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Abstract. We build symmetric encryption schemes from a pseudorandom function/permutation with
domain size N which have very high security – in terms of the amount of messages q they can securely
encrypt – assuming the adversary has S ă N bits of memory. We aim to minimize the number of
calls k we make to the underlying primitive to achieve a certain q, or equivalently, to maximize the
achievable q for a given k. We target in particular q " N , in contrast to recent works (Jaeger and
Tessaro, EUROCRYPT ’19; Dinur, EUROCRYPT ’20) which aim to beat the birthday barrier with
one call when S ă

?
N .

Our first result gives new and explicit bounds for the Sample-then-Extract paradigm by Tessaro and
Thiruvengadam (TCC ’18). We show instantiations for which q “ Ω

`

pN{Sqk
˘

. If S ă N1´α, Thiru-
vengadam and Tessaro’s weaker bounds only guarantee q ą N when k “ ΩplogNq. In contrast, here,
we show this is true already for k “ Op1{αq.
We also consider a scheme by Bellare, Goldreich and Krawczyk (CRYPTO ’99) which evaluates the
primitive on k independent random inputs, and masks the message with the XOR of the outputs. Here,

we show q “ Ω
´

pN{Sqk{2
¯

, using new combinatorial bounds on the list-decodability of XOR codes

which are of independent interest. We also study best-possible attacks against this construction.

1 Introduction

A number of very recent works [2,47,44,38,29,20,19] extend the concrete security treatment of
provable security to account for the memory complexity of an adversary. For symmetric encryption,
Jaeger and Tessaro [38] showed for example that randomized counter-mode encryption (CTR) is
secure against attackers encrypting q “ ΘpN{Sq messages, where S is the memory complexity of
the adversary and N “ 2n is the domain size of the underlying PRF/PRP, which is assumed to be
sufficiently secure. This is a linear time-memory trade-off – reducing S by a multiplicative factor
ε ă 1 allows us to increase by a factor 1{ε the tolerable data complexity of the attack.

The benefit of such a trade-off is that if S ă
?
N , one can tolerate q ą

?
N , which is beyond

the so-called “birthday barrier.” Building schemes with beyond-birthday security is a prime line of
research in symmetric cryptography, but constructions are generally less efficient without imposing
any memory restrictions on the adversary.

Our contributions: Super-linear trade-offs. The trade-off for CTR relies on a thin margin:
For N “ 2128, we only improve upon memory-unbounded analyses if S ! 264. While 264 bits is a
large amount of memory, it is not unreasonably large. One should therefore ask whether we can do
better – either take advantage of a weaker memory limitation or be able to encrypt a much larger
number of messages. More broadly, we want to paint a full picture of what security is attainable
under a given memory restriction – complementing our understanding of the landscape without
memory constraints.

‹ Work done in part while visiting the University of Washington.



More concretely, we consider constructions which make k calls to a given block cipher1 with
domain size N , and ask the following question:

If the adversary is bounded to S ă N bits of memory, what is the highest security we can
achieve (in terms of allowable encryptions q) by a construction making k calls?

Tessaro and Thiruvengadam [44] showed that one can achieve security for q " N encrypted messages
at the cost of k “ ΩplogNq, whereas here we do much better by giving schemes that can do so
already for k “ Op1q: They can in particular encrypt up to q “ ΘppN{Sqcpkqq messages, for cpkq ą 1.
(This is what we refer to as a super-linear trade-off.) For one of our two constructions (in fact, the
same construction as [44], but with a much better analysis), we get cpkq “ k ´ 1 for messages of
length n, and cpkq “ k for bit messages. These trade-offs appear best-possible (or close to best-
possible), but proving optimality for now seems to be out of reach – we move first steps by studying
attacks against one of our constructions.

These schemes can securely encrypt q " N messages as long as S ă N . It is important to
appreciate that without the restriction, q ă N is an inherent barrier for current proof techniques
(cf. [44] for a discussion).

On practice and theory. We stress that our approach is foundational. Even for k ě 2, prac-
titioners may find the resulting constructions not viable. Still, security beyond q ą N may be
interesting in practice – we may want to implement a block cipher with smaller block length (e.g.,
N “ 280) and then be able to still show security against q “ 2128 encryptions, as long as S ă 280,
which is a reasonable assumption.

We also stress that the question we consider here is natural in its own right, and is a crypto-
graphic analogue and a scaled-up version of the line of works initiated by Raz [42], with a stronger
focus on precise bounds and thus different techniques. (We discuss the connection further in Sec-
tion 1.4 below.)

1.1 Our Contributions

We start with a detailed overview of our contributions. (A technical overview is deferred to the
next two sections.) Our constructions make k calls to a function FK : t0, 1un Ñ t0, 1un keyed with
a key K – this is generally obtained from a block cipher like AES (in which case, n “ 128). We will
use the shorthand N “ 2n. For the presentation of our results in this introduction, it is helpful to
assume FK behaves as a random function or a random permutation – this can be made formal via
suitable PRF/PRP assumptions, and we discuss this at the end of this section in more detail.

The Sample-then-Extract Construction. The first part of this paper revisits the Sample-
then-Extract (StE) construction of [44]. StE depends on a parameter k ě 1 as well as a (strong)
randomness extractor2 Ext : pt0, 1unqk ˆ t0, 1us Ñ t0, 1u`. The encryption of a message M P t0, 1u`

under key K is then

C “ pR1, . . . , Rk, sd,ExtpFKp0 }R1q } ¨ ¨ ¨ }FKpk ´ 1 }Rkq, sdq ‘Mq , (1)

where sd P t0, 1us and R1, . . . , Rk P t0, 1u
n´log k are chosen afresh upon each encryption. We also

extend StE to encrypt arbitrary-length messages (which can have variable length), amortizing the

1 Assumed to be a secure PRP/PRF.
2 Recall that this means that pExtpX, sdq, sdq and pU, sdq are (statistically) indistinguishable for sd

$
Ð t0, 1us, U

$
Ð

t0, 1u`, whenever X has sufficient min-entropy.
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cost of including sd, R1, . . . , Rk, in the ciphertext. (For this introduction, however, we only deal
with fixed-length messages for ease of exposition.)

Prior work only gives a sub-optimal analysis: For k “ ΘplogNq “ Θpnq, Tessaro and Thiruven-
gadam [44] show security against q “ N1.5 encryptions whenever S “ N1´α for a constant α ą 0.
Here, we prove a much better bound. For example, for ` “ n, and a suitable choice of Ext, we show
security up to

q “ ΘppN{Sqk´1q

encryptions. This is improved to q “ ΘppN{Sqkq for bit messages. Therefore, if S ă N1´α, we can
achieve security up to q “ N1.5 encryptions with k “ 1` 1.5

α , which is constant if α also is.

The k-XOR Construction.Our second result considers a generalization of randomized counter-
mode encryption, introduced by Bellare, Goldreich, and Krawczyk [7], which we refer to as the
k-XOR construction. For even k ě 1, to encrypt M P t0, 1un, we pick random R1, . . . , Rk P t0, 1u

n,
and output

C “ pR1, . . . , Rk,FKpR1q ‘ ¨ ¨ ¨ ‘ FKpRkq ‘Mq . (2)

Alternatively, k-XOR can be viewed as an instance of StE with a seedless Ext. For this construction,
we prove security up to q “ ΘppN{Sqk{2q encryptions. We note that in [7], a memory-independent
bound of q “ ΘpN{kq was proved for the case where q ă N . The two results are complementary.
The bound from [7] does not tell us anything for q ą N , in contrast to our bound, but can beat (in
concrete terms) our bound for q ă N{k. Different from our results on StE, our proof only works if
we assume that FK is a random function. We note however that this is consistent with the fact that
even for the memory-unbounded setting, no bound based on a random permutation is known. We
however discuss how to instantiate FK from a PRP, and this will result in a construction similar to
the above, just with a high number of calls to F.

It is also clear that we cannot expect to prove any better bound, unless we change the sampling of
the indices R1, . . . , Rk. This is because after q “ Nk{2 queries we will see, with very high probability,
an encryption with R2i´1 “ R2i for all i “ 1, . . . , k{2. This attack only requires S “ Opk logNq.
However, it is not clear whether this attack extends to leverage larger values of S - we discuss
attacks in Section 4.3.

Our proof relies on new tight combinatorial bounds on the list-decodability of XOR codes which
are of independent interest and improve upon earlier works. Indeed, using existing best-possible
bounds in our proof would result in a weaker bound with exponent k{4, as we explain in detail
in Appendix D. Recent concurrent work by Garg, Kothari and Raz [25] studies the security of
Goldreich’s PRG [30] in a streaming setting – for the particular instantiation of the PRG predicate
as XOR one can use their technique to derive a bound with exponent k{9. (We discuss their work
further in Section 1.4.)

Reducing the ciphertext size. In the above constructions, the ciphertext size grows with k. An
interesting question is whether we can avoid this – in Appendix C we do so for the case S “ ΩpNq.
For this setting, our StE analysis gives k “ Ωpnq, and thus, the ciphertext has Ωpn2q extra random
bits in addition to the masked plaintext. In contrast, we present a variant of the StE construction
where the number of extra bits in the ciphertext is reduced to Opnq. To this end, we use techniques
from randomness extraction and randomness-efficient sampling to instantiate our construction.

Instantiating FK .We need to instantiate FK from a keyed function/permutation which we assume
to be a pseudorandom function (PRF) or permutation (PRP). The catch is that if we aim for security
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against q ą N queries, we need FK to be secure for adversaries that also run with time complexity
larger than t ą q ą N .

This assumption is not unreasonable, as already discussed in [44] – one necessary condition is
that the key is longer than log q bits to prevent a memory-less key-recovery distinguisher (e.g.,
one would use AES-256 instead of AES-128).3 This is also easily seen to be sufficient in the ideal-
cipher model, where PRP security only depends on the key length. Furthermore, our reductions
give adversaries using memory S ă N , and it is plausible that non-trivial attacks against block
ciphers may use large amounts of memory. And finally, key-extension techniques [9,28,27,33] can
give ciphers with security beyond N .

1.2 Our Techniques – Sample-then-extract

We discuss both constructions, StE and k-XOR, in separate sections, starting with the former.

Tighter hybrids. Our proof follows a paradigm (first introduced explicitly in [16], and then
adapted in [38] to the memory-bounded setting) developing hybrid-arguments in terms of Shannon-
type metrics. This results in bounds of the form

?
q ¨ ε, whereas a classical hybrid arguments would

give us bounds of the form q
?
ε. We do not know whether the square root can be removed –

Dinur [19] shows how to do so in the Switching Lemma of [38], but it is unclear whether his
techniques apply here.4

The core of our approach relies on understanding the distance from the uniform distribution
for a sample with form

Y pFq “ pR1, . . . , Rk, sd,ExtpFp0 }R1q } ¨ ¨ ¨ }Fpk ´ 1 }Rkq, sdqq ,

for a randomly chosen function F : t0, 1un Ñ t0, 1un, given additionally access to (arbitrary) S
bits of leakage LpFq. We will measure this distance in terms of KL divergence, by lower bounding
the conditional Shannon entropy HpY pFq|LpFqq. Giving a bound which is as large as possible will
require the use of a number of tools in novel ways.

Decomposition lemma. For starters, we will crucially rely on the decomposition lemma of Göös
et al. [32]: It shows that Fz – which is defined as F conditioned on LpFq “ z – is statistically
γ-close to a convex combination of pP, 1 ´ δq-dense random variable. A pP, 1 ´ δq-dense random
variable, in this context, is distributed over functions F1 : t0, 1un Ñ t0, 1un and is such that there
exists a set P Ď t0, 1un of size P with the property that: (1) the outputs F1pxq are fixed for all
x P P, whereas (2) for any subset I Ď t0, 1unzP, the outputs tF1pxquxPI have jointly min-entropy
at least |I| ¨ p1´ δqn. It is important to notice that there is a trade-off between γ, δ, and P , in that
δz “ pSz ` logp1{γqq{pPnq, where Sz “ n2n ´ H8pFzq.

Extraction from varying amounts of min-entropy.Our analysis will choose the parameters
δ and P carefully – the key point, however, is that when we replace Fz with a pP, 1´δq-dense function
F1, the total min-entropy of F1p0 }R1q } ¨ ¨ ¨ }F

1pk´1 }Rkq grows with the number of probes Ri such
that pi }Riq R P, i.e., the set of “good” probes which land on an input for which the output is
not fixed. To get some intuition, if one ignores the pre-pended probe index i, the number of good

3 The best non-trivial attack against AES-256 uses time approximately 2254 [11].
4 This improvement is irrelevant as long as we only infer the resources needed for constant advantage, which is the

standard angle on tightness in symmetric cryptography. However, as pointed out e.g. in [33], exact bounds also
often matter.
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probes g P t0, 1, . . . , ku would follow a binomial distribution with parameter |P| {N , and overall
min-entropy is g ¨ p1´ δqn.

Therefore, the extractor is now applied to a random variable which has variable amount of
min-entropy, which depends on g. Here, it is useful to use an extractor based on a 2-universal hash
function: Indeed, the Leftover-Hash Lemma (LHL) [?] guarantees a very useful property, namely
that while the extractor itself is fixed, the entropy of its output increases as the entropy of its input
increases. Specifically, the entropy of the `-bit output becomes ` ´mint`, 2``1´hu when the input
has min-entropy h « gp1´ δqn.

Our approach is dual to the smoothed min-entropy approach of Vadhan [46], which is used
to build locally-computable extractors in a way that resembles ours. In our language, but with
different techniques, he shows that with good probability, g “ Θpkq, where k “ Θpλq. This does not
work well for us (we care mostly about k “ Op1q), and thus we take a more fine-grained approach
geared towards understanding the behavior of g.

The advantage of Shannon entropy. It is crucial for the quality of the established trade-off
to adopt a Shannon-entropy version of the LHL. The more common version bounds the statistical
distance as 2p``1´hq{2, and following this path would only give us a lower bound on q which is
(roughly) the square root of what we prove. We note that a Shannon-theoretic version of the LHL
was already proved by Bennet, Brassard, Crépeau, and Maurer [10], and the fact that a different
distance metric can reduce the entropy loss is implicit in [4].5

Extra remarks. A few more remarks are in order. Our approach is similar, but also different
from that of Coretti et al. [15,14]. They use the decomposition lemma in a similar way to transition
to (what they refer to as) the bit-fixing random oracle (BF-RO), i.e., a model where F is fixed on P
positions, and completely random on the remaining ones (as opposed to being just p1´ δq-dense, as
in our case). Using the BF-RO abstraction yields very suboptimal bounds. Their generic approach
would incur an additive factor of pS ` logp1{γqqk{P , which is too large.

1.3 Our techniques - k-XOR

Our approach for StE given above does not yield usable results for k-XOR – namely, any choice
of δ prevents us from proving that Fzp0 }R1q ‘ ¨ ¨ ¨ ‘ Fzpk ´ 1 }Rkq is very close to uniform, even
if none of the probes lands in P. A unifying treatment of both constructions appears to require
finding a strengthening of the decomposition lemma. Instead, we follow a different path.

Predicting XORs. The core of our analysis bounds the ability of predicting FpR1q ‘ ¨ ¨ ¨ ‘ FpRkq
for a random function F : t0, 1un Ñ t0, 1u, given (arbitrary) S bits of leakage on F. We aim
to upper bound the advantage ∆pN,S, kq which measures how much beyond probability 1

2 an
adversary can guess the XOR given the leakage and R1, . . . , Rk. The focus is on single-bit outputs –
a bound for the multi-bit case will follow from a hybrid argument. Although this problem has been
studied [23,45,35,37,17], both in the contexts of locally-computable extractors for the bounded-
storage model and of randomness extraction, none of these techniques gives bounds which are tight
enough for us. (We elaborate on this below.) Here, we shall prove that

∆pN,S, kq “ OppS{Nqk{2q .

5 The benefits of reducing entropy loss by targeting Shannon-like metrics were also very recently studied by
Agrawal [1] in a different context.
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The coding connection. Our solution leverages a connection with the list-decoding of the k-
fold XOR code (or k-XOR code, for short): This encodes F (which we think now as an N -bit

string F P t0, 1uN ) as an Nk-dimensional bit-vector k-XORpF q P t0, 1uN
k

such that its component
pR1, . . . , RKq P rN s

k takes value F pR1q‘¨ ¨ ¨‘F pRkq. At the same time, a (deterministic) adversary
A which on input R1, . . . , Rk and the leakage Z “ LpF q attempts to predict F pR1q ‘ ¨ ¨ ¨ ‘ F pRkq
can be thought of as family of 2S “noisy strings” tCZ “ Ap¨, ZquZPt0,1uS .

Prior works (such as [17]) focused (directly or indirectly) on approximate list-decoding, as they
give reductions, transforming A and L into some predictor for F , under some slightly larger leakage.
(How much larger the leakage is depends on the approximate list size.) Here, instead, we follow
a combinatorial blueprint inspired by [8,6], albeit very different in its execution. Concretely, we
introduce a parameter ε ą 0 (to be set to a more concrete value later), and for all Z P t0, 1uS ,

let BZ be the Hamming Ball of radius p1{2 ´ εqNk around CZ . Now, when picking F
$
Ð t0, 1uN ,

exactly one of two cases can arise:

(i) k-XORpF q P BZ for some Z P t0, 1uS , in which case the overlap between CZ and k-XORpF q
is potentially very high.

(ii) F R
Ť

Z BZ , in which case A will be able to predict F pR1q ‘ ¨ ¨ ¨ ‘ F pRkq with probability at
most 1{2` ε over the random choice of R1, . . . , Rk - no matter how LpF q is defined!

Now, let Lkε be an upper bound on the number of codewords k-XORpF q within any of the BZ . Then,

∆pN,S, kq ď ε` 2S ¨ Lkε{2
N . (3)

Tight bounds on list-decoding size. What remains to be done here is to find a bound on Lkε
– we are not aware of any tight bounds in the literature, and we give such bounds here.

Our approach (and its challenges) are illustrated best in the case k “ 1. Specifically, define
random variables T1, . . . , TN , where, for all R P rN s, TR “ 1 if CZpRq “ F pRq and TR “ 0 else.
When we pick F at random, the Ti’s are independent, and a Chernoff bound tells us that

Pr

«

N
ÿ

R“1

TR ě

ˆ

1

2
` ε

˙

N

ff

ď 2´Ωpε
2Nq ,

which in turn implies L1
ε ď 2Np1´ε

2q. Therefore, setting ε to be of order slightly larger than
a

S{N
gives us the right bound.

Our proof for k ą 1 will follow a similar blueprint, except that this will require us to prove
a (much harder!) concentration bound on a sum of Nk variables which are highly dependent. We
will prove such concentration using the method of moments. The final bound will be of the form
Lkε ď 2Np1´ε

2{kq.

Relationship to past works. We are not aware of any prior work addressing the question of
proving tight bounds for the XOR code directly, but prior techniques can non-trivially be combined
to obtain non-trivial bounds. The best-possible bound we could derive is pS{Nqk{4. This can be
obtained by combining the approach of De and Trevisan [17] with the combinatorial approximate
list-decoding bounds of [37]. We stress that this proof is far from a simple exercise, and this result
was never claimed – therefore, we discuss it in detail in Appendix D.
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Optimality. In Section 4.3 we give attacks against k-XOR. In particular, one can easily see that
if we want the bound to hold for all values of S, then it cannot be improved, as it is tight for
small S “ Opk logNq. For a broader range of values of S, we give an attack which succeeds with
q “ ΘppN{Sqkq messages – it is a good question whether our bound can be improved for larger
values of S to match this attack, or in the case where the R1, . . . , Rk are distinct. (This would
preclude our small-memory attack.)

1.4 Further Related work

Space-time trade-offs for learning problems. A related line of works is that initiated by
Raz [42] on space-time trade-offs for learning problems, which has by now seen several follow-
ups [43,39,5,26,25]. In particular, Raz proposes a scheme encrypting each bit mi as pai, xai, sy`miq

where s
$
Ð t0, 1un is a secret key, and ai

$
Ð t0, 1un is freshly sampled for each bit. This scheme

allows to encrypt 2n bits as long as the adversary’s memory is at most n2{c bits, for some (small)
constant c ą 1. We can scale up this setting to ours, by thinking of s as the exponentially large
table of a random function, but the resulting scheme would also incur exponential complexity. Some
follow-up works consider the cases where the ai’s are sparse [5,26], but they only study the problem
of recovering s, and it does not seem possible to obtain (sufficiently sharp) indistinguishability
bounds from these results.

Closest to our work on k-XOR is a recent concurrent paper [25] by Garg, Kothari and Raz,
which studies the streaming indistinguishability of Goldreich’s PRG [30] against memory bounded
adversaries. Their target are bounds for arbitrary predicates for Goldreich’s PRG, and they prove
indistinguishability for up to q “ Θ

`

pN{Sqk{9
˘

output bits when the predicate is k-XOR. The
setting of the analysis is almost identical to ours, with the difference that we think of the PRG
seed as being an exponentially large random table. Thus our techniques also yield a tighter bound
in their setting for this special case,6 and we believe they should also yield improved bounds for
more general predicates.

On the flip side, it is an exciting open question whether the branching-program framework
underlying all of these works can be adapted to obtain bounds as sharp as ours in the indistin-
guishability setting.

The Bounded-Storage Model. In both cases, our proofs consider the intermediate setting
where S bits of leakage Z “ LpF q are given about F , and we want to show that the output of
some locally computable function gpF,Rq is random enough given Z, where R is potentially public
randomness. This is exactly what is considered in the Bounded Storage Model (BSM) [41,3,46,24,17]
and in the bounded-retrieval model (BRM) [22,18]. Indeed, our StE construction can be traced back
to the approach of locally-computable extractors [46], and the k-XOR construction resembles the
constructions of [41,3,24]. A substantial difference, however, is that we are inherently concerned
about the small-probe setting (i.e., k “ Op1q) and the case where S “ N1´α, whereas generally the
BSM considers S “ OpNq and a linear number of probes. We also take a more concrete approach
towards showing as-tight-as-possible bounds for a given target k. It would be beneficial to address
whether our techniques can be used to improve existing BSM/BRM schemes.

Another difference is that our bounds are typically multiplied by the number of encryption
queries. This can be done non-trivially, for example, by using Shannon entropy as a measure of

6 There is a small formal difference, in that our analysis of k-XOR evaluates the given function on random indices,
whereas in [25] these indices are distinct.
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randomness, and relying on the reduced entropy loss for extraction with respect to Shannon entropy,
as we do for StE.

2 Definitions

Let N “ t0, 1, 2, . . . u. For N P N let rN s “ t1, 2, . . . , Nu. If A and B are finite sets, then FcspA,Bq
denotes the set of all functions F : AÑ B and PermpAq denotes the set of all permutations on the
set A. The set of size k subsets of A is

`

A
k

˘

. Picking an element uniformly at random from A and

assigning it to s is denoted by s
$
Ð A. The set of finite vectors with entries in A is pAq˚ or A˚.

Thus t0, 1u˚ is the set of finite length strings.
If M P t0, 1u˚ is a string, then |M | denotes its bit length. If m P N and M P pt0, 1umq˚, then

|M |m “ |M |{m denote the block length of M and Mi denote the i-th m-bit block of M . When
using the latter notation, m will be clear from context. The empty string is ε. The Hamming weight
hwpxq of x P t0, 1un is defined as hwpxq “ |ti P rns | xi ‰ 0u|. The Hamming ball of radius r around
z P t0, 1un is defined as Bpz; rq “ tx P t0, 1un | hwpx‘ zq ď ru.

We say that a random variable X is a convex combination of random variables X1, ..., Xt (with
the same range as X) if there exists α1, ..., αt ě 0 such that

řt
i“1 αi “ 1 and for any x in the range

of X, it holds that PrrX “ xs “
řt
i“1 αiPrrXi “ xs.

Games.Our cryptographic reductions will use pseudocode games (inspired by the code-based frame-
work of [9]). See Fig. 1 for some example games. We let Pr rGs denote the probability that game G
outputs true. It is to be understood that the model underlying this pseudocode is the formalism
we now describe.

Computational model. Our algorithms are randomized when not specified otherwise. If A is
an algorithm, then y Ð AO1,O2,...px1, . . . ; rq denotes running A on inputs x1, . . . and coins r with

access to oracles O1,O2, . . . to produce output y. The notation y
$
Ð AO1,O2,...px1, . . . q denotes

picking r at random then running y Ð AO1,O2,...px1, . . . ; rq. The set of all possible outputs of A
when run with inputs x1, . . . is rApx1, . . . qs. Adversaries and distinguishers are algorithms. The
notation y Ð Opx1, . . . q is used for calling oracle O with inputs x1, . . . and assigning its output to
y (even if the value assigned to y is not deterministically chosen).

We say that an algorithm (or adversary) A runs in time t if its description size and running
time are at most t. We say that adversary A is S-bounded if it uses at most S bits of memory
during its execution, for any possible oracle it is given access to and any possible input.

Information theory.For a random variable X with probability distribution P pxq “ Pr rX “ xs,
the Shannon entropy HpXq and collision entropy H2pXq are defined as

HpXq “
ÿ

x:P pxqą0

P pxq log

ˆ

1

P pxq

˙

and H2pXq “ ´ log

˜

ÿ

x

P pxq2

¸

,

and the min-entropy of X is H8pXq “ ´ log maxx P pxq. For two random variables X,Y with
joint distribution Qpx, yq “ Pr rX “ x, Y “ ys, the conditional Shannon entropy and conditional
min-entropy are defined by

HpY |Xq “
ÿ

x,y

Qpx, yq log
Qpxq

Qpx, yq
and H8pY |Xq “ ´ log

ÿ

x

max
y
Qpx, yq .

where Qpxq “
ř

y Qpx, yq is the marginal distribution of X.
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2.1 Streaming indistinguishability

We review the streaming indistinguishability framework of Jaeger and Tessaro [38], which considers
a setting where a sequence, X, of random variables

X1, X2, . . . , Xq

with range rN s is given, one by one, to a (memory-bounded) distinguisher A. The distinguisher
will need to tell apart this setting from another one, where it is given Y “ pY1, Y2, . . . , Yqq instead.

The streaming model. More formally, in the i-th step (for i P rqs), the distinguisher A has a
state σi´1 and stage number i. Then it receives Vi P tXi, Yiu based on which it updates its state
to σi. We denote by σipApXqq and σipApYqq the state after receiving Xi and Yi when running A
on streams X and Y, respectively. We say here that A is S-bounded if all states have bit-length
at most S.7 We also assume that σq P t0, 1u, and think of σq as the output of A. We define the
following streaming-distinguishing advantage

AdvdistX,YpAq “ Pr rApXq ñ 1s ´ Pr rApYq ñ 1s .

We shall use the following lemma by [38].

Lemma 1. Let X “ pX1, . . . , Xqq be independent and uniformly distributed over rN s and let Y “

pY1, . . . , Yqq be distributed over the same support as X. Then,

AdvdistX,YpAq ď
1
?

2

g

f

f

eq logN ´

q
ÿ

i“1

HpYi | σi´1pApYqqq .

2.2 Cryptographic preliminaries

Family of functions.A function family F is a function of the form F : F.KsˆF.DomÑ F.Rng. It
is understood that there is some algorithm that samples from the set F.Ks, and that fixing K P F.Ks,
there is some algorithm that computes the function FKp¨q “ FpK, ¨q. For our purposes, it suffices
to restrict to function families where F.Dom “ t0, 1un and F.Rng “ t0, 1um for some n and m.

A blockcipher is a family of functions F for which F.Dom “ F.Rng and for all K P F.Ks the
function FpK, ¨q is a permutation.

We let RFn,m : Fcspt0, 1un, t0, 1umq ˆ t0, 1un Ñ t0, 1um be the function family of random
functions mapping n-bits to m-bits, i.e. for any F P Fcspt0, 1un, t0, 1umq and x P t0, 1un, we define
RFn,mpF, xq “ F pxq. Similarly, we let RPn : Permpt0, 1unqˆt0, 1un Ñ t0, 1un be the function family
of random permutations on n bits. It is defined so that for any P P Permpt0, 1unq and x P t0, 1un,
RPnpP, xq “ P pxq.

Pseudorandomness security.For security we will consider both pseudorandom function (PRF)
and pseudorandom permutation (PRP) security.

Let F be a function family with F.Dom “ t0, 1un and F.Rng “ t0, 1um. PRF security asks F to
be indistinguishable from RFn,m. More formally, consider the function evaluation game Gfn

F pAq, in

7 Note, quite crucially, that this is different from the definition of S-bounded algorithms, in that we relax our notion
of space-boundedness to only consider the states between stages. This is sufficient for our applications, although
the model can be restricted.
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Game Gfn
F pAq

K
$
Ð F.Ks

b
$
Ð AFn

Return b “ 1

FnpXq
Y Ð FpK,Xq
Return Y

Game Gindr
SE,bpAq

K
$
Ð SE.Ks

b1
$
Ð AEnc

Return b1 “ 1

EncpMq
C1 Ð SE.EncpK,Mq

C0
$
Ð t0, 1u|M |`SE.xl

Return Cb

Fig. 1. Security games for PRF/PRP security of a family of functions (Left) and INDR security of an encryption
scheme (Right).

which adversary simply gets access to an oracle evaluating FK for a random and fixed key K. The
PRF advantage of A against F is defined to be

AdvprfF pAq “ PrrGfn
F pAqs ´ PrrGfn

RFn,mpAqs .

Similarly, PRP security of a blockcipher F with F.Dom “ t0, 1un is defined to be

AdvprpF pAq “ PrrGfn
F pAqs ´ PrrGfn

RPnpAqs .

Symmetric encryption.A symmetric encryption scheme SE specifies key space SE.Ks, and algo-
rithms SE.Enc, and SE.Dec (where the last of these is deterministic) as well as set SE.M. Encryption
algorithm SE.Enc takes as input key K P SE.Ks and message M P SE.M to output a ciphertext
C. We assume there exists a constant expansion length SE.xl P N such that |C| “ |M | ` SE.xl.
Decryption algorithm SE.Dec takes as input ciphertext C to output M P SE.M Y tKu. We write

K
$
Ð SE.Ks, C

$
Ð SE.EncpK,Mq, and M Ð SE.DecpCq.

Correctness requires for all K P SE.Ks and all sequences of messages M P pSE.Mq˚ that Prr@i :

M i “ M 1
is “ 1 where the probability is over the coins of encryption in the operations Ci

$
Ð

SE.EncpK,M iq and M 1
i Ð SE.DecpK,Ciq for i “ 1, . . . , |M |.

For security we will require the output of encryption to look like a random string. Consider the
game Gindr

SE,bpAq shown on the right side of Figure 1. It is parameterized by a symmetric encryption
scheme SE, adversary A, and bit b P t0, 1u. The adversary is given access to an oracle Enc which,
on input a message M , returns either the encryption of that message or a random string of the
appropriate length according to the secret bit b. The advantage of A against SE is defined by
AdvindrSE pAq “ PrrGindr

SE,1pAqs ´ PrrGindr
SE,0pAqs.

3 Sample-Then-Extract

The StE “ StErF, k,Exts scheme is defined in Figure 2: It was originally proposed by Tessaro and
Thiruvengadam [44], and it is based on ideas from the context of locally-computable extractors [46].
The scheme is extended here to encrypt multiple blocks of message with the same randomness
R1 . . . , Rk, and the same extractor seed sd. The scheme StErF, k,Exts uses a keyed function family
F which maps t0, 1un to t0, 1un, as well as an extractor Ext : t0, 1ukn ˆ t0, 1us Ñ t0, 1u`.

Below, we instantiate the extractor Ext with 2-universal hash function [13]. We recall that

h : t0, 1uw ˆ t0, 1us Ñ t0, 1u` is 2-universal if for all distinct x, y P t0, 1uw, it holds that Prrsd
$
Ð

10



Scheme StErF, k,Exts

Procedure EncpK,Mq

B Ð |M |`

M1, . . . ,MB ÐM ; sd
$
Ð t0, 1us

R “ pR1, ..., Rkq
$
Ð

´

t0, 1un´rlog ks
¯k

For i P rBs do
For j P rks do
Vi,j Ð FpK, pj ´ 1q}pRj ` i´ 1qq

For i P rBs do
Ci ÐMi ‘ ExtpVi,1}...}Vi,k, sdq

Return psd,R, C1, . . . , CBq

Procedure DecpK,Cq

psd,R, C1, . . . , CBq Ð C
For i P rBs do

For j P rks do
Vi,j Ð FpK, pj ´ 1q}pRj ` i´ 1qq

For i P rBs do
Mi Ð Ci ‘ ExtpVi,1} ¨ ¨ ¨ }Vi,k, sdq

Return M1} ¨ ¨ ¨ }MB

Fig. 2. The sample-then-extract encryption scheme SE “ StErF, k,Exts, with F.Dom “ t0, 1un. All additions and
subtractions are done under modulus 2n´rlog ks. The key space and message space of SE are SE.Ks “ F.Ks and
SE.M “ pt0, 1u`q`.

t0, 1us : hpx, sdq “ hpy, sdqs “ 2´`. For conciseness, we often write hsdpxq “ hpx, sdq. If ` ď s, a
construction with w “ s interprets both the input x and the seed sd as elements of the extension
field F2w , and hpx, sdq consists of the first ` bits of the product of x and sd.

A small-ciphertext version of StE. We also study a version of StE which produces small
ciphertexts, using techniques from randomness efficient sampling. The proof resembles that for StE
given below, and the details are deferred to Appendix C.

3.1 Security of StE

The security of StE scheme is captured by the following theorem. We first consider the case where
F is a PRF – which we prove below first. We will state a very similar theorem for the PRP case
below.8

The proof of the main theorem is deferred to Section 3.2.

Theorem 1 (Security of StE). Let N “ 2n, let F : F.Ks ˆ t0, 1un Ñ t0, 1un be a keyed function
family. Let Ext be a 2-universal hash function h : t0, 1ukn ˆ t0, 1ukn Ñ t0, 1u`. For any S-bounded
q-query adversary Aindr, where each query consists of messages of at most B `-bit blocks such that
B ď N{k, there exists an S-bounded PRF adversary Aprf (with similar time complexity as Aindr)
that issues at most qkB queries to the oracle, such that

AdvindrStErF,k,hspAindrq ď AdvprfF pAprfq `

c

1

2
qBε ,

where

ε “
`

Nk
`

k
ÿ

t“0

ˆ

k

t

˙ˆ

p2S ` 2knqB

N

˙t

¨mint`, 2``1 ¨ p2{Nqk´tu .

8 The PRP assumption leads to more straightforward instantiations via a block cipher. The PRF instantiation is
trickier, as we need PRFs that are highly secure – these can be instantiated with a much higher cost from a good
PRP (See Section 4.2).
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Instantiations and interpretations.We discuss instantiations of the above theorem for specific
parameter regimes. We consider two choices of `, which result in different bounds. In fact, a subtle
aspect of the bound is the appearance of a min: Depending on the choice of ` (relative to N), we
will have different t˚ such that 2``1 ¨ p2{Nqk´t ą ` for all t ă t˚, and the value t˚ affects the bound.

We give two corollaries. The first one dispenses with any fine-tuning, and just upper bounds
the min with 2``1 ¨ p2{Nqk´t. This bound however is enough to give us a strong trade-off of q “
ΩpNk{Skq for ` “ Op1q. However, for another common target, ` “ n, this would give us q “
ΩpNk´1{Skq. Our second corollary will show how the setting t˚ in that case will lead to a stronger
lower bound of q “ ΩpNk´1{Sk´1q. (In both cases, we are stating this for B “ 1.)

Corollary 1. With the same setup as Theorem 1, we have

AdvindrStErF,k,hspAindrq ď AdvprfF pAprfq `

d

2`qB

ˆ

p2S ` 2knqB ` 3

N

˙k

.

Corollary 2. With the same setup as Theorem 1, in addition to n “ `, n ě 4, and k ě 2, we have

AdvindrStErF,k,hspAindrq ď AdvprfF pAprfq `

d

2qBk

ˆ

p2S ` 2knqB ` 4n

N

˙k´1

.

We defer the proof of both corollaries to Appendix B.
We further provides an analysis over parameters of practical interests. Concretely, if we instan-

tiate F by a PRF that maps 128-bit to 128-bit, that is, N “ 2128, and we let the block size ` “ 128
bit. Then for any adversary that uses at most S “ 280 bit of memory and encrypts at most 1GB
message per query (i.e. B “ 233´7 “ 226), by following the coarse analysis of Corollary 1 and letting
k “ 15, our scheme can tolerate roughly q “ 2p128´80´26´1q¨15´128´26 “ 2161 queries. However, we
do not need such a large k to achieve q ą N . Notice that ` “ n “ 128, we can use Corollary 2 to im-
prove the analysis. Then by setting k “ 9, we have q “ 2p128´80´26´1q¨pk´1q´26´1 “ 221¨8´27 “ 2141

queries encrypting 1GB message. Note that similar analysis can be obtained when adapting the
following PRP instantiation.

PRP instantiation. The security of StE instantiated by a PRP is captured by the following
theorem. Since the StE-PRP security proof is similar to StE-PRF proof (the latter is slightly easier
to present), we will just provide a proof sketch for the PRP case in Appendix A, highlighting the
modifications from the PRF case.

Theorem 2 (Security of StE in PRP). Let N “ 2n ě 16, let F : F.Ks ˆ t0, 1un Ñ t0, 1un be a
keyed permutation family. Let Ext be a 2-universal hash function h : t0, 1ukn ˆ t0, 1ukn Ñ t0, 1u`.
For any S-bounded q-query adversary Aindr, where each query consists of messages of at most B
`-bit blocks such that pS ` kpn` 1qqB ď N{2, there exists an S-bounded PRF adversary Aprf (with
similar time complexity as Aindr) that issues at most qkB queries to the oracle, such that

AdvindrStErF,k,hspAindrq ď AdvprfF pAprfq `

c

1

2
qBε ,

where

ε “
`

Nk
`

k
ÿ

t“0

ˆ

k

t

˙ˆ

p4S ` 4knqB

N

˙t

¨mint`, 2``1 ¨ p16{Nqk´tu .

12



3.2 Proof of Theorem 1

Outline and preliminaries. Most of the proof will consider the StE scheme with direct access
to a random function RFn,n. It is immediate to derive a bound when the scheme is instantiated by

F at the cost of an additive term AdvprfF pAprfq.
We will be using Lemma 1, applied to a stream consisting of encryptions of the all-zero plain-

text (padded to B blocks) or truly random ciphertexts, which we define more formally below. In
particular, this will require upper bounding the difference in Shannon entropy (from uniform) of
the output of the i-th query, given the adversary’s state at that point. As in the proof of the k-XOR
construction, we relax our requirements a little, and assume the adversary can generate arbitrary
S bits of leakage of RF. We will then be using a version of the leftover-hash lemma for bounding
Shannon entropy (Proposition 1) to prove the desired bound.

We would naturally need (at the very least) to understand the min-entropy of Vi,1} ¨ ¨ ¨ }Vi,k
conditioned on the stage σi. In fact, we will use an even more fine-grained approach, and see
Vi,1} ¨ ¨ ¨ }Vi,k as the convex combination of variables with different levels of entropy. To this end,
we will use an approach due to Göös et al. [32] which decomposes a random variable with high
min-entropy (in this case, the random function table conditioned on σi) into a convex combination
of (easier to work with) dense variables. We use here the definition from [15]:

Definition 1. A random variable X with range rM sN is called:

- p1 ´ δq-dense if for every subset I Ď rN s, the random variable XI , which is X restricted on
coordinates set I, satisfies

H8pXIq ě p1´ δq ¨ |I| ¨ logM .

- pP, 1 ´ δq-dense if at most P coordinates of X is fixed and X is p1 ´ δq-dense on the rest
coordinates

Streaming setup. We first define some notations. We use bold-face to denote a vector R “

pR1, . . . , Rkq. Moreover, we define

Rtju “ pR1 ` j ´ 1, R2 ` j ´ 1, ..., Rk ` j ´ 1q ,

and Rt1:ju “ pRt1u,Rt2u, . . . ,Rtjuq. For a function F with n-bit inputs, we can further define

F rRtjus :“ F p0 } R1 ` j ´ 1q } ¨ ¨ ¨ } F pk ´ 1 } Rk ` j ´ 1qq .

Naturally, we extend this to

F rRt1:jus :“ pF rRt1us, F rRt2us, ..., F rRtjusq

Below, we first prove an upper bound for streaming indistinguishability and later upper bound
AdvindrStErRF,k,hs via the streaming distinguishing advantage. To this end, we define the following two
sequences X “ pX1, . . . , Xqq and Y “ pY1, . . . , Yqq of random variables such that:

- Xi “ pWi, sdi,Riq, where Wi
$
Ð t0, 1uB¨`,

- Yi “ phsdipF rR
t1u
i sq, . . . , hsdipF rR

tBu
i sq, sdi,Riq, where F is randomly chosen function from n

bits to n bits. (Note that the same sampled function is used across all Yi’s.)

In both streams, sdi
$
Ð t0, 1us, and Ri “ pRi,1, . . . , Ri,kq is a vector of k random probes. We use L

to denote the string length of the stream elements, i.e.,

L “ |Xi| “ |Yi| “ B`` s` kpn´ log kq .
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Main lemma. We will use Lemma 1, and rely on the following lemma, which is the core of our
analysis.

Lemma 2. For any S-bounded adversary A and for all i P rqs,

HpYi | σi´1pApYqqq ě L´Bε

where

ε “
`

Nk
`

k
ÿ

t“0

ˆ

k

t

˙ˆ

p2S ` 2knqB

N

˙t

¨min

#

`, 2``1
ˆ

2

N

˙k´t
+

.

Proof (of Lemma 2). First, we point out that we can easily find a deterministic function L such
that

HpYi | σi´1pApYqqq ě HpY | LpF qq .
The function L is first easily described in randomized form: given F , first simulates the first i´ 1
steps of the interaction of A with the stream pY1, . . . , Yi´1q (by sampling sd1, . . . , sdi´1, as well as
R1, . . . ,Ri´1 itself), and then outputs σi´1pApYqq. Then, L can be made deterministic by fixing
the randomness. Therefore, we will now lower bound HpY | LpF qq for an arbitrary function L.

We now want to better characterize the distribution of F conditioned on LpF q. To this end, we
use the following lemma, originally due to Göös et al [32], here in a format stated in [14,15].

Lemma 3. If Γ is a random variable with range rN sN with min-entropy deficiency SΓ “ n ¨N ´

H8pΓ q, then for every δ ą 0, γ ą 0, Γ can be represented as a convex combination of finitely many
pP, 1´ δq-dense variables tΛ1, Λ2, ...u for

P “
SΓ ` log 1{γ

δ ¨ n

and an additional random variable Λend whose weight is less than γ.

For every z P t0, 1uS , we define Fz to be the random function F conditioned on LpF q “ z. We

define accordingly its min-entropy deficiency Sz “ n ¨ N ´ H8pFzq. Also, we set δz “
Sz`log 1{γ

P ¨n ,
for some P to be chosen below. By applying Lemma 3, Fz is decomposed into finite number of
pP, 1´ δzq-dense variables tΛz,1, Λz,2, . . . u, and an additional variable Λz,end with weight less than
γ. We use αi to denote the weight of each decomposed dense variable in the convex combination.
It holds that

ř

t αt ě 1 ´ γ. Also, by the concavity of conditional entropy over probability mass
functions,

HphsdpFzrR
tjusq | sd,R, FzrR

t1:j´1usq ě
ÿ

t

αt ¨ HphsdpΛz,trR
tjusq | sd,R, Λz,trR

t1:j´1usq . (4)

It will be sufficient now to give a single entropy lower bound for any variable Λ which is pP, 1 ´
δzq-dense, and apply the bound to all tΛz,1, Λz,2, . . . u. In particular, now note that

HphsdpΛrR
tjusq | sd,R, ΛrRt1:j´1usq “ E

r

”

HphsdpΛrr
tjusq | sd, Λrrt1:j´1usq

ı

ě `´E
r

”

min
!

`, 2``1 ¨ 2´H8pΛrr
tjus | Λrrt1:j´1usq

)ı

. (5)

The last inequality follows from the following version of the Leftover Hash Lemma for Shannon
entropy. (We give a proof in Appendix B.2 for completeness, but note that the proof is similar to
that of [10].)
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Proposition 1. If h : t0, 1uw ˆ t0, 1us Ñ t0, 1u` is a 2-universal hash function, then for any
random variables W P t0, 1uw and Z, if seed sdÐ t0, 1us

HphsdpW q | sd, Zq ě `´mint`, 2``1 ¨ 2´H8pW |Zqu .

First off, note that

H8pΛrr
tjus | Λrrt1:j´1usq “ ´ log

¨

˝

ÿ

V PprNskqj´1

max
vPrNsk

Pr
”

Λrrt1:jus “ V } v
ı

˛

‚

where V enumerates all possible outcome of Λrrt1:j´1us “ pΛrrt1us, ..., Λrrtj´1usq, and v iterates
over all possible outcome of Λrrtjus.

Now, suppose that exactly t probes of rtju hit the P fixed coordinates of Λ and assume that
t0 coordinates of rt1:j´1u are fixed. Then, using the fact that Λ is p1 ´ δq-dense on the remaining
jk ´ t´ t0 coordinates, by the union bound,

log

¨

˝

ÿ

V PprNskqj´1

max
vPrNsk

Pr
”

Λrrt1:jus “ V } v
ı

˛

‚

ď log
´

Nkpj´1q´t0 ¨N´p1´δqpjk´t´t0q
¯

“ n rkpj ´ 1q ´ t0 ´ p1´ δqpkpj ´ 1q ´ t0qs ` n r´p1´ δqpk ´ tqs

“ n rδ pkpj ´ 1q ´ t0qs ` n r´p1´ δqpk ´ tqs

ď n rδkpj ´ 1q ´ p1´ δqpk ´ tqs .

Therefore, if t probes of rtju hit the P fixed coordinates of Λ, we have

H8pΛrr
tjus | Λrrt1:j´1usq ě n rp1´ δqpk ´ tq ´ δkpj ´ 1qs . (6)

Now, for 1 ď t ď k, we let Pt to be the number of fixed coordinates in the domain of t-th probe –
in particular, 0 ď Pt ď N{k and

ř

t Pt “ P . Then, let

µ :“ E
r

”

mint`, 2``1 ¨ 2´H8pΛrr
tjus|Λrrt1:j´1usqu

ı

as in (5). Then,

µ ď
k
ÿ

t“0

ÿ

UPprkst q

˜

ź

uPU

ˆ

Pu
N{k

˙

ź

vRU

ˆ

1´
Pv
N{k

˙

mint`, 2``1N δpj´1qk`pδ´1qpk´tqu

¸

ď

k
ÿ

t“0

ÿ

UPprkst q

˜

ź

uPU

ˆ

Pu
N{k

˙

¨mint`, 2``1 ¨N δpj´1qk`pδ´1qpk´tqu

¸

.

In Appendix B.2, we show that the above expression is maximized when Pu “ P {k for all u, and
thus

µ ď
k
ÿ

t“0

ˆ

k

t

˙ˆ

P

N

˙t

¨mint`, 2``1 ¨N δpj´1qk`pδ´1qpk´tqu

“

k
ÿ

t“0

ˆ

k

t

˙ˆ

P

N

˙t

¨mint`, 2``1 ¨ 2
pSz`logp1{γqq

P
pjk´tq 1

Nk´t
u “: ν .
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Plugging this into (4) yields

HphsdpFzrR
tjusq | sd,R, FzrR

t1:j´1usq ě p1´ γq ¨ p`´ νq . (7)

Next, we will need to take everything in expectation over the sampling of F (and hence of z “ LpF q).
To this end, we use the following claim to compute Ezrνs.

Claim. For any 0 ď t ď k, 1 ď j ď B, if P ě Bk ´ t, then it holds that:

Ezr2
Szpjk´tq

P s ď 2
SpBk´tq

P .

Proof. Clearly, Ezr2
Szpjk´tq

P s ď Ezr2
SzpBk´tq

P s. Now, note that PrrLpF q “ zs “ 2´Sz . Therefore,

Ezr2
SzpBk´tq

P s “
ÿ

z

2´Sz ¨ 2
SzpBk´tq

P “
ÿ

z

2´Szp1´
Bk´t
P

q .

Further note that, when P “ Bk ´ t, the inequality trivially holds true. When P ą Bk ´ t, by
Hölder’s inequality,

Ezr2
SzpBk´tq

P s “
ÿ

z

2´Szp1´
Bk´t
P

q

ď

˜

ÿ

z

´

2´Szp1´
Bk´t
P

q
¯1{p1´Bk´t

P
q

¸1´Bk´t
P

¨ p
ÿ

z

1
P

Bk´t q
Bk´t
P

ď 11´
Bk´t
P ¨ 2

SpBk´tq
P “ 2

SpBk´tq
P .

[\

Now, note that for any function f ,

Ezrmint`, fpzqus “
ÿ

z

Pr rzs ¨mint`, fpzqu ď mint`,Ezrfpzqsu , (8)

because minta, bu`mintc, du ď minta`c, b`du for any a, b, c, d. Using (8), combined with linearity
of expectation and the above claim,

Ezrµs ď
k
ÿ

t“0

ˆ

k

t

˙ˆ

P

N

˙t

¨Ez

«

min

#

`,
2``1 ¨ 2

pSz`logp1{γqq
P

pjk´tq

Nk´t

+ff

ď

k
ÿ

t“0

ˆ

k

t

˙ˆ

P

N

˙t

¨min

#

`, 2``1 ¨Ez

«

2
pSz`logp1{γqq

P
pjk´tq

Nk´t

ff+

ď

k
ÿ

t“0

ˆ

k

t

˙ˆ

P

N

˙t

¨min

#

`,
2``1 ¨ 2

pS`logp1{γqq
P

pBk´tq

Nk´t

+

.

Further, we will now finally set γ “ N´k and P “ pS ` knqB ě Bk and simplify this to

Ezrµs ď
k
ÿ

t“0

ˆ

k

t

˙ˆ

pS ` knqB

N

˙t

¨min

"

`,
2``1 ¨ 2k

Nk´t

*

“

k
ÿ

t“0

ˆ

k

t

˙ˆ

2pS ` knqB

N

˙t

¨min

#

`, 2``1 ¨

ˆ

2

N

˙k´t
+

,

(9)
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because S`log 1{γ
P ¨ pBk´ tq ď 1

BBk ď k. Therefore, taking expectations of (7), and using (9), yields

HphsdpF rR
tjusq | sd,R, F rRt1:j´1us,LpF qq

ě p1´
1

Nk
q ¨

˜

`´
k
ÿ

t“0

ˆ

k

t

˙ˆ

2pS ` knqB

N

˙t

¨min

#

`, 2``1 ¨

ˆ

2

N

˙k´t
+¸

ě `´
k
ÿ

t“0

ˆ

k

t

˙ˆ

2pS ` knqB

N

˙t

¨min

#

`, 2``1 ¨

ˆ

2

N

˙k´t
+

´
`

Nk
.

The proof is concluded by applying chain rule of conditional entropy and obtain

HphsdpF rR
t1usq, ..., hsdpF rR

tBusq, sd,R | LpF qq
“ Hpsd,R | LpF qq ` HphsdpF rR

t1usq, ..., hsdpF rR
tBusq | sd,R,LpF qq

“ L´B``
B
ÿ

j“1

HphsdpF rR
tjusq | sd,R, hsdpF rR

t1usq, ..., hsdpF rR
tj´1usq,LpF qq

ě L´B

˜

k
ÿ

t“0

˜

ˆ

k

t

˙ˆ

p2S ` 2knqB

N

˙t

¨mint`, 2``1 ¨ p2{Nqk´tu

¸

`
`

Nk

¸

.

[\

Proof (of Theorem 1). We claim that there exists an S-bounded PRF adversary Aprf (about as
efficient as Aindr and making at most qkB queries to oracle Fn) such that

AdvindrStErF,k,hspAindrq ď AdvindrStErRF,k,hspAindrq ` AdvprfF pAprfq .

Note that this is a standard argument, in which we shall also reduce the AdvindrStErRF,k,hs to streaming
indistinguishability, and claim that there is an S-bounded streaming distinguisher Adist such that,

AdvindrStErRF,k,hspAindrq “ AdvdistX,YpAdistq ,

where the sampling of stream Y depends on function F
$
Ð Fcspt0, 1un, t0, 1unq.

Consider the game G0,G1 in Figure 3. Note that G1 perfectly simulates the case where the
returned ciphertexts are random bits. We introduce a single intermediate hybrid H that replaces
the keyed function F in Game G0 by the random function RF. Hence,

AdvindrStErF,k,hspAindrq “ PrrG1s ´ PrrG0s

“ pPrrG1s ´ PrrHsq ` pPrrHs ´ PrrG0sq

“ AdvindrStErRF,k,hspAindrq ` pPrrG0s ´ PrrHsq .

We show that there exists a PRF adversary Aprf such that

PrrG0s ´ PrrHs “ AdvprfF pAprfq ,

and Aprf is (roughly) as efficient as Aindr. The constructed Aprf operates as the following: upon
given oracle access to either the keyed function F or the random function F , Aprf invokes Aindr
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Game Gb

K
$
Ð F.Ks

b1
$
Ð AEncb

indr

Return b1 “ 1

EncbpMq

B Ð |M |`

M1, . . . ,MB ÐM ; sd
$
Ð t0, 1us

R “ pR1, ..., Rkq
$
Ð

´

t0, 1un´rlog ks
¯k

For i P rBs do
For j P rks do
Vi,j Ð FpK, pj ´ 1q}pRj ` i´ 1qq

For i P rBs do
C0
i ÐMi ‘ ExtpVi,1}...}Vi,k, sdq

C1
i ÐMi ‘ U`

Return psd, R, Cb1, . . . , C
b
Bq

Game H

F
$
Ð Fcspt0, 1un, t0, 1unq

b1
$
Ð AEncH

indr

Return b1 “ 1

EncH
pMq

B Ð |M |`

M1, . . . ,MB ÐM ; sd
$
Ð t0, 1us

R “ pR1, ..., Rkq
$
Ð

´

t0, 1un´rlog ks
¯k

For i P rBs do
For j P rks do
Vi,j Ð F ppj ´ 1q}pRj ` i´ 1qq

For i P rBs do
CHi ÐMi ‘ ExtpVi,1}...}Vi,k, sdq

Return psd, R, CH1 , . . . , C
H
B q

Fig. 3. Games and adversaries used in the proof of Theorem 1.

and answers queries from Aindr by simulating the encryption scheme. Namely, when Aprf receives
an encryption request, it samples the probe vector R and the seed sd. Then, it computes each Vi,j
by querying the function oracle and returns the ciphertext that is obtained through xoring the
plaintext with the extracted random bits from Vi,js. If the accessed function is the keyed function
F, then Aprf perfectly simulates the game G0 for Aindr. Otherwise, it simulates the game H. Note
that Aprf only runs Aindr internally, queries the function oracle at most qkB times and computes
extractors. Hence, Aprf is as efficient as Aindr in terms of both computation time and memory.

We proceed to reduce the AdvindrStErRF,k,hs to streaming indistinguishability. Here, we consider only
the case the adversary Aindr asks for encrypting exactly B blocks upon each query, because we can
always reduce any adversary that queries fewer than B blocks to this case by padding to B blocks.
Namely, we show that for any S-bounded adversary Aindr, there exists an S-bounded streaming
adversary Adist which is as efficient as Aindr such that,

AdvindrStErRF,k,hspAindrq “ AdvdistX,YpAdistq ,

where the sampling of stream Y depends on function F
$
Ð Fcspt0, 1un, t0, 1unq.

We construct the streaming distinguisher Adist so that, when receiving either stream X or Y,
it internally runs the adversary Aindr. Recall that the streaming distinguisher Adist is divided into
multiple steps, and it is S-bounded if the state σi kept between steps satisfies |σi| ď S. At the
beginning of the i-th step, Adist maintains σi´1, which is the S-bit state of Aindr. Then, it receives
a stream element Vi. The distinguisher Adist keeps internally running Aindr and receives the i-th
encryption query of plaintext Mi. it then returns the ciphertext Ci “ Mi ‘ Vi to the Aindr and
set σi to be the current state of Aindr. Note that when the stream is X, Adist perfectly simulates
the game G1. When the stream is Y, Adist perfectly simulates the game H for Aindr. Finally, Adist

receives the prediction bit b1 from Aindr and outputs 1 ´ b1 as the prediction result. Note that the
streaming distinguisher Adist keeps exactly S bit state between steps, implying Adist is S-bounded.
Hence the conclusion follows.
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Scheme XorrF, ks

EncpK,Mq

For i P rks do Ri
$
Ð F.Dom

Y Ð
À

iPrks FpK,Riq
Return pR1, . . . , Rk, Y ‘Mq

DecpK,Cq

pR1, . . . , Rk, Zq Ð C
Y Ð

À

iPrks FpK,Riq
Return Y ‘ Z

Fig. 4. The k-XOR encryption scheme, SE “ XorrF, ks. The key space and message space of SE are SE.Ks “ F.Ks and
SE.M “ F.Rng.

Therefore, by applying Lemma 1 and Lemma 2 we have,

AdvindrStErRF,k,hspAindrq “ AdvdistX,YpAdistq ď
1
?

2

g

f

f

e

q
ÿ

i“1

pL´ HpYi|σi´1qq

ď

g

f

f

e

qB

2
¨

˜

k
ÿ

t“0

ˆ

k

t

˙ˆ

2pS ` knqB

N

˙t

¨mint`, 2``1 ¨ p2{Nqk´tu `
`

Nk

¸

.

Hence we conclude the proof of the main theorem. [\

4 Time-Memory Trade-Off for the k-XOR Construction

In this section, we show that the k-XOR construction (given in Figure 4), first analyzed by Bellare,
Goldreich, and Krawczyk [7] in the memory-independent setting, is secure upto q “ pN{Sqk{2

queries for S-bounded adversaries. For the rest of the section, we fix positive integers n and k
(required to be even) and let N “ 2n.

Theorem 3. Let F : F.Ks ˆ t0, 1un Ñ t0, 1um be a function family. Let SE “ XorrF, ks be the
k-XOR encryption scheme for some positive integer k. Let Aindr be an S-bounded INDR-adversary
against SE that makes at most q queries to Enc. Then, an S-bounded PRF-adversary Aprf can be
constructed such that

AdvindrSE pAindrq ď AdvprfF pAprfq ` 2mq ¨

d

ˆ

4pS ` nkq

N

˙k

. (10)

Moreover, Aprf makes at most q ¨ k queries to its Fn oracle and has running time about that of
Aindr.

Discussion of bounds.Our bound supports q ą N even with relative small k. Concretely, suppose
S “ 280 and N “ 2128. Then for k “ 6, we can already support upto roughly q “ 2p128´80q¨p6{2q´8 “
2136 queries. Note that it does not makes sense to set q ă S in our bound. This is because q
queries can be stored with Opqq memory. Furthermore, if q ă N{k, then one can apply the memory
independent bound of Bellare, Goldreich, and Krawczyk [7] which is of the form Opq2{Nkq. Hence,
our bound really shines when q ě N . Lastly, we suspect that our bound is likely not tight in general
(it is when S “ Opk logNq). In Section 4.3, we show attacks for a broader range of values of S that

achieve constant success advantage with q “ Op
`

N
S

˘k
q.
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The above theorem also requires F to be a good PRF – we discuss how to instantiate it from a
block cipher in Section 4.2 below.

Theorem 3 follows from standard hybrid arguments and the single-bit case under random func-
tions, i.e. INDR security of XorrRFn,1, ks, which is captured by the following lemma.

Lemma 4. Let SE “ XorrRFn,1, ks be the k-XOR encryption scheme for some positive integer k.
For any S-bounded adversary Aindr that makes q queries to Enc,

AdvindrSE pAindrq ď 2q ¨

d

ˆ

4pS ` nkq

N

˙k

. (11)

The proof of Theorem 3 from Lemma 4 consists of standard hybrid arguments (over switching
PRF output to random, then over m-output bits to independently random). We shall first prove
Lemma 4 and defer the hybrid arguments for later in this section.

Bit-distinguishing to bit-guessing. It shall be convenient to consider the following informa-
tion theoretic quantity Guessp¨q, defined for any bit-value random variable B as GuesspBq “
|2 ¨ PrrB “ 1s ´ 1|. As usual, we extend this to conditioning via GuesspB | Zq “ Ez rGuesspB | Z “ zqs.
Intuitively, GuesspB | Zq denotes the best possible guessing advantage for bit B, which is also the
best bit-distinguishing advantage. Note that if U is a uniform random bit that is independent of Z
(B and Z could be correlated), then for any adversary A,

Pr rApB,Zq ñ 1s ´ Pr rApU,Zq ñ 1s ď GuesspB | Zq . (12)

Proof of Lemma 4. Consider the INDR games Gindr
SE,0 and Gindr

SE,1. We would like to bound

AdvindrSE pAindrq “ PrrGindr
SE,1pAindrqs ´ PrrGindr

SE,0pAindrqs

Towards this end, let us consider hybrid games H0, . . . ,Hq as follows.

Game Hi

F
$
Ð Fcspt0, 1un, t0, 1uq

j Ð 0 ; b
$
Ð AEnci

indr
Return b “ 1

EncipMq

pR1, . . . , Rkq
$
Ð pt0, 1unqk

If j ě i then Z
$
Ð t0, 1u

Else Z Ð F pR1q ‘ ¨ ¨ ¨ ‘ F pRkq ‘M
j Ð j ` 1 ; Return pR1, . . . , Rk, Zq

Note that H0 “ Gindr
SE,0pAindrq (ideal) and Hq “ Gindr

SE,1pAindrq (real). Fix some i P t1, . . . , qu. Let
Bi “ F pRi,1q ‘ ¨ ¨ ¨ ‘ F pRi,kq. It holds (by (12)) that

Pr rHis ´ Pr rHi´1s ď GuesspBi | σi´1pAindrq, pRi,1, . . . , Ri,kqq , (13)

where σi´1pAindrq is the state of Aindr right the point where it makes its i-th query to Enci (and we
assume this query to contain M), and Ri,1, . . . , Ri,k are the random inputs generated in that query.
Note that |σi´1pAindrq| ď S and σi´1 is a (randomized-)function of the function table F . However,
there must exist a deterministic function Li : t0, 1uN Ñ t0, 1uS , so that

GuesspBi | σi´1pAindrq, Ri,1, . . . , Ri,kq ď GuesspBi | LipF q, Ri,1, . . . , Ri,kq .

Hence, to prove Lemma 4, it suffices to show the following lemma.
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Lemma 5. Let L : t0, 1uN Ñ t0, 1uS be any function. Then, for F
$
Ð t0, 1uN , and R1, . . . , Rk

$
Ð

rN s,

GuesspF rR1s ‘ ¨ ¨ ¨ ‘ F rRks | LpF q, R1, . . . , Rkq ď 2 ¨

ˆ

4pS ` nkq

N

˙k{2

. (14)

Assuming Lemma 5, we can derive that

AdvindrSE pAindrq “

q
ÿ

i“0

PrrHis ´ PrrHi´1s ď
q
ÿ

i“1

GuesspBi | σi´1pAindrq, Ri,1, . . . , Ri,kqq

ď

q
ÿ

i“1

GuesspBi | LipF q, Ri,1, . . . , Ri,kq ď 2q ¨

ˆ

4pS ` nkq

N

˙k{2

,

which concludes the proof of Lemma 4. [\

Connection to list-decodability of k-XOR code. Lemma 5 is the technical core of our
result. Before we go into the details of the proof, we need to recall the definition of list-decoding.
Consider the code k-XOR : t0, 1uN Ñ t0, 1uN

k
, which is defined by

k-XORpxqrIs “ xrI1s ‘ ¨ ¨ ¨ ‘ xrIks ,

for any I “ pI1, . . . , Ikq P rN s
k. We say that k-XOR : t0, 1uN Ñ t0, 1uN

k
is pε, Lq-list-decodable

if for any z P t0, 1uN
k
, there exists at most L codewords within a Hamming ball of radius εNk

around z. The proof of Lemma 5 consists of two steps. First, we translate the left-hand side of (14)
in terms of list-decoding properties of k-XOR code. Second, we apply a new list-decoding bound for
k-XOR code to obtain (14). We show in Appendix D that if one applies prior list-decoding bound
([36]) at step two, then one can guarantee security for q “ pN{Sqk{4 instead of pN{Sqk{2. We now
give some intuition on how Guess relates to list-decoding. First, we fix some deterministic guessing
strategy g for F rR1s ‘ ¨ ¨ ¨ ‘ F rRks given leakage LpF q and indices R1, . . . , Rk, which is a function
of the form g : t0, 1uS ˆ rN sk Ñ t0, 1u (looking ahead, g shall be fixed to be the “best” one). Note

that g can be interpreted as 2S elements of t0, 1uN
k
. In particular, let g1 : t0, 1uS Ñ t0, 1uN

k
be

the function defined to be

g1pxq “ gpx, p0, . . . , 0qq } ¨ ¨ ¨ } gpx, p1, . . . , 1qq .

We let G be the set tg1p0Sq, g1p0S´11q, . . . , g1p1Squ. Our set G of 2S guesses lie in the co-domain of
the k-XOR code. We now consider a partition of the t0, 1uN into sets Good and Bad, where

Good “

"

F P t0, 1uN | Ez P G : hwpk-XORpF q, zq ď

ˆ

1

2
´ ε{2

˙

Nk

*

,

Bad “

"

F P t0, 1uN | Dz P G : hwpk-XORpF q, zq ď

ˆ

1

2
´ ε{2

˙

Nk

*

.

Note that conditioned on F P Good, then the guessing strategy g should not achieve advantage
better than ε. Using Lemma 6 given below, whose proof shall be given in Section 4.1, we can
upper-bound the total number of codewords in Bad, as a function of ε.

Lemma 6. The k-XOR code is p12 ´ ε{2, 2
N´ε2{kN{4q-list decodable, i.e. for any z P t0, 1uN

k
, there

are at most 2N´ε
2{kN{4 codewords that are within hamming distance p12 ´ ε{2qN

k of z.
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Finally, obtaining the right-hand size of (14) amounts to picking an ε to minimize PrrF P

Bads ` ε. We proceed to the proof, which formalizes the above intuition.

Proof (of Lemma 5). Consider the code k-XOR : t0, 1uN Ñ t0, 1uN
k

defined by

k-XORpxqrIs “ xrI1s ‘ ¨ ¨ ¨ ‘ xrIks ,

for any I P rN sk. For notational convenience, let B “ F rR1s‘ ¨ ¨ ¨‘F rRks and Z “ LpF q. Consider
the following function Q : t0, 1uS ˆ rN sk Ñ r´1, 1s,

Qpz, Iq “ 2 ¨ Pr rB “ 1 | LpF q “ z, pR1, . . . , Rkq “ Is ´ 1 , (15)

where the probability is taken over F . By definition of Guess,

GuesspB | LpF q, R1, . . . , Rkq “ E r|QpZ, Iq|s , (16)

where Z “ LpF q and I
$
Ð rN sk. Now, we would like to describe the best guessing strategy gzrIs

for bit B given LpF q “ z and indices I. For each z P t0, 1uS , we define gz P t0, 1u
Nk

as follows. For
each I P rN sk we let gzrIs “ 1 if Qpz, Iq ě 0 and set gzrIs “ 0 otherwise. Intuitively, gzrIs encodes
the best guess for B “ F rI1s ‘ ¨ ¨ ¨F rIks given that LpF q “ z. Hence, for any z and I

1´ |Qpz, Iq|

2
“ Pr rB ‰ gz,I | LpF q “ z, pR1, . . . , Rkq “ Is . (17)

Taking expectation of both sides over I
$
Ð rN sk,

1´E r|Qpz, Iq|s

2
“ Pr rB ‰ gz,I | LpF q “ zs “

hwpk-XORpF q ‘ gzq

Nk
, (18)

where, recall, hwp¨q denotes the hamming weight (number of 1’s) of a given string. With slight
abuse of notation, we define Qpzq to be

Qpzq “ E
I

$
ÐrNsk

r|Qpz, Iq|s “ 1´ 2 ¨
hwpk-XORpF q ‘ gzq

Nk
. (19)

Qpzq encodes the best possible guessing advantage when LpF q “ z, i.e.

GuesspB | LpF q, R1, . . . , Rkq “ E rQpZqs .

Define E to be the event that k-XORpF q is of distance more than p12 ´ ε{2qN
k from gLpF q for some

ε to be determined later. Note that given E, then

hwpk-XORpF q ‘ gLpF qq ě

ˆ

1

2
´ ε{2

˙

Nk

which means that and QpLpF qq ď ε. Hence,

E rQpZqs “ Pr rEs ¨E rQpZq | Es ` Pr r Es ¨E rQpZq |  Es (20)

ď ε` Pr

„

hwpk-XORpF q ‘ gLpF qq ď

ˆ

1

2
´ ε{2

˙

Nk



(21)
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Game Gb

K
$
Ð F.Ks

F
$
Ð FcspF.Dom,F.Rngq

b1
$
Ð AEnc

indr

Return b1 “ 1

EncpMq

For i “ 1, . . . , k do Ri
$
Ð t0, 1un

Y0 Ð F pR1q ‘ ¨ ¨ ¨ ‘ F pRkq
Y1 Ð FpK,R1q ‘ ¨ ¨ ¨ ‘ FpK,Rkq
Return pR1, . . . , Rk, Yb ‘Mq

Adversary ARor
prf

b1
$
Ð ASimEnc

indr

Return b1

SimEncpMq

For i “ 1, . . . , k do Ri
$
Ð t0, 1un

Y Ð RorpR1q ‘ ¨ ¨ ¨ ‘RorpRkq
Return pR1, . . . , Rk, Y ‘Mq

Game Hi

F
$
Ð FcspF.Dom,F.Rngq

b1 Ð AEnci
indr

Return b1 “ 1

EncipMq

For i “ 1, . . . , k do Ri
$
Ð t0, 1un

Y0
$
Ð t0, 1um

Y1 Ð F pR1q ‘ ¨ ¨ ¨ ‘ F pRkq
Y Ð Y0r1 . . . is}Y1rpi` 1q . . .ms
Return pR1, . . . , Rk, Y ‘Mq

Adversary AEnc
i

Fi
$
Ð FcspF.Dom, t0, 1um´iq

b1
$
Ð ASimEnci

indr

Return b1

SimEncipMq

For i “ 1, . . . , k do Ri
$
Ð t0, 1un

Z0
$
Ð t0, 1ui´1

‘M r1 . . . pi´ 1qs
Z1 Ð FipR1q ‘ ¨ ¨ ¨ ‘ FipRkq ‘M rpi` 1q . . .ms
Z Ð Z0}EncpM risq}Z1

Return pR1, . . . , Rk, Zq

Fig. 5. Games and adversaries used in the proof of Theorem 3.

ď ε` Pr

„

Ds P t0, 1uS : hwpk-XORpF q ‘ gsq ď

ˆ

1

2
´ ε{2

˙

Nk



(22)

ď ε`
ÿ

sPt0,1uS

Pr

„

hwpk-XORpF q ‘ gsq ď

ˆ

1

2
´ ε{2

˙

Nk



(23)

ď ε` 2S ¨ 2´ε
2{kN{4 , (24)

where the last equation is by the pp12 ´ εq, 2´ε
2{kN{4q-list decodability of k-XOR-code (Lemma 6).

We now set

ε “

d

ˆ

4pS ` nkq

N

˙k

,

which makes it so that E rQpfpXqqs ď ε` 2´nk ď 2 ¨ ε. Hence,

GuesspY | fpXq, R1, . . . , Rkq ď 2 ¨

ˆ

4pS ` nkq

N

˙k{2

. (25)

This justifies Lemma 5. [\

Proof (of Theorem 3). First, consider the games G0,G1 and H0, . . . ,Hm given in Figure 5. Notice
that

AdvindrSE pAindrq “ Pr rG1s ´ Pr rHms . (26)
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By construction, G0 and H0 behave identically. Thus,

Pr rH0s “ Pr rG0s . (27)

Consider adversary Aprf given on the top right of Figure 5,

AdvprfF pAprfq “ Pr rG1s ´ Pr rG0s . (28)

Consider adversary Ai given on the top right of Figure 5, for i “ 1, . . . ,m. We have,

AdvindrXorrRFn,1,ks
pAiq “ Pr rHi´1s ´ Pr rHis . (29)

Putting things together,

AdvindrSE pAindrq “ Pr rG1s ´ Pr rHms (30)

“ pPr rG1s ´ Pr rG0sq ` pPr rG0s ´ Pr rHmsq (31)

“ pPr rG1s ´ Pr rG0sq ` pPr rH0s ´ Pr rHmsq (32)

“ pPr rG1s ´ Pr rG0sq `

m
ÿ

i“1

pPr rHi´1s ´ Pr rHisq (33)

“ AdvprfF pAprfq `

m
ÿ

i“1

AdvindrXorrRFn,1,ks
pAiq . (34)

Note that in the specification of Ai, the function Fi needs to be stored in memory. However, there
always exists a fixing of Fi such that Ai achieves no smaller advantage than a randomly sampled
Fi. Note that with Fi fixed, Ai is S-bounded. Hence, by Lemma 4,

AdvindrXorrRFn,1,ks
pAiq ď

d

q ¨

ˆ

4pS ` nkq

2n

˙k

.

[\

4.1 List Decodability of k-XOR Codes

We relied on the list-decodability of k-XOR code in the proof of Lemma 5. Recall that k-XOR :
t0, 1uN Ñ t0, 1uN

k
is pε, Lq-list-decodable if for any z P t0, 1uN

k
, there exists at most L codewords

within a Hamming ball of radius εNk around z. The list-decoding property of XOR-code has been
studied extensively in complexity theory in the context of hardness amplification. The connection
between Yao’s XOR Lemma (for a good survey, see [31]) and the list-decodability of XOR-code was
first observed by Trevisan [45]. So proofs of hardness amplification results (e.g. [40,34]) using XOR
in fact yields algorithmic list-decoding bounds for xor-codes. More recently, [36] has also given
approximate list-decoding bounds for k-XOR. We discuss in Appendix D how the approximate
list-decoding bound by [36] can be viewed as (non-approximate) list-decoding bound which lead
to an inferior result for the k-XOR construction that promise security upto q “ pN{Sqk{4 instead
of q “ pN{Sqk{2. Where as previous works on list-decoding of k-XOR-code focus on algorithmic
list-decoding, we are interested in the setting of combinatorial list-decoding, and the best trade-off
possible between error ε (especially when it is very close to 1{2) and the list size L.

Before we begin, we first show the following moment bound on sum of t´1, 1u-valued random
variables.
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Lemma 7. Let F1, . . . , FN be i.i.d random variables with Fi
$
Ð t´1, 1u. Then, for any even m P N

E

»

–

¨

˝

ÿ

iPrNs

Fi

˛

‚

mfi

fl ď pmNqm{2 . (35)

Proof. Let us first expand the expectation.

E

»

–

¨

˝

ÿ

iPrNs

Fi

˛

‚

mfi

fl “
ÿ

IPrNsm

E

«

ź

iPI

Fi

ff

.

We claim that the inside expectation, E r
ś

iPI Fis, is either 0 or 1 depending on I. In particular,
define I to be even if for every i P rN s, the number of i contained in I is even. First, for any i P rN s,
since Fi takes value in t´1, 1u, it holds that Fi ¨ Fi “ 1. Hence, observe that E r

ś

iPI Fis is 1 if I is
even. Otherwise, if I is not even, we claim that expectation is 0. To see this, suppose i0 appears an
odd number of times in the vector I. We can expand the expectation by conditioning on the value
of Fi0 being 1 or ´1:

E

«

ź

iPI

Fi

ff

“ E

«

Fi0 ¨
ź

i‰i0

Fi

ff

“ E

«

ź

i‰i0

Fi

ff

´E

«

ź

i‰i0

Fi

ff

“ 0 .

Therefore,

E

»

–

¨

˝

ÿ

iPrNs

Fi

˛

‚

mfi

fl ď |tI P rN sm | I is even u| .

For an upper bound of number of even I’s, consider the following way of generating even I’s. First,
we pick a perfect matching (recall that a perfect matching on the complete graph on m vertices is
a subset of m{2-edges that uses all m vertices) on the complete graph of m-vertices, Km. Then,
for each edge, e “ pv0, v1q, in the matching, we assign a value i P rN s to nodes v0 and v1, i.e.
`pv0q “ `pv1q “ i. Now, reading the labels off of each node (wlog we can assume the set of nodes
is rms), we obtain an I “ p`p0q, . . . , `pm ´ 1qq P rN sm that is even. Note that any even I can be
generated in such a way, since given any even I it is easy to find a perfect matching and labeling
that results in I.

We move on to compute the number of ways the above can be done. Note that the number of
perfect matching is pm´ 1q ˆ pm´ 3q ˆ ¨ ¨ ¨ ˆ 1. To see this, let us fix an order of vertices rms, say
1, . . . ,m. At each step, we shall assign an edge to the smallest vertex that does not yet have an
edge. Note that at the i-th step (with i starting at 0), there are exactly pm´ 2i´ 1q ways to pick
the next edge. Hence, the number of perfect matchings on Km is bounded above by

m!

2m{2pm{2q!
“

`

m
m{2

˘

2m{2
¨ pm{2q! ď

2m

2m{2
¨ pm{2qm{2 ď mm{2 .

Next, for each perfect matching, there are Nm{2 ways of assigning values to edges, since each one
of the m{2 edges can be assigned any of the N -values. Hence,

E

»

–

¨

˝

ÿ

iPrNs

Fi

˛

‚

mfi

fl ď pmqm{2 ¨Nm{2 “ pmNqm{2 .
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Equipped with Lemma 7, we proceed to prove Lemma 6.

Proof (of Lemma 6). We identify the sets rNks with rN sk. Fix some z P t0, 1uN
k
. Let Z “

pZ1, . . . , ZNkq be the Nk-vector such that ZI “ p´1qzI for any I P rN sk. Let F1, . . . , Fn
$
Ð t´1, 1u.

For each I P rN sk, we define random variable BI “
ś

iPI Fi. Note that if we map BI to t0, 1u, i.e.

define bI such that BI “ p´1qbI , then pb1, . . . , bNkq is just a uniformly random codeword in t0, 1uN
k
.

We have now that for any I P rNks, p´1qbI‘zI “ ZI ¨BI . Fix some codeword pb1, . . . , bNkq P t0, 1uN
k
.

The hamming distance between it and z is the hamming weight of s “ pbI ‘ zIqIPrNsk . Now, note

that hwpsq ď p1{2´ ε{2qNk if and only if
ř

Ip´1qsI ě εNk. Hence, to show that there are at most

2N´ε
2{kN{4 codewords within radius p1{2´ ε{2qNk of z, it suffices to show the following bound,

Pr

»

–

ÿ

IPrNsk

ZI ¨BI ě εNk

fi

fl ď 2´ε
2{kN{4 . (36)

Let us compute the p-th moment of
ř

IPrNsk ZI ¨ BI for some even p (we shall fix the particular
value of p later).

E

»

–

¨

˝

ÿ

IPrNsk

ZI ¨BI

˛

‚

pfi

fl “ E

»

–

ÿ

I1,...,Ip

ZI1 ¨ ¨ ¨ZIpBI1 ¨ ¨ ¨BIp

fi

fl (37)

“
ÿ

I1,...,Ip

pZI1 ¨ ¨ ¨ZIpqE
“

BI1 ¨ ¨ ¨BIp
‰

(38)

ď
ÿ

I1,...,Ip

E
“

BI1 ¨ ¨ ¨BIp
‰

(39)

“ E

»

–

¨

˝

ÿ

IPrNsk

BI

˛

‚

pfi

fl (40)

“ E

»

—

–

¨

˝

ÿ

iPrNs

Fi

˛

‚

k¨p
fi

ffi

fl

(41)

ď pkpNqkp{2 , (42)

where (39) is because E
“

BI1 ¨ ¨ ¨BIp
‰

P t0, 1u and ZI1 ¨ ¨ ¨ZIp P t´1, 1u. To see the former claim,
compute that

E
“

BI1 ¨ ¨ ¨BIp
‰

“ E

»

–

ź

jPrps

ź

iPIj

Fi

fi

fl “
ÿ

iPrNs

E
”

F kii

ı

,

for some k1, . . . , kN . Note that E
“

F ki
‰

“ 1 for any even power k, and E
“

F ki
‰

“ 0 for any odd
power k. We note that after (39), the expression is independent of Z. This is the crucial fact that
we rely on when computing the moments of

ř

IPrNsk ZI ¨ BI . Applying Markov’s inequality to the
p-th moment of

ř

IPrNsk ZI ¨BI and using (42) as well as Lemma 7, we get

Pr

»

–

ÿ

IPrNsk

ZI ¨BI ě εNk

fi

fl ď
pkpNqkp{2

εpNkp
ď

ˆ

kp

ε2{kN

˙kp{2

. (43)
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Now, we would be done if we could set p so that kp
ε2{kN

“ 1
2 . We cannot do so directly since it only

makes sense when p is an even integer. However, we can set p “ p0 to be the smallest even integer

such that 2kp0 ě ε2{kN . In other words, we set p “ p0 “ 2 ¨ r ε
2{kN
4k s. Note that the right hand side

of (43) is minimized when kp
ε2{kN

“ 1
e and increases as p deviates from this value. Hence, to derive

the final bound, as long as kp0
ε2{kN

ě 1
e (which is easily checked), we can plug p “ p1 “ pε

2{kNq{2k

into the right-hand side of (43) to derive the final bound of 2´ε
2{kN{4. [\

4.2 Instantiation with PRP

Theorem 3 tells us that in order to guarantee security for k-XOR using for q ą N , we will need a
PRF that is secure for up to q ¨ k queries. Clearly, a block cipher like AES would fail to achieve
this, as it only implements a good PRP. However, for the case where S ď N1´α for some constant
α ą 0, we show in this section how to build a suitable PRF from a PRP F, using existing results.
Our approach relies on the construction

FdpK1 . . .Kd,Mq “ FpK1,Mq ‘ ¨ ¨ ¨ ‘ FpKd,Mq , (44)

for an even d. (The crucial difference between this construction and our k-XOR encryption scheme
is that the former queries F at the same input M but across different keys K1, . . . ,Kd, whereas
the k-XOR encryption scheme queries F at different points R1, . . . , Rk fixing the same key.) Dai,
Hoang, and Tessaro [16] proved that for all adversaries Aprf making q distinct queries and with
time and memory complexities t and S, respectively, there exists an adversary Aprp with similar
complexities such that

Advprf
Fd
pAprfq ď 2d{2´1 ¨

´ q

N

¯3d{4
` d ¨ AdvprpF pAprpq . (45)

Now, let us build F
d

from Fd by restricting the input domain. In particular, we let F
d
.Dom “

t0, 1unp1´α{2q and

F
d
pK1 . . .Kd,Mq “ FdpK1 . . .Kd,M } 0nα{2q ,

for M P t0, 1un´α{2. Since the domain of F
d

is a subset of the domain of Fd, for any PRF-adversary
Aprf with running time t, memory S, that makes q queries, there exists a PRP-adversary Aprp with
similar complexity such that

Advprf
F
d pAprfq ď 2d{2´1 ¨N´3αd{4 ` d ¨ AdvprpF pAprpq . (46)

Now, assume F secure against adversaries that make q queries with running time t where t ą q ą N .

To guarantee that F
d

is good PRF for adversaries of similar complexity, we just need to set d so
that the term 2d{2´1 ¨N´3αd{4 is small enough. Next, we can apply Theorem 3 with S “ N1´α and
replacing N with N1´α{2. This allows us to achieve q “ Nβ security with k “ 4β{α, for constant
β ą 0. The resulting construction makes 4dβ{α calls to a block cipher F, assumed to be a PRP.

4.3 Attacks on the k-XOR Construction

In this section, we investigate the trade-off between S and q for k-XOR from an attack perspective.
For the rest of the section, we fix SE “ XorrRFn,m, ks for some even k. For any fixed S, our goal is to
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construct an attack that achieves constant INDR advantage (say at least 1
4) against SE using queries

that is roughly q “ Op
`

N
S

˘k
q. Note that our positive result gives security up to q “ Op

`

N
S

˘k{2
q.

We also present an attack to show that the bound is tight for small S and leave the question of
tightness open the regime where q is between (roughly) pN{Sqk{2 and pN{Sqk for any larger S.

Small-memory attack.We present an attack that requires only S “ Opk logNq and q “ OpNk{2q

to obtain constant distinguishing advantage. Here, the adversary needs only the amount of memory
that can store a single query. It keeps invoking Encp0mq and obtaining pR1, ..., Rk, Cq until for all
1 ď j ď k{2, R2j´1 “ R2j . As all pairs of probes collide, in the real world the xor mask would
be canceled into all zeros and the adversary outputs b “ 1 (real) if C “ 0m, otherwise it outputs
b “ 0 (ideal). Note that each probe in pR1, . . . , Rkq are independently sampled from rN s uniformly,
the probability that the all pairs pR2j´1, R2jq collide for 1 ď j ď k{2 is exactly N´k{2. Hence in
expectation the adversary needs to wait for Nk{2 queries and by Markov inequality, the adversary
can wait for at most 2Nk{2 “ OpNk{2q queries and output the correct prediction bit with constant
advantage.

General attack for any S. Consider the following attack: we keep obtaining encryptions,
pR1, . . . , Rk, Ciq of message 0m but only stores them if R1, . . . , Rk, when interpreted as a number
between 0 and N ´ 1, satisfy that

@j P rks : Rj P t0, 1, . . . , S ´ 1u .

The attack waits until memory contains at least S such ciphertexts. We claim that now we can
compute as a function of the memory, a very good guess for challenge bit b. More precisely, consider
the INDR adversary AS,q given below, and consider the game Gindr

SE,dpAS,qq for d “ 0 and d “ 1.

Adversary AEnc
S,q

Repeat q times or until |M | ě S:

pR1, . . . , Rk, Cq
$
Ð Encp0mq

If p@j P rks : Rj P t0, 1, . . . , S ´ 1uq then
M ÐM Y tppR1, . . . , Rkq, Cqu
// view pR1, . . . , Rkq as vector in t0, 1uN of weight at most k

If |M | ă S then return b
$
Ð t0, 1u

tpvi, CiquiPrSs ÐM // relabel ciphertext in memory
Let I be such that

ř

iPI vi “ 0
Return

`
ř

iPI Ci
˘

“ 0m

Above, we view pR1, . . . , Rkq as a vector with weight at most k in t0, 1uN , and we view
ppR1, . . . , Rkq, Cq as a vector in t0, 1uN ˆ t0, 1um. The attack, in the second phase, first finds a
linear combination (which is just a set I) of pR1, . . . , Rkq that sum to the zero-vector. This always
exist if |M | ě S. The reasoning for this is as follows. Suppose there are S ciphertexts

pRi,1, . . . , Ri,k, Ciq ,

for i P rSs. Then, the vectors tpRi,1, . . . , Ri,kquiPrSs must be linearly dependent regardless of the bit
b. This is because the vectors pRi,1, . . . , Ri,kq are all within a subspace of dimension S. Furthermore,
they cannot span the entire subspace since no combinations of them can form a vector with odd
number of 1’s (since k is even). Now, note that

˜

ÿ

iPI

Ci

¸

“ 0m
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holds with probability 1 and 2´m when b “ 1 (real) and b “ 0 (ideal), respectively.

Proposition 2. Suppose k ă S ď N . Then, for

q “ 2 ¨
Nk

Sk´1
,

we have

AdvindrSE pAS,qq ě
1

2
´

1

2m`1
ě

1

4
,

where AS,q is ppk ¨ n`mq ¨ Sq-bounded and makes q queries to Enc.

Proof (of Proposition 2). Consider games G0 “ Gindr
SE,0pAS,qq and G1 “ Gindr

SE,1pAS,qq. Consider events
E0 and E1, both defined to be |M | ě S, in games G0 and G1 respectively. Since both games sample
value of pR1, . . . , Rkq in the same way, we have

Pr rE0s “ Pr rE1s . (47)

We first attempt to express the advantage in terms of this probability. Note that adversary A
always return a randomly sampled bit b given  E, hence

Pr rG0 |  E0s “ Pr rG1 |  E0s . (48)

By previous analysis, we have that

Pr rG0 | E0s “ 2´m , (49)

Pr rG1 | E1s “ 1 . (50)

Putting these together, we have

Pr rG1s “ Pr rE1s ¨ Pr rG1 | E1s ` Pr r E1s ¨ Pr rG1 |  E1s

“ Pr rE1s ` p1´ Pr rE1sq ¨ Pr rG1 |  E1s ,

and

Pr rG0s “ Pr rE0s ¨ Pr rG0 | E0s ` Pr r E0s ¨ Pr rG0 |  E0s

“ 2´m ¨ Pr rE0s ` p1´ Pr rE0sq ¨ Pr rG1 |  E1s .

Hence,
AdvindrSE pAS,qq “ Pr rG1s ´ Pr rG0s “ p1´ 2´mq ¨ Pr rE1s .

It remains to show that Pr rE1s ě
1
2 . Note that each ciphertext is added to memory with probability

`

S
N

˘k
. Consider the following process (which represent the expected number of Enc queries until

memory is of size S if there is no upper bound on q): we keep sampling pR1, . . . , Rkq until there are
S examples such that @j : Rj P t0, . . . , S ´ 1u. Let T denote the number of steps required. Note
that

E rT s “ S ¨
Nk

Sk
“

Nk

Sk´1
.

Hence, by Markov,

Pr rE1s “ 1´ Pr rT ą qs ě 1´
E rT s

q
“ 1´

Nk{Sk´1

2 ¨Nk{Sk´1
ě

1

2
.

This concludes the analysis of the adversary. [\

29



Attack for S “ OpN1{pk`1qq. Below we present an attack that achieves q “ Op
`

N
S

˘k
q, but for a

more restricted range of S.

Consider an attack that, again, keep asking for encryptions of message 0m in the first phase.
This time, the attack only stores ciphertext pR1, . . . , Rk, Cq such that

pR1, . . . , Rk´1q “ p1, 2, . . . , k ´ 1q .

The particular chosen value of p1, 2, . . . , k´1q does not really matter for this attack. Note that now,
every ciphertext that is stored in memory only differ in their Rk and Ci component, and we shall
only store these values. We run this phase for q0 queries, or unless our memory contains at least S
ciphertexts. In the second phase, the attack will attempt to find “collisions” between ciphertexts
stored and the incoming queries. Note that for any k ciphertext in memory, say

pR1,k, C1q, . . . , pRk,k, Ckq .

The value of C1‘¨ ¨ ¨‘Ck is the value of RFpR1,kq‘ ¨ ¨ ¨RFpRk,kq if we are interacting with the real
construction. Hence, if the incoming ciphertext contains Ri’s that can be found within memory,
then we have found a “collision.” More specifically, consider INDR adversary B as follows.

Adversary BEnc
S,q0,q1

// Phase 1
Repeat q0 times or until |M | ě S:

pR1, . . . , Rk, Cq
$
Ð Encp0mq

If pR1, . . . , Rk´1q “ p1, . . . , k ´ 1q then
M ÐM Y tpRk, Cqu

If |M | ă S then return b
$
Ð t0, 1u // Bad, return random guess

tpTi, CiquiPr|M |s ÐM // Parse elements of M
// Phase 2
Repeat q1 times:

pR1, . . . , Rk, Cq
$
Ð Encp0mq

If (DI : tR1, . . . , Rku “ tTiuiPI) then
Return (

ř

iPI Ci “ C)

Return b
$
Ð t0, 1u // Bad, return random guess

Note that in phase 1, each ciphertext is added to memory with probability N´pk´1q. In phase
2, each new ciphertext gives a “collision” with probability pS{Nqk. Hence, we shall set q0 and q1 to
be roughly the expected number of steps we need in each phase, which amounts to q0 “ S ¨Nk´1

and q1 “ pN{Sq
k. Now, if S ď N1{pk`1q, then q0 ď q1.

Proposition 3. Suppose k ă S ď N1{pk`1q. Then, for

q “ 2 ¨
Nk

Sk
,

we have

AdvindrSE pBS,q,qq ě
1

4
¨ p1´ 2´mq ě

1

8
,

where BS,q,q is ppn`mq ¨ Sq-bounded and makes 2q queries to Enc.
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Proof (of Proposition 3). Consider games G0 “ Gindr
SE,0pBS,q0,q1q and G1 “ Gindr

SE,1pBS,q0,q1q. Let badi be

the event that B returns a random guess b
$
Ð t0, 1u in game Gi for i “ 0, 1. Note that event badi

only depend on the variables pR1, . . . , Rkq in the output of Enc, which are identically distributed
in games G0 and G1. Hence,

Pr rbad0s “ Pr rbad1s (51)

Since if bad0 or bad1 then the adversary always return a randomly sampled bit b,

Pr rG0 | bad0s “ Pr rG1 | bad0s “
1

2
. (52)

Pr rG0 |  bad0s “ 2´m . (53)

Pr rG1 |  bad1s “ 1 . (54)

Hence,

Pr rG0s “ Pr r bad0s ¨ Pr rG1 | bad0s ` Pr rbad0s ¨ Pr rG0 | bad0s

“ Pr r bad0s ` pPr rbad0sq ¨ Pr rG0 | bad0s ,

Pr rG1s “ Pr r bad1s ¨ Pr rG1 | bad1s ` Pr rbad1s ¨ Pr rG1 | bad1s

“ 2´m ¨ Pr r bad1s ` pPr rbad1sq ¨ Pr rG1 | bad1s ,

and
AdvindrSE pBS,q0,q1q “ Pr rG1s ´ Pr rG0s “ p1´ 2´mq ¨ Pr r bad0s .

It remains to show that Pr rbad0s ď
1
4 . First, we separate bad0 into two events badA and badB so

that bad0 “ badA Y badB , where badA denotes the probability that, at the end of the first phase,
|M | ă S; badB denotes the probability that the last return statement is executed.

Let us compute the expected number of steps in phase 1 and 2 if we do not restrict q0 and q1.
In particular, let T0 be the random variable denoting the number of steps until memory is of size
S, and let T1 be the random variable denoting the number of vectors pR1, . . . , Rkq we sample until
one of them satisfy the condition DI : tR1, . . . , Rku “ tTiuiPI . We have that ErT0s “ S ¨Nk´1 and
ErT1s “ pN{Sq

k. Note that since S ď N1{pk`1q, it must be S ¨Nk´1 ď pN{Sqk. Hence, we have set
q so that q ě 2 ¨E rT1s ě 2 ¨E rT0s, which means that by Markov,

Pr rbadAs ď
1

2
,

Pr rbadB |  badAs ď
1

2
,

and

Pr rbadA _ badBs “ Pr rbadAs ` Pr r badAs ¨ Pr rbadB |  badAs

“ Pr rbadAs ` p1´ Pr rbadAsq ¨ Pr rbadB |  badAs

ď
3

4
.

Hence Pr r bad0s ě 1{4 and this concludes the analysis of the adversary. [\
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Attack for k “ 2. Finally, we present an attack for k “ 2, which achieves constant success
probability with q “ OppN{Sq2q for any S upto Op

a

N{nq. Interestingly, having k “ 2 allows us to
model the collection of ciphertext as a graph on N vertices, where ciphertext pR1, R2, Dq is viewed
as an edge, e “ pR1, R2q, with label D. The strategy is as follows, the adversary keeps obtaining
encryptions of message 0m, say C “ pe, Dq (with e “ pR1, R2q). Suppose the first ciphertext C1

is C1 “ pe1, D1q, which is added to memory after it is obtained. Then, the adversary only adds
ciphertext C2 “ pe2, D2q if e2 is connected to e1. More generally, suppose our graph contains the
set of ciphertexts tpei, DiquiPrjs. Then, a new ciphertext pe‹, D‹q is only added if e‹ is connected
to G.

Our storage strategy above dictates that the graph stored is always connected. Note that at any
time, if there is a cycle say, e1, . . . , ej , where ei has label Di, we can check if

À

iPrjsDi “ 0m to
succeed with high probability (note that this also works for self-loops). And, assuming that graph
G contains j connected edges with no loops, then it must be a tree on pj ` 1q vertices. Hence, the
probability that we obtain an ciphertext that connects to the graph stored is at least pj ` 1q{N .
Hence, assuming we have found no loops, the expected number of ciphertexts we need to build a
connected tree of size S is at most

N

2
`
N

3
` ¨ ¨ ¨ `

N

S
ď N ¨ logpSq .

When the graph contains S vertices, we expect to need pN{Sq2 more ciphertext before we can find
a cycle. Note that for pN{Sq2 ě N ¨ logpSq if S ď

a

N{ logpNq. Thus, the expected total number
of ciphertext needed is at most 2 ¨ pN{Sq2. The pseudocode for the attack is given below.

Adversary CEnc
S,q

Repeat q times:

pR‹1, R
‹
2, D

‹
q

$
Ð Encp0mq

If |G| ă S and pR‹1, R
‹
2q is connected to G then

GÐ GY tppR‹1, R
‹
2q, D

‹
qu // Add edge pR‹1, R

‹
2q with label D‹

If there exists an cycle tei “ ppRi,1, Ri,2q, DiquiPI in G then
Return p

À

iPI Diq “ 0m

Return b
$
Ð t0, 1u // Bad, return random guess

As before, we set the query budget to twice the expected number of steps required and apply
Markov’s inequality to obtain the following Proposition.

Proposition 4. Suppose 1 ď S ď
a

N{ logpNq. Then, for

q “ 4 ¨

ˆ

N

S

˙2

,

we have

AdvindrSE pCS,qq ě
1

2
¨ p1´ 2´mq ě

1

4
,

where CS,q is pp2n`mq ¨ Sq-bounded and makes q queries to Enc.

Proof (of Proposition 4). This follows closely to the two proofs above. Consider games G0 “

Gindr
SE,qpCS,qq and G1 “ Gindr

SE,1pBS,qq. Let badi for i P t0, 1u denote the event that CS,q executes the last
return statement in games G0 and G1. Similar to before, we have

AdvindrSE pCS,qq “ p1´ 2´mq ¨ Pr r bads . (55)
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Via previous analysis, the expected number of steps until C finds a cycle is at most 2 ¨ pN{Sq2.
Hence, for q “ 4 ¨ pN{Sq2, Pr rbads ď 1

2 by Markov’s inequality. This justifies the proposition. [\
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A Proof sketch of Theorem 2

The proof of Theorem 2 that instantiates StE using a PRP, is very similar to the proof of Theorem 1.
Hence, instead of giving a complete proof for the PRP case, we highlight the arguments that are
considerably different from their counterparts in the PRF case. In particular, we will focus on the
major changes that occur in the following two parts.

- Defining dense variable and decomposition.
- Min-entropy estimation for H8pΛrr

tjus | Λrrt1:j´1usq.

Dense variables and decomposition. One major change in the proof is that we adapt the
definition of dense variables for permutations, initially introduced in [14]. Here, we call a random
variable X to be a random N -permutation variable if it is distributed over all permutations that
map rN s to rN s where N “ 2n.

Definition 2. A random N -permutation variable X is called pP, 1´ δq-dense if at most P coordi-
nates of X are fixed and, for every subset I Ď rN s that contains only non-fixed coordinates, it holds
that

H8pXIq ě p1´ δq logpN ´ P q|I| ,

where ab :“ apa ´ 1q ¨ ¨ ¨ pa ´ b ` 1q and XI is the random variable X restricted on the set of
coordinates I.

To this point, we use the decomposition lemma that is specifically tailored for the random N -
permutation variable. The proof of the lemma can be found in [14].

Lemma 8. If Γ is a N -permutation variable with min-entropy deficiency SΓ “ logN ! ´ H8pΓ q,
then, for every δ ą 0, γ ą 0, Γ can be represented as a convex combination of finitely many
pP, 1´ δq-dense variables tΛ1, Λ2, ...u for

P “
SΓ ` log 1{γ

δ ¨ logpN{eq

and an additional random variable Λend whose weight is less than γ.

Similar to the PRF instantiation proof, we find a deterministic function LpF q that maps F to
an S-bit string such that

HpYi | σi´1pApYqqq ě HpYi | LpF qq .

We define Fz to be F conditioned on LpF q “ z and set Sz “ logN !´H8pXq. We let δz “
Sz`log 1{γ
P ¨logpN{eq

where P is to be chosen later. Then we apply Lemma 8 and move on to analyze each decomposed
pP, 1´ δzq-dense variable.

min-entropy estimation. The second major change occurs when estimating the µ, where

µ :“ E
r

”

mint`, 2``1 ¨ 2´H8pΛrr
tjus|Λrrt1:j´1usqu

ı

and Λ is a pP, 1´ δzq-dense permutation variable. Specifically, we obtain a slightly different lower
bound for the min-entropy term

H8pΛrr
tjus|Λrrt1:j´1usq “ ´ log

¨

˝

ÿ

V PrNskpj´1q

max
vPrNsk

Pr
”

Λrrt1:jus “ V } v
ı

˛

‚ .
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Suppose that t coordinates in rtju hit at fixing points, and t0 coordinates in rt1:j´1u hit at fixing
coordinates, note that given the random variable Λ is a pP, 1´ δq-dense permutation variable, then
by union bound it holds that

ÿ

V PrNskpj´1q

max
vPrNsk

Pr
”

Λrrt1:jus “ V } v
ı

ď pN ´ P qpj´1qk´t0 ¨
´

pN ´ P qjk´t´t0
¯´p1´δq

“

´

pN ´ P qpj´1qk´t0
¯δ
¨

´

pN ´ P ´ pj ´ 1qk ` t0q
k´t

¯´p1´δq
.

Further, by ab ď ab, we have

ÿ

V PrNskpj´1q

max
vPrNsk

Pr
”

Λrrt1:jus “ V } v
ı

ď pN ´ P qδpj´1qk´δt0 ¨
´

pN ´ P ´ pj ´ 1qk ` t0q
k´t

¯´p1´δq

ď pN ´ P qδpj´1qk´δt0´p1´δqpk´tq ¨

˜

k´t´1
ź

q“0

N ´ P ´ pj ´ 1qk ` t0 ´ q

N ´ P

¸´p1´δq

ď pN ´ P qδpj´1qk´p1´δqpk´tq ¨
k´t´1
ź

q“0

ˆ

N ´ P

N ´ P ´ pj ´ 1qk ` t0 ´ q

˙1´δ

ď pN ´ P qδpjk´tq´pk´tq ¨
k´t´1
ź

q“0

ˆ

N ´ P

N ´ P ´ pj ´ 1qk ´ q

˙1´δ

.

Here, if we require P to satisfy that P `Bk ď N{2 and given N ě 16, then for any 0 ď q ď k´t´1
and any 1 ď j ď B, it holds that

N ´ P

N ´ P ´ pj ´ 1qk ´ q
ď

N ´ P

N ´ P ´Bk
ď
N ´ P

N{2
ď 2 .

Hence, we arrive at

ÿ

V PrNskpj´1q

max
vPrNsk

Pr
”

Λrrt1:jus “ V } v
ı

ď pN ´ P qδpjk´tq´pk´tq ¨ 2p1´δqpk´tq

ď pN ´ P qδpjk´tq ¨

ˆ

4

N

˙k´t

ď N δpjk´tq ¨

ˆ

4

N

˙k´t

.

Therefore, if P `Bk ď N{2 holds, the lower bound for the min-entropy is

H8pΛrr
tjus|Λrrt1:j´1usq ě ´2pk ´ tq ` rk ´ t´ δpjk ´ tqs logN .
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Then, the upper bound of µ is obtained by following the remaining argument as in the proof
for the PRF case. By further applying Proposition 5, which is proved in the next section, we have

µ ď
k
ÿ

t“0

ˆ

k

t

˙ˆ

P

N

˙t

¨min

#

`, 2``1 ¨ pN ´ P qδpjk´tq ¨

ˆ

4

N

˙k´t
+

ď

k
ÿ

t“0

ˆ

k

t

˙ˆ

P

N

˙t

¨min

#

`, 2``1 ¨N δBk ¨

ˆ

4

N

˙k´t
+

.

By plugging in δ “ Sz`log 1{γ
P logpN{eq , we have

µ ď
k
ÿ

t“0

ˆ

k

t

˙ˆ

P

N

˙t

¨min

#

`, 2``1 ¨ 2
pSz`log 1{γqBk logN

P logpN{eq ¨

ˆ

2

N ´ P

˙k´t
+

.

Since we consider only N ě 16, it holds that logN
logpN{eq ď 2, and we have

µ ď
k
ÿ

t“0

ˆ

k

t

˙ˆ

P

N

˙t

¨min

#

`, 2``1 ¨ 2
2pSz`log 1{γqBk

P ¨

ˆ

4

N

˙k´t
+

.

The rest of the proof does not differ from its counterpart in the PRF case, we again set γ “
p1{Nqk and P “ pS` log 1{γqB, and the bound holds when P `Bk “ pS`k logNqB`Bk ď N{2.

B Omitted proofs for StE

B.1 Proof of Corollaries

Proof of Corollary 1. Here, ε can be further upper bounded as

ε ď
`

Nk
` 2``1

k
ÿ

t“0

ˆ

k

t

˙ˆ

p2S ` 2knqB

N

˙t

¨ p2{Nqk´t

“
`

Nk
` 2``1

ˆ

p2S ` 2knqB ` 2

N

˙k

ď 2``1
ˆ

p2S ` 2knqB ` 3

N

˙k

,

which concludes the proof. [\

Proof of Corollary 2. For notation simplicity we let P “ p2S ` 2knqB. Note that for the
summation terms in ε, when t “ k, it immediately follows that mint`, 2``1u “ ` “ n, while for
t ă k, given N “ 2n ě 16, it holds that mint`, 2``1 ¨ p2{Nqk´tu “ 2``1 ¨ p2{Nqk´t “ 2N ¨ p2{Nqk´t.
Hence, we have

ε “
n

Nk
` 2N

k´1
ÿ

t“0

ˆ

k

t

˙ˆ

P

N

˙t

¨ p2{Nqk´t `
nP k

Nk

“
n` n ¨ P k

Nk
` 2 ¨

řk´1
t“0

`

k
t

˘

P t2k´t

Nk´1
.

By the fact that
`

k
t

˘

ď k ¨
`

k´1
t

˘

for all 0 ď t ď k ´ 1, we obtain that

ε ď
np1` P kq

Nk
` 4 ¨

k
řk´1
t“0

`

k´1
t

˘

P t2k´t´1

Nk´1
“
n` nP k

Nk
`

4kpP ` 2qk´1

Nk´1
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“
4kpP ` 2qk´1 ` n ¨ pP {Nq ` n

Nk´1
ď

4kpP ` 2qk´1 ` 2n

Nk´1
ď

4kpP ` 4nqk´1

Nk´1
.

This concludes the proof. [\

B.2 Proof of propositions

Maximizer. Within both proofs of Theorem 1 and Theorem 2, after decomposing the random
variable F into some pP, 1 ´ δq-dense variables, with Pt coordinates fixed in the domain of t-th
probe such that

ř

t Pt “ P , we claimed that the bound is maximized when P1 “ ¨ ¨ ¨ “ Pk “ P {k.
Here we prove an even more general result which applies to both cases.

Proposition 5. Given any integers k,N ě 0 and any function f : N Ñ R`, for any pP1, ..., Pkq
such that

řk
t“1 Pt “ P ď N , with 0 ď Pt ď N{k for all t. The function

GpP1, ..., Pkq “
k
ÿ

t“0

ÿ

UPprkst q

˜

ź

uPU

ˆ

Pu
N{k

˙

¨ fptq

¸

achieves its maximum at point P1 “ P2 “ ¨ ¨ ¨ “ Pk “ P {k

Proof. We consider a slightly extended domain of pP1, ..., Pkq

∆ “ tpP1, ..., Pkq | @t P rks : Pt P R, Pt ě 0,
k
ÿ

t“1

Pt “ P u

Since the domain ∆ is closed and bounded and function G is continuous, by the extreme value
theorem, there exists a pp1, ..., pkq P ∆ such that

Gpp1, ..., pkq “ max
P1,...,Pk

GpP1, ..., Pkq .

In particular, we show that the maximum is achieved at P1 “ ¨ ¨ ¨ “ Pk “ P {k.
Suppose there exists two indices 1 ď a ă b ď k such that in pP1, ..., Pkq it holds that Pa ‰ Pb.

Then, we show that

GpP1, ..., Pa, ..., Pb, ..., Pkq ă GpP1, ...,
Pa ` Pb

2
, ...,

Pa ` Pb
2

, ..., Pkq .

We let Qt “ Pt for all t P rks ´ ta, bu and Qa “ Qb “ pPa ` Pbq{2, then it holds that

GpQ1, ..., Qkq ´GpP1, ..., Pkq

“

k
ÿ

t“0

fptq

¨

˚

˝

ÿ

UPprkst q

˜

ź

uPU

ˆ

Qu
N{k

˙

¸

´
ÿ

UPprkst q

˜

ź

uPU

ˆ

Pu
N{k

˙

¸

˛

‹

‚

“

k
ÿ

t“0

fptq

¨

˚

˝

ÿ

UPprks´ta,but´2 q

˜

QaQb ´ PaPb
N2{k2

¨
ź

uPU

ˆ

Pu
N{k

˙

¸

`
ÿ

UPprks´ta,but´1 q

˜

Qa `Qb ´ Pa ´ Pb
N{k

ź

uPU

ˆ

Pu
N{k

˙

¸

˛

‹

‚

.
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Note that for all t, fptq ą 0. Also notice that Pa ` Pb “ Qa `Qb and QaQb ą PaPb. We conclude
that GpQ1, ..., Qkq ą GpP1, ..., Pkq. Further, pQ1, ..., Qkq P ∆.

Hence any point in ∆ other than P1 “ ¨ ¨ ¨ “ Pk “ P {k is excluded, implying pP {k, ..., P {kq
achieves the maximum of G. Otherwise, we would obtain a contradiction. [\

Leftover-hash Lemma for Shannon Entropy In this part we present the proof for Proposi-
tion 1. Within the proof, we will first consider bounding the Shannon entropy of extracted random
variable conditioned only on the seed. Then we move to prove the entropy bound for random
variables with side-information Z.

Proof of Proposition 1. We use Wz to denote the random variable W conditioned on Z “ z. We
first prove the following claim.

Claim. For any z, it holds that

HphsdpWzq|sdq ě `´ logp1` 2` ¨ 2´H8pWzqq .

Proof. First by the chain rule of conditional entropy and the fact that for any random variable X,
HpXq ě H2pXq where H2p¨q denotes collision entropy, we have

HphsdpWzq|sdq “ HphsdpWzq, sdq ´ Hpsdq ě H2phsdpWzq, sdq ´ s .

Hence, given that h is a 2-universal hash function, it is sufficient to derive a lower bound for collision
entropy. We let W1,W2 be two i.i.d random variables with the same distribution as Wz. Let S1, S2
be two i.i.d. seeds from Us. Then, the collision entropy can be estimated as

H2phsdpWzq, sdq “ ´ logPrW1,W2,S1,S2rphS1pW1q, S1q “ phS2pW2q, S2qs

“ ´ logPrrS1 “ S2sPrrhS1pW1q “ hS2pW2q|S1 “ S2s

ě ´ log
1

2s

ˆ

1

2H8pWzq
`

1

2`

˙

ě ´ log
1` 2`´H8pWzq

2s``

ě `` s´ logp1` 2`´H8pWzqq .

Therefore, it immediately follows that

HphsdpWzq|sdq ě H2phsdpWzq, sdq ´ s “ `´ logp1` 2`´H8pWzqq .

Hence, we have concluded the proof of the claim. [\

Now, by the convexity of conditional entropy over probability mass function, we have

HphsdpW q|sd, Zq ě
ÿ

z

PrrZ “ zs ¨ HphsdpWzq|sds

ě `´
ÿ

z

PrrZ “ zs ¨ logp1` 2` ¨ 2´H8pWzqq .
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Scheme StE`rF,Ext, Samps

Procedure EncpK,Mq

B Ð |M |l

M1, . . . ,MB ÐM ; sd
$
Ð t0, 1us

rd
$
Ð t0, 1u|Samp.rpnq|

R “
`

R1, ..., RSamp.dpnq

˘

Ð Sampprdq
For i P rBs do

For j P rSamp.dpnqs do
Vi,j Ð FpK, pj ´ 1q}Rj ` i´ 1qq

For i P rBs do
Ci ÐMi ‘ ExtpVi,1}...}Vi,Samp.dpnq, sdq

Return psd, rd, C1, . . . , CBq

Procedure DecpK,Cq

psd, rd, C1, . . . , CBq Ð C
R “

`

R1, ..., RSamp.dpnq

˘

Ð Sampprdq
For i P rBs do

For j P rSamp.dpnqs do
Vi,j Ð FpK, pj ´ 1q}Rj ` i´ 1qq

For i P rBs do
Mi Ð Ci ‘ ExtpVi,1}...}Vi,Samp.dpnq, sdq

Return M1} ¨ ¨ ¨ }MB

Fig. 6. The improved sample-then-extract encryption scheme SE “ StE`rF,Ext, Samps. The parameter dpnq is the
number of samples generated by Samp given security parameter n, and rpnq is the number of randomness needed by
Samp. All additions and subtractions are under modulus 2n´rlog dpnqs. The key space and message space of SE are
SE.Ks “ F.Ks and SE.M “ pt0, 1u`q`.

Further, by the concavity of the logp¨q function and Jensen’s inequality, we obtain that

HphsdpW q|sd, Zq ě `´ log

˜

1` 2` ¨
ÿ

z

PrrZ “ zs ¨ 2´H8pWzq

¸

ě `´ log
´

1` 2` ¨ 2´H8pW |Zq
¯

ě `´ 2``1´H8pW |Zq .

The last inequality comes from x
ln 2 ě logp1 ` xq. The other term in min function is obtained by

observing that Shannon entropy is non-negative. [\

C StE with small ciphertexts

We observe that StE scheme includes a large number of random bits in the ciphertext per query.
In particular, for example, when SB « N{10, to tolerate q ą 2n queries, the probe complexity
has k “ Θpnq. With each probe that requires Θpnq random bits, the total random bits per query
is Θpn2q, which is infeasible for practical applications. In this section, we improve the StE scheme
to StE`, as shown in Figure 6 by adapting a randomness-efficient strong oblivious sampler and a
seed-optimal extractor, so that, even SB is a constant fraction of N , the scheme can tolerate at
least q ą 2n queries with each query costs only Opnq random bits instead of Θpn2q.

Sampler We instantiate Samp by the strong oblivious sampler with randomness complexity that
is close to optimal. The construction is introduced by Zuckerman [48].

Definition 3. A strong pr,m, d, η, εq-oblivious sampler is a deterministic algorithm which, on in-
putting a uniformly random r-bit string, outputs a sequence of points z1, ..., zd P t0, 1u

m such that
for any collection of functions f1, ..., fd : t0, 1um Ñ r0, 1s,

Pr

«ˇ

ˇ

ˇ

ˇ

ˇ

1

d

d
ÿ

i“1

pfipziq ´Efiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

ff

ě 1´ η .
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Lemma 9. There is a constant cSamp such that for any β ą 0 and any η “ ηpmq, ε “ εpmq

and α with m´1{2 log
˚m ď α ď 1{2 and ε ě expp´αlog˚mm1´βq, there exists an efficient strong

pr,m, d, η, εq-oblivious sampler construction that uses r “ p1 ` αqpm ` log η´1q random bits and

outputs d “ ppm` log η´1q{εq
cSamp logα´1

α sample points.

ExtractorWe start with the following extractor, which has optimal seed length. We then convert
it into an average-case extractor where the adversary may have some side information with respect
to the random variable being extracted.

Lemma 10. [48] There is a constant cExt such that for any β ą 0, α “ αpmq ď 1{2, δ “ δpmq ď 1,
and ε “ εpmq, with m´1{2log

˚m ď α ă δ and ε ě expp´αlog˚mm1´βq, there is an explicit efficient
strong extractor construction

Ext : t0, 1um ˆ t0, 1u
cExt logα

´1

α
plogm`log ε´1q Ñ t0, 1upδ´αqm

such that for any m-bit random variable X with H8pXq ě δm, it holds that

∆ppExtpX, sdq, sdq, pUpδ´αqm, sdqq ď ε ,

where sd is from the uniform distribution over the seed space.

However, the adversary may have some side information W with respect to the random variable
X, and we would like the extracted randomness appears uniform even given the side information
W . By applying the analysis from Dodis et al. [21], we obtain the following corollary.

Corollary 3. There is a constant cExt such that for any β ą 0, α ď 1{2, δ ď 1, and ε “ εpmq,
with m´1{2log

˚m ď α ă δ and ε ě expp´αlog˚mm1´βq, there is an explicit efficient (average-case)
strong extractor construction

Ext : t0, 1um ˆ t0, 1u
cExt logα

´1

α
plogm`log ε´1q Ñ t0, 1upδ´αqm

such that if H8pX|W q ě δm` log 1{ε, then

∆ppExtpX, sdq, sd,W q , pUpδ´αqm, sd,W qq ď 2ε ,

where sd is from the uniform distribution over the seed space.

Theorem 4. Let F : F.Ks ˆ t0, 1un Ñ t0, 1un be the a keyed permutation family. Let Ext be the
extractor construction as in Corollary 3. Let the sampler Samp be the strong oblivious sampler as
in Lemma 9. Let N “ 2n, then for any constant c, if N “ 2n is sufficiently large, then for any block
length ` ď ncSamp`1{12, where cSamp is a universal constant associated with Samp, it holds that for
any S-bounded adversary Aindr which asks q queries where each query consists of messages of at
most B `-bit blocks such that pS` cnqB ď N{8 and B ď N

8dpnq , where dpnq is the number of sample
points generated by the sampler, there exists an S-bounded PRP adversary Aprp that issues at most
OpqB ¨ ncSampq queries to the oracle and is as efficient as Aindr such that

Advindr
StE`rF,Ext,Samps

pAindrq ď AdvprpF pAprpq `
4qB

N c
,

with randomness complexity Opnq per query.
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Proof. We first state the instantiation parameters given the security parameter n. Note that given
a sufficiently large n, the following choice of parameters exist.

1. Samp : t0, 1urpnq Ñ
`

t0, 1umpnq
˘dpnq

as in Lemma 9
– Let ηpnq “ 2´cn, ε “ 1{4 and α “ 1{2.
– Pick mpnq ě 1, dpnq ě 1 such that

"

mpnq “ n´ rlog dpnqs

dpnq “ ppmpnq ` log ηpnq´1q{εqcSamp logpα
´1q{α “ p4mpnq ` 4cnq2cSamp .

– Hence, the randomness complexity of Samp is r ď 3
2pn` cnq “ Opnq.

2. Ext : t0, 1umpnq ˆ t0, 1uplogmpnq`log ε
´1q Ñ t0, 1u` derived from Corollary 3

– Let mpnq “ dpnq ¨ n, α “ 1{4, δ “ 1{3, εpnq “ 2´cn ą expp´αlog˚mpnqmpnq0.99q .

– The output of length pδ ´ αqmpnq “ dpnq¨n
12 is truncated to ` bits.

– Thus the randomness complexity of Ext is r ď 8cExtpOplog nq ` cnq “ Opnq.

We omit the following two steps of the proof as they are similar to the proof for Theorem 1
and Theorem 2.

- PRP-RP hybrid argument from keyed permutation family F to truly random permutation family
Π.

- Reduction from the Real-or-Random game adversary that makes q queries with each query has
at most B blocks to the adversary that distinguishes two streams Xq and Yq.

We define the two streams X and Y as the following.

- Xi “ pUB`, sdi, rdiq, where UB` is the uniform distribution over t0, 1uB`.

- Yi “ pExtpΠrR
t1u
i s, sdiq, . . . ,ExtpΠrR

tBu
i s, sdiq, sdi, rdiq, where Π is a random permutation that

maps n bits to n bits and Ri “ Sampprdiq.

First, we can use the following lemma to reduce the multiple-query case to the single-query
case.

Lemma 11. Let Xq “ pX1, ..., Xqq be independent and uniformly sampled from rN s, where N
is any positive number. Then, for any Yq “ pY1, ..., Yqq such that Yi P rN s, for any streaming
distinguisher A,

AdvdistX,YpAq ď
q
ÿ

i“1

∆ppYi, σi´1pApYqqq, pXi, σi´1pApYqqqqq ,

where the notation ∆pP, Qq is the total variation distance of distribution P and Q.

Proof. We use Γi “ σipApYqq to denote the state that A maintains after processing Yi from stream
Y, and Σi “ σipApXqq to denote the state outputted by A after processing Xi from stream X.
Then, it immediately follows that for the initial state of A, it holds that ∆pΣ0, Γ0q “ 0, and for
the advantage AdvdistX,YpAq, we have

AdvdistX,YpAq ď ∆pΣq, Γqq .
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Now, consider ∆pΣi, Γiq for any i ą 0. We show that

∆pΣi, Γiq ď ∆pΣi´1, Γi´1q `∆ppYi, Γi´1q, pXi, Γi´1qq . (56)

We use P px, sq to denote the probability PrrpXi´1, Σi´1q “ px, sqs, and, similarly, Qpx, sq to denote
the probability PrrpYi´1, Γi´1q “ px, sqs. With slight abuse of notation, we denote the marginal
probability P psq “ PrrΣi´1 “ ss “

ř

x1 P px
1, sq and Qpsq “ PrrΓi´1 “ ss “

ř

x1 Qpx
1, sq. Then, we

can prove (56) as the following.

∆pΣi, Γiq “∆pApi,Xi´1, Σi´1q, Api, Yi´1, Γi´1qq
ď∆ppXi´1, Σi´1q, pYi´1, Γi´1qq

“
1

2

ÿ

x,s

|P px, sq ´Qpx, sq| “
1

2

ÿ

x,s

ˇ

ˇ

ˇ

ˇ

P psq

N
´Qpx, sq

ˇ

ˇ

ˇ

ˇ

ď
1

2

ÿ

x,s

ˆ
ˇ

ˇ

ˇ

ˇ

P psq ´Qpsq

N

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

Qpsq

N
´Qpx, sq

ˇ

ˇ

ˇ

ˇ

˙

“
1

2

ÿ

s

N ¨

ˇ

ˇ

ˇ

ˇ

P psq ´Qpsq

N

ˇ

ˇ

ˇ

ˇ

`
1

2

ÿ

x,s

ˇ

ˇ

ˇ

ˇ

Qpsq

N
´Qpx, sq

ˇ

ˇ

ˇ

ˇ

“∆pΣi´1, Γi´1q `∆ppYi, Γi´1q, pXi, Γi´1qq .

Hence, starting with ∆pΣq, Γqq, by repetitively applying (56) and using the fact that ∆pΣ0, Γ0q “ 0,
we conclude the proof. [\

Next, we move to upper bound ∆ppYi, σi´1pApY qqq, pXi, σi´1pApY qqqqq for any i. Note that we
can find a deterministic function L which outputs S bits such that

∆ppYi, σi´1pApY qqq, pXi, σi´1pApY qqqqq ď ∆ppYi,LpΠqq, pXi,LpΠqqq .

We use Πz to denote the distribution of Π conditioned on LpΠq “ z, and we always use
R Ð Sampprdq to denote the sampled points from Samp given the uniform randomness rd. Then,
we have

∆ppYi,LpΠqq, pXi,LpΠqqq
“ Ez r∆ppYi,LpΠq “ zq, pXi,LpΠq “ zqqs

“ Ez

”

∆ppExtpΠzrR
t1u
i s, sdiq, . . . ,ExtpΠzrR

tBu
i s, sdiq, sdi, rdiq, pUb`, sdi, rdiqq

ı

.

We let Sz “ logN !´H8pΠzq be the min-entropy deficiency of Πz. Before we continue proving
the upper bound, we need the following lemma.

Lemma 12. For any z P t0, 1uS, for Πz with min-entropy deficiency Sz, it holds that

∆ppExtpΠzrR
tjus, sdq, sd, rd, ΠzrR

t1:j´1usq, pU`, sd, rd, ΠzrR
t1:j´1usqq ď

3

N c
` IpSz ą 2S ` cnq .

Proof. By picking γ “ N´c, P “ pS`log 1{γqB “ pS`cnqB ă N{8 and applying the decomposition
lemma for random permutation (Lemma 8), it holds that

∆ppExtpΠzrR
tjus, sdq, sd, rd, ΠzrR

t1:j´1usq, pU`, sd, rd, ΠzrR
t1:j´1usqq

ď
ÿ

t

αt∆ppExtpΛz,trR
tjus, sdq, sd, rd, Λz,trR

t1:j´1usq, pU`, sd, rd, Λz,trR
t1:j´1usqq ` γ ,
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where γ `
ř

t αt “ 1.

We next consider a single pP, 1´ δzq-dense permutation variable Λ and derive an upper bound
for

∆ppExtpΛrRtjus, sdq, sd, rd, ΛrRt1:j´1usq, pU`, sd, rd, ΛrR
t1:j´1usqq ,

where δz “
Sz`log 1{γ
P logpN{eq . Since the sampler outputs dpnq points and our scheme partitions the function

F into 2rdpnqs parts, we can define the collection of functions tf1, ..., fdu as, for any 1 ď i ď d,

fipxq “

"

1 if Λppi´ 1q}px` j ´ 1qq is fixed
0 o.w.

.

Notice that 2rlog dpnqs´1 ď dpnq, it immediately follows that

d
ÿ

i“1

1

d
¨Efi “

d
ÿ

i“1

1

d
¨

ř2n´rlog ds´1
t“0 fiptq

2n´rlog ds
ď

P

N{2
“

2P

N
.

Now, given the choice of parameters we have picked for the strong oblivious sampler, following
Definition 3 and Lemma 9, it holds that

Pr

«

R “ pR1, ..., Rdq
$
Ð SamppUrq :

ˇ

ˇ

ˇ

ˇ

ˇ

1

d

d
ÿ

i“1

pfipRiq ´Efiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

4

ff

ě 1´ 2´cn .

We let t “
řd
i“1 fipRiq. Hence, t denotes the number of Ri ` j ´ 1 that hits at fixed coordinates.

Then given we have assumed that P {N ď 1{8, with probability at least 1´2´cn, we have t ď dpnq{2.

Here, we say the event bad happens if, for the sampled R “ pR1, ..., Rdq
$
Ð SamppUrq, it holds

that
ˇ

ˇ

ˇ

1
d

řd
i“1pfipRiq ´Efiq

ˇ

ˇ

ˇ
ą 1

4 . Hence, it is straightforward that Prrbads ď 2´cn.

Now, we estimate the min-entropy of H8pΛpr
tjuq|Λrrt1:j´1usq for any r outputted by SamppUrq

conditioned on the bad not happening. Suppose that t coordinates in rtju hit at fixing points, and
t0 coordinates in rt1:j´1u hit at fixing coordinates, given that Λ is a pP, 1 ´ δq-dense permutation
variable, by union bound it holds that

ÿ

V PrNspj´1q¨d

max
vPrNsd

Pr
”

Λrrt1:jus “ V } v
ı

ď pN ´ P qpj´1q¨d´t0 ¨
´

pN ´ P qj¨d´t´t0
¯´p1´δq

“

´

pN ´ P qpj´1q¨d´t0
¯δ
¨

´

pN ´ P ´ pj ´ 1q ¨ d` t0q
d´t

¯´p1´δq
.

45



We recall that ab “ apa´ 1q ¨ ¨ ¨ pa´ b` 1q. Further, by ab ď ab, we have

ÿ

V PrNspj´1q¨d

max
vPrNsd

Pr
”

Λrrt1:jus “ V } v
ı

ď pN ´ P qδpj´1q¨d´δt0 ¨
´

pN ´ P ´ pj ´ 1q ¨ d` t0q
d´t

¯´p1´δq

ď pN ´ P qδpj´1q¨d´δt0´p1´δqpd´tq ¨

˜

d´t´1
ź

q“0

N ´ P ´ pj ´ 1q ¨ d` t0 ´ q

N ´ P

¸´p1´δq

ď pN ´ P qδpj´1q¨d´p1´δqpd´tq ¨
d´t´1
ź

q“0

ˆ

N ´ P

N ´ P ´ pj ´ 1q ¨ d` t0 ´ q

˙1´δ

ď pN ´ P qδpj¨d´tq´pd´tq ¨
d´t´1
ź

q“0

ˆ

N ´ P

N ´ P ´ pj ´ 1q ¨ d´ q

˙1´δ

.

Note that our choice of P satisfies P {N ď 1{8, and our upper bound of B satisfies B ď N
8d . It holds

that P `B ¨ d ď N{4 ă N{2. Then, for any 0 ď q ď d´ t´ 1 and any 1 ď j ď B, it holds that

N ´ P

N ´ P ´ pj ´ 1qd´ q
ď

N ´ P

N ´ P ´Bd
ď
N ´ P

N{2
ď 2 .

Hence, we arrive at the following estimation of 2´H8pΛpr
tjuq|Λrrt1:j´1usq:

ÿ

V PrNsdpj´1q

max
vPrNsd

Pr
”

Λrrt1:jus “ V } v
ı

ď pN ´ P qδpj¨d´tq´pd´tq ¨ 2p1´δqpd´tq

ď pN ´ P qδpj¨d´tq ¨

ˆ

4

N

˙d´t

ď N δB¨d ¨

ˆ

4

N

˙d´t

ď N δB¨d ¨

ˆ

4

N

˙d{2

.

The final step is due to t ď dpnq{2. Then, by plugging in δ “ δz “
Sz`log 1{γ
P logpN{eq , γ “

1
Nc and

P “ pS ` log 1{γqB “ pS ` cnqB, given a sufficiently large N “ 2n such that logN
logN{e ď 2, we have

H8pΛpr
tjuq|Λrrt1:j´1usq ě ´ log

ˆ

N
pSz`log 1{γqB¨dpnq

P logpN{eq ¨ p4{Nqdpnq{2
˙

ě dpnq

ˆ

n

2
´ 1´

2pSz ` log 1{γqB

P

˙

“ dpnq

ˆ

n

2
´ 1´

2pSz ` cnq

S ` cn

˙

.

Note that the extractor Ext requires conditional min-entropy to be at least dpnq¨n
3 ` cn. Otherwise

we apply the trivial upper bound ∆ ď 1 to the extracted distribution. We use the indicator function
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I
”

H8pΛpr
tjuq|Λrrt1:j´1usq ă dpnq¨n

3 ` cn
ı

to denote if the min-entropy is insufficient. Hence, we have

I
„

H8pΛpr
tjuq|Λrrt1:j´1usq ă

dpnq ¨ n

3
` cn



ď I
„

dpnq

ˆ

n

2
´ 1´

2pSz ` cnq

S ` cn

˙

ă
dpnq ¨ n

3
` cn



“ I
„

2pSz ` cnq

S ` cn
ą
n

6
´ 1´

cn

dpnq



.

Since for any sampler, the lower bound on the number of samples

dpnq “ Ω

ˆ

1

ε2
log

1

ηpnq

˙

“ Ωpnq

always holds [12]. Then, for any sufficiently large n, it follows that

I
„

H8pΛpr
tjuq|Λrrt1:j´1usq ă

dpnq ¨ n

3
` cn



ď I
„

2pSz ` cnq

S ` cn
ą
n

6
´Op1q



ď I
„

2pSz ` cnq

S ` cn
ą 4



“ I rSz ą 2S ` cns .

We thus obtain the following upper bound of statistical distance for Λ:

∆ppExtpΛrRtjus, sdq, sd, rd, ΛrRt1:j´1usq, pU`, sd, rd, ΛrR
t1:j´1usqq

“ E
rd

$
ÐUr,rÐSampprdq

”

∆ppExtpΛrrtjus, sdq, sd, Λrrt1:j´1usq, pU`, sd, Λrr
t1:j´1usqq

ı

ď ηpnq ` I rSz ą 2S ` cns `
1

N c
ď

2

N c
` I rSz ą 2S ` cns .

Next we combine the decomposed pP, 1´ δzq-dense variable Γ s back to Πz, which is Π conditioned
on LpΠq “ z, we have

∆ppExtpΠzrR
tjus, sdq, sd, rd, ΠzrR

t1:j´1usq, pU`, sd, rd, ΠzrR
t1:j´1usqq

ď γ `
ÿ

t

αt∆ppExtpΛz,trR
tjus, sdq, sd, rd, Λz,trR

t1:j´1usq, pU`, sd, rd, Λz,trR
t1:j´1usqq

ď
1

N c
`

2

N c
` IrSz ą 2S ` cns “

3

N c
` IrSz ą 2S ` cns ,

which concludes the proof of lemma. [\

Note that for any z P t0, 1uS , it holds that PrrLpΠq “ zs “ 2´Sz . Hence, we can obtain the following
upper bound:

∆ppExtpΠrRtjus, sdq, sd, rd, ΠrRt1:j´1us,LpΠqq, pU`, sd, rd, ΠrRt1:j´1us,LpΠqqq

“ EzPt0,1uS

”

∆ppExtpΠzrR
tjus, sdq, sd, rd, ΠzrR

t1:j´1usq, pU`, sd, rd, ΠzrR
t1:j´1usqq

ı

ď EzPt0,1uS

„

3

N c
` IpSz ą 2S ` cnq



“
3

N c
`EzPt0,1uS rIpSz ą 2S ` cnqs

“
3

N c
`

ÿ

zPt0,1uS

2´Sz ¨ IrSz ą 2S ` cns ď
3

N c
` 2S ¨ 2´2S´cn ď

4

N c
.

Finally, we need the following proposition.
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Proposition 6. For any random variable X,Y and any (possibly random) function f ,

∆pfpXq, fpY qq ď ∆pX, Y q .

For each single query, by the triangle inequality and applying Proposition 6 to Lemma 12, we arrive
at

∆ppExtpΠrRt1us, sdq, ...,ExtpΠrRtBusq, sdq, sd, rd,LpΠqq , pUB¨`, sd, rd,LpΠqqq

ď

B
ÿ

j“1

∆ppExtpΠrRt1us, sdq, ...,ExtpΠrRtjus, sdqq, UpB´jq`, sd, rd,LpΠqq ,

pExtpΠrRt1us, sdq, ...,ExtpΠrRtj´1usq, sdq, UpB´j`1q`, sd, rd,LpΠqqq

ď

B
ÿ

j“1

∆ppExtpΠrRtjus, sdq, sd, rd, ΠrRt1:j´1us,LpΠqq , pU`, sd, rd, ΠrRt1:j´1us,LpΠqqq

ď B ¨
4

N c
“

4B

N c
.

Note that the upper bound applies to all queries. Then, by applying the upper bound to Lemma 11
we conclude the proof. [\

D Previous Results on List Decodability of k-XOR Codes

In this section, we show how approximate list-decoding bound for k-XOR code by [36] can be used
to derive an inferior result for the k-XOR construction, promising security upto q “ pN{Sqk{4

instead of q “ pN{Sqk{2. We first recall the approximate list-decoding bound for k-XOR code of
[36].

Theorem 5 (Approximate List-Decoding of k-XOR Code [36]). Let 0 ă δ ă ε ă 1 and
t “ pε2 ´ δkq´1. The k-XOR code is p12 ´ δ{2q-approximate p12 ´ ε{2, tq-list decodable, i.e. for any

z P t0, 1uN
k
, there exists t code words, x1, . . . , xt, such that for any x P t0, 1uN : if hwpk-XORpxq ‘

zq ď p12 ´ ε{2qN
k then there exists i P rts such that hwpx‘ xiq ď p

1
2 ´ δ{2qN .

We show that the above approximate list-decoding bound can be translated into a bound on
the list of normal list-decoding by simply bounding the size of hamming balls of radius δN . Before
doing so, we shall need the following two results regarding the binary entropy function H.

Proposition 7. Let H be the binary entropy function. Let r,N be positive integers with r ď N{2.
Then, the size of hamming ball of radius r inside t0, 1uN , i.e |Bpz; rq| for any z P t0, 1uN , is bounded
above by 2N ¨Hpr{Nq.

The above result is well-known and we omit the proof here. The next proposition can be derived
easily from the series expansion of H around 1{2.

Proposition 8. Let H be the binary entropy function and suppose 0 ď x ď 1
2 . Then,

H

ˆ

1

2
´ x

˙

ď 1´ 2 ¨ x2 .

48



Corollary 4. Let 0 ă ε ă 1. The k-XOR code is p12 ´ ε{2, 2
N´ε4{kN{ε2q list-decodable, i.e. for any

z P t0, 1uN
k
, there are at most 2N´ε

4{N
{ε2 codewords that are within hamming distance p1´ε{2qNk

of z.

Proof. Fix any ε such that 0 ă ε ă 1 and some z P t0, 1uN
k
. We set

δ “

ˆ

ε2

2

˙1{k

. (57)

Hence,

t “
1

ε2 ´ δk
“ 2 ¨ ε´2 . (58)

Note that a hamming ball of radius p12 ´ δ{2qN around any x P t0, 1uN has size at most

2N ¨Hp
1
2
´δ{2q ď 2N ¨p1´δ

2{2q ,

Hence, there are at most

2 ¨ 2Np1´δ
2{2q{ε2 ď 2 ¨ 2N´ε

4{kN{8{ε2

codewords within radius 1
2 ´ ε{2 of z. [\

Next, we briefly discuss how the above can be applied to the k-XOR construction. We follow
the same proof strategy as before, plugging in the above list-decoding bound (Corollary 4) instead
of Lemma 6.

Lemma 13. Let L : t0, 1uN Ñ t0, 1uS be any function. Then, for F
$
Ð t0, 1uN , and R1, . . . , Rk

$
Ð

rN s,

GuesspF rR1s ‘ ¨ ¨ ¨ ‘ F rRks | LpF q, R1, . . . , Rkq ď 2 ¨

ˆ

8pS ` 2nkq

N

˙k{4

. (59)

Proof. We follow the same proof setup as in the proof of Lemma 13. At (23), we instead plug-in
Corollary 4 to derive

E rQpZqs ď ε` 2S ¨ 2´ε
4{kN{8 ¨ ε´2 . (60)

Next, we set

ε “

ˆ

8pS ` 2nkq

N

˙k{4

.

Note that ε´2 ď Nk{2. Hence,

E rQpZqs ď ε` 2´2nk ¨ ε´2 ď ε`N´2k ¨N´k{2 ď 2ε . (61)

[\

Using the above lemma for k-XOR construction gives a security guarantee for upto q “ pN{Sqk{4

queries.
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Theorem 6. Let F : F.Ks ˆ t0, 1un Ñ t0, 1um be a function family. Let SE “ XorrF, ks be the
k-XOR encryption scheme for some positive integer k. Let Aindr be an S-bounded INDR-adversary
against SE that makes at most q queries to Enc. Then, an S-bounded PRF-adversary Aprf can be
constructed such that

AdvindrSE pAindrq ď AdvprfF pAprfq ` 2mq ¨

ˆ

8pS ` 2nkq

N

˙k{4

. (62)

Moreover, Aprf makes at most q ¨ k queries to its Fn oracle and has running time about that of
Aindr.
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