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Abstract. The selection criteria for NIST’s Lightweight Crypto Standardization (LWC)
have been slowly shifting towards the lightweight efficiency of designs, given that a
large number of candidates already establish their security claims on conservative,
well-studied paradigms. The research community has accumulated a decent level
of experience on authenticated encryption primitives, thanks mostly to the recently
completed CAESAR competition, with the advent of the NIST LWC, the de facto
focus is now on evaluating efficiency of the designs with respect to hardware metrics
like area, throughput, power and energy.
In this paper, we focus on a less investigated metric under the umbrella term
lightweight, i.e. energy consumption. Quantitatively speaking, energy is the sum to-
tal electrical work done by a voltage source and thus is a critical metric of lightweight
efficiency. Among the thirty-two second round candidates, we give a detailed evalua-
tion of the ten that only make use of a lightweight or semi-lightweight block cipher at
their core. We use this pool of candidates to investigate a list of generic implementa-
tion choices that have considerable effect on both the size and the energy consumption
of modes of operation circuit, which function as an authenticated encryption primitive.
Besides providing energy and circuit size metrics of these candidates, our results
provide useful insights for designers who wish to understand what particular choices
incur significant energy consumption in AEAD schemes.
In the second part of the paper we shift our focus to threshold implementations
that offer protection against first order power analysis attacks. There has been no
study focusing on energy efficiency of such protected implementations and as such
the optimizations involved in such circuits are not well established. We explore
the simplest possible protected circuit: the one in which only the state path of the
underlying block cipher is shared, and we explore how design choices like number of
shares, implementation of the masked s-box and the circuit structure of the AEAD
scheme affect the energy consumption. 1

Keywords: energy · power · lightweight cryptography · AEAD · block ciphers ·
unrolling · hardware · logic synthesis

1 Introduction
Applications running on resource-constrained devices generally require a decent level of
protection regarding their communication layer, even though the allocated budget for
security tends to be sparse. It presents itself in the form of constraints over few metrics,
such as circuit size, energy consumption, or latency; and prioritization among them depends
on the particular application and the device in question. Sensor networks, medical implants,
smart cards, and Internet-of-Things are a selection of applications where either one or few
of these metrics play a key role.

1The complete source code alongside test vectors of all presented implementations is publicly available
on GitHub and c4science.
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These constraints spurred multiple lines of research in the crypto community, one
mainly focusing on realizing the standardized symmetric primitives in a more lightweight
manner. For instance, reducing the circuit-size of AES has been extensively studied
[SMTM01, Can05, FWR05, MPL+11, MSS+15, BBR16a]. On a separate line of research,
bootstrapping new primitives from scratch is taken as an alternative and is possibly more
fruitful approach to obtain symmetric primitives with better lightweight characteristics.
This justifies why the literature has seen a large number of new block ciphers such as
PRESENT [BKL+07], KATAN [CDK09], SIMON [BSS+13], SKINNY [BJK+16], and GIFT
[BPP+17], to name only a few. There are even some attempts to discover new techniques
to improve lightweightness of these new block ciphers [JMPS17, BBRV19]. As block ciphers
alone are not ready-to-use primitives but rather need to be wrapped in a mode of operation,
a group of candidates in NIST LWC utilize these lightweight block ciphers to attain an
authenticated encryption (AE) primitive, i.e. the ten candidates on which this paper
focuses [nisa].

With the advent of CMOS technology, ever-smaller transistors relaxed the constraints
on all mentioned lightweight metrics, in a trend commonly known as Moore’s law; yet
energy costs have only decreased due to downscaling of supply voltages. Storing energy
did not become as cheaper, and the capacity of batteries increased at most few folds over
the decade. Hence among these constraints, energy (and similarly power) still remains as
a challenging one for certain applications. Examples include battery-powered IoT devices,
sensors that are expected to run up to year on a typical AAA battery, medical electronic
implants whose replacement would induce heavy toll for patients, RFID devices that rely
on an external reader to supply the power for their computations. Hence during the
development of these applications, any energy consuming operation must be thoroughly
justified, and if found too expensive, a security feature might even be dropped altogether
even though it is desirable.

Although energy consumption of a block cipher is a harder metric to quantify and
hardly intuitive, Kerckhof et al. [KDH+12] provide initial results by evaluating the effects
of unrolling and voltage scaling. Batina et al. [BDE+13] gives a comprehensive comparison
between lightweight block ciphers and AES; and draws attention to the trade-off between
area and energy consumption. In fact, the two metrics barely correlate. As an example,
for the combined encryption and decryption of AES, the smallest bytewise serialized circuit
with (2060 GE) consumes six times more energy than that of a 1-round unrolled circuit
(22729 GE). [BBR16b, BBR17].

Banik et al. [BBR15] finally presented a model that captures the energy consumption of
a block cipher in terms of r, where r denotes the number of unrolling in an implementation.
For many ciphers, including AES, their model verifiably predicts that the energy-optimal
choice is r = 1, where for some lighter block ciphers, such as PRESENT, the optimal point
shifts to r = 2. However, as stated before, block ciphers usually are not ready-to-use
primitives and must be wrapped within a mode of operation. Therefore, the effects of
additional circuitry to energy consumption remains unanswered.

1.1 Our Contributions
Our paper’s contribution expands in few directions, with the main focus on energy:

1. We explore the effects of clock-gating, r-round unrolling, fully-unrolling, inverse-
gating and register-borrowing techniques to deduce the architectural design choices
that lead to the most energy efficient implementations. We look at each candidate
individually and identify optimal circuit configurations that would reduce the energy
consumption of AEAD circuit. The large number of implementations helps us make
broader observations regarding energy efficiency in AEAD modes instantiated with
lightweight block ciphers.
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2. In parallel to the first effort, we provide a fair evaluation of the aforementioned
candidates from NIST LWC. The data we obtain show how each candidate fares,
when implemented with the similar approach.

3. We extend the model of Banik et al. [BBR15] from block ciphers to modes of operation.
Based on the extended model and the measurements on the selected candidates, we
demonstrate that the optimal choice of r boils down to two factors; the complexity
of the core cipher and the complexity of the surrounding mode of operation circuitry.
Whereas the optimal choice for block ciphers is typically r ∈ {1, 2}, for full AE
circuits we experimentally show that this becomes r ∈ {2, 3}.

4. In the last part of the paper we move to threshold implementations that provide
security against power analysis attacks. Although there have been many papers that
optimize the circuit area of these circuits [PMK+11, BJK+16], there have not been
many papers that look at the energy consumption of these circuits as an optimizable
metric. We look at both 3-share and 4-share threshold circuits, and look at factors
like number of shares, decomposability of s-boxes that affect the energy consumption
of such circuits.

1.2 Outline
The paper unfolds as follows. Section 2 reiterates known energy-reduction techniques and
lays out a common interface and test bench for all implementations. In Section 3, we
briefly introduce the chosen schemes alongside their internal block ciphers and detail their
implementations. Section 4 evaluates the effects of the individual design choices on the
schemes and extends Banik et al.’s energy model of block ciphers to modes of operations
in the chosen authenticated encryption algorithms. We also elaborate on the obtained
energy measurements and chart the results. In Section 5, we turn our attention to first
order threshold implementations of the AEAD schemes. We conclude our paper with the
takeaway claims for designers and implementors in Section 6.

2 Preliminaries
To guarantee fair conditions in our evaluation we unified our implementations under a
common interface. Our hardware API is designed to be simple, as it assumes that the
associated data and message bits are properly padded so that they only consists of multiple
blocks. This padding must be done according to the individual specification of the AE
scheme, before the AE operation is initiated in the circuit. Then our AEAD implementa-
tions can be used in all possible configurations (e.g. partial blocks, no authenticated data
or no message blocks) and comply with the exact specification.

Our reasoning for favoring this simpler API (with external-padding) is that it ensures
that no significant energy is consumed to handle the API itself. For instance, the CAESAR
HW API [HDF+16] requires padding to be done by the circuit, which brings a large array
of multiplexers and amplifies the energy consumption for each loaded associated data and
message block. However, depending on the application, this padding cost can be avoided,
e.g. handling padding on a microprocessor that makes the call can be less costly, or the
application might not even need padding, if the transmitted data always respects the block
sizes. Nonetheless, a preprocessor circuit could be placed before our AE schemes to ensure
CAESAR HW API compatibility. The input and output ports of our hardware API are
defined in the following way:

• input_wire CLK, RST: System clock and active-low reset signal. We distinguish two
different clock rates; 10 MHz for the partially-unrolled versions and 5 MHz for the
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fully-unrolled implementations2.

• input_vector KEY, NONCE: Key and nonce vectors. These signals are stable once
the circuit is reset and are kept active during the entire computation.

• input_vector DATA: Single data vector from which both both associated data and
regular plaintext blocks are loaded into the circuit. This choice saves an additional
large multiplexer, since all the schemes process associated data and plaintext blocks
separately and not in parallel.

• input_wire EAD, EPT: Single bit signals that indicate whether there are no associ-
ated data blocks (EAD) or no plaintext blocks (EPT). Both signals are supplied with
the reset pulse and remain stable throughout the computation.

• input_wire LBLK, LPRT: Single bit signals that indicate whether the currently
processed block is the last associated data block or the last plaintext block (LBLK),
and also whether it is partially filled (LPRT). Both signals are supplied alongside
each data block and remain stable during its computation.

• output_wire BRDY, ARDY: Single bit output indicators whether the circuit has
finished processing a data block and a new one can be supplied on the following rising
clock edge (BRDY) or the entire AEAD computation has been completed (ARDY).

• output_wire CRDY, TRDY: Single bit output indicators whether the CT and TAG
ports will have meaningful ciphertext and tag values starting from the following
rising clock edge.

• output_vector CT, TAG: Separate ciphertext and tag vectors. This again saves an
additional multiplexer in schemes where the ciphertext and tag are not ready at the
same time, or they appear at different wires.

2.1 Test Bench and Synthesis Options
One of the criteria in the NIST lightweight competition lies in the optimization of the
proposed schemes when they are fed with messages as short as eight blocks [nisb]. Hence,
our test bench focuses on supplying the circuit with various input lengths where a single
AE call contains at most one associated data block (where we consider each block as
128-bit), along with a random number of message blocks (not more than eight blocks
to make it short). The corner cases are also captured by generating inputs with either
empty authenticated data or empty message, as well as incomplete last blocks. Each
round-based AEAD implementation is run with the same test vector, where the length
ratio between authenticated data blocks and message blocks is roughly one to eight. For
unrolled implementations we use a shorter vector. This is summarized in Table 1.

Another point to consider is that the power dissipation and energy consumption of
an ASIC circuit is highly sensitive to the actual silicon technology it is implemented,
as well as generic optimization techniques available to the development kit. The RTL
synthesizer (in our case Synopsys Design Vision v2019.03) can also bring a significant
change in the results depending on the compilation flags. In order to isolate variations in
energy consumption caused by these, besides using the same technology (TSMC 90nm),
we maintain compilation options consistent when comparing candidates. Although these
variations are not likely to change the final ordering of candidates, it makes it difficult to
reproduce results if subtle details are not reported Further details on compilation options
are given in Section 4.7.

2The inverse-gating technique uses only the first phase of the clock cycle to compute the full block
cipher call, therefore the clock period is doubled to ensure all glitches are stabilized during this clock
phase.
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Table 1: Synthesis options, and the size of test vectors
Implementation Synopsys Compilation Flags # AD blocks # Msg blocks
r-Round AE compile_ultra 535 4278
Fully-unrolled compile -exact_map -area_effort high 28 207
Section 4.2 compile_ultra -noautogroup 535 4278
Threshold compile_ultra 535 4278

For all results reported in the paper, we maintained the following design flow. The
design was implemented at RTL level. A functional verification of the VHDL code was
then done using Mentor Graphics ModelSim. Thereafter, Synopsys Design Compiler was
used to synthesize the RTL design using the compile options in Table 1, and post-synthesis
correctness is verified with Synopsys VCS MX Compiled Simulator. The switching activity
of each gate of the circuit was collected by running post-synthesis simulation. The average
power was obtained using Synopsys Power Compiler, using the back annotated switching
activity. The “energy per processed block” metric was then computed as the product of
the average power and the total time taken to process x number of blocks, divided by x
itself.

2.2 Clock-gating
Clock-gating describes a general power-reduction technique that aims to limit the switching
activity of register banks. A classic, non-gated flip-flop is continuously charged and
discharged by the system clock which results in wasted activity during periods when the
flip-flop needs to preserve its content for multiple cycles. The clock signal in a clock-gated
register is artificially held constant through additional logic during these constant phases.
There exist many ways to implement clock-gated registers as detailed in [KAN11], however
in our case we chose the simple approach of NANDing the clock signal with an active-low
enable signal to produce a gated clock. A clock-gated register bank can fall prey to
timing issues if a single gated clock signal is used to drive many flip-flops, which can
be circumvented by partitioning the register bank into smaller segments such that each
segment is driven by its own gated clock as shown in Figure 1.

2.3 Inverse-gating
In a sequential arrangement of round function circuits, the glitches generated in the
first computation, until a stable value is reached, are amplified in the subsequent round
function calls, which is responsible for most of the dynamic power consumption of the
entire implementation. Banik et al. suggested round-gating as an effective countermeasure
against the propagation of glitches between the round functions [BBR+16c]. The tech-
nique saw a revision in 2018, coined inverse-gating, through an addendum by the same
authors [BBR+18]. In broad terms, inverse-gating suppresses the glitches between round
functions by inserting AND gates on the critical path which are then activated by a delayed
clock signal. Preferably, the delay time should be at least as big as the signal latency
at each round function output. Figure 1 depicts an inverse-gated unrolled arrangement.
Although, this technique effectively eliminates most of the propagated glitches, it comes
with a hefty impact on the additional amount of gates depending on the number rounds
and the width of the critical path.

2.4 Register-borrowing
A generic r-round unrolled implementation of a block cipher contains a register for its
internal state. Meanwhile, an AEAD circuitry around the block cipher also tends to bring
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Figure 1: Partitioned clock-gated register (left), fully-unrolled inverse-gated round function
(right).

a few additional registers (e.g. see Figure ??). An important observation is that for the
candidates GIFT-COFB, SUNDAE-GIFT, HYENA, Romulus; one of the external registers
is only needed to temporarily store a value for a brief amount of time during which the
core block cipher is not active. For instance, when processing message blocks, Romulus-N1
needs to store a running state for one clock cycle, only to feed it back as an input to the
core block cipher in the subsequent clock cycle (Figure 2.6 of [IKMP19]). Therefore, we
can remove the register inside the block cipher and let the register of the AEAD circuit
store the internal block cipher states. While the block cipher is idle, the AEAD reclaims
the control of the register, hence otherwise borrowing it to the block cipher. This external
register dependence comes at the cost of a multiplexer if r does not divide the total number
of block cipher rounds. Overall, this technique saves a full block-sized register. This
technique is not applicable to other candidates as they need to store a value throughout
multiple block cipher calls.

3 Implementations

Out of the 32 remaining candidates in the second round of the NIST lightweight competition
we singled out ten schemes that are bootstrapped either directly via lightweight block
ciphers or variants of them. Five out of the ten schemes are directly instantiated with
the GIFT block cipher [BPP+17] or through a slightly adapted tweakable alteration.
Three other schemes are based on the SKINNY block cipher [BJK+16] or a forked version
of it. Finally, the Pyjamask and SATURNIN AEAD schemes deploy their own dedicated
substitution-permutation networks of the same names. Table 2 lists all investigated schemes
alongside their internal block cipher. Note that our selection excludes schemes that deploy
AES as their core block cipher, use a combination of block cipher and permutation as found
in Spook [BBB+19], or integrate a keyed permutation that resembles a stream cipher such
as TinyJAMBU [WH19].

3.1 r-Round Unrolled

The sequential placement of multiple round function circuits allows the computation of
several rounds during a single clock cycle. This results in fewer required cycles to complete
one encryption, i.e. in an r-round partial unrolling setting a block cipher composed of R
rounds can be computed in dRr e cycles. The adverse effects of unrolling include a larger
overall circuit area and an increased signal delay across the circuit.

Nevertheless, as shown by Banik et al. [BBR15], partial unrolling can reduce the energy
consumption of certain (especially lightweight) block ciphers noticeably. In broad terms, it
is possible to quantify the total amount of consumed energy E as a quadratic polynomial
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Table 2: AEAD Schemes Based on Lightweight Block Ciphers
Scheme Block Cipher Reference Best Implementation

GIFT-COFB GIFT-128 [BCI+19] 2-Round-CG-RB
SUNDAE-GIFT GIFT-128 [BBP+19] 3-Round-RB
HYENA GIFT-128 [CDJN19] 2-Round-CG-RB
LOTUS-AEAD TWE-GIFT-64 [CDJ+19] 3-Round-CG
LOCUS-AEAD TWE-GIFT-64 [CDJ+19] 3-Round-CG
SKINNY-AEAD SKINNY-128-384 [BJK+19] Unrolled-IG
Romulus SKINNY-128-384 [IKMP19] 2-Round-RB
ForkAE ForkSkinny [ALP+19] 2-Round-CG
Pyjamask Pyjamask-128 [GJK+19] Unrolled-IG
SATURNIN SATURNIN [CDL+19] Unrolled-IG

function of the unrolling factor r such that

E = (Ar2 +Br + C)
(
d1 + R

r
e
)
,

where A,B and C represent energy values depending on the internal switching activity of
the block cipher such as registers, multiplexers and arithmetic logic. Hence, if the block
cipher is on the lighter side, E can be minimized for r ≥ 2, on the other hand complex and
heavy circuits such as AES incur large constants A,B and C where E is only minimized
for r < 2.

Partial r-round unrolling is usually realized in hardware without much hassle, as round
function and key expansion circuits often remain invariant throughout all rounds of the
computation. In such a case the round function and key expansion circuits can be replicated
r times and connected through data paths where the output of the last replicated circuit
is stored in the state and key registers. Special care has to be taken when r - R, here the
ciphertext will not be produced by the last replicated instance but it must come from an
intermediate computation. A generic depiction of r-round partial unrolling can be seen in
Figure 2. Note that a multiplexer is required after the state register to choose whether
the r-round computation is performed over internally stored round key and state or if it
must come from input key and plaintext at the start of the encryption. Further note that
clock-gating is an ineffective technique for the registers, since at every clock cycle new
values are loaded, keeping the registers busy at all times during the computation.

3.2 Fully-unrolled

In a fully-unrolled setting we have r = R, i.e. an entire encryption is performed in a
single clock cycle. Such a configuration results in large combinatorial and latency-heavy
circuit. However, state registers that store intermediate results, as previously seen for
partially-unrolled block ciphers, are not needed anymore. As detailed in Section 2.3, the
propagation and the subsequent amplification of glitches between the round function
circuits cause a large spike in terms of energy consumption for which inverse-gating is an
effective remedy. In particular, the overall reduction in dissipated energy can be as large
as 90 percent for certain schemes as demonstrated in [BBR+18].
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Figure 2: r-round partial unrolling of a generic block cipher consisting of an internal state,
round keys and round constants for r = 2 (left) and r = 3 (right).

3.3 Block Ciphers
We briefly detail the high-level picture of each block cipher and the techniques used to
obtain partial r-round and fully-unrolled versions.

3.3.1 GIFT

The ultra-lightweight block cipher GIFT, devised by Banik et al. [BPP+17], reiterates
the substitution-permutation design of PRESENT [BKL+07] to achieve an even lighter
construction. Its main variant GIFT-128 processes 128-bit blocks with a key of the same size
and operates over 40 identical rounds, which in turn means that it can be seamlessly unrolled
without further modifications. GIFT-128 is optimized for a small hardware overhead and
can be implemented on an area below 2000 gate equivalents, thus outperforming other
lightweight block ciphers of the same block and key size such as SKINNY, MIDORI and
SIMON [BJK+16, BBI+15, BSS+15].

3.3.2 TWE-GIFT

The GIFT block cipher can alternatively be fed with 64-bit blocks while keeping the key
size at 128 bits, operating over 28 rounds. As part of the LOTUS-AEAD and LOCUS-AEAD
schemes GIFT-64 is transformed into a tweakable variation TWE-GIFT-64 [CDJ+19]. The
tweak consists of a constant 4-bit value that is mixed into the block cipher state at the
end of every fourth round. The 64-bit state further reduces the hardware footprint to
a point where it currently stands as one of the lightest designs among block ciphers of
similar sizes [BBRV19].

3.3.3 SKINNY

SKINNY comprises a family of lightweight tweakable block ciphers, proposed by Beierle et
al. [BJK+16]. Its versions process 64-bit or 128-bit blocks. Contrary to TWE-GIFT-64,
SKINNY-AEAD does not separate the encryption key from the tweakey but unifies them
in a single tweakey input whose size is either 128, 256 or 384 bits. Both SKINNY-AEAD
and Romulus deploy the block cipher in its heaviest version, i.e. SKINNY-128-384 with
a block size of 128 bits and a 384-bit tweakey operating over 56 identical rounds. The
ForkAE AEAD scheme uses a forked version of ForkSkinny-128-288 termed ForkSkinny, see
Section 3.3.4. As with GIFT and TWE-GIFT, SKINNY-AEAD can be unrolled without any
caveats.
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3.3.4 ForkSkinny

The idea of forkcipher is proposed by Andreeva et al. [ARVV18]. It takes a round-based
block cipher (with or without a tweak) with r rounds, and extends it into a forkcipher
that uses rinit + r0 + r1 rounds in total and outputs two blocks C0, C1. In a higher-
level AEAD construction, C0 block is intended to be used as the ciphertext, and C1 is
appended to a running state to provide authentication. The number of rounds are chosen
r < rinit + r0 + r1 < 2r so that processing a message block in AE takes less than two full
block cipher calls. In their submission [ALP+19], the authors choose the tweakable block
cipher SKINNY and apply the forking paradigm to obtain ForkSkinny, which is used as the
core cipher upon which the AE scheme ForkAE is sequentially built. More precisely, the
authors’ principal cipher is ForkSkinny-128-288 with a 128-bit block and a 288-bit tweakey,
where the number of iterations are chosen as rinit = 25, r0 = 31 and r1 = 31 (in comparison
SKINNY contains 56 rounds). In order to obtain higher number of round keys, the authors
extend the 6-bit LFSR into a 7-bit one.
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Register size GIFT TWE-GIFT SKINNY ForkSkinny Pyjamask SATURNIN
|K| (key) 128 128 384 384 128 –
|D| (state) 128 64 128 128 128 256
|C| (round cst.) 6 6 6 7 4 32
Total flip-flops 262 198 518 647 260 288

Figure 3: Example schema for r-round unrolled block cipher implementations. The bottom
table reports the total number of flip flops used in each block cipher. Registers are shown
with yellow rectangles and KS, RF, RC denotes key scheduling function, round function
and round constant function respectively.
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Implementing ForkSkinny requires an additional 128-bit register to store the forking
state, unless the block cipher supports combined encryption and decryption functionality
[BB19]. Compared to generic unrolling, there is a caveat in unrolling ForkSkinny. For
2-round and 3-round implementations, an extra multiplexer is required to choose the
correct state for storing and loading back the forking state. This is depicted in Figure 3.

3.3.5 Pyjamask-BC

The Pyjamask AEAD scheme deploys a newly-crafted block cipher of the same name,
denoted by Pyjamask-BC, as its core [GJK+19]. The block cipher exists with block sizes of
either 96 or 128 bits both with a 128-bit keys. It is a substitution-permutation network that
runs over 14 rounds for both versions. Due to this low number of round function invocation,
the operations in a single round are heavier than both GIFT and SKINNY-AEAD.

3.3.6 SATURNIN-BC

As Pyjamask-BC, SATURNIN-BC is a dedicated 256-bit block cipher created for the AEAD
of the same name [GJK+19]. Of all the ciphers seen so far SATURNIN-BC is the only one
with a key size of 256 bits alongside a state of the same size. The substitution-permutation
network runs over 20 rounds. As with Pyjamask, the low number of rounds results in a
more complex circuit.

The block cipher SATURNIN-BC employs 3 types of round functions: even R0, two
types of odd rounds with indices congruent to 1 and 3 mod 4, call them R1 and R3, invoked
in the following order

R0, R1, R0, R3, R0, R1, R0, R3 . . .

As a result, round-based implementations are very inefficient for this cipher, requiring
multiple muxes to filter signals. On the other hand, a 2-round implementation which
implements R0, R1 and R0, R3 together requires only a single level of filtering between the
outputs of R1, R3, and is probably the best with respect to speed and energy consumption.
For similar reasons, a 3-round implementation would be terribly inefficient, whereas a
4-round implementation which implements the double super-round R0, R1, R0, R3 requires
no additional filtering, but requires a larger power and area footprint.

3.4 AEAD Schemes
In the following, we briefly describe the selection of ten AEAD schemes. Our descriptions
are not meant to fully explain how these schemes work, but instead highlight the most
important aspects from a circuit designer’s perspective. We further explain which of the
aforementioned techniques from Section 2 are applicable for each candidate.

3.4.1 GIFT-COFB

This scheme, as proposed by Banik et al. [BCI+19], deploys the GIFT-128 block cipher
in a combined feedback mode of operation (COFB), first detailed in [CIMN17]. The
construction processes 128-bit blocks with a key and nonce of the same size and has a
small register footprint only requiring a single additional 64-bit register as seen in Figure 4,
whose value is denoted by variable L. Our implementation focuses on keeping the GIFT-128
core busy at all times so that the additional logic as well as the energy consumption in
the mode of operation circuit becomes as small as possible. The design supports both
clock-gating (for 64-bit register), and register-borrowing.

At the beginning of the operation, the nonce value is first processed with a block cipher
call. The output of the block cipher is used to initialize the L value, stored in a 64-bit
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register. For each associated data block, the previous output of the block cipher is first
passed through a function, denoted by G, and XORed with the said associated data block
and current value of L, and the result of this summation is used input to the next block
cipher call. After each block cipher call, L value is also updated with a function denoted
by ∆, which computed either of 2L, 3L or 9L in the finite field GF(264). The message
blocks are processed in the same manner. Each ciphertext block is computed by mixing
the current plaintext block with the state. Finally, the encryption of the last plaintext
block yields the tag. The call sequence and the high-level view of AEAD circuit is depicted
in Figure 4.
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Figure 4: Combined feedback mode of operation (left) and the GIFT-COFB circuit (right).
Note the additional 64-bit register required for the L value.

3.4.2 SUNDAE-GIFT

This construction was proposed by Banik et al. [BBP+19], based on the SUNDAE mode
of operation [BBLT18]. As GIFT-COFB, it uses the GIFT-128 block cipher in its core
and processes 128-bit blocks with a key of the same size. The nonce is variably-size and
included in the first associated data block. SUNDAE-GIFT does not require any additional
registers, except naturally the one for the block cipher state, with the output to the
core being multiplied over GF(2128). Hence, since the core is kept busy during all cycles,
SUNDAE-GIFT cannot make use of clock-gating. On the other hand, the mode of operation
does support the register-borrowing technique.

As depicted in Figure 5, the state is initialized by encrypting a zero string where the
leftmost byte is the domain separator (omitted in the figure). Each AD block is directly
mixed with the current state and fed into the block cipher core, except for the last block
which is processed first through a multiplication in the finite field. The message blocks
are processed in the same way, with the encryption of the last block producing the tag.
Finally, for each message block the state circularly encrypts itself again where each result
is mixed with a message block to produce the ciphertext blocks. Although SUNDAE-GIFT
is a lighter primitive than GIFT-COFB, this double-processing of the message blocks incurs
a heavy latency and energy penalty.
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×
TAG

128

DATA
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CT0128

Figure 5: SUNDAE mode of operation (left) and the SUNDAE-GIFT circuit (right).



12 Energy Analysis of Lightweight AEAD Circuits

3.4.3 HYENA

The HYENA authenticated encryption scheme was proposed by Chakraborti et al. [CDJN19].
Its construction is based on a hybrid feedback mode of operation, where the input to the
encryption core is composed of an external data block and the feedback of the previous
encryption. It processes 128-bit blocks with a 128-bit key and a 96-bit nonce. Its structure
resembles the one already seen in GIFT-COFB with an additional 64-bit register L that
holds a temporary value that is updated before each encryption through a ∆ function.
The register holding the value of L can be clock-gated during its idle periods. The scheme
also supports register-borrowing.

The state and the L registers are initialized through the encryption of the nonce (see
Figure 6). Each associated data block is first passed through the hybrid-feedback function
H together with the ∆-updated L value and the current state. The result is passed to the
encryption core. Each message block is processed in the same manner where an auxiliary
output of H marks each ciphertext block. The output of the last plaintext encryption will
then yield the tag.
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Figure 6: Hybrid feedback mode of operation (left) and the HYENA circuit (right).

3.4.4 LOTUS-AEAD and LOCUS-AEAD

Both schemes were presented in the same submission by Chakraborti et al. [CDJ+19].
They use a dedicated tweakable variant of GIFT-64 termed TWE-GIFT-64 at their core
and process 64-bit data blocks using a 128-bit key and a nonce of the same size. The
schemes are more involved than the other GIFT-based algorithms as they require four
additional register banks. One storing a temporary key value L that is updated before each
new block through a ∆ function, another one that sums the encryption of the associated
data blocks V , a similar one for the summation of the ciphertext blocks W and finally
a last storage unit holding a masking value ∆N that is mixed with each data block.
Naturally, this arrangement responds very well to clock-gating. Note that LOTUS-AEAD
and LOCUS-AEAD do not utilize register-borrowing since the block cipher state is reloaded
before each encryption.

In LOTUS-AEAD and LOCUS-AEAD, ∆N is initialized by first encrypting a zero vector
and re-encrypting this result again. Mixing the key and the nonce yields the initial L value.
Again in both schemes, each associated data block is first masked by ∆N then encrypted
with the encryption key being the ∆-updated L value. The results are accumulated in the
V register. In LOTUS-AEAD, each even plaintext block is processed in the same way where
the result of the encryption is re-encrypted. The cipher of this second encryption is mixed
with the following message block and encrypted twice again yielding two ciphertext blocks.
The result of the second and fourth encryption call is then added to the W register. Such
a configuration entails large latency as each 64-bit message block invokes two encryption
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calls. LOCUS-AEAD has a slightly simpler computation of the message blocks, however
with an identical latency. The tag is obtained by encrypting the addition of V , W and
∆N and masking the result with ∆N .
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CTTAG

NONCE⊕KEY

Figure 7: LOTUS/LOCUS mode of operation (left) and the LOTUS/LOCUS-AEAD circuit
(right).

3.4.5 SKINNY-AEAD

The SKINNY-AEAD scheme, proposed by Beierle et al. [BJK+], is a thin wrapper around
the SKINNY-128-384 tweakable block cipher [BJK+16]. It processes 128-bit data blocks
using a key and nonce of the same size in the OCB3 mode of operation [KR11]. Alongside
the block cipher state, the AEAD mode adds a 64-bit LFSR, and two 128-bit registers.
The last two registers are denoted with variables Y and Σ and used for summing up
the block cipher outputs respectively for authenticated data and message blocks. The
two summation registers can be clock-gated while the encryption core is busy. However,
SKINNY-AEAD does not make use of register-borrowing as the block cipher state is reloaded
before each encryption call. The output of the LFSR is appended to the tweakey before
each encryption and is updated afterwards.

The encryption of each plaintext block directly yields a corresponding ciphertext block.
The tag is then computed by encrypting Σ and adding the result to Y .
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Figure 8: OCB3 of operation (left) and the SKINNY-AEAD circuit (right).

3.4.6 Romulus

Romulus, designed by Iwata et al. [IKMP19], resembles the Cipher Feedback (CFB) mode,
in the sense that each output of the block cipher and the incoming data block (associated
data or message) are together passed through a light combinatorial function denoted by
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ρ. The output of this function is immediate input to the next block cipher call. Hence a
register keeps this running state, and at the last step it is encrypted to produce the tag.

Romulus handles odd and even authenticated data blocks differently; the odd blocks are
input to ρ, and even blocks are fed to the nonce port of the block cipher, as the underlying
cipher SKINNY-128-384 has a 384-bit long tweakey. The actual AEAD nonce is not used
before all authenticated data blocks are processed, and later used as block cipher nonce
while message blocks are encrypted. A 56-bit LFSR is also a part of the tweakey for
SKINNY calls, and keeps the count of authenticated data and message block fed to the
AEAD circuit since the beginning of the AE operation.

In hardware, Romulus, as a mode of operation, lends itself to a clean r-round unrolled
implementation in terms of number of registers it requires. However, as the core cipher
SKINNY-128-384 itself is a rather heavy cipher with large tweakey size, this gain is
diminished. In addition, the designers’ choice to compute ρ for every second authenticated
data block (instead for each single block) brings a few extra multiplexers into the design.
It also prevents us from arranging SKINNY and ρ circuits sequentially, as we have to wait
for the next data block to be available. The design supports both clock-gating (due to
LFSR) and register-borrowing techniques.
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Figure 9: Romulus mode of operation (left) and the Romulus authenticated encryption
circuit (right).

3.4.7 Pyjamask

Pyjamask, as proposed by Goudarzi et al. [GJK+19], uses the OCB mode of operation
instantiated with the semi-lightweight block cipher Pyjamask-BC. The mode of operation
requires 4 stand-alone registers other than the ones used in the block cipher to compute
ciphertext and tag. The following salient features can be noted about the mode of operation:

1. The block cipher Pyjamask-BC has a binary matrix based linear layer. More specifi-
cally, there are five 32 × 32 binary matrices M0,M1,M2,M3,MK that are used to
premultiply each of the rows of the state and one of the rows of the key. In the
design document, the authors say that they use Paar’s algorithm to deduce that
they can be constructed using 347 XOR gates each. However for an energy efficient
solution, implementing these using the randomized version of the above algorithm
[BFI19] yields solutions of 168, 144, 192, 144 and 189 XOR gates respectively.

2. The mode Pyjamask requires a minimum of four registers to operate other than those
used to operate the block cipher. The first is required to store the accumulated sum
of the encryption of the associated data blocks. The second is required to store the
accumulated sum of the plaintext blocks. The third for the input-output masks Oi,
and the fourth for the encryption of the zero vector L∗ = EK(0n).

3. The mode requires to store the values of L(i) where L(0) = 4·L∗ and L(i) = 2·L(i−1),
where the multiplication is defined over GF (2128)/ < x128 + x7 + x2 + x+ 1 >. To
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Figure 10: OCB mode of operation (left) and the Pyjamask authenticated encryption
circuit (right).

process the block indexed at z, the required value of L(z) is L(NTZ(z)) where NTZ(z)
is the number of trailing zeros in the binary representation of z. For example to
process the 7th, 8th and 9th blocks the circuit requires values of L(0), L(2), L(0) in
three successive cycles. A naive approach to solve this problem would be to store
L(0) in a register and compute L(NTZ(z)) before every round.

4. We can use clock-gating for the value L∗. We build a set of doubling circuits one on
top of the other on the register, so that the output of each successive doubling is
L(i). For example, if we want our circuit to be able to process up to 1023 blocks of
data then NTZ(z) can have a maximum value of 9, and then 10 doubling circuits
are sufficient. The map z → NTZ(z) can be implemented as a simple look up table,
which can be then be used a selecting signal to a set of multiplexers that filter
L(NTZ(z)) at each successive data block indexed z. The advantage in this kind of a
setup is that the computation of L(i) values are one-time and does not require much
energy and no more than one register. The only energy consumed is by the set of
multiplexers, and that is limited to only once per block cipher call.

3.4.8 SATURNIN

SATURNIN, designed by Canteaut et al. [CDL+19], is a post-quantum secure mode of
operation, again instantiated with a semi-lightweight block cipher SATURNIN-BC. The
mode has a rate of 1/2, i.e there are 2 encryption calls per block of plaintext. However,
since the underlying block cipher has a block size of 256 bits, the reduction on the number
of calls and the block size evens out in terms of energy and throughput.

Implementing SATURNIN in hardware, in the manner presented in the specifications
by the authors [CDL+19], is slightly tricky if one takes a direct approach. The mode has
the following steps:

1. Encrypt the padded nonce.

2. Use the counter mode to generate ciphertext blocks from plaintext blocks.

3. Use the cascade mode to process each associated data block to produce the inter-
mediate tag t. By cascade mode we mean process each ADi block with ti+1 ←
ADi ⊕ Eti(ADi), and take t as the last tj value.
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Figure 11: SATURNIN mode of operation (left) and the SATURNIN circuit (right).

4. Use the output t produced above, and process each ciphertext block CTi in cascade
mode to produce the final tag.

It immediately becomes clear, where the difficulty in implementing the above in
hardware arises from. It is necessary to store each ciphertext block in hardware after the
counter mode so that they can be used during the cascade mode later to produce the tag.
This requires a lot of memory and energy to store ciphertext bits, and especially infeasible
on constrained environments that can not support high storage space. Instead one can
re-interpret the SATURNIN operations so as to not require the additional memory. We can
compute the ciphertext blocks and tag as follows:

1. Encrypt padded nonce.

2. Use the cascade mode to process AD to produce the intermediate tag t and store it
in a register.

3. For each plaintext block Mi do the following:

• Encrypt Mi with counter mode to produce CTi.
• Employ the cascade mode with CTi. Take t1 ← t from the previous computation

of t stored in the register, and compute ti+1 = CTi⊕Et(CTi) for each ciphertext
block simultaneously, and store back ti+1 on the register.

The above process obviates the need for employing large storage elements to implement
SATURNIN, and implies that the mode can easily be employed on constrained environments.
This design supports clock-gating (i.e. t-register), but is not compatible with register-
borrowing technique.

3.4.9 ForkAE

Andreeva et al. construct their AEAD scheme with a new paradigm [ALP+19], where the
core is a forkcipher that outputs two different blocks for each plaintext block, one is meant
for authentication and the other for the ciphertext. Although their primary choice for the
mode of operation, PAEF, is thin with only a block-sized register, the forkcipher itself is
quite demanding: it needs five registers in total (see Figure 3). In terms of energy, this
makes ForkAE one of the least efficient candidates we evaluated in this paper.

For ForkSkinny-128-288 hardware implementation, the authors discuss about the pos-
sibility of removing 64 flip flops, i.e. a half register, for the last block of tweakey (as it
is initialized to all zeroes), which would require skipping the last block of the tweakey
addition every second round [ALP+19]. This could be done for 1-round and 2-round
implementations with some minor updates, but it would incur extra cost for k-round
implementations for odd k > 1. Hence, we implemented the tweakey registers fully, i.e.
with 384 flip flops.
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Figure 12: PAEF mode of operation (left) and the ForkAE circuit (right).

On the other hand, because the authors do not propose a parameter for the maximum
number of authenticated data or message blocks that can be processed, we decided to
implement it for at most 64 blocks by fixing the counter size to 8 bits. This choice is
justified by the fact that we evaluate the lightweightness of candidates under the short
message setting, i.e. the constrained device need to encrypt only few blocks of messages.
Hence the block counter consists of 8 bits, and thereby we use an 8-bit register and an
8-bit adder. Implementing the counter and the adder with 56 bits would increase the total
number of flip flop in ForkAE from 776 to 824.

ForkAE does not support the register-borrowing technique, because there is an explicit
running tag in the design. It supports clock-gating, and in that configuration all registers
that are inactive for multiple clock cycles are frozen. This essentially concerns two registers:
the 128-bit register in ForkAE circuitry, and 128-bit register that stores the forking state
inside the block cipher for round-based implementation of ForkSkinny. Unrolled PAEF-
ForkSkinny-128-288 follows the same techniques described in Section 3.2. For the IG
configuration, we set the delay of each inverse gate as 1.25ns, in order to accommodate 87
rounds of operation into 100ns as much as possible.

4 Effects of Design Choices

4.1 Clock Frequency
Note that it has already been shown in numerous papers [BBR15, BBR+16c, KDH+12]
that in low leakage environments, at high enough frequencies, the total energy consumption
of a circuit is independent of clock frequency since it is the measure of total circuit glitch.
To provide more evidence for this we constructed a typical circuit for a round based
implementation of AES-128, in the TSMC 90nm library and measured the energy per
encryption value at 4 different frequencies. The results are summarized in Figures 13. The
Energy vs Frequency plot on the right clearly suggests that for frequencies larger than 10
MHz, the energy consumption is more or less constant.

Why does this happen? The total power consumption in a CMOS circuit comes form
two components a) dynamic and b) leakage. Dynamic power is consumed due to the
charging and discharging of the capacitive nodes of the transistors of the circuit. Every
0→ 1/1→ 0 transition, as well as every transient glitch contributes to this type of power
consumption. On the other hand, leakage power is mainly due to the sub-threshold leakage
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Figure 13: Variation of energy consumption with frequency (left), percentage contribution
of the dynamic, leakage component of the power at different frequencies (right).

current, which is the drain-source current in a CMOS gate when the transistor is off, and
other continuous currents drawn by the power source. It is generally well known that,
the leakage component of the power drawn by a circuit is generally independent of the
frequency of operation of the circuit and only varies as its total silicon area. Also the
dynamic component of the power consumption varies directly as the clock frequency of the
circuit and hence inversely as the clock period. Since the total physical time to complete
any operation, all other things being the same, varies directly as the clock period, the
dynamic component of the energy consumption (product of dynamic power and total
time) is generally constant with respect to change in clock period or frequency. Therefore,
at higher frequencies the dynamic energy of the same circuit remains a constant as the
contribution of the leakage energy (product of the frequency independent leakage power and
the physical time taken) becomes lesser and lesser. This was what led [BBR15, KDH+12]
to conclude that at high frequencies the total energy (sum of dynamic and leakage energies)
consumption of block ciphers is more or less a constant and frequency-independent. All
the above facts are borne out by right hand plot in Figure 13, which breaks down the
percentage contributions of the dynamic/leakage power at different frequencies of the same
AES circuit. The dynamic component indeed scales as the frequency and the leakage
component remains constant at 2.9 µW. As a result at higher frequencies, the contribution
of the leakage part becomes more and more insignificant. In fact at 10 MHz it is less than
1.2 %.

So what should be the frequency of operation at which one should benchmark energy
figures for different AEAD schemes. If we opt for lower frequencies, the results will be
heavily influenced by the leakage component, and then the energy optimization exercise
effectively reduces to an area minimization problem, since circuits with lower silicon
area also tend to have lower leakage. Although this problem is also important, it is less
intellectually stimulating from purely an energy engineering point of view. When we
compare different AEAD schemes for energy efficiency, ideally we should be comparing
algorithmic/circuit level aspects of the scheme that allow for lesser glitching or lesser
logic transitions in the circuit nodes. In fact this is also the approach followed in energy
optimization of block and stream ciphers [BBR15, BBI+15, BMA+18]. This is essentially
the optimization of the dynamic energy component. Thus is why in our experiments we
keep the clock frequency at 10 MHz so that the leakage power is rendered insignificant,
and the paper becomes an exercise in comparing the switching characteristics of different
AEAD schemes.

Note that for libraries with standard cells composed of transistors of lower feature
size, the leakage power is significant even at 10 MHz. Typically, a 15nm library will have
leakage power many orders more than a 90nm library. For such libraries, a similar exercise
of comparing dynamic energy must be done at frequencies much higher than 10 MHz,
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(for the Nangate 15nm library for example a clock frequency of around 5-10 GHz may be
required). Once this is done, the results reported in 90 nm libraries, can be seamlessly
reproduced in 15nm or lower feature size libraries.

4.2 Optimal Unrolling
In Section 3.1, we had briefly mentioned that the energy consumed by an r-round unrolled
block cipher as described in [BBR15] is given as E = (Ar2 +Br + C)

(
d1 + R

r e
)
. Let us

try to understand the above expression briefly. If two or more block cipher round functions
are connected serially, each transient glitch produced in the first round results in further
glitches in the subsequent rounds. Due to this phenomenon, the energy consumption of
the second round circuit is generally more than the first. Similarly, if three rounds are
connected serially, the third round function circuit is likely to consume more than the
second, and the second is likely to consume more than the first. It was shown in [BBR15],
that all other things remaining equal, the power consumption in successive rounds is
approximately given by an arithmetic series. Since the sum of terms of an arithmetic
series is a quadratic in number of terms, this is where the quadratic term in the energy
consumption comes from. We multiply it by d1 + R

r e because that is the number of clock
cycles required to encrypt.

For heavyweight round functions like AES, the compounding of glitches across one
round to the other increases rapidly. Such circuits would naturally have high values of
coefficients for A, B to indicate that energy consumption increases rapidly with increasing
r. For lighter round functions like PRESENT, SKINNY and SIMON, the compounding of
glitches is not so significant, so it results in lower values for the coefficients A,B. For these
circuits, increase in power due to the quadratic term is not higher than the leeway given
by the decrease in latency due to the d1 + R

r e term. And it was shown in [BBR15], that
for almost all lightweight block ciphers, r = 2 is the optimum energy configuration.

Things are slightly different for modes instantiated with block ciphers that are
lightweight. The (Ar2 + Br + C) term is actually the average power consumed by
the circuit and is typically output by any standard power compiler engine after inspecting
either the switching statistic of every node or the value change dump file that records all
the signal transitions in the circuit in a given time period. The term is then multiplied
with

(
d1 + R

r e
)
to produce the energy consumed. The first question to investigate is how

the power consumption of a mode instantiated with a lightweight block cipher would
behave with varying degrees of unrolling. Consider an example from [BBR15]. The authors
had estimated that in the STM 90nm process, the energy consumption of an unrolled
implementation of PRESENT followed the expression (3.15 + 1.40r + 0.795r2) ·

(
1 + d 32

r e
)

pJ. It is elementary to see that r = 2 is the minimum of this expression, as for r = 1, 2, 3
the expression evaluates to 176.85, 155.21, 174.06 pJ respectively. Now consider PRESENT
used in a mode of operation that employs, some other operations like doubling over a finite
field, writing on a register, XORing values etc, i.e. operations that increase the constant
term in the quadratic expression.

At this point let us look at a more concrete example. Suppose that to encrypt 8 blocks
of plaintext using the mode requires 10 calls to the block cipher and the extra energy per
cycle consumed in the unrolling-independent operations is α pJ per cycle. Let’s say the
mode requires

(
1 + d 32

r e
)
cycles for the computation (10 block cipher calls). This makes

the energy expression for the mode E(r) = [α+ (3.15 + 1.40r+ 0.795r2)] ·
(
1 + d 32

r e
)
·10 pJ.

If α ≈ 4 or more, it is now clearly visible that the minima of this expression is r = 3, since it
evaluates to 3.084, 2.232, 2.220, 2.292 nJ, for r = 1, 2, 3, 4. Thus although, the block cipher
itself may be energy-optimal at a particular degree of unrolling, it does not necessarily
imply that the mode will also be energy-optimal at the same degree. In fact, this is
a phenomenon we have observed for 3 lightweight modes of operation SUNDAE-GIFT,
LOTUS-AEAD, LOCUS-AEAD. The modes of operation are all based on the GIFT block
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cipher. Although the block cipher itself is energy-optimal at r = 2, the modes are optimal
at r = 3. Note that this optimum is subject to other operating parameters like choice of
library, or the level of compile time optimization of the circuit etc., but all other things
remaining same, this observation stands.

To illustrate the point further, we experimented with 3 lightweight modes of operation:
GIFT-COFB, SUNDAE-GIFT, and LOTUS-AEAD, all of which are instantiated with some
version of the GIFT cipher. Figure 14, illustrates the power consumption breakdown of
individual components of the 1, 2 and 3-round unrolled implementations of the modes3.
Note that the 3-round unrolled implementation uses an additional multiplexer to filter
signals. Since the total number of rounds in both GIFT-64/128 are not multiples of 3, the
signals used to update the state after the execution of 3 rounds in each clock cycle, and
the final output of the block cipher are to be tapped from different circuit nodes and hence
the need for an extra mux. Note that for this particular implementation, GIFT-COFB
and SUNDAE-GIFT attain optimal energy configuration at r = 2, whereas LOTUS-AEAD
optimizes at r = 3. Take the case of LOTUS-AEAD, in which as the degree of unrolling r
increases, the power consumption contribution of the terms depending on r, which are
the individual round functions and the incremental components of the state/key registers,
increase moderately. This is in contrast to the constant power consumption sources like
control system, writing values to various registers and consumption of other gates, all of
which increase the constant term in the power consumption. Hence the energy consumed
to process eight blocks of plaintext and one block of associated data is around 10.88,
7.20, 6.15 nJ for r = 1, 2, 3 respectively. This is not the case for both of these particular
implementations of GIFT-COFB or SUNDAE-GIFT, and hence the optimum point remains
at r = 2.

4.3 Clock-gating
We have applied clock-gating technique only for those implementations which contain
idle registers, i.e. round-based implementations, as explained in Section 2.4. These are
LOTUS-AEAD, LOCUS-AEAD, SKINNY-AEAD, ForkAE, Pyjamask, Romulus and SATURNIN.

In Tables 5-7, we report the number of clock cycles it takes to process the baseline
AEAD input, which consists of one authenticated data and eight message blocks, where
each block contains 128 bits. As explained in Section 2.2, clock-gating saves energy by
preventing unnecessary reloading of registers with the same value, therefore the total
energy saving grows proportionally with the total number of clock cycles of an AEAD
operation. In other words, the effects of this technique becomes obvious for (1) candidates
with more AEAD registers (2) r-round unrolled implementations with small r ∈ {1, 2}
as they require more clock cycles. For instance, because 1-round unrolled LOTUS-AEAD
implementation lasts 1036 clock cycles, and the design contains a couple of 64-bit registers
(see Figure 7), this technique saves more than one third in energy. This gap between the
implementations are presented in Figure 15 for LOTUS-AEAD, ForkAE, SKINNY-AEAD
and further measurements are presented in full tables in Appendix 4.8.

Therefore, as a rule of thumb, clock-gating is a worthwhile effort if the particular design
in question contains large number of flip flops, e.g. registers, that stays frozen for hundreds
of cycles.

4.4 Inverse-gating
The general effect of an inverse-gated fully-unrolled block cipher is a drastic reduction in
terms of energy as already demonstrated in [BBR+16c, BBR+18]. Most of the ten selected

3To obtain these figures which illustrate the power consumption of individual circuit elements, we used
a different compile directive to the circuit compiler, hence the figures are slightly different from the optimal
energy figures tabulated in Table 5.
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1 Round (71.7 uW) 2 round (114 uW) 3 round (189 uW)

Key Register - 19.2 uW

State Register - 22.5 uW

Delta Register - 7.3 uW

Control circuit - 10.2 uW

Round Function - 12.5 uW

Key Register - 20.0 uW

State Register - 28.7 uW

Delta Register - 7.7 uW

Control circuit - 12 uW
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Round Function 2 - 30.1 uW

Key Register - 20.8 uW

State Register - 34.3 uW

Delta Register - 8.1 uW
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Round Function 2 - 33.9 uW

Round Function 3 - 48.7 uW
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1 Round (74.8 uW) 2 round (119 uW) 3 round (189 uW)

Key Register - 19.3 uW

State Register - 28.7 uW

Multiplier - 3.0 uW

Control circuit - 10.8 uW

Round Function - 13 uW

Key Register - 20.1 uW

State Register - 36.4 uW

Multiplier - 3.1 uW

Control circuit - 14.5 uW

Round Function 1 - 13.8 uW

Round Function 2 - 31.1 uW

Key Register - 20.8 uW

State Register - 45.2 uW

Multiplier - 3.1 uW

Control circuit - 12.1 uW

Round Function 1 - 16.4 uW

Round Function 2 - 31.3 uW

Round Function 3 - 46.7 uW

Extra Mux - 13.4 uW
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1 Round (105 uW) 2 round (139 uW) 3 round (165 uW)

Key Register - 22.0 uW

State Register - 12.3 uW

Other Registers - 44.4 uW

Control circuit - 17.3 uW

Round Function - 9.0 uW

Key Register - 22.1 uW

State Register - 13.9 uW

Other Registers - 52.4 uW

Control circuit - 23.9 uW

Round Function 1 - 8.8 uW

Round Function 2 - 17.9 uW

Key Register - 22.2 uW

State Register - 16.7 uW

Other Registers - 45.7 uW

Control circuit - 20.9 uW

Round Function 1 - 11.5 uW

Round Function 2 - 16.4 uW

Round Function 3 - 25.4 uW

Extra Mux - 6.2 uW
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Figure 14: Breakdown of power consumptions of three lightweight modes
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Figure 15: The energy consumption (per 128-bit block) of round based implementations of
LOTUS-AEAD, ForkAE, SKINNY-AEAD with/without clock-gating, in comparison to the
number of clock cycles.

AEAD in this paper are thin wrappers around a core block cipher, i.e. additional storage
elements but no large combinatorial circuits on the critical path. It thus not surprising that
those results extrapolate to the full AEAD construct, however with different magnitudes.

The largest reduction can be observed for SKINNY-AEAD due to its isolated block
cipher instance that is directly fed from either the data input or the state registers and
whose output glitches are not amplified in a subsequent combinatorial function. Such an
arrangement is thus even more energy-efficient than the partially-unrolled implementations.
Similar effects can be noted for the schemes that are based on GIFT or TWE-GIFT whose
structures only place relatively lightweight combinatorial functions in front or after the core
block cipher. However, the reduced energy does not fully undercut the partially-unrolled
implementations.

On the other hand, inverse-gating is not as effective on more involved constructions
such as ForkAE and Romulus. In the case of Romulus the computation and the subsequent
loading of the state registers of the ρ function happens in a separate clock cycle during
which the core block cipher is redundantly invoked. We note that our inverse-gated Romulus
can thus be further improved by preventing the core from progressing during the evaluation
of ρ. In the case of ForkAE, to process message blocks, we need to make a dual ForkSkinny
call to obtain both C0 and C1 values. This means that, by design, ForkSkinny needs to
compute 87 consecutive rounds of key scheduling, which in total exceeds 100ns in the
TSMC 90nm technology. Therefore, one either needs to increase the clock phase, that
is to say sacrifice the throughput, or implement inverse-gating only for the initial 75 to
80 rounds that could be completed in 100ns. Our measurements are based on the latter
choice.

An energy consumption chart of all the fully-unrolled implementations with inverse-
gating or without can be seen in Figure 17. The complete data sheets for each candidate’s
fully-unrolled implementations can be found in Appendix 4.8.

4.5 Register-borrowing
Although it shares the same intuition with clock-gating, register-borrowing is harder to
implement in practice, as it requires specific tweaks in the circuit design. The control logics
of both the block cipher and the AEAD wrapper must be updated consistently to handle
register sharing properly. In order to understand how much we can gain by removing a
register, we implemented Romulus with three variations (and for each r ∈ {1, 2, 3, 4}). The
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Table 4: Energy consumption (nJ/128-bit) of Romulus for each configuration (see Table 6
for full details).

Design Techniques 1-Round 2-Round 3-Round 4-Round
PLAIN 0.853 0.543 0.646 0.806
RB 0.782 0.497 0.644 0.801
CG 0.818 0.555 0.663 0.850
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SATURNIN

Figure 16: Energy consumption (nJ/128-bit) comparison chart for the r-round partially-
unrolled implementations with r ∈ {1, 2, 3, 4}. For each candidate the best obtained energy
value obtained through techniques from Section 2 is used.

plain version of Romulus contains two separate registers, one in the block cipher and the
other in the AEAD circuit. For Romulus-CG, both registers stay, but we freeze the AEAD
register with clock-gating, whenever it must remain idle. In Romulus-RB, the AEAD circuit
borrows the register to the block cipher, and the latter does not have a dedicated register.
Energy consumption (per 128-bit) for each of these configurations are given in Table 6,
which shows that register-borrowing performs much better regardless of the degree of
unrolling. However, the gap is not huge because the core SKINNY-128-384 already contains
four blocks, i.e. 4× 128 bits, of storage regardless of which technique is used.

4.6 Results
Figure 16 charts the optimal energy per 128-bit block value for each r and candidate. The
category is dominated by GIFT-COFB and HYENA which both are lightweight in terms of
gate count but respond equally well to partial unrolling. On the trailing end are the more
involved schemes, such as ForkAE, SKINNY-AEAD and SATURNIN.

The situation is different for the fully-unrolled implementation where inverse-gating
equalizes most of the measured values. Figure 17 charts the energy per 128-bit block results
for the fully-unrolled variants. A detailed tabulation of all the measurements including
gate count, latency and throughput can be found in Tables 5, 6, 7.

4.7 Compilation Options
The Synopsys circuit compiler provides large number of flags during compilation, but in or-
der to keep things simple, we used them in the following combinations: The compile_ultra
option instructs Synopsys to perform an all-in-one, computationally intensive optimiza-
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Figure 17: Energy consumption (nJ/128-bit) comparison chart for the fully-unrolled
implementations with and without inverse-gating.

tion, during which boundaries between components are removed and the whole design is
considered as one large circuit. This provides better results for r-round unrolled imple-
mentations, but becomes time consuming and works poorly as r grows larger. Therefore
we do not use this option with fully-unrolled implementations. The command compile
-exact_map -area_effort high command essentially ensures that sequential elements
are not touched, and that Synopsys favors area as a metric to improve (a common flag
used by designer, but not of vital importance in our case). This combination is ideal for
unrolled circuits, as the area by default is already quite large and there are possibly many
optimizations to perform. A third combination compile -no_autoungroup is used only
to obtain results in Section 4.2. This flag instructs Synopsys not to remove the boundaries
between components at lower level, so that we can obtain power consumption of each
individual element, and compute necessary parameters in our model. For clock-gating
implementations, we first compiled clock-gating circuitry and then used set_dont_touch
option to ensure that Synopsys does not try to optimize it later, as it generally leads them
not to function.

4.8 Measurement Tables
The measurements are reached through the following calculations:

• The latency reports the total number of clock cycles it takes for an AEAD circuit to
process 128 bits of authenticated data followed by 8× 128 = 1024 bits of message.

• Throughput of the circuit is calculated by TP = 9×128
latency×τ where τ denotes the critical

path delay. This is the maximum achievable on this circuit. Further throughput
optimizations are possible by instructing Synopsys Design Compiler to recompile the
design with additional time constraints, but this falls outside the scope of the paper.

• Average power Pavg is directly obtained by the Synopsys Power Compiler.

• The total energy is computed by Etotal = Pavg × t where t is the time it takes to
process the full test vector (see Table 1). Then we divide Etotal by the number of
processed data blocks (authenticated data and message combined).

In the Tables 5-7 below, the flags CG and RB represent the clock-gating and the
register-borrowing techniques respectively.
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Table 5: Measurements for GIFT-COFB, SUNDAE-GIFT, HYENA, LOTUS-AEAD implemen-
tations.
Candidate Implementation Latency Area TPmax Power Energy

(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

GIFT-COFB 1-Round-RB 400 4710 615.38 69.3 0.363
1-Round-CG-RB 400 4700 569.17 61.9 0.324
2-Round-RB 200 5548 1192.55 106.8 0.280
2-Round-CG-RB 200 5510 952.06 95.5 0.251
3-Round-RB 140 6372 1211.87 159.0 0.293
3-Round-CG-RB 140 6311 1172.16 156.2 0.288
4-Round-RB 100 7144 1304.64 237.0 0.314
4-Round-CG-RB 100 7036 1140.59 232.4 0.308
Unrolled 10 35735 2015.75 12628.4 3.841
Unrolled-IG 10 43584 711.15 1107.0 0.337

SUNDAE-GIFT 1-Round-RB 720 3548 430.11 69.4 0.583
2-Round-RB 360 4313 642.57 107.8 0.454
3-Round-RB 252 5136 769.42 147.7 0.437
4-Round-RB 180 5858 863.70 242.5 0.513
Unrolled 18 34571 1145.93 12045.5 5.551
Unrolled-IG 18 42419 395.01 1076.7 0.496

HYENA 1-Round-RB 400 3941 744.19 68.3 0.358
1-Round-CG-RB 400 3850 662.07 59.8 0.313
2-Round-RB 200 4746 1062.73 97.5 0.256
2-Round-CG-RB 200 4787 1066.67 94.4 0.248
3-Round-RB 140 5629 1380.63 151.7 0.280
3-Round-CG-RB 140 5542 1413.84 149.2 0.276
4-Round-RB 100 6327 1425.74 227.2 0.301
4-Round-CG-RB 100 6238 1500.00 232.4 0.307
Unrolled 10 34988 2045.45 12389.3 3.768
Unrolled-IG 10 49661 711.02 134.5 0.409

LOTUS-AEAD 1-Round 1036 6462 223.29 88.08 1.117
1-Round-CG 1036 6150 223.29 57.9 0.734
2-Round 518 6938 358.70 108.3 0.721
2-Round-CG 518 6710 376.94 88.10 0.586
3-Round 370 7404 431.23 138.3 0.625
3-Round-CG 370 7154 441.63 102.2 0.463
4-Round 259 7843 481.37 181.5 0.661
4-Round-CG 259 6238 539.14 171.9 0.627
Unrolled 37 19867 819.56 4013.4 3.704
Unrolled-IG 37 27912 216.64 623.9 0.576
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Table 6: Measurements for LOTUS-AEAD, SKINNY-AEAD and Romulus implementations.
Candidate Implementation Latency Area TPmax Power Energy

(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

LOCUS-AEAD 1-Round 1036 5969 265.39 84.96 1.048
1-Round-CG 1036 5724 287.34 55.6 0.686
2-Round 518 6471 402.89 102.6 0.634
2-Round-CG 518 6229 503.15 80.1 0.495
3-Round 370 7035 522.40 132.2 0.585
3-Round-CG 370 6688 540.54 102.4 0.453
4-Round 259 7445 617.76 175.2 0.544
4-Round-CG 259 7048 597.03 171.9 0.524
Unrolled 37 19410 819.99 3880.6 3.582
Unrolled-IG 37 27455 216.58 615.6 0.568

SKINNY-AEAD 1-Round 560 8011 493.32 159.1 1.079
1-Round-CG 560 7451 400.22 136.3 0.924
2-Round 280 8701 645.88 200.9 0.683
2-Round-CG 280 8205 683.44 184.7 0.628
3-Round 190 11109 682.02 320.5 0.742
3-Round-CG 190 10546 648.47 304.4 0.705
4-Round 140 12890 691.48 528.4 0.904
4-Round-CG 140 12354 783.67 513.8 0.879
Unrolled 10 69155 1422.22 26581.4 7.588
Unrolled-IG 10 110012 829.85 2125.9 0.607

Romulus 1-Round-RB 514 5729 642.19 123.2 0.782
1-Round 514 6778 431.84 134.3 0.853
1-Round-CG 514 6648 471.84 128.8 0.818
2-Round-RB 262 6315 657.24 153.1 0.497
2-Round 262 7326 614.10 167.2 0.543
2-Round-CG 262 7187 710.33 170.9 0.555
3-Round-RB 181 8960 665.06 286.4 0.644
3-Round 181 9836 691.06 287.4 0.646
3-Round-CG 181 9693 664.37 294.9 0.663
4-Round-RB 136 10398 662.80 472.9 0.801
4-Round 136 11442 732.75 476.2 0.806
4-Round-CG 136 11338 657.14 502.1 0.850
Unrolled 19 68095 751.79 26480.1 13.409
Unrolled-IG 19 79277 683.63 4513.2 2.285
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Table 7: Measurements for Pyjamask, SATURNIN and ForkAE implementations.
Candidate Implementation Latency Area TPmax Power Energy

(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

ForkAE 1-Round 752 7362 363.88 159.4 1.335
1-Round-CG 752 6841 330.87 135.9 1.138
2-Round 380 8433 487.39 198.7 0.843
2-Round-CG 380 7618 478.92 173.3 0.735
3-Round 251 9863 666.13 309.0 0.868
3-Round-CG 251 9125 587.66 301.5 0.847
4-Round 190 12082 485.44 548.7 1.170
4-Round-CG 190 11608 482.74 528.0 1.126
Unrolled 9 103713 1606.63 55318.4 13.418
Unrolled-IG 9 166923 1177.01 15418.5 3.740

Pyjamask 1-Round 180 15667 1255.87 243.4 0.487
1-Round-CG 180 15158 1485.04 193.3 0.387
2-Round 96 19552 1956.26 467.1 0.498
2-Round-CG 96 19184 1959.60 426.5 0.454
3-Round 72 26707 2287.67 897.4 0.718
3-Round-CG 72 26353 2287.67 859.0 0.687
4-Round 60 34363 2249.45 1354.9 0.903
4-Round-CG 60 34031 2241.19 1315.1 0.876
Unrolled 12 60540 4027.83 8602.7 1.147
Unrolled-IG 12 65610 2491.91 2494.1 0.333

SATURNIN 1-Round 273 15214 638.78 413.8 1.255
1-Round-CG 273 14540 622.96 382.6 1.161
2-Round 143 20530 2226.89 564.8 0.897
2-Round-CG 143 19184 2226.89 531.3 0.844
4-Round 78 22895 2062.23 858.1 0.744
4-Round-CG 78 22160 2092.87 823.3 0.714
Unrolled 13 70348 3322.58 37791.1 5.459
Unrolled-IG 13 87854 2491.91 4790.6 0.623
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5 Threshold Implementations
The idea of threshold implementations (TI) are based on the concept of multi-party
computation and secret sharing, and aims to implement non-linear functions in order to
use it as a d-th order DPA countermeasure on a device that leaks information through
side channels like power consumption.

The method can be described as follows: Consider a function S : {0, 1}m → {0, 1}n.
Let Si : {0, 1}m → {0, 1} for 0 ≤ i ≤ n − 1 denote functions which corresponds to
coordinates of S. Namely, S is the concatenation of S0||S1|| . . . ||Sn−1. The idea is, for
each of the m input variables x, to construct t random shares x1, x2, . . . , xt such that
x = ⊕tj=1xj . Accordingly each coordinate function Si is represented with u output shares
Si,0, Si,1, . . . , Si,u−1, each of which is also a boolean function that admits x1 . . . xt as input.
It is known that any d-th order TI satisfies the following properties:

Correctness: For all 0 ≤ i ≤ n− 1, Si = ⊕u−1
k=0Si,k must be satisfied.

(d − 1)-th order non-completeness: Let S∗,j denote S0,j ||S1,j || . . . ||Sn−1,j . Then S∗,j
must be independent of inputs x(j+1) mod u, . . . , x(j+d) mod u, without loss of generality
over the choice of indices. Essentially, each S∗,j must be independent of d different
input shares, which makes each Si,j a boolean function that admits m(u− d) input
bits. Such a TI implementation resists up to (d − 1)-th order differential power
analysis.

Uniformity: For each unshared input, each individual shared output value must be equally
likely. This means that once we fix any m-bit input, the mt-bit shares are constructed
in such a way that, each term S∗,j for 0 ≤ u is uniformly distributed over {0, 1}n.
Here, S∗,j represents the concatenation of S0,j ||S1,j || . . . ||Sn−1,j . Here uniform
distribution condition applies to terms individually.

It is well known that the minimum number of input shares required to implement the
TI of a function of algebraic degree w is w+ 1 [NRS11]. This means that quadratic s-boxes
need at least 3 shares and cubic s-boxes need at least 4 shares even for first order TI.
However the more the number of shares, we proportionally need to scale up the number of
registers and other constituent logic gates in the circuit. Needless to say this comes with
proportional scaling up of not only the circuit area but also power and energy consumption
of the circuit. Thus at first glance it might appear that, from an energy efficiency point of
view, one should rather aim to minimize the number of shares in the circuit.

Most lightweight cryptographic s-boxes are of algebraic degree 3 (e.g. those of PRESENT,
GIFT, MIDORI) and hence for a while it was inconceivable to construct a TI of less than
4 shares. However, in [PMK+11], the authors showed how to construct 3-share TI of a
block cipher cubic s-box. In the paper, the authors presented a 2300 GE 3-share TI of
the PRESENT block cipher. The idea is as follows: although the s-box S of PRESENT is
cubic, it can be written as S = F ◦G, where F and G are quadratic s-boxes. So a 3 shared
implementation of the PRESENT s-box can be done by implementing the TI of G and F
separated by a register bank in between, which suppresses the glitches produced by the TI
of G. The approach has been summarized in Figure 18 (left).

The above approach has an obvious disadvantage that additional registers are required
in between the G and F layers. However we can think of an alternate arrangement as
shown in the right side of Figure 18. The idea is to have a demultiplexer bank in front
of the G layer, that switches off the input to this layer in every alternate clock cycle. By
doing so, the G-layer outputs once computed are fed back to the register bank. In the next
cycle the register feeds the G-layer output through the demux on to the F-layer (shown
by the red datapath). Although, this type of a structure does not need an extra register
layer, it is counter-productive as far as energy efficiency is concerned (unless there are
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Figure 18: Implementing TI of a cubic s-box in 3 shares in 2 ways

special algebraic structures/relations between G and F ). First, the structure replaces
a register with a demultiplexer bank and yet another multiplexer bank that filters the
G-layer output back into the register, so as far as circuit area is concerned it offers no real
advantages. Secondly, the structure increases the physical length of the datapath in the
circuit, and so extra gate delay produced thereof results in additional glitches [BBI+15],
which is counterproductive for energy.

Both of the above structures have an additional disadvantage that they require 2
clock cycles to compute the shared s-box output, whereas a 4-share implementation would
require only one cycle. Since time efficiency is also an equally important component of
energy efficiency, this implies that it is not immediately evident that a 3-share would beat
4-share, as far as energy consumption of a TI is concerned. To make a fair evaluation
of the energy efficiency of the AEAD schemes we implemented first order TI with the
following characteristics:

1. We implemented first order TI of only round based circuits. This is necessary because
r-round unrolled circuits must necessarily have higher algebraic degree, and as per
the observation in [NRS11], it will require more shares to construct a TI. For example
a 2-round unrolled TI of a block cipher with a cubic s-box has algebraic degree 6,
if properly designed and then 7 shares are required. The exact algebraic forms of
each bit of a 7-share of a TI is likely to be very complicated, due to high degree,
with multiple terms in each expression, eventually leading to large costs in area and
power. Also each output bit of the non linear layer in a r-round unrolled circuit is a
function of a large number of input bits, which is much more than the input size of
the s-box. For example, every bit in the output of 2-round PRESENT is a function of
at least 16 bits. This only increases the circuit area and power consumption needed
to implement each shared output bit.

2. We implement TI profiles in which only the state path of the underlying encryption
primitive is shared, but not the keypath. Many previous papers have taken this
approach [PMK+11, BJK+16], as it is adequate for first order security and for
simplicity we follow the suit. If the keypaths were also shared, we estimate that it
would increase the power consumption of the AEAD schemes by a similar factor, and
energy consumption comparisons would probably lead to similar results. In short,
we implement threshold circuits for all the AEAD schemes except SATURNIN. The
mode SATURNIN was designed in an unusual way that the output of block cipher is
used as the key in the subsequent block cipher call. And so a TI which only considers
shares in the datapath is not possible for this mode. We believe it would be unfair to
compare its energy profile with the remaining schemes, as it could not guarantee the
same level of security. In any case, both the s-boxes used in SATURNIN belong to the
cubic class C270 listed in [BNN+12]. This class of s-box cannot be decomposed into
2 quadratic functions F ◦G, so we need at least 3 quadratic functions to decompose
this class of s-boxes. This of course means that in a 3-share TI, the s-box layer needs
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3 cycles for evaluation and so more energy is spent doing so.

5.1 S-box details
Most of the schemes benchmarked in this work have cubic s-boxes with 4-bit inputs that
are decomposable into quadratics F ◦G, and so efficient 3 and 4-share implementations
are possible.

GIFT: The s-box of GIFT belongs to the cubic class C172 which is decomposable into 2
quadratics. The algebraic expressions of the output shares of both the 3 and 4-share
TI can be found in [JGC+20].

Pyjamask-BC: The s-box of Pyjamask-BC belongs to the cubic class C223 (same as PICCOLO)
which is decomposable into 2 quadratics. Appendix A has detailed expressions for
the output shares for the 3 and 4-share implementations.

SKINNY: The s-box S8 of SKINNY takes 8 input bits and has algebraic degree equal to
6. Therefore, a single cycle implementation would require 7 shares. Instead, we
implement only a 3-share TI of all SKINNY based modes based on the recommendation
given by the designers in [BJK+16]. S8 can be decomposed into I ◦H ◦ G ◦ F where
each of these functions is an 8-bit quadratic s-box. This means that in order to
implement a 3-share TI, we could use a strategy similar to the one given in the
right side of Figure 18. In this particular case, a MUX is placed at the output of
F , G, H and I (which is merged with the round function circuit). We did not use
a demultiplexer in this particular case, as the round function is rather lightweight,
and precisely stuck to the formulas given by the original paper [BJK+16]. Further
improvements are possible by finding decomposition that makes use of the same
algebraic function. The algebraic expressions of the output shares of the 3-share TI
can be found in [BJK+16, page 32].

5.2 Results
Table 8 lists the simulation results using the same measurement setup as the unshared
round-based implementations (see Table 1). It can be seen that the schemes using SKINNY
consume most energy, which is intuitive since the s-box needs 4 clock cycles for evaluation.
On the other hand, it is surprising to see that 4-share TI circuits have similar energy-
efficiency when compared to the corresponding 3-share circuits.

One of the reasons for the above observation can be justified as follows: the fact that
a 3-share circuit takes 2 cycles to evaluate s-box works against it. To understand the
reasons better, we re-ran the Pyjamask simulations (with -no_autoungroup directive to
the compiler) and obtained a breakdown of the energies consumed by individual circuit
components to process 1 associated data and 8 plaintext blocks. A summary is presented
in Figure 19.

One can see that whereas the energy consumed by the other components are comparable,
the shared s-box layer (marked as S-Layer in the figure) of the 4-share TI consumes a lot
of energy which is to be expected because the shares are algebraically more complicated
(see Appendix A). However, the 3-share TI does one additional operation, which the
4-share TI is not required to do, and that is writing values output by the G-layer on to the
intermediate register bank. As it turns out these intermediate register writes consumes
almost as much energy as the shared s-box circuit in the 4-share TI. Thus on average the
energy consumed by the block cipher components in both the implementations balance
out.
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Table 8: Measurements for the 1-round threshold implementations. The schemes using
GIFT are colored in light gray whereas, SKINNY based schemes are in white
Candidate Conf. Shares Latency Area TPmax Power Energy

# (cycles) (GE) (Mbps) (mW) (nJ/128-bit)

GIFT-COFB CG-RB 3 800 16386 208.9 0.214 2.243
CG-RB 4 400 25850 350.8 0.358 1.875

SUNDAE-GIFT RB 3 1440 13297 145.7 0.215 3.719
RB 4 720 21848 285.2 0.357 2.999

HYENA CG-RB 3 800 14769 344.9 0.212 2.216
CG-RB 4 400 24540 497.4 0.358 1.875

LOTUS-AEAD CG 3 2072 14176 121.7 0.145 3.581
CG 4 1036 19712 133.0 0.262 3.232

LOCUS-AEAD CG 3 2072 12366 121.7 0.137 3.362
CG 4 1036 17597 176.8 0.255 3.148

SKINNY-AEAD CG 3 2240 18501 92.83 0.2264 6.134

Romulus CG-RB 3 2056 13450 130.00 0.1865 4.656

ForkAE CG 3 3008 17008 76.60 0.2483 8.304

Pyjamask CG-RB 3 348 42001 620.2 0.472 1.825
CG-RB 4 180 64577 927.6 0.814 1.628
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Figure 19: Breakdown of the energy consumptions in Pyjamask

6 Final Observations and Conclusion

We give a comprehensive guide to designing energy-efficient authenticated encryption
schemes by evaluating a selection of ten NIST LWC candidates that make use of a
lightweight or a semi-lightweight block cipher at their core. In the process we were able
to look at each candidate individually and identify optimal circuit configurations that
would reduce the energy consumption of the AEAD circuit as a whole. We were also able
to make broader observations regarding energy efficiency in AEAD modes instantiated
with lightweight block ciphers. Some of them were broad and generic, e.g. the techniques
like clock-gating, register-borrowing are attractive to isolate register glitches and hence
optimize energy consumption. We also observed that when a mode instantiated with
an r-round unrolled block cipher, which might reach its optimal energy consumption at
some particular value of r, this does not necessarily mean that r is the optimal value for
the AEAD circuit. For scheme employing slightly more heavyweight block ciphers, our
observations indicate that inverse-gated fully-unrolled implementations work best.

In the second part of the paper we turned our attention towards threshold implementa-
tions, for those applications that also seek a modest level of physical security. We looked
at both 3-share and 4-share threshold implementations of the schemes and made energy
measurements. For schemes based on SKINNY, the fact that 4 cycles are required to
evaluate the shared s-box, means that the AEAD scheme must sacrifice more of its energy
for the cipher itself. For the other candidates we note an up to 20 percent decrease in
energy consumption for the 4-share implementation in comparison to the 3-share designs.



Andrea Caforio, Fatih Balli and Subhadeep Banik 33

We conclude our paper with the following claims, which applies to block cipher based
AEAD paradigm, that can hopefully help achieve the ultimate goal of lightweightness with
respect to energy consumption.

Claim 1. The size of register banks have an utmost importance, if not plays the most
significant role, in energy and area of an r-round unrolled AEAD circuit4. In order to
achieve lightweightness, the designers should favor choices which lead to fewer number of
storage elements, i.e. choose a block cipher with less internal storage, and utilize as small
number of temporary variables as possible in the mode of operation.

Claim 2. The r-round unrolled implementations strike a good balance between area,
throughput and the energy consumption. However, the sweet spot for r depends both on the
block cipher and the surrounding mode of operation. Implementors are recommended to
experiment with different choices of r for the full AEAD scheme, and keep in mind that
experiments based solely on block ciphers are not sufficient.

Claim 3. If a given AEAD scheme contains many storage elements, implementors are
recommended to employ techniques such as clock-gating and register-borrowing as much
as possible to reduce the energy consumption. These techniques have almost no drawback,
except the time and the effort it takes to realize them. The register-borrowing technique, if
applicable, allows one to get rid of a register bank. The efficiency of the clock-gating scales
up with the number of idle storage elements and the total number of clock cycles during
which they remain inactive.

Claim 4. From the energy perspective, there is almost a direct correlation between
the lightweightness of non-threshold and threshold implementations of an AEAD scheme.
Hence the optimal design choices for TI align well with the aforementioned decisions.
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A Output shares for Pyjamask-BC Sbox
A.1 4-share implementation
S0,0 = a1 ⊕ b1 ⊕ c1 ⊕ a1 · b1 ⊕ a1 · b2 ⊕ a1 · b3 ⊕ a3 · b2 ⊕ a1 · c1 ⊕ a1 · c2 ⊕ a1 · c3⊕

a3 · c2 ⊕ a1 · d1 ⊕ a1 · d2 ⊕ a1 · d3 ⊕ a3 · d2 ⊕ c1 · d1 ⊕ c1 · d2 ⊕ c1 · d3 ⊕ c3 · d2⊕
a1 · b1 · c1 ⊕ a1 · b2 · c1 ⊕ a1 · b3 · c1 ⊕ a2 · b3 · c1 ⊕ a3 · b2 · c1 ⊕ a1 · b1 · c2⊕
a1 · b2 · c2 ⊕ a1 · b3 · c2 ⊕ a3 · b1 · c2 ⊕ a3 · b2 · c2 ⊕ a3 · b3 · c2 ⊕ a1 · b1 · c3⊕
a1 · b2 · c3 ⊕ a1 · b3 · c3 ⊕ a2 · b1 · c3 ⊕ a3 · b2 · c3

S0,1 = 1⊕ a1 ⊕ a1 · c1 ⊕ a1 · c2 ⊕ a1 · c3 ⊕ a3 · c2 ⊕ c1 · d1 ⊕ c1 · d2 ⊕ c1 · d3 ⊕ c3 · d2

S0,2 = a1 ⊕ c1 ⊕ d1 ⊕ a1 · b1 ⊕ a1 · b2 ⊕ a1 · b3 ⊕ a3 · b2 ⊕ b1 · c1 ⊕ b1 · c2 ⊕ b1 · c3⊕
b3 · c2 ⊕ a1 · b1 · c1 ⊕ a1 · b2 · c1 ⊕ a1 · b3 · c1 ⊕ a2 · b3 · c1 ⊕ a3 · b2 · c1 ⊕ a1 · b1 · c2⊕
a1 · b2 · c2 ⊕ a1 · b3 · c2 ⊕ a3 · b1 · c2 ⊕ a3 · b2 · c2 ⊕ a3 · b3 · c2 ⊕ a1 · b1 · c3⊕
a1 · b2 · c3 ⊕ a1 · b3 · c3 ⊕ a2 · b1 · c3 ⊕ a3 · b2 · c3 ⊕ b1 · c1 · d1 ⊕ b1 · c2 · d1⊕
b1 · c3 · d1 ⊕ b2 · c3 · d1 ⊕ b3 · c2 · d1 ⊕ b1 · c1 · d2 ⊕ b1 · c2 · d2 ⊕ b1 · c3 · d2⊕
b3 · c1 · d2 ⊕ b3 · c2 · d2 ⊕ b3 · c3 · d2 ⊕ b1 · c1 · d3 ⊕ b1 · c2 · d3 ⊕ b1 · c3 · d3⊕
b2 · c1 · d3 ⊕ b3 · c2 · d3

S0,3 = a1 ⊕ d1 ⊕ b1 · c1 ⊕ b1 · c2 ⊕ b1 · c3 ⊕ b3 · c2

Note that d (resp a) denotes the input MSB (resp. LSB) of the s-box, and d0, d1, d2, d3
are the 4 shares of the input variable d. Denote by the vector Xi = [di, ci, bi, ai] for all
i ∈ [0, 3], then S0,j is expressed in compact form as fj(X1, X2, X3) for all j ∈ [0, 3]. As
is the case in direct sharing, the expressions for the other output shares S1,j , S2,j and
S3,j are given as fj(X0, X2, X3), fj(X0, X1, X3) and fj(X0, X1, X2) respectively for all
j ∈ [0, 3], except S3,1 which is given as 1⊕ f1(X0, X1, X2) to maintain correctness in the
second LSB.

A.2 3-share implementation
The s-box is decomposed as F ◦G. The output shares of G are given as follows:

g0,0 = b2

g0,1 = c2

g0,2 = a2 ⊕ b2 ⊕ d2 ⊕ b1 · c1 ⊕ b1 · c2 ⊕ b2 · c1

g0,3 = a2 ⊕ a1 · c1 ⊕ a1 · c2 ⊕ a2 · c1 ⊕ c1 · d1 ⊕ c1 · d2 ⊕ c2 · d1

Again d (resp a) denotes the input MSB (resp. LSB) of the s-box, and Xi = [di, ci, bi, ai]
for all i ∈ [0, 2]. If g0,j is expressed as rj(X1, X2) for all j ∈ [0, 3], then g1,j and g2,j are
given as rj(X0, X2) and rj(X0, X1) for all j. The output shares of F are given as

f0,0 = a2 ⊕ b2 ⊕ c1 · d1 ⊕ c1 · d2 ⊕ c2 · d1

f0,1 = 1⊕ d2

f0,2 = a2 ⊕ b2 ⊕ c2 ⊕ a1 · d1 ⊕ a1 · d2 ⊕ a2 · d1

f0,3 = a2 ⊕ c2

Again if f0,j is expressed as sj(X1, X2) for all j ∈ [0, 3], then f1,j and f2,j are given as
sj(X0, X2) and sj(X0, X1) for all j.
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