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Abstract

We revisit the problem of two-party private set intersection for aggregate computation which
we refer to as private matching for compute. In this problem, two parties want to perform vari-
ous downstream computation on the intersection of their two datasets according to a previously
agreed-upon identifier. We observe that prior solutions to this problem have important limit-
ations. For example, any change or update to the records in either party’s dataset triggers a
rerun of the private matching component; and it is not clear how to support a streaming arrival
of one party’s set in small batches without revealing the match rate for each individual batch.

We introduce two new formulations of the private matching for compute problem meeting
these requirements, called private-ID and streaming private secret shared set intersection (PS3I),
and design new DDH-based constructions for both. Our implementation shows that when taking
advantage of the inherent parallelizability of these solutions, we can execute the matching for
datasets of size upto 100 million records within an hour.

1 Introduction
Joining data from one dataset to another based on shared identifiers is a common precursor to
performing many calculations. For example, consider two parties with datasets wherein each record
is associated with a single user and has an identifier and possibly a value. The identifier is usually a
username, email address, or a phone number for that user. The parties want to securely aggregate
the values corresponding to the set of matched identifiers, also known as the inner join of the two
datasets, without revealing the identifiers and values themselves.

This secure calculation can rely on input data associated with the matching records from just
one party, or both, and can range from something as simple as aggregation to training machine
learning models. Some example scenarios in this setting are:

• The average age or the total sum of funds held by the set of matched users.

• The test statistic of a randomized controlled trial, comparing an outcome known to one party
between a test and control group known to the other party.

• A model that calculates the risk of a specific health condition, where case-specific health
condition labels are known by one party and the predictive features are known by the other
party.

While each individual record is privacy sensitive and may identify users even if obvious an-
onymization techniques are applied [Swe97, MS04, Han06, NS08], the downstream computation
performed on the matched records is only concerned with aggregate information that does not
reveal individual records and hence can often be effectively protected using rigorous noise addition

1



frameworks such as differential privacy [DMNS06, Dwo08, DR+14, ACG+16] without significantly
impacting the utility of computation.

We study the design of protocols that enable such downstream computation without leaking
any information about the individual records beyond the final output. This is closely related to
the classic private set intersection (PSI) problem [Mea86, HFH99, FNP04, KS05] wherein two
parties, each with their own private sets, compute the intersection without revealing anything else
about the two sets. The majority of constructions in the PSI literature reveal the records in the
intersection, and focus on improving computation complexity [PSZ14, KKRT16], communication
complexity [JL10, DCT10, PRTY19, IKN+19] or security by protecting against malicious adversar-
ies [DSMRY09, DCKT10, HN10, RR17]. In many cases, divulging the membership of any record
in the other dataset may leak sensitive information, or be used as an oracle as a component of a
more sophisticated attack.

A much smaller subset of constructions focus on variants of PSI that yield potential solutions to
the problem we set out to solve, i.e. that of computing on the intersection of two sets without reveal-
ing which records are in the intersection. Circuit-based constructions [HEK12, PSSZ15, PSWW18,
PSTY19] support arbitrary computation on the intersection by reducing the problem to that of
executing private equality tests using a general-purpose MPC protocol. These constructions are
complex, and have larger communication costs, but have the benefit of generality. Custom DDH-
style protocols, on the other hand, focus on computing the cardinality or linear functions of the
intersection [DCGT12, IKN+19]. They are simpler and more communication-efficient but so far
have only enabled a limited set of computations on the intersection.

Both approaches, however, have limitations that restrict their usage in certain practical scen-
arios. For example, they assume that complete records, and not just the identifiers are present
during the execution of the private matching if they are to be used in the downstream computation.
The reason is that adding more columns to matched records reveals to one or both parties which
records are in the intersection. This not only prevents gradual addition or omission of new features
or labels to records after the private matching process but also leads to more expensive matching
protocols when there are many features per record all of which needs to be processed within the
protocol. Similarly, most constructions assume that the two sets of identifiers are fixed before the
matching takes place. But a typical scenario is for one party’s dataset of records to be large and
stable for some time, while the other party’s dataset arrives in a streaming fashion and in small
batches. For example, parameters of a machine learning model can be continuously updated as
new batches of records arrive.

2 Our Contribution
We develop two-party private matching protocols that enable downstream privacy-preserving com-
putation on the matched records without leaking them, that can work with real-world constraints
such as unavailability of entire records at the time of matching or the arrival of a dataset in
streaming small batches to the matching process. Similar to the DDH-style PSI, we aim for simple,
easy to develop, and bandwidth-efficient protocols that can compose with general-purpose secure
multi-party computation (MPC) to enable arbitrary computation on the intersection.

We consider two new formulations of the private matching for compute problem (PMC):

• The first variant which we call Private-ID, allows the parties to privately compute a set of
pseudorandom universal identifiers (UID) corresponding to the records in the union of their
sets, where each party additionally learns which UIDs correspond to which items in its set
but not if they belong to the intersection or not. This new formulation enables the parties
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to independently sort their UIDs and the associated records and feed them to any general-
purpose MPC that ignores the non-matching records and computes on the matching ones.
We design a new DDH-based construction for Private-ID that is only a factor of two more
expensive than standard DDH-based PSI, and prove it secure against honest-but-curious
adversaries. Our Private-ID protocol has the advantage that it only needs the identifiers
from the records as input to produce the UIDs and hence for each application, parties can
assemble a possibly new set of features/labels per identifier for the downstream computation
without re-executing the protocol.

• The second variant which we call private secret shared set intersection (PS3I), is a natural
extension of PSI where instead of learning the plaintext matched records, parties only learn
additive shares of those records which they can feed to any general-purpose MPC to execute
the desired computation on. Moreover, we assume that one party’s records arrive in small
batches and parties learn secret shares of the matching records in each batch without learning
which ones were a match or even how many were a match. Hiding the number of matches is
important in this variant of the problem where batch sizes can be as small as one record. We
show how to efficiently extend existing DDH-based PSI using any additively homomorphic
encryption scheme to realize streaming PS3I.
The advantage of PS3I over Private-ID is that its output size and hence the complexity of
the subsequent MPC is proportional to the size of intersection (or proportional to the smaller
set in the streaming version) which in some cases is much smaller than size of union of the
two original datasets. Its disadvantage, similar to prior work, is that full records and not just
the identifiers need be ready at the time of execution, and requires a rerun when associated
records change for the same identifiers.

We implement both protocol variants in the Rust programming language and report on the
efficiency of the constructions. Our experiments confirm that both protocols are highly paralleliz-
able and can leverage resources of multi-processor servers to scale to large datasets. For example,
our Private-ID protocol processes datasets with 100 million records from each party in 60 minutes,
while the PS3I protocol can process datasets with 5 million records in the same amount of time.
The latter is more expensive due to its usage of homomorphic encryption which we instantiate
using Paillier’s encryption scheme.

3 Private ID Protocol
The diagram in Figure 1 visualizes the protocol, while Figure 2 contains a formal description. We
denote the party on the left as C and the party on the right as P . Let C = {c1, . . . , cn} be the set
of unique identifiers associated with user records in C’s dataset, and similarly P = {p1, . . . , pm}
be the set of unique identifiers associated with user records in P ’s dataset. These are shown as
unhatched tables in the diagram. The protocol outputs a map from a universe of Universal ID
(UID), U = (C ∪ P ) = {u1, . . . , un}, to each parties records, where both parties learn the same set
of unique identifiers UID = {uid1, . . . , uid|U |}. Party C learns a map Mc where Mc[uidi] = ui if
ui ∈ C and Mc[uidi] = ⊥ otherwise. Similarly, party P learns the map Mp where Mp[uidi] = ui if
ui ∈ P and Mp[uidi] = ⊥ otherwise. These maps are shown at the bottom of Figure 1. Furthermore
the protocol only reveals n = |C|, m = |P| and ℓ = |C ∩ P| but nothing else.

The protocol proceeds in the following stages.

Exchange records. Our starting point is a DDH-based scheme pursued in prior work [HFH99,
JL10, DCKT10, IKN+19].
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Figure 1: Private ID protocol

1. In step 1 of Figure 1 party C hashes its records ci as H(ci) and computes H(ci)
kc using

a random secret scalar kc. Party P also computes H(pj)
kp for each of its records. These

random secret scalars are shown as keys. They shuffle H(ci)
kc and H(pj)

kp and exchange
these records.

2. In step 2 , party C computes H(pj)
kpkc and similarly party P computes H(ci)

kckp . These
double exponentiated DH values are denoted by Ep and Ec and shown in the diagram
using two lock symbols. A first natural attempt is to use the same DH values as UIDs
for the universe, such that UID = Ec ∪ Ep. However this reveals the items in the
intersection to party C which we want to avoid. A common trick to avoid this leakage is
for C to receive Ec randomly shuffled, so that it only learns the size of the intersection,
but this breaks the linkages between the universal identifiers and their corresponding
values in C’s set. this means we cannot use Ec ∪Ep directly as UID. Instead, each party
uses one more random secret scalar rc and rp to calculate H(pj)

kpkcrc and H(ci)
kckprp as

Vp and Vc respectively. These are shown using three lock symbols in Figure 1, and will
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eventually be transformed into UIDs.

Calculate set difference. Party P shuffles Ec in step 3 and sends it to party C which uses it
to calculate the symmetric set difference. In step 4 , party C calculates two set differences;
Sc = Ec \ Ep and Sp = Ep \ Ec. Party C then computes srcc and srcp for all elements sc and
sp in Sc and Sp respectively. These are shown as outputs of step 5 . In step 6 , party P
computes s

rcrp
p .

Output mapping. The last step calculates the universal identifiers as H(ci)
kckprcrp and H(pj)

kckprcrp .
A key point to note is that each party knows its own permutation and can undo it to generate
the mapping M .

1. In step 7 , party C sends elements srcc to party P . Note that s
rcrp
c is of the form

H(pj)
kckprcrp . Similarly it sends Vp to party P in step 8 . Party P undoes the permuta-

tion and computes v
rp
p for each element in Vp to get elements of the form H(pj)

kckprcrp .
To generate the mapping M , elements of the form s

rcrp
c are mapped to ⊥ and undoing

the permutation maps v
rp
p to the original records.

2. Likewise, in step 7 , party P sends elements s
rcrp
p to party C. Note that these elements

are of the form H(ci)
kckprcrp . Similarly it sends Vc to party C in step 8 . Party C the

undoes the permutation and computes vrcc for each element in Vc to get elements of the
form H(ci)

kckprcrp . The mapping is generated in an identical manner.

We present the protocol
∏PID formally in Figure 2.
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∏PID

Inputs: [C : {c1, . . . , cn}, P : {p1, . . . , pm}]
Outputs: [C : (UID,Mc), P : (UID,Mp)]

Let G be a cyclic group of order q with generator g wherein DDH is hard, and H(·) : {0, 1}∗ → G
modeled as a random oracle.

Step 1 (Exchange records): C

• Let kc, rc
R← Zq, and Uc ← ∅.

• For each ci ∈ C compute ui
c = H(ci)

kc and let Uc = Uc ∪ {ui
c}.

• Randomly shuffle the elements in Uc using a permutation πc and send to P.
Step 1 (Exchange records): P

• Let kp, rp
R← Zq, and Up, Ec, Vc ← ∅

• For each pi ∈ P compute ui
p = H(pi)

kp , and let Up = Up ∪ {ui
p}

• Randomly shuffle the elements in Up using a permutation πp

• For each ui
c ∈ Uc:

– Compute eic = (ui
c)

kp and let Ec = Ec ∪ {eic}
– Compute vic = (eic)

rp and let Vc = Vc ∪ {vic}

• Randomly shuffle the elements in Ec and send the sets Ec, Vc, Up to C
Step 2 (Calculate set difference): C

• Let Ep, Vp, S
′
c = ∅

• For each ui
p ∈ Up:

– Compute eip = (ui
p)

kc and let Ep = Ep ∪ {eip}
– Compute vip = (ui

p)
kcrc and let Vp = Vp ∪ {vip}

• Let Sp = Ep \ Ec and Sc = Ec \ Ep

• For each sic ∈ Sc, let S′
c = S′

c ∪ {(sic)rc}
• Send the sets Vp, S

′
c, Sp to P

Step 2 (Output mapping): P

• Let S′′
c ,Wp = ∅

• Shuffle back the elements of Vp using π−1
p . For every vip ∈ Vp, let Wp = Wp ∪ {(vip)rp}, and

Mp[(v
i
p)

rp ] = pi

• For each sic ∈ S′
c, let S′′

c = S′′
c ∪ {(sic)rp} and Mp[(s

i
c)

rp ] = ⊥
• Output UIDp = Wp ∪ S′′

c and Mp

• For each sip ∈ Sp, let S′
p = S′

p ∪ {(sip)rp}
• Send S′

p to C
Step 3 (Output mapping): C

• Let Wc, S
′′
p = ∅

• Shuffle back the elements of Vc using π−1
c . For every vic ∈ Vc let Wc = Wc ∪ {(vic)rc} and

Mc[(v
i
c)

rc ] = ci

• For every sip ∈ S′
p let S′′

p = S′′
p ∪ {(sip)rc} and Mc[(s

i
p)

rc ] = ⊥
• Output UIDc = Wc ∪ S′′

p and Mc

Figure 2: Private-ID Protocol
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3.1 Security of Private-ID,
∏PID

We use standard simulation-based definitions of security for secure multiparty computation to prove
that the protocol is secure against a semi-honest (honest-but-curious) adversary. In particular, the
security argument is split into two pieces, one against a corrupted C and another against a corrupted
P .

In each case, we describe a simulator SIM that only takes the corrupted party’s input, the size of
the two sets C and P (and in case of corrupted C also size of C ∩P) as input and indistinguishably
simulates the view of that party in the real protocol. The view of a party consists of its inputs, the
randomness it uses, as well as messages sent and received throughout the protocol. More formally,
let REALa,λ∏PID(C,P) be a random variable representing the view of party a in a real protocol execution
where the random variable ranges over the internal randomness of both parties. Our first theorem
captures security against a corrupted C as follows.

Theorem 1 (Security of
∏PID against a semi-honest C). There exists a PPT simulator SIMc such

that for all security parameter λ and all inputs C = {c1, . . . , cn} and P = {p1, . . . , pm},

REALC,λ∏PID(C,P) ≈ SIMc(C, 1λ,m, n, ℓ)

where ℓ = |C ∩ P|.

proof sketch. In Figure 3, we describe the simulator SIMc which we claim indistinguisably simulates
the real view of party C.

Simulate C’s step 1:

• Generate kc, rc
R← Zq

• Honestly generate Uc, i.e. for each ci ∈ C compute ui
c = H(ci)

kc and let Uc = Uc ∪ {ui
c}.

Simulate P ’s step 1:

• For each i ∈ [n] compute gi
R← G, and let Ec = Ec ∪ {gkc

i }.

• For each j ∈ [m], if j ≤ ℓ, let hj = gj , else let hj
R← G, and let Up = Up ∪ {hj}.

• Let Vc = {v1, . . . , vn} where all vi’s are randomly selected from G

• Randomly shuffle the elements in Ec, Up and send the sets Ec, Vc, Up to C

Simulate C’s step 2: SIMc does this step exactly as the protocol describes and using rc and kc
it generated above. So we skip the full details. At the end of this step SIM outputs Vp, S

′
c, Sp for

P .
Simulate P ’s step 2:

• Let J = m− ℓ. For i ∈ [J ], let S′
p = S′

p ∪ {si} for randomly selected si in G, and send S′
p

to C.

Simulate C’s Step 3: SIMc does this step exactly as the protocol describes and using rc it
generated above.

Figure 3: Description of SIMc for Theorem 1

Using a sequence of hybrid arguments, we show that the distribution generated by SIMc is in-
deed indistinguisable from the real view of C.
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H0: This is the view of party C in the real execution of the protocol.

H1,0: Identical to H0.

H1,i: For i ∈ [n−ℓ], the same as H1,i−1 except that we replace H(ci∗)
kckp in Ec with gkci for random

gi ∈ G, where i∗ is the index of the first not-yet-replaced item in C \ P.

H2,0: Identical to H1,n−ℓ.

H2,j : For j ∈ {1, . . . ,m−ℓ}, the same as H2,j−1 except that we repalce H(pj∗)
kp in Up with random

hj ∈ G, where j∗ the first not-yet-replaced item in P \ C.

H3,0: Identical to H2,m−ℓ

H3,t: For t ∈ [ℓ]: the same as H3,t−1 except that we replace H(ct∗)
kckp in Ec with gkct∗ and H(pt∗)

kp

in Up with gt∗ where t∗ is the index of the first not-yet-replaced item in the intersection C ∩P

H4,0: Identical to H3,ℓ

H4,i: for i ∈ [n], the same as H4,i−1 except that we replace vi ∈ Vc with a randomly selected element
in G

H5,0: Identical to H4,n

H5,i: for i ∈ [m − ℓ], the same as H5,i−1 except that we replace si ∈ S′
c with a randomly selected

element in G

H6 : The view of C output by SIMc.

We now need to argue that each consecutive pair of hybrids in the above sequence are in-
distinguisable by a PPT algorithm. The interesting arguments here are those for (H1,i−1,H1,i),
(H2,j−1,H2,j), (H3,t−1,H3,t), (H4,i−1,H4,i) and (H5,i−1,H5,i). Given that they all follow a similar
line of argument that relies on hardness of DDH and the random oracle property of the hash func-
tion, we go through the argument for (H1,i−1,H1,i) as an example. In particular, we argue that
for any PPT adversary A who can distinguish the two hybrids, we devise an adversary B who can
solve the DDH problem. B is given (g, ga, gb, gc) and needs to decide whether c is random or c = ab.
First note B can program H(·) to return gb on input ci∗. We also let ga = gkp . Then it is easy to
observe that since gi is uniformly random, the tuple (g, ga,H(ci∗), g

c) is identically distributed to
H1,i−1 if c = ab and is identically distributed to H1,i if c is random (since gi is uniformly random).
If A can decide which hybrid it is interacting with, B can decide which DDH tuple it was given
with the same probability.

Theorem 2 (Security of
∏PID against a semi-honest P ). There exists a PPT simulator SIMp such

that for all security parameter λ and all inputs C = {c1, . . . , cn} and P = {p1, . . . , pm},

REALP,λ∏PID(C,P) ≈ SIMp(P, 1λ,m, n)

where ℓ = |C ∩ P|.

proof sketch. The first thing to note is that a corrupted P does not learn the size of intersection
and hence we do not need to pass ℓ as input to SIMp.

The description of SIMp is quite straighforward. It generates rp, kp randomly as P would, and
performs all computations that P does throughout the protocol using these two values as described.
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Figure 4: Private Set Intersection protocol

For all group elements to be received from C, SIMp replaces them with randomly generated elements
in G. This includes elements in Uc, Vp, S

′
c, Sp.

We will not go through a detailed sequence of hyrid arguments but note that starting from the
first hybrid which is the view of P in the real protocol, we sequentially replace elements sent by C
with random group elements until we reach the view generated by SIMc. The argument we used in
the proof of Theorem 1 can be plugged in here to show that each pair of consecutive hybrids are
indistinguishable if DDH is hard and H is a random oracle.

4 Private Secret Shared Set Intersection Protocol
The Private Shared Set Intersection protocol,

∏PS3I, shown in Figure 4 computes additive shares
of records common to both parties. As before, let C = {(c1, vc,1), . . . , (cn, vc,n)} be the set of tuples
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of (identifier, value) associated with party C on the left. Similarly P = {(p1, vp,1), . . . , (pm, vp,m)}
be the same for party P on the right. For simplicity, we assume a single value vc,i or vp,i associated
with each record but this can be easily generalized to a vector of values per record on each side and
the protocol would work the same way.

The goal is to compute additive shares of vc,i’s and vp,j ’s for all i, j where ci = pj , i.e. to
compute additive shares for all records in the intersection of C ∩P. These additive shares can later
be fed to a downstream MPC protocol that internally reconstructs the values by adding the shares
and performs aggregate analysis on them.

More precisely, let S = {(vc,i, vp,j) for all i, j s.t. ci = pj} and let |S| = k. C and P want
to learn the sets Rc,I = {(rci , r

p
i )}ki=1 and Rp,I = {(sci , s

p
i )}ki=1 for random values in [0, 2ℓ) where

rci + sci = vc,i mod 2ℓ and rpi + spi = vp,i mod 2ℓ, for an agreed upon integer ℓ.

4.1 The non-streaming
∏PS3I

Once again, our starting point is a DDH-based PSI along with random shuffling which ensures
original records cannot be linked to those in the intersection.

Exchange records and keys. In step 1 , C and P generate keypairs (pkc, skc) and (pkp, skp) for
the additively homomorphic scheme HE = (KG,Enc,Dec) they will use to compute shares,
and share the public key with each other. In step 2 , C computes H(ci)

kc using a random
scalar kc for all i, randomly shuffles them and sends them to P . C also computes Enc(pkc; vc,i),
shuffles and sends to P . Similarly P computes H(pj)

kp using a random scalar kp and computes
Enc(pkp; vp,i), randomly shuffles them and sends to C. In step 3 , C computes H(pj)

kckp and
P computes H(ci)

kckp and further shuffles H(ci)
kckp in step 4 . We denote H(ci)

kckp as Ec

and H(pj)
kckp as Ep. These double exponentiated DH values are used to determine which

ones correspond to records in the intersection.

Calculate intersection. P generates a random plaintext rc,i in the domain of the encryption
scheme in step 5 ; homomorphically subtracts it from Enc(pkc; vc,i) in step 6 and sends
back to C in step 7 . The homomorphic subtraction fully hides the values as a one-time pad
encryption, while providing additive shares (vc,i − rc,i, rc,i) of vc,i for all i, between P and C.
C intersects the two shuffled sets of DH values Ep and Ec. In step 8 and 9 , C generates
random plaintexts rp,i, encrypts them with pkp and homomorphically subtracts them from
encrypted values Enc(pkp; vp,i) that lie in the intersection.

Output shares For each item in Ec that is in the intersection, C decrypts the corresponding
ciphertext and outputs vc,j − rc,j as its additive share in step 13 . In step 11 , C also lets P
know the index j such that P can use the correct rc,j as its additive share of vc,j . Learning
the index j does not reveal the actual item in the intersection to P since C had shuffled
its DH values before sending to P . Similarly in step 10 , for each item in Ep that is in
the intersection, C outputs rp,j as its additive share and sends the corresponding ciphertext
Enc(pkp; vp,j − rp,j) to P who decrypts and outputs its additive share.

In the above discussion, we assume that the plaintext domain of the encryption scheme is ZN

for some integer N . For Paillier’s encryption, however, N is quite large and it may not be the
domain that the downstream MPC would want to operate on. Let’s assume that the downstream
application performs arithmetic operations modulo 2ℓ for a smaller integer ℓ.

In particular, at the end of this interaction, for each shared value in the intersection, one party
holds a value a ∈ ZN , while the other party a value b ∈ ZN such that a + b = x mod N where +
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is integer addition and x < 2ℓ. Since we know the range of plaintext values we work with in our
application and can bound them accordingly.

We claim that a′ = a mod 2ℓ and b′ = b − N mod 2ℓ are correct additive shares of x mod
2ℓ except with probability 1/2N−ℓ which is negligibly small when N ≫ ℓ. More precisely, in our
protocol a = x+ (N − r) mod N and b = r for a random r ∈ ZN . Moreover, it is easy to see that
as long as r > 2ℓ, we can write a = x+ (N − r) as integer addition without the modular operation
since the sum will not be larger than N . For a random r in ZN , this is true with probability
1− 2ℓ/N which is all but negligible for all reasonable value of ℓ given that N is large. As a result
we have a+ b = x+ (N − r) + r = x+N . Then note that

x = a+ b−N

= a0 + a12
ℓ + b0 + b12

ℓ −N0 −N12
ℓ

= (a0 + b0 −N0) + (a1 + b1 −N1)2
ℓ

where a0, b0, N0 < 2ℓ. Since x < 2ℓ, we then have that x mod 2ℓ = x = (a0 + b0−N0) mod 2ℓ. In
other words, it suffices for one party to compute a0 = a mod 2ℓ and for the other party to compute
b0 −N0 = (b−N) mod 2ℓ and these would be correct additive shares of x modulo 2ℓ.

We present a formal description of the protocol in Figure 5
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Non-Streaming
∏PS3I

Inputs: [C : {(c1, vc,1), . . . , (cn, vc,n)}, P : {(p1, vp,1), . . . , (pm, vp,m)}] for vc,i, vp,i ∈ [0, 2ℓ)
Outputs: [C : Rc,I = {(rci , r

p
i )}ki=1, P : Rp,I = {(sci , s

p
i )}ki=1] for k = |C ∩ P size of intersection

Common setup: Let G be a cyclic group of order q with genertor g wherein DDH is hard, and
hash function H(·) : {0, 1}∗ → G modeled as a random oracle. Let HE = (KG,Enc,Dec) be a
semantically secure additively homomorphic encryption scheme.

Step 1 (Exchange records and keys): C

• Let kc
R← Zq, (pkc, skc)← KG(1λ) , and Uc ← ∅.

• For each ci ∈ C compute ui
c = (H(ci)

kc , Enc(pkc, vc,i)) and let Uc = Uc ∪ {ui
c}.

• Randomly shuffle the records in Uc and send Uc, pkc to P.

Step 1 (Exchange records and keys): P

• Let kp
R← Zq, (pkp, skp)← KG(1λ), and Up, Ec,← ∅

• For each pi ∈ P compute ui
p = (H(pi)

kp , Enc(pkp, vp,i)), and let Up = Up ∪ {ui
p}

• Randomly shuffle the records in Up

• For each ui
c ∈ Uc:

– Compute rc,i
R← ZN and let eic = ((ui

c[0])
kp , ui

c[1]⊖h rc,i) and let Ec = Ec ∪ {eic}

• Randomly shuffle the records in Ec using a permutation πp and send the sets Ec, Up, pkp to
C

Step 2 (Calculate set intersection, Output shares): C

• Let Ep, L← ∅

• For each ui
p ∈ Up:

– Compute eip = ((ui
p[0])

kc , ui
p[1]) and let Ep = Ep ∪ {eip}

• For every i, j where eic[0] = ejp[0]

– Compute rp,j
R← ZN and let L = L ∪ (i, ejp[1]⊖h rp,j)

– Let Rc,I = Rc,I ∪ {(Dec(skc, e
i
c[1]) mod 2ℓ, rp,j) mod 2ℓ}

• Send L to P, and output Rc,I

Step 2 (Output shares): P

• For each (i, ejp[1]) ∈ L, let Rp,I = Rp,I ∪ {(rc,π−1
p (i) − N mod 2ℓ, Dec(skp, e

j
p[1]) − N

mod 2ℓ)}

• Output Rp,I

Figure 5: Non-Streaming Private Secret Shared Set Intersection

4.2 Security of
∏PS3I

We claim that the
∏PS3I protocol is secure against a semi-honest adversaries who may corrupt

either party. The following two theorems capture this security.

12



Theorem 3 (Security of
∏PS3I against a semi-honest C). There exists a PPT simulator SIMc such

that for all security parameter λ and all inputs C = {c1, . . . , cn} and P = {p1, . . . , pm},

REALC,λ∏PS3I(C,P) ≈ SIMc(C, 1λ,m, n, ℓ)

where ℓ = |C ∩ P|.

proof intuition.We only sketch out how the simulator could work here. The complete proof
and sequence of hybrid games would follow a similar line of argument as the

∏PID protocol. We
can simulate the DH values C receives from P in step 1 of Figure 5, by simply making sure ℓ of
them are a match with C’s input and the other ones are random group elements. As before, this
cannot be distinguished given the DDH assumption and the fact that H is a RO. The encrypted
values associated with C’s set can be simulated with encrypted random plaintexts which would be
identically distributed to those P sends which are one-time padded by subtracting random values
modulo N . The encrypted values associated with P ’s set, can be simulated by encryptions of zero
and would be computationally indistinguishable due to semantic security of the HE scheme.

Theorem 4 (Security of
∏PS3I against a semi-honest P ). There exists a PPT simulator SIMp such

that for all security parameter λ and all inputs C = {c1, . . . , cn} and P = {p1, . . . , pm},

REALP,λ∏PS3I(C,P) ≈ SIMp(P, 1λ,m, n, ℓ)

where ℓ = |C ∩ P|.

proof intuition. We can simulate P ’s view in step 1 of Figure 5 by replacing the DH values C
sends with random group elements which would be indistinguishable based on the DDH assumption
and the fact H is an RO, and the encrypted values C sends with encryptions of zeros which would
be indistinguishable due to semantic security of HE. What P receives in step 2 of Figure 5 are
tuples of indices and encryption of one-time padded values. The indices can be simulated with ℓ
randomly chosen indices [1, n] which is identically distributed given that C would also randomly
shuffle its set before sending to P . The encrypted values can be replaced with encrypted uniformly
random plaintexts which again would be indetically distributed given the one-time pad property of
modular addition.

4.3 The streaming
∏PS3I

We also consider a streaming version of the above protocol where P ’s dataset will come in incre-
mentally in batches, one per epoch, and each batch will be processed and immediately incorporated
into an ongoing downstream computation instead of waiting to receive them all before starting the
computation.

C holds a fixed set C of tuples (ci, vc,i), and during each epoch, P will hold a batch B of tuples
(pi, vp,i) for i in [1,m] where m = |B|. The goal is to compute additive shares of vc,i’s and vp,i’s for
items in the intersection of B and C, and compute additive shares of 0 for those items in B that
are not in the intersection. This formulation ensures that P does not learn which items in B are
in the intersection. This is important given the small size of B and the fact that P knows which
users are in B. In the extreme case, if B always contains a single user record known to P , learning
whether there was a match or not is equivalent to revealing the full intersection to P .

In Figure 6, we describe an enhanced version of
∏PS3I which avoids this leakage while processing

P ’s input in a streaming fashion. In an initial stage that is run only once, P and C compute the
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double-exponentiated DH values corresponding to C as well as for a set of dummy records D created
by C of size T , where T is an upperbound on total size of all batches we want to process for P .
We make sure C learns these DH values in a randomly shuffled order where it knows which ones
correspond to dummy items while it does not know the order of DH values for the non-dummy
items. As before, we have P randomly shuffle the set after exponentiating them with its secret scalar
kp, and to help C learn which ones are associated with a dummy element, we use a randomizable
public-key encryption RE. In particular, C sends along with each DH value H(ci)

kc , Enc(1) to
indicate it is a real value and with each H(di)

kc , Enc(0) to indiate it is dummy. P can then
randomize these ciphrertexts when sending back the associated DH values. Upon decryption, if
the plaintext corresponds to a 0, C knows the item was dummy and if it is non-zero, it marks it as
“real”. In addition, we ensure that both parties learn additive shares of the values corresponding to
each DH value (achieved similar to the non-streaming version using the additively hoomomohpric
encryption scheme) where C chooses the value associated with each dummy element to be zero (or
some other default value). P does not learn which items are dummy in this process and holds an
additive share for every real and dummy value in the set.

Every time a new batch B of P ’s items arrive, the two parties interact for C to learn the DH
values for P ’s new batch in a shuffled order. If a DH value finds a match in the pre-processed set of
DH values from the initial setup, it is in the intersection and if it does not find a match, C simply
uses one of the dummy records in place of a real one. C just needs to make sure it never uses a
dummy value twice and that each time it chooses the next dummy element uniformly at random.
The rest of the protocol is similar to the non-streaming variant. For each item in B, C and P will
end up additively sharing either the values corresponding to a real item in the intersection of the
batch and C, or the dummy value 0. P does not know which is the case. Only the downstream
computation can determine this by reconstructing the shares and inspecting the value.
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Streaming
∏PS3I

Inputs: [C : {(c1, vc,1), . . . , (cn, vc,n)}, P : B = {(p1, vp,1), . . . , (pm, vp,m)}] for vc,i, vp,i ∈ [0, 2ℓ)
Outputs for each batch: [C : Rc,I = {(rci , rpi )}

m
i=1, P : Rp,I = {(sci , spi )}

m
i=1 for m = |B|

Common setup: Let G be a cyclic group of order q with genertor g wherein DDH is hard, and
H(·) : {0, 1}∗ → G modeled as a random oracle. Let HE = (KG1, Enc1, Dec1) be a semantically secure
additively homomorphic encryption scheme, and RE = (KG2, Enc2, Dec2, Rand2) is a randomizable
semantically secure PKE.

Initial Setup

Step 1: C

• Let kc
R← Zq, (pk1

c , sk
1
c)← KG1(1

λ) , (pk2
c , sk

2
c)← KG2(1

λ) and Uc ← ∅.
• For each ci ∈ C compute ui

c = (H(ci)
kc , Enc1(pk

1
c , vc,i), Enc2(pk

2
c , 1)) and let Uc = Uc ∪ {ui

c}.
• Generate a set D = {d1, . . . dT } of dummy records where T is an upperbound on total size of all

of P’s batches combined.
• For each di ∈ D compute dic = (H(di)

kc , Enc1(pk
1
c , 0), Enc2(pk

2
c , 0)) and let Uc = Uc ∪ {dic}.

• Randomly shuffle the records in Uc and send Uc, pkc to P.
Step 1: P

• Let kp
R← Zq, (pkp, skp)← KG(1λ), and Ec ← ∅

• For each ui
c ∈ Uc:

– Compute rc,i, r
′
c,i

R← ZN and let eic = ((ui
c[0])

kp , ui
c[1] ⊖h rc,i), Rand2(u

i
c[2]) and let Ec =

Ec ∪ {eic}

• Randomly shuffle the records in Ec using a permutation πp and send the set Ec and pkp to C
Step 2: C

• Let Fc ← ∅.
• For each eic ∈ Ec: let f i

c [0] = eic[0]; f i
c [1] = Dec1(sk

1
c , e

i
c[1]) and f i

c [2] = “dummy” if
Dec2(sk

2
c , e

i
c[2])

?
= 0 and f i

c [2] =“real” otherwise. Let Fc = Fc ∪ {f i
c}

Repeat for each batch B
Step 1: P

• For each pi ∈ B compute ui
p = (H(pi)

kp , Enc(pkp, vp,i)), and let Up = Up ∪ {ui
p}

• Randomly shuffle the records in Up and sends to C
Step 1: C

• Let L,O ← ∅
• For each ui

p ∈ Up compute eip[0] = ui
p[0]

kc

• For every 0 ≤ j ≤ m

– Compute rp,j
R← ZN

– if f i
c [0]

?
= ejp[0] for some i, let L = L ∪ (i, ui

p[1] ⊖h rp,i) and let Rc,I = Rc,I ∪ {(f i
c [1])

mod 2ℓ, rp,j mod 2ℓ}
– if ejp[0] ̸= f i

c [0] for any i, choose a random 0 ≤ k ≤ n + T where fk
c [2] = “dummy” and

k /∈ O. Let L = L ∪ (k, uk
p[1]⊖h rp,k), O = O ∪ {k} and Rc,I = Rc,I ∪ {(fk

c [1]) mod 2ℓ, rp,k)
mod 2ℓ}

• Send L to P, and output Rc,I

Step 2: P
• For each (i, ejp[1]) ∈ L, let Rp,I = Rp,I ∪ {(rc,π−1

p (i)
−N mod 2ℓ, Dec(skp, e

j
p[1])−N mod 2ℓ)}

• Output Rp,I

Figure 6: Streaming Private Secret Shared Set Intersection15



5 Evaluation
In this section, we discuss our implementation and present various performance characteristics of
our two protocols, including wall-clock time and network traffic volume. We also show the effect
of communication overhead, SIMD features like AVX2, and multiple CPU cores on these protocols.
We further implement the Private Join and Compute (PJ&C) protocol of [IKN+19] as a baseline
for comparison. We implement all protocols in the Rust programming language and plan to open-
source the code.

5.1 Implementation
Our decision to use Rust was driven by its superior safety features when it comes to memory
management in a multi-threaded setting and the quality of existing open-source cryptographic
libraries. We use the Dalek library for Elliptic Curve Cryptography [dal20] which implements the
Ristretto technique [ris20] for Curve25519. This enables the use of a fast curve while avoiding
high-cofactor curves vulnerabilities. For PS3I and PJ&C protocols, we use Paillier with a 2048-bit
public key as the additive HE scheme. We use the Paillier implementation of KZen Networks [pai20]
which in turn relies on GMP C++ library [Gt20] for arbitrary precision arithmetic. The parties
communicate via RPC over TLSv1.3 using Protocol Buffers.

5.2 Single thread performance
We measure single thread performance on c5.18xlarge instances on AWS, with Intel Xeon Platinum
8000, using Rust version 1.43.1 running in Docker on Ubuntu 18.04. Each party runs on its own
AWS instance, both of which are in the same region and availability zone. The processor has AVX2
instructions that speed up ECC operations in Dalek library by up to 60%. Computation time
depends on the size of the intersection between the records from two different parties. In Table 1
we show performance when the intersection size is 50% of input size. We create artificial datasets
where records have identifiers that are 128-bit long strings and values are unsigned 64-bit integers.
As expected, we see linear increase in both wall clock time and in the amount of data communicated
as we increase the number of records.

Input size Private-ID PS3I PJ&C
Time(s) In/Out [MB] Time(s) In/Out[MB] Time(s) In/Out[MB]

103 0.5 0.1/0.1 25 1.9/2.6 10.5 0.04/1.3
104 4.2 1/1.2 247 19.5/26 101 0.4/13.3
105 42 11.5/13.4 2461 196/261 1014 4.6/133
106 425 106/123 24618 1950/2600 10125 45.5/1330
* In/Out communication is shown for one party P , since it is the same for both parties. Data obtained from

network communication is measured by Docker container stats. Input size is the number of records that
C and P each have.

Table 1: Single thread performance at different input sizes across protocols
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Figure 8: CPU Speedup

5.3 Multi-core and Inter-region Performance

Protocol Input size Time(s) In/Out [MB] Time %
EC HE Misc.Ops

Private-ID 107 317 1050/1210 36.8 0.0 63.2
PS3I 107 6524 19500/26000 0.7 94.7 4.6
PJ&C 107 2642 448/13300 1.7 93.9 4.4
* C and P each runs on a dedicated virtual server instance in the same availability zone.

Table 2: Cloud performance for input size 10 million records on AWS c5.18xlarge

We tested the viability of our protocols for real-world scenarios where size of datasets can be as
large as millions or even tens of millions of records. Each party runs on its own c5.18xlarge AWS
instance that features a 3.6 GHz AVX2 enabled processor with 72 CPU cores (hyperthreaded) and
144GB RAM. We use a thread pool to efficiently utilize the available cores for compute heavy
cryptogrphic operations. Other I/O bound operations such as permutations, disk and network I/O,
and serialization/deserialization use a single thread. Figure 8 shows how performance varies with
number of available cores. We see that performance saturates at around 40 cores which is what we
would expect from Amdahl’s law. Table 2 shows the performance for each protocol on 10 million
records and the percentage of the time the code takes for varios operations. As expected, HE takes
most of the time for PS3I and PJ&C. For Private-ID, miscellaneous single-threaded operations take
a more significant portion, indicating that communication becomes the main bottleneck when we
parallelize computation.

To test scalability, we also ran the Private-ID protocol on 100 million records which took 60
minutes when both parties were within the same availability zone and 94 minutes when one party
was in a AWS datacenter in Frankfurt, Germany and another in Ohio, US—a 55% increase due to
inter-region communication.
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