

2. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing 26(5), 1484�
1509 (1997). https://doi.org/10.1137/S0097539795293172

3. Dyakonov, M.: The case against quantum computing. IEEE Spectrum 56(3), 24�29
(March 2019)

4. Mosca, M.: Cybersecurity in an Era with Quantum Computers:
Will We Be Ready? IEEE Security & Privacy 16(5), 38�41 (2018).
https://doi.org/10.1109/MSP.2018.3761723

5. National Institute of Standards and Technology: Submission Requirements and
Evaluation Criteria for the Post-Quantum Cryptography Standardization Process
(2016)

https://doi.org/10.1145/359340.359342
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1109/MSP.2018.3761723

16 D. Amiet et al.

6. Alagic, G., Alperin-Sheri�, J., Apon, D., Cooper, D., Dang, Q., Miller, C., Moody,
D., Peralta, R., Perlner, R., Robinson, A., Smith-Tone, D.: Status Report on the
First Round of the NIST Post-Quantum Cryptography Standardization Process.
NISTIR 8240 (2019). https://doi.org/10.6028/NIST.IR.8240

7. Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Pöppelmann, T.,
Schwabe, P., Stebila, D., Albrecht, M.R., Orsini, E., Osheter, V., Paterson, K.G.,
Peer, G., Smart, N.P.: Newhope - Algorithm Speci�cations and Supporting Docu-
mentation (2019), version 1.02

8. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without reconcilia-
tion. IACR Cryptology ePrint Archive p. 1157 (2016), http://eprint.iacr.org/
2016/1157

9. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum Key Exchange -
A New Hope. In: 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016. pp. 327�343 (2016)

10. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings. pp. 1�23
(2010). https://doi.org/10.1007/978-3-642-13190-5_1

11. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. In: Proceedings of the 37th Annual ACM Symposium on The-
ory of Computing, Baltimore, MD, USA, May 22-24, 2005. pp. 84�93 (2005).
https://doi.org/10.1145/1060590.1060603

12. Regev, O.: The Learning with Errors Problem (Invited Survey). In: Proceed-
ings of the 25th Annual IEEE Conference on Computational Complexity, CCC
2010, Cambridge, Massachusetts, USA, June 9-12, 2010. pp. 191�204 (2010).
https://doi.org/10.1109/CCC.2010.26

13. Kocher, P.C.: Timing Attacks on Implementations of Di�e-Hellman, RSA, DSS,
and Other Systems. In: Advances in Cryptology - CRYPTO '96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-
22, 1996, Proceedings. pp. 104�113 (1996). https://doi.org/10.1007/3-540-68697-
5_9

14. Kocher, P.C., Ja�e, J., Jun, B.: Di�erential Power Analysis. In: Advances in Cryp-
tology - CRYPTO '99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings. pp. 388�397 (1999).
https://doi.org/10.1007/3-540-48405-1_25

15. Mulder, E.D., Buysschaert, P., Örs, S.B., Delmotte, P., Preneel, B., Vanden-
bosch, G., Verbauwhede, I.: Electromagnetic Analysis Attack on an FPGA Im-
plementation of an Elliptic Curve Cryptosystem. In: EUROCON 2005 - The In-
ternational Conference on "Computer as a Tool". vol. 2, pp. 1879�1882 (2005).
https://doi.org/10.1109/EURCON.2005.1630348

16. Primas, R., Pessl, P., Mangard, S.: Single-Trace Side-Channel Attacks on Masked
Lattice-Based Encryption. In: Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings. pp. 513�533 (2017). https://doi.org/10.1007/978-3-319-66787-
4_25

17. Aysu, A., Tobah, Y., Tiwari, M., Gerstlauer, A., Orshansky, M.: Horizon-
tal Side-Channel Vulnerabilities of Post-Quantum Key Exchange Protocols. In:
2018 IEEE International Symposium on Hardware Oriented Security and Trust,
HOST 2018, Washington, DC, USA, April 30 - May 4, 2018. pp. 81�88 (2018).
https://doi.org/10.1109/HST.2018.8383894

https://doi.org/10.6028/NIST.IR.8240
http://eprint.iacr.org/2016/1157
http://eprint.iacr.org/2016/1157
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1109/CCC.2010.26
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/EURCON.2005.1630348
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1109/HST.2018.8383894

Defeating NewHope with a Single Trace 17

18. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take o� the Ring! Practical, Quantum-Secure Key
Exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016.
pp. 1006�1018 (2016). https://doi.org/10.1145/2976749.2978425

19. Park, A., Han, D.: Chosen ciphertext Simple Power Analysis on software 8-bit
implementation of ring-LWE encryption. In: 2016 IEEE Asian Hardware-Oriented
Security and Trust, AsianHOST 2016, Yilan, Taiwan, December 19-20, 2016. pp. 1�
6 (2016). https://doi.org/10.1109/AsianHOST.2016.7835555

20. Huang, W., Chen, J., Yang, B.: Correlation Power Analysis on NTRU Prime and
Related Countermeasures. IACR Cryptology ePrint Archive p. 100 (2019), https:
//eprint.iacr.org/2019/100

21. Zheng, X., Wang, A., Wei, W.: First-order collision attack on protected NTRU
cryptosystem. Microprocessors and Microsystems - Embedded Hardware Design
37(6-7), 601�609 (2013). https://doi.org/10.1016/j.micpro.2013.04.008

22. Reparaz, O., Roy, S.S., de Clercq, R., Vercauteren, F., Verbauwhede, I.:
Masking ring-LWE. J. Cryptographic Engineering 6(2), 139�153 (2016).
https://doi.org/10.1007/s13389-016-0126-5

23. Reparaz, O., de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Addi-
tively Homomorphic Ring-LWE Masking. In: Post-Quantum Cryptography - 7th
International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016,
Proceedings. pp. 233�244 (2016). https://doi.org/10.1007/978-3-319-29360-8_15

24. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-Secure
and Masked Ring-LWE Implementation. IACR Trans. Cryptogr. Hardw. Embed.
Syst. pp. 142�174 (2018). https://doi.org/10.13154/tches.v2018.i1.142-174

25. Fluhrer, S.R.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
IACR Cryptology ePrint Archive p. 85 (2016), http://eprint.iacr.org/2016/
085

26. Ding, J., Alsayigh, S., Saraswathy, R.V., Fluhrer, S.R., Lin, X.: Leakage of Signal
function with reused keys in RLWE key exchange. In: IEEE International Con-
ference on Communications, ICC 2017, Paris, France, May 21-25, 2017. pp. 1�6
(2017). https://doi.org/10.1109/ICC.2017.7996806

27. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the Key-Reuse Re-
silience of NewHope. In: Topics in Cryptology - CT-RSA 2019 - The Cryptogra-
phers' Track at the RSA Conference 2019, San Francisco, CA, USA, March 4-8,
2019, Proceedings. pp. 272�292 (2019). https://doi.org/10.1007/978-3-030-12612-
4_14

28. Qin, Y., Cheng, C., Ding, J.: A Complete and Optimized Key Mismatch Attack
on NIST Candidate NewHope. In: Computer Security - ESORICS 2019 - 24th
European Symposium on Research in Computer Security, 2019. pp. 504�520 (2019).
https://doi.org/10.1007/978-3-030-29962-0_24

29. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber algorithm speci�cations
and supporting documentation (2019), version 2.0

30. Fisher, R.A., Yates, F., et al.: Statistical Tables for Biological, Agricultural and
Medical Research. (1963), http://hdl.handle.net/2440/10701

31. Khalid, A., Oder, T., Valencia, F., O'Neill, M., Güneysu, T., Regazzoni,
F.: Physical Protection of Lattice-Based Cryptography: Challenges and So-
lutions. In: Proceedings of the 2018 on Great Lakes Symposium on VLSI,
GLSVLSI 2018, Chicago, IL, USA, May 23-25, 2018. pp. 365�370 (2018).
https://doi.org/10.1145/3194554.3194616

https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1109/AsianHOST.2016.7835555
https://eprint.iacr.org/2019/100
https://eprint.iacr.org/2019/100
https://doi.org/10.1016/j.micpro.2013.04.008
https://doi.org/10.1007/s13389-016-0126-5
https://doi.org/10.1007/978-3-319-29360-8_15
https://doi.org/10.13154/tches.v2018.i1.142-174
http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2016/085
https://doi.org/10.1109/ICC.2017.7996806
https://doi.org/10.1007/978-3-030-12612-4_14
https://doi.org/10.1007/978-3-030-12612-4_14
https://doi.org/10.1007/978-3-030-29962-0_24
http://hdl.handle.net/2440/10701
https://doi.org/10.1145/3194554.3194616

	Defeating NewHope with a Single Trace

