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Abstract. Zero-knowledge proofs of satisfiability of linear equations
over a group are often used as a building block of more complex pro-
tocols. In particular, in an asymmetric bilinear group we often have two
commitments in different sides of the pairing, and we want to prove that
they open to the same value. This problem was tackled by González,
Hevia and Ràfols (ASIACRYPT 2015), who presented an aggregated
proof, in the QA-NIZK setting, consisting of only four group elements.
In this work, we present a more efficient proof, which is based on the
same assumptions and consists of three group elements. We argue that
our construction is optimal in terms of proof size.

Keywords: pairing-based cryptography, zero-knowledge proofs, com-
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1 Introduction

Bilinear groups have been used to design countless cryptographic protocols, some
of them with no equivalent in other settings. In particular, such groups have
been very useful to design non-interactive zero-knowledge (NIZK) proofs in the
common reference string (CRS) model. The first works to realize that pairings
allowed for the construction of efficient NIZK proofs were [20,19,17,5], culminat-
ing in the work of Groth–Sahai [21]. The latter presents a NIZK proof system for
satisfiability of most types of linear and quadratic equation in bilinear groups,
in the CRS model and under standard, constant size and weak assumptions.
Groth–Sahai proofs are one of the fundamental building blocks in pairing-based
cryptography, with well-known applications as anonymous credentials [13], e-
Cash [3], ring-signatures [8], shuffles [18], signatures of knowledge [4], and tight
CCA encryption [22].

Groth–Sahai proofs follow the usual commit-and-prove paradigm: first, the
prover commits to the solution of the equation, and then produces a “proof”
formed of some group elements, which the verifier uses together with the com-
mitments to get convinced of the satisfiability of the equation. The commit-
and-prove framework is used implicitly in the original work of Groth and Sahai
[21], and formalized explicitly in [13,10]. In this view, a NIZK proof proves
some property of a committed value, and many different statements about a



single committed value can be proven.1 This formalization is also a conceptually
cleaner approach. It allows to differentiate clearly between the “commit” and
the “proof” part among all the elements computed by the prover. In this work
we also make the separation between commitment and proof, so when we discuss
proof sizes we refer exclusively to the latter part.

For many equation types, the Groth–Sahai proof system is still the state of
the art. Few improvements are known, like the general techniques to replace dual
mode commitments by ElGamal ciphertexts [10], aggregation of many Groth–
Sahai proofs [24,16], which are of limited applicability, or some techniques to
encode partial satisfiability [30].

A notable exception are quasi-adaptive NIZK (QA-NIZK) arguments of mem-
bership in linear spaces over a source group [27,24,26], introduced by Jutla–Roy
[23], which allow to prove satisfiability of linear equations. More precisely, let
e : G1×G2 → GT be an asymmetric bilinear group equipped with a pairing. We
use implicit notation as in [12], where [y]1 ∈ Gn1 denotes a vector (y1P, . . . , ynP),
for P a generator of G1. Such QA-NIZK arguments allow to prove that a vector
[y]1 ∈ Gn1 is of the form y = Mw, for some public matrix [M]1 ∈ Gn×t1 . These
arguments are extremely efficient: under an assumption weaker than DDH, their
size is only 1 group element, for most distributions of [M]1.2 The same statement
proven with Groth–Sahai proofs requires O(t) elements for committing to w and
O(n) elements to prove that y is of this form.

Because of their efficiency, these arguments have many applications, for
instance to different flavors of identity-based encryption [23] or group signa-
tures [28]. These arguments also have a close relation to structure-preserving
signatures [2,25,1]. Membership in linear spaces naturally encodes statements
about ciphertexts and commitments: for example, two ElGamal ciphertexts (or
more generally, any ‘algebraic’ commitment scheme, like Pedersen or Groth–
Sahai commitments) encrypt the same message if their difference is in a certain
linear space dependent of the public key. More generally, QA-NIZK arguments
allow to aggregate proof easily: proving that two vectors of ElGamal commit-
ments open pairwise to the same value requires only one group element, using
the constructions of Kiltz-Wee [26], and the security relies on Kernel assump-
tions [29]. On the other hand, with the Groth–Sahai proof system, this requires
two elements of each group G1,G2 for each pair of ciphertexts.

In this paper, we consider the problem of proving that two commitments,
one in G1 and one in G2, open to the same value. This statement appears
naturally when one wants to prove quadratic relations in asymmetric bilinear
groups. Indeed, suppose that we want to prove that a commitment opens to
a bit, that is, that the opening of some commitments satisfies the quadratic
equation X(X − 1) = 0. This often appears as part of a larger proof, for exam-
ple in ring signatures [8,15,14], e-voting [7] or range proofs [6]. To prove that a
commitment opens to a bit, Groth–Sahai proofs proceed as follows:

1 In contrast, if one thinks of Groth–Sahai proofs as NIZK proofs of satisfiability of
quadratic equations, formally commitments cannot be reused across proofs.

2 More precisely, [M]1 should be taken from a witness sampleable distribution.
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1. Rewrite the equation as X(Y − 1) = 0.
2. Commit to a solution: [c]1 = Com(x; r) and [d]2 = Com(y; s).
3. Prove satisfiability of the equation X(Y −1) = 0 using the commitments c, d

and providing some additional proof elements.
4. Prove that the commitments c, d open to the same value.

We note that step 4 is proving the linear equation X = Y . Informally, the idea is
that step 3 is a quadratic check which requires commitments in different groups,
and step 4 makes sure there is some consistency between these values. Formally,
the need for it arises from the fact that Groth–Sahai proofs work for disjoint
sets of variables in G1 and G2.

This is one of the main techniques for proving quadratic equations in Zp in
bilinear groups (in the CRS model and under standard assumptions), and any
efficiency improvement in the same opening step (4) would have a direct impact
on the overall efficiency. We note that there is another construction, introduced
very recently in [9], that proves that a commitment over G1 opens to either 0 or
1. Their approach consists of using a pairing to compile interactive arguments
into non-interactive ones, and they manage to prove that a commitment opens to
a bit with 7 group elements. For comparison, the Groth–Sahai approach requires
10 group elements using our approach. Groth–Sahai proofs still seem better for
proving that n commitments to a bit: in [9] the proof scales linearly, whereas if
we use the aggregated version of our scheme, n proofs require 6n+ 3 elements.

1.1 Our Results.

To the best of our knowledge, there are two ways of proving step 4. One is to
use standard Groth–Sahai proofs, which requires 2 group elements in each of G1

and G2. The alternative is to use QA-NIZK arguments of membership in linear
spaces. However, because the statement is split between G1 and G2, we need
to resort to arguments of membership in bilateral spaces, which show, for two
vectors [x]1, [y]2, and some matrices [M]1, [M]2 that there exists some w such
that x = Mw and y = Nw. These were constructed by González et al. [16]
under some computational assumption in bilinear groups.3 However, this does
not improve step (4) over the cost of Groth–Sahai proofs. The proof of González
et al. only improves on the state of the art for the aggregated case, namely to
show that n pairs of commitments open (pairwise) to the same value with a proof
made of 2 elements in G1 and 2 elements in G2, independent of n. However, this
is not an improvement for a single pair of commitments.

Noticing the gap between one element for one-sided proofs and four elements
for bilateral proofs, a natural question is how much we can reduce the proof size
in the bilateral case. In this paper, we give a construction which reduces the

3 Standard QA-NIZK arguments can be proven sound under Kernel Matrix Diffie-
Hellman Assumptions (KerMDH) [29], and bilateral arguments can be proven sound
under Split KerMDH, a natural generalization to bilinear groups. In its weakest and
most efficient instatiation, KerMDH is weaker than DDH, and SKerMDH is weaker
than 2-Lin.
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proof size of [16] to three elements, while maintaining the same computational
assumption in the soundness proof.

We note that this is the first concrete improvement for step (4) since the
publication of the work of Groth–Sahai. Our result is a sophisticated combination
of the techniques of Kiltz–Wee [26] and González et al. [16]. Additionally, we
argue that our constructions are optimal, by showing that any two-element proof
is vulnerable to a simple attack.

1.2 Our Techniques

We briefly review the linear space membership proof of Kiltz–Wee [26]. Their
core idea is a clever translation to the bilinear group setting of a hash proof
system, which is essentially a NIZK proof in the symmetric key setting. Given a
matrix M ∈ Zm×tp , the starting point is a proof system for the language

LM = {[c]1 ← Gm1 | ∃w s. t. c = Mw}

which works as follows: prover and verifier share a key K ← Zm×(k+1)
p , where

k will depend on the hardness assumption used to ensure soundness. The pro-
jection [M>K]1 is published in the CRS. The prover sends [π]1 = w>[M>K]1,
and the verifier checks that

[c>]1K
?
= [π]1.

Intuitively, the proof is sound because if c is not in Im(M) then c>K is uniformly
random given M>K, and thus there is no way for the prover to produce such a
proof.

Kiltz–Wee take this idea and remove the need for a shared secret key by using

a bilinear group. Now the CRS includes [A,KA]2, for a matrix A ∈ Z(k+1)×k
p .

This partially fixes K without revealing it, the goal being that the verifier can
use these elements to verify without needing to know K as before. The proof is
still the same, but the verification is now

e([c>]1, [KA]2)
?
= e([π]1, [A]2).

By assuming the hardness of a Kernel problem on A, i.e., it is hard to find
non-trivial cokernel elements of A, we are essentially back to the argument of
the hash proof system. For the right choice of distribution of A, the assumption
is believed to hold starting at k = 1, so in this case we have that the proof is
formed of 2 group elements.

However, this can be taken one step further. Assuming that the distribution
of [M]1 is witness sampleable, that is, that we can efficiently sample M̃ such
that [M̃]1 is distributed as [M]1, then it is enough to use the truncated matrix
A ∈ Zk×kp instead of A, thus using K ∈ Zm×kp , which yields proofs consisting of
only one group element.
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We now consider the natural generalization of this approach to bilateral
proofs, as developed by González et al. [16].4 Consider the following language:

LM,N = {([c]1, [d]2)← Gm1 ×Gn2 | ∃w s. t. c = Mw,d = Nw}.

To account for two-sided statements, we consider one key K for G1 and one
key L for G2, and so we publish the following elements in the CRS:

[M>K + Z,A,LA]1, [N
>L− Z,A,KA]2,

where Z ∈ Zt×kp . The prover produces the proofs [π]1 = w>[M>K + Z]1 and

[θ]2 = w>[N>L− Z]2, and the verifier checks the equation

e([c>]1, [KA]2) + e([LA]1, [d]2)
?
= e([π]1, [A]2) + e([A]1, [θ]2). (1)

Intuitively, the term Z in the CRS elements produces terms in the verification
equation that will not cancel out unless w is the same in both sides. In a similar
way as above, the soundness of this scheme reduces to the hardness of a Split
Kernel problem, which is a Kernel problem with the solution split between G1

and G2. However, Split Kernel problems are easy for k = 1, and so we must take
at least k = 2. This has a direct impact on the sizes of the keys K and L, and
so this approach yields proofs of two group elements in G1, and two in G2, and
two verification equations.

Our strategy to reduce the proof size is to use only one element in G2, so
instead of having θ = (θ, θ̂) as above, we reuse the same θ. To make it work,
we require the condition that the columns of N>L are equal, so that θ = (θ, θ),
and it is enough to send it once. This introduces extra complexity in the CRS
generation, and the simulation of the CRS for the adversary in the soundness
security reduction, particularly in the aggregated case. We present the proof
directly for the most efficient case, k = 2.

To solve these new issues, we need to reformulate the problem slightly. In-
stead of considering the pair of commitments ([c]1, [d]2) as the statement, we
consider just [c]1, and build a proof of F -knowledge of F (w) = [w]1,2. Indeed,
in applications the commitment [d]2 is an artifact of the proof, as when prov-
ing quadratic statements we need to split the commitments between G1 and G2

to exploit the pairing. Regarding zero-knowledge, this change implies that the
simulator knows the opening of one of the commitments. We note that both
openings are required for proving zero-knowledge in Groth–Sahai proofs.

We stress that our modified formalization is due to the intricacies of the
soundness reduction, and has no actual impact in most applications. This is
because, as we have seen in the proof of X(X − 1) = 0 above, the commitment
in G2 is a byproduct of the proof, and thus can be seen as part of it, while the
‘meaningful’ statement is about the commitment in G1.

Interestingly, our trick of reusing θ does not work for both sides, and in
fact in Section 5 we show an attack for any two-element proof of this form. We

4 The actual construction requires some masking terms to ensure zero-knowledge, but
we omit these for simplicity of the presentation.
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argue that the general form of any proof of bilateral same opening consisting
of only two elements must have a verification equations that looks essentially
like equation (1) above, but with π, θ scalars instead of vectors; then we show a
simple algebraic attack that exploits the two-sided nature of the proof.

2 Preliminaries

Let G be some probabilistic polynomial time algorithm which on input 1λ, where
λ is the security parameter, returns the group key which is the description of
an asymmetric bilinear group gk := (p,G1,G2,GT , e,P1,P2), where G1,G2 and
GT are additive groups of prime order p, the elements P1,P2 are generators
of G1,G2 respectively, e : G1 × G2 → GT is an efficiently computable, non-
degenerate bilinear map, and there is no efficiently computable isomorphism
between G1 and G2.

Elements in Gγ are denoted implicitly as [a]γ := aPγ , where γ ∈ {1, 2, T}
and PT := e(P1,P2). For simplicity, we often write [a]1,2 for the pair [a]1, [a]2,
and [a, b]γ for ([a]γ , [b]γ). The pairing operation will be written as a product, that
is, [a]1 · [b]2 = [a]1[b]2 = e([a]1, [b]2) = [ab]T . Vectors and matrices are denoted in
boldface. Given a matrix T = (ti,j), [T]γ is the natural embedding of T in Gγ ,
that is, the matrix whose (i, j)th entry is ti,jPγ . We denote by |Gγ | the bit-size
of the elements of Gγ .

2.1 Quasi-Adaptive Non-Interactive Zero-Knowledge Proofs

A Quasi-Adaptive NIZK proof system [23] enables to prove membership in a lan-
guage defined by a relation Rρ, which is in turn determined by some parameter ρ
sampled from a distribution Dgk . We say that Dgk is witness sampleable if there
exists an efficient algorithm that samples (ρ, ω) from a distribution Dpar

gk such
that ρ is distributed according to Dgk , and membership of ρ in the parameter
language Lpar can be efficiently verified with ω. While the Common Reference
String (CRS) can be set based on ρ, the zero-knowledge simulator is required
to be a single PPT algorithm that works for any relation Rgk . We assume that
CRS contains an encoding of ρ, which is thus available to V.

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for
witness-relations Rgk = {Rρ}ρ∈sup(Dgk ) with parameters sampled from a distri-
bution Dgk over the parameter language Lpar, if there exists a PPT simulator
(S1,S2), such that for all non-uniform PPT adversaries A1, A2, A3 we have:

Quasi-Adaptive Completeness:

Pr

[
gk ← K0(1λ); ρ← Dgk ;CRS← K1(gk , ρ);
(x,w)← A1(gk ,CRS);π ← P(CRS, x, w)

: V(CRS, x, π) = 1 if Rρ(x,w)

]
= 1.

Computational Quasi-Adaptive Soundness:

Pr

[
gk ← K0(1λ); ρ← Dgk ;
CRS← K1(gk , ρ); (x, π)← A2(gk ,CRS)

:
V(CRS, x, π) = 1 and
¬(∃w : Rρ(x,w))

]
≈ 0.
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Perfect Quasi-Adaptive Zero-Knowledge:

Pr[gk ← K0(1λ); ρ← Dgk ;CRS← K1(gk , ρ) : AP(CRS,·,·)
3 (gk ,CRS) = 1] =

Pr[gk ← K0(1λ); ρ← Dgk ; (CRS, τ)← S1(gk , ρ) : AS(CRS,τ,·,·)
3 (gk ,CRS) = 1]

where

– P(CRS, ·, ·) emulates the actual prover. It takes input (x,w) and outputs
a proof π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥.

– S(CRS, τ, ·, ·) is an oracle that takes input (x,w). It outputs a simulated
proof S2(CRS, τ, x) if (x,w) ∈ Rρ and ⊥ if (x,w) /∈ Rρ.

We will prove that our schemes have F -knowledge soundness, which we de-
fine in the context of witness sampleable distributions. Intuitively, F -knowledge
means that, with access to some extraction key, it is possible to extract a function
F of the witness from the statement and the proof. We note that our definition
differs from the definition in [10], as we give the extraction key generator access
to the witness ω that proves membership of ρ in Lpar (in practice, this means
that it has access to the discrete logarithms of the commitment key) and allow
to extract information from not only the statement, but also the proof.

Given a function F , a scheme is F -knowledge sound if there exist a soundness
PPT extraction key generator E1 and a DPT extractor E2 such that for any non-
uniform PPT adversary A2, we have:

Computational Quasi-Adaptive F -knowledge Soundness:

Pr

 gk ← K0(1λ); ρ← Dgk ;
(CRS, xk)← E1(gk , (ρ, ω));
(x, π)← A2(gk ,CRS)

:
V(CRS, x, π) = 1 and
E2xk(x, π) 6= F (x,w)

 ≈ 0,

and the distributions of the CRS produced by K1 and E1 are the same.

We also define a stronger notion of zero-knowledge, called composable zero-
knowledge [17]. Essentially, this means that real and simulated proofs are in-
distinguishable even when the simulation trapdoor is known. More formally, a
scheme is composable zero-knowledge if there exists a PPT simulator (S1,S2)
such that for any non-uniform PPT adversary A3 we have:

Composable Quasi-Adaptive Zero-Knowledge:

Pr

[
gk ← K0(1λ); ρ← Dgk ; (CRS, τ)← S1(gk , ρ);

(x,w)← A3(gk,CRS, τ);π ← P(gk,CRS, x, w)
: A3(π) = 1

]
=

= Pr

[
gk ← K0(1λ); ρ← Dgk ; (CRS, τ)← S1(gk , ρ);

(x,w)← A3(gk,CRS, τ);π ← S2(gk,CRS, τ, x) :
: A3(π) = 1

]
.

and the CRS produced by K1 and S1 are indistinguishable.
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2.2 Assumptions

Definition 1. Let `, k ∈ N. We call D`,k a matrix distribution if it outputs (in
PPT time, with overwhelming probability) matrices in Z`×kp . We define Dk :=
Dk+1,k.

The following applies for Gγ , where γ ∈ {1, 2}.

Assumption 1 (Matrix Decisional Diffie-Hellman Assumption in Gγ [11])
For all non-uniform PPT adversaries A,

|Pr[A(gk, [A,Aw]γ) = 1]− Pr[A(gk, [A, z]γ) = 1]| ≈ 0,

where the probability is taken over gk ← G(1λ), A ← D`,k,w ← Zkp, [z]γ ← G`γ
and the coin tosses of adversary A.

Intuitively, the D`,k-MDDH assumption means that it is hard to decide
whether a vector is in the image space of a matrix or it is a random vector,
where the matrix is drawn from D`,k. In this paper we will refer to the following
matrix distributions:

Lk : A =


a1 0 ... 0
0 a2 ... 0

.

.

.

.

.

.

.
.
.

.

.

.
0 0 ... ak
1 1 ... 1

 , RLk : A =


a1 0 ... 0
0 a2 ... 0

.

.

.

.

.

.

.
.
.

.

.

.
0 0 ... ak
r1 r2 ... rk

 ,

where ai, ri ← Zp for i = 1, . . . , k. The Lk-MDDH Assumption is the k-linear
family of Decisional Assumptions and corresponds to the Decisional Diffie-Hellman
(DDH) Assumption in Gγ when k = 1. The SXDH Assumption states that DDH
holds in Gγ for γ = 1, 2.

Additionally, we will be using the following family of computational assump-
tions:

Assumption 2 (Kernel Diffie-Hellman Assumption in Gγ [29]) For all non-
uniform PPT adversaries A:

Pr
[
[x]3−γ ← A(gk, [A]γ) : x 6= 0 ∧ x>A = 0

]
≈ 0,

where the probability is taken over gk ← G(1λ), A← D`,k and the coin tosses of
adversary A.

The D`,k-KerMDHGγ Assumption is not stronger than the D`,k-MDDHGγ
Assumption, since a solution to the former allows to decide membership in
Im([A]γ). In asymmetric bilinear groups, there is a natural variant of this as-
sumption.

Assumption 3 (Split Kernel Diffie-Hellman Assumption [16]) For all non-
uniform PPT adversaries A:

Pr
[
[r]1, [s]2 ← A(gk, [A]1,2) : r 6= s ∧ r>A = s>A

]
≈ 0,

where the probability is taken over gk ← G(1λ), A← D`,k and the coin tosses of
adversary A.
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While the Kernel Diffie-Hellman Assumption says one cannot find a non-zero
vector in one of the groups which is in the co-kernel of A, the split assumption
says one cannot find different vectors in G`1 × G`2 such that the difference of
the vector of their discrete logarithms is in the co-kernel of A. As a particular
case, [16] considers the Split Simultaneous Double Pairing Assumption in G1,G2

(SSDP) which is the RL2-SKerMDH Assumption.

3 Linear Relations in a Bilinear Group

3.1 Algebraic Commitment Schemes

We present the type of commitments for which our QA-NIZK arguments can
be used. These generalize many common schemes, like (multi-)Pedersen com-
mitments and Groth–Sahai commitments. Our commitments are in the source
groups, Gγ for γ = 1, 2, of a bilinear group. Let F ∈ Zm×np and U ∈ Zm×`p be
full-rank matrices. The commitment key is ck = [F,U]γ , and the commitment
to a message x ∈ Znp with randomness r ∈ Z`p is defined as

Comck(x; r) = [Fx+ Ur]γ .

Choosing the appropriate distributions for ([F]γ , [U]γ), we can have two com-
mitment keys, one that produces a perfectly binding commitment scheme and
one that produces a perfectly hiding commitment scheme, and these two key
distributions are computationally indistinguishable under a MDDH assumption
(see [11] for details). In the description of our schemes and the soundness proofs
we will use the perfectly binding key, switching to perfectly hiding to argue that
our schemes are zero-knowledge.

The most well-known example is Groth–Sahai commitments to integers: given
x ∈ Zp and randomness r ∈ Zp, this is an instantiation of the commitment
defined above, with the matrices F ← Z2

p,U ← Z2
p when in perfectly binding

mode, and F← Z2
p,U = λF for λ← Zp, when in perfectly hiding mode.

3.2 Linear Equations in a Bilinear Group

A set of linear equations split between the two sides of a bilinear group can be
written as (

[c]1
[d]2

)
=

(
[M]1
[N]2

)
X,

where X is the vector of unknowns, [c,M]1 are the coefficients in G1 and [d,N]2
are the coefficients in G2. Thus, proving satisfiability of this system is equivalent
to proving that there exist some vector w such that

w ∈ Im

(
M
N

)
.
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Thus, these proofs are usually seen as proofs of membership in a linear sub-
space, in this case split between G1 and G2. The problem of same opening of
two algebraic commitments,

[c]1 = Comck1(x; r) = [Fx+ Ur]1, [d]1 = Comck2(x; s) = [Gx+ Vs]2

can be seen in this framework of membership in linear spaces, where(
[c]1
[d]2

)
=

(
[F U 0]1
[G 0 V]2

)xr
s

 .

Since we are particularly interested in the case of same opening, we present
our constructions directly for this application, although it would be easy to
generalize to any matrices [M]1, [N]2, as long as they verify some conditions on
their dimensions. As a warm-up, we develop first a non-aggregated version of
the proof, as the main ideas are easier to visualize in this case.

4 Non-Aggregated Scheme

Given x ∈ Zp and two commitments [c]1, [d]2 to x, we provide a proof of both
commitments opening to the same element x. More precisely, given a group
description gk and commitment keys ck1 = [f ,u]1 ∈ G2×2

1 and ck2 = [g,v]2 ∈
G2×2

2 , we want to prove F -knowledge in the language

Lgk,ck1 = {[c]1 ∈ G2
1 | ∃x, r s. t. [c]1 = Comck1(x; r) = [xf + ru]1},

where F (x, r) = [x]1,2.

– gk := (p,P1,P2,G1,G2,GT , e)← G(1λ).
– K0(gk): set ck1 = [f ,u]1 ← Dpar, where Dpar is witness sampleable, that

is, there exists an efficiently sampleable distribution D̃par outputting (f̃ , ũ)

such that [f̃ , ũ]1 is distributed as [f ,u]1.
– K1(gk, ck1): set ck2 = [g,v]2, where g,v ← Z2

p. Choose a1, a2 ← Zp and also

ku, k̂u, lv, l̂v ← Z2
p conditioned on

l>v v = l̂
>
v v, (2)

Finally, choose z2 ← Zp and set

w =
k>u f

l>v g
, z1 = z2w,

ŵ =
k̂
>
u f

l̂v
>
g
, ẑ1 = z2ŵ.

Algorithm K1 outputs the following CRS:(
gk, ck1, [k

>
uu]1, [k̂

>
uu]1, [a1w]1, [a2ŵ]1, [a1wlv]1, [a2ŵl̂v]1, [z1]1, [ẑ1]1,

ck2, [l
>
v v]2, [a1]2, [a2]2, [a1ku]2, [a2k̂u]2, [z2]2

)
.
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– P(CRS, ([c]1, x, r) ∈ R): commit to x in G2 by choosing s← Zp and setting

[d]2 = Comck2
(x, s) = [xg + sv]2.

Choose δ ← Zp and output [d]2 and

[π]1 = [rk>uu+ δz1]1, [θ]2 = [sl>v v + δz2]2,

[π̂]1 = [rk̂
>
uu+ δẑ1]1,

– V(CRS, [c]1, ([d, θ]2, [π, π̂]1) : The algorithm outputs 1 iff the following equa-
tions hold:

e
(
[c>]1, [a1ku]2

)
− e([a1wl>v ]1, [d]2)

?
= e([π]1, [a1]2)− e([a1w]1, [θ]2),

e
(

[c>]1, [a2k̂u]2

)
− e([a2ŵl̂

>
v ]1, [d]2)

?
= e([π̂]1, [a2]2)− e([a2ŵ]1, [θ]2).

Completeness. Both equations are analogous, and it is easy to see that for honest
provers, using that f>ku = w(l>v g), we have that

c>(a1ku)− (a1wl
>
v )d = (xf> + ru>)(a1ku)− (a1wl

>
v )(xg + sv) =

= a1xf
>ku − a1x(wl>v g) + (ru>ku)a1 − a1w(sv>lv) = πa1 − a1wθ.

F -extractor. We now define the algorithm that, given the extraction key xk =
(f , g,u,v), outputs a function of the witness, in this case F (x, r) = [x]1,2.

– Extxk([c]1, [d]2): knowing f ,u, we can find a vector u⊥ such that u>u⊥ = 0
and f>u⊥ = 1, and compute [c>]1u

⊥ = [x]1. Similarly, we obtain [x]2 from
[d]2, using g,v.

Theorem 1. The above scheme is computationally F -knowledge sound under
the RL2-SKerMDH assumption. More precisely, there exists an adversary B
against the RL2-SKerMDH problem such that for any PPT adversary A, we
have that

AdvF−KnowledgeSoundness(A) ≤ AdvRL2-SKerMDH(B).

Proof. We assume the existence of an adversary A against the F -knowledge
soundness of the scheme (that is, A is able to produce a statement and and an
accepting proof such that Extxk([c]1, [d]2) = ([x]1, [y]2) and x 6= y), and we use
it to build an adversary B against the RL2-SKerMDH problem. B receives the
challenge matrix

[A]1,2 = [a1||a2]1,2 =

a1 0
0 a2
r1 r2


1,2

,

and builds the environment forA as follows. B samples f ,u← D̃par and k′u, k̂
′
u ←

Z2
p, and u⊥ ← Z2

p conditioned on u>u⊥ = 0. Implicitly, B defines

ku = k′u + a−11 r1u
⊥, k̂u = k̂

′
u + a−12 r2u

⊥.

11



Observe that this implies that

a1ku = a1k
′
u + r1u

⊥, a2k̂u = a2k̂
′
u + r2u

⊥, (3)

which B can compute in G2. For the other side, B samples g,v ← Z2
p and

l′v ← Z2
p, and let v⊥ ∈ Z2

p be the unique vector such that v>v⊥ = 0 and

f>u⊥ = g>v⊥. (4)

B defines

w =
k′>u f

l′>v g
, ŵ =

k̂
′>
u f

l′>v g
, (5)

(note that l′v is the same in both), and implicitly

lv = l′v + (a1w)−1r1v
⊥, l̂v = l′v + (a2ŵ)−1r2v

⊥,

which means that

a1wlv = a1wl
′
v + r1v

⊥, a2ŵl̂v = a2ŵl
′
v + r2v

⊥, (6)

and these can be computed in G1. Note that, by construction,

a1f
>ku

a1wg>lv
=
a1f

>k′u + r1f
>u⊥

a1wg>l′v + r1g>v⊥
= 1,

where we have used equalities (5) and (4), and therefore w = f>ku
g>lv

. A similar

argument shows that ŵ = f>k̂u
g> l̂v

. B can also compute

[k>uu]1 = [k′>u u]1, [k̂
>
uu]1 = [k̂

′>
u u]1, [l>v v]2 = [l′>v v]2 = [̂l

>
v v]2.

Finally, choose z2 ← Zp and set

z1 = wz2, ẑ1 = ŵz2,

completing the CRS. The CRS is then sent to adversary A, who outputs a
statement [c]1 and a proof [d]2, [π]1, [π̂]1, [θ]2 such that

c>(a1ku)− (a1wl
>
v )d = πa1 − (a1w)θ,

c>(a2k̂u)− (a2ŵl̂
>
v )d = π̂a2 − (a2ŵ)θ.

Notice that, using the equalities (3) and (6), we can rewrite these expressions in
terms of the columns of A. Indeed, these are equivalent to

c>(k′u||k̂
′
u||u⊥)a1 − d>(wl′v||ŵl′v||v⊥)a1 = (π, π̂, 0)a1 − (wθ, ŵθ, 0)a1,

c>(k′u||k̂
′
u||u⊥)a2 − d>(wl′v||ŵl

′
v||v⊥)a2 = (π, π̂, 0)a2 − (wθ, ŵθ, 0)a2.

12



We rearrange this as a solution of theRL2-SKerMDH problem that the reduction
B can compute:

e([(c>k′u−π||c>k̂
′
u−π̂||c>u⊥)]1, [A]2) = e([(w(d>l′v−θ)||ŵ(d>l′v−θ)||d>v⊥)]2, [A]1).

It remains to argue that this is not the trivial solution. To do so, we look at the
third component. As {f ,u} and {g,v} are bases of Z2

p, we can write c = xf+ru
and d = yg+sv for some x, y, r, s ∈ Zp. Since the proof provided by the adversary
is false, it must be that x 6= y. Then, in the first equation, the third component
on the left is c>u⊥ = xf>u⊥, while the corresponding component on the right
is d>v⊥ = yg>v⊥. Since f>u⊥ = g>v⊥ and x 6= y, these values are different.
We conclude that we have found a nontrivial solution of the RL2-SKerMDH
problem. ut

Theorem 2. The above scheme is composable zero-knowledge, with simulation
trapdoor τ = (ku, k̂u, lv).

Proof. We switch to a game in which the commitments in G2 are perfectly
hiding instead of perfectly binding, and prove that in this case the scheme has
perfect zero-knowledge. The CRS simulator generates the CRS as in the honest
execution of the protocol, and also outputs τ = (ku, k̂u, lv) as the simulation
trapdoor. The proof simulator chooses δ ← Zp and uses τ to produce:

[dsim]2 = Comck2
(0; s) = s[v]2

[πsim]1 = [c>]1ku + δ[z1] [θsim]2 = [d>sim]lv + δ[z2]

[π̂sim]1 = [c>]1k̂u + δ[ẑ1]

We have that dsim is distributed as d, as the commitment is perfectly hiding,
and πsim, π̂sim, θsim are uniformly random elements conditioned on satisfying the
verification equations for any fixed c,d, which is the same distribution that
π, π̂, θ have in an honest execution. ut

5 Aggregated Scheme

Given x ∈ Znp and two commitments [c]1, [d]2 to x, we provide a proof of both
commitments opening to the same vector x. More precisely, given a group de-
scription gk and commitment keys ck1 = [F,U]1, and ck2 = [G,V]2, where
F ∈ Zm1×n

p ,G ∈ Zm2×n
p and U ∈ Zm1×`1

p ,V ∈ Zm2×`2
p , we want to prove

F -knowledge in the language

Lgk,ck1 = {[c]1 ∈ Gm1
1 | ∃x, r s. t. [c]1 = Comck1(x; r)},

where F (x, r) = [x]1,2.

– gk := (p,P1,P2,G1,G2,GT , e)← G(1λ).

13



– K0(gk): set ck1 = [F,U]1 ← Dpar, where Dpar is witness sampleable, that

is, there exists an efficiently sampleable distribution D̃par outputting (F̃, Ũ)

such that [F̃, Ũ]1 is distributed as [F,U]1.
– K1(gk, ck1): set ck2 = [G,V]2, where G← Zm2×n

p ,V← Zm2×`2
p . Also choose

a1, a2 ← Zp and ku, k̂u ← Zm1
p . Set lv, l̂v ← Zm2

p conditioned on

l>v V = l̂
>
v V, k>uF = w(l>v G), k̂

>
uF = ŵ(̂l

>
v G), (7)

for some w, ŵ ← Zp. Choose z2 ← Zp and set

z1 = wz2, ẑ1 = ŵz2.

Algorithm K1 outputs the following CRS:(
gk, [U>ku]1, [U

>k̂u]1, [a1w]1, [a2ŵ]1, [a1wlv]1, [a2ŵl̂v]1, [z1]1, [ẑ1]1,

[V>lv]2, [a1]2, [a2]2, [a1ku]2, [a2k̂u]2, [z2]2

)
.

– P(CRS, ([c]1, (x, r)) ∈ R): commit to x in G2 as [d]2. Choose δ ← Zp and
output [d]2 and

[π]1 = [r>U>ku + δz1]1, [θ]2 = [s>V>lv + δz2]2,

[π̂]1 = [r>Û>ku + δẑ1]1,

– V(CRS, [c]1, ([d, θ]2, [π, , π̂]1)) : The algorithm outputs 1 iff the following
equations hold:

e
(
[c>]1, [a1ku]2

)
− e([a1wl>v ]1, [d]2)

?
= e([π]1, [a1]2)− e([a1w]1, [θ]2),

e
(

[c>]1, [a2k̂u]2

)
− e([a2ŵl̂

>
v ]1, [d]2)

?
= e([π̂]1, [a2]2)− e([a2ŵ]1, [θ]2).

Completeness. It is easy to check that, if the prover is honest,

c>(a1ku)− (a1wl
>
v )d = (x>F> + r>U>)(a1ku)− (a1wl

>
v )(Gx+ Vs) =

= a1x
>F>ku − a1(wl>v G)x+ a1r

>U>ku − a1wl>v Vs = πa1 − a1wθ.

We have used that k>uF = w(l>v G). The second equation is completely analo-
gous.

Note on dimensions. For this scheme to work and be secure, we require some
relations between the dimensions of the different elements involved.

(1) We want our commitments to be perfectly binding to be able to open the
commitments in the source groups, so we require that mi ≥ n + `i, for
i = 1, 2.

14



(2) To be able to find lv, l̂v verifying the equations (7), we need to solve the
linear system G> 0

0 G>

V> −V

( lv
l̂v

)
=

F>ku
F>k̂u

0

 .

Since F is only known in G1, the system cannot be fully solved over Zp.
However, we do not need the full solution over Zp, as only the projection
V>lv needs to be given in G2, while the full lv is necessary in G1. Thus
we proceed as follows: we start by sampling t ← Z`2p and setting V>lv =

V>l̂v = t. Then we consider the system
G> 0
0 G>

V> 0
0 V

( lvl̂v
)

=


F>ku
F>k̂u
t
t

 .

The matrix is known over Zp and the right hand side is known over G1

(since F is known over G1 and the rest is known over Zp), so the system can
be solved over G1 using Gaussian elimination. The system has solutions if
2m2 ≥ 2n+ 2`2, which is implied by condition (1) above.

(3) In the proof of the zero-knowledge property, we want to be able to switch
the commitment in G2 to perfectly hiding, so we need to ensure that it has
enough randomness. Thus `2 ≥ n.

(4) Consider the matrices (F||U) and (G||V). These are of size mi × (n + `i),
for i = 1, 2, respectively. In the soundness reduction we will be interested in
finding nonzero vectors u⊥,v⊥ such thatw>u⊥ = 0 for any vectorw outside
of the span of the columns of F, and the same for v⊥ and G. Additionally,
we will require that

F>u⊥ = G>v⊥.

As we have already established that mi ≥ n+`i, we might need to add more
columns to the matrices (F||U) and (G||V) so that they form bases of Zmip ,

so let U,V ∈ Zmi×(mi−n)p be the augmented matrices such that (F||U) and
(G||V) are bases of Zmip for i = 1, 2, respectively. Then the vectors u⊥,v⊥

are given by the nontrivial solutions of the linear systemU
>

0

0 V
>

F> −G>

(u⊥
v⊥

)
= 0.

This matrix is of size (m1 + m2 − n) × (m1 + m2), and therefore it has
nontrivial solutions.

F -extractor. We now define the algorithm that, given the extraction key xk =
(F,G,U,V), outputs a function of the witness, in this case F (x, r) = [x]1,2.
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– Extxk([c]1, [d]2): as above, consider U,V so that (F||U) and (G||V) are bases
of Zmip for i = 1, 2, respectively. Knowing F,U, we can find a matrix U⊥ ∈
Zm1×n
p such that U

>
U⊥ = 0 and F>U⊥ = I, and compute [c>]1U

⊥ = [x]1.

Similarly, we obtain [x]2 from [d]2, using G,V.

Theorem 3. The above proof system is computationally F -knowledge sound un-
der the RL2-SKerMDH assumption. More precisely, there exists an adversary B
against the RL2-SKerMDH problem such that for any PPT adversary A, we have
that

AdvF−KnowledgeSoundness(A) ≤ AdvRL2-SKerMDH(B)

Proof. Assume that there is an adversary A against the soundness of the scheme
(A is able to produce a statement and and an accepting proof such that Extxk([c]1, [d]2) =
([x]1, [y]2) and x 6= y). We use it to build an adversary B against theRL2-SKerMDH
problem. B receives the challenge matrix

[A]1,2 = [a1||a2]1,2 =

a1 0
0 a2
r1 r2


1,2

,

and builds the environment for A as follows. We sample G ← Zm2×n
p ,V ←

Zm2×`2
p , and let V be as in (4) above. We choose w, ŵ ← Zp and l′v ← Zm2

p Let

v⊥ ∈ Zm2
p such that V

>
v⊥ = 0. Implicitly set

lv = l′v + (a1w)−1r1v
⊥, l̂v = l′v + (a2ŵ)−1r2v

⊥.

Observe that this implies that

a1wlv = a1wl
′
v + r1v

⊥, a2ŵl̂v = a2ŵl
′
v + r2v

⊥, (8)

which we can compute over G1. For the other side, we sample (F,U) ← D̃par

and define U as in (4) above. We also sample k′u, k̂
′
u ← Zm1

p conditioned on

k′>u F = w(l′>v G), k̂
′>
u F = ŵ(̂l

′>
v G). (9)

Let u⊥ ∈ Zm1
p such that U

>
u⊥ = 0 and

F>u⊥ = G>v⊥. (10)

We implicitly define

ku = k′u + a−11 r1u
⊥, k̂u = k̂

′
u + a−12 r2u

⊥.

which means that

a1ku = a1k
′
u + r1u

⊥, a2k̂u = a2k̂
′
u + r2u

⊥. (11)
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Note that, by construction,

a1wG>lv = a1wG>l′v + r1G
>v⊥ = a1F

>k′u + r1F
>u⊥ = a1F

>ku

where we have used equalities (9) and (10), and therefore F>ku = w(G>lv) A

similar argument shows that F>k̂u = ŵ(G>l̂v). We can also compute

[k>uU]1 = [k′>u U]1, [k̂
>
uU]1 = [k̂

′>
u U]1, [l>v V]2 = [l′>v V]2 = [̂l

>
v V]2.

Finally, choose z2 ← Zp and set

z1 = wz2, ẑ1 = ŵz2,

completing the CRS. The CRS is then sent to adversary A, who outputs a
statement [c]1, [d]2 and a proof [π]1, [π̂]1, [θ]2 such that

c>(a1ku)− (a1wl
>
v )d = πa1 − (a1w)θ,

c>(a2k̂u)− (a2ŵl̂
>
v )d = π̂a2 − (a2ŵ)θ.

Notice that, using equalities (11) and (8), we can rewrite these expressions in
terms of the columns of A. Indeed, these are equivalent to

c>(k′u||k̂
′
u||u⊥)a1 − d>(wl′v||ŵl′v||v⊥)a1 = (π, π̂, 0)a1 − (wθ, ŵθ, 0)a1,

c>(k′u||k̂
′
u||u⊥)a2 − d>(wl′v||ŵl

′
v||v⊥)a2 = (π, π̂, 0)a2 − (wθ, ŵθ, 0)a2,

We rearrange this as a solution of theRL2-SKerMDH problem that the reduction
can compute:

e([(c>k′u−π||c>k̂
′
u−π̂||c>u⊥)]1, [A]2) = e([(w(d>l′v−θ)||ŵ(d>l′v−θ)||d>v⊥)]2, [A]1).

It remains to argue that this is not the trivial solution. To do so, we look at
the third component. As the columns of (F||U) and (G||V) are bases of Zmip
for i = 1, 2, respectively, we can write c = Fx + Ur and d = Gy + Vs for
some x,y ∈ Znp , r, s ∈ Z`p. Since the proof provided by the adversary is false, it
must be that x 6= y. Then, in the first equation, the third component on the
left is c>u⊥ = x>F>u⊥, while the corresponding component on the right is
d>v⊥ = y>G>v⊥. Since F>u⊥ = G>v⊥ and x 6= y, these values are different.
We conclude that we have found a nontrivial solution of the RL2-SKerMDH
problem. ut

Theorem 4. The above proof system is composable zero-knowledge, with simu-
lation trapdoor τ = (ku, k̂u, lv).

The proof is completely analogous to the proof of Theorem 2.
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6 Optimality of our Constructions

We argue that our constructions are optimal in terms of proof size, at least based
on this general strategy of commit-and-prove schemes, and where the prover is
limited to linear algebraic operations on the group elements, and verification is
a pairing equation. To the best of our knowledge, this is the approach that is
always taken in the literature. We prove optimality by arguing that any such
proof formed of two elements (plus the commitments) is vulnerable to an attack.

We now consider any proof in which we have two commitments [c]1 and [d]2
to the values x and y, respectively, and we have a a two-element proof [π]1, [θ]2
of same opening, that is, x = y. We consider a CRS formed of elements in
G1 and G2, and we assume that each side of the CRS is closed under linear
combination. We can do this without loss of generality, since given the CRS it
is easy to compute linear combinations of its elements.

Then the general verification equation of such a proof looks like this:

e([c>]1, [k1]2) + e([k>2 ]1, [d]2) + e([π]1, [k3]2) + e([k4]1, [θ]2) = [0]T , (12)

where [k1, k3]2, [k2, k4]1 are elements (some of them vectors of elements) of the
CRS. We note two omissions from this general equation: there is no affine term
and there are no “quadratic” terms, i.e., terms in c>d, πd, cθ or πθ. This is
because the linear terms (those in equation (12)) force π and θ to be linear
in the witness, and so the terms above are quadratic. The quadratic condition
causes the appearance of terms with coefficient xy, which must cancelled out
with other quadratic terms of the same coefficient. We note that, unlike in the
linear part, this check does not make a distinction when x = y or x 6= y, so we
conclude that these quadratic terms do not contribute to achieving soundness.
The intuition behind this is that we are proving membership in a linear space,
and non-linear operations take us out of the space.

This leaves us with the equation (12) above. We now observe a very simple
attack on any scheme with a verification equation like this. We set

[c]1 = α[k4]1, [d]2 = β[k3]2,
[π]1 = −β>[k2]1, [θ]2 = −α>[k1]2,

where α,β ← Z2
p. It is trivial to verify that the first term in the equation

cancels out with the fourth and the second with the third, and with overwhelming
probability the openings of [c]1 and [d]2 do not match. Intuitively, this attack
works because of the two-sided nature of the proof: the elements that are given
in the CRS to ensure verifiability in one side are used to fool the other. Indeed,
in an honest execution the first term is expected to cancel out with the third,
and the second with the fourth, while in this attack the pairs are jumbled.

One could also consider one-sided two-element proofs, i.e., of the form [π1, π2]1
or [θ1, θ2]2, but these can be handled in a very similar way. For example, in the
first case, the general verification equation would be

e([c>]1, [k1]2) + e([k>2 ]1, [d]2) + e([π1]1, [k3]2) + e([π2]1, [k4]2) = [0]T , (13)
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and the attack would consist of setting

[c]1 = α[k2]1, [d]2 = β(r[k3]2 + s[k4]2)− α[k1]2,
[π1]1 = −rβ>[k2]1, [π2]1 = −sβ>[k2]1,

for β ← Z2
p, α, r, s ← Zp. Thus we conclude that, with this approach, there is

no possible proof of same opening of commitments in different groups which
consists of less than three group elements, making our constructions optimal.
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16. A. González, A. Hevia, and C. Ràfols. QA-NIZK arguments in asymmetric groups:
New tools and new constructions. In T. Iwata and J. H. Cheon, editors, ASI-
ACRYPT 2015, Part I, volume 9452 of LNCS, pages 605–629, Auckland, New
Zealand, Nov. 30 – Dec. 3, 2015. Springer. 2, 3, 4, 5, 8, 9

17. J. Groth. Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In X. Lai and K. Chen, editors, ASIACRYPT 2006, volume
4284 of LNCS, pages 444–459, Shanghai, China, Dec. 3–7, 2006. Springer. 1, 7

18. J. Groth and S. Lu. A non-interactive shuffle with pairing based verifiability.
In K. Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 51–67,
Kuching, Malaysia, Dec. 2–6, 2007. Springer. 1

19. J. Groth, R. Ostrovsky, and A. Sahai. Non-interactive Zaps and new techniques for
NIZK. In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 97–111,
Santa Barbara, CA, USA, Aug. 20–24, 2006. Springer. 1

20. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for
NP. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
339–358, St. Petersburg, Russia, May 28 – June 1, 2006. Springer. 1

21. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In N. P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432,
Istanbul, Turkey, Apr. 13–17, 2008. Springer. 1

22. D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption.
Designs, Codes and Cryptography, 80(1):29–61, 2016. 1

23. C. S. Jutla and A. Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces.
In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of
LNCS, pages 1–20, Bengalore, India, Dec. 1–5, 2013. Springer. 2, 6

24. C. S. Jutla and A. Roy. Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 295–312, Santa Barbara, CA, USA, Aug. 17–
21, 2014. Springer. 2

25. E. Kiltz, J. Pan, and H. Wee. Structure-preserving signatures from stan-
dard assumptions, revisited. In R. Gennaro and M. J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 275–295, Santa Barbara,
CA, USA, Aug. 16–20, 2015. Springer. 2

26. E. Kiltz and H. Wee. Quasi-adaptive NIZK for linear subspaces revisited. In
E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 101–128, Sofia, Bulgaria, Apr. 26–30, 2015. Springer. 2, 4

20



27. B. Libert, T. Peters, M. Joye, and M. Yung. Non-malleability from malleabil-
ity: Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption
from homomorphic signatures. In P. Q. Nguyen and E. Oswald, editors, EU-
ROCRYPT 2014, volume 8441 of LNCS, pages 514–532, Copenhagen, Denmark,
May 11–15, 2014. Springer. 2

28. B. Libert, T. Peters, and M. Yung. Short group signatures via structure-preserving
signatures: Standard model security from simple assumptions. In R. Gennaro and
M. J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
296–316, Santa Barbara, CA, USA, Aug. 16–20, 2015. Springer. 2
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