
Fast 4 way vectorized ladder for the complete set of

Montgomery curves

Huseyin Hisil, Berkan Egrice, Mert Yassi

Yasar University, Izmir, Turkey
{huseyin.hisil,berkan.egrice,mert.yassi}@yasar.edu.tr

Abstract

This paper introduces 4 way vectorization of Montgomery ladder on any Montgomery form
elliptic curve. Our algorithm takes 2M4 + 1S4 (M4: A vector of four field multiplications, S4:
A vector of four field squarings) per ladder step for variable-scalar variable-point multiplication.
This paper also introduces new formulas for doing arithmetic over GF (2255 − 19).

Keywords: Montgomery ladder, elliptic curves, genus 1, Kummer lines, Diffie-Hellman key
exchange, public key cryptography.

1 Introduction

Elliptic curve cryptography was proposed by Miller [18] and Koblitz [16] in late 80s. In the past three
decades, elliptic curves became one of the central objects in public key cryptography. The group
law computations on elliptic curves are particularly interesting as they allow efficient arithmetic
on computers. In addition, hard instances of discrete logarithm problem can be defined on elliptic
curves over finite fields of fairly small size. These two properties of elliptic curves make them perfect
candidates for many cryptographic primitives such as key exchange, key encapsulation mechanism,
and digital signatures. In all of these primitives, the bottleneck operation is the multiplication of a
point on an elliptic curve with a scalar. This operation is called scalar multiplication. Optimizing
scalar multiplication is one of the main challenges in elliptic curve cryptography.

An elliptic curve can be represented in several different forms. One of these forms was introduced
by Peter L. Montgomery in his celebrated article [19] in 1987. An elliptic curve in Montgomery form
is written as

By2 = x3 +Ax2 + x

with constants A and B satisfying B(A2 − 4) 6= 0. Let P be a point on this curve. Let x(P) be
the x-coordinate of P . Let k be a positive integer. Montgomery ladder algorithm which was also
proposed in [19], computes x(kP) by accessing a single point doubling and a single point addition
operation per iteration of its main loop. In this setting, Montgomery provides doubling formulas
to compute x(2P) given x(P), and differential addition formulas to compute x(P +Q) given x(P),
x(Q), and x(P − Q). The auxiliary value x(P − Q) is maintained naturally by the ladder. This
regular structure of Montgomery ladder made it a perfect candidate to be used in elliptic curve
cryptography.

In 2006, Bernstein [1] proposed an elliptic curve Diffie-Hellman key exchange function,
Curve25519, which uses Montgomery ladder along with a twist-secure Montgomery curve over the
field GF (2255 − 19). Bernstein [1] also provided fast software which implements Curve25519, runs
in constant-time, and can defend against timing-attacks. Bernstein’s design is later re-specified by
the Internet Research Task Force in RFC 7748 memorandum.

Montgomery ladder was also adapted to other elliptic curve forms. For example, Brier and Joye [5]
presented formulas for any elliptic curve written in short Weierstrass form y2 = x3+a4x+a6 covering
all elliptic curves over a field k with char(k) 6= 2, 3. Analogous formulas over a field of characteristic
2 were given by Lopez and Dahab [17].

1

Building on an earlier work of Chudnovsky and Chudnovsky [7], Gaudry introduced doubling and
differential addition analogues on genus 2 Kummer surfaces in [10]. As a follow up work, Gaudry
and Lubicz introduced genus 1 analogues of Kummer surfaces in [11]. Their study covers both odd
and even characteristics. We refer to these Kummer lines as canonical Kummer lines in this work
following the language of [23]. Explicit formulas for squared Kummer lines appeared in EFD1 with
credits to Gaudry [10] and Gaudry, Lubicz [11].

Emerging hardware trend in single-instruction multiple-data (SIMD) circuits led researchers
develop vectorized implementations of ladders. A SIMD implementation of Gaudry-Schost squared
Kummer surface [12] was introduced by Bernstein, Chuengsatiansup, Lange, and Schwabe [2]. Their
implementation is currently the speed leader in the genus 2 setting. The genus 1 setting is actively
in development. Chou [6, Alg. 3.1] put forward a 2 way vectorized implementation of Montgomery
ladder using the inherent 2 way parallelism in the classic formulas. Chou’s implementation uses
the 2 way vectorized 32 × 32 → 64-bit multipliers on Sandy Bridge and Ivy Bridge. A 4 way
vectorized implementation of squared Kummer lines were presented by Karati and Sarkar in [15].
Their implementation uses the 4 way vectorized 32×32→ 64-bit multipliers on Haswell and Skylake.
Karati and Sarkar report that their implementation offers competitive performance in Kummer line
based scalar multiplication for genus one curves over prime order fields using SIMD operations. Faz-
Hernández and López provided a 2× 2 way implementation of Montgomery ladder on Haswell and
Skylake. The arithmetic of the underlying field is 2 way vectorized in their implementation (hence
the notation 2× 2).

Putting the vectorization option of the underlying field a side (which is also an option for squared
Kummer lines), the sequence of recent advances in ladder implementations may lead to the illusion
that Montgomery curves are less vectorization-friendly than Kummer lines. In this work,

• we show that Montgomery curves are efficiently 4 way vectorizable. See Section 3.

• we provide timings for our 4× 1 way vectorized implementation on AVX2. See Section 4.

• we propose a new 9 limb representation of field elements which has potential to be faster
than the widely applied 10 limb representation, in implementations without using field level
vectorization. See Section 4.

• we provide timings for our 4 × 2 way vectorized implementation on AVX-512. See Section 5.
This implementation sets the new speed record in variable-scalar variable-point multiplication
over the field GF (2255 − 19).

Results are provided in Section 6. Source code related to this project is publicly available at

https://github.com/crypto-ninjaturtles/montgomery4x

since Feb 12, 2019.
A very recent paper by Nath and Sarkar [21] proposes three algorithms with the same aim in

this paper. Their algorithms and implementation choices are much different than the ones in this
work.

Acknowledgements: This work is funded by Yasar University Scientific Research Project SRP-
057. We thank Erdem Alkım, Sedat Akleylek, and members of the Cyber Security and Cryptology
Laboratory, Ondokuz Mayis University, for providing us access to OMU-i9, a Skylake i9-7900X
machine. We developed the AVX-512 implementation on OMU-i9. All measurements were taken
on OMU-i9.

2 Montgomery ladder

This section provides preliminaries on Montgomery ladder. We will skip detailed discussions on the
group law, the pseudo-group structure, working solely on the x-line, point recovery etc. These are
all very well understood and available in several texts in the literature, cf. [3, Chapter 4] and [8].

1http://www.hyperelliptic.org/EFD/ (last accessed 2019-05-20)

2

Our approach will be more implementation oriented. Therefore, the treatment in this section is far
from being comprehensive.

The abscissa x(P) of a point P is represented in homogenous projective space P in the form
(x(P) : 1). In this projective representation, (X : Z) = (λX : λZ) for all non-zero λ ∈ K. The
point (1 : 0) is the pseudo-identity element. From now on, we update the definition of P and use the
projective notation.

Given the points (X3 : Z3), (X2 : Z2), and (X1 : Z1) = (X3 : Z3) − (X2 : Z2), we have
(X5 : Z5) = (X3 : Z3) + (X2 : Z2) and (X4 : Z4) = 2(X2 : Z2). Montgomery provided the following
explicit formulas in [19]:

(X5 : Z5) =
(
Z1(X2X3 − Z2Z3)2 : X1(X2Z3 − Z2X3)2

)
,

(X4 : Z4) =
(
(X2

2 − Z2
2)2 : 4X2Z2(X2

2 +AX2Z2 + Z2
2)
)
. (1)

These differential addition and doubling formulas are the building blocks of the Montgomery
ladder. Before providing the ladder, we simplify our notation and define the functions DBLADD and
SWAP. The function DBLADD inputs three points where the third is the difference of the first two, and
outputs the sum of the two initial points and the double of the second input point. The output is
overwritten to (X3 : Z3) and (X2 : Z2), respectively. This is denoted as

DBLADD ((X3 : Z3), (X2 : Z2), (X1 : Z1)) .

The function SWAP inputs two points and a single bit. If swap is 0, then the output is identical
to the input. If swap is 1, then the output is the swapped input points. The Montgomery ladder is
provided succinctly in Algorithm 1.

Algorithm 1 Montgomery ladder

Input: P = (X : Z) 6= (1: 0) and k =
∑`−1

i=0 ki2
i with k`−1 = 1, ki ∈ {0, 1}.

Output: kP .
1: (X3 : Z3)← P , (X2 : Z2)← (1 : 0), (X1 : Z1)← P
2: prevbit← 0
3: for i = `− 1 down to 0 do
4: swap← prevbit⊕ k[i]
5: prevbit← k[i]
6: SWAP(swap, (X3 : Z3), (X2 : Z2))
7: DBLADD((X3 : Z3), (X2 : Z2), (X1 : Z1))
8: end for
9: SWAP(k[0], (X3 : Z3), (X2 : Z2))

10: return (X2 : Z2)

In cryptographic applications, the output of Algorithm 1 is typically normalized as X2/Z2 in
order to obtain a unique representative of the output. In addition, ` is fixed in order to fix the
number of iterations. Moreover, one can force k to be multiple of a small power of 2 to surpass
active attacks exploiting the existence of small subgroups. Cryptographic applications which are
required to run in constant-time must have each sub-operation run in constant-time. We refer to
curve25519 specification for full detail, [1].

3 4 way Montgomery ladder

Montgomery’s formulas (1) lie at the heart of curve25519. Several implementations of curve25519
are available in public domain. Karati and Sarkar [15] commented for the ladder step used in
curve25519 specification [1, Appendix B]:

“The structure of this ladder is not as regular as the ladder step on
the Kummer line. This makes it difficult to optimally group together
the multiplications for SIMD implementation.”

3

In this work, we aim to show that a higher level of parallelism can be achieved with new tweaks on
the ladder step, see Figure 1. In the figure, H stands for Hadamard transformation which inputs
two coordinates X and Z and outputs X + Z and X − Z.

X3 Z3 X2 Z2

H H

× × × × (M4)

H H

× × × × (S4)

×Z1 ×X1 × ×A (M4)

+
− +

X5 Z5 X4 Z4

Figure 1: DBLADD: 4 way vectorized ladder step for the curve By2 = x3 +Ax2 + x.

The point doubling side of Figure 1 is recognizably different than Bernstein’s diagram.
Specifically, the squaring step now utilizes all 4 channels in vectorized form. On the other hand,
an inspection on Figure 1 reveals that the outputs X4, Z4, X5, and Z5 agree with (1) up to a
multiplication of the coordinates by a constant with no effect on the correctness of DBLADD routine.

The ladder step in Figure 1 takes 2M4+1S4. In comparison, Karati and Sarkar’s 4 way vectorized
ladder step [15, Fig. 1] takes 2M4+1S4+1d4 (d4: A vector of four field multiplications by four small
constants). There is a speed trade-off between these two approaches, which is not clear immediately
from the high level operation counts:

• Multiplication with constants: A squared Kummer line requires one multiplication by [a2 +
b2, a2 − b2, a2 + b2, a2 − b2] followed by reduction (denoted d4), per ladder step. Such a
multiplication-reduction does not occur in Figure 1.

• Extra permutations: Data transfers between SIMD channels occur in Hadamard transform and
constant-time conditional point swap operations in both types of ladder steps. Our algorithm
requires additional transfers and linear operations following the second Hadamard transform.

These two items constitute a speed trade-off (even if a2 + b2 and a2 − b2 are extremely small).
This trade-off depends heavily on the comparative throughput of SIMD multiplication and data
transfer instructions, which can significantly vary depending on the micro-architecture. In any case,
the overall timings can be expected to be close in optimized instantiations since neither of the
operations is a speed bottleneck. On the other hand, Montgomery form is more advantageous with
its larger coverage, see [13] and [14].

4

4 Implementation on AVX2

This section provides implementation details for 4 way vectorization of Montgomery ladder.
Implementers are not limited to the specification of this section because Figure 1 is independent
of choices made here. The same applies to Section 5.

We fix p = 2255 − 19 and work over GF (p). We start by explaining field multiplication. The
discussion is narrowed to a single field multiplication. On the other hand, the implementation
computes 4 field multiplications simultaneously in vector form. We refer to [2] for a comprehensive
explanation of the concept. We use core ideas from [4], [2], [6], and [15]. Yet, we made different
implementation choices.

Multiplication. We represent reduced field elements in 9 limbs rather than 10 and keep
unreduced products in 11 limbs rather than 10. We provide justifications for how intermediate
values always fit into 64 bit registers, without producing any overflow. This is a hybridization of
two commonly followed methods:

• doing the 255× 255→ 510 bit multiplication first and then reducing to 255 bits, cf. [15] and

• merging reduction with integer multiplication and keeping elements always in specified number
of limbs, cf. [1].

Remark 1 One may question why we use 9 limb representation rather than 10. The answer is
easy: for better speed. In order to show that our 9 limb strategy is faster in the context of our 4 way
vectorized ladder, we also implemented our ladder with the 10 limb multiplication algorithm from [4]
and [6]. See Section 6 for speed comparisons.

Remark 2 It would be interesting to observe the performance of

• multiplication with using 9 limb method on older high-end processors without SIMD support,

• 2 way Montgomery ladder using the 9 limb method on older high-end processors with SIMD
support (e.g. Sandy Bridge and Ivy Bridge processors),

• multiplication with using 9 limb method on low-end processors without SIMD support (e.g.
ARM Cortex-M3), and

• 2 way Montgomery ladder using the 9 limb method on low-end processors with 2 way SIMD
support (e.g. ARM Cortex-A8 NEON 2x64).

These scenarios are not in the context of the 4 way ladder (Figure 1) and thus omitted in this
work.

We designed a two-layer implementation to carry out field multiplications with a redundant
representation of elements. Both layers use a 3 way splitting strategy. Therefore, a field element is
represented by 9 limbs each of which can accommodate non-negative values smaller than 264.

The higher layer is described as follows. A field element u is represented by integers u0, u1, and
u2 such that u = u0 + 285u1 + 2170u2. We note that this is not a unique representation. Let v be an
integer also represented in the same way. We then have

uv ≡ 20(u0v0 + 19u1v2 + 19u2v1) +
285(u0v1 + u1v0 + 19u2v2) +

2170(u0v2 + u1v1 + u2v0) (mod p) .

The congruence 255 ≡ 0 (mod 3) helps greatly in obtaining simple formulas. The nine long
multiplications in the form uivj are reduced to six by three Karatsuba optimizations which are
capable of sharing the sub-expressions uivi as follows:

20(u0v0 + 19((u1 + u2)(v1 + v2)− u1v1 − u2v2)) +
285(19u2v2 + (u0 + u1)(v0 + v1)− u0v0 − u1v1) +

2170(u1v1 + (u0 + u2)(v0 + v2)− u0v0 − u2v2) .

5

This variant leads to an increased number of additions/subtractions some of which can be shared.
We eliminated these repeating operations at the cost of using more registers in our implementation.
The additions of the form ui + uj are 3-limb additions. All other additions and subtractions are
5-limb additions.

These high level operations do not provide low level details. For instance, we do not have
hardware multipliers that can accommodate 85 × 85 → 170-bit integer multiplications. Therefore,
we further split each digit in the higher layer into three limbs:

u0 = a0 + 229a1 + 257a2, v0 = b0 + 229b1 + 257b2,
u1 = a3 + 229a4 + 257a5, v1 = b3 + 229b4 + 257b5,
u2 = a6 + 229a7 + 257a8, v2 = b6 + 229b7 + 257b8.

Now, for instance, u0v0 can be computed with the following formulas

u0v0 = 20(a0b0) +
229(a0b1 + a1b0) +
257(a0b2 + a2b0 + 2a1b1) +
286(a1b2 + a2b1) +

2114(a2b2) .

These operations take 9 multiplications and 5 additions all of which can be directly carried
out by the target hardware. Karatsuba optimization is not used here since the trade-off between
multiplications and additions do not provide a practical speed-up at this level. The registers a0, a1,
a2 are bounded carefully as to prevent overflowing of the 64 bit registers and allow the final carries
to be delayed to the end of the field operation. More explicitly, the multiplication algorithm inputs
9-limb integers and produces the following 11 limbs

• w0 = a0b0 + 19(a3b6 + a6b3),

• w1 = a0b1 + a1b0 + 19(a3b7 + a4b6 + a6b4 + a7b3),

• w2 = a0b2 + 2a1b1 + a2b0 + 19(a3b8 + a8b3 + 2(a4b7 + a7b4) + a5b6 + a6b5),

• w3 = a0b3 + a3b0 + 2(a1b2 + a2b1) + 19(a6b6 + 2(a4b8 + a5b7 + a7b5 + a8b4)),

• w4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0 + 19(a5b8 + a6b7 + a7b6 + a8b5),

• w5 = a0b5 + a2b3 + a3b2 + a5b0 + 2(a1b4 + a4b1) + 19(a6b8 + 2a7b7 + a8b6),

• w6 = a0b6 + a3b3 + a6b0 + 2(a1b5 + a2b4 + a4b2 + a5b1 + 19(a7b8 + a8b7)),

• w7 = a0b7 + a1b6 + a2b5 + a3b4 + a4b3 + a5b2 + a6b1 + a7b0 + 19a8b8,

• w8 = a0b8 + a2b6 + a3b5 + a5b3 + a6b2 + a8b0 + 2(a1b7 + a4b4 + a7b1),

• w9 = 2(a1b8 + a2b7 + a4b5 + a5b4 + a7b2 + a8b1), and

• w10 = a2b8 + a5b5 + a8b2

which satisfy in turn the following congruence

uv ≡ w ≡ (w0 + 229w1 + 257w2)+

285(w3 + 229w4 + 257w5)+

2170(w6 + 229w7 + 257w8)+

2255(w9 + 229w10) (mod 2255 − 19).

We do not perform all of these 9× 9 = 81 multiplications but just 9× 6 = 54. This is due to the
shared-Karatsuba approach explained earlier.

Input/output specification. We set important bounds

0 ≤ a0, a3, a6 < 229 + k,

6

0 ≤ a1, a2, a4, a5, a7, a8 < 228 + k

for the input and output limbs. k = 173 is a constant that will become clear in the reduction step.
We always ensure the accuracy of these bounds after a reduction step which provide an easy-to-follow
input/output specification.

The limbs wi are displayed explicitly (in the item list) in order to help check the boundaries on
the output easily. In particular, we need to show that these limbs cannot exceed 264. Now, inputting
the largest possible values for each limb of u and v and evaluating on the formulas provided in the
item list, we get

w0 < 263.29, w1 < 263.29, w2 < 263.88,
w3 < 263.91, w4 < 262.95, w5 < 262.98,
w6 < 262.59, w7 < 261.05, w8 < 260.17,
w9 < 259.59, w10 < 257.59.

Clearly, all of these values can be accommodated without overflow in 64-bit registers wi.
Even if we have computed all wi, we are not quite done yet. We only have a semi-reduced w

satisfying

w ≡ uv (mod 2255 − 19). (2)

We need to do the carries in order to get rid of w9, w10 and also match the output requirements

0 ≤ w0, w3, w6 < 229 + k,

0 ≤ w1, w2, w4, w5, w7, w8 < 228 + k

which agree with the input specification of u and v.

Carries (Reduction after multiplication). This operation is composed of several steps. Each
step transforms w towards satisfying the input/output specification without violating the congruence
in display (2) and without producing an overflow. We go as follows:

Step 1 : t← bw9/229c, w9 ← w9 mod 229, w10 ← w10 + t,

Step 2 : w0 ← w0 + 19w9, w9 ← 0,

Step 3 : w1 ← w1 + 19w10, w10 ← 0,

Step 4 : t← bw0/229c, w0 ← w0 mod 229, w1 ← w1 + t,

Step 5 : t← bw1/228c, w1 ← w1 mod 228, w2 ← w2 + t,

Step 6 : t← bw2/228c, w2 ← w2 mod 228, w3 ← w3 + t,

Step 7 : t← bw3/229c, w3 ← w3 mod 229, w4 ← w4 + t,

Step 8 : t← bw4/228c, w4 ← w4 mod 228, w5 ← w5 + t,

Step 9 : t← bw5/228c, w5 ← w5 mod 228, w6 ← w6 + t,

Step 10 : t← bw6/229c, w6 ← w6 mod 229, w7 ← w7 + t,

Step 11 : t← bw7/228c, w7 ← w7 mod 228, w8 ← w8 + t,

Step 12 : t← bw8/228c, w8 ← w8 mod 228, w0 ← w0 + 19t

Step 13 : t← bw0/229c, w0 ← w0 mod 229, w1 ← w1 + t.

In this sequence of operations, we are accumulating on registers wi which contain values potentially
very close to 264. Once more, we need to justify that these additions do not constitute any overflow.

• Step 1: t = bw9/2
29c < 259.59−29 = 230.59. So, w10 + t < 257.59 + 230.59 < 257.60. Therefore,

the updated value of w10 still fits into 64 bits. A bit of care is needed now to track the updated
w9. Although we computed w9 ← w9 mod 229 for maximum possible inputs, the updated value
of w9 can still get values as large as 229 − 1 for some other input. Therefore, we assume for
the sake of our inspection that we take w9 = 229 − 1 from here.

7

• Step 2: Now, we must have w0 + 19w9 < 263.29 + 19(229 − 1) < 263.30. Multiplication by 19
here is performed with 32 × 32 → 64 bit multiplication instruction vpmuludq since both 19
and w9 are smaller than 232.

• Step 3: Similarly, we must have w1 + 19w10 < 263.29 + 19(257.60) < 263.75. We note that
19w10 is computed as 19w10 = 16w10 + 2w10 + w10 by using vpaddq and vpsllq instructions
because w10 can exceed 232, and thus, is not suitable to be inputted to vpmuludq. We note
that w9 ← 0 and w10 ← 0 are displayed just for mathematical correctness.

• Steps 4-11: Repeating the same inspection by computing each step sequentially, we get
w1,...,8 < 264 after additions as expected. Limbs w0,...,7 obey the input/output specification
after reducing w1,2,4,5,7 modulo 228 and w3,6 modulo 229. Again, we assume for the sake of
our inspection that w0,3,6 = 229 − 1 and w1,2,4,5,7,8 = 228 − 1 after the modular reductions are
performed for these digits.

• Step 12: We get t = bw8/2
28c < 260.17−28 = 232.17. So, w0 + 19t < (229 − 1) + 19(232.17) <

236.43. Now, w8 also obeys the input/output specification after being reduced modulo 228. We
note that 19t is computed as 19t = 16t+ 2t+ t since w8 can exceed 232.

• Step 13: We get w1 + t < (228 − 1) + (236.43−29) < 228 + 173. This upper bound explains
the value of k. We note that a lower upper bound can be found with an increased precision
in calculations. Moreover, much larger values for k works without producing overflow in
reduction2 but 173 is adequate to test the stability of limbs.

Now, all wi agrees with the input/output specification of ui and vi. We intentionally added k to
all limbs in the input/output specification rather than adding just to w1 because

• this simplifies the notation, and

• we need such extra additions when designing parallel carry chains.

The reduction step can be summarized as h9 → h10 followed by the very long sequence

h8 → h0 → h1 → h2 → h3 → h4 → h5 → h6 → h7 → h8 → h0 → h1.

We do faster by computing two sequences

h4 −−−−−→ h5 → h6 → h7 → h8 → h0 → h1,

h9 → h10, h0 → h1 → h2 → h3 → h4 → h5

in parallel at processor’s ports. We refer to [4] and [6] for similar optimizations.
In this parallel reduction, not only w1 but also w5 can exceed 228− 1 by k. But we have already

relaxed w5 (like all other limbs) by additions of k in our inspection.
Squaring. Squaring can be explained as a simplified multiplication routine.

20(u20 + 19((u1 + u2)2 − u21 − u22)) +
285(19u22 + (u0 + u1)2 − u20 − u21) +

2170(u21 + (u0 + u2)2 − u20 − u22) .

The nine long multiplications in the form uivj are reduced now to six squares. In addition, the
computation of u20 can be further optimized at the lower level in the form

u2i = 20(a20) +
229((2a0)a1) +
257((2a1)a1 + (2a0)a2) +
286((2a1)a2) +

2114(a22) .

2We reiterate that we use a redundant representation. Therefore, reduction does not produce a unique
representative. Nevertheless, we still call it reduction since we can do arithmetic in this form.

8

Similar applies to the other squarings. Our implementation delays multiplication by twos and
pushes them towards the higher layer.

Squeeze/Unsqueeze. A field element w satisfying the input/output specification can be
squeezed from 9 limbs to 5 by computing

wi+4 ← wi+4 ⊕ 232 wi for i = 0, 1, 2, 3.

Now, w is represented by w4, w5, w6, w7, w8 only. Linear operations such as (field) additions and
subtractions can be handled in this form provided that computed values do not exceed 232−1. This
is always the case in our implementation.

A squeezed field element is unsqueezed into the original form by computing

wi ← wi+4/2
32 for i = 0, 1, 2, 3 and

wi+4 ← wi+4 mod 232 for i = 0, 1, 2, 3

at multiplication, squaring, and reduction moments. We note that we skip computing wi+4 ←
wi+4 mod 232 before multiplication and squaring since the higher 32 bits are not taken into
consideration by vpmuludq instruction. See also [2].

This squeeze/unsqueeze method is adapted from the software introduced in [2]. The difference is
that we group together the limbs of a field element where Bernstein, Chuengsatiansup, Lange, and
Schwabe group together points on a genus 2 Kummer surface.

Despite the added cost of squeezing and unsqueezing, linear operations in squeezed form can be
done faster and save cycles in total.

Double Hadamard. This step can be put in 4 way vectorized form in modulus 2255 − 19 as
follows;

(H×H)(X3, Z3, X2, Z2) =

(X3 + Z3, X3 − Z3, X2 + Z2, X2 − Z2) =

(X3 + Z3, X3 + (3p− Z3), X2 + Z2, X2 + (3p− Z2)).

The additions of 3p are to ensure that H×H (double Hadamard) produces non-negative values
for output limbs. We drop the word “double” for simplicity. This 3p needs to be prepared with
some care as follows

20([3(229 − 19)] + 229[3(228 − 1)] + 257[3(228 − 1)])+

285([3(229 − 1)] + 229[3(228 − 1)] + 257[3(228 − 1)])+

2170([3(229 − 1)] + 229[3(228 − 1)] + 257[3(228 − 1)]) .

Observe that each limb3 is greater than the corresponding maximum bound in the input/output
specification.

All of the limbs of X3 +Z3, X3 + (3p−Z3), X2 +Z2, and X2 + (3p−Z2) are always less than 232

after the first Hadamard operation in Figure 1. To show this, we concentrate to the linear operations
appearing at the right of the bottom of the figure.

• Z4 is computed as the sum of three values. In order to simplify our analysis, we assume that
all inputs to these additions take largest possible values. Then, w0,3,6 = 3((229− 1) + k) < 231

and w1,2,4,5,7,8 = 3((228 − 1) + k) < 230.

• X4 is computed as the difference of two values. We assume that minuend takes the largest
and the subtrahend takes the smallest possible value. Then, w0,3,6 = ((229−1) +k) + (2(229−
1)− 0) < 231 and w1,2,4,5,7,8 = ((228− 1) + k) + (2(228− 1)− 0) < 230. Observe that we added
2p rather than 3p this time, which is adequate because 2(229 − 1) > (229 − 1) + k and likewise
2(228 − 1) > (228 − 1) + k. So, even if the subtrahend takes the maximum possible value, the
limbs are still non-negative.

3The value of each limb appears in square brackets.

9

Up to this point, we showed that wi of both X4 and Z4 fit into 31 bits. We now feed these extreme
values4 to the first Hadamard operation. Clearly, we have 0 ≤ wi < 232 for X + Z. Separately,
assuming that wi = 0 for Z, we have 0 ≤ wi < 232 for X+(3p−Z). Analyzing the second Hadamard
is even simpler since its inputs are already reduced values.

Fast carries (Fast reduction after Hadamard). Following a Hadamard step, a reduction
operation must be applied to the output to match the input/output specification. This time,
reduction can be performed faster since we do not have limbs w9 and w10. Therefore, fast reduction
can be defined as a trimmed version of the reduction after multiplication as follows,

Step 1 : t← bw0/229c, w0 ← w0 mod 229, w1 ← w1 + t,

Step 2 : t← bw1/228c, w1 ← w1 mod 228, w2 ← w2 + t,

Step 3 : t← bw2/228c, w2 ← w2 mod 228, w3 ← w3 + t,

Step 4 : t← bw3/229c, w3 ← w3 mod 229, w4 ← w4 + t,

Step 5 : t← bw4/228c, w4 ← w4 mod 228, w5 ← w5 + t,

Step 6 : t← bw5/228c, w5 ← w5 mod 228, w6 ← w6 + t,

Step 7 : t← bw6/229c, w6 ← w6 mod 229, w7 ← w7 + t,

Step 8 : t← bw7/228c, w7 ← w7 mod 228, w8 ← w8 + t,

Step 9 : t← bw8/228c, w8 ← w8 mod 228, w0 ← w0 + 19t

Step 10 : t← bw0/229c, w0 ← w0 mod 229, w1 ← w1 + t.

We do better by computing these operations in squeezed form and computing

h0 → h1 → h2 → h3 −−−−−→ h4 → h5,

h4 → h5 → h6 → h7 → h8 → h0 → h1

in parallel on two 32 bit SIMD channels. We do not further exploit processor’s port level parallelism
since the sequence is short enough to produce low latency.

5 Implementation on AVX-512

AVX-512 provides 8 way SIMD multiplication with the vpmuludq instruction. This provides twice
as much 32× 32→ 64 bit multipliers in comparison to AVX2. Therefore it is reasonable to question
whether the 4 way vectorized ladder can be computed faster on AVX-512. Since Figure 1 supports
up to 4 way vectorization, additionally, we need to vectorize the field arithmetic in 8/4=2 way form
to get a 4× 2 way ladder.

Although, our 9 limb multiplication fits nicely on 4 × 1 ladder, it does not seem to be the best
choice for its 4× 2 counterpart. Yet, there is room for research in finding a fast 2 way vectorization
of 9 limb multiplication described in Section 5. We do not pursue this idea further here.

As a practical solution, we decided to use a 2 way vectorized version of the 10 limb multiplication
algorithm using Radix-225.5 from [1]. This algorithm was previously used with minor modifications
in [4] and [6]. Fortunately, we were able to reuse optimized codes freely available in public domain.
In particular, we used the 2 way AVX2 targeted intmul and intsqr functions from

hp-ecc-vec/src/eltfp25519 2w redradix.c

by Faz Hernández, López, Dahab 5 and have those functions run on AVX-512. Then, we applied the
ladder step in Figure 1 to get a 4×2 = 8 way vectorized implementation of Montgomery ladder over
the field GF (2255 − 19). The speed comparison is given in Section 6.

4Noticed that all these operations can be performed in squeezed form.
5https://github.com/armfazh/hp-ecc-vec (last accessed 2019-05-20)

10

6 Results

The final inversion. Our implementation reduces the output of scalar multiplication to a unique
representative in the underlying field in radix 256. Therefore, we compute X2/Z2 after the main
loop. We integrated Nath and Sarkar’s [20] freely available and optimized inversion software without
further modification. In particular, we used

pmp-inv-master/p25519/SL-DCC/1

which requires BMI2 instruction set. Nath and Sarkar reports 9301 Skylake cycles for this inversion.

Measuring cycles. We measure cycles for variable-scalar variable-point multiplication only. Our
code changes base point and scalar at each iteration and excludes extra cycles coming from this
randomization. Our implementation chains the outputs to prevent the compiler removing portions
of the code. Measured cycle counts are given in Table 1 along with selected results from literature.
The table is limited to our results and recently published measurements available for the Skylake
micro-architecture.

Table 1: Skylake cycles for variable-scalar variable-point multiplication.

ladder method instr. set limbs cycles (median)

sq.Kum., 4× 1 AVX2 10 123 102, [15]

Montg., 4× 1 AVX2 10 116 654, this work

Montg., 1× 1 BMI2 4 113 874, [22]

Montg., 2× 2 AVX2 5 99 400, [9]

Montg., 4× 1 AVX2 9 98 484, this work

Montg., 4× 1 AVX2 10 95 437, [21]

Montg., 2× 4 AVX-512 5 81 600, [9]

Montg., 4× 2 AVX-512 5 74 368, this work

Table 1 justifies our motivation in proposing the 9 limb representation in Section 5. The 9 limb
method is solidly faster than 10 in the context of our 4 way ladder. Table 1 also provides evidence
that 9 limb method may be faster than 10 limb representation, see Remarks 1 and 2.

Our 9 & 10 limb implementations are both slower than the implementation in Nath and Sarkar’s
very recent work, although our 2M4 + 1S4 ladder step is expected to yield better speeds than their
2M4 + 1S4 + 1d4 algorithm [21, Algorithm 14 at page 17]. An explanation to this situation is that
Nath and Sarkar’s ladder step is written in pure assembly language where our ladder step is written
in C language with Intel intrinsics. Yet, more investigation is needed for further clarification.

Figure 1 shows its real potential in our AVX-512 implementation. The reported 74368 cycles
sets the new record among curve25519 family of implementations, to the best of our knowledge.

Variable-scalar fixed-base multiplication. Our implementation can be used directly in a fixed-
base multiplication without further modification. Nevertheless, one can make precomputation on
fixed-base point to get additional speed up. In that case, we refer to Algorithm 5 of [22].

Apart from architecture dependent discussions, we expect that our 4 way ladder will gradually
become even more useful if the current trend of increasing the level of SIMD parallelism in hardware
continues. We reiterate that the speeds we achieve are common for all Montgomery curves; not
specific to ones with small constants.

References

[1] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC 2006, 9th

11

International Conference on Theory and Practice of Public-Key Cryptography, New York, NY,
USA, April 24-26, 2006, Proceedings, volume 3958 of Lecture Notes in Computer Science, pages
207–228. Springer, 2006.

[2] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Peter Schwabe. Kummer
strikes back: New DH speed records. In Palash Sarkar and Tetsu Iwata, editors, Advances in
Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages 317–337.
Springer, 2014.

[3] Daniel J. Bernstein and Tanja Lange. Montgomery Curves and the Montgomery Ladder, pages
82–115. Cambridge University Press, 2017.

[4] Daniel J. Bernstein and Peter Schwabe. NEON crypto. In Emmanuel Prouff and Patrick
Schaumont, editors, Cryptographic Hardware and Embedded Systems – CHES 2012, volume
7428 of Lecture Notes in Computer Science, pages 320–339, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[5] Eric Brier and Marc Joye. Weierstraß elliptic curves and side-channel attacks. In David Naccache
and Pascal Paillier, editors, Public Key Cryptography, 5th International Workshop on Practice
and Theory in Public Key Cryptosystems, PKC 2002, Paris, France, February 12-14, 2002,
Proceedings, volume 2274 of Lecture Notes in Computer Science, pages 335–345. Springer, 2002.

[6] Tung Chou. Sandy2x: New Curve25519 speed records. In Orr Dunkelman and Liam Keliher,
editors, Selected Areas in Cryptography - SAC 2015 - 22nd International Conference, Sackville,
NB, Canada, August 12-14, 2015, Revised Selected Papers, volume 9566 of Lecture Notes in
Computer Science, pages 145–160. Springer, 2015.

[7] David V. Chudnovsky and Gregory V. Chudnovsky. Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Advances in Applied Mathematics,
7(4):385–434, 1986.

[8] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic - The case of
large characteristic fields. J. Cryptographic Engineering, 8(3):227–240, 2018.

[9] Armando Faz-Hernández, Julio López, and Ricardo Dahab. High-performance implementation
of elliptic curve cryptography using vector instructions. ACM Trans. Math. Softw., 45(3), July
2019.

[10] Pierrick Gaudry. Fast genus 2 arithmetic based on Theta functions. Journal of Mathematical
Cryptology (JMC), 1(3):243–265, 2007.

[11] Pierrick Gaudry and David Lubicz. The arithmetic of characteristic 2 Kummer surfaces and of
elliptic Kummer lines. Finite Fields and Their Applications, 15(2):246 – 260, 2009.

[12] Pierrick Gaudry and Éric Schost. Genus 2 point counting over prime fields. J. Symb. Comput.,
47(4):368–400, 2012.

[13] Huseyin Hisil and Joost Renes. On kummer lines with full rational 2-torsion and
their usage in cryptography. Cryptology ePrint Archive, Report 2018/839, 2018.
https://eprint.iacr.org/2018/839.

[14] Huseyin Hisil and Joost Renes. On kummer lines with full rational 2-torsion and their usage in
cryptography. ACM Trans. Math. Softw., 45(4), December 2019.

[15] Sabyasachi Karati and Palash Sarkar. Kummer for genus one over prime order fields. In Takagi
and Peyrin [24], pages 3–32.

[16] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209,
January 1987.

12

[17] Julio López and Ricardo Dahab. Fast multiplication on elliptic curves over GF(2m) without
precomputation. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems, First International Workshop, CHES’99, Worcester, MA, USA, August
12-13, 1999, Proceedings, volume 1717 of Lecture Notes in Computer Science, pages 316–327.
Springer, 1999.

[18] Victor S. Miller. Use of elliptic curves in cryptography. In CRYPTO’85, volume 218 of LNCS,
pages 417–426. Springer, 1985.

[19] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of computation, 48(177):243–264, 1987.

[20] Kaushik Nath and Palash Sarkar. Efficient arithmetic in (pseudo-)mersenne prime order fields.
Cryptology ePrint Archive, Report 2018/985, 2018. https://eprint.iacr.org/2018/985.

[21] Kaushik Nath and Palash Sarkar. Efficient 4-way vectorizations of the Montgomery ladder.
Cryptology ePrint Archive, Report 2020/378, 2020. https://eprint.iacr.org/2020/378.

[22] Thomaz Oliveira, Julio López, Hüseyin Hışıl, Armando Faz-Hernández, and Francisco
Rodŕıguez-Henŕıquez. How to (pre–)compute a ladder – improving the performance of X25519
and X448. In Carlisle Adams and Jan Camenisch, editors, Selected Areas in Cryptography -
SAC 2017 - 24th International Conference, Ottawa, ON, Canada, August 16-18, 2017, Revised
Selected Papers, volume 10719 of Lecture Notes in Computer Science, pages 172–191. Springer,
2017.

[23] Joost Renes and Benjamin Smith. qDSA: small and secure digital signatures with curve-based
Diffie-Hellman key pairs. In Takagi and Peyrin [24], pages 273–302.

[24] Tsuyoshi Takagi and Thomas Peyrin, editors. Advances in Cryptology - ASIACRYPT 2017 -
23rd International Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume 10625 of Lecture
Notes in Computer Science. Springer, 2017.

13

