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Abstract In this paper we introduce an novel two-round public coin OR-proof protocol that extends in a natural
way to the log-size membership proof and signature in a prime-order group. In the lemma called Lin2-Xor we
prove that our OR-proof is perfectly complete and has witness-extended emulation under the discrete logarithm
assumption. We derive from it a log-size one-out-of-many proof, which retains the perfect completeness and
witness-extended emulation. Both of our OR- and membership- proofs easily acquire the special honest verifier
zero-knowledge property under the decisional Diffie-Hellman assumption. We sketch out a setup-free pairings-free
log-size linkable ring signature with strong security model on top of our membership proof. Many recently proposed
discrete-log setup-free pairings-free log-size ring signatures are based on the ideas of commitment-to-zero proving
system by Groth and Kohlweiss or on the Bulletproofs inner-product compression method by Bünz et al. Our
Lin2-Xor lemma provides an alternative technique which, using the general reduction similar to Bulletproofs, leads
directly to the log-size linkable ring signature under the same prerequisites.

Keywords: OR-proof, membership proof, witness-extended emulation, log-size, ring signature, linkable, anonymity,
zero-knowledge, unforgeability

1 INTRODUCTION
In simple words, given a reference set and a commitment to an element, the problem is to convince verifier

that opening of this commitment is an element in the set. A protocol solving this problem is called a proof of
membership. For a reference set of two elements it is called as OR-proof.

A closely related problem, which usually reduces to the one of building an appropriate membership proof, is to
anonymously sign a message. That is, a message is to be signed in such a way as to convince verifier that someone
out of a group of possible signers has actually signed it without revealing the signer identity. A group of possible
signers is called an anonymity set or, interchangeably, a ring. When every signer is allowed to sign only once, a
ring signature is called linkable. It is desirable that signature size and verification complexity are to be minimal.
Efficient solutions to this problem play a role for cryptographic applications, e.g., in the telecommunication and
peer-to-peer distributed systems.

A formal notion of OR-proof is given in the work of Cramer, Damgård, and Schoenmakers [13]. An introductory
example by Damgård can be found in [14]. The recent survey by Fischlin, Harasser, and Janson [17] summarizes
the class of OR-proofs and signatures established by [13]. Also, the technique of constructing a ring signature by
Abe, Ohkubo, and Suzuki [1] can be considered, e.g., according to the survey in [13], as a sequential OR-proof.

A notion of ring signatures and the early yet efficient schemes are presented by Rivest, Shamir, and Tauman
[29] and Abe, Ohkubo, and Suzuki [1]. The widely known linkable ring signature scheme by Liu, Wei, and Wong
[25] is based on the results in [1]. A practical example of a system that uses a linkable ring signature is CryptoNote
[32]. Nice feature of all these schemes is that there is no trusted setup process and no selected entities in them, an
actual signer is allowed to form a ring in an ad hoc manner without notifying the other participants about this. The
size and verification complexity of these signatures grow linearly in signer anonymity set size.

In this paper, we present a simple two-round OR-proof scheme which does not require any trusted setup, too.
In many other aspects it differs from the schemes described in [13, 14, 17, 1, 29, 25], and we identify its properties
here. For instance, an one-out-of-𝑛 proof, and hence a ring signature, can be derived from our OR-proof by
applying it log2 (𝑛) times to an anonymity set of size 𝑛. In this sense, the log2 (𝑛) our OR-proofs can be viewed as
an algorithm on a binary tree built over the anonymity set, like the Merkle tree [26]. With the difference that our
OR-proof gets zero-knowledge almost for free, whereas for the Merkle tree it is complicated.
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OR-proofs, membership proofs, and signatures are often constructed in a prime-order group under the discrete
logarithm problem hardness assumption (DL) in the random oracle model (ROM). Scheme anonymity is usually
reduced to one of the stronger hardness assumptions, typically to the decisional Diffie-Hellman one (DDH), e.g.,
as in [1, 25]. We follow this practice.

The works by Groth and Kohlweiss [21], Bünz, Bootle, Boneh, Poelstra, Wuille, Maxwell [10], Yuen, Sun, Liu,
Au, Esgin, Zhang, Gu [33], Noether and Goodell [27], Diamond [5], Lai, Ronge, Ruffing, Schröder, Thyagarajan,
Wang [23], Black and Henry [6], as well as some more recent works, show that under the DL and DDH assumptions
in a prime-order group it is possible to build the setup-free logarithmic size membership proofs, ring signatures, and
even more, generalized provers for arbitrary arithmetic circuits. At the same time, the question of what approach
results in the most efficient and secure linkable ring signature in a prime-order group under DL/DDH seems to be
still open. Our OR-proof along with the schemes derived from it can be considered as a step towards answering
this question. Although, for now we are only exploring properties of this new approach.

As another line of solutions, in the works of Groth [20], Hopwood, Bowe, Hornby, Wilcox [22], and in some
others it is shown that arithmetic circuit provers and ring signatures with asymptotically lower than logarithmic
sizes and lower than linear verification complexities can be built at the cost of requiring a trusted setup or bilinear
pairings to an underlying prime-order group. However, this line of solutions is out of the scope of our current work.

The OR-proof that we present here uses an novel technique based on balancing two verifier’s challenges with a
single prover’s reply. For one-out-of-𝑛 proof, we use this technique as the core part of a reduction procedure, which
by itself is similar to the Bulletproofs reduction by Bünz et al. [10]. In comparison to Bulletproofs, our technique
directly proves that a half of a committed set is zero. Hence, by applying it log2 (𝑛) times to a set of 𝑛 elements, we
obtain the one-out-of-𝑛 proof with logarithmic size.

In the Lin2-Xor and its derived lemmas, we formally prove that the presented OR- and membership- proofs
are perfectly complete and sound, i.e., have witness-extended emulation. We formally prove that they are special
honest verifier zero-knowledge for the inputs which they are intended for. As an example, we sketch out a setup-free
log-size linkable ring signature built on top of our one-out-of-many proof. In concluson, we discuss the signature
security model and provide a proof sketch that it is strong. We informally show that it can be as strong as the LSAG
[25] security model.

1.1 CONTRIBUTION
1.1.1 LIN2-XOR LEMMA

We formulate and prove Lin2-Xor lemma that allows for committing to exactly one pair of elements out of two
pairs of elements, and subsequently proving this commitment is exactly what it is. The Lin2-Xor lemma defines a
2-round public coin OR-proof protocol that, being successfully played between any prover and an honest verifier,
convinces the latter that the prover knows opening (𝑧0, 𝑧1, 𝑠) to the input commitment 𝑍 such that

𝑍 = 𝑧0𝑃𝑠 + 𝑧1𝑄𝑠 ,

where the pair (𝑃𝑠 , 𝑄𝑠), 𝑠 ∈ {0, 1}, is taken from a publicly known set of four group generators {𝑃0, 𝑄0, 𝑃1, 𝑄1}.
This is the main lemma of our paper. A necessary precondition is that there is no known discrete logarithm
relationship between the four generators in the set.

In the case of successful completion of the Lin2-Xor lemma protocol, no additional proof is required that the
commitment 𝑍 is in the form of 𝑧0𝑃𝑠 + 𝑧1𝑄𝑠 . The verifier is convinced both of the form 𝑍 = 𝑧0𝑃𝑠 + 𝑧1𝑄𝑠 and
prover’s knowledge of witness (𝑧0, 𝑧1, 𝑠) in this case.

The witness for our OR-proof contains two scalars 𝑧0, 𝑧1, whereas we can expect a witness comprised of only
one scalar along with the index 𝑠 for an OR-proof. Our OR-proof can be turned into this form by admixing a
hash-to-group of 𝑍 to all 𝑄𝑖’s, which denies any nonzero value of 𝑧1. In this case 𝑍 becomes a member of {𝑃𝑖}1𝑖=0.
We do not get rid of 𝑧1 from the start, since the witness in the form of (𝑧0, 𝑧1, 𝑠) makes our OR-proof extensible to
a membership proof.

Under the DL assumption, the Lin2-Xor lemma asserts that its protocol is an argument of knowledge, namely,
that it is perfectly complete and has computational witness-extended emulation (cWEE). In a separate lemma we
prove that the protocol is special honest verifier zero-knowledge under the DDH assumption, provided that 𝑘0 is
distributed independently and uniformly at random and 𝑧1 = 0.

1.1.2 LIN2-SELECTOR LEMMA
Using the Lin2-Xor lemma protocol as a disjunction unit, we advance to Lin2-Selector lemma that allows for

convincing verifier that given element 𝑍 is a commitment to exactly one pair of elements out of many pairs of
elements. Namely, the Lin2-Selector lemma provides an (log2 (𝑛) + 1)-round public coin protocol that convinces
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verifier of prover’s knowledge of opening (𝑧0, 𝑧1, 𝑠) to the commitment 𝑍 such that

𝑍 = 𝑧0𝑃𝑠 + 𝑧1𝑄𝑠 ,

where the pair (𝑃𝑠 , 𝑄𝑠), 𝑠 ∈ [0, 𝑛 − 1], is taken from a publicly known set of generator pairs
{(
𝑃 𝑗 , 𝑄 𝑗

)}𝑛−1
𝑗=0 with

unknown discrete logarithm relationship between the generators in this set.
The amount of rounds is logarithmic in the number 𝑛 of the base element pairs. Consequently, the amount

of data transmitted from prover to verifier during the Lin2-Selector lemma protocol execution is logarithmic in 𝑛.
Thus, this protocol is a log-size one-out-of-many proof. We prove that it is perfectly complete and has cWEE.
Also, it is zero-knowledge, provided that 𝑧0 has an independent and uniform distribution and 𝑧1 = 0.

1.1.3 LINKABLE RING SIGNATURE L2LRS
As a primer, we construct a log-size linkable ring signature called L2LRS on top of the Lin2-Selector lemma

membership proof. L2LRS has key image in the form of 𝑥−1Hpoint (𝑥𝐺). We provide the signature scheme along
with a proof sketch for its security properties such as unforgeability w.r.t insider corruption and anonymity. As
L2SLRS is based on a complete, having cWEE, and zero-knowledge underlying proving system, namely, on our
membership proof, the already well-developed, e.g., in [25, 21, 27], formal methods for proving signature security
properties are applicable to it. Since these methods, presented in all details, are quite voluminous, we limit ourselves
to sketching the proof, referring interested readers to the mentioned works for complete information.

Also, by noticing a similarity between the L2LRS key image and the LSAG [25] key image 𝑥Hpoint (𝑥𝐺), we
draw a parallel to the LSAG signature security model and informally show that L2LRS is likely as secure as LSAG.
Although a formal proof or disproof of this remains an open question.

1.2 METHOD OVERVIEW
1.2.1 LIN2 LEMMA

As a warm-up, we formulate and prove a helper lemma, called Lin2, that provides a perfectly complete and
having cWEE protocol shown in Figure 1. The protocol connects the element 𝑍 to the generators 𝑃 and 𝑄 in the
equation

𝑍 + 𝑟𝐻 = 𝑤(𝑃 + 𝑐𝑄). (1)

For this protocol, 𝑃 and 𝑄 are fixed commonly known generators, and 𝑍 is the common input to P andV. While
running this protocol, 𝐻 is the first P’s message, 𝑐 is V’s challenge, 𝑟 is P’s reply, and 𝑤 is an nonzero scalar
known to P. The fact of 𝑤 ≠ 0 is verified by checking that 𝑍 + 𝑟𝐻 ≠ 0.

The Lin2 lemma states that if no discrete logarithm relationship between 𝑃 and𝑄 is known, if P is able to reply
with some scalar 𝑟 to the random challenge 𝑐 and, in addition to this, if P is able to show that the above equation
holds for some known to it nonzero private 𝑤, then the scalars 𝑧0 and 𝑧1 in the equality

𝑍 = 𝑧0𝑃 + 𝑧1𝑄 (2)

are certainly known to P. We consider the trivial case of 𝑧0 = 𝑧1 = 0 as simply accepting without any conversation
between P andV, and letV detect it by checking if 𝑍 = 0 at the beginning of the protocol.

A reasonable question may arise, why do we introduce such a protocol for proving 𝑍 is a weighted sum of
linearly independent 𝑃 and 𝑄, when we can resort to a bit more efficient and already well-studied Schnorr-like
two-generator protocol, namely, to the Okamoto’s one [7]? The answer is that the Lin2 lemma protocol has a
similar, however simpler, design compared to our Lin2-Xor lemma protocol and, hence, we describe this protocol
to make it easier to understand our main protocol later on.

Informally, using the planar metaphor, it is possible to see why this protocol is sound. That is, why 𝑍 always
belongs to the plane spanned by 𝑃 and 𝑄, which corresponds to (2). Suppose, this is not the case. Let us denote
the mentioned plane as Plane(𝑃,𝑄). We observe that 𝑤(𝑃 + 𝑐𝑄) ∈ Plane(𝑃,𝑄) in any case. Hence, 𝑟 is required
to be chosen by P in such a way as to bring (𝑍 + 𝑟𝐻) on Plane(𝑃,𝑄). Evidently, this requirement along with the
supposition that 𝑍 ∉ Plane(𝑃,𝑄) completely determines the choice of 𝑟. Thus, 𝑟 is fixed and independent of the
challenge 𝑐. Hence, the point 𝐹 = (𝑍 + 𝑟𝐻) ∈ Plane(𝑃,𝑄) is fixed at the moment of releasing 𝑐.

With the above, under the supposition that 𝑍 ∉ Plane(𝑃,𝑄), the equation (1) rewrites as 𝑤−1𝐹 = 𝑃+ 𝑐𝑄. Since
𝑐 is random, the point (𝑃 + 𝑐𝑄) has a random rotation angle in polar coordinates on Plane(𝑃,𝑄). At the same time,
the point 𝑤−1𝐹 has a constant rotation angle on Plane(𝑃,𝑄), which is equal to rotation angle of the fixed point 𝐹.
Therefore, P is unable to satisfy (1) by controlling 𝑟 and 𝑤 in response to 𝑐. Thus, the supposition is false and,
hence, it holds that 𝑍 ∈ Plane(𝑃,𝑄).

We also claim that the protocol is perfectly complete, that is, P succeeds for any input 𝑍 ∈ Plane(𝑃,𝑄). Let us
show why. For the special case of 𝑍 = 0, the protocol simply accepts. For 𝑍 ≠ 0, having at input 𝑍 ∈ Plane(𝑃,𝑄),
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P picks a point 𝐻 ∈ Plane(𝑃,𝑄) such that it is non-collinear to 𝑍 . Namely, P picks 𝐻 = (𝑃 − 𝑄), call it as
diagonal, if 𝑍 is not collinear to the diagonal. Otherwise it picks 𝐻 = 𝑃, call it as horizontal. Thus, P publishes
𝐻 which is non-collinear to 𝑍 .

With the fixed non-collinear 𝑍 and 𝐻, the surjection 𝑤−1 (𝑍 + 𝑟𝐻) maps all possible (𝑟, 𝑤)’s to Plane(𝑃,𝑄)
excluding the line spanned by 𝐻. That is, the type of this surjection is Fp̄ × F∗p̄ ↦→ Plane(𝑃,𝑄) \ Line(𝐻). At the
same time, the random challenge 𝑐 ∈ Fp̄ brings (𝑃 + 𝑐𝑄) at any point on the corresponding ‘shifted’ line defined
by 𝑃,𝑄 in Plane(𝑃,𝑄). We forbid the values of 0 and −1 for the challenge 𝑐 and, thus, the intersection points with
the horizontal and diagonal are never picked on this line. In sum, we have that, for any challenge value except for
the forbidden {0,−1}, the randomly sampled point (𝑃 + 𝑐𝑄) always gets to the codomain of 𝑤−1 (𝑍 + 𝑟𝐻). Thus,
P is always able to pick 𝑟, 𝑤 in response to 𝑐 such that (1) holds for them, which proves the claim.

For evenly and independently distributed input 𝑍 ∈ Line(𝑃), 𝑍 ≠ 0, using a reduction to DDH it is possible to
prove that this protocol is special honest verifier zero-knowledge, assuming that the means used to convinceV in
P’s knowledge of 𝑤 in (1) do not leak anything, as if the Schnorr-id scheme [30] were used for that. However, since
this is only a helper protocol, we do not discuss its zero-knowledge. Instead, we will prove zero-knowledge for our
Lin2-Selector lemma membership proof protocol later on and, thus, will obtain the zero-knowledge property for
both of our OR- and membership- proofs at once.

1.2.2 LIN2-XOR LEMMA
We consider the following linear combination 𝑅 of four fixed prime-order group generators 𝑃0,𝑄0, 𝑃1,𝑄1 such

that no discrete logarithm relationship is known between them

𝑅 = 𝑤0 (𝑃0 + 𝑐0𝑄0) + 𝑤1 (𝑃1 + 𝑐1𝑄1) . (3)

We wonder whatV is convinced about when (𝑍 + 𝑟𝐻) is nonzero and equal to 𝑅. That is, we consider the equality

𝑍 + 𝑟𝐻 = 𝑤0 (𝑃0 + 𝑐0𝑄0) + 𝑤1 (𝑃1 + 𝑐1𝑄1) , (4)

where 𝑐0, 𝑐1 are random challenges from F∗p̄ \ {−1}, whereas the scalars 𝑟, 𝑤0, 𝑤1 are controlled by P.
Our main protocol in Figure 2 works as follows. For the trivial input 𝑍 = 0, it is simply accepting. For 𝑍 ≠ 0 at

the common input, which we call as non-trivial, in the first round P sends 𝐻 as the first message,V generates the
challenge pair (𝑐0, 𝑐1), P replies with 𝑟 such that (𝑍 + 𝑟𝐻) is nonzero. In the second round, P convincesV with
any other good means that (4) holds for some privately known to P weights 𝑤0, 𝑤1. It appears to be that, for any
non-trivial input, successful completion of this protocol convinces V that exactly one of the two private weights
𝑤0, 𝑤1 is zero, and also that

𝑍 ∈ Plane(𝑃0, 𝑄0) ⊕ 𝑍 ∈ Plane(𝑃1, 𝑄1).

This may seem strange at a glance, nevertheless in our Lin2-Xor lemma we prove that this is the case. Thus, we
have OR-proof here. By the good means above we imply a perfectly complete protocol that allows for cWEE.

In the geometrical metaphor, the protocol soundness can be seen the following way. Since the points 𝑍, 𝐻
are published prior to the challenge (𝑐0, 𝑐1) is released, the plane Plane(𝑍, 𝐻) is fixed and independent of the
randomness (𝑐0, 𝑐1). Also, P always replies with (𝑍 + 𝑟𝐻) ∈ Plane(𝑍, 𝐻). At the same time, if we suppose that
𝑤0 ≠ 0 ∧ 𝑤1 ≠ 0, then the point 𝑅 defined by (3) has two independent random rotation angles in two different
fixed planes, i.e., in the Plane(𝑃0, 𝑄0) and Plane(𝑃1, 𝑄1). These two independent random angles are completely
determined by the challenges 𝑐0, 𝑐1 and do not depend on 𝑤0, 𝑤1 controlled by P. Thus, (4) forces P to balance
out these two independent random rotations in two different planes with the sole controlled by P rotation in the
fixed Plane(𝑍, 𝐻), which is determined by the choice of the controlled 𝑟 . Since this is not possible, the supposition
is wrong, and at least one of 𝑤0 and 𝑤1 must be zero. By letting 𝑤1 = 0 or 𝑤0 = 0, we reduce (4) to (1) and obtain
the Lin2 lemma protocol which is already proved sound.

As our protocol in Figure 2 reduces to the one in Figure 1, its completeness also reduces to the completeness
of the latter. Thus, our main protocol is perfectly complete for any 𝑍 . We also prove that it is zero-knowledge, for
the input 𝑍 evenly distributed and restricted to 𝑍 ∈ Line(𝑃𝑠) \ {0}, 𝑠 ∈ {0, 1}. We prove this as a subset case of
zero-knowledge for our Lin2-Selector lemma membership proof protocol.

1.2.3 LIN2-SELECTOR LEMMA
It turns out that the first round of the Lin2-Xor lemma protocol in Figure 2 can be ‘stacked’, i.e., applied many

times as an (log2 (𝑛) + 1)-round game to an arbitrary number 2𝑛 of fixed base generators for which no discrete
logarithm relationship, i.e., no non-trivial linear relation, is known. Thus, the first round of the Lin2-Xor lemma
protocol becames a reduction step similar to that by Bünz et al. [10]. We assume the number of the base generators
2𝑛 is a power of 2. The multiplier 2 here is due to that we have 𝑛 main (𝑃’s) and 𝑛 helper (𝑄’s) base generators.
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For instance, for eight fixed linearly independent base generators 𝑃0, 𝑄0, 𝑃1, 𝑄1, 𝑃2, 𝑄2, 𝑃3, 𝑄3, and for the
common input 𝑍 , we repeat the first round of the Lin2-Xor lemma protocol two times, and, after that, we perform
the second round of the Lin2-Xor lemma protocol.

In detail, this game looks as follows. P sends an element 𝐻0 as the first message,V releases the challenge pair
(𝑐0, 𝑐1), and bothP andV construct four elements as the sums (𝑃0+𝑐0𝑄0), (𝑃1+𝑐1𝑄1), (𝑃2+𝑐0𝑄2), (𝑃3+𝑐1𝑄3). At
the same time, P replies with the scalar 𝑟0. We observe, that the four constructed elements are linearly independent
of each other, provided that the initial eight generators are linearly independent. Hence, P andV play the Lin2-Xor
lemma protocol with these four elements as base generators, taking the already defined element (𝑍 + 𝑟0𝐻0) as the
common input. With appropriate renaming, P sends 𝐻1, V releases one more challenge pair (𝑐0, 𝑐1), P replies
with 𝑟1 and, finally, proves knowledge of 𝑤0, 𝑤1 in the equality

(𝑍 + 𝑟0𝐻0) + 𝑟1𝐻1 = 𝑤0 ((𝑃0 + 𝑐0𝑄0) + 𝑐0 (𝑃1 + 𝑐1𝑄1)) + 𝑤1 ((𝑃2 + 𝑐0𝑄2) + 𝑐1 (𝑃3 + 𝑐1𝑄3)). (5)

According to the Lin2-Xor lemma, its protocol completion for the input (𝑍 + 𝑟0𝐻0) convinces V that only
one of 𝑤0, 𝑤1 is zero. Without limiting generality, for the first, let us consider the case of (𝑤0 ≠ 0 ∧ 𝑤1 = 0).
According to the same lemma,V is convinced that (𝑍 + 𝑟0𝐻0) is a linear combination of (𝑃0 + 𝑐0𝑄0), (𝑃1 + 𝑐1𝑄1)
with weights known to P. The latter means that the protocol of the Lin2-Xor lemma has been as well successfully
completed for the the base generators 𝑃0, 𝑄0, 𝑃1, 𝑄1 and input 𝑍 . Therefore, by the Lin2-Xor lemma applied again,
V is convinced that P knows coordinates of 𝑍 either on Plane(𝑃0, 𝑄0) or on Plane(𝑃1, 𝑄1).

By recalling that we have considered only the case of (𝑤0 ≠ 0 ∧ 𝑤1 = 0), and considering the opposite one,
namely, (𝑤0 = 0∧𝑤1 ≠ 0), we arrive at thatV is convinced that P knows coordinates of 𝑍 either on Plane(𝑃2, 𝑄2)
or on Plane(𝑃3, 𝑄3) in the opposite case. Thus, in sum, since V is convinced that exactly one of the cases
(𝑤0 ≠ 0 ∧ 𝑤1 = 0) and (𝑤0 = 0 ∧ 𝑤1 ≠ 0) takes place, it is convinced that 𝑍 ∈ Plane(𝑃𝑠 , 𝑄𝑠), 𝑠 ∈ [0, 3].

The same way the Lin2-Xor lemma protocol can be extended to the general case of 𝑍 ∈ Plane(𝑃𝑠 , 𝑄𝑠), 𝑠 ∈
[0, 𝑛−1], for 𝑛 power of 2. The generalized membership proof protocol is shown in Figure 5. In the corresponding
Lin2-Selector lemma we prove its perfect completeness and soundness. Using a reduction to the (P,Q)-DDH problem
[9], which is known to be equivalent to DDH, we prove that the membership proof in Figure 5 is zero-knowledge,
for the input 𝑍 evenly distributed and restricted to 𝑍 ∈ Line(𝑃𝑠) \ {0}, 𝑠 ∈ [0, 𝑛 − 1].

1.2.4 RANDOMIZED INPUT

As a technical step which makes our protocols zero-knowledge for arbitary distribution of input, we multiply the
input 𝑍 by a randomly sampled scalar 𝑎. Thus, we have 𝑍 ‘randomized’, which allows us to apply an assumption
from the DDH family to our protocols.

To maintain the link with the original not-randomized input, we add to our protocols a zero-knowledge proof
of knowledge of the linking factor 𝑎 between the original and randomized inputs. Namely, we add the Schnorr-id
protocol to their very last rounds for this purpose.

1.2.5 SIGNATURE L2LRS

By restricting the Lin2-Selector lemma protocol input 𝑍 to the values from the set P =
⋃𝑛−1

𝑖=0 Line(𝑃𝑖), which
we can easily accomplish by admixing a hash of 𝑍 to all𝑄𝑖’s, we obtain a traditional proof of membership. Namely,
for any generator set P, 𝑛 ⩾ 2, such that no non-trivial linear combination between elements in this set is known,
for ∀𝑍 ∈ (⋃𝑛−1

𝑖=0 Line(𝑃𝑖)) \ {0}, our proof of membership convinces verifier that ∃𝑖 ∈ [0, 𝑛 − 1] : 𝑍 ∈ Line(𝑃𝑖).
Let honest public keys 𝐾’s be defined usual way as 𝐾 = 𝑥𝐺. Let there be a ring K. The ring contains honest

public keys, and it may contain dishonest public keys as well. Using the hash-to-group function Hpoint we build the
set of random generators U = {Hpoint (𝐾𝑖)}𝑛−1

𝑖=0 . All generators in U ∪ {𝐺} are linearly independent.
We construct our L2LRS signature the following way. For the ring K, for a random scalar 𝜉, let P = K + 𝜉U.

Apparently, this P is a set of linearly independent generators. Let the actual signing key 𝐾𝑖 ∈ K have private key 𝑥
such that 𝐾𝑖 = 𝑥𝐺. Let the key image be 𝐼 = 𝑥−1𝑈𝑖 . Let the Lin2-Selector lemma protocol input be 𝑍 = (𝐺 + 𝜉𝐼).
By playing the Lin2-Selector lemma membership proof protocol for the set P and input 𝑍 , P convincesV that

∃𝑖 ∈ [0, 𝑛 − 1] : (𝐺 + 𝜉𝐼) ∈ Line(𝐾𝑖 + 𝜉𝑈𝑖),

which means thatV is made convinced of P’s knowledge of 𝑥 such that, for some 𝑖, 𝐾𝑖 = 𝑥𝐺 ∧ 𝐼 = 𝑥−1𝑈𝑖 .
In other words, this wayV is convinced that P knows actual signing private key and also that the key image 𝐼

is calculated honestly. This is exactly what a linkable ring signature should supply. Since the Lin2-Selector lemma
protocol is zero-knowledge,V gets minimum minimorum of information about the signing index and private key.
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1.2.6 COMPARISON WITH BULLETPROOFS
The nearest technique, that our Lin2-Xor lemma OR-proof in Figure 2 can be compared with, is the Bulletproofs

introduced by Bünz et al. in [10]. If we consider the inner-product argument [10] for two two-dimensional vector
commitments 𝑍0 = (𝑎0𝑃0 + 𝑎1𝑃1) and 𝑍1 = (𝑏0𝑄0 + 𝑏1𝑄1), then the core part of Bünz’s argument [10] can be
regarded as a two-round game, like ours, however with the following equality after the first round

𝑍 + 𝑐2𝐿 + 𝑐−2𝑅 = 𝑤0 (𝑐𝑃0 + 𝑐−1𝑃1) + 𝑤1 (𝑐−1𝑄0 + 𝑐𝑄1), (6)

where 𝑃0, 𝑃1, 𝑄0, 𝑄1 are the linearly independent base generators, 𝑍 = (𝑍0 + 𝑍1) is the input, (𝐿, 𝑅) is the P’s first
message, 𝑐 is the challenge, and 𝑤0, 𝑤1 are weights known to P which it convincesV of in the second round.

For the sake of this comparison, in (6) we omitted the part that actually stores the inner-pruduct. The latter is a
feature of [10] that has no correspondence in our scheme. The second, i.e., final, round where knowledge of 𝑤0, 𝑤1
is proved, can be considered the same for both of Bünz’s argument and our OR-proof.

Now, let us compare (6) with (4) that we have for our OR-proof after the first round. For this comparison, we
use element naming closer to Bulletproofs, hence the elements 𝑃1 and 𝑄0 are swapped in (6) compared to (4), it
is only a syntactic distinction. We may observe that both of our OR-proof and core part of Bünz’s 2 × 2 argument
use four linearly independent generators. Also, both of them transmit roughly the same amount of data, albeit our
OR-proof communicates the first message 𝐻 and reply 𝑟 , whereas Bünz’s argument communicates 𝐿, 𝑅 in the first
message and zero reply.

We foresee a reasonable question about if our OR-proof is just a specialization of Bünz’s argument for the
particular case. Namely, for the case of splitting (𝑎0, 𝑎1, 𝑏0, 𝑏1) into two parts such that P proves that one of them
is zero without revealing which one. We know from [10] that it is possible to prove the statement

(𝑎0, 𝑎1) = (0, 0) ⊕ (𝑏0, 𝑏1) = (0, 0)

by involving the omitted by us in (6) inner-product part that allows for proving (𝑎0𝑏0 + 𝑎1𝑏1) = 0. However, this
will require checking 𝑎0𝑏0 ≠ −𝑎1𝑏1, which implies additional communication costs. The improved argument by
Chung et al. [12] allows to escape from the latter check by admixing random weights to the inner product, however
this still incur additional communication. We aim for a concise direct solution for such a XOR.

Hence, let us try to change the left-hand side of (6) without increasing the amount of communicated data. It
contains three fixed elements weighted by different degrees of the randomness 𝑐. We can try to cut off one of them,
thus making the argument reject some inputs. Apparently, if we simply let 𝐿 = 0 or 𝑅 = 0, then the seen factor 𝑐2

or 𝑐−2 would reveal which inputs are zero. Hence, we have to let P send a scalar reply and arrive to the form of
communication used in our OR-proof. Thus, the equality (6) gets closer to (4) and takes the form of

𝑍 + 𝑟𝐻 = 𝑤0 (𝑐𝑃0 + 𝑐−1𝑃1) + 𝑤1 (𝑐−1𝑄0 + 𝑐𝑄1), (7)

where (𝐻, 𝑟) = (𝐿/𝑑, 𝑑𝑐2) ⊕ (𝑑𝑅, 𝑐−2/𝑑), for some P’s private randomness 𝑑 that hides fromV which degree of
𝑐 is used. Also, P checks (𝑍 + 𝑟𝐻) ≠ 0. This way, the protocol accepts (𝑎0, 𝑏1) = (0, 0) ⊕ (𝑏0, 𝑎1) = (0, 0).

At this point, it may seem that by letting P send 𝐻, 𝑟 instead of 𝐿, 𝑅 we have obtained the OR-proof as a slightly
modified subset of Bulletproofs. However, this is not the case. The protocol using (7) accepts, for instance,

(𝑎0, 𝑎1, 𝑏0, 𝑏1) = (1, 1, 1, 1), with 𝐻 = (𝑑𝑃1 + 𝑑𝑄0), 𝑤0 = 𝑤1 = 𝑐, 𝑟 = (𝑐2 − 1)/𝑑,

as well as many other inputs with all of 𝑎0, 𝑎1, 𝑏0, 𝑏1 nonzero.
The problem with the solution based on (7) is that the same random transformation is applied to both of the

base element pairs (𝑃0, 𝑃1) and (𝑄1, 𝑄0). Therefore, in our solution we use two different random transformations
for them. Namely, for each of these two base element pairs we use its own independent randomnesses, 𝑐0 and 𝑐1,
respectively. This is the key difference of our OR-proof from Bünz’s argument, which makes our solution novel.

Bulletproofs’s reduction technique [10] is, generally speaking, that the equality (6), where we ommit the inner-
product part, is applied to many quadruples of generators in parallel, thus shrinking the amount of them in half.
With this, for each of quadruples, four corresponding privately known weights 𝑎0, 𝑎1, 𝑏0, 𝑏1 are transformed into
the new weights 𝑤0, 𝑤1. This step is repeated many times untill there remain only two final 𝑤0, 𝑤1.

Our 1-out-of-many proof in Figure 5 has the similar reduction, however in each step we communicate 𝐻, 𝑟 and
check the equality (4), instead of communicating 𝐿, 𝑅 and checking (6). Additionally, since each time we have two
different random challenges, we have to swap base generator pairs at each reduction step, however this is only a
technical difference of our reduction.

The core Bulletproofs protocol is only an argument of knowledge, and is not zero-knowledge. The Bulletproofs-
based solutions add zero-knowledge in different ways for the price of some additional communication. Our 1-out-
of-many proof is at least less general, and we prove it is zero-knowledge as is, for the intended inputs, and make it
zero-knowledge for any reasonable inputs for the price of communicating two more scalars.
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1.2.7 COMPARISON WITH THE OTHER SCHEMES
Having conducted an extensive search in publications, we were unable to identify any other of the existing

methods that would be close to the technique proposed by us in the Lin2-Xor lemma OR-proof in Figure 2.
In comparison to the parallel OR-proofs [13, 14, 17] which may divide random challenges into parts, e.g., by

bitwise XOR’ing them, all of our schemes handle the random challenges in the direct way, as in the Schnorr-id
protocol. Like in the sequential OR-proofs, e.g., in the signatures [1, 25], we receive next round challenges from the
random oracle by feeding it with public transcript which allows for Fiat–Shamir heuristic, however, our protocols
are not circular.

The recently proposed in [33, 27, 5, 23] setup-free log-size membership proof and linkable ring signature
schemes originate from the ideas of Jens Groth and Markulf Kohlweiss [21] or from the Bulletproofs idea of Bünz
et al. [10]. We construct our signature L2LRS on the base of our own membership proof, which has the novel core
part and Bulletproofs-style reduction.

A general bilinear arithmetic circuit prover, e.g., built on top of Bulletproofs [10] or on its improved versions,
e.g., by Chung et al. [12], allows for solving the signature problem by reducing it to an arithmetic circuit. However,
we address the problem in a direct way, which seems to us more concise compared to the general arithmetic-circuit-
based solutions.

A parallel can be drawn with the work [21], which introduced a mechanism resembling the Kronecker’s delta
to select a member of anonymity set without revealing it. Our signature uses the Lin2-Xor and, consequently,
Lin2-Selector lemmas in exactly the same role. However, there is a difference in anonymity set constructions. The
anonymity sets in [21] are scattered on a plane defined by two linearly independent generators, while the anonymity
sets for the Lin2-Selector lemma protocol are themselves sets of linearly independent generators.

2 PRELIMINARIES
Let G be a cyclic group of prime order p̄ in which the discrete logarithm problem (DL) is hard, and let Fp̄ be

a scalar field of G. Let 𝐺 be a generator of G. As G is a prime-order group, any nonzero element 𝐴 ∈ G is a
generator of G. Let 0 denote the zero element of G and also denote the zero scalar in Fp̄, it’s easy to distinguish
its meaning from the context.

Let lowercase italic and Greek letters denote scalars inFp̄. Let uppercase italic letters denote the elements inG.
Sets of scalars and elements are usually written in bold, assumed ordered, and called as vectors. We follow Python
notation for indexing them, the same for matrices. Also, instead of writting, e.g., A[𝑖 ] , to dereference 𝑖-th element
of the set A we may simply write 𝐴𝑖 .

Special case, which is rare, letters with tilde denote multivariate polynomials, e.g. 𝑝, and sets of them, e.g., 𝑃̃.
The letters 𝑛, 𝑚, 𝑖, 𝑗 , 𝑘, 𝑠, 𝑡, 𝑏, 𝑔 are reserved for integers. The letter 𝑡 also may denote a trascript or a tuple, it is
clear from context. The same goes for the letter 𝑝 and lowercase words, which can denote probability or transcript
components. The letter 𝜆 is reserved for security parameter.

All definitions and lemmas herein are given in the context of a game between prover P and verifier V,
unless otherwise stated. We write the game protocols as interactive, assuming all of them can be translated into
corresponding non-interactive schemes using the Fiat-Shamir heuristic in ROM [16, 28].

2.1 DEFINITIONS
We use the tools and definitions from the Bulletproofs paper [10], as well as some taken from the works of

Bootle et al. [8], Lindell [24], Groth [19], and Bresson et al. [9].
Let GGen be an algorithm that on input {1}𝜆 returns a description Ḡ = (G, p̄, 𝐺) of the group G such that

|p̄| ⩾ 2𝜆. We assume any P’s starategy is restricted to be polynomial time in the security parameter 𝜆 everywhere.
A PPT adversaryA is an non-uniform probabilistic interactive Turing Machine that runs in polynomial time in the
security parameter 𝜆. We will omit mentioning the security parameter 𝜆 when it is implicit.

A function 𝜇(·) is negligible if for every positive polynomial p(·) and all sufficiently large 𝜆’s, it holds that
|𝜇(𝜆) | < 1/p(𝜆), which is denoted as 𝜇(𝜆) ≈ 0. For a function 𝜈(·), for a constant 𝜏, if |𝜏 − 𝜈(𝜆) | ≈ 0, we write
𝜈(𝜆) ≈ 𝜏. If 𝜈(𝜆) ≈ 1, we say 𝜈(·) is overwhelming. For a function 𝜂(·), if there exists a polynomial pbound (·) such
that it holds |𝜂(𝜆) | < pbound (𝜆) for any 𝜆, we say 𝜂(·) is polynomially bounded.

For a set S, we write 𝑥 ←$ S to say that 𝑥 is independently and uniformly sampled from the set S. All sets that
we use, except for G,Fp̄,Fp̄ [𝑋], have cardinalities which are polynomially bounded in 𝜆.

If 𝑝(𝜆) is a probability of some event to be detected, and if 𝑝(𝜆) ≈ 1, we say the event holds with overwhelming
probability, abbreviated as w.o.p. For example, if the event is a fulfillment of an equality, and if the probability of
this fulfillment is overwhelming, we say that the equality holds w.o.p.

It follows from the definition of overwhelming probability that, for a polynomially bounded sequence of events,

7



each of which holds w.o.p. provided that all the previous events in the sequence hold unconditionally, the last event
in the sequence holds w.o.p. If all events in a polynomially bounded sequence hold at least with non-negligible
probability, then the last event holds with non-negligible probability.

Discrete Log assumption (DL) definition:
For all PPT A

Pr
[
Ḡ← GGen({1}𝜆); 𝐺0 ←$ G;
𝑎0 ∈ Fp̄ ← A(Ḡ, 𝐺0)

: 𝑎0𝐺 = 𝐺0

]
≈ 0 .

Discrete Log Relation assumption (DLR) definition:
For all 𝑛 ⩾ 2 and all PPT A

Pr

[
Ḡ← GGen({1}𝜆); 𝐺1, . . . , 𝐺𝑛 ←$ G;
𝑎1, . . . , 𝑎𝑛 ∈ Fp̄ ← A(Ḡ, 𝐺1, . . . , 𝐺𝑛)

: ∃𝑎𝑖 ≠ 0 ∧
𝑛∑︁
𝑖=1

𝑎𝑖𝐺𝑖 = 0

]
≈ 0 .

It is well-known, e.g., from [8], that DLR is equivalent to DL.

Public Coin definition:
The triple (𝑆𝑒𝑡𝑢𝑝,P,V) is called public coin if all messages sent from the verifier to the prover are chosen
uniformly at random and independently of the prover’s messages, i.e., the challenges correspond to the verifier’s
randomness 𝜌.

Argument of Knowledge definition:
The public coin triple (𝑆𝑒𝑡𝑢𝑝,P,V) is called an argument of knowledge for relation R if it satisfies the following
two definitions.

According to the definition by Groth [19], completeness suffices. Anyway, all of our protocols in this paper
have perfect completeness, as we will prove.

Perfect Completeness definition:
(𝑆𝑒𝑡𝑢𝑝,P,V) has completeness if for all A

Pr
[
(𝜎, 𝑢;𝑤) ∉ R ∨ ⟨P(𝜎, 𝑢;𝑤),V(𝜎, 𝑢⟩ = 1

���� 𝜎 ← 𝑆𝑒𝑡𝑢𝑝({1}𝜆);
(𝑢, 𝑤) ← A(𝜎)

]
= 0 .

If the probability is only negligible, then the triple is said to have completeness, not perfect.

Computational Witness-Extended Emulation (cWEE) definition:
(𝑆𝑒𝑡𝑢𝑝,P,V) has computational witness-extended emulation if for all deterministic polynomial time P∗ there
exists an expected polynomial time emulator E such that for all pairs of interactive adversaries A1,A2

Pr
[
A1 (𝑡𝑟) = 1

���� 𝜎 ← 𝑆𝑒𝑡𝑢𝑝({1}𝜆); (𝑢, 𝑠) ← A2 (𝜎);
𝑡𝑟 ← ⟨P∗ (𝜎, 𝑢, 𝑠),V(𝜎, 𝑢)⟩

]
≈

Pr
 A1 (𝑡𝑟) = 1 ∧
(𝑡𝑟 is accepting ⇒ (𝜎, 𝑢;𝑤) ∈ R)

������ 𝜎 ← 𝑆𝑒𝑡𝑢𝑝({1}𝜆);
(𝑢, 𝑠) ← A2 (𝜎);
(𝑡𝑟, 𝑤) ← EO (𝜎, 𝑢)

 .
where the oracle is given by O = ⟨P∗ (𝜎, 𝑢, 𝑠),V(𝜎, 𝑢)⟩, and permits rewinding to a specific point and resuming
with fresh randomness for the verifier from this point onwards.

For all protocols in this paper, we assume that if a protocol has cWEE, then its emulator E is able to return
witness 𝑤 as well as a polynomially bounded accepting transcript tree, from which the same 𝑤 can be extracted. In
other words, we assume existance of witness extractors for those protocols having cWEE which we use. This is a
quite natural assumption, since cWEE of protocols is typically proved by demonstrating their witness extractors.

Witness extractor definition:
Let (𝑆𝑒𝑡𝑢𝑝,P,V) be a (2𝑘−1)-move, public coin interactive protocol. LetX be a witness extraction algorithm that
succeeds with overwhelming probability in extracting a witness from an (𝑛1, . . . , 𝑛𝑘)-tree of accepting transcripts
in probabilistic polynomial time, provided that

∏𝑘
𝑖=1 𝑛𝑖 is bounded above by a polynomial in the security parameter

𝜆. We call X as witness extractor.
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If we are able to demonstrate a witness extractor X for a protocol (𝑆𝑒𝑡𝑢𝑝,P,V) then, by the Forking Lemma
[8], the protocol has cWEE.

By the definition, X finds witness from a polynomially bounded accepting transcript tree at input. As the
Forking Lemma [8] shows, if X is constructed, then it is used by the emulator E equipped with a rewind oracle in
the cWEE game, and the mere fact of existence of X prevents any adversary from winning the game.

Without changing the definitions, we will assume that X itself is equipped with the rewind oracle, as it is
done, e.g., in the course of proof of cWEE in [10]. Although the rewinding and building of the transcript tree is
a probabilistic process, for X, we will nevertheless only count the probabilities arising from extracting witnesses
from the ready tree, since the ready tree is by definition at the input of X.

Special Honest-Verifier Zero-Knowledge (sHVZK) definition:
The public coin argument (𝑆𝑒𝑡𝑢𝑝,P,V) is called a special honest verifier zero-knowledge argument for R if there
exists a PPT simulator S such that for all (non-uniform) adversaries A

Pr
[
(𝜎, 𝑢;𝑤) ∈ R ∧ A(𝑡𝑟) = 1

���� 𝜎 ← 𝑆𝑒𝑡𝑢𝑝({1}𝜆); (𝑢, 𝑤, 𝜌) ← A(𝜎);
𝑡𝑟 ← ⟨P(𝜎, 𝑢;𝑤),V(𝜎, 𝑢; 𝜌)⟩

]
≈

Pr
[
(𝜎, 𝑢;𝑤) ∈ R ∧ A(𝑡𝑟) = 1

���� 𝜎 ← 𝑆𝑒𝑡𝑢𝑝({1}𝜆); (𝑢, 𝑤, 𝜌) ← A(𝜎);
𝑡𝑟 ← S(𝜎, 𝑢, 𝜌)

]
,

where 𝜌 is the public coin randomness used by the verifier.

The above definition is by Groth [19]. Note that in the sHVZK game the randmoness 𝜌 is chosen adversarially
by A, and 𝜌 is allowed to be not-independent and not-uniform in this game.

Diffie-Hellman assumption (DDH) definition:
For all PPT A

Pr
 A(Ḡ, 𝑡) = 1

������ Ḡ← GGen({1}
𝜆);

𝑎, 𝑏 ←$ Fp̄;
𝑡 = (𝑎𝐺, 𝑏𝐺, 𝑎𝑏𝐺)

 ≈ Pr
 A(Ḡ, 𝑡) = 1

������ Ḡ← GGen({1}
𝜆);

𝑎, 𝑏, 𝑐 ←$ Fp̄;
𝑡 = (𝑎𝐺, 𝑏𝐺, 𝑐𝐺)

 .
(P,Q) Diffie-Hellman assumption ( (P,Q)-DDH ) definition:
For all 𝑛 ⩾ 1 and all PPT A which provide 𝑃̃, 𝑄̃ ⊂ Fp̄ [𝑋1, . . . , 𝑋𝑛] such that all polynomials in 𝑄̃ are linearly
independent and Span(𝑃̃) ∩ Span(𝑄̃) = ∅

Pr

 A(𝑡) = 1

��������
Ḡ← GGen({1}𝜆);
𝑃̃, 𝑄̃ ← A(Ḡ);
𝑥1, . . . , 𝑥𝑛 ←$ Fp̄;
𝑡 = ( { 𝑝𝑖 (𝑥1, . . . , 𝑥𝑛)𝐺 } 𝑝̃𝑖∈ 𝑃̃ , { 𝑞 𝑗 (𝑥1, . . . , 𝑥𝑛)𝐺 }𝑞̃ 𝑗 ∈𝑄̃ )

 ≈
Pr

 A(𝑡) = 1

��������
Ḡ← GGen({1}𝜆);
𝑃̃, 𝑄̃ ← A(Ḡ);
𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦 |𝑄̃ | ←$ Fp̄;
𝑡 = ( { 𝑝𝑖 (𝑥1, . . . , 𝑥𝑛)𝐺 } 𝑝̃𝑖∈ 𝑃̃ , { 𝑦 𝑗𝐺 } 𝑗∈[1,..., |𝑄̃ | ] )

 .
Bresson et al. proved in [9] that DDH implies (P,Q)-DDH. In this paper, to avoid overlap with our notations,

we use tilde for the sets P, Q compared to the original paper [9].
Informally, the (P,Q)-DDH assumption asserts that if 𝑃̃, 𝑄̃ ⊂ Fp̄ [𝑋1, . . . , 𝑋𝑛] are two sets of exponents of 𝐺

expressed as multivariate polynomials of random 𝑥1, . . . , 𝑥𝑛 such that all polynomials in 𝑄̃ are linearly independent,
if Span(𝑃̃) ∩ Span(𝑄̃) = ∅, then a tuple containing the corresponding to 𝑃̃, 𝑄̃ elements in G is indistinguishable
from the tuple containing the same elements for 𝑃̃ and randomly sampled from G elements for 𝑄̃.

Indistinguishability definition:
We say that the tuples 𝑡0, 𝑡1 are (computationally) indistinguishable, if they are sampled from the given distributions
D0,D1, respectively, and for all non-uniform PPT A

Pr
[
A(𝑡) = 1

�� 𝑡 ← D0
]
≈ Pr

[
A(𝑡) = 1

�� 𝑡 ← D1
]
.

Actually, D0,D1 are thought of as the corresponding families of distributions parametrized by 𝜆, which we omit.
For the subset case when the above distributions D0,D1 are defined as outputs of PPT’s T0,T1, respectively,

the above indistinguishability game becomes

Pr
[
A(Ḡ, 𝑡) = 1

���� Ḡ← GGen({1}𝜆);𝑡 ← T0 (Ḡ)

]
≈ Pr

[
A(Ḡ, 𝑡) = 1

���� Ḡ← GGen({1}𝜆);𝑡 ← T1 (Ḡ)

]
.
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Thus, we say that the corresponding tuples in the DDH and (P,Q)-DDH definitions are indistinguishable. As
follows from the definition of negligible function, indistinguishability is transitive when the number of hops is
polynomially bounded. Since all our proofs unfold in a polynomially bounded number of steps, in all of them we
have transitive indistinguishability.

3 LINEARLY INDEPENDENT ELEMENTS
In this paper we rely on the DLR and DDH assumption families, each comprised of a number of equivalent

assumptions. All of them address linearly independent sets of elements in G. Here we formalize two kinds of
linear independence in order to use them in our proofs. The first kind, which is stronger, applies to elements
randomly sampled from G. The second, weaker one, applies to any element set for which it is proved that finding
an non-trivial relation between its elements is hard.

Set of randomly sampled group elements (INDR) definition:
For Ḡ← GGen({1}𝜆), for S ⊂ G, |S| ⩾ 1,we say S is a set of randomly sampled group elements and write INDR(S),
if all elements in S are sampled independently and uniformly at random from G without knowing their exponents,
or if S is generated by sampling the set of exponents x = {𝑥1, . . . , 𝑥𝑛} ←$ F𝑛

p̄ , building S = {𝑥1𝐺, . . . , 𝑥𝑛𝐺}, and
forgetting the set x without disclosing or using it for anything else.

For instance, the set of generators S = {𝐺1, . . . , 𝐺𝑛} sampled in the DLR game is INDR(S). Also, in the
(P,Q)-DDH game, it holds that INDR({ 𝑦 𝑗𝐺 } 𝑗∈[1,..., |𝑄̃ | ]). A set of randomly sampled group elements is typically
obtained using an ideal hash-to-group function. Also, a set S ⊂ G such that INDR(S) can be obtained from an
oracle that samples exponents independently and uniformly at random from Fp̄, yields S, and forgets the exponents
without disclosing or using them for anything else.

If a set S′ ⊂ G is proved to be indistinguishable from S such that INDR(S), then the fact of indistinguishability
of S′ from S does not imply INDR(S′). The question of when such an implication can be established remains
open, however we do not investigate it in this paper. Thus, for S′, S, so far it only follows from the above fact that
there is no A winning the indistinguishability game for them.

Set of linearly independent elements (IND) definition:
For Ḡ← GGen({1}𝜆), for S ⊂ G, |S| ⩾ 2, we say S is a set of linearly independent elements and write IND(S), if
for all (non-uniform) PPT A

Pr

[
𝑎1, . . . , 𝑎 |S | ∈ Fp̄ ← A(Ḡ, S) : ∃𝑎𝑖 ≠ 0 ∧

|S |∑︁
𝑖=1

𝑎𝑖𝑆𝑖 = 0

]
≈ 0 .

According to DRL, INDR(S), |S| ⩾ 2 immediately implies IND(S). However, INDR(S) does not follow from
IND(S). It is clear that, for S′ ⊆ S, (INDR(S) ∧ |S′ | ⩾ 1) implies INDR(S′).

Also, for S′ ⊆ S, (IND(S) ∧ |S′ | ⩾ 2) implies IND(S′). We have the following two lemmas about the basic
properties of INDR and IND. We assume that the group definition Ḡ is given implicitly in the lemma premises
hereinafter.

Note, for any element sets A,B ⊂ G, we claim neither that INDR(A) ∧ INDR(B) implies INDR(A ∪ B), nor
that IND(A) ∧ IND(B) implies IND(A ∪ B).

Lemma 1 (INDR-to-IND):
For any 𝑥 ∈ F∗p̄ such that 𝑥 is known, for any S ⊂ G, |S| ⩾ 1, if INDR(S) then IND({𝑥𝐺} ∪ S).

Proof. Suppose existence of winning A for the IND game for {𝑥𝐺} ∪ S. Let us denote as 𝑎0 the coefficient that
corresponds to 𝑥𝐺 in this game. For the first, let us consider the case when A has non-negligible probability of
generating winning events with 𝑎0 = 0. If |S| ⩾ 2, thenA also wins the DLR game in this case. For 𝑎0 = 0∧|S| = 1,
there is only negligible probability for winning event to happen, since there is only negligible probability for 0 ∈ G
to be uniformly sampled from G.

Thus, the winning A has non-negligible probability of generating winning events with 𝑎0 ≠ 0. Each of these
events has also some 𝑎𝑖 ≠ 0, 𝑖 ≠ 0, since G is a prime-order group.

We construct A′ that wins the DLR game for 𝑛 = 2|S| using A as follows. A′ splits the randomly sampled
generator set into two halves, appends {𝑥𝐺} to both of them, and invokes A with these halves at input. Since,
by the above, A has non-negligible probability, say, 𝑝, of finding an non-trivial decomposition of zero having
𝑎0 ≠ 0, 𝑎𝑖 ≠ 0, 𝑖 ≠ 0, A also has non-negligible probability, which is 𝑝2, of finding such a decomposition for both
of the input halves. As 𝑎0 ≠ 0 in both of the decompositions, A′ eliminates 𝑥𝐺 from them and, thus, obtains an
non-trivial decomposition of zero by the sampled genertor set of size 2|S|. Therefore, A′ wins the DLR game.

Thus, by DLR, no A can win the IND game for {𝑥𝐺} ∪ S. Hence, IND({𝑥𝐺} ∪ S) by the definition. □
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Lemma 2 (IND-to-IND):
For any two sets S,B ⊂ G such that 𝑛 = |S|, 𝑚 = |B|, and 𝑚 ⩽ 𝑛, for a known matrix M ∈ F𝑛×𝑚

p̄ such that

S ·M = B , (8)

if rank(M) = 𝑚 and IND(S), then IND(B).

Proof. Suppose existence of winning A for the IND game for B. We will build A′ that wins the IND game for S.
Let us consider the matrix M′ ∈ F𝑚×𝑚

p̄ such that M′ is a submatrix of M and rank(M′) = 𝑚 , i.e., det(M′) ≠ 0.
The matrix M′ exists, as rank(M) = 𝑚 by the premise. Also, we consider S′ ⊆ S such that S′ ∈ G𝑚 and S′
corresponds to those rows of M which are included in M′. Thus, we have

S′ = B ·M′−1
. (9)

A′ invokes A with B at input, and with non-negligible probability obtains a ∈ F𝑚
p̄ such that a ≠ {0}𝑚 and

⟨a,B⟩ = 0 from it. A′ calculates a′ ∈ F𝑚
p̄ as a′ = a ·M′⊤. Since det(M′) ≠ 0, a′ ≠ {0}𝑚. It follows from (9)

that ⟨a′, S′⟩ = 0. Namely, having both sides of (9) multiplied by a′⊤, we have

⟨a′, S′⟩ = S′ · a′⊤ = B ·M′−1 ·M′ · a⊤ = B · a⊤ = ⟨a,B⟩ = 0 . (10)

Thus, A′ with non-negligible probability obtains nonzero vector a′. A′ augments a′ to the right size with
zeros and has ⟨a′, S⟩ = 0, which is the winning event in the IND game for S. □

As follows from the above two lemmas and definitions of INDR, IND, breaking the IND linear independence
game implies breaking DLR, since the chance of hitting 0 when sampling from G is negligible. Hence, we often
refer to breaking the IND linear independence game as to breaking DLR hereinafter.

At the same time, for the cases where we appeal to DDH, e.g., in indistinguishability games, IND may not
suffice, while INDR can be sufficient.

4 LIN2 LEMMA
Let us consider the relation (11), for which well-studied Okamoto protocol [7] already exists. Our two-round

protocol for this relation is shown in Figure 1. It is different, so as to be a part of our main protocol later.

RLin2 = {𝑍 ∈ G, 𝑃, 𝑄 ∈ G∗; 𝑧0, 𝑧1 ∈ Fp̄ | 𝑍 = 𝑧0𝑃 + 𝑧1𝑄} (11)

It is perfectly complete and sound, which we prove in the following lemma. For the second round of our
protocol, we imply that an arbitrary argument for the relation R = {𝐴 ∈ G, 𝐵 ∈ G∗; 𝑤 ∈ Fp̄ | 𝐴 = 𝑤𝐵} is played
such that 𝐴 = 𝑍 + 𝑟𝐻, 𝐵 = 𝑃 + 𝑐𝑄 in it.

Lemma 3 (Lin2):
For the relation (11), for IND(𝑃,𝑄) in it, the protocol in Figure 1 has the follwing properties

A) perfect completeness
B) computational witness-extended emulation
C) it is an argument of knowledge

Proof. A) Note that 𝑐 never equals to 0 or −1, and 𝑑 never equals to 0. For the case of (𝑧0 = 0∧ 𝑧1 = 0), V simply
accepts. Thus, we have to consider only the cases (𝑧0 ≠ −𝑧1∧ (𝑧0 ≠ 0∨ 𝑧1 ≠ 0)) and (𝑧0 = −𝑧1∧ (𝑧0 ≠ 0∨ 𝑧1 ≠ 0)).

For the case of (𝑧0 ≠ −𝑧1 ∧ (𝑧0 ≠ 0 ∨ 𝑧1 ≠ 0)), P sends to V the following (𝑍 + 𝑟𝐻), which we write in the
matrix form, as vector -rows an -columns, and reduce

𝑍 + 𝑟𝐻 =

[
𝑃 𝑄

] ( [
𝑧0
𝑧1

]
+ 𝑧1 − 𝑐𝑧0

𝑑 (𝑐 + 1)

[
𝑑

−𝑑

] )
=[

𝑃 𝑄
] (

1
𝑐 + 1

[
𝑐𝑧0 + 𝑧0
𝑐𝑧1 + 𝑧1

]
+ 1
𝑐 + 1

[
𝑧1 − 𝑐𝑧0
−𝑧1 + 𝑐𝑧0

] )
=[

𝑃 𝑄
] (

1
𝑐 + 1

[
𝑧0 + 𝑧1
𝑐𝑧0 + 𝑐𝑧1

] )
=[

𝑃 𝑄
] (
𝑧0 + 𝑧1

𝑐 + 1

[
1
𝑐

] )
=

𝑧0 + 𝑧1

𝑐 + 1
(𝑃 + 𝑐𝑄) .

(12)
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P

𝑑 ←$ F∗p̄

If 𝑧0 ≠ −𝑧1 then (ℎ0, ℎ1) = (𝑑,−𝑑)
else (ℎ0, ℎ1) = (𝑑, 0)

𝐻 = ℎ0𝑃 + ℎ1𝑄 𝐻

If 𝑧0 ≠ −𝑧1 then 𝑟 = (𝑧1 − 𝑐𝑧0)/(𝑑 (𝑐 + 1)),
𝑤 = (𝑧0 + 𝑧1)/(𝑐 + 1)

else 𝑟 = 𝑧1 (𝑐 + 1)/(𝑐𝑑),
𝑤 = 𝑧1/𝑐

𝑟

V

If 𝑍 = 0 then accept

𝑐 ←$ F∗p̄ \ {−1}

If 𝑍 + 𝑟𝐻 = 0 then reject

P and V play a perfectly complete and having cWEE protocol
which proves knowledge of 𝑤 ∈ Fp̄ in (𝑍 + 𝑟𝐻) = 𝑤(𝑃 + 𝑐𝑄)

Protocol: Lin2Arg(𝑍 ∈ G, 𝑃, 𝑄 ∈ F∗p̄; 𝑧0, 𝑧1 ∈ Fp̄). Relation: (11). Premise: IND(𝑃,𝑄).

Figure 1: Lin2 lemma protocol.

As 𝑧0 ≠ −𝑧1, (𝑍 +𝑟𝐻) ≠ 0, and the protocol proceeds to the second round which succeeds for 𝑤 = (𝑧0+ 𝑧1)/(𝑐+1).
For the case of (𝑧0 = −𝑧1 ∧ (𝑧0 ≠ 0 ∨ 𝑧1 ≠ 0)), let 𝑧 = 𝑧1, 𝑧 ≠ 0. The reduction is following

𝑍 + 𝑟𝐻 =

[
𝑃 𝑄

] ( [
−𝑧
𝑧

]
+ 𝑧(𝑐 + 1)

𝑐𝑑

[
𝑑

0

] )
=[

𝑃 𝑄
] (

1
𝑐

[
−𝑐𝑧
𝑐𝑧

]
+ 𝑐𝑧 + 𝑧

𝑐

[
1
0

] )
=[

𝑃 𝑄
] (

1
𝑐

[
𝑧

𝑐𝑧

] )
=

𝑧

𝑐
(𝑃 + 𝑐𝑄) .

(13)

As 𝑧 ≠ 0, (𝑍 + 𝑟𝐻) ≠ 0, and the protocol proceeds to the second round succeeding for 𝑤 = 𝑧1/𝑐. Thus, for any
𝑧0, 𝑧1 known to P, the protocol succeeds, hence it is perfectly complete by definition.

B) Let us construct a PPT witness extractor X for this protocol. As the unnamed protocol played in the second
round has cWEE, it has an emulator Esecond_round. For an accepting protocol transcript, Esecond_round returns the
scalar 𝑤 which satisfies the equality (𝑍 + 𝑟𝐻) = 𝑤(𝑃 + 𝑐𝑄).

Having obtained 𝑤 for 𝑐, 𝑟 , X rewinds and obtains 𝑤′ for 𝑐′, 𝑟 ′. Thus, X has the system of two equalities,
where 𝑐, 𝑐′ ∈ G∗ \ {−1}, it holds strictly that (𝑤 ≠ 0 ∧ 𝑤′ ≠ 0), and 𝑐 ≠ 𝑐′ w.o.p.{

𝑍 + 𝑟𝐻 = 𝑤(𝑃 + 𝑐𝑄)
𝑍 + 𝑟 ′𝐻 = 𝑤′ (𝑃 + 𝑐′𝑄)

. (14)

X tries to find a solution to the equality system (14) in the form of 𝑍̂ = 𝑧0𝑃 + 𝑧1𝑄, 𝐻̂ = ℎ̂0𝑃 + ℎ̂1𝑄. For this,
X rewrites (14) as the matrix equation[

𝑧0 𝑧1 ℎ̂0 ℎ̂1
]
·M =

[
𝑤 𝑐𝑤 𝑤′ 𝑐′𝑤′

]
, (15)

where

M =


1 0 1 0
0 1 0 1
𝑟 0 𝑟 ′ 0
0 𝑟 0 𝑟 ′

 . (16)
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The right-hand side of (15) is not the zero vector, as at least 𝑤 ≠ 0 in it. Hence, if X is able to invert M, then
it obtains an non-trivial solution for (15). Let us estimate probability for M to be invertible, we have to know its
determinant for this.

det(M) = det
©­­­«

1 0 1 0
0 1 0 1
𝑟 0 𝑟 ′ 0
0 𝑟 0 𝑟 ′


ª®®®¬ = det ©­«


1 0 1
0 𝑟 ′ 0
𝑟 0 𝑟 ′

ª®¬ + det ©­«

0 1 1
𝑟 0 0
0 𝑟 𝑟 ′

ª®¬ = (17)

𝑟 ′ det
( [

1 1
𝑟 𝑟 ′

] )
− 𝑟 det

( [
1 1
𝑟 𝑟 ′

] )
= 𝑟 ′ (𝑟 ′ − 𝑟) − 𝑟 (𝑟 ′ − 𝑟) = (𝑟 ′ − 𝑟)2 . (18)

Thus, det(M) = 0 iff 𝑟 ′ = 𝑟 . For the case of 𝑟 ′ = 𝑟 , by subtracting the first equality from the second in (14), X
obtains

𝑤′ (𝑃 + 𝑐′𝑄) − 𝑤(𝑃 + 𝑐𝑄) = 0 , (19)

which rewrites as
(𝑤′ − 𝑤)𝑃 + (𝑤′𝑐′ − 𝑤𝑐)𝑄 = 0 . (20)

As (𝑤 ≠ 0 ∧ 𝑤′ ≠ 0), and also as (𝑐′ − 𝑐) = 0 only with negligible probability, the case when both weights of
𝑃 and 𝑄 in (19) are zero, i.e., {

𝑤′ − 𝑤 = 0
𝑤′𝑐′ − 𝑤𝑐 = 0

(21)

holds only with negligible probability.
Thus, as IND(𝑃,𝑄) by the premise, (19) implies w.o.p. that, for the case of 𝑟 ′ = 𝑟 , the extractor X breaks DLR

w.o.p. Hence, the probability of the case 𝑟 ′ = 𝑟 is negligible and, thus, M is invertible w.o.p. As a result, X solves
(15) w.o.p. as [

𝑧0 𝑧1 ℎ̂0 ℎ̂1
]
=
[
𝑤 𝑐𝑤 𝑤′ 𝑐′𝑤′

]
·M−1 . (22)

Let us estimate the probability that the found by X solution 𝑍̂ , 𝐻̂ to the system (14) is equal to 𝑍, 𝐻, which are
the protocol common input and first message, respectively. Since the transcript is accepting, 𝑍, 𝐻 satisfy (14). By
subtracting the pair of equalities (14) for 𝑍̂ , 𝐻̂ from the pair of equalities (14) for 𝑍, 𝐻, we have{

(𝑍 − 𝑍̂) + 𝑟 (𝐻 − 𝐻̂) = 0
(𝑍 − 𝑍̂) + 𝑟 ′ (𝐻 − 𝐻̂) = 0

, (23)

which reduces to {
(𝑍 − 𝑍̂) = −𝑟 (𝐻 − 𝐻̂)
(𝑟 ′ − 𝑟) (𝐻 − 𝐻̂) = 0

. (24)

As we have already proved, (𝑟 ′ − 𝑟) ≠ 0 w.o.p. Hence, the system (24) implies w.o.p. that

𝑍 = 𝑍̂ ∧ 𝐻 = 𝐻̂ . (25)

Thus, X finds w.o.p. the weights 𝑧0, 𝑧1, ℎ̂0, ℎ̂1 (22) in the decompositions

𝑍 = 𝑧0𝑃 + 𝑧1𝑄, (26)

𝐻 = ℎ̂0𝑃 + ℎ̂1𝑄 . (27)

The found decomposition (26) contains witness (𝑧0, 𝑧1) = (𝑧0, 𝑧1) to the relation (11) and, therefore, X returns it.
We have constructed the PPT witness extractor X for this protocol, which with overwhelming probability

extracts witness from an accepting transcript tree. Therefore, by the Forking Lemma, the protocol has cWEE.
Moreover, according to (25), for which we proved that it is satisfied for any 𝑍, 𝐻 in a successful transcript, we

have proved that the found witness (𝑧0, 𝑧1) is unique, and the same about the scalar pair ( ℎ̂0, ℎ̂1) in (27).
C) Since we have already proved the cases (Lin2-A) and (Lin2-B), the protocol is an argument of knowledge

by the corresponding definition. The lemma is proved. □
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5 LIN2-XOR LEMMA
Our main protocol is shown in Figure 2. In the Lin2-Xor lemma we prove that it is an argument of knowledge

for the following relation

RLin2Xor = {𝑍 ∈ G, 𝑃0, 𝑄0, 𝑃1, 𝑄1 ∈ G∗; 𝑧0, 𝑧1 ∈ Fp̄, 𝑠 ∈ {0, 1} | 𝑍 = 𝑧0𝑃𝑠 + 𝑧1𝑄𝑠} . (28)

This relation, informally, asserts that the statement 𝑍 is a linear combination of the elements from at most one of
the two element pairs (𝑃0, 𝑄0), (𝑃1, 𝑄1). We assume that all elements in the set {𝑃0, 𝑄0, 𝑃1, 𝑄1} ⊂ G∗ are linearly
independent of each other, i.e., IND(𝑃0, 𝑄0, 𝑃1, 𝑄1).

The argument in Figure 2 is a modified version of our argument in Figure 1. The only modification is that V
generates two scalar challenges instead of one, and P replies as if it were playing for our previous argument using
only one of the pairs (𝑃0, 𝑄0) and (𝑃1, 𝑄1), namely, the desired one. For the argument’s second round, we imply
that an arbitrary argument of knowledge for the relation (11) is used, with appropriate renamings. The renamings
are for the generators, and also (𝑧0, 𝑧1) ← (𝑤0, 𝑤1) in it.

Protocol: Lin2XorArg(𝑍 ∈ G, 𝑃0, 𝑄0, 𝑃1, 𝑄1 ∈ G∗; 𝑧0, 𝑧1 ∈ Fp̄, 𝑠 ∈ {0, 1}).
Relation: (28). Precondition: IND(𝑃0, 𝑄0, 𝑃1, 𝑄1).

P

𝑑 ←$ F∗p̄

If 𝑧0 ≠ −𝑧1 then (ℎ0, ℎ1) = (𝑑,−𝑑)
else (ℎ0, ℎ1) = (𝑑, 0)

𝐻 = ℎ0𝑃𝑠 + ℎ1𝑄𝑠 𝐻

If 𝑧0 ≠ −𝑧1 then 𝑟 = (𝑧1 − 𝑐𝑠𝑧0)/(𝑑 (𝑐𝑠 + 1)),
𝑤 = (𝑧0 + 𝑧1)/(𝑐𝑠 + 1)

else 𝑟 = 𝑧1 (𝑐𝑠 + 1)/(𝑐𝑠𝑑),
𝑤 = 𝑧1/𝑐𝑠

𝑟

If 𝑠 = 0 then (𝑤0, 𝑤1) = (𝑤, 0)
else (𝑤0, 𝑤1) = (0, 𝑤)

V

If 𝑍 = 0 then accept

(𝑐0, 𝑐1) ←$ (F∗p̄ \ {−1})2

If 𝑍 + 𝑟𝐻 = 0 then reject

P and V play a perfectly complete and having cWEE protocol
which proves knowledge of 𝑤0, 𝑤1 in 𝑍 + 𝑟𝐻 = 𝑤0 (𝑃0 + 𝑐0𝑄0) + 𝑤1 (𝑃1 + 𝑐1𝑄1)

Figure 2: Lin2-Xor lemma protocol.

Lemma 4 (Lin2-Xor):
For the relation (28), for IND(𝑃0, 𝑄0, 𝑃1, 𝑄1) in it, the protocol in Figure 2 has the follwing properties

A) perfect completeness

B) computational witness-extended emulation

C) it is an argument of knowledge

D) on successful completion of the lemma’s protocol, V is convinced that either 𝑍 = 0 or with overwhelming
probability P knows 𝑤 in (𝑍 + 𝑟𝐻) = 𝑤(𝑃𝑠 + 𝑐𝑠𝑄𝑠) such that 𝑠 ∈ {0, 1} is the witness index in (28).

Proof. A) The proof of perfect completeness for the protocol in Figure 2 replicates one-to-one the proof of Lin2
lemma’s protocol perfect completeness in (Lin2-A). The only modification is that now [𝑃𝑠 , 𝑄𝑠] is used instead of
[𝑃,𝑄] in (12) and (13), and also one of (𝑤, 0) and (0, 𝑤) is fed to the second round. Which one depends on 𝑠.

B) For cWEE, we follow the way of (Lin2-B), however with the bigger matrices now. For the special case of
𝑍 = 0, witness extractor X returns (𝑧0, 𝑧1, 𝑠) = (0, 0, 0). The value of 𝑠 is taken arbitrarily from {0, 1} in this case.
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For 𝑍 ≠ 0, having rewound the transcript one time, the extractor X has the equality system{
𝑍 + 𝑟𝐻 = 𝑤0 (𝑃0 + 𝑐0𝑄0) + 𝑤1 (𝑃1 + 𝑐1𝑄1)
𝑍 + 𝑟 ′𝐻 = 𝑤′0 (𝑃0 + 𝑐′0𝑄0) + 𝑤′1 (𝑃1 + 𝑐′1𝑄1)

. (29)

In this system, due to the check of (𝑍 + 𝑟𝐻) ≠ 0 in the protocol and premised IND(𝑃0, 𝑄0, 𝑃1, 𝑄1), it holds that

( (𝑤0, 𝑤1) ≠ (0, 0) ∧ (𝑤′0, 𝑤
′
1) ≠ (0, 0) ) w.o.p. (30)

X makes a hypothesis that both of 𝑍, 𝐻 are linear combinations of 𝑃0, 𝑄0, 𝑃1, 𝑄1, and seeks for the weights in

𝑍̂ = 𝑧0𝑃0 + 𝑧1𝑄0 + 𝑧2𝑃1 + 𝑧3𝑄1,

𝐻̂ = ℎ̂0𝑃0 + ℎ̂1𝑄0 + ℎ̂2𝑃1 + ℎ̂3𝑄1 ,
(31)

where hats denote that these are hypothesized values.
X rewrites (29) in the matrix form as[
𝑧0 𝑧1 𝑧2 𝑧3 ℎ̂0 ℎ̂1 ℎ̂2 ℎ̂3

]
·M =

[
𝑤0 𝑐0𝑤0 𝑤1 𝑐1𝑤1 𝑤′0 𝑐′0𝑤

′
0 𝑤′1 𝑐′1𝑤

′
1
]
, (32)

where

M =



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
𝑟 0 0 0 𝑟 ′ 0 0 0
0 𝑟 0 0 0 𝑟 ′ 0 0
0 0 𝑟 0 0 0 𝑟 ′ 0
0 0 0 𝑟 0 0 0 𝑟 ′


. (33)

To estimate probability for M to be invertible, we note that it is a block matrix and calculate its determinant
using the formula from [31]

det(M) = det
©­­­«

(𝑟 ′ − 𝑟) 0 0 0

0 (𝑟 ′ − 𝑟) 0 0
0 0 (𝑟 ′ − 𝑟) 0
0 0 0 (𝑟 ′ − 𝑟)


ª®®®¬ = (𝑟

′ − 𝑟)4 . (34)

Suppose that 𝑟 ′ = 𝑟 holds with non-negligible probability. In this case, the system (29) implies that the following
equality holds with non-negligible probability too

(𝑤0 − 𝑤′0)𝑃0 + (𝑤0𝑐0 − 𝑤′0𝑐
′
0)𝑄0 + (𝑤1 − 𝑤′1)𝑃1 + (𝑤1𝑐1 − 𝑤′1𝑐

′
1)𝑄1 = 0 . (35)

Let us estimate probability that all weights for 𝑃0, 𝑄0, 𝑃1, 𝑄1 in (35) are zero, i.e.
𝑤0 − 𝑤′0 = 0
𝑤1 − 𝑤′1 = 0
𝑤0𝑐0 − 𝑤′0𝑐

′
0 = 0

𝑤1𝑐1 − 𝑤′1𝑐
′
1 = 0

. (36)

The inequalities (30) imply that (𝑤0 ≠ 0 ∨ 𝑤1 ≠ 0) ∧ (𝑤′0 ≠ 0 ∨ 𝑤′1 ≠ 0) holds w.o.p. in (36). By inserting the
first pair of equalities in (36) into the second one and dividing by nonzero factors, we obtain{

𝑐0 − 𝑐′0 = 0
𝑐1 − 𝑐′1 = 0

, (37)

which holds only with negligible probability due to the fact that 𝑐0, 𝑐
′
0, 𝑐1, 𝑐

′
1 are sampled independently and

uniformly.
Thus, we have obtained that under the above supposition of non-negligible probability for 𝑟 ′ = 𝑟 to hold, there is

only negligible probability for all weights of 𝑃0, 𝑄0, 𝑃1, 𝑄1 in (35) to be equal to zero. Since IND(𝑃0, 𝑄0, 𝑃1, 𝑄1)
by the premise, this implies that X breaks DLR with non-negligible probability under the supposition.
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Hence, the supposition is wrong and the probability of the case 𝑟 ′ = 𝑟 is negligible, that is, 𝑟 ′ ≠ 𝑟 holds w.o.p.
Recalling (39), we have that M is invertible w.o.p. Therefore, with overwhelming probabilityX solves the equation
(32) for the weights in the decompositions of 𝑍̂ , 𝐻̂ as[

𝑧0 𝑧1 𝑧2 𝑧3 ℎ̂0 ℎ̂1 ℎ̂2 ℎ̂3
]
=
[
𝑤0 𝑐0𝑤0 𝑤1 𝑐1𝑤1 𝑤′0 𝑐′0𝑤

′
0 𝑤′1 𝑐′1𝑤

′
1
]
·M−1 . (38)

Since (𝑤0 ≠ 0 ∨ 𝑤1 ≠ 0) w.o.p. by (30), this is an non-trivial solution to (32).
Let us estimate the probability that the found by X solution (38),(31) to the system (29) differs from the actual

𝑍, 𝐻 in the transcript, which are also the solution to (29). By subtracting the pair of equalities (29) for 𝑍̂ , 𝐻̂ from
the pair of equalities (29) for 𝑍, 𝐻, we have{

(𝑍 − 𝑍̂) + 𝑟 (𝐻 − 𝐻̂) = 0
(𝑍 − 𝑍̂) + 𝑟 ′ (𝐻 − 𝐻̂) = 0

, (39)

which reduces to {
(𝑍 − 𝑍̂) = −𝑟 (𝐻 − 𝐻̂)
(𝑟 ′ − 𝑟) (𝐻 − 𝐻̂) = 0

. (40)

As we have already proved, (𝑟 ′ − 𝑟) ≠ 0 holds w.o.p. Hence, the system (40) implies

(𝑍 = 𝑍̂ ∧ 𝐻 = 𝐻̂) w.o.p. (41)

and, thus, X has found the weights in the decompositions of the common input 𝑍 and first message 𝐻 by the base
generators

𝑍 = 𝑧0𝑃0 + 𝑧1𝑄0 + 𝑧2𝑃1 + 𝑧3𝑄1, (42)

𝐻 = ℎ̂0𝑃0 + ℎ̂1𝑄0 + ℎ̂2𝑃1 + ℎ̂3𝑄1 . (43)

Since IND(𝑃0, 𝑄0, 𝑃1, 𝑄1), the found weights 𝑧’s and ℎ̂’s are unique, otherwise DLR is broken with non-
negligible probability. Hence, these weights remain the same and are independent of the conversation in the
transcript. The weights 𝑧’s and ℎ̂’s are no longer hypothesized, they are taken as known to X from this moment on.

Thus far, we have been mainly replicating the proof of (Lin2-B) to the case of four base generators instead of
two. Now we will prove the core part of our lemma, which is completely new.

Let us prove that, for 𝑤0, 𝑤1 obtained as a witness to the second round, it holds that

𝑤0 = 0 ⊕ 𝑤1 = 0 w.o.p. (44)

According to (30), we already have (𝑤0 ≠ 0 ∨ 𝑤1 ≠ 0) w.o.p. Now, we will prove that probability of the case that
(𝑤0 ≠ 0 ∧ 𝑤1 ≠ 0) holds is negligible by making X break the assumption that Fp̄ is a prime-order field in this
case. In a nutshell, X will do this using four transcripts where 𝑤0, 𝑤1 are both nonzero.

Suppose that probability of the case (𝑤0 ≠ 0 ∧ 𝑤1 ≠ 0) is non-negligible. Then, by repeatedly performing
rewindings in a polynomially bounded time X finds 𝑐′′0 , 𝑐

′′
1 , 𝑟
′′, 𝑤′′0 , 𝑤

′′
1 such that (𝑤′′0 ≠ 0 ∧ 𝑤′′1 ≠ 0) and

𝑍 + 𝑟 ′′𝐻 = 𝑤′′0 (𝑃0 + 𝑐′′0𝑄0) + 𝑤′′1 (𝑃1 + 𝑐′′1𝑄1) . (45)

Using the already known weights 𝑧0, 𝑧1, 𝑧2, 𝑧3, ℎ̂0, ℎ̂1, ℎ̂2, ℎ̂3, which were found from (38), the equality (45) rewrites
as the system 

𝑧0 + 𝑟 ′′ ℎ̂0 = 𝑤′′0
𝑧1 + 𝑟 ′′ ℎ̂1 = 𝑐′′0 𝑤

′′
0

𝑧2 + 𝑟 ′′ ℎ̂2 = 𝑤′′1
𝑧3 + 𝑟 ′′ ℎ̂3 = 𝑐′′1 𝑤

′′
1

, (46)

which implies the following two matrix equalities that represent the first and second pairs in (46), respectively[
1 −ℎ̂0
𝑐′′0 −ℎ̂1

] [
𝑤′′0
𝑟 ′′

]
=

[
𝑧0
𝑧1

]
, (47)[

1 −ℎ̂2
𝑐′′1 −ℎ̂3

] [
𝑤′′1
𝑟 ′′

]
=

[
𝑧2
𝑧3

]
. (48)

Let us consider the following two disjoint cases for ( ℎ̂0, ℎ̂1)
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1. ( ℎ̂0, ℎ̂1) = (0, 0). The equality (47) gives

{
𝑤′′0 = 𝑧0

𝑤′′0 𝑐
′′
0 = 𝑧1

that implies

{
𝑧0 ≠ 0 as 𝑤′′0 ≠ 0
𝑐′′0 = 𝑧1/𝑧0

. Thus, this

case has only negligible probability, as the uniformly sampled 𝑐′′0 has only negligible probability to hit the
fixed value 𝑧1/𝑧0, which is known prior to 𝑐′′0 is sampled.

2. ( ℎ̂0, ℎ̂1) ≠ (0, 0). The determinant of the matrix in (47) is (𝑐′′0 ℎ̂0 − ℎ̂1). It is not equal to zero with
overwhelming probability in the current case, as at least one of ℎ̂0, ℎ̂1 is nonzero and both of them are known
prior to 𝑐′′0 is uniformly sampled. Hence, X can find 𝑤′′0 , 𝑟

′′ from (47) as[
𝑤′′0
𝑟 ′′

]
=

1
𝑐′′0 ℎ̂0 − ℎ̂1

·
[
−ℎ̂1 ℎ̂0
−𝑐′′0 1

] [
𝑧0
𝑧1

]
. (49)

The same for the two disjoint cases for ( ℎ̂2, ℎ̂3)

1. ( ℎ̂2, ℎ̂3) = (0, 0). The equality (48) gives

{
𝑤′′1 = 𝑧2

𝑤′′1 𝑐
′′
1 = 𝑧3

that implies

{
𝑧2 ≠ 0 as 𝑤′′1 ≠ 0
𝑐′′1 = 𝑧3/𝑧2

. This case has

negligible probability, as the uniformly sampled 𝑐′′1 has negligible probability hitting 𝑧3/𝑧2, which is known
prior to 𝑐′′1 is sampled.

2. ( ℎ̂0, ℎ̂1) ≠ (0, 0). The determinant of the matrix in (48) is (𝑐′′2 ℎ̂2 − ℎ̂3). It is nonzero with overwhelming
probability in the current case, as at least one of ℎ̂2, ℎ̂3 is nonzero and both of them are known prior to 𝑐′′1 is
uniformly sampled. Hence, X can find 𝑤′′1 , 𝑟

′′ from (48) as[
𝑤′′1
𝑟 ′′

]
=

1
𝑐′′2 ℎ̂2 − ℎ̂3

·
[
−ℎ̂3 ℎ̂2
−𝑐′′1 1

] [
𝑧2
𝑧3

]
. (50)

At this moment, X has (𝑤′′0 ≠ 0 ∧ 𝑤′′1 ≠ 0) by the supposition, and also with non-negligible probability it has
the values 𝑐′′0 , 𝑐

′′
1 , 𝑟
′′, 𝑤′′0 , 𝑤

′′
1 such that (45), (46) hold for them. Also, it has 𝑧’s and ℎ̂’s known from (38), and

(( ℎ̂0, ℎ̂1) ≠ (0, 0) ∧ ( ℎ̂2, ℎ̂3) ≠ (0, 0)) holds for them w.o.p. by the considered above disjoint cases, which by the
way implies that 𝐻 ≠ 0 w.o.p. in (45).

From (49), (50), X finds the following representations of 𝑤′′0 , 𝑤
′′
1 , and also two representations of 𝑟 ′′. Under

the supposition made above, all the following equalities hold at least with non-negligible probability, we will not
mention this explicitly for the rest of the proof

𝑤′′0 =
𝑧1 ℎ̂0 − 𝑧0 ℎ̂1

𝑐′′0 ℎ̂0 − ℎ̂1
(51)

𝑤′′1 =
𝑧3 ℎ̂2 − 𝑧2 ℎ̂3

𝑐′′1 ℎ̂2 − ℎ̂3
(52)

𝑟 ′′ =
𝑧1 − 𝑐′′0 𝑧0

𝑐′′0 ℎ̂0 − ℎ̂1
(53)

𝑟 ′′ =
𝑧3 − 𝑐′′1 𝑧2

𝑐′′1 ℎ̂2 − ℎ̂3
(54)

By merging (53), (54) together, thus eliminating 𝑟 ′′, X obtains

𝑧1 − 𝑐′′0 𝑧0

𝑐′′0 ℎ̂0 − ℎ̂1
=
𝑧3 − 𝑐′′1 𝑧2

𝑐′′1 ℎ̂2 − ℎ̂3
, (55)

where gets rid of fractions by multiplying by the nonzero denominators

𝑐′′0 𝑐
′′
1 (𝑧2 ℎ̂0 − ℎ̂2𝑧0) + 𝑐′′0 (𝑧0 ℎ̂3 − ℎ̂0𝑧3) + 𝑐′′1 (𝑧1 ℎ̂2 − ℎ̂1𝑧2) + (𝑧3 ℎ̂1 − ℎ̂3𝑧1) = 0 . (56)

All 𝑧’s and ℎ̂’s in (56) are fixed, i.e., do not change from the moment they were obtained from (38). At the same
time, 𝑐′′0 ’s and 𝑐′′1 ’s are sampled anew for each rewinding. Using rewindings, X obtains three more transcripts such
that (𝑤0 ≠ 0 ∧ 𝑤1 ≠ 0) in them, whereas 𝑐′′0 ’s and 𝑐′′1 ’s are newly sampled. This is possible by our supposition of
non-negligible probability for this to happen.

Having composed a generalized Vandermonde 4 × 4 matrix with rows in the form
[
𝑐′′0 𝑐

′′
1 𝑐′′0 𝑐′′1 1

]
containing randomnesses from the four available transcripts, and solving the corresponding matrix equation that
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(56) transforms to, X finds that the four expressions in brackets in (56) are all necessarily equal to zero. That is, X
obtains the following system 

𝑧2 ℎ̂0 = ℎ̂2𝑧0 (57a)
𝑧0 ℎ̂3 = ℎ̂0𝑧3 (57b)
𝑧1 ℎ̂2 = ℎ̂1𝑧2 (57c)
𝑧3 ℎ̂1 = ℎ̂3𝑧1 (57d)

Now, X calculates the product of 𝑤′′0 , 𝑤
′′
1 using (51), (52)

𝑤′′0 𝑤
′′
1 =

𝑧1 ℎ̂0 − 𝑧0 ℎ̂1

𝑐′′0 ℎ̂0 − ℎ̂1
· 𝑧3 ℎ̂2 − 𝑧2 ℎ̂3

𝑐′′1 ℎ̂2 − ℎ̂3
=
𝑧1 ℎ̂0𝑧3 ℎ̂2 + 𝑧0 ℎ̂1𝑧2 ℎ̂3 − 𝑧1 ℎ̂0𝑧2 ℎ̂3 − 𝑧0 ℎ̂1𝑧3 ℎ̂2

(𝑐′′0 ℎ̂0 − ℎ̂1) (𝑐′′1 ℎ̂2 − ℎ̂3)
(58)

For each of the four summands in the common nominator in (58), X performs the substitutions according to (57b),
(57c), (57a), (57d), respectively. Thus, the nominator vanishes, which makes 𝑤′′0 𝑤

′′
1 be zero

𝑤′′0 𝑤
′′
1 =

𝑧1 ℎ̂3𝑧0 ℎ̂2 + 𝑧0 ℎ̂2𝑧1 ℎ̂3 − 𝑧1 ℎ̂2𝑧0 ℎ̂3 − 𝑧0 ℎ̂3𝑧1 ℎ̂2

(𝑐′′0 ℎ̂0 − ℎ̂1) (𝑐′′1 ℎ̂2 − ℎ̂3)
= 0 . (59)

By the above supposition, it holds that (𝑤′′0 ≠ 0 ∧ 𝑤′′1 ≠ 0). According to (59), 𝑤′′0 𝑤
′′
1 = 0 holds with non-

negligible probability. Thus, under the supposition, X with non-negligible probability finds two nonzero factors of
0 in Fp̄, breaking this way the assumption that Fp̄ is of prime-order. Hence, the supposition is wrong and there is
only negligible probability for 𝑤0, 𝑤1 to be simultaneously nonzero in an accepting transcript.

Having received with overwhelming probability only one nonzero 𝑤𝑠 ∈ {𝑤0, 𝑤1}, 𝑠 ∈ {0, 1}, X proceeds
with this 𝑤𝑠 exactly the same way as the Lin2 lemma’s extractor does in (Lin2-B) for the base generator set
{𝑃,𝑄} = {𝑃𝑠 , 𝑄𝑠}. Thus, X with overwhelming probability finds and returns the sought witness (𝑧0, 𝑧1, 𝑠).
Otherwise, assuming that DRL holds in any case, X with non-negligible probability breaks the assumption that
the order of Fp̄ is prime.

We have constructed the PPT witness extractor X for this protocol and, hence, by Forking Lemma, the
protocol has cWEE. In the course of this proof we showed that the found witness is unique and, hence, it is
(𝑧2𝑠 , 𝑧2𝑠+1), 𝑠 ∈ {0, 1}. As a side note, the same can be said about ( ℎ̂2𝑠 , ℎ̂2𝑠+1) in 𝐻 = ℎ̂2𝑠𝑃𝑠 + ℎ̂2𝑠+1𝑄𝑠 .

C) Since we have already proved the cases (Lin2-Xor-A) and (Lin2-Xor-B), the protocol is an argument of
knowledge by the definition.

D) For the input 𝑍 = 0, the protocol simply accepts. For an accepted 𝑍 ≠ 0, in the course of (Lin2-Xor-B) proof
we already showed that X with overwhelming probability obtains 𝑤0, 𝑤1 such that both the equality (𝑍 + 𝑟𝐻) =
𝑤0 (𝑃0 + 𝑐0𝑄0) + 𝑤1 (𝑃1 + 𝑐1𝑄1) and the condition (44) hold for them. Namely, X with overwhelming probability
obtains 𝑤𝑠 ∈ {𝑤0, 𝑤1}, 𝑠 ∈ {0, 1} such that 𝑤𝑠 ≠ 0 and (𝑍 + 𝑟𝐻) = 𝑤𝑠 (𝑃𝑠 + 𝑐𝑠𝑄𝑠). Thus, 𝑤 = 𝑤𝑠 . This proves
the case. The lemma is proved.

□

6 LIN2-SELECTOR LEMMA
Let us run the first round of the Lin2-Xor lemma protocol in Figure 2 for two pairs of base generators out of 𝑛

pairs of generators, as shown in Figure 3. Thus, for 𝑛 = 2, we obtain the protocol in Figure 4, which is a by-design
equivalent to the protocol in Figure 2.

For 𝑛 ⩾ 2, we construct the protocol in Figure 5, which is an argument for the relation

RLin2Selector = {𝑍 ∈ G, P,Q ∈ G∗𝑛; 𝑧0, 𝑧1 ∈ Fp̄, 𝑠 ∈ [0, 𝑛 − 1] | 𝑍 = 𝑧0𝑃𝑠 + 𝑧1𝑄𝑠} . (60)

The protocol in Figure 5 repeats the Lin2-Xor lemma protocol first round log2 (𝑛) times, each time shrinking
the base generator set by half, and then plays the final round of the Lin2-Xor lemma protocol. We assume 𝑛 is a
power of 2. This kind of reduction is similar to the one in [10], the difference is in the filling and in how we prove
soundness of the resulting argument.

6.1 DESCRIPTION AND ALTERNATIVE NAMING
The protocol in Figure 5 has (log2 (𝑛) + 1) rounds. Let us write down the recurrent formula for the base

generators (P̂, Q̂) in each round of the protocol. For convenience, we denote them without hats and also we use the
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Procedure: Lin2XorStep maps
(𝑛 ∈ N∗, 𝑍 ∈ G, P,Q ∈ G∗𝑛; 𝑧0, 𝑧1 ∈ Fp̄, 𝑠 ∈ [0, 𝑛 − 1]) ↦→

(𝐻 ∈ G∗, 𝑟 ∈ F∗p̄, P̂, Q̂ ∈ G∗ 𝑛2 ; 𝑤0, 𝑤1 ∈ Fp̄).
Precondition: (𝑛 mod 2) = 0, IND(P ∪Q). Postcondition: 𝐻 ≠ 0, IND(P̂ ∪ Q̂), 𝑤0 = 0 ⊕ 𝑤1 = 0.

P

𝑑 ←$ F∗p̄

If 𝑧0 ≠ −𝑧1 then (ℎ0, ℎ1) = (𝑑,−𝑑)
else (ℎ0, ℎ1) = (𝑑, 0)

𝐻 = ℎ0𝑃𝑠 + ℎ1𝑄𝑠 𝐻

𝑡 = (𝑠 mod 2)

If 𝑧0 ≠ −𝑧1 then 𝑟 = (𝑧1 − 𝑐𝑡 𝑧0)/(𝑑 (𝑐𝑡 + 1)),
𝑤 = (𝑧0 + 𝑧1)/(𝑐𝑡 + 1)

else 𝑟 = 𝑧1 (𝑐𝑡 + 1)/(𝑐𝑡𝑑),
𝑤 = 𝑧1/𝑐𝑡

𝑟

If 𝑡 = 0 then (𝑤0, 𝑤1) = (𝑤, 0)
else (𝑤0, 𝑤1) = (0, 𝑤)

Private output: (𝑤0, 𝑤1)

V

If 𝑍 = 0 then accept

(𝑐0, 𝑐1) ←$ (F∗p̄ \ {−1})2

P̂ = P[::2] + 𝑐0Q[::2]

Q̂ = P[1::2] + 𝑐1Q[1::2]

If 𝑍 + 𝑟𝐻 = 0 then reject

Common output: (𝐻, 𝑟, P̂, Q̂)

Figure 3: Lin2-Selector lemma step.

Protocol: Lin2XorArgEd(𝑍 ∈ G, 𝑃0, 𝑄0, 𝑃1, 𝑄1 ∈ G∗; 𝑧0, 𝑧1 ∈ Fp̄, 𝑠 ∈ {0, 1}).
Relation: (28). Precondition: IND(𝑃0, 𝑄0, 𝑃1, 𝑄1).

P V

1) P = [𝑃0, 𝑃1], Q = [𝑄0, 𝑄1]
play (𝐻, 𝑟, P̂, Q̂; 𝑤0, 𝑤1) = Lin2XorStep(2, 𝑍, P,Q; 𝑧0, 𝑧1, 𝑠)

2) play a perfectly complete and having cWEE protocol
which proves knowledge of 𝑤0, 𝑤1 in 𝑍 + 𝑟𝐻 = 𝑤0P̂[0] + 𝑤1Q̂[0]

Figure 4: Lin2-Xor lemma protocol equivalent.

round number 𝑘 ∈ [0, log2 (𝑛)] as a superscript in curly brackets.

(P{0} , Q{0}) = (P,Q) , (61)

(P{𝑘} , Q{𝑘}) = (P{𝑘−1}
[::2] + 𝑐

{𝑘−1}
0 Q{𝑘−1}

[::2] , P{𝑘−1}
[1::2] + 𝑐

{𝑘−1}
1 Q{𝑘−1}

[1::2] ), for 0 < 𝑘 ⩽ log2 (𝑛) . (62)

In the first round, the generators P{0} ,Q{0} are equal to the input generators P,Q. For each subsequent round, they
are built as merged even and odd, respectively, generator pairs from the previous round, which was performed in
accordance with Figure 3. Thus, the generators (P{𝑘} , Q{𝑘}) are exactly the input (P,Q) for 𝑘-th call, 0 ⩽ 𝑘 <
log2 (𝑛), to the step procedure in Figure 3. For 𝑘 = log2 (𝑛), they are one-element sets that arrive at input of the
final round, which is implemented with the unnamed protocol, as shown in Figure 5. Note that generator set size
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Protocol: Lin2SelectorArg(𝑛 ∈ N∗, 𝑍 ∈ G, P,Q ∈ G∗𝑛; 𝑧0, 𝑧1 ∈ Fp̄, 𝑠 ∈ [0, 𝑛 − 1]).
Relation: (60). Precondition: 𝑛 ⩾ 2, 𝑛 is a power of 2, IND(P ∪Q).

P

𝑠 = 𝑠

(𝑤0, 𝑤1) = (𝑧0, 𝑧1)

𝑠 = ⌊𝑠/2⌋
endwhile

V

1) 𝑛̂ = 𝑛

P̂ = P, Q̂ = Q
𝑍̂ = 𝑍

2) while (𝑛̂ ⩾ 2) play (𝐻, 𝑟, P̂, Q̂; 𝑤0, 𝑤1) = Lin2XorStep(𝑛̂, 𝑍̂ , P̂, Q̂; 𝑤0, 𝑤1, 𝑠)
𝑍̂ = 𝑍̂ + 𝑟𝐻
𝑛̂ = 𝑛̂/2

3) play a perfectly complete and having cWEE protocol
which proves knowledge of 𝑤0, 𝑤1 in 𝑍̂ = 𝑤0P̂[0] + 𝑤1Q̂[0]

Figure 5: Lin2-Selector lemma protocol.

in 𝑘-th round is

|P{𝑘} | = |Q{𝑘} | = 𝑛/2𝑘 . (63)

From the recurrent formulas (61), (62) we can observe that, if there is an imaginary root connecting the two
one-element sets P{log2 (𝑛) } and Q{log2 (𝑛) } , then all the generators at all levels can be viewed as a binary tree of
height (log2 (𝑛) + 1) growing upside down from the root at (log2 (𝑛) + 1)-th level. The leaves of this tree are the
initial input P{0} ∪Q{0} , and the nodes are elements of P{𝑘} ∪Q{𝑘} at each level 𝑘 > 0.

Let us introduce the family of generator sets {X{𝑘}}log2 (𝑛)
𝑘=0 which represents generators in the tree at each level

𝑘 ∈ [0, log2 (𝑛)], with the only exclusion of the root level. For each 𝑘 , the set X{𝑘} contains the elements of P{𝑘}
at even positions and the elements of Q{𝑘} at odd ones. That is, we have the following alternative naming that we
consider as more convenient for further analysis.

X{𝑘} is a set of size |X{𝑘} | = 𝑛/2𝑘−1 such that


X{𝑘}[::2] = P{𝑘}

X{𝑘}[1::2] = Q{𝑘}
. (64)

The formulas (61), (62) rewrite as, for 0 ⩽ 𝑘 ⩽ log2 (𝑛),

X{0}[𝑖 ] = (1 − lastbit(𝑖))P[shift(𝑖,−1) ] + lastbit(𝑖)Q[shift(𝑖,−1) ] , for 0 ⩽ 𝑖 < 2𝑛 , (65)

X{𝑘}[𝑖 ] = X{𝑘−1}
[shift(𝑖,1) ] + 𝑐

{𝑘−1}
lastbit(𝑖)X

{𝑘−1}
[shift(𝑖,1)+1] , for 𝑘 ≠ 0 and 0 ⩽ 𝑖 < shift(2𝑛,−𝑘) . (66)

We use the binary-wise functions bit(𝑖, 𝑗), lastbit(𝑖), and shift(𝑖, 𝑗) that return, respectively, 𝑗-th bit in the binary
representation of 𝑖, 0-th bit of 𝑖, and the left shift of 𝑖 with zeros filling. For the negative 𝑗’s the truncating right
shift is implied. These functions are defined as follows

shift(𝑖, 𝑗) = ⌊𝑖 · 2 𝑗⌋ , (67)
bit(𝑖, 𝑗) = (shift(𝑖,− 𝑗) mod 2) , (68)
lastbit(𝑖) = bit(𝑖, 0) . (69)

The formulas (65), (66) for 𝑘 ∈ [0, log2 (𝑛)] and 𝑖 ∈ [0, shift(2𝑛,−𝑘) − 1] unfold as

X{𝑘}[𝑖 ] =

shift(𝑖+1,𝑘 )−1∑︁
𝑗=shift(𝑖,𝑘 )

𝜖
{𝑘}
𝑗

X{0}[ 𝑗 ] , (70)

where 𝜖 {𝑘}
𝑗

=

𝑘−1∏
𝑚=0

(
𝑐
{𝑚}
bit( 𝑗 ,𝑚+1)

)bit( 𝑗 ,𝑚)
, and

−1∏
𝑚=0
(·) = 1 . (71)
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This formula shows, that each generator at 𝑘-th level is a weighted sum of 2𝑘 base generators with nonzero weights.
As a synonym, we say the generator covers 2𝑘 base generators. Also, it is seen from (70) that, for each level 𝑘 , all
its generators have non-intersecting sets of covered base generators and, in sum, cover all of the base generators.

For honest P in Figure 5, we observe that the witness index 𝑠 at 𝑘-th step in Figure 3 is

𝑠{𝑘} = shift(𝑠,−𝑘) . (72)

We also observe that the scalar 𝑤 in Figure 3 is always nonzero. As a consequence, the case of 𝑧0 = −𝑧1 never
happens there, for any step, except for the first one which is an exceptional case. If we restrict the input witness for
the argument in Figure 5 to be having only one of 𝑧0, 𝑧1 nonzero, then the first step turns into normal one. Thus,
the first two ‘else’ blocks in Figure 3 are never entered for all steps with 𝑘 > 0, and for 𝑘 = 0 this is true when
the mentioned restriction is applied on the input 𝑧0, 𝑧1. In this case, the formula for 𝐻𝑘 published at 𝑘-th step,
𝑘 ∈ [0, log2 (𝑛) − 1], is

𝐻𝑘 =𝑑𝑘

(
X{𝑘}[2𝑠{𝑘} ] − X{𝑘}[2𝑠{𝑘}+1]

)
=

𝑑𝑘
©­«

shift(𝑠{𝑘−1}+1,𝑘 )−1∑︁
𝑗=shift(𝑠{𝑘−1} ,𝑘 )

𝜖
{𝑘}
𝑗

X{0}[ 𝑗 ] −
shift(𝑠{𝑘−1}+2,𝑘 )−1∑︁
𝑗=shift(𝑠{𝑘−1}+1,𝑘 )

𝜖
{𝑘}
𝑗

X{0}[ 𝑗 ]
ª®¬ , where 𝜖 {𝑘}

𝑗
are by (71).

(73)

Thus, 𝐻𝑘 covers 2𝑘+1 base generators, for any 𝑘 .
As we can see, the algorithm in Figure 5 walks from the leaf pair (X{0}[2𝑠] ,X

{0}
[2𝑠+1]) to the node X{1}[2 shift(𝑠,−1) ] , then

to the node X{2}[2 shift(𝑠,−2) ] , and so on, to the root of the binary tree. The algorithm’s path in the tree is completely
determined by the binary representation of the input witness index 𝑠. At 𝑘-th step, 𝑘 ∈ [0, log2 (𝑛) − 1], the
algorithm transforms the step’s private input (𝑤{𝑘}0 , 𝑤

{𝑘}
1 ), which is denoted as (𝑧0, 𝑧1) within the step procedure

in Figure 3, into the next step’s private input (𝑤{𝑘+1}0 , 𝑤
{𝑘+1}
1 ).

According to Figure 3, only one of 𝑤{𝑘}0 , 𝑤
{𝑘}
1 is nonzero by-design, for all 𝑘 > 0, provided that the initial input

𝑍 is nonzero. An honest P which follows Figure 3 produces, for all 𝑘 > 0, a series of, as we call them, accumulated
public inputs 𝑍 {𝑘}’s. Namely, for 𝑘 ∈ [1, log2 (𝑛)],

𝑍 {𝑘} = 𝑍 +
𝑘−1∑︁
𝑚=0

𝑟𝑚𝐻𝑚 , (74)

such that it holds that

𝑍 {𝑘} = 𝑤{𝑘}X{𝑘}[𝑠{𝑘−1} ] , (75)

where 𝑤{𝑘} = 𝑤{𝑘}lastbit(𝑠{𝑘−1} ) . (76)

Informally, we can say that, for any 𝑘 > 0, the public accumulator 𝑍 {𝑘} covers 2𝑘 base generators right before
the execution of 𝑘-th step, which is in accordance with (74), (75), (70). Right after 𝑘-th step, the accumulator covers
2𝑘+1 base generators, which is in accordance with (73). Thus, a similarity to Merkle tree [26] can be observed,
where the algorithm accumulates the result by walking to the root of a binary tree and doubling the covered set of
base decoys at each step.

6.2 LEMMAS
Lemma 5 (helper IND-lemma):
Given 𝑘 sets S0, . . . , S𝑘−1 ⊂ G∗ such that ∀𝑖, 𝑖′ ∈ [0, 𝑘 − 1], 𝑖 ≠ 𝑖′ : S𝑖 ≠ ∅ ∧ S𝑖 ∩ S𝑖′ = ∅, for their direct sum
Ŝ =

⋃𝑘−1
𝑖=0 S𝑖 , for the set of linear representatives R = {𝑅𝑖 | 𝑅𝑖 =

∑
𝑗∈ |S𝑖 | 𝑟𝑖 𝑗 (S𝑖) [ 𝑗 ] , 𝑖 ∈ [0, 𝑘 − 1]} ⊂ G∗ such that

∀𝑖, 𝑗 : 𝑟𝑖 𝑗 ≠ 0 for it, if IND(Ŝ) then IND(R).

Proof. Knowing the weights 𝑟𝑖 𝑗 ’s in 𝑅𝑖 =
∑

𝑗∈ |S𝑖 | 𝑟𝑖 𝑗 (S𝑖) [ 𝑗 ] , ∀𝑅𝑖 ∈ R, we build the matrix M ∈ F(
∑
∀𝑖 |S𝑖 | )×𝑘

p̄ such
that Ŝ · M = R. Since ∀𝑅𝑖 ∈ R : 𝑅𝑖 =

∑
𝑗∈ |S𝑖 | 𝑟𝑖 𝑗 (S𝑖) [ 𝑗 ] , |S𝑖 | > 0,∀𝑟𝑖 𝑗 ≠ 0, it holds that each column of M

contains at least one nonzero scalar such that all other scalars in its row are zero. Thus, rank(M) = 𝑘 and, by the
IND-to-IND lemma, IND(Ŝ) implies IND(R). □

Informally, the helper IND-lemma lemma asserts that if an element set Ŝ is a direct sum of 𝑘 its nonempty
subsets S𝑖 which contain only nonzero elements, and if R, |R| = 𝑘 , is a set of elements such that 𝑖-th element in R
is a linear combination with nonzero coefficients of elements from S𝑖 , then IND(Ŝ) implies IND(R).

Note, above we do not claim that IND(R ∪ Ŝ), this obviously does not hold.
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Lemma 6 (Lin2-Selector):
For the relation (60), for IND(P ∪Q) in it, the protocol in Figure 5 has the follwing properties

A) perfect completeness
B) computational witness-extended emulation
C) it is an argument of knowledge

Proof. Let us use the alternative notation defined in Section 6.1.
We claim that, for each round 𝑘 ∈ [0, log2 (𝑛)], the generator set X{𝑘} (64) comprises linearly independent

elements, i.e., IND(X{𝑘}) for each 𝑘 . The proof is that, in the first round, IND(X{0}) by the premise. In the
second round, for each index 𝑖 ∈ [0, . . . 𝑛 − 1], by (66) the base generator X{1}[𝑖 ] is a linear combination of X{0}[2𝑖 ] and

X{0}[2𝑖+1] , with nonzero weights. Hence, by the helper IND-lemma, it holds that IND(X{1}). And the same for the

next rounds. Namely, according to (66), X{𝑘}[𝑖 ] is a linear combination of X{𝑘−1}
[2𝑖 ] and X{𝑘−1}

[2𝑖+1] with nonzero weights.
Thus, by the helper IND-lemma, IND(X{𝑘}), for 𝑘 ∈ [0, log2 (𝑛)].

A) For the case of the input 𝑍 = 0, which is valid, the protocol in Figure 5 simply accepets in the first round.
Having at the input the nonzero element 𝑍 and valid witness (𝑧0, 𝑧1, 𝑠) for the relation (60), the protocol plays

in the ‘while’, for each round 𝑘 ∈ [0, log2 (𝑛) − 1], the step shown in Figure 3 with the base generators X{𝑘} .
At each step, by-design, it transforms the step’s input witness into the next step’s input witness. Each of these
steps is actually the first round of the Lin2-Xor lemma protocol in Figure 2 played for the two base generator
pairs (X{𝑘}[2𝑠{𝑘} ] ,X

{𝑘}
[2𝑠{𝑘}+1]) and (X{𝑘}[2(𝑠{𝑘}+1) ] ,X

{𝑘}
[2(𝑠{𝑘}+1)+1]) and for the witness (𝑤{𝑘}0 , 𝑤

{𝑘}
1 , 𝑠{𝑘}), where we let

(𝑤{0}0 , 𝑤
{0}
1 ) = (𝑧0, 𝑧1).

For each 𝑘 ∈ [0, log2 (𝑛) − 2], as the Lin2-Xor lemma protocol is perfectly complete, 𝑘-th round does not fail
and also, by the same reason, it produces a valid witness for the next round. Thus, (log2 (𝑛) − 1)-th round has the
valid witness at input. Finally, the (log2 (𝑛) − 1)-th and log2 (𝑛)-th rounds are played together as the full Lin2-Xor
lemma protocol and, as it is perfectly complete, the rounds do not fail.

We have proved that our protocol produces an accepting transcript for any valid witness at input. Therefore,
the protocol is perfectly complete by definition. Note that in this proof of completeness we do not use the fact that
each round only one of 𝑤0, 𝑤1 is actually nonzero, knowledge of them suffices.

B) For the special case of 𝑍 = 0, witness extractor X returns (𝑧0, 𝑧1, 𝑠) = (0, 0, 0). The value of 𝑠 is taken
arbitrarily from [0, 𝑛 − 1] in this case.

For the case of nonzero 𝑍 , an accepting transcript contains {(𝐻𝑘 , 𝑟𝑘)}log2 (𝑛)−1
𝑘=0 , where each (𝐻𝑘 , 𝑟𝑘) corresponds

to the protocol’s 𝑘-th round performed with the procedure in Figure 3. X extracts the desired witness (𝑧0, 𝑧1, 𝑠) by
starting from the transcript tail and walking backward considereing two rounds at a time, as follows.

As the transcript is accepting, its final log2 (𝑛)-th round is played, according to Figure 5, for

𝑍 +
log2 (𝑛)−1∑︁

𝑚=0
𝑟𝑚𝐻𝑚 = 𝑤

{log2 (𝑛) }
0 X{log2 (𝑛) }

[0] + 𝑤{log2 (𝑛) }
1 X{log2 (𝑛) }

[1] , (77)

where |X{log2 (𝑛) } | = 2 by (64), and (𝑤{log2 (𝑛) }
0 , 𝑤

{log2 (𝑛) }
1 ) is the witness (𝑤0, 𝑤1) for the unnamed protocol played

in the final round in Figure 5. X can obtain (𝑤0, 𝑤1) here using a witness extractor of the final round’s unnamed
protocol. However, X does more than that, as follows.
X rearranges the left-hand side of (77) as

𝑍 {log2 (𝑛)−1} + 𝑟𝐻 = 𝑤
{log2 (𝑛) }
0 X{log2 (𝑛) }

[0] + 𝑤{log2 (𝑛) }
1 X{log2 (𝑛) }

[1] , (78)

where


𝑍 {log2 (𝑛)−1} = 𝑍 +∑log2 (𝑛)−2

𝑚=0 𝑟𝑚𝐻𝑚

𝑟 = 𝑟log2 (𝑛)−1

𝐻 = 𝐻log2 (𝑛)−1

. (79)

X considers the last cycle of the ‘while’ together with the final round in Figure 5 as the Lin2-Xor lemma’s
argument in Figure 4, for the input 𝑍 {log2 (𝑛)−1} defined by (79) and the base generator set X{log2 (𝑛)−1}} , which is of
four generators. Namely, X treats the tail of the transcript that starts from (𝑟, 𝐻) in (78) as the Lin2-Xor lemma’s
argument accepting transcript.
X uses the witness extractor of the Lin2-Xor lemma’s argument built in (Lin2-Xor-B). Using this witness

extractor, X obtains (𝑧0, 𝑧1, 𝑠
′) such that 𝑠′ ∈ {0, 1} and

𝑍 {log2 (𝑛)−1} = 𝑧0X{log2 (𝑛)−1}
[2𝑠′ ] + 𝑧1X{log2 (𝑛)−1}

[2𝑠′+1] . (80)
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If (log2 (𝑛) − 1) = 0, i.e., if 𝑛 = 2, then 𝑍 = 𝑍 {log2 (𝑛)−1} and the sought scalar witness (𝑧0, 𝑧1) is found.
Otherwise, if (log2 (𝑛) − 1) ≠ 0, X gives consideration only to the lower or upper halves of all the sets X{𝑘} . It

considers the lower halves if 𝑠′ = 0, otherwise the upper ones. Formally, X renames, for 𝑘 ∈ [0, log2 (𝑛) − 1],

X{𝑘} ←


X{𝑘}[: 𝑛

2𝑘
] if 𝑠′ = 0

X{𝑘}[ 𝑛

2𝑘
:] if 𝑠′ = 1

, recalling that size of X{𝑘} is given by (64) , (81)

(𝑤{log2 (𝑛)−1}
0 , 𝑤

{log2 (𝑛)−1}
1 ) ← (𝑧0, 𝑧1) , recalling the found (𝑧0, 𝑧1) is the input to the ‘while’ last cycle. (82)

After this renamings, (80) becomes

𝑍 {log2 (𝑛)−1} = 𝑤
{log2 (𝑛)−1}
0 X{log2 (𝑛)−1}

[0] + 𝑤{log2 (𝑛)−1}
1 X{log2 (𝑛)−1}

[1] , (83)

and, inserting 𝑍 {log2 (𝑛)−1} from (79), it rewrites as

𝑍 +
log2 (𝑛)−2∑︁

𝑚=0
𝑟𝑚𝐻𝑚 = 𝑤

{log2 (𝑛)−1}
0 X{log2 (𝑛)−1}

[0] + 𝑤{log2 (𝑛)−1}
1 X{log2 (𝑛)−1}

[1] , (84)

where the pair (𝑤{log2 (𝑛)−1}
0 , 𝑤

{log2 (𝑛)−1}
1 ) is obtained using the witness extractor of the perfectly complete and

having cWEE protocol of the Lin2-Xor lemma.
Thus, since the equality (84) is exactly the equality (77) for the 𝑛 divided by 2, the witness extraction problem

with the parameter 𝑛 has been reduced to the same problem with the parameter 𝑛/2. Therefore, X renames
𝑛← 𝑛/2 in addition to the already performed renamings (81), (82). Then, X goes back to the rearrangement (78)
and proceeds recursively until the sought witness (𝑧0, 𝑧1) for the case 𝑛 = 2 is found.

The core of the above reduction is that X treats the protocol transcript tail starting from the last (𝑟, 𝐻) as the
Lin2-Xor lemma’s argument accepting transcript. As the latter matches the specification for the unnamed argument
at the final round of the protocol, X uses it as the the final round argument for the reduced transcript. When this
backward reduction is performed recursively many times, each time the unnamed argument in the final round of
the current protocol ‘absorbs’ the last step of the ‘while’ in Figure 5 and, thus, becomes the final round unnamed
argument for the next recursion step.

Having obtained the sought scalar pair (𝑧0, 𝑧1) such that 𝑍 = 𝑧0X{0}[2𝑠] + 𝑧1X{0}[2𝑠+1] for some index 𝑠 ∈ [0, 𝑛 − 1],
X is able to determine 𝑠 in a polynomial time using the fact of IND(X{0}). However, there is a simpler way. Since
each recursion step X halves the set X{0} and takes its upper or lower part according to the bit 𝑠′ ∈ {0, 1}, as X
eventually finds the proper piece of X{0} where two base generators for the input 𝑍 reside, it just restores 𝑠 from
the bitstring log of all halving choices 𝑠′.
X returns the witness (𝑧0, 𝑧1, 𝑠) found in a polynomial time. Thus, by Forking Lemma, the protocol has cWEE.
C) Since we have already proved the cases (Lin2-Selector-A) and (Lin2-Selector-B), the protocol is an argument

of knowledge by the definition. The lemma is proved.
□

7 ZERO-KNOWLEDGE
In the previous sections we presented the OR-proof argument in Figure 2 and one-out-of-many argument

in Figure 5. Their perfect completeness and cWEE properties are proved in the corresponding Lin2-Xor and
Lin2-Selector lemmas.

In this section we will show how to convert these two arguments into zero-knowledge by adding just a few
extra bytes and requiring for the unnamed protocol played in their final rounds to be zero-knowledge. We will be
considering only the Lin2-Selector lemma’s argument in Figure 5 when proving zero-knowledge property for both
of the arguments in Figure 2 and Figure 5, as the same proof applies to both.

Namely, the Lin2-Xor lemma’s argument in Figure 2 is the subset case of the Lin2-Selector lemma’s argument
in Figure 5, for 𝑛 = 2. This is seen from Figure 4. Thus, a proof of zero-knowledge for the Lin2-Selector lemma’s
argument will suffice.

7.1 CONVERSION TO ZERO-KNOWLEDGE WITH A PRELIMINARY STEP
The conversion to zero-knowledge for the Lin2-Selector lemma’s argument in Figure 5 is that, for the first, we

exclude the case of zero input. That is, from now on we require 𝑍 ∈ G∗. The case of 𝑍 = 0 is handled at the
beginning of the protocol and produces no transcript. Thus, the argument is trivially not zero-knowledge for 𝑍 = 0.
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For the second, what we actually need to make the argument be zero-knowledge, is to have the input 𝑍 distributed
independently and uniformly at random in it. We accomplish this by introducing a preliminary step, where 𝑍 is
replaced with its ‘randomized’ copy 𝑍$ by simply letting it be 𝑍$ = 𝑎𝑍 such that 𝑎 ←$ F∗p̄.

Third, we will be interested only in the case of 𝑧1 = 0 for the input witness (𝑧0, 𝑧1, 𝑠). As the argument is
perfectly complete and has cWEE for any inputs, restricting the scope of zero-knowledge does not affect security.
Once we prove that the argument is zero-knowledge for 𝑍 ≠ 0 ∧ 𝑧1 = 0, P will have a guarantee that its proof
does not leak anything as long as this condition is met. It still will be able to produce proofs which do not meet
this condition, however without such a guarantee.

At the same time, we do not claim that the argument leaks information in the case of 𝑍 ≠ 0 ∧ 𝑧1 ≠ 0. We let
𝑧1 be zero just to ease the proof. As the witness index 𝑠 remains completely in our disposal, the case of 𝑧1 = 0
leaves us ample room to construct a formally proven zero-knowledge membership proof. It is left as open question
though, if the Lin2-Selector lemma’s argument is zero-knowledge in the unused case of 𝑍 ≠ 0 ∧ 𝑧1 ≠ 0. However,
informally, we see no obstacle to this.

The zero-knowledge version of the Lin2-Selector lemma argument is shown in Figure 6. The proof of
𝑍$ = 𝑎𝑍 for the randomized copy of its input is required to be zero-knowledge, and the same about the proof
of 𝑍̂ = 𝑤0P̂[0] + 𝑤1Q̂[0] in the final round of the nested argument from Figure 5. Note that we require the base
generators P ∪Q to be randomly sampled from G in it, not merely linearly independent. We will use this to apply
a DDH-family assumption to the argument’s transcript.

Protocol: zkLin2SelectorArg(𝑛 ∈ N∗, 𝑍 ∈ G, P,Q ∈ G∗𝑛; 𝑧0, 𝑧1 ∈ Fp̄, 𝑠 ∈ [0, 𝑛 − 1]).
Relation: (60). Precondition: 𝑛 ⩾ 2, 𝑛 is a power of 2, INDR(P ∪Q).

P

1) 𝑎 ←$ F∗p̄

𝑍$ = 𝑎𝑍 𝑍$

(𝑧0
$, 𝑧1

$) = (𝑎𝑧0, 𝑎𝑧1)

V

2) play Lin2SelectorArg( 𝑛, 𝑍$, P, Q ; 𝑧0
$, 𝑧1

$, 𝑠 ) with sHVZK final round

3) play a perfectly complete, sHVZK, and having cWEE argument
which proves knowledge of 𝑎 in 𝑍$ = 𝑎𝑍

Figure 6: Zero-knowledge version of Lin2-Selector lemma argument.

Apparently, Lin2-Selector lemma remains in force for the converted argument in Figure 6. Anyway, here is the
formal lemma.

Lemma 7 (rndi-Lin2-Selector):
For the relation (60), for INDR(P ∪Q) in it, the protocol in Figure 6 has the follwing properties

A) perfect completeness

B) computational witness-extended emulation

C) it is an argument of knowledge

Proof. A) Perfect completeness follows trivially from (Lin2-Selector-A) and from the fact that the unnamed
argument which we use to prove 𝑍$ = 𝑎𝑍 in the final round is perfectly complete.

B) Witness extractor X for this argument uses the nested argument witness extractor, which exists by (Lin2-
Selector-B). As the last step in obtaining the input witness, X uses witness extractor of the argument for 𝑍$ = 𝑎𝑍 .

C) As both of the cases (rndi-Lin2-Selector-A) and (rndi-Lin2-Selector-B) are proved, the protocol is an
argument of knowledge by the definition. □
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Let us write down explicitly the argument’s transcript. We consider it as comprised of three parts, as follows.

Input part. tr_input = (P, Q, 𝑍) (85)

First part. tr_first_part = ( 𝑍$, {𝐻𝑘}log2 (𝑛)−1
𝑘=0 , {𝑟𝑘}log2 (𝑛)−1

𝑘=0 , 𝜌 ) (86)

Final part. tr_final_part =
(

transcript of the unnamed argument in the final round 3) in Figure 5
plus transcript of the unnamed argument in the final round 3) in Figure 6

)
(87)

For the sake of security analysis, we include the base generators into the input part, although they are known to
both of P and V beforehand and not transmitted. The first part contains the P’s messages and also includes the
corresponding V’s challenges 𝜌. We assume that the challenges 𝜌 can be generated adversarially, as required by
the sHVZK game.

The final part contains two transcripts of the unnamed protocols in the final rounds in Figure 5 and Figure 6,
which are played in Figure 6 one after another. We require for both of these unnamed protocols to be sHVZK
arguments of knowledge, and consider the final part as a single sHVZK argument which proves knowledge of
𝑤0, 𝑤1 in 𝑍̂ = 𝑤0P̂[0] + 𝑤1Q̂[0] and 𝑎 in 𝑍$ = 𝑎𝑍 , where the elements 𝑍, 𝑍$, 𝑍̂ , P̂[0] , Q̂[0] are either taken directly
from tr_input, tr_first_part or built from the elements in tr_input, tr_first_part using the publicly
known scalars in accordance to Figure 5, Figure 6.

Looking a bit ahead, we are going to prove that tr_first_part \ 𝜌 is indistinguishable from randomness.
Since the simulator for the final part is the union of simulators for both of the unnamed sHVZK arguments, our
transcript simulator will generate randomness for the first part, and also will use the existing unified simulator for
the final part.

7.2 FIRST PART INDISTINGUISHABILITY FROM RANDOMNESS
We use the notation from Section 6.1 here. As we explained in Section 7.1, we assume that the input witness

(𝑧0, 𝑧1, 𝑠) has the form of (𝑧0, 𝑧1, 𝑠) = (𝑧, 0, 𝑠) and, hence, the common input is 𝑍 = 𝑧X{0}[2𝑠] . The input 𝑧 is not
assumed random, although it can be. In the worst case, which we also implicitly assume, 𝑧 and 𝑠 are known to an
adversary, especially since the sHVZK game allows this. At the same time, the input 𝑍$ to the nested Lin2-Selector
lemma argument has the form of 𝑍$ = 𝑎𝑧X{0}[2𝑠] , 𝑎 ←$ F∗p̄. As 𝑎 is used neither directly nor indirectly anywhere
else, 𝑍$ is distributed independently and uniformly at random in tr_first_part defined by (86).

After 𝑍$, the entire content of tr_first_part is written by the nested Lin2-Selector lemma argument shown
in Figure 5. In the ‘while’ in it, there are log2 (𝑛) repetitions of the Lin2-Xor first round, which is defined separately
as the step shown in Figure 3. At each step, 𝑟 and 𝐻 are written to tr_first_part, and we prove that they all
together are indistinguishable from independently and uniformly sampled randomness, including 𝑍$. Our proof
relies upon the (P,Q)-DDH assumption by Bresson et al. [9], which is proved to be an equivalent to DDH.

The intuition is that each 𝑘-th step in the ‘while’ exposes 𝑟𝑘 , 𝐻𝑘 , which themselves reveal nothing, as both of
them contain the independent private randomness 𝑑 {𝑘} ←$ F∗p̄. The only source which can reveal some information
is the product 𝑟𝑘𝐻𝑘 , where 𝑑 {𝑘} vanishes. As we observed in Section 6.1, for each 𝑘 ∈ [0, log2 (𝑛) − 1], 𝐻𝑘 covers
2𝑘+1 base generators, i.e., is represented as a weighted sum of them with nonzero weights. The weights are given
by the formulas (73), (71) and seem rather complex, nevertheless (71) makes it clear that all they are nonzero and
are built from the publicly known scalars.

All of 𝐻𝑘’s are linearly independent from each other and from 𝑍$. This can be understood from the fact that
𝐻log2 (𝑛)−1 covers 𝑛 base generators with nonzero weights. At the same time, all the other 𝐻𝑘’s together with 𝑍$,
excluding 𝐻log2 (𝑛)−1, can cover no more than (𝑛 − 1) base generators in any linear combination. Thus, 𝐻log2 (𝑛)−1
is independent of the others. The same reason works for 𝐻log2 (𝑛)−2 and subsequently for all the other 𝐻𝑘’s and 𝑍$.

For 𝑟𝑘’s without the masking randomnesses 𝑑 {𝑘} , we can observe that all of them contain the input randomness
𝑎𝑧, 𝑎 ←$ F∗p̄, provided that the input witness 𝑧0, 𝑧1 is in the form of (𝑧0, 𝑧1) = (𝑧, 0). Also, 𝑟𝑘’s have some nonzero
factors which depend on the public scalars and input witness index 𝑠. Letting the index 𝑠 and witness factor 𝑧
be publicly known would not decrease distinguishability between 𝑟𝑘𝐻𝑘’s and independent uniform randomness.
Hence, we can consider 𝑟𝑘’s as having the form of 𝑎 multiplied by some publicly known factors. Moreover, we can
prove that each 𝑟𝑘 has the uniform distribution and one-to-one correspondence to the independently sampled 𝑑 {𝑘} .

Thus, exponents of 𝑟𝑘𝐻𝑘’s and 𝑍$ can be represented as degree-2 multivariate polynomials of the private
random 𝑎 and base generator exponents. We put these degree-2 multivariate polynomials into the set 𝑄̃. Since
all 𝐻𝑘’s and 𝑍$ are linearly independent of each other, all of these degree-2 polynomials are linearly independent,
too. We collect exponents of all the other publicly seen elements into the set 𝑃̃. The linear combinations of those
polynomials which are already in 𝑃̃ reveal nothing, therefore we omit including them in 𝑃̃, except for the exponent
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of the input 𝑍 which we include anyway. Thus, 𝑃̃ contains only the exponents of base generators X{0} and exponent
of 𝑍 , for which the factor 𝑧 is assumed to be not necessarily random and publicly seen.

Since all the polynomials in 𝑃̃ are of degree-1, whereas 𝑄̃ contains only degree-2 polynomials, their spans
cannot intersect, i.e., Span(𝑃̃) ∩ Span(𝑄̃) = ∅. Therefore, by the (P,Q)-DDH assumption, all of 𝑟𝑘𝐻𝑘’s and 𝑍$ are
indistinguishable from independent uniform randomness.

Lemma 8 (view-Lin2-Selector):
For the argument in Figure 6, for INDR(P∪Q ) in it, for its accepting transcript’s first part tr_first_part defined
by (86), for the distribution D of the witness (𝑧0, 𝑧1, 𝑠) and challenges 𝜌 in it such that 𝑧0 ≠ 0 ∧ 𝑧1 = 0, if there
exists an adversary A𝐿𝑖𝑛2𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 that has non-negligible probability of distinguishing tr_first_part \ 𝜌 from
independent uniform randomness, in the presence of the transcript’s public input tr_input (85) and challenges 𝜌,
then the DDH assumption is broken.

Proof. We use the notation from 6.1. Given A𝐿𝑖𝑛2𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 from the premise, we build winning A for the (P,Q)-
DDH game. First of all,A is required to constuct the sets of polynomials 𝑃̃, 𝑄̃ ⊂ Fp̄ [𝑋1, . . . , 𝑋𝑛] and return them
to the game. To accomplish this,A runs an honest ⟨P,V⟩ game of the argument in Figure 6 on its own using both
of the witness (𝑧0, 𝑧1, 𝑠) = (𝑧 ≠ 0, 0, 𝑠) and challenges 𝜌 = {(𝑐{𝑘}0 , 𝑐

{𝑘}
1 )}

log2 (𝑛)−1
𝑘=0 taken from D.

According to Figure 6, it has 𝑍$ = 𝑎𝑧X{0}[2𝑠] , 𝑎 ←$ F∗p̄. According to Figure 3, in the first step of the run the scalar

𝑤 is calculated as𝑤 = 𝑎𝑧/(𝑐{0}lastbit(𝑠)+1). For 𝑘-th step, 𝑘 ∈ [0, log2 (𝑛)−1], the step’s input (𝑧{𝑘}0 , 𝑧
{𝑘}
1 ), which is the

previous step’s output (𝑤{𝑘−1}
0 , 𝑤

{𝑘−1}
1 ), has the following form, where we let (𝑤{−1}

0 , 𝑤
{−1}
1 ) = (𝑧$

0, 𝑧
$
1) = (𝑎𝑧, 0),

(𝑧{𝑘}0 , 𝑧
{𝑘}
1 ) = (𝑤

{𝑘−1}
0 , 𝑤

{𝑘−1}
1 ) =

{
(𝑤{𝑘−1} , 0) if bit(𝑠, 𝑘 − 1) = 0
(0, 𝑤{𝑘−1}) if bit(𝑠, 𝑘 − 1) = 1

(88)

such that 𝑤{𝑘} =
𝑎𝑧∏𝑘

𝑗=0 (𝑐
{ 𝑗 }
bit(𝑠, 𝑗 ) + 1)

. (89)

Thus, according to Figure 3, A has 𝑘-th round’s 𝑟𝑘 calculated by the following formula

𝑟𝑘 =
𝑎

𝑑𝑘
· 𝜇(𝑠, 𝑘) , where 𝑑𝑘 ←$ F∗p̄ is an independent randomness, (90)

and 𝜇(𝑠, 𝑘) = 𝑧 ·
bit(𝑠, 𝑘) − (1 − bit(𝑠, 𝑘))𝑐{𝑘}bit(𝑠,𝑘 )

(𝑐{𝑘}bit(𝑠,𝑘 ) + 1)∏𝑘−1
𝑗=0 (𝑐

{ 𝑗 }
bit(𝑠, 𝑗 ) + 1)

≠ 0 is built from the known to A scalars. (91)

Here 𝑟𝑘 is represented as the fraction 𝑎/𝑑𝑘 of two independent randomnesses multiplied by the fractional expression
𝜇(𝑠, 𝑘), which contains the challenges and witness taken from D. The randomness 𝑎 is common to all 𝑟𝑘’s. The
denominator of 𝜇(𝑠, 𝑘) is nonzero, as all challenges belong to F∗p̄ \ {−1}, the same is for 𝑑𝑘 sampled from F∗p̄.
The numerator of 𝜇(𝑠, 𝑘) is also nonzero, and the same for 𝑧 which is nonzero by the premise. Thus, all 𝑟𝑘’s are
nonzero.
A expresses the products 𝑟𝑘𝐻𝑘 using (90) for 𝑟𝑘 and (73) for 𝐻𝑘 as

𝑟𝑘𝐻𝑘 = 𝑎 · 𝜇(𝑠, 𝑘) ·
(
X{𝑘}[2𝑠{𝑘} ] − X{𝑘}[2𝑠{𝑘}+1]

)
. (92)

We claim that IND({𝑍$} ∪ {𝑟𝑘𝐻𝑘}log2 (𝑛)−1
𝑘=0 ). Here is a proof. Let us consider the set S = {𝐻𝑘}log2 (𝑛)−1

𝑘=−1 ⊂ G,
where we let 𝐻−1 = 𝑍$. Since all 𝑟𝑘’s are nonzero, we have IND({𝑍$} ∪ {𝑟𝑘𝐻𝑘}log2 (𝑛)−1

𝑘=0 ) iff IND(S). We claim
that IND(S). Suppose the opposite, then there exists a subset S′ ⊂ S, |S′ | > 1, and a vector 𝜶 ⊂ F∗p̄ of nonzero
scalars such that ⟨𝜶, S′⟩ = 0. Let 𝑆𝑖 ∈ S be an element with maximal 𝑘 in S′, let us denote this maximal 𝑘 as 𝑘 ′.
According to the formula (73) and definition of 𝐻−1, 𝑆𝑖 is a sum with nonzero weights of 2𝑘′+1 base generators
in X{0} . The same holds for the element 𝛼𝑖𝑆𝑖 . Now, let us consider the rest of S′, i.e. S′ \ {𝑆𝑖}. There is, in
sum, at most (2𝑘′+1 − 1) generators from X{0} covered by S′ \ {𝑆𝑖}. Thus, the equality ⟨𝜶, S′⟩ = 0 results in at
least one nonzero weight for a generator from X{0} in it, which breaks DLR. Therefore, it holds that IND(S) and
IND({𝑍$} ∪ {𝑟𝑘𝐻𝑘}log2 (𝑛)−1

𝑘=0 ).
A collects all exponents of the elements in {𝑍$} ∪ {𝑟𝑘𝐻𝑘}log2 (𝑛)−1

𝑘=0 in the form of multivariate polynomials
of random 𝑎, 𝑥0, . . . , 𝑥2𝑛−1 into the set 𝑄̃ of size |𝑄̃ | = (log2 (𝑛) + 1). Since IND({𝑍$} ∪ {𝑟𝑘𝐻𝑘}log2 (𝑛)−1

𝑘=0 ), all
polynomials in 𝑄̃ are linearly independent.

Also,A lets the set 𝑃̃ be of size |𝑃̃ | = (2𝑛+1) and contain exponents of X{0} , which are degree-1 monomials
of random 𝑎, 𝑥0, . . . , 𝑥2𝑛−1, and also contain the exponent of the input 𝑍 which is the degree-1 monomial 𝑧𝑥2𝑠 of
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the same 𝑎, 𝑥0, . . . , 𝑥2𝑛−1. Note that neither of these monomials use 𝑎, which we include just to show that the
polynomials in 𝑃̃ and 𝑄̃ are of the same set of random scalars. Also, note that only 𝑄̃ is composed of linearly
independent polynomials, whereas 𝑃̃ has a linearly depenedent one, however the (P,Q)-DDH game does not require
for 𝑃̃ to contain only linearly independent ones.

As 𝑃̃ contains only degree-1 polynomials, whereas 𝑄̃ contains only degree-2 polynomials of the same random
scalars, it holds that Span(𝑃̃) ∩ Span(𝑄̃) = ∅.

At this point, A yields 𝑃̃, 𝑄̃ to the (P,Q)-DDH game, while retaining the used challenges 𝜌 in memory. Next,
A receives from the game the tuple of elements

𝑡 = (X{0} , 𝑍 ′, 𝑍 ′′, 𝑌0, . . . , 𝑌log2 (𝑛)−1) , (93)

The base generator set X{0} is resampled in 𝑡, however, since all the other elements in 𝑡 use this resampled X{0} ,
we keep using the old name for it. In the tuple 𝑡, 𝑍 ′ corresponds to the input 𝑍 , whereas 𝑍 ′′ corresponds to 𝑍$, and
𝑌𝑘’s correspond to 𝑟𝑘𝐻𝑘’s. According to the (P,Q)-DDH game, A is unaware of whether (𝑍 ′′, 𝑌0, . . . , 𝑌log2 (𝑛)−1)
is generated using 𝑄̃ or sampled independently and uniformly at random.
A samples {𝑟 ′

𝑘
}log2 (𝑛)−1
𝑘=0 ←$ F

∗ log2 (𝑛)
p̄ and lets

𝑡′ = (X{0} , 𝑍 ′, 𝑍 ′′, {𝑌𝑘/𝑟 ′𝑘}
log2 (𝑛)−1
𝑘=0 , {𝑟 ′𝑘}

log2 (𝑛)−1
𝑘=0 , 𝜌) , (94)

where tr_input′ = (X{0} , 𝑍 ′) (95)

and tr_first_part′ = (𝑍 ′′, {𝑌𝑘/𝑟 ′𝑘}
log2 (𝑛)−1
𝑘=0 , {𝑟 ′𝑘}

log2 (𝑛)−1
𝑘=0 , 𝜌) . (96)

Then, A invokes A𝐿𝑖𝑛2𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 with 𝑡′ as input, and returns to the game what the latter returns. Thus, A wins
the (P,Q)-DDH game, provided that A𝐿𝑖𝑛2𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 operates in the mode it is supposed to.

Let us prove the latter. Namely, that A𝐿𝑖𝑛2𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 receives tr_input′ ∪ tr_first_part′ of an accepting
transcript when 𝑄̃ is used to produce 𝑡, and receives randomness in place of tr_first_part′ \ 𝜌 when sampled
elements are used instead.

For the case when sampled elements are used instead of 𝑄̃, it is trivially seen that each item in tr_first_part′\
𝜌 is sampled independently and uniformly at random, taking into account that 𝑟 ′

𝑘
’s are also sampled independently

and uniformly. This case is correct.
For the other case, when tr_input′ and tr_first_part′ \ 𝜌 are calculated using 𝑃̃ and 𝑄̃ over the newly

sampled scalars 𝑎, 𝑥0, . . . , 𝑥2𝑛−1, we make the following claim. For the newly sampled value of 𝑎 denoted as 𝑎′,
the union tr_input′ ∪ tr_first_part′ is the input and first part of an new accepting transcript where the next
values were sampled independently and uniformly for 𝑑𝑘’s

𝑑𝑘 =
𝑎′

𝑟 ′
𝑘

· 𝜇(𝑠, 𝑘) . (97)

The proof of this claim is that, by inserting these values of 𝑑𝑘’s into the formulas (90), (73), we obtain, respec-
tively, honestly calculated 𝑟𝑘’s and 𝐻𝑘’s of an new transcript, which are equal to the values in tr_first_part′
(96). There is the one-to-one map (90) between 𝑟𝑘 and 𝑑𝑘 , where the latter is sampled independently and uniformly
in an honest transcript. Hence, 𝑟𝑘 can be sampled instead of 𝑑𝑘 , as long as 𝑑𝑘 is recalculated so as to satisfy
(90), which is exactly done with (97). Thus, tr_input′ ∪ tr_first_part′ is the input and first part of an honest
transcript with the input witness (𝑧, 0, 𝑠). As the argument is perfectly complete, this implies that the transcript is
accepting. The claim is proved.

Thus, A𝐿𝑖𝑛2𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 operates in the correct mode, receiving either a stream of randomness or a stream of first
parts of accepting transcripts. By the premise, it distinguishes them. Hence, A wins the (P,Q)-DDH game and, as
(P,Q)-DDH is an equivalent of DDH, A breaks DDH. The lemma is proved.

□

7.3 SPECIAL HONEST VERIFIER ZERO-KNOWLEDGE
Having the view-Lin2-Selector lemma proved, in the following lemma we will prove that the argument in

Figure 6 is sHVZK. Thus, we will have the Lin2-Selector argument, as well as its subset case Lin2-Xor argument,
proved sHVZK for the case if their base generators are sampled randomly from G, final rounds are sHVZK, inputs
are nonzero, randomized, and have witnesses restricted to 𝑧0 ≠ 0 ∧ 𝑧1 = 0.

Lemma 9 (zk-Lin2-Selector):
For the relation (60), for INDR(P∪Q) in it, under the DDH assumption, the argument in Figure 6 is special honest
verifier zero-knowledge, provided that its witness (𝑧0, 𝑧1, 𝑠) is restricted to 𝑧0 ≠ 0 ∧ 𝑧1 = 0.
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Proof. Let us consider the protocol in Figure 6 as the interactive procedure ⟨P,V⟩0 followed by the protocol
⟨P,V⟩1. Their combination ⟨P,V⟩ = ⟨P,V⟩0 ◦ ⟨P,V⟩1 results in the complete protocol in Figure 6. The input
and transcript of ⟨P,V⟩0 are, respectively, tr_input (85) and tr_first_part (86). The protocol ⟨P,V⟩1, in
its turn, given tr_input ∪ tr_first_part as input, produces the transcript tr_final_part (87).

As shown in Figure 6, we require for the final round of the argument in Figure 5 to be sHVZK. Thus, the
protocol ⟨P,V⟩1 is the union of two unnamed sHVZK protocols in the final rounds in Figure 6, Figure 5. Hence,
⟨P,V⟩1 is sHVZK. Let us denote its simulator as S1. We will not make explicit the relation for the protocol
⟨P,V⟩1. It will be enough that, as follows from the perfect completeness of ⟨P,V⟩, the relation for ⟨P,V⟩1 is
satisfied strictly when the relation for ⟨P,V⟩ is satisfied and ⟨P,V⟩0 is played honestly.

For the procedure ⟨P,V⟩0, we define its simulator S0 as filling in all items in tr_first_part \ 𝜌 with
independently and uniformly sampled randomness. Thus, the full protocol ⟨P,V⟩ simulator is S = S0 ◦ S1.

Suppose that there exists an adversary A that breaks the sHVZK game for ⟨P,V⟩ and S, provided that A
generates inputs and witnesses complying the restriction in the premise. According to the definition of sHVZK,
this implies that, for A, it holds that

𝑝𝑟𝑜𝑏A (⟨P,V⟩0 ◦ ⟨P,V⟩1) 0 𝑝𝑟𝑜𝑏A (S0 ◦ S1), where (98)

𝑝𝑟𝑜𝑏A (⟨P,V⟩0 ◦ ⟨P,V⟩1) = Pr
[
(𝜎, 𝑢;𝑤) ∈ R ∧
A(𝑡𝑟) = 1

���� 𝜎 ← 𝑆𝑒𝑡𝑢𝑝({1}𝜆); (𝑢, 𝑤, 𝜌) ← A(𝜎);
𝑡𝑟 ← ⟨P(𝜎, 𝑢;𝑤),V(𝜎, 𝑢; 𝜌)⟩

]
, (99)

𝑝𝑟𝑜𝑏A (S0 ◦ S1) = Pr
[
(𝜎, 𝑢;𝑤) ∈ R ∧
A(𝑡𝑟) = 1

���� 𝜎 ← 𝑆𝑒𝑡𝑢𝑝({1}𝜆); (𝑢, 𝑤, 𝜌) ← A(𝜎);
𝑡𝑟 ← S(𝜎, 𝑢, 𝜌)

]
. (100)

Without loss of generality, we can assume thatA produces only those (𝑢, 𝑤, 𝜌)’s that satisfy (𝜎, 𝑢;𝑤) ∈ R. Let us
denote as D the distribution of (𝑢, 𝑤, 𝜌)’s produced by A.

For the same A, let us consider sHVZK game where, on one side, the same ⟨P,V⟩ = ⟨P,V⟩0 ◦ ⟨P,V⟩1
is played, which gives the same as in (99) probability 𝑝𝑟𝑜𝑏A (⟨P,V⟩0 ◦ ⟨P,V⟩1). And, on the other side,
⟨P,V⟩0 ◦ S1 is played, which gives some probability 𝑝𝑟𝑜𝑏A (⟨P,V⟩0 ◦ S1). This game is the sHVZK game
for the protocol ⟨P,V⟩1 and its simulator S1. In this game, the adversary A1, as we denote it, internally gets
(tr_input, 𝑤, 𝜌) fromA, honestly plays ⟨P,V⟩0 on its own producing (tr_input∪tr_first_part, 𝑤′) which
satisfies relation for ⟨P,V⟩1, and then (tr_input ∪ tr_first_part, 𝑤′, 𝜌) is fed to ⟨P,V⟩1 and S1. Finally,
A1 (𝑡𝑟) redirects to A(𝑡𝑟) and returns what the latter returns. Since ⟨P,V⟩1 is sHVZK, it holds that

𝑝𝑟𝑜𝑏A (⟨P,V⟩0 ◦ ⟨P,V⟩1) ≈ 𝑝𝑟𝑜𝑏A (⟨P,V⟩0 ◦ S1) . (101)

Now, for the sameA, let us consider another sHVZK game where, on one side, ⟨P,V⟩0 ◦ S1 is played, which
gives the probability 𝑝𝑟𝑜𝑏A (⟨P,V⟩0 ◦ S1). And, on the other side, S0 ◦ S1 is played, which gives the probability
𝑝𝑟𝑜𝑏A (S0 ◦ S1), the same as in (100). This is the distinguishability game for ⟨P,V⟩0 and S0, where T0,T1
generate the honest and simulated, respectively, transcripts of ⟨P,V⟩0. Internally, both of T0 and T1 invoke A
that supplies (𝑢, 𝑤, 𝜌)’s from D, which then are used by T0,T1 for generating their outputs. In this game, the
adversaryA2, as we denote it, tries to distinguish between the T0,T1 outputs, which are transcripts of ⟨P,V⟩0 and
S0. To accomplish this,A2 adds the simulated with S1 transcript’s final part to what it receives and redirects toA,
returning what the latter returns.

We have the following probabilities in this distinguishability game for ⟨P,V⟩0 and S0 with T0,T1,A2. On the
one side, it holds by-design that

𝑝𝑟𝑜𝑏T0 ,T1 ,A2 (⟨P,V⟩0) = 𝑝𝑟𝑜𝑏A (⟨P,V⟩0 ◦ S1) . (102)

On the other side, by-design, it holds that

𝑝𝑟𝑜𝑏T0 ,T1 ,A2 (S0) = 𝑝𝑟𝑜𝑏A (S0 ◦ S1) . (103)

At the same time, according to (101) and (98), the equality (102) rewrites as

𝑝𝑟𝑜𝑏T0 ,T1 ,A2 (⟨P,V⟩0) ≈ 𝑝𝑟𝑜𝑏A (⟨P,V⟩0 ◦ ⟨P,V⟩1) 0 𝑝𝑟𝑜𝑏A (S0 ◦ S1) . (104)

From (104), using (103), it follows that

𝑝𝑟𝑜𝑏T0 ,T1 ,A2 (⟨P,V⟩0) 0 𝑝𝑟𝑜𝑏T0 ,T1 ,A2 (S0) . (105)

Thus, having supposed existance of adversary A that breaks sHVZK for the argument in Figure 6, we
have constructed the adversary A2 that, according to (105), distinguishes with non-negligible probability the
tr_first_part \ 𝜌 from independently and uniformly sampled randomness.

Therefore, the premise of the view-Lin2-Selector lemma is met withA𝐿𝑖𝑛2𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 = A2 andD supplied by the
alleged A. Hence, by the view-Lin2-Selector lemma, existance of A implies that the DDH assumption is broken.
From this, it follows that the argument in Figure 6 is sHVZK under DDH. The lemma is proved. □
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8 LINKABLE RING SIGNATURE
In the previous sections we constructed the zkLin2SelectorArg proof of membership shown in Figure 6, and

formally proved that it is perfectly complete, sHVZK, and having cWEE.
In this section, we will present a simple log-size linkable ring signature based on zkLin2SelectorArg, and will

briefly discuss its security properties. For this section, the presentation will be mostly informal. Our signature
follows the general approach, which is known, e.g., from [21, 25, 27], to constructing a ring signature as an
amendment on top of a complete, sHVZK, and having cWEE membership proof. Therefore, most of the proofs for
our signature properties can be adopted from [21, 25, 33, 18, 27].

8.1 SIGNATURE L2LRS
We assume that all of our interactive protocols are rendered non-interactive with the Fiat-Shamir heuristic in

the random oracle model [16, 28, 4]. The random oracle is modeled with the ideal hash function Hscalar (. . . )
that accepts any number of parameters and returns an independently and uniformly, yet deterministically, sampled
scalar from F∗p̄. This kind of sampling is called pseudo-random, we omit mentioning this.

The groupG is assumed to be a prime-order pairings-free elliptic curve point group. So, elements inG are also
called as points from now. For direct sampling points from the curve, which are thus subject to DLR and DDH,
we use the Hpoint (. . . ) ideal hash-to-curve function that returns an independently and uniformly distributed, yet
deterministically chosen, point from G. The first parameter to both of Hscalar and Hpoint is the group definition Ḡ,
therefore, the outputs of Hpoint are linearly independent from each other and from 𝐺.

A linkable ring signature, as it is defined, e.g., in [25, 27], has to convince a verifier that prover knows private
key for one of the public keys in the ring. In addition to this, the signature has to convince it that a linking tag,
a.k.a. key image, which is used to link signatures signed with the same public key, is calculated properly.

Our linkable ring signature in Figure 7, called as L2LRS, is a proof for the relation

RL2LRS = {K,U ∈ G∗𝑛, 𝐼 ∈ G∗; 𝑥 ∈ F∗p̄, 𝑠 ∈ [0, 𝑛 − 1] | 𝐾𝑠 = 𝑥𝐺 ∧ 𝐼 = 𝑥−1𝑈𝑠} , (106)

where K is the ring of public keys, U is a set of Hpoint images of keys in K, and 𝐼 is the linking tag.
The relation between a honest public key 𝐾 and the corresponding private key 𝑥 is defined as 𝐾 = 𝑥𝐺. Our

signature does not impose any assumption on public keys in the ring. This means that K can contain any elements,
including adversarially generated and malformed ones, such as those without known relation to 𝐺. The only
requirement for the keys in K is to be nonzero and distinct, which is easy to check.

Protocol: L2LRS(𝑛 ∈ N∗, K ∈ G∗𝑛; 𝑥 ∈ F∗p̄, 𝑠 ∈ [0, 𝑛 − 1]).
Relation: (106). Precondition: 𝑛 ⩾ 2, 𝑛 is a power of 2, K contains no duplicates.

P

1) 𝐼 = 𝑥−1Hpoint (Ḡ,K[𝑠]) 𝐼

V

2) 𝜉 = Hscalar (Ḡ,K, 𝐼)

P = K + 𝜉 · {Hpoint (Ḡ,K[𝑖 ])}
𝑛−1
𝑖=0 , Q = {Hpoint (Ḡ, 𝐼,K[𝑖 ])}

𝑛−1
𝑖=0 , 𝑍 = 𝐺 + 𝜉𝐼

play zkLin2SelectorArg( 𝑛, 𝑍, P, Q ; 𝑥−1, 0, 𝑠 )

Figure 7: Signature L2LRS.

As for the signature message, it is implicitly attached to the signature in Figure 7 the usual way, as a parameter
to the random oracle, e.g., as in [25, 21, 27]. We omit showing this, keeping in mind that it is unfeasible to have
the same random oracle responses for different messages.

Assuming that the spaces occupied by a point inG and a scalar inFp̄ are equal, and also assuming the Schnorr-id
protocol with size 2 and Okamoto’s protocol with size 3 are used in the final rounds of zkLin2SelectorArg, our
signature size is

𝑠𝑖𝑧𝑒𝑜 𝑓 (L2LRS) = 2 log2 (𝑛) + 7 . (107)

The signature has key image in the form of 𝐼 = 𝑥−1Hpoint (𝐾), which seems to have the same security as the
key image 𝑥Hpoint (𝐾) of the widely used LSAG scheme [25, 32, 18]. We will further elaborate on this in more
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detail. The key image 𝐼 is the only elemement that our signature adds to the underlying perfecty complete, sHVZK,
and having cWEE protocol transcript. Thus, the presented signature should support the same quite strong security
model as the LSAG-type signatures. Although, we do not prove this formally and leave as an open question.

To check that the underlying zkLin2SelectorArg proof of membership works as expected, let us examine its
input. For the base generator set P ∪Q, it holds that INDR(P ∪Q). In fact, as all elements in K are different, we
have each 𝑃𝑖 ∈ P built as the sum of 𝐾𝑖 with its independently and uniformly sampled image Hpoint (𝐾𝑖) multiplied
by the independent nonzero factor 𝜉 . Due to the random-self-reducibility of DL [15, 9], we have all elements in P
sampled independently and uniformly at random. The same holds for Q, which is a different family of Hpoint (𝐾𝑖)’s
images due to the presence of 𝐼 as an additional input to Hpoint.

Thus, in our signature, by rndi-Lin2-Selector lemma, verifier is convinced that signer knows 𝑧0, 𝑧1, 𝑠 such that

𝑍 = 𝑧0𝑃𝑠 + 𝑧1𝑄𝑠 , which unfolds as (108)
𝐺 + 𝜉𝐼 = 𝑧0 (𝐾𝑠 + 𝜉Hpoint (Ḡ, 𝐾𝑠)) + 𝑧1Hpoint (Ḡ, 𝐼, 𝐾𝑠) . (109)

It follows from (109) that, in the case of 𝑧1 ≠ 0, the randomly sampled point Hpoint (Ḡ, 𝐼, 𝐾𝑠) belongs to the linear
span of the known in advance points 𝐺, 𝐼, 𝐾𝑠 ,Hpoint (Ḡ, 𝐾𝑠). By belonging to the span we mean that the scalar
weights in the linear decomposition are known. However, as Hpoint (Ḡ, 𝐼, 𝐾𝑠) is just a randomly sampled point, this
implies that the vast majority of points in G belong to the same span, which is not true. Therefore, the verifier is
convinced that 𝑧1 = 0. Thus, (109) rewrites as

𝐺 + 𝜉𝐼 = 𝑧0 (𝐾𝑠 + 𝜉Hpoint (Ḡ, 𝐾𝑠)) . (110)

Since 𝐺, 𝐼 are known prior to sampling the scalar 𝜉, the sum 𝑍 = 𝐺 + 𝜉𝐼 is nonzero with overwhelming
probability. Having 𝑍 ≠ 0 ∧ 𝑧1 = 0 at input, by zk-Lin2-Selector lemma, the nested zkLin2SelectorArg proof is
zero-knowledge. Thus, our signature convinces the verifier that, for any random 𝜉, the equality (110) holds at some
value of 𝑧0 picked by prover. Also, the signature reveals no more information than the key image 𝐼 can reveal.

To advance from the equality (110) to the relation (106), we observe that, for the hash image Hpoint (Ḡ, 𝐾𝑠)
and its preimage 𝐾𝑠 , it holds that IND(𝐾𝑠 ,Hpoint (Ḡ, 𝐾𝑠)). Hence, by the Random-Weight-Reply lemma provided
below, the equality (110) for the randomly sampled 𝜉 implies that the verifier is convinced that the following system
holds for some 𝑧0 known to prover {

𝐺 = 𝑧0𝐾𝑠

𝐼 = 𝑧0Hpoint (Ḡ, 𝐾𝑠)
. (111)

This system, according to the relation (106), for 𝑧0 = 𝑥−1, is exactly what the linkable ring signature should convince
a verifier of. Thus, we have proved that the L2LRS scheme in Figure 7 is a linkable ring signature for (106).

Lemma 10 (Random-Weight-Reply):
For any four nonzero elements 𝑋,𝑌, 𝐶, 𝐷 such that IND(𝐶, 𝐷), for the relation

R = { 𝑋,𝑌 ∈ G, 𝐶, 𝐷 ∈ G∗ ; 𝑤 ∈ Fp̄ | (𝑋 = 𝑤𝐶) ∧ (𝑌 = 𝑤𝐷) }, (112)

the protocol in Figure 8 is perfectly complete and has cWEE.

P V

𝜉 ←$ F∗p̄

P and V play a perfectly complete and having cWEE protocol
which proves knowledge of 𝑤 ∈ Fp̄ in (𝑋 + 𝜉𝑌 ) = 𝑤(𝐶 + 𝜉𝐷)

Protocol: RwrArg(𝑋,𝑌 ∈ G, 𝐶, 𝐷 ∈ G∗; 𝑤 ∈ Fp̄). Relation: (112). Premise: IND(𝐶, 𝐷).

Figure 8: Random-Weight-Reply lemma protocol.

Proof. Perfect completeness of the protocol follows trivially from perfect completeness of its last round. Let us
build the protocol’s witness extractor X.
X unwinds to the challenge 𝜉 and, for two values 𝜉, 𝜉′ of it along with the values 𝑤, 𝑤′ of the witness obtained

using the last round witness extractor, has the following system of equalities{
𝑋 + 𝜉𝑌 = 𝑤(𝐶 + 𝜉𝐷)
𝑋 + 𝜉′𝑌 = 𝑤′ (𝐶 + 𝜉′𝐷)

, (113)

30



which rewrites in the matrix form as[
𝑋 𝑌

] [
1 1
𝜉 𝜉′

]
=

[
𝐶 𝐷

] [
1 1
𝜉 𝜉′

]
·
[
𝑤 0
0 𝑤′

]
. (114)

The equation (114), where det
( [

1 1
𝜉 𝜉′

] )
≠ 0 with overwhelming probability, resolves for 𝑋,𝑌 as follows

[
𝑋 𝑌

]
=

[
𝐶 𝐷

] [
1 1
𝜉 𝜉′

]
·
[
𝑤 0
0 𝑤′

]
·
[
1 1
𝜉 𝜉′

]−1
= (115)[

𝐶 𝐷
] [

1 1
𝜉 𝜉′

]
·
( [
𝑤 0
0 𝑤

]
+
[
0 0
0 𝑤′ − 𝑤

] )
·
[
1 1
𝜉 𝜉′

]−1
= (116)[

𝐶 𝐷
] (
𝑤 ·

[
1 0
0 1

]
+ (𝑤′ − 𝑤) ·

[
−𝜉 1
−𝜉𝜉′ 𝜉′

] )
. (117)

For the case of only negligible probability of having 𝑤′ ≠ 𝑤 during the unwindings, the equality (117) yields
the desired witness 𝑤 for the relation (112).

For the opposite case of non-negligible probability of 𝑤′ ≠ 𝑤. The extractor X makes a polynomially bounded
number of unwindings and gets 𝜉′′, 𝑤′′ such that 𝑤′′ ≠ 𝑤 and 𝑋,𝑌 are resolved similarly to (117) as[

𝑋 𝑌
]
=

[
𝐶 𝐷

] (
𝑤 ·

[
1 0
0 1

]
+ (𝑤′′ − 𝑤) ·

[
−𝜉 1
−𝜉𝜉′′ 𝜉′′

] )
. (118)

By eliminating
[
𝑋 𝑌

]
from (117), (118), X obtains[

0 0
]
=

[
𝐶 𝐷

] (
(𝑤′ − 𝑤) ·

[
−𝜉 1
−𝜉𝜉′ 𝜉′

]
− (𝑤′′ − 𝑤) ·

[
−𝜉 1
−𝜉𝜉′′ 𝜉′′

] )
. (119)

It follows from (119) that

((𝑤′ − 𝑤) − (𝑤′′ − 𝑤))𝐶 + ((𝑤′ − 𝑤)𝜉′ − (𝑤′′ − 𝑤)𝜉′′)𝐷 = 0 . (120)

As IND(𝐶, 𝐷) by the premise, if at least one of 𝐶, 𝐷 has nonzero coefficient in (120), then DLR is broken.
Therefore, from the equality to zero for the coefficient of 𝐶, it follows that 𝑤′ = 𝑤′′. With this, the coefficient of 𝐷
rewrites as (𝑤′ − 𝑤) (𝜉′ − 𝜉′′), that shows that it can be zero only with negligible probability.

Thus, if probability of having different 𝑤 for different runs of the protocol is non-negligible, then X is able to
break DLR with non-negligible probability. Otherwise, X returns witness for the relation (112). The lemma is
proved. □

8.2 SECURITY FOR THE CASE OF EVEN KEY DISTRIBUTION
Works presenting new signature schemes, such as [1, 5, 6, 18, 21, 23, 25, 27, 30, 33], provide proofs that

they cannot be tampered with certain types of attacks. These proofs have many things in common, e.g. in attack
modeling, however they may differ in details. The works [21, 25, 27] contain a set of security requirements typically
imposed on linkable ring signatures, so below we mainly retell the definitions from these works and refer to the
approaches presented there to prove attack resistance.

We first consider the concept of linkable ring signature called as LRS in [27], where KeyGen is obliged to
return independently and uniformly distributed keys in the security games with adversary A. This requirement
seems rather strong, anyway, in practice, a system using linkable ring signature often fulfills it by-design, e.g., [32].
The definitions are as follows.

Linkable ring signature (LRS) definition:
LRS is four procedures:

• KeyGen() → (𝑥, 𝑋): Generates a secret key 𝑥 and corresponding public key 𝑋 such that 𝑋 = 𝑥𝐺. The case
of (𝑥, 𝑋) = (0, 0) is excluded.

• Sign(𝑥, 𝑚, 𝑅) → 𝝈: Generates a signature 𝝈 on a message 𝑚 with respect to the ring 𝑅 = {𝑋0, . . . , 𝑋𝑛−1},
provided that 𝑥 is a secret key corresponding to some 𝑋𝑖 ∈ 𝑅 generated by KeyGen. The ring 𝑅 itself is not
required to be composed only of keys generated by KeyGen, the only requirement for 𝑅 is that the actual
signer’s public key 𝑋𝑖 ∈ 𝑅 has to be generated by KeyGen.
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• Verify(𝝈, 𝑚, 𝑅) → {0, 1}: Verifies the signature 𝝈 on the message 𝑚 with respect to the ring 𝑅. Outputs 0
if the signature is rejected, and 1 if accepted.

• Link(𝝈,𝝈′) → {0, 1}: Determines if the signatures 𝝈 and 𝝈′ were signed using the same private key.
Outputs 0 if the signatures were signed using different private keys, and 1 if they were signed using the same
private key.

Correctness definition:
Consider this game between a challenger and a PPT adversary A:

• The challenger runs KeyGen() → (𝑥, 𝑋) and supplies the keys to A.
• The adversary A chooses a ring such that 𝑋 ∈ 𝑅 and a message 𝑚, and sends them to the challenger.
• The challenger signs the message with Sign(𝑥, 𝑚, 𝑅) → 𝝈.

If Pr[Verify(𝝈, 𝑚, 𝑅) = 1] = 1, we say that the LRS is perfectly correct.

Unforgeability w.r.t. insider corruption definition:
Consider this game between a challenger and a PPT adversary A:

• The adversary A is granted access to a public key oracle GenOracle that (on the 𝑖-th invocation) runs
KeyGen() → (𝑥𝑖 , 𝑋𝑖) and returns 𝑋𝑖 to A. In this game, KeyGen genarates key pairs (𝑥, 𝑋)’s where 𝑥’s are
chosen independently and uniformly at random.

• The adversary A is granted access to a corruption oracle CorruptOracle(𝑖) that returns 𝑥𝑖 if it corresponds
to a query to GenOracle.

• The adversaryA is granted access to a signing oracle SignOracle(𝑋, 𝑚, 𝑅) that runs Sign(𝑥, 𝑚, 𝑅) → 𝝈 and
returns 𝝈 to A, provided that 𝑋 corresponds to a query to GenOracle and 𝑋 ∈ 𝑅.

• Then,A outputs (𝝈, 𝑚, 𝑅) such that SignOracle was not queried with (_, 𝑚, 𝑅), all keys in 𝑅 were generated
by queries to GenOracle, and no key in 𝑅 was corrupted by CorruptOracle.

If Pr[Verify(𝝈, 𝑚, 𝑅) = 1] ≈ 0, we say that the LRS is unforgeable w.r.t. insider corruption.

Anonymity definition:
Consider this game between a challenger and a PPT adversary A:

• The adversary A is granted access to the public key oracle GenOracle and the corruption oracle CorruptOr-
acle. In this game, KeyGen genarates key pairs (𝑥, 𝑋)’s where 𝑥’s are chosen independently and uniformly
at random.

• The adversaryA chooses a message 𝑚, a ring 𝑅, and indices 𝑖0 and 𝑖1, and sends them to the challenger. We
require that 𝑋𝑖0 , 𝑋𝑖1 ∈ 𝑅 such that both keys were generated by queries to GenOracle, and neither key was
corrupted by CorruptOracle.

• The challenger selects a uniformly random bit 𝑏 ∈ {0, 1}, generates the signature Sign(𝑥𝑖𝑏 , 𝑚, 𝑅) → 𝝈, and
sends it to A.

• The adversary A chooses a bit 𝑏′ ∈ {0, 1}.
If Pr[𝑏′ = 𝑏] ≈ 1/2 and A did not make any corruption queries after receiving 𝝈, we say that the LRS is
anonymous.

Linkability definition:
Consider the following game between a challenger and a PPT adversary A:

• For 𝑖 ∈ [0, 𝑘 − 1], the adversary A produces a public key 𝑋𝑖 , message 𝑚𝑖 , ring 𝑅𝑖 , and signature 𝝈𝑖 .
• The adversary A produces another message 𝑚, ring 𝑅, and signature 𝝈.
• All tuples (𝑋𝑖 , 𝑚𝑖 , 𝑅𝑖 ,𝝈𝑖) and (𝑚, 𝑅,𝝈) are sent to the challenger.
• The challenger checks the following:

– |𝑉 | = 𝑘 , where 𝑉 =
⋃𝑘−1

𝑖=0 𝑅𝑖 .
– Each 𝑋𝑖 ∈ 𝑉 .
– Each 𝑅𝑖 ⊂ 𝑉 .
– Verify(𝝈𝑖 , 𝑚𝑖 , 𝑅𝑖) = 1 for all 𝑖.
– Verify(𝝈, 𝑚, 𝑅) = 1.
– For all 𝑖 ≠ 𝑗 , we have Link(𝝈𝑖 ,𝝈𝑗 ) = Link(𝝈𝑖 ,𝝈) = 0.

• If all checks pass, A wins.
If A wins with only negligible probability for all 𝑘 , we say the LRS is linkable.
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Non-frameability definition:
Consider also the following game between a challenger and a PPT adversary A:

• The adversary A is granted access to the public-key oracle GenOracle, which redirects to KeyGen and
returns the public key generated by KeyGen. In this game, KeyGen genarates key pairs (𝑥, 𝑋)’s, where 𝑥’s
are chosen independently and uniformly at random.

• The adversary A is granted access to the corruption oracle CorruptOracle.
• The adversary A is granted access to the signing oracle SignOracle.
• The adversaryA chooses a public key 𝑋 that was generated by a query to GenOracle, but was not corrupted

by CorruptOracle. It selects a message 𝑚 and ring 𝑅 such that 𝑋 ∈ 𝑅. It queries SignOracle(𝑋, 𝑚, 𝑅) → 𝝈.
• The adversary A then produces a tuple (𝑚′, 𝑅′,𝝈′) and sends (𝑚′, 𝑅′,𝝈′) to the challenger, along with
(𝑋, 𝑚, 𝑅,𝝈).

• If Verify(𝝈′, 𝑚′, 𝑅′) = 0 or if 𝝈′ was produced using a query to SignOracle, the challenger aborts.
If Pr[Link(𝝈,𝝈′) = 1] ≈ 0, we say that the LRS is non-frameable.

We omit showing explicitly the KeyGen, Sign, Verify, Link procedures for our L2LRS signature in Figure 7,
assuming that KeyGen is implemented as required by considered security games, Link is implemented trivially,
e.g., as in [25, 27], whereas the Sign and Verify follow the scheme in Figure 7.

Lemma 11 (Even-LRS):
The L2LRS scheme in Figure 7 is LRS with the following properties: perfect correctness, unforgeability w.r.t.
insider corruption, anonymity, linkability, non-frameability.

Proof. (Sketch) The perfect correctness and linkability are trivially seen from the scheme. The key property is
unforgeability w.r.t. insider corruption, we look at it in the next paragraph. Anonymity follows from the sHVZK
of the underlying proving system and distribution of key image, which is even by DDH, namely, by DDDH [2].
DDDH is applicable here due to the fact that private keys are sampled evenly, according to the definition of KeyGen
in the anonymity game. Non-frameability proof can be constructed as in [18, 27].

Let us consider unforgeability w.r.t. insider corruption. The idea of the proof is the same as in [25, 21]. The
key point is that Hpoint is simulated by randomly picking 𝑟 ←$ F∗p̄ and returning 𝑟𝐺. Using the simulated Hpoint,
master algorithm M breaks DL the following way. Using the sHVZK property of the underlying protocol, M
constructs a simulated signature which has a signing public key 𝐾 such that private key for 𝐾 is unknown. For the
key image having the form of 𝐼 = 𝑥Hpoint (𝐾), M simulates key image as 𝐼 = 𝑟𝐾 , where 𝑟 is taken from the internal
cache of the simulated Hpoint and corresponds to 𝑟𝐺 returned by Hpoint in response to the query 𝐾 . Private key
behind 𝐾 remains unknown. The simulated signature is indistinguishable from a real one. M feeds it to adversary
A that has non-negligible probability of making a forgery. A returns a forgery for the simulated signature. Next,
by unwinding the forgery transcript using witness extractor of the underlying protocol, which has cWEE,M finds
private key behind 𝐾 . However, no private key behind 𝐾 is known and, thus, as long asA forges the signature,M
breaks DL.

For our case where the key image is in the form of 𝐼 = 𝑥−1Hpoint (𝐾), we need the simulated Hpoint and 𝐼 to be
kept indistinguishable from the real ones. Fortunately, for the even distribution of keys generated by KeyGen in the
definition of unforgeability w.r.t. insider corruption game, we can simulate Hpoint by letting it return 𝑟𝐾, 𝑟 ←$ F∗p̄,

for input 𝐾 . Thus, by DDH, the simulated Hpoint remains indistinguishable from the real Hpoint. The masterM
simulates key image as 𝐼 = 𝑟𝐺, thus obtaining the same distribution of the simulated key image as for the real
𝐼 = 𝑥−1Hpoint (𝐾). As a result, the simulated signature is indistinguishable from the real one, andM proceeds as
above, breaking DL by finding private key behind the public key 𝐾 for which no private key is known. Thus, our
signature is unforgeable w.r.t. insider corruption. □

8.3 SECURITY FOR THE CASE OF UNEVEN KEY DISTRIBUTION
We can consider the stronger security model by including security games in which ring keys are not restricted

to even distribution. The following is the definition of existential unforgeability against adaptive chosen plaintext,
adaptive chosen-public-key attackers, which we know from [1, 25].

Existential unforgeability against adaptive chosen message / public key attackers (EU_CMA/CPA) definition:
For any A:

• A large list L of public keys is generated using KeyGen. The adversary A is granted access to this list,
however A is not able to know private keys for the public keys in it.

• The adversary A is granted access to a signing oracle SignOracle(𝑚′, 𝑅′) that, for any 𝑅′ ⊆ L, returns 𝝈′
such that Verify(𝝈′, 𝑚′, 𝑅′) = 1.
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• Then, A outputs (𝝈, 𝑚, 𝑅) such that 𝑅 ⊆ L and SignOracle was not queried with (𝑚, 𝑅).
If Pr[Verify(𝝈, 𝑚, 𝑅) = 1] ≈ 0, we say that the LRS is unforgeable against adaptive chosen message and adaptive
chosen public key attackers (EU_CMA/CPA).

As we can observe from the definition of EU_CMA/CPA, distribution of keys in the ring is not specified. Hence,
we can assume that the distribution is most favorable toA. Although it seems like there is still a tiny informal part
left in this definition that specifies by whom the list L is built, and also ensures that A cannot mine a secret key
from the distribution in it. Thus, we use this definition, assuming that distribution of public keys in L, and hence
in the rings, is favorable to A, however it is still the case that A cannot know any private key from it.

The definition of Signer Ambiguity from [25], which is also agnostic to distribution of keys, is

Signer Ambiguity definition:
For any A:

• For any ring 𝑅 such that 𝑛 = |𝑅 |, for any set 𝐷, 𝑡 = |𝐷 | of private keys for the public keys in 𝑅, for any 𝑚
and 𝝈 such that Verify(𝝈, 𝑚, 𝑅) = 1 and 𝝈 is generated for the index 𝜋 in 𝑅,

• 𝜋′ ← A(𝑚, 𝑅, 𝐷,𝝈)

If Pr[𝜋′ = 𝜋] ≈
{

1/(𝑛 − 𝑡), if private key at index 𝜋 in 𝑅 belogns to 𝐷
0, otherwise

, we say that LRS is signer ambigous.

For this paper, we formulate the following lemma as an open question. The meaning of this lemma is that the
LSAG signature [25] is de-facto one of the most secure signature schemes known to date, of linear size though. It
therefore makes sense to compare the security of our log-size L2LRS with it.

Lemma 12 (Uneven-LRS, informal):
The L2LRS scheme in Figure 7 has EU_CMA/CPA and Signer Ambiguity for a distribution of keys D, if the LSAG
signature [25] is Signer Ambiguous for the distribution of keys D.

Proof. (Informal) The intuition is that in both of LSAG and L2LRS we have underlying proving systems which by
themselves reveal nothing. The only source that may reveal something is, for LSAG, the tuple (𝐺, 𝑥𝐺, 𝑟𝐺, 𝑥𝑟𝐺),
where 𝑥 ∈ D is the exponent of signing key, whereas 𝑟 ←$ Fp̄ is the independent uniform randomness provided
by Hpoint, and finally 𝑥𝑟 is the exponent of key image. For L2LRS, the corresponding tuple is (𝐺, 𝑥𝐺, 𝑟𝐺, 𝑥−1𝑟𝐺)
with the same meaning of the exponents.

For the high-entropy distribution case of 𝑥 ←$ Fp̄, by DDH, we have that 𝑥𝑟 and 𝑥−1𝑟 in the above tuples
are indistinguishable from an independent 𝑐 ←$ Fp̄. This allows us to simulate Hpoint’s output 𝑟𝐺 as 𝑥𝑟𝐺, and
subsequently simulate key image 𝑥−1𝑟𝐺 as 𝑟𝐺, so that the simulated signature is taken for real in the EU_CMA/CPA
and Signer Ambiduity games. The key point here is that, as long as adversaryA in the EU_CMA/CPA and Signer
Ambiguity games is unable to differentiate 𝑥𝑟 from independent uniform randomnesses in (𝐺, 𝑥𝐺, 𝑟𝐺, 𝑥𝑟𝐺), we
can swap 𝑟 and 𝑥𝑟 and thus obtain EU_CMA/CPA and Signer Ambiguity for L2LRS.

For the low-entropy distribution case, we still have a class of distributions D, 𝑥 ← D, where 𝑥𝑟 is indistin-
guishable from independent uniform randomness. Namely, the class of distributions D for which the DDH-II
assumption [11, 3] holds. Thus, L2LRS is EU_CMA/CPA and Signer Ambiguous for any well-spread distribution
D such that 𝑥 ← D ∈ DDH-II.

Moving further, we observe that in order to make the adversaryA in the EU_CMA/CPA and Signer Ambiguity
games be unable to differentiate 𝑥𝑟 from independent uniform randomnesses in (𝐺, 𝑥𝐺, 𝑟𝐺, 𝑥𝑟𝐺), a weaker than
DDH-II assumption suffices. Namely, it suffices that the distributions of (𝐺, 𝑥𝐺, 𝑟𝐺, 𝑥𝑟𝐺), 𝑥 ← D, 𝑟 ←$ Fp̄,
and (𝐺, 𝑥𝐺, 𝑟𝐺, 𝑐𝐺), 𝑥 ← D, 𝑟, 𝑐 ←$ Fp̄ be close. We can then feed into A a stream of randomly mixed real
(𝐺, 𝑥𝐺, 𝑟𝐺, 𝑥𝑟𝐺, . . . ) and simulated (𝐺, 𝑥𝐺, 𝑥𝑟𝐺, 𝑟𝐺, . . . ) signatures, and A will produce with non-negligible
probability a forgery for a simulated one, which we will break DL with.

At the same time, it is the Signer Ambiguity game for LSAG that guarantees us that D is such a distri-
bution. Namely, we can always conduct an experiment with LSAG, where a two-key ring is constructed as
𝑅 = {𝐾0, 𝐾1} such that 𝐾0 = 𝑥0𝐺, 𝑥0 ← D, and 𝐾1 = 𝑥1𝐺, 𝑥1 ←$ Fp̄. We flip a coin and sign with 𝑥0 or 𝑥1.
Due to LSAG’s Signer Ambiguity, the distributions of (𝐺, 𝑥0𝐺, 𝑟𝐺, 𝑥0𝑟𝐺) and (𝐺, 𝑥1𝐺, 𝑟𝐺, 𝑥1𝑟𝐺) turn out to be
close. As (𝐺, 𝑥1𝐺, 𝑟𝐺, 𝑥1𝑟𝐺) is indistinguishable from (𝐺, 𝑥1𝐺, 𝑟𝐺, 𝑐𝐺), 𝑐 ←$ Fp̄, by DDH, the distributions of
(𝐺, 𝑥0𝐺, 𝑟𝐺, 𝑥0𝑟𝐺) and (𝐺, 𝑥1𝐺, 𝑟𝐺, 𝑐𝐺) are close.

Since substituting one element from the first tuple into its place in the second tuple does not cut the closeness, the
distributions of (𝐺, 𝑥0𝐺, 𝑟𝐺, 𝑥0𝑟𝐺) and (𝐺, 𝑥0𝐺, 𝑟𝐺, 𝑐𝐺) appear to be close as well. Recalling that the sampling
is 𝑥0 ← D, 𝑟, 𝑐 ←$ Fp̄ in them, we obtain the sought closeness of distributions. Thus, L2LRS is EU_CMA/CPA
and Signer Ambiguous for any distribution of keys D such that LSAG is Signer Ambiguous for D.

□
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