
Optimally-secure Coin-tossing against a Byzantine
Adversary
Hamidreza Amini Khorasgani
Department of Computer Science, Purdue University, USA
haminikh@purdue.edu

Hemanta K. Maji
Department of Computer Science, Purdue University, USA
hmaji@purdue.edu

Mingyuan Wang
Department of Computer Science, Purdue University, USA
wang1929@purdue.edu

Abstract
In their seminal work, Ben-Or and Linial (1985) introduced the full information model for collec-
tive coin-tossing protocols involving n processors with unbounded computational power using a
common broadcast channel for all their communications. The design and analysis of coin-tossing
protocols in the full information model have close connections to diverse fields like extremal graph
theory, randomness extraction, cryptographic protocol design, game theory, distributed protocols,
and learning theory. Several works have focused on studying the asymptotically best attacks and
optimal coin-tossing protocols in various adversarial settings. While one knows the character-
ization of the exact or asymptotically optimal protocols in some adversarial settings, for most
adversarial settings, the optimal protocol characterization remains open. For the cases where
the asymptotically optimal constructions are known, the exact constants or poly-logarithmic
multiplicative factors involved are not entirely well-understood.

In this work, we study n-processor coin-tossing protocols where every processor broadcasts an
arbitrary-length message once. Note that, in this setting, which processor speaks and its message
distribution may depend on the messages broadcast so far. An adaptive Byzantine adversary,
based on the messages broadcast so far, can corrupt k = 1 processor. A bias-X coin-tossing
protocol outputs 1 with probability X; 0 with probability (1 −X). For a coin-tossing protocol,
its insecurity is the maximum change in the output distribution (in the statistical distance)
that an adversarial strategy can cause. Our objective is to identify optimal bias-X coin-tossing
protocols with minimum insecurity, for every X ∈ [0, 1].

Lichtenstein, Linial, and Saks (1989) studied bias-X coin-tossing protocols in this adversarial
model under the highly restrictive constraint that each party broadcasts an independent and
uniformly random bit. The underlying message space is a well-behaved product space, and
X ∈ [0, 1] can only be integer multiples of 1/2n, which is a discrete problem. The case where
every processor broadcasts only an independent random bit admits simplifications, for example,
the collective coin-tossing protocol must be monotone. Surprisingly, for this class of coin-tossing
protocols, the objective of reducing an adversary’s ability to increase the expected output is
equivalent to reducing an adversary’s ability to decrease the expected output. Building on these
observations, Lichtenstein, Linial, and Saks proved that the threshold coin-tossing protocols are
optimal for all n and k.

In a sequence of works, Goldwasser, Kalai, and Park (2015), Kalai, Komargodski, and
Raz (2018), and (independent of our work) Haitner and Karidi-Heller (2020) prove that k =
O(
√
n · polylog (n)) corruptions suffice to fix the output of any bias-X coin-tossing protocol. These

results consider parties who send arbitrary-length messages, and each processor has multiple turns
to reveal its entire message. However, optimal protocols robust to a large number of corruptions
do not have any apriori relation to the optimal protocol robust to k = 1 corruption. Furthermore,
to make an informed choice of employing a coin-tossing protocol in practice, for a fixed target

mailto:haminikh@purdue.edu
mailto:hmaji@purdue.edu
mailto:wang1929@purdue.edu

2 Optimally-secure Coin-tossing against a Byzantine Adversary

tolerance of insecurity, one needs a precise characterization of the minimum insecurity achieved
by these coin-tossing protocols.

We rely on an inductive approach to constructing coin-tossing protocols to study a proxy
potential function measuring the susceptibility of any bias-X coin-tossing protocol to attacks
in our adversarial model. Our technique is inherently constructive and yields protocols that
minimize the potential function. It happens to be the case that threshold protocols minimize
the potential function. We demonstrate that the insecurity of these threshold protocols is 2-
approximate of the optimal protocol in our adversarial model. For any other X ∈ [0, 1] that
threshold protocols cannot realize, we prove that an appropriate (convex) combination of the
threshold protocols is a 4-approximation of the optimal protocol.

Keywords and phrases Multi-party Coin-tossing, Adaptive Adversaries, Byzantine adversary,
Optimal Protocols

Funding The research effort is supported in part by an NSF CRII Award CNS–1566499, an
NSF SMALL Award CNS–1618822, the IARPA HECTOR project, MITRE Innovation Program
Academic Cybersecurity Research Award, a Purdue Research Foundation (PRF) Award, and
The Center for Science of Information, an NSF Science and Technology Center, Cooperative
Agreement CCF–0939370.

1 Introduction

In a seminal work, Ben-Or and Linial [BL85, BL89] introduced the full information model
to study collective coin-tossing protocols. One relies on collective coin-tossing protocols
to upgrade local private randomness of each of the n processors into shared random-
ness that all processors agree. In this model, all the processors have unbounded com-
putational power and communicate with each other over one broadcast channel. This
model for the design and analysis of coin-tossing protocols turns out to be highly in-
fluential with close connections with diverse topics in mathematics and computer sci-
ence, for example, extremal graph theory [Kru63, Kat68, Har66], extracting randomness
from imperfect sources [SV84, CGH+85, Vaz85, Fri92], cryptography [CI93, DLMM11,
DMM14, HOZ16, KMM19, KMW20a, MW20], game theory [BI64, Col71], circuit representa-
tion [Win71, OS08, OS11], distributed protocols [Asp97, Asp98, BJB98], and poisoning and
evasion attacks on learning algorithms [DMM18, MDM19, MM19, EMM20].

A bias-X n-processor coin-tossing protocol is an interactive protocol where every complete
transcript is publicly associated with output 0 or 1, and the expected output for an honest
execution of the protocol is X ∈ [0, 1]. Given a bias-X n-processor coin-tossing protocol π and
model for adversarial corruption and attack, let ε+(π) ∈ [0, 1] represent the maximum increase
in the expected output that an adversarial strategy can cause. Similarly, let ε−(π) ∈ [0, 1]
represent the maximum decrease in the expected output caused by an adversarial strategy.
One defines the insecurity of a protocol π as ε(π) := max{ε+(π), ε−(π)}. For a fixedX ∈ [0, 1],
the optimal bias-X n-processor protocol minimizes ε(π) among all bias-X n-processor coin-
tossing protocols.

For practical applications, given the tolerance for insecurity, one needs precise guarantees
on the insecurity of coin-tossing protocols to estimate the necessary number of processors to
keep the insecurity acceptably low. If the insecurity estimates for the potential coin-tossing
protocols involve large latent constants or poly-logarithmic factors, then such a decision needs
to be overly pessimistic in calculating the necessary number of processors. Consequently, it
is essential to characterize coin-tossing protocols that are optimal or within a small constant

H.A. Khorasgani, H. K. Maji, M. Wang 3

factor of the optimal protocol for every pair (n,X). We emphasize that this outrightly rules
out asymptotic bounds involving n. This work contributes to this endeavor.

We study n-processor coin-tossing protocols where every processor broadcasts a message
exactly once (i.e., single-turn), and there are n rounds, i.e., every round a unique processor
broadcasts her message. The distribution of the messages sent by processors prescribed to
speak in one round may depend on the messages sent in the previous rounds. For example,
in one-round protocols, the distribution over the message space of the coin-tossing protocol
is a product space. On the other hand, in single-turn n-round protocols, only one processor
speaks in a round, and her message distribution possibly depends on all previously broadcast
messages. Furthermore, which processor speaks in which round may depend on the messages
sent in the previous rounds. We consider adaptive Byzantine adversaries who can corrupt
k = 1 processor, i.e., based on the evolution of the protocol, our adversary can corrupt one
processor and fix her message arbitrarily. As is standard in cryptography, our adversary
is always rushing, i.e., it can arbitrarily schedule all those processors who are supposed to
speak in a round.

Variants this model have been studied, and we highlight, in the sequel, some of the most
prominent works and their technical highlights.

Lichtenstein, Linial, and Saks [LLS89]. Lichtenstein et al. [LLS89] consider the
restriction where the i-th processor broadcasts an independent and uniformly random bit xi,
where 1 ≤ i ≤ n, and the adversary can corrupt up to k processors, where 1 ≤ k ≤ n. The
coin-tossing protocol is a function f : {0, 1}n → {0, 1}. In this case, the underlying message
space is {0, 1}n, which is a product space involving a small-size alphabet, and the probability
distribution induced by the transcript is the uniform distribution over the message space.
Note that, for n-processor coin-tossing protocols, the bias of such a protocol can only be an
integral multiple of 2−n. Therefore, this is a discrete optimization problem.

Given n, k, andX, they begin with the objective of minimizing only the quantity ε+(π) over
bias-X n-processor coin-tossing protocols π. Their recursive characterization of the protocol
that minimizes ε+, incidentally, turns out to be identical to the optimal solution for the
vertex isoperimetric inequality over the Boolean hypercube [Kru63, Kat68, Har66]. Therefore,
a threshold protocol1 π is the optimal protocol and minimizes ε+. The complementary
protocol, which swaps the outputs 0 and 1 of π, is also a threshold protocol and, consequently,
minimizes ε−. So, threshold protocols simultaneously minimize ε+ and ε− and achieve
optimal security.

Significantly altering the output distribution. For symmetric functions (i.e., per-
muting the inputs of the function f does not change its output), Goldwasser, Kalai, and
Park [GKP15] prove that k = O(

√
n · polylog (n)) corruptions suffice to completely fix the

output of any coin-tossing protocol even if the protocol relies on arbitrary-length messages.
After that, Kalai, Komargodski, and Raz [KKR18] remove the restriction of symmetric
functions. Recently, in independent work2, Haitner and Karidi-Heller [HK20] extend this
result to multi-turn coin-tossing protocols. These papers use global analysis techniques for
martingales that are inherently non-constructive; consequently, they prove the optimality
of threshold protocols up to O(polylog (n)) factors when the adversary corrupts at most
k = O(

√
n · polylog (n)) processors.

Challenge for arbitrary-length messages. Our objective is to provide tight insecurity

1 More generally, protocols that output 1 for all strings smaller in the simplicial order than a threshold
string are the optimal protocols.

2 A preliminary version of our work appears as [KMW20b].

4 Optimally-secure Coin-tossing against a Byzantine Adversary

estimates for the optimal coin-tossing protocols that use arbitrary-length messages. Let
us understand why the technical approach of [LLS89] fails; and an entirely new approach
is needed. In the full information model, without the loss of generality, one can assume
that all interactive protocols are stateless, and processors use a fresh block of private
randomness to generate the next message at any point during the evolution of the coin-
tossing protocol [Jer85, JVV86, BGP00]. Furthermore, the security of the internal state
of processors is not a concern, so, without loss of generality, every processor broadcasts its
appropriate block of randomness whenever it speaks.3 A Byzantine adversary can corrupt a
processor and arbitrarily set its randomness. So, for an appropriately large alphabet Σ, which
depends on the randomness complexity of generating each message, our message space is Σn, a
product space involving a large alphabet set. Over such product spaces, the isolated objective
of minimizing ε+ does not entail the simultaneous minimization ε−. Given any n ∈ N
and X ∈ [0, 1], there exist protocols with (ε+, ε−) = (1−X

n , X) and (ε+, ε−) = (1−X, Xn),
when the adversary can corrupt k = 1 processor (refer to Appendix A for the protocols).
More generally, for product spaces over large alphabets, one does not expect such a vertex
isoperimetric inequality [FHH+19, Har99].

Finally, global analysis techniques of [GKP15, KKR18, HK20] analyze the case of a large
number of corruptions k. The optimally secure protocol for k = 1 is not apriori related to
the optimal protocols robust to a large number of corruptions. Furthermore, the inductive
proof technique of Aspnes [Asp97, Asp98] is agnostic of the expected output of the coin-
tossing protocol. Consequently, reconstructing the optimal protocol from the lower-bound
on insecurity is not apparent.

We follow the geometric technique of Khorasgani, Maji, and Mukherjee [KMM19], which
is inherently constructive, to obtain tight estimates of the optimally secure protocols.

Connection to Isoperimetric Inequalities
The connection to isoperimetric inequalities [Kru63, Kat68, Har66, Har99] (via the expansion
of fixed density subset of product spaces) establishes the relevance to topics in theoretical
computer science like expander graphs, complexity theory, and error-correcting codes.

Encoding Security of Coin-tossing Protocols. Every coin-tossing protocol is equiv-
alent to a unique subset S of an n-dimension product space Σn, where the size of the alphabet
set σ := |Σ| depends on the randomness complexity of the coin-tossing protocol. The elements
of this product space represent the complete transcript of the coin-tossing protocol. The
i-th coordinate of an element corresponds to the message sent by processor i, and the subset
S contains all elements of the product space on which the coin-tossing protocol outputs 1.
One considers the uniform distribution over Σn to sample the elements. This subsection
considers a stronger Byzantine adversary who can edit one processor’s message after seeing
the message of all processors.

The discussion in this subsection extends to arbitrary corruption threshold k. However,
for the simplicity of the presentation, we consider the specific case of k = 1. Let ∂S+

k be
the set of elements in S (the complement of S) that are at a Hamming distance k = 1 from
the set S. Consequently, the strong Byzantine adversary can change an element from the
set ∂S+

k ⊆ S into some element of S by editing (at most) k coordinates. Note that if the

3 Let π be the original coin-tossing protocol. In the compiled π′, suppose parties reveal the block of
randomness that they use to prepare their next-message in the protocol π′. The new protocol π′, first,
emulates the next-message function of π to generate the entire transcript, and, then, uses π to determine
the output.

H.A. Khorasgani, H. K. Maji, M. Wang 5

stronger Byzantine adversary can see all the messages and then performs the edits, then it
can increase the expected output by exactly ε+ =

∣∣∂S+
k

∣∣/σn.
Analogously, one defines the set ∂S−k ⊆ S that contains all elements at a Hamming

distance k = 1 from the set S. So, a stronger Byzantine adversary can reduce the expected
output by ε− =

∣∣∂S−k ∣∣/σn.
Extremal Graph Theory Perspective. The (width-k) vertex perimeter of the set S,

represented by ∂N,kS, is the set of all elements in S that are at a Hamming distance of at
most k from some element in S. Observe that the perimeter ∂V,kS is identical to the set
∂S+

k . Similarly, the vertex perimeter of the set S (which is ∂V,kS) is identical to the set ∂S−k .
The objective of extremal graph theory is to characterize the optimal set S of a density-X

that minimizes its vertex perimeter. This optimal set S, in turn, characterizes the bias-X
coin-tossing protocol with the minimum ε+. In Appendix A, we saw that minimizing ε+ does
not automatically entail the simultaneous minimization of ε− for general Σ.4 In fact, that
example highlighted that the protocol minimizing ε+ resulted in a protocol where the stronger
Byzantine adversary can force the outcome 0 with certainty. Therefore, there is a disconnect
between the cryptographic objective of simultaneously minimizing ε = max{ε+, ε−} with the
standard objective in extremal graph theory for large alphabet set Σ.

Cryptography-inspired Extremal Graph Theory. Instead of minimizing the vertex
perimeter of a density-S set S, one should consider the alternative objective of minimizing
the symmetric perimeter of S defined under various norms.

∂sym
V,k,`(S) :=

(
|∂V,kS|` +

∣∣∂V,kS∣∣`)1/`
.

The ` =∞ case corresponds to our cryptographic objective; however, this norm is difficult
to analyze. Consequently, we study the norm ` = 1 as a proxy, which is a 2-approximation
of the norm ` =∞. Our results provide evidence that such symmetric perimeters may be
more well-behaved in general.

Recall that, in our setting, the element in Σn is exposed one coordinate at a time and
our Byzantine adversaries cannot go back to edit previously exposed coordinates. So, our
Byzantine adversaries have lesser power than the stronger Byzantine adversaries considered
in this section. Consequently, the minimum achievable insecurity for bias-X n-processor
coin-tossing protocols in our setting lower-bounds the proxy norm above. For instance, when
` = 1, our results imply that the density of the symmetric perimeter is 1/

√
n for any dense

set S, irrespective of the size of the alphabet set.
Remark. We identify a density-X set with its corresponding bias-X coin-tossing protocol.

Using the independent bounded differences inequality for the Hamming distance function
(using Azuma’s inequality [Azu67]) on a constant-density subset S implies that k = O(

√
n)

edits suffice to achieve any constant ε+ and ε−, for any σ. However, for small k (for example,
k = 1), obtaining meaningful guarantees on both ε+ and ε− is not possible for large σ. On
the other hand, interestingly, we shall show that max{ε+, ε−} ≥ 1/

√
n for any σ. This result

lends support to the hypothesis that the symmetric perimeter is more well-behaved.

1.1 Our Contributions
Any n-processor coin-tossing protocol π is equivalent to a depth-n tree, where each node v
corresponds to a partial transcript. For every leaf of this tree, one associates the output of

4 For Σ = {0, 1}, this entailment holds; otherwise, it is not known to hold in general.

6 Optimally-secure Coin-tossing against a Byzantine Adversary

the coin-tossing protocol ∈ {0, 1}. For a partial transcript v, the color of v, represented by
xv, represents the expected output of the coin-tossing protocol conditioned on the partial
transcript being v. For example, the leaves have color ∈ {0, 1}, and the color of the root of a
bias-X coin-tossing protocol is X. The probability pv represents the probability that the
partial transcript v is generated during the protocol evolution of π.

A Byzantine adversary, in this interpretation of a coin-tossing protocol, that corrupts at
most k = 1 processor is equivalent to a prefix-free set of edges. That is, for any two edges
(u, v) and (u′, v′) such that u is the parent of v and u′ is the parent of v′, the root to leaf path
through u does not pass through u′. Any such collection of edges corresponds to a unique
Byzantine adversarial strategy. For example, if an edge (u, v) lies in this set and u is the
parent of v, then this edges indicates that the Byzantine adversary decides to interfere when
the protocol generates the partial transcript u, and this adversary sends the next message
that generates the partial transcript v. Note that the partial transcript u uniquely identifies
the processor that the adversary needs to corrupt.

Let τ be one such attack strategy. Suppose τ is a collection of ` edges, namely, {(ui, vi)}`i=1.
Assume ui is the parent of vi, for i = 1, . . . , `. Then, we define the score of the attack strategy
τ on protocol π as

Score (π, τ) :=
∑̀
i=1

pui
· |xui

− xvi
|.

The term Score (π, τ) represents the vulnerability of protocol π under attack strategy τ .
Furthermore, we define

Score (π) := sup
τ

Score (π, τ) .

Intuitively, Score (π) represents the insecurity of the protocol under the most devastating
attack, a.k.a., our potential function.

We emphasize that our score is not identical to the deviation in output distribution that
a Byzantine adversary causes. It is a 2-approximation of that quantity. Define the insecurity
as the maximum change that a Byzantine adversary can cause to the output distribution.
Then, it is evident that the insecurity of π is at least Score(π)/2.

For an arbitrary n ∈ N∗ and t ∈ {0, 1, . . . , n + 1}, let πn,t denote the n-processor
t-threshold threshold protocol. In this threshold protocol, every processor broadcasts an
independent and uniformly random bit. The output of this threshold protocol is 1 if and
only if the total number of ones in the complete transcript is ≥ t. An n-processor t-threshold
protocol has color 2−n ·

(∑n
i=t
(
n
i

))
.

We prove the following theorem about the threshold protocol.

I Theorem 1. For any bias X n-processor protocol π, where X = 2−n ·
(∑n

i=t
(
n
i

))
, where

0 ≤ t ≤ n+ 1, then
Score(πn,t) ≤ Score(π).

That is, the threshold protocol is the protocol that minimizes the score. Equivalently, the
insecurity of the threshold protocol is a 2-approximation of the optimal insecurity in our
corruption model (refer to Corollary 1).

Furthermore, we also prove the following result. Suppose X is not a root-color that
admits a threshold protocol, and X0 is inverse-polynomially far from both 0 and 1. Suppose
X is intermediate to the bias of the threshold protocols πn−1,t and πn−1,t−1. Let π be a
protocol where the first processor decides to run the threshold protocol πn−1,t or πn−1,t−1

with suitable probability so that the resulting protocol is a bias-X protocol. Then, the
insecurity of this protocol π is a 4-approximation of the protocols with minimum insecurity
against Byzantine adversaries (refer to Corollary 2).

H.A. Khorasgani, H. K. Maji, M. Wang 7

1.2 Prior Works

In this section, we summarize results in the full information model. It is beyond the scope
of this paper to cover coin-tossing results in the computational setting like [Blu82, Cle86,
ABC+85, MNS09, BOO10, AO16, BHLT17, BHMO18].

Static corruption. The case of static corruption is well-understood. In this setting, given
a coin-tossing protocol, the adversary has to corrupt the processors before the beginning of the
protocol. There is a close relation of this literature to results in randomness extraction [SV84,
CGH+85, Vaz85, Fri92], game theory [BI64, Col71], and circuit representation [Win71, OS08,
OS11]. Over the years, constructions of coin-tossing protocols were introduced that were
robust to k = O

(
n0.63) corruptions [BL85, BL89], k = O

(
n/ log2 n

)
corruptions [AL93, CZ16],

k = O(n/ logn) corruptions [Sak89], and k = (1/2−δ)n [AN90, BN93, Fei99] (for any positive
constant δ).

On the other hand, the seminal work of Kahn, Kalai, and Linial [KKL88] proves that
k = Ω(n/ logn) corruptions suffice to completely fix the output of a coin-tossing protocol
where every message of a processor is a single bit. In fact, robustness to k = Ω(n) corruption
necessitates multi-bit messages or super-constant number of rounds [RSZ99].

Adaptive corruption. For adaptive Byzantine adversaries, Ben-Or and Linial [BL85,
BL89] showed that majority protocol is resilient to O(

√
n) corruptions, and they conjectured

this protocol is asymptotically optimal. The case of adaptive corruption where the adversary
sees everyone’s messages before intervening is closely related to the vertex isoperimetric
problem over the Boolean hypercube [Kru63, Kat68, Har66]. Threshold protocols are optimal
for this adversarial model, for arbitrary corruption threshold k. Dodis [Dod00] proved that
robustness to k = O(

√
n) is impossibly by sequentially composing other coin-tossing protocols

followed by a deterministic extraction of the output.

The constructions closest to our problem are the works of Lichtenstein, Linial, and
Saks [LLS89], which characterized the optimal coin-tossing protocol for all n ∈ N and
corruption threshold k ≤ n for coin-tossing protocols that are single-turn, n-round, adaptive
Byzantine adversaries, and each processor sends one-bit uniformly random bit. Subsequently,
Goldwasser, Kalai, and Park [GKP15] and Kalai, Komargodski, and Raz [KK15, KKR18]
prove that k = O(

√
n · polylog (n)) corrupts suffice to fix the outcome of any single-turn

coin-tossing protocol. Recently, independent of our work, Haitner and Karidi-Heller [HK20]
extend this bound even for multi-turn protocols.

Aspnes [Asp97, Asp98] considered the case where an adaptive adversary, if it does not like
the message set by a particular processor, kills that processor. Other processors detect this
event and move forward with the protocol assuming a placeholder message for that processor.
This model of attack is very closely related to the strong adversary model introduced by
Goldwasser, Kalai, and Park [GKP15].

Constructive potential-based approaches. Recently, in the field of fair coin-tossing,
Khorasgani, Maji, and Mukherjee [KMM19] introduced the approach of geometric transfor-
mation for designing optimal protocols. They showed that this approach yields protocols with
less susceptibility than the majority protocols [Blu82, Cle86]. Subsequently, this approach
has also been used to obtain new black-box separation results for fair coin-tossing proto-
cols [KMW20a, MW20], which settled a longstanding open problem regarding the optimality
of the protocol of Blum [Blu82] and Cleve [Cle86] that uses one-way functions in a black-box
manner.

8 Optimally-secure Coin-tossing against a Byzantine Adversary

1.3 Technical Overview
The techniques closest to our approach are those introduced by Aspnes [Asp97, Asp98] and
Khorasgani et al. [KMM19, KMW20a, MW20].

Aspnes’ technique [Asp97, Asp98] tracks the locus of all possible (ε+, ε−) corresponding
to any n-processor k-corruption threshold protocol. However, the information regarding
the root-color is lost and, consequently, the technique does not yield the optimal protocol
construction. Next, one lower-bounds this space using easy-to-interpret (hyperbolic) curves
and obtains bounds on the insecurity of any n-processor protocol with k corruption threshold
(against adversaries who erase the messages of processors).

The technique of Khorsgani et al. [KMM19, KMW20a, MW20] use a potential function
as a proxy to study the actual problem at hand. They maintain the locus of all n-processor
bias-X protocols that minimize the potential function. Next, they inductively build the next
curve of (n + 1)-processors bias-X protocols that minimize the potential function. Their
approach outrightly yields optimal constructions that minimize the potential function, and
easily handle the case of processors sending arbitrary-length messages.

High-level summary of our approach. We use the potential function as introduced in
Section 1.1, which is a 2-approximation of the optimal insecurity against Byzantine adversaries,
for any n-processor bias-X protocol. Let Cn(X) represent the minimum realizable potential
for bias-X n-processor coin-tossing protocols.

Next, we prove that if an n-processor threshold protocol has potential δ and bias-X, then
the point (δ,X) lies on the optimal curve Cn(X). Therefore, the potential of these threshold
protocols are 2-approximation of the optimal bias-X protocol against Byzantine adversaries.

After that, inductively, we prove that the linear interpolation of the set of points (δ,X)
realized by n-processor threshold protocols with potential δ and root-color X, where 0 ≤
t ≤ n + 1, is a lower-bound to the actual curve Cn(X). Finally, we argue that a linear
interpolation of appropriate threshold functions yields a protocol with potential that is
4-approximation of the optimal protocol against Byzantine adversaries.

The curves and the inductive transformation. Consider the case of n = 1 and
arbitrary bias-X. If X = 0 or X = 1, then we have C1(X) = 0. If X ∈ (0, 1/2], then
we include that edge that sets the output to 1. This observation creates a potential of
C1(X) = 1−X. Similarly, we have C1(X) = X, for all X ∈ [1/2, 1). Our characterization of
the curve C1(X) is complete (refer to Figure 2).

Next, consider the case of n = 2 and bias-X. This case is sufficient to understand how
to inductively build the locus of the curve Cn+1(X) inductive from Cn(X). Consider any
arbitrary 2-processor bias-X coin-tossing protocol. Suppose the first processor sends message
1, 2, . . . , `. Let xi, for 1 ≤ i ≤ `, be the expected output conditioned on the first message
being i. At the root of this protocol, we have two options. Corrupt processor one and send
the message that achieves the highest potential. Or, defer the intervention to a later point in
time.

Corrupting the root of this protocol causes the potential to become

`max
i=1
|X − xi|.

Deferring the intervention to a later point in time results in the potential becoming at least

∑̀
i=1

pi · C1(xi),

where pi is the probability that processor 1 outputs i. The actual potential of π is the

H.A. Khorasgani, H. K. Maji, M. Wang 9

maximum of these two quantities. Our objective is to characterize the choice of x1, . . . , x`
such that the potential is minimized (refer to Figure 1).

2 Preliminaries

We use N∗ for the set of positive integers. For any two curves C1, C2 defined on [0, 1], we
write C1 � C2 (C1 is below C2) to denote that C1(x) ≤ C2(x) for each x ∈ [0, 1]. A curve
C defined on [0, 1], is called concave if for all 0 ≤ x < y ≤ 1, and any α ∈ [0, 1], we have
C(αx+ (1− α)y) ≥ αC(x) + (1− α)C(y). Statistical distance between two distributions A
and B defined over discrete sample space Ω is defined as SD (A,B) := 1

2
∑
x∈Ω|A(x)−B(x)|.

A function f : N→ R is called negligible if for any polynomial p(n), f(n) = o(1/p(n)).

2.1 Coin-tossing Protocols
In this work, we consider coin-tossing protocols among n processors in the full information
model. That is, all processors communicate through one single broadcast channel. In
particular, we consider an n-round protocol. At round i, the ith processor will broadcast
a (random) message based on the first i − 1 broadcast messages. After every processor
broadcasts her messages, the final output ∈ {0, 1} is a deterministic function of all the
broadcast messages. We do not limit to protocols with unbiased output (i.e., the probability
of the output being 1 is 1/2).

I Definition 1 ((n,X0)-Coin-tossing protocols). For any n ∈ N∗ and X0 ∈ [0, 1], an (n,X0)-
coin-tossing protocol is an n-round coin-tossing protocol among n processors, where the
expectation of the output is X0.

We often refer to the expected output X0 as the color of the protocol. The insecurity of
a coin-tossing protocol is the maximum change (in terms of statistical distance) that the
adversary can cause to the distribution of the output of the protocol.

In this work, threshold protocols will be very useful examples, which are defined as
follows.

I Definition 2 ((n, t)-Threshold protocol). In an (n, t)-threshold protocol, denoted by πn,t,
each processor broadcasts an (independently) uniform bit. The output is 1 if the total number
of 1-message ≥ t.5 In particular, when n is odd and t = n+1

2 , this is the majority protocol.

2.2 Adversarial Setting
In this work, we consider Byzantine adaptive adversaries. Such an adversary will eavesdrop
on the execution of the protocol. After every round, it will decide whether to corrupt the
processor, who is going to speak next. Once a processor is corrupted, the adversary takes full
control and fixes the message that she is going to send. We will focus on such adversaries
that corrupt (at most) one processor.

3 A Geometric Perspective

In this section, we shall study the insecurity of coin-tossing protocols through a geometric
perspective.

5 Here, t ∈ {0, 1, . . . , n+ 1}.

10 Optimally-secure Coin-tossing against a Byzantine Adversary

Protocol tree. For every coin-tossing processor protocol, we will think of it as a
tree. Every edge represents a message, and the root denotes the beginning of the protocol.
Therefore, every node u on this tree represents a partial transcript of the protocol. And
we can associate it with a color xu and a probability pu, where xu is the expected output
conditioned on partial transcript u, and pu is the probability that partial transcript u happens.
For an (n,X0)-coin-tossing protocol, by our definition, its protocol tree shall have depth n,
and the color at the root shall be X0.

Attack. A Byzantine adaptive adversary that corrupts at most one processor can be
viewed equivalently as a collection of edges {(ui, vi)}, where ui is the parent of vi. This
implies that when partial transcript ui happens, the attacker intervenes and fixes the next
message to be vi. Since this attacker corrupts at most one processor during the entire
collection of the protocol, this collection of edges must be prefix-free. That is, no parent
node of an edge is on the path from the root to other edges.

Given a protocol tree π, let an attack strategy τ be the collection of edges {(ui, vi)},
where ui is the parent of vi. We define the following score function.

I Definition 3. Score(π, τ) :=
∑

(ui,vi)∈τ pui
· |xui

− xvi
|.

That is, Score(π, τ) is the average of the absolute change in color the attacker τ causes.
Intuitively, it represents the vulnerability of protocol π in the presence of the attack τ .
Furthermore, for any protocol π, let us define

Score(π) := sup
τ

Score(π, τ).

Intuitively, Score(π) represents the score of the most devastating attacks on protocol π.
Finally, we define

Cn (X0) := inf
π

Score(π),

where the infimum is taken over all (n,X0)-coin-tossing protocols π. Intuitively, Cn (X0)
represents the score of the optimal protocol against the most devastating attack among all
protocols with n processors and color X0.

I Remark 1. We remark that for a protocol π, the deviation (to the distribution of the
output) an attack τ causes is not exactly Score(π, τ). However, one can always bi-partition
the set τ as τ0 and τ1. τ0 will consist of all edges (ui, vi) that decrease the expected output,
i.e., xui

≥ xvi
, while τ1 will consist of all edges (ui, vi) that increase the expected output,

i.e., xui < xvi . Consequently, the summation of the deviations caused by attack τ0 and τ1
shall be Score(π, τ). Therefore, there must exist an attack that deviates the protocol by
Score(π, τ)/2. In light of this, for any (n,X0)-coin-tossing protocol, there must exist an
attack that deviates the protocol by Cn(X0)/2. Hence, any (n,X0)-coin-tossing protocol is
(at least) Cn(X0)/2 insecure.

3.1 Geometric Transformation of Cn

In this section, we shall see how we can (inductively) construct Cn from a geometric
perspective.

Let us start with the simplest case n = 1. If X0 = 0 or 1, the output is independent of
the message and is always fixed. Hence, the score is always 0. If X0 ∈ (0, 1/2], the attack
with the highest score is to fix the message such that the output is fixed to be 1. Hence,
the score is 1−X0. Similarly, when X0 ∈ (1/2, 1), the score is X0. Consequently, C1 is the

H.A. Khorasgani, H. K. Maji, M. Wang 11

following curve.

C1(x) =


0 x ∈ {0, 1}
1− x x ∈ (0, 1/2]
x x ∈ (1/2, 1)

Next, suppose we have curve Cn, we shall construct the next curve Cn+1. Let us use Figure 1
as an intuitive example to understand how to construct Cn+1(x) from Cn.

x

y

Cn(x)

xx1 x2 x3

(x, y1)

(x, y2)

Figure 1 An intuitive example of the geometric transformation

Let π be an (n+ 1, x)-coin-tossing protocol. Suppose there are three possible messages
that the first processor might send, namely m1, m2, andm3. Conditioned on the first message
being m1, m2, and m3, the expected output is x1, x2, and x3, respectively. The probability
of the first message being m1, m2, and m3, are p1, p2, and p3, respectively. Note that after
the first processor sends message mi, the remaining protocol πi becomes a (n, xi)-coin-tossing
protocol.

An adaptive adversary that corrupts at most one processor has four choices for the first
processor. Either it can carry out the attack now by fixing the first processor’s message to
be mi, for i ∈ {1, 2, 3}, or it can defer the attack to subprotocols π1, π2, and π3. If it fixes
the first processor’s message to be mi, this will increase the score by |xi − x|. On the other
hand, if it defers the attack to each subprotocol, by the definition of curve Cn, it can ensure
a score of (at least) Cn(xi) in subprotocol πi. Overall, it ensures a score of (at least)

p1 · Cn(x1) + p2 · Cn(x2) + p3 · Cn(x3).

Note that it must hold that x = p1x1 + p2x2 + p3x3. Therefore, p1 · Cn(x1) + p2 · Cn(x2) +
p3 · Cn(x3) must lie between y1 and y2 in Figure 1.

The most devastating attack will do the attack based on which strategy results in the
highest score, which is

max (|x− x1|, |x− x2|, |x− x3|, p1 · Cn(x1) + p2 · Cn(x2) + p3 · Cn(x3)) .

The optimal protocol shall, however, pick x1, . . . , x` and p1, . . . , p` accordingly to minimize
the above quantity. Therefore, by our definition,

Cn+1(x) := inf
x1,...,x`∈[0,1]
p1,...,p`∈[0,1]
p1+···+p`=1

p1x1+···+p`x`=x

max
(
|x− x1|, . . . , |x− x`|,

∑̀
i=1

pi · Cn(xi)
)
.

12 Optimally-secure Coin-tossing against a Byzantine Adversary

For convenience, let us define geometric transformation T , which takes any curve C on [0, 1]
as input, and outputs a curve T (C) defined as

T (C)(x) := inf
x1,...,x`∈[0,1]
p1,...,p`∈[0,1]
p1+···+p`=1

p1x1+···+p`x`=x

max
(
|x− x1|, . . . , |x− x`|,

∑̀
i=1

pi · C(xi)
)
.

Hence, by our definition, Cn+1 is exactly T (Cn).

4 Tight Bounds on Cn and the Implications

In this section, we shall first prove a tight lower bound on the curve Cn.
We define our lower bound curve Ln through threshold protocols. Recall that an (n, t)-

threshold protocol πn,t is a protocol where each processor broadcast an (independent)
uniform bit. The final output is 1 if the number of 1-message is ≥ t. Trivially, the color of
(n, t)-threshold protocol πn,t is

Color
(
πn,t

)
= 2−n ·

(
n∑
i=t

(
n

i

))
.

We argue that the score of πn,t is

Score
(
πn,t

)
= 2−n ·

(
n− 1
t− 1

)
.

To see this, note that, without of loss of generality, we can assume that anytime the adversary
fixes a message, it fixes that message to be 1.6 Moreover, which message that the adversary
fixes does not matter; effectively, the output will be 1 if and only if the rest n− 1 messages
contain ≥ t − 1 1-message. Therefore, by fixing one message to be 1, it changes the
expected output of the protocol to be 2−(n−1) ·

(∑n−1
i=t−1

(
n−1
i

))
. Easily, one can verify that

2−(n−1) ·
(∑n−1

i=t−1
(
n−1
i

))
− 2−n ·

(∑n
i=t
(
n
i

))
= 2−n ·

(
n−1
t−1
)
.

For a n-processor threshold protocol, threshold t ∈ {n+ 1, n, . . . , 0}.7 We define the lower
bound curve Ln as follows.

I Definition 4. For every n ∈ N∗, let Ln be the curve that linearly connects points

Pn,t :=
(
Color

(
πn,t

)
, Score

(
πn,t

))
=
(

2−n ·
(

n∑
i=t

(
n

i

))
, 2−n ·

(
n− 1
t− 1

))

for t = n+ 1, n, . . . , 0. That is, Ln linearly interpolates all the points defined by the color
and score of (n, t)-threshold protocols.

As an example, L1 is shown in Figure 2.
In particular, we have the following theorem regarding the curve Ln and the curve Cn.

I Theorem 2. For all n ∈ N∗, Ln � Cn.

6 For any node u, let its two children node be v0 and v1. Since every message is a uniform bit for threshold
protocol, it must hold that |xu − xv0 | = |xu − xv1 |. Therefore, whether the attack picks edge (u, v0) or
(u, v1) does not change the score.

7 When t = n+ 1, the color is 0, and when t = 0, the color is 1.

H.A. Khorasgani, H. K. Maji, M. Wang 13

x

y

L1

C1

(
1
2 ,

1
2

)

P1,2

P1,1

P1,0

Figure 2 The (black) dashed curve is L1 and the (blue) solid curve is C1. Note that P1,t

corresponds to the point defined by (1, t)-threshold protocol.

I Remark 2. Note that, by the definition of Cn, we have

Cn
(
Color

(
πn,t

))
:= inf

π
Score(π) ≤ Score

(
πn,t

)
.

On the other hand, by Theorem 2,

Cn
(
Color

(
πn,t

))
≥ Ln

(
Color

(
πn,t

))
= Score

(
πn,t

)
.

Therefore, Cn (Color (πn,t)) = Score (πn,t). That is, points Pn,t is on the curve Cn as well.
This also implies that threshold protocol is the protocol that minimizes the score function.

We defer the proof of Theorem 2 to Section 4.1. Let us first discuss the implications of
this theorem. We have the following corollaries.

I Corollary 1 (Threshold protocols). For any n ∈ N∗ and X0 ∈ [0, 1] such that X0 =
2−n ·

(∑n
i=t
(
n
i

))
for some t ∈ {0, 1, . . . , n+ 1}. The insecurity of (n, t)-threshold protocol is

at most two times the insecurity of the least insecure (n,X0)-coin-tossing protocols.

This corollary is immediate from Theorem 2. This is because the insecurity of threshold
protocol πn,t is exactly Score (πn,t); for any other (n,Color (πn,t))-coin-tossing protocol, in
light of Remark 1, we know its insecurity is at least

Cn
(
Color

(
πn,t

))
/2 ≥ Ln

(
Color

(
πn,t

))
/2 = Score

(
πn,t

)
/2.

Therefore, the insecurity of the threshold protocol is at most two times the insecurity of the
optimal protocol.

I Corollary 2 (Non-threshold protocols). For an arbitrary color X0 ∈ (0, 1) that does not
correspond to any threshold protocol, we can consider a linear combination of threshold
protocols. Specifically, suppose Color (πn,t) < X0 < Color

(
πn,t−1), consider an (n+ 1, X0)-

coin-tossing protocol as follows. The first processor sends a bit. If this bit is 0, the rest n
processors execute the (n, t)-threshold protocol; if this bit is 1, the rest n processors execute
the (n, t− 1)-threshold protocol. The probability of this bit being 0 is defined to be

Color
(
πn,t−1)−X0

Color (πn,t−1)− Color (πn,t) .

For X0 that is not negligibly close to 0 or 1, the insecurity of this protocol is at most 4 + o(1)
times the insecurity of the least insecure (n+ 1, X0)-protocol.

14 Optimally-secure Coin-tossing against a Byzantine Adversary

Without loss of generality, assume X0 < 1/2. Therefore, t > n/2. One can easily see that
the insecurity of this protocol is bounded by

max
(

Color
(
πn,t−1)− Color

(
πn,t

)
,

Score
(
πn,t−1)+ Score (πn,t)

2

)
,

which is bounded by 2−n ·
(
n
t−1
)
. On the other hand, Theorem 2 says that every (n+ 1, X0)-

coin-tossing protocol is at least Ln+1(X0)/2-insecure, which is at least 2−(n+2)(n+1
t

)
. When

X0 is non-negligibly bounded away from 0 and 1, by Chernoff’s bound, we must have
|t− n/2| ≤

√
n logn. Consequently,

(
n
t−1
)
and

(
n+1
t

)
are (1 + o(1)) approximation to each

other. Hence, the insecurity of this protocol is (at most) (4+o(1))-approximate of the optimal
(n+ 1, X0)-protocol.

4.1 Proof of Theorem 2
To prove this theorem, it suffices to prove the following claims.

I Claim 1. If A 4 B, then T (A) 4 T (B).

I Claim 2. Ln+1 = T (Ln).

Proof of Theorem 2 using Claim 1 and Claim 2 . We prove this theorem inductively. The
base case n = 1 is trivial (See Figure 2).

Suppose the statement is correct for n, i.e., Ln � Cn. Then we have

Ln � Cn
Claim 1=========⇒ T (Ln) � T (Cn) Claim 2=========⇒ Ln+1 � Cn+1

This completes the proof. J

Next we prove Claim 1 and Claim 2.

Proof of Claim 1 . Since A 4 B, for all x, x1, . . . , x`, and p1, . . . , p`, we have

max
(
|x− x1|, . . . , |x− x`|,

∑̀
i=1

pi ·A(xi)
)
≤

max
(
|x− x1|, . . . , |x− x`|,

∑̀
i=1

pi ·B(xi)
)
.

Therefore, by definition, for all x, T (A)(x) ≤ T (B)(x), or equivalently T (A) 4 T (B). J

Before we prove Claim 2, the following claim will be useful.

I Claim 3. Let U be an arbitray concave curve. Suppose 0 ≤ x0 < x < x2 ≤ 1 satisfies that

x− x0 = x1 − x = U(x0) + U(x1)
2 ,

Then T (U)(x) = U(x0)+U(x1)
2 . That is, x0 and x1 witness the transformation T of U at x.

Proof of Claim 3 . To see this, let us use Figure 3 for intuition. In Figure 3, U(x) is a
concave curve and the choice of x0 and x1 satisfies that x − x0 = x1 − x = U(x0)+U(x1)

2 .

Recall that

H.A. Khorasgani, H. K. Maji, M. Wang 15

x

y

U(x)

xx0 x1

A

B

(x, T (U)(x))

x′1 x′2 x′3

Figure 3 The geometric transformation of curve U(x). Intuitively, if x′1, x′2, and x′3 are ∈ (x0, x1),
the shaded region is always above line segment AB by the concaveness of U .

T (U)(x) := inf
x′1,...,x

′
`∈[0,1]

p1,...,p`∈[0,1]
p1+···+p`=1

p1x
′
1+···+p`x

′
`=x

max
(
|x− x′1|, . . . , |x− x′`|,

∑̀
i=1

pi ·D(x′i)
)
.

By definition, clearly, T (U)(x) ≤ U(x0)+U(x1)
2 . To prove the other direction, we need to show

that, for any choices of x′1, x′2, . . . , x′` and p1, p2, . . . , p`, we have

U(x0) + U(x1)
2 ≤ max

(
|x− x′1|, . . . , |x− x′`|,

∑̀
i=1

pi · U(x′i)
)

Firstly, if there exists an x′i such that |x− x′i| ≥ |x1 − x|, then the statement trivially holds.
Next, if for all i, |x− x′i| ≤ |x1 − x|, then by the concaveness of curve U ,

1
2 · (U(x1) + U(x2)) ≤

∑̀
i=1

pi · U(x′i).

This completes the proof. J

Now, we prove Claim 2.

Proof of Claim 2 . Recall that Ln is the curve that linearly connects points Pn,n+1, Pn,n, . . . , Pn,1, Pn,0,
where

Pn,t :=
(

2−n ·
(

n∑
i=t

(
n

i

))
, 2−n ·

(
n− 1
t− 1

))
.

Let us first observe some properties of Ln.

I Claim 4. Ln is a concave curve and the slope of any line segment of Ln is ∈ [−1, 1].

Proof of Claim 4 . Easily, we can verify that the slope of line segment Pn,tPn,t−1 is

2−n ·
(
n−1
t−1
)
− 2−n ·

(
n−1
t−2
)

2−n ·
(∑n

i=t
(
n
i

))
− 2−n ·

(∑n
i=t−1

(
n
i

)) = 2t− 2− n
n

.

Since the slope of Pn,tPn,t−1 decreases as t decreases, this proves that Ln is concave. Moreover,
for any t ∈ {n+ 1, . . . , 1}, the slope of Pn,tPn,t−1 is ∈ [−1, 1]. J

16 Optimally-secure Coin-tossing against a Byzantine Adversary

Pn,t+1

Pn,t

Pn,t−1

Pn+1,t+1

Pn+1,t

Color
(
πn,t+1

)
Color

(
πn,t
)

Color
(
πn,t−1

)Color
(
πn+1,t+1

)
Color

(
πn+1,t

)

slope 2t−n
n

slope 2t−n−1
n+1

slope 2t−2−n
n

Figure 4 The relation between (black solid) Ln and (blue dashed) Ln+1. The geometric transfor-
mation of Ln is exactly Ln+1.

I Claim 5. Pn+1,t is the middle point of Pn,t and Pn,t−1.

Proof of Claim 5 . One just need to verify that

2−(n+1)

(
n+1∑
i=t

(
n+ 1
i

))
= 1

2 ·
[

2−n
(

n∑
i=t

(
n

i

))
+ 2−n

(
n∑

i=t−1

(
n

i

))]
,

and
2−(n+1) ·

(
n

t− 1

)
= 1

2 ·
[
2−n ·

(
n− 1
t− 1

)
+ 2−n ·

(
n− 1
t− 2

)]
. J

Now, let us prove Ln+1 = T (Ln) with all the claims that we have proven. It suffices to
verify Ln+1(x) = T (Ln)(x) for all x ∈ (0, 1). In light of Claim 4 and Claim 5, we know the
relation between Ln and Ln+1 looks like Figure 4.

We first verify it at x = Color
(
πn+1,t). In this case, we can set x0 = Color (πn,t) and

x1 = Color
(
πn,t−1). One can verify that

Color
(
πn+1,t)− x0 = x1 − Color

(
πn+1,t) = Score

(
πn+1,t) ,

and
Ln(x0) + Ln(x1)

2 =
Score (πn,t) + Score

(
πn,t−1)

2 = Score
(
πn+1,t) .

Hence, by Claim 3,

T (Ln)
(
Color

(
πn+1,t)) = Score

(
πn+1,t) = Ln+1

(
Color

(
πn+1,t)) .

Next, we verify Ln+1 = T (Ln) for some x such that Color
(
πn+1,t+1) < x < Color

(
πn+1,t).

By Claim 3, it suffices to set x0 = x− Ln+1(x) and x1 = x+ Ln+1(x) and verify that

Ln(x0) + Ln(x1)
2 = Ln+1(x).

Note that

x0 ∈
[
Color

(
πn,t+1) ,Color

(
πn,t

)]
and x1 ∈

[
Color

(
πn,t

)
,Color

(
πn,t−1)] .

One can verify that this is indeed correct. J

H.A. Khorasgani, H. K. Maji, M. Wang 17

References
ABC+85 Baruch Awerbuch, Manuel Blum, Benny Chor, Shafi Goldwasser, and Silvio Micali.

How to implement bracha’s o (log n) byzantine agreement algorithm. Unpublished
manuscript, 1985. 7

AL93 Miklós Ajtai and Nathan Linial. The influence of large coalitions. Combinatorica,
13(2):129–145, 1993. 7

AN90 Noga Alon and Moni Naor. Coin-flipping games immune against linear-sized coalitions
(extended abstract). In 31st Annual Symposium on Foundations of Computer Science,
pages 46–54, St. Louis, MO, USA, October 22–24, 1990. IEEE Computer Society
Press. doi:10.1109/FSCS.1990.89523. 7

AO16 Bar Alon and Eran Omri. Almost-optimally fair multiparty coin-tossing with nearly
three-quarters malicious. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B:
14th Theory of Cryptography Conference, Part I, volume 9985 of Lecture Notes in
Computer Science, pages 307–335, Beijing, China, October 31 – November 3, 2016.
Springer, Heidelberg, Germany. doi:10.1007/978-3-662-53641-4_13. 7

Asp97 James Aspnes. Lower bounds for distributed coin-flipping and randomized consensus.
In 29th Annual ACM Symposium on Theory of Computing, pages 559–568, El Paso,
TX, USA, May 4–6, 1997. ACM Press. doi:10.1145/258533.258649. 2, 4, 7, 8

Asp98 James Aspnes. Lower bounds for distributed coin-flipping and randomized consensus.
J. ACM, 45(3):415–450, 1998. doi:10.1145/278298.278304. 2, 4, 7, 8

Azu67 Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku
Mathematical Journal, Second Series, 19(3):357–367, 1967. 5

BGP00 Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform generation of np-witnesses
using an np-oracle. Inf. Comput., 163(2):510–526, 2000. 4

BHLT17 Niv Buchbinder, Iftach Haitner, Nissan Levi, and Eliad Tsfadia. Fair coin flipping:
Tighter analysis and the many-party case. In Philip N. Klein, editor, 28th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2580–2600, Barcelona, Spain,
January 16–19, 2017. ACM-SIAM. doi:10.1137/1.9781611974782.170. 7

BHMO18 Amos Beimel, Iftach Haitner, Nikolaos Makriyannis, and Eran Omri. Tighter bounds
on multi-party coin flipping via augmented weak martingales and differentially private
sampling. In Mikkel Thorup, editor, 59th Annual Symposium on Foundations of
Computer Science, pages 838–849, Paris, France, October 7–9, 2018. IEEE Computer
Society Press. doi:10.1109/FOCS.2018.00084. 7

BI64 John F Banzhaf III. Weighted voting doesn’t work: A mathematical analysis. Rutgers
L. Rev., 19:317, 1964. 2, 7

BJB98 Ziv Bar-Joseph and Michael Ben-Or. A tight lower bound for randomized syn-
chronous consensus. In Brian A. Coan and Yehuda Afek, editors, 17th ACM
Symposium Annual on Principles of Distributed Computing, pages 193–199, Puerto
Vallarta, Mexico, June 28 – July 2, 1998. Association for Computing Machinery.
doi:10.1145/277697.277733. 2

BL85 Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and
minima of banzhaf values. In 26th Annual Symposium on Foundations of Computer
Science, pages 408–416, Portland, Oregon, October 21–23, 1985. IEEE Computer
Society Press. doi:10.1109/SFCS.1985.15. 2, 7

BL89 Michael Ben-Or and Nathan Linial. Collective coin flipping. Advances in Computing
Research, 5:91–115, 1989. 2, 7

Blu82 Manuel Blum. Coin flipping by telephone. Proc. of COMPCON, IEEE, 1982, 1982. 7
BN93 Ravi B. Boppana and Babu O. Narayanan. The biased coin problem. In 25th Annual

ACM Symposium on Theory of Computing, pages 252–257, San Diego, CA, USA,
May 16–18, 1993. ACM Press. doi:10.1145/167088.167164. 7

https://doi.org/10.1109/FSCS.1990.89523
https://doi.org/10.1007/978-3-662-53641-4_13
https://doi.org/10.1145/258533.258649
https://doi.org/10.1145/278298.278304
https://doi.org/10.1137/1.9781611974782.170
https://doi.org/10.1109/FOCS.2018.00084
https://doi.org/10.1145/277697.277733
https://doi.org/10.1109/SFCS.1985.15
https://doi.org/10.1145/167088.167164

18 Optimally-secure Coin-tossing against a Byzantine Adversary

BOO10 Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multiparty coin toss with dis-
honest majority. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010,
volume 6223 of Lecture Notes in Computer Science, pages 538–557, Santa Bar-
bara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany. doi:10.1007/
978-3-642-14623-7_29. 7

CGH+85 Benny Chor, Oded Goldreich, Johan Håstad, Joel Friedman, Steven Rudich, and
Roman Smolensky. The bit extraction problem of t-resilient functions (preliminary
version). In 26th Annual Symposium on Foundations of Computer Science, pages 396–
407, Portland, Oregon, October 21–23, 1985. IEEE Computer Society Press. doi:
10.1109/SFCS.1985.55. 2, 7

CI93 Richard Cleve and Russell Impagliazzo. Martingales, collective coin flipping and dis-
crete control processes. In other words, 1:5, 1993. 2

Cle86 Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In 18th Annual ACM Symposium on Theory of Computing, pages
364–369, Berkeley, CA, USA, May 28–30, 1986. ACM Press. doi:10.1145/12130.
12168. 7

Col71 James S Coleman. Control of collectivities and the power of a collectivity to act. Social
choice, pages 269–300, 1971. 2, 7

CZ16 Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and
resilient functions. In Daniel Wichs and Yishay Mansour, editors, 48th Annual ACM
Symposium on Theory of Computing, pages 670–683, Cambridge, MA, USA, June 18–
21, 2016. ACM Press. doi:10.1145/2897518.2897528. 7

DLMM11 Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin.
On the black-box complexity of optimally-fair coin tossing. In Yuval Ishai, editor,
TCC 2011: 8th Theory of Cryptography Conference, volume 6597 of Lecture Notes in
Computer Science, pages 450–467, Providence, RI, USA, March 28–30, 2011. Springer,
Heidelberg, Germany. doi:10.1007/978-3-642-19571-6_27. 2

DMM14 Dana Dachman-Soled, Mohammad Mahmoody, and Tal Malkin. Can optimally-fair
coin tossing be based on one-way functions? In Yehuda Lindell, editor, TCC 2014:
11th Theory of Cryptography Conference, volume 8349 of Lecture Notes in Computer
Science, pages 217–239, San Diego, CA, USA, February 24–26, 2014. Springer, Hei-
delberg, Germany. doi:10.1007/978-3-642-54242-8_10. 2

DMM18 Dimitrios I. Diochnos, Saeed Mahloujifar, and Mohammad Mahmoody. Ad-
versarial risk and robustness: General definitions and implications for the
uniform distribution. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Mon-
tréal, Canada, pages 10380–10389, 2018. URL: http://papers.nips.cc/paper/
8237-adversarial-risk-and-robustness-general-definitions-and-implications-for-the-uniform-distribution.
2

Dod00 Yevgeniy Dodis. Impossibility of black-box reduction from non-adaptively to adap-
tively secure coin-flipping. Electronic Colloquium on Computational Complexity
(ECCC), 7(39), 2000. 7

EMM20 Omid Etesami, Saeed Mahloujifar, and Mohammad Mahmoody. Computational con-
centration of measure: Optimal bounds, reductions, and more. In 31st Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 345–363. ACM-SIAM, 2020.
doi:10.1137/1.9781611975994.21. 2

https://doi.org/10.1007/978-3-642-14623-7_29
https://doi.org/10.1007/978-3-642-14623-7_29
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1145/12130.12168
https://doi.org/10.1145/12130.12168
https://doi.org/10.1145/2897518.2897528
https://doi.org/10.1007/978-3-642-19571-6_27
https://doi.org/10.1007/978-3-642-54242-8_10
http://papers.nips.cc/paper/8237-adversarial-risk-and-robustness-general-definitions-and-implications-for-the-uniform-distribution
http://papers.nips.cc/paper/8237-adversarial-risk-and-robustness-general-definitions-and-implications-for-the-uniform-distribution
https://doi.org/10.1137/1.9781611975994.21

H.A. Khorasgani, H. K. Maji, M. Wang 19

Fei99 Uriel Feige. Noncryptographic selection protocols. In 40th Annual Symposium on
Foundations of Computer Science, pages 142–153, New York, NY, USA, October 17–
19, 1999. IEEE Computer Society Press. doi:10.1109/SFFCS.1999.814586. 7

FHH+19 Yuval Filmus, Lianna Hambardzumyan, Hamed Hatami, Pooya Hatami, and David
Zuckerman. Biasing Boolean functions and collective coin-flipping protocols over ar-
bitrary product distributions. In Christel Baier, Ioannis Chatzigiannakis, Paola Floc-
chini, and Stefano Leonardi, editors, ICALP 2019: 46th International Colloquium
on Automata, Languages and Programming, volume 132 of LIPIcs, pages 58:1–58:13,
Patras, Greece, July 9–12, 2019. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ICALP.2019.58. 4

Fri92 Joel Friedman. On the bit extraction problem. In 33rd Annual Symposium on Foun-
dations of Computer Science, pages 314–319, Pittsburgh, PA, USA, October 24–27,
1992. IEEE Computer Society Press. doi:10.1109/SFCS.1992.267760. 2, 7

GKP15 Shafi Goldwasser, Yael Tauman Kalai, and Sunoo Park. Adaptively secure coin-
flipping, revisited. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, ICALP 2015: 42nd International Colloquium on Au-
tomata, Languages and Programming, Part II, volume 9135 of Lecture Notes in Com-
puter Science, pages 663–674, Kyoto, Japan, July 6–10, 2015. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-47666-6_53. 3, 4, 7

Har66 Lawrence H Harper. Optimal numberings and isoperimetric problems on graphs. Jour-
nal of Combinatorial Theory, 1(3):385–393, 1966. 2, 3, 4, 7

Har99 L. H. Harper. On an isoperimetric problem for hamming graphs. Discret. Appl. Math.,
95(1-3):285–309, 1999. doi:10.1016/S0166-218X(99)00082-7. 4

HK20 Iftach Haitner and Yonatan Karidi-Heller. A tight lower bound on adaptively secure
full-information coin flip. In FOCS, 2020. 3, 4, 7

HOZ16 Iftach Haitner, Eran Omri, and Hila Zarosim. Limits on the usefulness of ran-
dom oracles. Journal of Cryptology, 29(2):283–335, April 2016. doi:10.1007/
s00145-014-9194-9. 2

Jer85 Mark Jerrum. Random generation of combinatorial structures from a uniform dis-
tribution (extended abstract). In Wilfried Brauer, editor, Automata, Languages
and Programming, 12th Colloquium, Nafplion, Greece, July 15-19, 1985, Proceedings,
volume 194 of Lecture Notes in Computer Science, pages 290–299. Springer, 1985.
doi:10.1007/BFb0015754. 4

JVV86 Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of com-
binatorial structures from a uniform distribution. Theor. Comput. Sci., 43:169–188,
1986. doi:10.1016/0304-3975(86)90174-X. 4

Kat68 G Katona. A theorem for finite sets, theory of graphs (p. erdös and g. katona, eds.),
1968. 2, 3, 4, 7

KK15 Yael Tauman Kalai and Ilan Komargodski. Compressing communication in distributed
protocols. In Yoram Moses, editor, Distributed Computing - 29th International Sym-
posium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, volume 9363 of
Lecture Notes in Computer Science, pages 467–479. Springer, 2015. 7

KKL88 Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean func-
tions (extended abstract). In 29th Annual Symposium on Foundations of Computer
Science, pages 68–80, White Plains, NY, USA, October 24–26, 1988. IEEE Computer
Society Press. doi:10.1109/SFCS.1988.21923. 7

KKR18 Yael Tauman Kalai, Ilan Komargodski, and Ran Raz. A lower bound for adaptively-
secure collective coin-flipping protocols. In Ulrich Schmid and Josef Widder, edi-
tors, 32nd International Symposium on Distributed Computing, DISC 2018, New Or-

https://doi.org/10.1109/SFFCS.1999.814586
https://doi.org/10.4230/LIPIcs.ICALP.2019.58
https://doi.org/10.1109/SFCS.1992.267760
https://doi.org/10.1007/978-3-662-47666-6_53
https://doi.org/10.1016/S0166-218X(99)00082-7
https://doi.org/10.1007/s00145-014-9194-9
https://doi.org/10.1007/s00145-014-9194-9
https://doi.org/10.1007/BFb0015754
https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/10.1109/SFCS.1988.21923

20 Optimally-secure Coin-tossing against a Byzantine Adversary

leans, LA, USA, October 15-19, 2018, volume 121 of LIPIcs, pages 34:1–34:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 3, 4, 7

KMM19 Hamidreza Amini Khorasgani, Hemanta K. Maji, and Tamalika Mukherjee. Estimat-
ing gaps in martingales and applications to coin-tossing: Constructions and hardness.
In Dennis Hofheinz and Alon Rosen, editors, TCC 2019: 17th Theory of Cryptogra-
phy Conference, Part II, volume 11892 of Lecture Notes in Computer Science, pages
333–355, Nuremberg, Germany, December 1–5, 2019. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-36033-7_13. 2, 4, 7, 8

KMW20a Hamidreza Amini Khorasgani, Hemanta K. Maji, and Mingyuan Wang. Coin tossing
with lazy defense: Hardness of computation results. IACR Cryptol. ePrint Arch.,
2020:131, 2020. URL: https://eprint.iacr.org/2020/131. 2, 7, 8

KMW20b Hamidreza Amini Khorasgani, Hemanta K. Maji, and Mingyuan Wang. Coin toss-
ing with lazy defense: Hardness of computation results. Cryptology ePrint Archive,
Report 2020/131, 2020. https://eprint.iacr.org/2020/131. 3

Kru63 Joseph B Kruskal. The number of simplices in a complex. Mathematical optimization
techniques, 10:251–278, 1963. 2, 3, 4, 7

LLS89 David Lichtenstein, Nathan Linial, and Michael Saks. Some extremal problems arising
from discrete control processes. Combinatorica, 9(3):269–287, 1989. 3, 4, 7

MDM19 Saeed Mahloujifar, Dimitrios I. Diochnos, and Mohammad Mahmoody. The curse of
concentration in robust learning: Evasion and poisoning attacks from concentration of
measure. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 4536–4543.
AAAI Press, 2019. doi:10.1609/aaai.v33i01.33014536. 2

MM19 Saeed Mahloujifar and Mohammad Mahmoody. Can adversarially robust learning
leveragecomputational hardness? In Aurélien Garivier and Satyen Kale, editors, Al-
gorithmic Learning Theory, ALT 2019, 22-24 March 2019, Chicago, Illinois, USA,
volume 98 of Proceedings of Machine Learning Research, pages 581–609. PMLR, 2019.
URL: http://proceedings.mlr.press/v98/mahloujifar19a.html. 2

MNS09 Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In Omer Reingold,
editor, TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture
Notes in Computer Science, pages 1–18. Springer, Heidelberg, Germany, March 15–17,
2009. doi:10.1007/978-3-642-00457-5_1. 7

MW20 Hemanta K. Maji and Mingyuan Wang. Black-box use of one-way functions is useless
for optimal fair coin-tossing. Cryptology ePrint Archive, Report 2020/253, 2020. https:
//eprint.iacr.org/2020/253. 2, 7, 8

OS08 Ryan O’Donnell and Rocco A. Servedio. The Chow parameters problem. In Richard E.
Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium on Theory of
Computing, pages 517–526, Victoria, BC, Canada, May 17–20, 2008. ACM Press.
doi:10.1145/1374376.1374450. 2, 7

OS11 Ryan O’Donnell and Rocco A. Servedio. The chow parameters problem. SIAM J.
Comput., 40(1):165–199, 2011. doi:10.1137/090756466. 2, 7

RSZ99 Alexander Russell, Michael E. Saks, and David Zuckerman. Lower bounds for leader
election and collective coin-flipping in the perfect information model. In 31st Annual
ACM Symposium on Theory of Computing, pages 339–347, Atlanta, GA, USA, May 1–
4, 1999. ACM Press. doi:10.1145/301250.301337. 7

Sak89 Michael E. Saks. A robust noncryptographic protocol for collective coin flipping. SIAM
J. Discrete Math., 2(2):240–244, 1989. 7

https://doi.org/10.1007/978-3-030-36033-7_13
https://eprint.iacr.org/2020/131
https://eprint.iacr.org/2020/131
https://doi.org/10.1609/aaai.v33i01.33014536
http://proceedings.mlr.press/v98/mahloujifar19a.html
https://doi.org/10.1007/978-3-642-00457-5_1
https://eprint.iacr.org/2020/253
https://eprint.iacr.org/2020/253
https://doi.org/10.1145/1374376.1374450
https://doi.org/10.1137/090756466
https://doi.org/10.1145/301250.301337

H.A. Khorasgani, H. K. Maji, M. Wang 21

SV84 Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences from
slightly-random sources (extended abstract). In 25th Annual Symposium on Foun-
dations of Computer Science, pages 434–440, Singer Island, Florida, October 24–26,
1984. IEEE Computer Society Press. doi:10.1109/SFCS.1984.715945. 2, 7

Vaz85 Umesh V. Vazirani. Towards a strong communication complexity theory or generating
quasi-random sequences from two communicating slightly-random sources (extended
abstract). In 17th Annual ACM Symposium on Theory of Computing, pages 366–378,
Providence, RI, USA, May 6–8, 1985. ACM Press. doi:10.1145/22145.22186. 2, 7

Win71 Robert O. Winder. Chow parameters in threshold logic. J. ACM, 18(2):265–289, 1971.
doi:10.1145/321637.321647. 2, 7

https://doi.org/10.1109/SFCS.1984.715945
https://doi.org/10.1145/22145.22186
https://doi.org/10.1145/321637.321647

22 Optimally-secure Coin-tossing against a Byzantine Adversary

A Some Examples

X0

0 X1

0 X2

0 . . .

Xn−1

0 Xn

Figure 5 An example n-processor coin-tossing protocol that is easy to deviate toward 0, but hard
to deviate toward 1. In this protocol, Xk = X0 + k · 1−X0

n
. Adversary can corrupt the first processor

and achieve ε+ = X1 −X0 = 1−X0
n

by setting its message to be 1 or achieve ε− = X0 − 0 = X0 by
setting the its message to be 0.

X0

1X1

1X2

1...

Xn−1

1Xn

Figure 6 An example n-processor coin-tossing protocol that is easy to deviate toward 1, but hard
to deviate toward 0. In this protocol, Xk = k · X0

n
. Adversary can corrupt the first processor and

achieve ε+ = 1−X0 by setting the its message to be 1 or achieve ε− = X1 −X0 = X0
n

by setting its
message to be 0.

	Introduction
	Our Contributions
	Prior Works
	Technical Overview

	Preliminaries
	Coin-tossing Protocols
	Adversarial Setting

	A Geometric Perspective
	Geometric Transformation of Cn

	Tight Bounds on Cn and the Implications
	Proof of [thm:lbd]Theorem 2

	Some Examples

