
1

Fast hybrid Karatsuba multiplier for Type II
pentanomials
Yin Li Yu Zhang, and Wei He

Abstract—We continue the study of Mastrovito form of Karatsuba multipliers under the shifted polynomial basis (SPB), recently
introduced by Li et al. (IEEE TC (2017)). A Mastrovito-Karatsuba (MK) multiplier utilizes the Karatsuba algorithm (KA) to optimize
polynomial multiplication and the Mastrovito approach to combine it with the modular reduction. The authors developed a MK multiplier
for all trinomials, which obtain a better space and time trade-off compared with previous non-recursive Karatsuba counterparts. Based
on this work, we make two types of contributions in our paper.
FORMULATION. We derive a new modular reduction formulation for constructing Mastrovito matrix associated with Type II pentanomial.
This formula can also be applied to other special type of pentanomials, e.g. Type I pentanomial and Type C.1 pentanomial. Through
related formulations, we demonstrate that Type I pentanomial is less efficient than Type II one because of a more complicated modular
reduction under the same SPB; conversely, Type C.1 pentanomial is as good as Type II pentanomial under an alternative generalized
polynomial basis (GPB).
EXTENSION. We introduce a new MK multiplier for Type II pentanomial. It is shown that our proposal is only one TX slower than the
fastest bit-parallel multipliers for Type II pentanomial, but its space complexity is roughly 3/4 of those schemes, where TX is the delay
of one 2-input XOR gate. To the best of our knowledge, it is the first time for hybrid multiplier to achieve such a time delay bound.

Index Terms—Karatsuba algorithm, hybrid multiplier, Mastrovito, Shifted polynomial basis, Type II pentanomial.

F

1 INTRODUCTION

The finite field GF (2m) is a number system that consists
of 2m elements, where every element is represented in
a m-bits binary form. Efficient VLSI implementation of
GF (2m) multiplication is one of the most important
concerns in many applications, such as coding theory
and public key cryptography [1], [2]. To this end, a
number of bit-parallel GF (2m) multipliers have been
proposed. These schemes are based on various field
basis representations, generating polynomials and archi-
tectures, some of which are presented in [3], [5], [7], [8],
[14], [23]. Under polynomial basis (PB) representation
and its variations, i.e., shifted polynomial basis (SPB) [8]
or generalized polynomial basis (GPB) [20], the GF (2m)
multiplication consists of a polynomial multiplication
with a modular reduction. For some special forms of
irreducible polynomials, the field multiplications under
SPB or GPB are advantageous over those under PB
representation as they have simpler modular reductions
[8], [20].

Generally speaking, there are three types of bit-parallel
multipliers according to different space complexity con-
cerns, i.e., quadratic [3], [5], [6], [8], [14], [19], sub-
quadratic [9], [11], [21], [35], [36] and hybrid bit-parallel
multipliers [4], [10], [13], [15], [17], each of which has d-
ifferent time complexity. Quadratic multipliers normally
have the fastest implementation at the cost of O(n2) logic
gates, while subquadratic ones cost O(nδ) (1 < δ < 2)

• Yin Li is with Dongguan University of Technology, P.R.China. Yu Zhang,
and Wei He are with Xinyang Normal University, P.R.China. email: yun-
feiyangli@gmail.com (Yin Li). This work is supported by the National
Natural Science Foundation of China (Grant no. 61402393, 61601396).

logic gates with more time delay. Hybrid multipliers can
obtain a trade-off between space and time complexity.
These schemes are usually developed upon a divide-
and-conquer algorithm, which is utilized to optimize
the polynomial multiplication or the matrix-vector mul-
tiplication. The Winograd short convolution algorithm,
Chinese Reminder Theorem (CRT) and TMVP (Toeplitz
matrix-vector product) approach are well-known divide-
and-conquer algorithms, and widely applied to develop
subquadratic space complexity multipliers [24], [34], [35],
[36]. Specifically, the Karatsuba algorithm (KA) is one of
the most frequently used divide-and-conquer algorithm.
However, despite exciting progress in the past few years,
the hybrid Karatsuba multipliers still have one or two
more TX delay compared with the fast quadratic multi-
pliers [4], where TX is the delay of one 2-input XOR gate.
This is due in part to the independent implementation
of the polynomial multiplication based on KA and the
modular reduction.

Mastrovito-Karatsuba (MK) multiplier. To obtain a bet-
ter space and time complexity trade-off, Li et al. [26]
introduce an alternative hybrid multiplier for trinomials
that can optimize polynomial multiplication and mod-
ular reduction simultaneously. The high level idea is
that splitting one big polynomial multiplication into
three smaller ones using KA and constructing Mastrovito
matrix for every sub-polynomial multiplication under
SPB representation. As a result, the gate delay of this
multiplier is only one TX more than the fastest bit-
parallel multiplier for trinomials, but can roughly save
1/4 logic gates. One interesting vantage of above ap-
proach is that both Mastrovito and Karatsuba algorithms

2

are frequently used techniques and already be stud-
ied extensively. Applying improved KA or Mastrovito
approach can probably lead to a certain improvement
of MK multipliers. In fact, there are already several
extensions for this scheme using n-term KA for special
trinomials [28] and general trinomials [29], [30].

In addition, Fan [24] used the Chinese Remainder
Theorem to develop an even faster hybrid multiplier
for trinomials, which can match the fastest bit-parallel
multipliers for some m values. Meanwhile, the space
complexity of his proposal is reduced by 8.4% on av-
erage. This proposal was further improved in [25] by
reducing the space complexity to 14.3%. The key idea of
their scheme is based on a fact that a trinomial f(x) =
xm + xk + 1 has an equation f + 1 = xm−k(xk + 1). For
other types of irreducible polynomial, the non-constant
part f + 1 does not have such a simple factorization
and Fan’s method is no longer efficient. Unfortunately,
an irreducible trinomial does not always exist for every
value of m. For example, there are 468 m values for
0 < m ≤ 1024, where an irreducible trinomial does
not exist [27]. Therefore, it has been suggested that
an irreducible pentanomial can be an alternative choice
whenever the irreducible trinomial does not exist.

Motivated by the MK schemes, we continue the study
of hybrid multiplier for some other frequently used
irreducible pentanomials, including Type I, Type II and
Type C.1 pentanomials. We improve and extend previous
results from [26], that can be summarized in two main
contributions.

Formulation. We derive a new modular reduction for-
mulation for constructing Mastrovito matrix associated
with Type II pentanomial, i.e., f(x) = xm + xk+1 + xk +
xk−1+1, 1 < k < m−1. This formula can also be applied
to Type I pentanomial xm+xk+1+xk+x+1, 1 < k < m−1
[8] and Type C.1 pentanomials xm+xm−1+xk+x+1 [20],
respectively. We demonstrate that Type I pentanomial is
less efficient because of more complicated modular re-
duction under the SPB representation; meanwhile, Type
C.1 pentanomial is as good as Type II pentanomial under
the GPB represenatation.

Extension. We introduce a new MK multiplier for Type II
pentanomial and give rigorous analyses of this multipli-
er in terms of the space and time complexity. It is shown
that our proposal is only one TX slower than the fastest
bit-parallel multiplier for Type II pentanomial, but its
space complexity is roughly 3/4 of those counterparts,
where TX is the delay of one 2-input XOR gate. To the
best of our knowledge, it is the first time that the hybrid
multiplier to achieve such a time delay bound.

Outline of the paper. The remainder of paper is orga-
nized as follows: in section 2, we first briefly introduce
some basic concepts and review the MK multiplier. Then,
based on combination of the Karatsuba and Mastrovito
approaches, the new MK multiplier architecture for Type
II pentanomial is proposed in the following section.
Section 4 presents the comparison between the proposed

multiplier and some others. The last section summarizes
the results and draws some conclusions.

2 PRELIMINARY AND NOTATIONS

In this section, we review some related notations and
algorithms utilized throughout this paper.

Assume that f(x) is an irreducible polynomial of
degree m over F2, and a finite field GF (2m) is defined
by f(x), where GF (2m) ∼= F2[x]/(f(x)). The SPB of such
a field is defined as follows:

Definition 1 [8] Let v be an integer and the ordered set
M = {xm−1, · · · , x, 1} be a polynomial basis of GF (2m)
over F2. The ordered set x−vM := {xi−v|0 ≤ i ≤ m− 1} is
called the shifted polynomial basis (SPB) with respect to M .

Compared with PB, the greatest advantage of SPB is that
it can simplify the modular reduction for all trinomials
and some special pentanomials if the SPB parameter v
is properly selected. The optimal choice of v has already
been studied in [8]. More explicitly, for an irreducible
trinomial xm+xk+1 or Type II pentanomial xm+xk+1+
xk+xk−1+1, the optimal vs are both k. Combined with
Mastrovito approach, the SPB multiplier can achieve to
the fastest implementation for trinomials and Type II
pentanomials [8], [14]. We choose the same value and
use this denotation thereafter. Let A,B ∈ GF (2m) be two
arbitrary elements under SPB representation, namely,

Ax−k = x−k
m−1∑
i=0

aix
i, Bx−k = x−k

m−1∑
i=0

bix
i.

Then the SPB multiplication is

Cx−k = Ax−k ·Bx−k mod f(x).

Please note that the modular reduction here is slightly
different with the classic PB reduction, where the rational
term degree range is [−k,m − k − 1], not [0,m − 1]. As
a matter of fact, if we divided both sides of the above
equation by x−k, such an equation is equivalent to the
Montgomery multiplication C = A·B·x−k mod f(x) with
the Montgomery factor x−k. Therefore, to distinguish
with PB reduction, we call this modular reduction as SPB
reduction. In the rest of this paper, we utilize the notions
of both SPB and PB reduction, and the default modular
reduction refers the SPB one without specification.

Based on above observation, a Mastrovito-Karatsuba
multiplier using SPB was introduced in [26]. The main
idea is multiplying two SPB polynomials using KA and
reducing each part using the Mastrovito approach. Recall
that A,B are two field elements defined beforehand.
The KA can optimized the multiplication Ax−k · Bx−k
by partitioning each polynomial into two halves. For

3

example, if m is even, let n = m
2 ,

Cx−k = Ax−k ·Bx−k mod f(x)

= (AHxn +AL)x
−k · (BHxn +BL)x

−k mod f(x)

=
(
AHBHx2n+(AHBL+ALBH)xn+ALBL

)
x−2kmodf(x)

=
[
AHBHx2n +ALBL + (AHBH +ALBL)x

n

+(AL +AH)(BL +BH)xn]x−2k mod f(x)

= [(AHxn +AH)BHxn + (ALx
n +AL)BL

+UV xn]x−2k mod f(x),
(1)

where AL, AH and BL, BH are two halves of A and
B, and U = AL + AH , V = BL + BH . If m is odd,
the expansion formula is almost the same as (1). Li
et al. [26] rewrite above expressions as two indepen-
dent matrix-vector multiplications, which will be fur-
ther reduced using Mastrovito approach. Let S1 denote
(AHx

n + AH)BHx
n + (ALx

n + AL)BL and S2 denote
UV xn, we have

S1x
−2k = A · b

=

−2k
...

2m−2k−1


AL1, 0n×n
AL1+AL2, AH1

AL2, AH1+AH2

0n×n, AH2

·[bL
bH

]
,

(2)
and

S2x
−2k = U · v

=

n− 2k
...

3n− 2k

 UL

UH

 · [vL
vH

]
,

(3)

where A and U are multiplicative matrices with respect
to S1 and S2, and their submatrices correspond to the
subexpressions of S1 and S2. The explicit formulae are
the same as [26]. Particularly, the labels on the left side
indicate the exponents of indeterminate x for S1 and S2.

After that, Mastrovito approach is applied to reduce
these multiplicative matrices A and U according to the
generating polynomials. If the field GF (2m) is defined
by an irreducible trinomial, Mastrovito matrices for (2)
and (3) are easy to obtain under SPB representation.
Consequently, this scheme can achieve a better space and
time complexities trade-off than other proposal known to
date. In the following, we apply this idea to irreducible
Type II pentanomial and develop a new Mastrovito-
Karatsuba multiplier.

Throughout this paper, some notations pertaining to
matrices and vectors operations in [26], [28] are also
utilized here. For example, an uppercase letter Z denotes
a matrix while a lowercase letter z denotes a column
vector.

• Z(i, :),Z(:, j) and Z(i, j) represent the ith row vector,
jth column vector, and the entry with position (i, j)
in Z, respectively;

• Z[↑ i] and Z[↓ i] represent up or down shift of matrix
Z by i rows and feeding the vacancies with zero;

• Z[i] represents cyclic shift of Z by upper i rows;

• Z[↑↑ i] and Z[↓↓ i] represent appending i zero
vectors to the bottom or top of Z.

Besides, some extra notations are used as well:
• Z ∗ b denotes the matrix-vector bitwise multiplica-

tions;
• z(i∼j) represents a truncated vector whose coordi-

nates equal the i∼j-th coordinates of z.

3 MASTROVITO-KARATSUBA MULTIPLIER FOR
TYPE II PENTANOMIAL

In this section, we first investigate the matrix form of
polynomial multiplication using KA. Then, we construct
Mastrovito matrices for each subexpression with respect
to Type II pentanomials. Finally, a fast MK multiplier
architecture is proposed accordingly.

3.1 Matrix form of polynomial multipliation using KA

Provide that a Type II pentanomial f(x) = xm + xk+1 +
xk + xk−1 +1, 1 < k < m− 1 1 is irreducible over F2 and
defines the finite field GF (2m) ∼= F2[x]/(f(x)). Given
two arbitrary elements Ax−k, Bx−k ∈ GF (2m) in SPB
representation as stated in previous section. We partition
them into two halves and multiply these subexpressions
using the KA. Note that we have already given the
polynomial multiplication expansion under KA and their
matrix-vector forms for even m, which were presented
in (1)-(3). Hence, we only study the formulation of odd
m here.

If m is odd. Let m = 2n+1 and

Ax−k = (AHx
n +AL)x

−k, Bx−k = (BHx
n+1+BL)x

−k,

where AL =
∑n−1
i=0 aix

i, AH =
∑n
i=0 ai+nx

i, BL =∑n
i=0 bix

i, BH =
∑n−1
i=0 bi+n+1x

i.
Then, the SPB multiplication can be performed as:

Cx−k = Ax−k ·Bx−k mod f(x)

= (AHxn +AL) · (BHxn+1 +BL)x
−2k mod f(x)

=
[
AHBHx2n+1 +ALBL + (AHBHx+ALBL)x

n

+(AL +AH)(BL +BHx)xn]x−2k mod f(x)

=
[
(AHxn +AH)BHxn+1 + (ALx

n +AL)BL

+UV xn]x−2k mod f(x)

(4)

where U = AL +AH , V = BL +BHx. Also let S1 denote
(AHx

n + AH)BHx
n+1 + (ALx

n + AL)BL and S2 denote
UV xn. The matrix-vector forms of S1x

−2k and S2x
−2k

are written by

S1x
−2k = A · b

=

−2k
...

2m−2k−2


AL1, 0(n+1)×n
AL1 +AL2, AH1

AL2, AH1+AH2

0(n+1)×(n+1), AH2

 ·[b1

b2

]
,

(5)

1. The original Type II pentanomial stipulate that k < bm/2c. This
is a slight generalization definition.

4

and
S2x

−2k = U · v

=

n− 2k
...

3n− 2k

 UL

UH

 · [vL
vH

]
.

(6)

The explicit formulations of ALi,AHi, (i = 1, 2) and
UL,UH have already been given in [26]. For the sake
of simplicity, we do not present their formulations here.
Next, we study the modular reduction with respect to
these multiplicative matrices in (5) and (6).

3.2 SPB reduction of S1x
−2k

According to the Mastrovito approach [3], the reduction
of S1x

−2k modulo f(x) is equivalent to constructing
the Mastrovito matrix MA from its multiplicative ma-
trix A, using the reduction rule pertaining to f(x). We
stress that pentanomials usually have more complicated
modular reductions than trinomials. It follows that the
construction of related Mastrovito matrix for Type II
pentanomial is also harder. Before continuing, we shall
study the explicit formula for S1x

−2k mod f(x). In [8],
the authors classified the coefficients formulations of the
modular result for Type II pentanomial into ten cases and
analyzed their computations, independently. However,
their approach cannot be directly applied to construct the
corresponding Mastrovito matrix. Thus, we partition S1

into several segments and describe a relatively simpler
formulation for modular reduction. This formulation
can help us construct Mastrovito matrix associated with
S1x

−2k, directly.
Notice that deg(S1) ≤ 2m−2. We rewrite S1 as C1x

m+
C0, where deg(C1),deg(C0) ≤ m − 1. As stated before,
the SPB reduction of S1x

−2k mod f(x) is equivalent to
the ordinary reduction S1x

−k mod f(x). Then,

S1x
−k mod f(x) = (C1x

m + C0)x
−k mod f(x)

= C1(x+ 1 + x−1 + x−k) + C0x
−k mod f(x)

= (C1 + C0)x
−k + C1(x+ 1 + x−1) mod f(x).

(7)

If we consider the degrees of C0, C1, it is clear that
only partial terms of above subexpressions need further
reduction. So we partition C1 + C0 into two parts, i.e.,
(C1+C0)Hx

k+(C1+C0)L, and plug this expression into
(7), then we obtain:

S1x
−k mod f(x)

=
(
(C1 + C0)Hx

k + (C1 + C0)L
)
x−k+

C1(x+ 1 + x−1) mod f(x)

= (C1 + C0)H + (C1 + C0)L(x
m−k + x+ 1 + x−1)

+ C1(x+ 1 + x−1) mod f(x)

=
(
(C1 + C0)H + (C1 + C0)Lx

m−k)+ ((C1 + C0)L

+ C1

)
(x+ 1 + x−1) mod f(x).

(8)

Based on above expression, we then show how to con-
struct MA. Denoted by c0, c1 the m-dimension coefficient
vectors of C0 and C1. Please notice that C1 consists of

at most m − 1 nonzero coefficients, while C0 consists
of m ones. In order to operate these coefficient vectors
easily, we stipulate that c0 and c1 contains m entries, by
padding the vacant bits with zeros. Accordingly, we also
extend A to a 2m×m matrix by appending a zero vector
in the last row. Now we use these vectors instead of the
subexpressions in (8) and figure out their corresponding
linear transformations.

Firstly, one can easily see that the expression (C1 +
C0)H + (C1 + C0)Lx

m−k corresponds to (c0+c1)[k].
Then, we note that (C1 + C0)L overlaps with C1. If we
combine the overlapped terms (in GF (2m), the addition
is equivalent to subtraction), it is clear that (C1+C0)L+
C1 corresponds to the vector [c0(1 ∼ k), c1(k+1∼m)]T .
Moreover, we note that c0, c1 actually represent the
lower m bits and upper m bits of [S1,0]

T = A · b,
respectively, Therefore, through the linear conversion
of c0, c1 as stated above, we can perform the same
operations to A, in order to obtain MA. We have a
following proposition:

Proposition 1 The Mastrovito matrix related to S1x
−2k,

denoted by MA, is given by

MA = MA,1 +MA,2 +MA,3 +MA,4,

where

MA,1 =
[
A(1∼m, :) +A(m+1∼2m, :)

]
[k],

MA,2 = [A(1∼k, :),A(m+k+1∼2m, :)]T ,
MA,3 = MA,2[↓ 1],
MA,4 = MA,2[↑ 1] + Za.

Here, Za is a m×m “almost” zero matrix, except Za(i, 1) =
a0 for i = k − 1, k, k + 1,m.

The proof of this proposition can be found in the ap-
pendix A. From Proposition 1, it is clear that both MA,3

and MA,4 are shifts of MA,2. So they have a similar
structure. But MA,1 is totally different. We now analyze
its explicit formulation. Since

MA,1 = (A(1∼m, :) +A(m+1∼2m, :))[k],

the structure of MA,1 is determined by the result of
adding the last m rows of A to its top m rows. Based
on the formula of A, we immediately know that if m is
even,

MA,1 =

[
AL1 +AL2, AH1 +AH2

AL1 +AL2, AH1 +AH2

]
[k]. (9)

if m is odd,

MA,1 =[(
A′L1+A′L2

AL1+AL2

)
[1],

AH1+AH2

A′H1+A′H2

]
[k].

(10)
where A′L1 = AL1[� 1], A′H1 = AH1[� 1] and A′L2 =
AL2[� 1], A′H2 = AH2[� 1]. These formulae coincide
with the result of [26]. For simplicity, we do not present
the deduction of these formulation, one can find related
analysis in section 3.2.1, [26].

5

3.3 SPB reduction of S2x
−2k

Now we consider the SPB reduction of S2x
−2k. Recall

that S2x
−2k = UV xn−2k = U · v. Since the degrees of

U, V are both at most n, deg(UV) = 2n ≤ m − 1, the
dimension of the matrix U is at most m × n. Without
loss of generality, we stipulate that deg(UV) = m − 1
and U contains m rows as we can append zero vectors
to U if its dimension is less than m. Before constructing
the Mastrovito matrix for S2x

−2k modulo f(x) under
SPB, we can use a similar approach stated in previous
subsection to study its equivalent PB reduction formula
S2x

−k mod f(x). Here, we need to consider two cases
according to the magnitude relations between n and k.

Case 1: n ≥ k. Let UV = D1x
m−n+k + D0. It is clear

that deg(D1) = n − k − 1,deg(D0) = m − n + k − 1. We
have

S2x
−k mod f(x) = UV xn−k mod f(x)

= (D1x
m−n+k +D0)x

n−k mod f(x)

= D1x
m +D0x

n−k mod f(x)

= D1(x
k+1 + xk + xk−1 + 1) +D0x

n−k

= (D1 +D0x
n−k) +D1(x

k+1 + xk + xk−1).

(11)

Particularly, if k = n or k = n − 1, it is obvious that
deg(D1) ≤ 0, which indicates that D1 does not exist. No
modular reduction is needed here. But this subcase can
be combined into (11) by choosing D1 as zero. For the
sake of simplicity, we do not distinguish these sub-cases,
as this distinction only has a trivial impact on our whole
scheme.

Case 2: n < k. Let UV = D1x
k−n+D0, with deg(D1) =

m+ n− k − 1,deg(D0) = k − n− 1. We have

S2x
−k mod f(x)

= (D1x
k−n +D0)x

n−k mod f(x)

= D1 +D0x
n−k

= D1 +D0(x
m+n−k + xn+1 + xn + xn−1)

= (D1 +D0x
m+n−k) +D0(x

n+1 + xn + xn−1).

(12)

One can easily check that all the term degrees in (11)
and (12) are now in the range of [0,m−1] and no further
reduction is needed.

Based on above two expressions, we then investigate
the structure of the Mastrovito matrix pertaining to
S2x

−2k. Denoted by d0,d1 the coefficient vectors of D0

and D1. One can check that both (D1 + D0x
n−k) and

(D1 + D0x
m+n−k) correspond to the vector [d1,d0]

T .
Apparently, such a vector can be obtained by performing
matrix-vector multiplication U′ · v, where U′ is cyclic
shift of U by its upper m − n + k (or k − n) rows. We
then have a proposition as follows:

Proposition 2 The Mastrovito matrix related to S2x
−2k,

denoted by MU , is given by

MU = MU,1 +MU,2 +MU,3 +MU,4,

where

MU,1 = U[(m−n+k)],
MU,2 = (U[↑ (m−n+k)])[↓ (k − 1)],

MU,3 = MU,2[↓ 1], MU,4 = MU,2[↓ 2],

if n ≥ k; or

MU,1 = U[(k−n)],
MU,2 = (U[↓ (m+n−k)])[↑ (m−k−1)],
MU,3 = MU,2[↑ 1], MU,4 = MU,2[↑ 2],

if n < k.

The proof of this proposition is similar with that of
Proposition 1, which is available in Appendix A.2.

3.4 Computation analysis for S1x
−2k and S2x

−2k

After obtaining the explicit formulations of MA and MU ,
it is obvious that both S1x

−2k and S2x
−2k can be imple-

mented by matrix-vector multiplications, i.e., MA ·b and
MU ·v. Notice that both of these matrices, as presented in
Propositions 1 and 2, can be expressed as a plus of four
submatrices, respectively. Taking into account logic gates
reuse, we utilize a modified computation strategy similar
with the ones stated in [12], [26], [28]. More explicitly,

S1x
−2k = MA · b

= (MA,1 +MA,2 +MA,3 +MA,4) · b
= [MA,1,MA,2]·[b,b]T + [MA,3,MA,4]·[b,b]T .

(13)

S2x
−2k = MU · v

= (MU,1 +MU,2 +MU,3 +MU,4) · v
= [MU,1,MU,2]·[v,v]T + [MU,3,MU,4]·[v,v]T .

(14)

Accordingly, above expressions are implemented by fol-
lowing three steps. Here, without loss of generality, we
take the computation of (13) as an example, and the
computation of (14) follows the same line.
• Perform matrix-vector bitwise products

MA,1 ∗ b,MA,2 ∗ b,MA,3 ∗ b,MA,4 ∗ b.

• Combine every two submatrices together and sum
up all the 2m entries of each row using binary XOR
tree and binary sub-expression sharing approach [22],
[26], i.e., compute e1 = [MA,1,MA,2] · [b,b]T and
e2 = [MA,3,MA,4] · [b,b]T in parallel.

• Add two vectors e1, e2 to get the final result.
In figure 1, we demonstrate the flow diagram of our
scheme for xm + xk+1 + xk + xk−1 + 1,m > 2k. The
explicit space and time complexity analysis can be found
in Section 4.

3.5 A small example
As a small example, we consider the SPB field mul-
tiplication over GF (25) generated with the underlying
irreducible pentanomial x5 + x3 + x2 + x + 1. It is clear
that k = 2 be the optimal SPB parameter. Accordingly,

6

 S1=MA·b

 S2=MU·v

e1+e2

e1=[MA,1, MA,2]·[b, b]

TA+ TX )12(log2  km

TX

TA

TX

ABmod f(x)

e2=[MA,3, MA,4]·[b, b]

A1+A2

B1+B2

f1=[MU,1, MU,2]·[v, v]

f2=[MU,3, MU,4]·[v, v]

TA+ TX )1(log2  km

f1+f2

TX

C+

TX

Fig. 1. Flow diagram of the MK multiplier for xm + xk+1 + xk + xk−1 + 1,m > 2k.

let Ax−2 =
∑4
i=0 aix

i−2 and Bx−2 =
∑4
i=0 bix

i−2 be
two elements in GF (25). We partition A,B as A =
A2x

2 +A1, B = B2x
3 +B1, where

A1 = a1x+ a0, A2 = a4x
2 + a3x+ a2,

B1 = b2x
2 + b1x+ b0, B2 = b4x+ b3.

According to equation (4), then

A ·B · x−4 = [(A2x
2 +A2)B2x

3 + (A1x
2 +A1)B1]x

−4

+ (A2 +A1)(B2x+B1)x
2−4 = S1x

−4 + S2x
−4.

Based on (5) and (6) , we have S1x
−4 = A · b, S2x

−4 =
U · v. Meanwhile, the mulitplicative matrices A and U
are given by

A =

−4
−3
−2
−1
0
1
2
3
4
5



a0 0 0 0 0
a1 a0 0 0 0
a0 a1 a0 0 0
a1 a0 a1 a2 0
0 a1 a0 a3 a2
0 0 a1 a2+a4 a3
0 0 0 a3 a2+a4
0 0 0 a4 a3
0 0 0 0 a4
0 0 0 0 0


, (15)

and

U =

−2
−1
0
1
2


u0 0 0
u1 u0 0
u2 u1 u0
0 u2 u1
0 0 u2

 , (16)

where u2 = a4, u1 = a3 + a1, u0 = a0 + a2.
Applying Proposition 1 and 2, the Mastrovito matrices

related to S1x
−4 and S2x

−4 are given by:

MA = MA,1 +MA,2 +MA,3 +MA,4 =
a0 a1 a0 a4 a3
a1 a0 a1 a2 a4
0 a1 a0 a3 a2
a0 0 a1 a2+a4 a3
a1 a0 0 a3 a2+a4

+

a0 0 0 0 0
a1 a0 0 0 0
0 0 0 a4 a3
0 0 0 0 a4
0 0 0 0 0



+


0 0 0 0 0
a0 0 0 0 0
a1 a0 0 0 0
0 0 0 a4 a3
0 0 0 0 a4

+

a1+a0 a0 0 0 0
a0 0 0 a4 a3
a0 0 0 0 a4
0 0 0 0 0
a0 0 0 0 0

 ,
and

MU = U[5] = U.

In fact, one can check that all the term degrees of S2x
−4

are in the range of [−2, 2]. So there is no reduction
needed here, that is to say, MU = U, which coincides
with Proposition 2. One can easily check that the result
of MA ·b and MU ·v are equal to S1x

−2k, S2x
−2k modulo

x5 + x3 + x2 + x+ 1.

4 COMPLEXITY ANALYSIS

Based on Proposition 1 and 2, we can evaluate the space
and time complexity of (13), (14). Explicit analyses are
given steps by steps according to related statement in
Section 3.4.

4.1 Complexity analysis for S1x
−2k

Firstly, it is noteworthy that the bitwise products in
MA,1 ∗ b contain all the possible results in other three
matrices-vector bitwise multiplications. Therefore, we
only need to count the number of AND gates required
in MA,1 ∗b. As shown in (9) and (10), this operation can
be reduced to its submatrix-vector bitwise multiplication
of half size, which is the same as Theorem 1 of [26]. As
a result, such operation totally requires m2

2 AND gates
for even m and m2−1

2 AND gates for odd m.

7

TABLE 1
The space and time complexity of S1x

−2k mod f(x)

case #AND #XOR Delay

m even, m > 2k
m2

2
m2−m

2
+ 3

∑k
i=1W (i) + 3

∑m−k−1
i=1 W (i) +mW (m) + 3

TA + (1 + dlog2(2m− k − 1)e)TX
m even, m < 2k TA + (1 + dlog2(m+ k)e)TX

m odd, m ≥ 2k + 1
m2−1

2

m2−1
2

+ (n+1)W (m) + nW (n+1) + (2m−3k−5)W (n)
TA + (1 + dlog2(2m− k − 1)e)TX

n = m−1
2

+3
∑k
i=1W (i) + 3

∑n
i=1W (i) + 3

∑n−k
i=1 W (i) + 3

m odd, m < 2k + 1
m2−1

2

m2−1
2

+ (n+1)W (m) + nW (n+1) + (3k−m+1)W (n)
TA + (1 + dlog2(m+ k)e)TX

n = m−1
2

+3
∑m−k−1
i=1 W (i) + 3

∑n
i=1W (i) + 3

∑k−n
i=1 W (i) + 3

TABLE 2
The space and time complexity of S2x

−2k mod f(x)

case #AND #XOR Delay

m even, m ≥ 2k m2

4
≤ m2

4
+ 3

∑n−k−1
i=1 W (i) + 1] < TA + (2 + dlog2(m− k − 1)e)TX

m even, m < 2k m2

4
m2

4
+ 3

∑k−n
i=1W (i) + 1 < TA + (2 + dlog2 ke)TX

m odd, m ≥ 2k + 1 m2+2m+1
4

≤ m2+2m−3
4

+ 3
∑n−k
i=1W (i)] < TA + (2 + dlog2(m− k − 1)e)TX

m odd, m < 2k + 1 m2+2m+1
4

m2+2m−3
4

+ 3
∑k−n
i=1W (i) < TA + (2 + dlog2 ke)TX

]: including the case of k = n, k = n− 1 (n = m
2

or n = m−1
2

), where MU = U and W (∗) are not needed.

Then, we consider the number of XOR gates needed
in (13). Note that MA,2, MA,3 and MA,4 share some
common entries with MA,1. Thus, after bitwise multi-
plication with b, these common entries remain. When
adding the entries in the same rows of [MA,1∗b,MA,2∗b]
and [MA,3∗b,MA,4∗b], one can use the same binary tree
based sub-expression sharing techniques [22], [26] to save
logic gates. To be more specific, n intermediate values
P0, P1, · · · , Pn−1 (n+1 values for odd m) are utilized for
sub-expression sharing, where

[P0, · · · , Pn−1]T = [AL1 +AL2,AH1 +AH2] · b,

if m is even, or

[P0, · · · , Pn]T =
[

AL1+AL2

(A′L1+A′L2)[1, :]
,A′H1+A′H2

]
· b,

if m is odd. The details for sharing common entries
among the n intermediate values and [MA,1∗b,MA,2∗b],
[MA,3 ∗ b,MA,4 ∗ b] are available in the appendix. The
circuit delay for the computation of e1 and e2 is equal to
the longest path delay in these submatrix-vector multi-
plications. Moreover, another TX is required for adding
these two results e1 + e2.

As a result, the computation of the intermediate val-
ues P0, P1, · · ·Pn−1(or Pn) totally requires (m − 1)n =
m2−m

2 (or m2−1
2) XOR gates. When adding the number of

XOR gates presented in Tables 5-8, which are available
in the Appendix B, and m more XOR gates for e1 + e2,
we can obtain the explicit number of XOR gates required
by S1x

−2k mod f(x).
We then analyze the time complexity of S1x

−2k. Ac-
cording to previous description, the bitwise multipli-
cation are performed in parallel and one TA delay is

needed. The XOR delays for the summation of each
row in [MA,1 ∗ b,MA,2 ∗ b] and [MA,3 ∗ b,MA,4 ∗ b]
rely on the depth of the biggest XOR tree among all
these rows. Also, we note that the number of nonzero
entries in [MA,3 ∗b,MA,4 ∗b] is much smaller than those
of [MA,1 ∗ b,MA,2 ∗ b]. Thus, the XOR delay for the
summations of each row requires TA + dlog2(2m − k −
1)eTX , (m ≥ 2k) (or TA + dlog2(m + k)eTX , (m < 2k))
due to parallelism. Finally, one TX delay is needed to
add e1 and e2. The summation about the space and time
complexity of S1x

−2k of different cases can be found in
Table 1.

4.2 Complexity analysis for S2x
−2k

The computation of S2x
−2k mod f(x) consists of the pre-

computation of U, V and a matrix-vector multiplication
presented in (14). At the very begining, 2n XOR gates
are needed for precomputation of U, V , which cost one
TX in parallel. We note that matrix MU,1 contains all
the nonzero entries of MU,i, for i = 2, 3, 4. Thus, we can
use binary tree based sub-expression sharing technique as
well to save certain number of XOR gates. The rest of
computation for (14) follows the same line of (13) and
the complexity analysis is similar. The space and time
complexity of S2x

−2k mod f(x) is summarized in Table
2.

Furthermore, based on the delays presented in Tables
1 and 2, we immediately know that the circuit delay of
S2x

−2k is less than that of S1x
−2k. Thus, they can be

implemented in parallel and the overall circuit is equal to
the delay of S1x

−2k. Finally, m additional XOR gates are
required to add S1x

−2k and S2x
−2k to obtain the ultimate

8

result, which cost one TX as well. In consequence, we ob-
tain the total space complexity of the proposed multiplier
by summing up all these related expressions. Since any
expression

∑σ
i=1W (i), (σ ≥ 1) can be roughly rewritten

as σ
2 log2 σ [22], for sake of simplicity, we use the notation

O(m logm) instead of the expressions associated with the
sum of hamming weight. We finally have

If m is even:

#AND : 3m2

4
,

#XOR : 3m2

4
+m

2
+O(m log2 m),

Delay :

 TA + (2 + dlog2(2m−k−1)e)TX , (m≥2k),

TA + (2 + dlog2(m+k)e)TX , (m<2k).

(17)
If m is odd:

#AND : 3m2+2m−1
4

,

#XOR : 3m2

4
+ 3m

2
+O(m log2 m),

Delay :

 TA + (2 + dlog2(2m−k−1)e)TX , (m≥2k+1),

TA + (2 + dlog2(m+k)e)TX , (m<2k+1).

(18)

5 COMPARISON AND DISCUSSION

5.1 Complexity comparison

We now compare the space and time complexities of
our proposal with some former multipliers for Type II
pentanomials. More details can be found in Table 3. It
is obvious that our scheme only requires one more TX
compared with the fastest bit-parallel multipliers [8], [14]
known to date, but it has a lower space complexity with
roughly 1/4 logic gates gain. Specifically, compared with
another hybrid multiplier scheme [15], which is built on
a varied KA, our proposal has a slightly higher space
complexity. But for the time complexity, we have

dlog2(2m− k − 1)e ≤ 1 + dlog2(m− 1)e, if m ≥ 2k,

dlog2(m+ k)e ≤ 1 + dlog2(m− 1)e, if m < 2k.

It is indicated that our proposal is at least as fast as that
of [15]. Moreover, if dlog2(2m−k−1)e = dlog2(m−1)e (or
dlog2(m+k)e = dlog2(m−1)e), our scheme is even faster,
which has the delay TA + (2 + dlog2me)TX . In [8], the
author has given some irreducible Type II pentanomials
of degree 2 < m < 1001 that satisfy previous equations.
In order to illustrate the improvement of our proposal,
we give the explicit space and time complexities of
some available multiplier schemes for fields GF (2163),
GF (2283), GF (2571) in Table 4. Obviously, one can check
that our proposed approach is faster than [15] and
requires fewer logic gates compared with [8].

5.2 Further discussion

In [8] and [14], the authors have developed the fastest
bit-parallel SPB/Montgomery multipliers for all trino-
mials xm + xk + 1 and Type II pentanomials xm +
xk+1 + xk + xk−1 + 1 know to date. The main reason

TABLE 4
Complexity comparison of different multipliers for some

Type II pentanomials xm + xk+1 + xk + xk−1 + 1.

m, k Multiplier #AND #XOR Delay

163, 71

[8] 26569 27051 TA + 9TX
[15] 20008 21162 TA + 11TX

Proposal 20008 22704 TA + 10TX

283, 133

[8] 80089 80931 TA + 10TX
[15] 60208 62239 TA + 12TX

Proposal 60208 65620 TA + 11TX

571, 230

[8] 326041 327747 TA + 11TX
[15] 244816 248773 TA + 13TX

Proposal 244816 258281 TA + 12TX

is the optimal SPB parameters (or Montgomery factors)
for these types of polynomials are found, i.e., x−k, to
simplify the associated SPB/Montgomery reductions,
which are easier than original PB reduction. Interestingly,
some natural questions arise: can x−k be the optimal
SPB/Montgomery parameter for other specifical irre-
ducible polynomials, e.g. Type I pentanomial? If there
is a parameter simplifying the modular reduction with
respect to some polynomials, can we construct a similar
efficient MK multiplier for them?

In the following, we use similar reduction formula-
tions, as presented in (8), to briefly demonstrate that

1) x−k can not simplify the SPB reduction for xm +
xk+1 + xk + x+ 1 as much as that of xm + xk+1 +
xk + xk−1 + 1;

2) Type C.1 pentanomial xm+xm−1+xk+x+1, with
GPB parameter xm−k + xm−k−1 + 1 [20], can also
develop an efficient MK multiplier.

Type I pentanomial. Provide that a Type I pentanomial
f(x) = xm+xk+1+xk+x+1, 2 < k < bm/2c is irreducible,
and A,B are two arbitrary elements in GF (2m) defined
by f(x). The SPB reduction associated with the field
multiplication is equivalent to

ABx−k mod xm + xk+1 + xk + x+ 1

= (C1x
m + C0)x

−k mod f(x)

= C1(x+ 1 + x1−k + x−k) + C0x
−k mod f(x)

= (C1 + C0)x
−k + C1(x+ 1 + x1−k) mod f(x)

= ((C1 + C0)H + (C1 + C0)Lx
m−k) + ((C1 + C0)L

+ C1)(x+ 1 + x1−k) mod f(x),

where C1, C0, (C1 + C0)H , (C1 + C0)L are the same as
the ones defined in Section 3.2. One can check that the
term degrees of ((C1+C0)L+C1)x

1−k are still out of the
range [0,m−1]. So that it needs further reduction, which
make corresponding Mastrovito matrix more complicate
than that of Type II pentanomial. That is to say, related
SPB/Montgomery multiplier under the parameter x−k

for Type I pentanomial is not as efficient as the Type II
pentanomial in [8], [14].

9

TABLE 3
Comparison of Some Bit-Parallel Multipliers for xm + xk+1 + xk + xk−1 + 1

Ref. Method/Bases # AND # XOR XOR delay (TX)

[6] PB m2 m2 + 2m− 3 6 + dlog2me

[32] PB m2 m2 + 2m− 3 4 + dlog2(m− 1)e

[16], [33] SPB m2 m2 + 2m− 3 3 + dlog2(m− 1)e

[8], [14]
SPB

m2 m2 + 2m− 7
1 + dlog2(2m− k− 1)e(m ≥ 2k)

/Montgomery 1 + dlog2(m+ k)e(m < 2k)

[18] PB m2 m2 + 3m+6k
2

3 + dlog2(m− 2)e

[19] PB m2 m2 + 2m+ 3k + α− β blog2mc+dlog2d 4m+3k−9

2blog2 mc ee

[15] PB 3m2

4
+ m

2
− 1

4
3m2

4
+ 6m+ 7k

2
+ 35

4
3 + dlog2(m+ 1)e

This paper SPB
3m2+2m−1

4
3m2

4
+ 3m

2
+O(m log2m) (m odd) 2 + dlog2(2m− k− 1)e(m ≥ 2k)

3m2

4
3m2

4
+m

2
+O(m log2m) (m even) 2 + dlog2(m+ k)e(m < 2k)

Description: α = 3(Υm−1 + Υk+1), β = Hk + Σm +Hθ (θ = k for even k and θ = k − 1 for odd k).

Hi represents the hamming weight of integer i, function Υh =
∑h
i=1(Hi − 1), Σm =

∑
i=2,4,···Hi.

Type C.1 pentanomial. In [20], Cilardo introduced a
generalization of SPB, so-called generalized polynomial
basis (GPB), and developed efficient bit-parallel GPB
multipliers for two types of pentanomials, i.e., xm +
xm−1 + xk + x + 1, (m − 1 > k > 1) and xm + xm−k1 +
xk2 + xk1 + 1, (m − k1 > k2 > k1 > 1), which are
referred as Type C.1 and C.2 pentanomials. He proposed
alternative GPB parameters for these pentanomials other
than x−k. Without loss of generality, we only analyze the
GPB reduction for f(x) = xm + xm−1 + xk + x + 1 with
underlying parameter xm−k + xm−k−1 + 1. Analogous
with previous description, we have

AB(xm−k + xm−k−1 + 1) mod xm + xm−1 + xk + x+ 1

= (C1x
m + C0)(1 + x)x−k mod f(x)

=
(
C1(x

m−1+xk+x+1) + C0

)
(1 + x)x−k mod f(x)

= C1x(x
k + x+ 1)x−k + C0(x+ 1)x−k mod f(x)

= (C1x+ C0)(x+ 1)x−k + C1x mod f(x)

= (C1x+ C0)H(1 + x) + C1x+

(C1 + C0)L(x
m−k + xm−k−1 + 1) mod f(x),

The definitions of C1, C0, (C1 + C0)H , (C1 + C0)L are
also the same as those defined in Section 3.2. Dur-
ing above derivation, we mainly utilize the equation
xm−k + xm−k−1 + 1 = (1 + x) · x−k. Since deg(C1) =
m− 2,deg

(
(C1 +C0)H

)
= m− k− 1,deg

(
(C1 +C0)L

)
=

k − 1, the term degrees of above subexpressions are all
in the range [0,m − 1], no further reduction is need-
ed. When comparing with (8), we can see that this
reduction is at least as good as the SPB reduction for
Type II pentanomial. Accordingly, we can also develop
efficient MK multipliers for these polynomials, through
replacing ordinary GPB polynomial multiplication with
a recombination of the sub-polynomials and constructing
Mastrovito matrices, separately.

To summarize, if there exist a parameter that can sim-
plify the corresponding modular reduction for certain

type of polynomials, it is possible to construct efficient
MK multiplier for the same polynomials also. To find an
alternative parameter that can simplify the modular re-
duction with respect to Type I pentanomials, is possible
the future work.

6 CONCLUSION

In this paper, we have proposed an efficient MK bit-
parallel multiplier for irreducible Type II pentanomial.
This scheme is a natural generalization of the MK mul-
tiplier for trinomials. Our proposal requires only one
more TX delay compared with the fastest bit-parallel
multiplier of the same type know to data, but saves
about 1/4 logic gates. Meanwhile, we also present new
formulae for modular reductions, which can be utilized
to construct associated Mastrovito matrices directly. Ap-
plying a similar formula, we demonstrate that Type I
pentanomials have more complicated modular reduction
under a same SPB/Montgomery parameter. Thus, associ-
ated SPB bit-parallel multipliers would be less efficient.
Finally, we note that, fast modular reduction is crucial
to developing efficient multipliers. We next work on MK
multiplier for Type C.1 and C.2 pentanomials using GPB
representation.

APPENDIX A
PROOFS

A.1 Proof of Proposition 1
Proof According to equation (8) and previous descrip-
tion, the modular result of S1x

−k mod f(x) can be ob-
tained by adding (c1 + c0)[k] with some shifts of
[c0(1 ∼ k), c1(k+1∼m)]. In fact, it is easily seen that

(c1+c0)[k] = MA,1 · b
=
(
A(1∼m, :) +A(m+1∼2m, :)

)
[k] · b,

[c0(1 ∼ k), c1(k+1∼m)]T = MA,2 · b
= [A(1∼k, :),A(m+k+1∼2m, :)]T · b.

10

In addition, multiplying
(
(C1 + C0)L + C1

)
with x or

x−1 correspond to down or up shifts of MA,2. One can
use the matrix operations MA,2[↓ 1] and MA,2[↑ 1] to
represent these results. Nevertheless, according to the
modular rule, we still have to consider the feedback
of the first (or the last) row vector after down (or
up) shift. We first note that A(2m, :) = 0. MA,2 =
[A(1 ∼ k, :),A(m+ k + 1 ∼ 2m, :)]T has its m-th row
being a zero vector, too. Therefore, there is no feedback
for MA,2[↓ 1], which is denoted by MA,3. Whereas,
A(1, :) = (a0, 0, · · · , 0) is a nonzero vector. According
to the modular formula x−1 = xm−1 + xk + xk−1 + xk−2,
we have to add A(1, :) to the m, k + 1, k − 1, k-th rows
of MA,2[↑ 1]. Fortunately, A(1, :) has only one nonzero
entry, that only affect the first column of MA,2[↑ 1].
Then we obtain the final Mastrovito matrix related to(
(C1 + C0)L + C1

)
x−1, i.e.,

MA,4 = MA,2[↑ 1] + Za,

where Za is a m × m “almost” zero matrix except the
entries Za(m, 1) = Za(k, 1) = Za(k−1, 1) = Za(k+1, 1) =
a0. We then conclude the proposition directly. �

A.2 Proof of Proposition 2
Proof According to (11) and (12), the reduction of S2x

−k

modulo f(x) can be obtained by [d1,d0]
T adding some

shifts of d1 (or d0). It is easily seen that

[d1,d0]
T =

{
U[(m−n+k)] · v, if n ≥ k,
U[(k−n)] · v, if n < k.

In addition, if n ≥ k, D1x
i, i = k − 1, k, k + 1 correspond

to the vector [d1,0m−n+k]
T [↓ i], where 0m−n+k is a (m−

n+k)×1 zero vector. Obviously, we have [d1,0m−n+k]
T [↓

i] = U[↑ (m−n+k)][↓ i] · v. Likewise, if n < k, D0x
i, i =

n−1, n, n+1 correspond to the vector [d0,0m+n−k]
T [↓ i].

We then have

[d0,0m+n−k]
T [↓ (n+1)] = (U[↓ (m+n−k)])[↑ (m−k−1)] ·v.

One can immediately obtain the explicit formulations of
MU,2,MU,3,MU,4. Then we conclude the proposition. �

APPENDIX B
THE NUMBER OF REQUIRED XOR GATES USING
BINARY SUBEXPRESSION SHARING

The following tables indicate the number of XOR gates
needed in the summation of all the entries in MA,1 ·
b + MA,2 · b and MA,3 · b + MA,4 · b. Specifically, as
MA,4 = MA,2[↑ 1]+Za, three more XOR gates are needed
according to the form of Za.

REFERENCES

[1] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University
Press, New York, NY, USA, 1996.

[2] J. Gathen and J. Gerhard. Modern Computer Algebra (2 ed.).
Cambridge University Press, New York, NY, USA. 2003.

[3] B. Sunar and Ç.K. Koç, “Mastrovito multiplier for all trinomials,”
IEEE Trans. Comput., vol. 48, no. 5, pp. 522–527, May 1999.

[4] M. Elia, M. Leone, and C. Visentin. “Low complexity bit-parallel
multipliers for GF (2m) with generator polynomial xm+xk+1,”
Electronic Letters, vol. 35, no. 7, pp. 551–552, Apr. 1999.

[5] A. Halbutogullari and Ç.K. Koç, “Mastrovito multiplier for gen-
eral irreducible polynomials,” IEEE Trans. Comput., vol. 49, no. 5,
pp. 503–518, May 2000.

[6] T. Zhang and K.K. Parhi, “Systematic design of original and mod-
ified mastrovito multipliers for general irreducible polynomials,”
IEEE Trans. Comput., vol. 50, no. 7, pp. 734–749, Jul. 2001.

[7] H. Wu, “Bit-parallel finite field multiplier and squarer using
polynomial basis,” IEEE Trans. Comput., vol. 51, no. 7, pp. 750–758,
Aug. 2002.

[8] H. Fan and M.A. Hasan. “Fast bit parallel-shifted polynomial
basis multipliers in GF (2n),” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 53, no. 12, pp. 2606–2615, Dec. 2006.

[9] H. Fan and M.A. Hasan, “A New Approach to Subquadratic Space
Complexity Parallel Multipliers for Extended Binary Fields,” IEEE
Trans. Comput. vol. 56, no. 2, pp. 224–233, Feb. 2007.

[10] K. Chang, D. Hong and H. Cho. “Low complexity bit-parallel
multiplier for GF (2m) defined by all-one polynomials using
redundant representation,” IEEE Trans. Comput., vol. 54, no. 12,
pp. 1628–1630, Oct. 2005.

[11] A. Weimerskirch and C. Paar, “Generalizations of the Karatsu-
ba Algorithm for Efficient Implementations,” Cryptology ePrint
Archive, Report 2006/224, http://eprint.iacr.org/

[12] C. Negre. “Efficient parallel multiplier in shifted polynomial
basis,” J. Syst. Archit., vol. 53, no. 2-3, pp. 109–116, Feb. 2007.

[13] H. Shen and Y. Jin. “Low complexity bit parallel multiplier for
GF (2m) generated by equally-spaced trinomials,” Inf. Process.
Lett., vol. 107, no. 6, pp. 211–215, Aug. 2008.

[14] A. Hariri and A. Reyhani-Masoleh, “Bit-serial and bit-parallel
montgomery multiplication and squaring over GF (2m),” IEEE
Trans. Comput., vol. 58, no. 10, pp. 1332–1345, May 2009.

[15] S. Park, K, Chang, D. Hong, and C. Seo, “New efficient bit-parallel
polynomial basis multiplier for special pentanomials,” Integration,
the VLSI Journal, vol. 47, no. 1, pp. 130–139, Jan. 2014.

[16] A. Cilardo, “Efficient Bit-Parallel GF (2m) Multiplier for a Large
Class of Irreducible Pentanomials,” IEEE Trans. Comput., vol. 58,
no. 7, pp. 1001–1008, Jul. 2009.

[17] Y. Cho, N. Chang, C. Kim, Y. Park and S. Hong. “New bit parallel
multiplier with low space complexity for all irreducible trinomials
over GF (2n),” IEEE Trans. VLSI Syst., vol. 20, no. 10, pp. 1903–
1908, Oct. 2012.

[18] J.L. Imaña, “Efficient Polynomial Basis Multipliers for Type-II
Irreducible Pentanomials,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 59, no. 11, pp. 795-799, Nov. 2012.

[19] J.L. Imaña. “High-speed polynomial basis multipliers over
GF (2m) for special pentanomials,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 63, no. 1, pp. 58–69, Jan. 2016.

[20] A. Cilardo, “Fast Parallel GF (2m) Polynomial Multiplication for
All Degrees,” IEEE Trans. Comput., vol. 62, no. 5, pp. 929–943, May
2013.

[21] M. Cenk, M.A. Hasan and C. Negre, “Efficient Subquadratic
Space Complexity Binary Polynomial Multipliers Based on Block
Recombination,” IEEE Trans. Comput., vol. 63, no. 9, pp. 2273–
2287, Sept. 2014.

[22] Y. Li, Y. Chen. “New bit-parallel Montgomery multiplier for
trinomials using squaring operation,” Integration, the VLSI Journal,
vol. 52, pp. 142–155, Jan. 2016.

[23] H. Fan and M.A. Hasan, “A survey of some recent bit-parallel
multipliers,” Finite Fields and Their Applications, vol. 32, pp. 5–43,
2015.

[24] H. Fan, “A Chinese Remainder Theorem Approach to Bit-Parallel
GF (2n) Polynomial Basis Multipliers for Irreducible Trinomials,”
IEEE Trans. Comput., vol. 65, no. 2, pp. 343–352, Feb. 2016.

[25] J. Zhang, H. Fan, “Low space complexity CRT-based bit-parallel
GF(2n) polynomial basis multipliers for irreducible trinomials,”
Integration, the VLSI Journal, vol. 58, pp. 55–63, Feb. 2017.

[26] Y. Li, X. Ma, Y. Zhang and C. Qi, “Mastrovito Form of Non-
recursive Karatsuba Multiplier for All Trinomials,” IEEE Trans.
Comput., vol. 66, no. 9, pp. 1573–1584, Mar. 2017.

[27] G. Seroussi. “Table of low-weight binary irreducible polynomial-
s,” Hewlett-Packard, HPL-98- 135, August 1998.

11

TABLE 5
The overlapped values and saved #XOR, if m even, 0 < k < n

MA,1 · b Overlapped #XOR MA,2 · b Overlapped #XOR
MA,1(1, :) · b Pk W (m)− 1 MA,2(1, :) · b P0 W (1)

...
...

...
...

...
...

MA,1(n− k, :) · b Pn−1 W (m)− 1 MA,2(k, :) · b Pk−1 W (k)

MA,1(n−k+1, :) · b P0 W (m)− 1 MA,2(k + 1, :) · b Pk W (m−k−1)

...
...

...
...

...
...

MA,1(m− k, :) · b Pn−1 W (m)− 1 MA,2(n− 1, :) · b Pn−1 W (n+ 1)

MA,1(m−k+1, :) · b P0 W (m)− 1 MA,2(n, :) · b P0 W (n)

...
...

...
...

...
...

MA,1(m, :) · b Pk−1 W (m)− 1 MA,2(m− 1, :) · b Pn−2 W (1)

MA,3 · b Overlapped #XOR MA,4 · b Overlapped #XOR
MA,3(2, :) · b P0 W (1) MA,4(1, :) · b P1 W (2)

...
...

...
...

...
...

MA,3(k + 1, :) · b Pk−1 W (k) MA,4(k, :) · b Pk W (k)

MA,3(k + 2, :) · b Pk W (m−k−1) MA,4(k + 1, :) · b Pk+1 W (m−k−1)

...
...

...
...

...
...

MA,3(n, :) · b Pn−1 W (n+ 1) MA,4(n− 1, :) · b P0 W (n+ 1)

MA,3(n+ 1, :) · b P0 W (n) MA,4(n, :) · b P1 W (n)

...
...

...
...

...
...

MA,3(m, :) · b Pn−2 W (1) MA,4(m− 1, :) · b P0 W (1)

TABLE 6
The overlapped values, m even, n < k < m

MA,1 · b Overlapped #XOR MA,2 · b Overlapped #XOR
MA,1(1, :) · b Pk−n W (m)− 1 MA,2(1, :) · b P0 W (1)

...
...

...
...

...
...

MA,1(m− k, :) · b Pn−1 W (m)− 1 MA,2(n, :) · b Pn−1 W (n)

MA,1(m− k + 1, :) · b P0 W (m)− 1 MA,2(n+ 1, :) · b P0 W (n+ 1)

...
...

...
...

...
...

MA,1(m+ n− k, :) · b Pn−1 W (m)− 1 MA,2(k, :) · b Pk−n−1 W (k)

MA,1(m+ n− k + 1, :) · b P0 W (m)− 1 MA,2(k + 1, :) · b Pk−n+1 W (m− k − 1)

...
...

...
...

...
...

MA,1(m, :) · b Pk−n−1 W (m)− 1 MA,2(m− 1, :) · b Pn−1 W (1)

MA,3 · b Overlapped #XOR MA,4 · b Overlapped #XOR
MA,3(2, :) · b P0 W (1) MA,4(1, :) · b P1 W (2)

...
...

...
...

...
...

MA,3(n+ 1, :) · b Pn−1 W (n) MA,4(n− 1, :) · b Pn−1 W (n)

MA,3(n+ 2, :) · b P0 W (n+ 1) MA,4(n, :) · b P0 W (n+ 1)

...
...

...
...

...
...

MA,3(k + 1, :) · b Pk−n−1 W (k) MA,4(k − 1, :) · b Pk−n−1 W (k)

MA,3(k + 2, :) · b Pk−n+1 W (m− k − 1) MA,4(k, :) · b Pk−n+1 W (m− k − 1)

...
...

...
...

...
...

MA,3(m, :) · b Pn−1 W (1) MA,4(m− 1, :) · b P0 W (1)

12

TABLE 7
The overlapped values, m odd, 0 < k ≤ n

MA,1 · b Overlapped #XOR MA,2 · b Overlapped #XOR
MA,1(1, :) · b Pk, Pk+1 W (n+ 1) +W (n)− 1 MA,2(1, :) · b P0 W (1)

...
...

...
...

...
...

MA,1(n− k, :) · b Pn−1, Pn W (n+ 1) +W (n)− 1 MA,2(k, :) · b Pk−1 W (k)

MA,1(n− k + 1, :) · b P0 W (m)− 1 MA,2(k + 1, :) · b Pk, Pk+1 W (n− k) +W (n)

...
...

...
...

...
...

MA,1(m− k, :) · b Pn−1 W (m)− 1 MA,2(n− 1, :) · b Pn−1, Pn W (1) +W (n)

MA,1(m− k + 1, :) · b P0, P1 W (n+ 1) +W (n)− 1 MA,2(n) · b P0 W (n)

...
...

...
...

...
...

MA,1(m, :) · b Pk−1, Pk W (n+ 1) +W (n)− 1 MA,2(m− 1, :) · b Pn−1 W (1)

MA,3 · b Overlapped #XOR MA,4 · b Overlapped #XOR
MA,3(2, :) · b P0 W (1) MA,4(1, :) · b P1 W (2)

...
...

...
...

...
...

MA,3(k + 1, :) · b Pk−1 W (k) MA,4(k − 1, :) · b Pk W (k)

MA,3(k + 2, :) · b Pk, Pk+1 W (n− k) +W (n) MA,4(k, :) · b Pk, Pk+1 W (n− k) +W (n)

...
...

...
...

...
...

MA,3(n, :) · b Pn−1, Pn W (1) +W (n) MA,4(n− 2, :) · b Pn−1, Pn W (1) +W (n)

MA,3(n+ 1) · b P0 W (n) MA,4(n− 1) · b P0 W (n)

...
...

...
...

...
...

MA,3(m, :) · b Pn−1 W (1) MA,4(m− 1, :) · b P0 W (1)

TABLE 8
The overlapped values, m odd, n < k ≤ m− 1

MA,1 · b Overlapped #XOR MA,2 · b Overlapped #XOR
MA,1(1, :) · b Pk−n W (m)− 1 MA,2(1, :) · b P0 W (1)

...
...

...
...

...
...

MA,1(m− k, :) · b Pn W (m)− 1 MA,2(n, :) · b Pn−1 W (n)

MA,1(m− k + 1, :) · b P0, P1 W (n+ 1) +W (n)− 1 MA,2(n+ 1, :) · b P0 W (n) +W (1)

...
...

...
...

...
...

MA,1(m+ n− k, :) · b Pn−1, Pn W (n+ 1) +W (n)− 1 MA,2(k, :) · b Pk−n−1 W (n) +W (k − n)

MA,1(m+ n− k + 1, :) · b P0 W (m)− 1 MA,2(k + 1) · b Pk−n+1 W (m− k − 1)

...
...

...
...

...
...

MA,1(m, :) · b Pk−n−1 W (m)− 1 MA,2(m− 1, :) · b Pn−1 W (1)

MA,3 · b Overlapped #XOR MA,4 · b Overlapped #XOR
MA,3(2, :) · b P0 W (1) MA,4(1, :) · b P1 W (2)

...
...

...
...

...
...

MA,3(n+ 1, :) · b Pn−1 W (n) MA,4(n− 1, :) · b Pn−1 W (n)

MA,3(n+ 2, :) · b P0 W (n) +W (1) MA,4(n, :) · b P0 W (n) +W (1)

...
...

...
...

...
...

MA,3(k + 1, :) · b Pk−n−1 W (n) +W (k − n) MA,4(k − 1, :) · b Pk−n−1 W (n) +W (k − n)

MA,3(k + 2) · b Pk−n+1 W (m− k − 1) MA,4(k) · b Pk−n+1 W (m− k − 1)

...
...

...
...

...
...

MA,3(m, :) · b Pn−1 W (1) MA,4(m− 1, :) · b P0 W (1)

13

[28] Y. Li, Y. Zhang, X. Guo and C. Qi, “N-Term Karatsuba Algorithm
and Its Application to Multiplier Designs for Special Trinomials,”
IEEE Access, vol. 6, pp.43056–43069, Jul. 2018.

[29] S. Park, K. Chang, D. Hong and C. Seo, “Low Space Complex-
ity GF (2m) Multiplier for Trinomials Using n-Term Karatsuba
Algorithm,” IEEE Access, vol. 7, pp. 27047–27064, 2019. doi:
10.1109/ACCESS.2019.2901242

[30] Y. Li, S. Sharma, Y Zhang, X. Ma and C. Qi, “On the Complexity of
non-recursive n-term Karatsuba Multiplier for Trinomials,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 3, pp. 852–865, 2020.

[31] Recommended Elliptic Curves for Federal Government Use,
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/
NISTReCur.pdf, Jul. 1999.

[32] A. Reyhani-Masoleh and M.A. Hasan, Low complexity bit parallel
architectures for polynomial basis multiplication over GF (2m).
IEEE Trans. Comput., vol. 53, no. 8, pp. 945–959, Aug. 2004.

[33] S. Park, K. Chang and D. Hong, “Efficient Bit-Parallel Multiplier
for Irreducible Pentanomials Using a Shifted Polynomial Basis,”
IEEE Trans. Comput., vol. 55, no. 9, pp. 1211-1215, Sept. 2006.

[34] B. Sunar, “A generalized method for constructing subquadratic
complexity GF (2k) multipliers,” IEEE Trans. Comput., vol. 53,
no. 9, pp. 1097–1105, Sept. 2004

[35] C. Lee and J. Xie, “Digit-Serial Versatile Multiplier Based on a
Novel Block Recombination of the Modified Overlap-Free Karat-
suba Algorithm,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66,
no. 1, pp. 203–214, Jan. 2019.

[36] S. Dong, J. Pan, C. Yang and C. Lee, “Hardware implementation
of double basis multiplier using TMVP approach over GF (2m),”
IEEE 8th International Conference on Awareness Science and
Technology (iCAST), Taichung, pp. 486-493, 2017.

