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ABSTRACT

Secret sharing-based distributed storage systems are one approach
to provide long-term protection of data even against quantum com-
puting. Confidentiality is provided because the shares of data are
renewed periodically while integrity is provided by commitment
schemes. However, this solution is prohibitively costly and imprac-
tical: share renewal requires an information-theoretically secure
channel between any two nodes and long-term confidential com-
mitment schemes are computationally impractical for large files. In
this paper, we present SAFE, a secret sharing-based long-term se-
cure distributed storage system that leverages a Trusted Execution
Environment (TEE) to overcome the above limitations. Share gen-
eration and renewal are performed inside the TEE and the shares
are securely distributed to the storage servers. We prototype SAFE
protocols using a TEE instantiation, and show their efficiency, even
for large files, compared to existing schemes.
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1 INTRODUCTION

Encrypting and storing data on a storage server is not a viable
solution to protect data in the long term [5] both due to the contin-
uous cryptanalytic advances and the undeniable threat of quantum
computers [11, 24], which may allow to maliciously decrypt inter-
cepted data1. Secret sharing-based distributed storage systems [21]
are one approach to address this problem. Shares of a message are
generated and distributed to the storage servers constituting the
system such that only a given number of shares can reconstruct it,
otherwise no information is revealed.

Long-term confidentiality is provided by proactive secret shar-
ing [16], where shares are renewed and distributed at regular time
intervals, such that they are unlinked to the previous ones and an
adversary can never acquire enough of them in a given time period
1https://www.justsecurity.org/19308/

to retrieve the message. Long-term integrity is provided by verifi-
able secret sharing [9] through commitment schemes, where audit
data is generated to check the validity of the shares. Guaranteeing
long-term confidentiality and integrity of data is costly due to, re-
spectively, the number of information-theoretically secure channels
(IT-secure channels) to be established and the computational ineffi-
ciency of commitment schemes. In particular, IT-secure channels
can be established through one-time pad (OTP) encryption, which
requires fresh key material for each message to be distributed be-
forehand. Alternatively, quantum-key distribution (QKD) protocols
can be used [2], requiring quantum channels that are currently
realizable only at a small scale and demand dedicated hardware.

Our contributions. To address these challenges, we investigate
enabling more efficient protection of confidentiality and integrity in
long-term secure storage systems, thus evolving them for more fea-
sible deployment in cloud-computing services. We propose SAFE,
a proactive solution for long-term secure storage systems that re-
lies on trusted computing technology, namely a trusted execution
environment (TEE) for the generation, renewal and reconstruc-
tion of shares in an integrity-protected and isolated environment.
Using hardware and software primitives, TEEs are guaranteed to
provide an isolation execution environment for the deployment
of security-sensitive and privacy-preserving applications. Naively
storing encrypted data in the TEE (without secret sharing) does
not provide long-term security guarantees since TEEs are intended
for isolated execution where the TEE memory and disk storage
require standard memory encryption. In SAFE, the shares are only
generated in the TEE, after which they are securely provisioned to
the storage servers. The shares are brought back into the TEE for pe-
riodic renewal and data reconstruction when requested. Leveraging
the TEE in this way, regardless of the TEE specifics, is non-trivial
but allows us to propose significantly optimized secret sharing
protocols where the required number of IT-secure channels is sub-
stantially fewer, i.e., linear in the number of storage servers as
opposed to quadratic as before, as shown in Figure 1.

Furthermore, our protocols provide the same security guaran-
tees as state-of-the-art long-term secure storage systems, but at

1

https://www.justsecurity.org/19308/


SBC’20, October 5-9 2020, Taipei, Taiwan J. Buchmann et al.

𝑆1 𝑆2

𝑆𝑛 𝑆𝑛−1DO𝑑

DO1

⋮

(a) Architecture of existing solutions.

𝐷𝑂1

𝐷𝑂2

𝐷𝑂𝑑

TEE

⋮

S2

𝑆𝑛

S1

⋮

TEE Provider

DOd = data owners
Sn = storage servers
TEE = Trusted Execution Environment

(b) Architecture of our solution SAFE.

Figure 1: Architecture of the state-of-the-art solutions and our solution SAFE. 𝑆1, 𝑆2, . . . , 𝑆𝑛 denote 𝑛 storage servers,

DO1,DO2, . . . ,DO𝑑 denote 𝑑 data owners, TEE denotes the trusted execution environment, and lines are IT-secure channels.

significantly reduced computation and communication costs (§3).
We replace currently used expensive – but only computationally
binding – commitment schemes on each document segment with
computationally secure signatures on the whole document without
compromising the security of our system (Appendix A). Our scheme
also provides robustness and portability because we construct SAFE
to be TEE-agnostic (§3.2), such that secure and seamless migration
from a compromised or unavailable TEE to another trustworthy
one is supported (§3.2).

To evaluate SAFE, we prototype it using Intel SGX as a TEE
instantiation (though any other TEE can be used as well), and show
that SAFE is practical, even for large files. We present runtimes for
secret sharing, reconstruction, and share renewal for varying file
sizes and parameters (§4).

2 STATE-OF-THE-ART LONG-TERM SECURE

STORAGE SYSTEMS

Preliminaries on secret sharing. Secret sharing-based long-term
secure storage systems are used to protect the confidentiality and in-
tegrity of the outsourced data in the long term. We describe Shamir’s
secret sharing scheme [21] next, on which such distributed storage
systems are generally based. Let 𝑛 be the number of storage servers
𝑆1, 𝑆2, . . . , 𝑆𝑛 to which the shares are distributed, 𝑡 ≤ 𝑛 be the recon-
struction threshold, and F𝑞 be a field with 𝑞 > 𝑛 elements. Shamir’s
scheme relies on the fact that, in a field, a polynomial of degree 𝑡 −1
is determined uniquely by at least 𝑡 points on it. Knowing only at
most 𝑡 − 1 points one cannot reconstruct the polynomial.

Basic secret sharing is carried out with two protocols: Share,
which takes a message𝑚 and produces 𝑛 shares, and Reconstruct,
which reconstructs the original message𝑚 from any subset of 𝑡
shares. In proactive secret sharing [16], an additional protocol Renew
is run where shares are updated periodically such that an adversary
does not have enough time to compromise 𝑡 storage servers, while
ensuring that Reconstruct successfully reconstructs the message
with the 𝑡 shares collected as input. Verifiable secret sharing [9] is
used to detect a malicious data owner that might send corrupted
shares to storage servers and later blame them for not preserving
them. It is also used to detect a corrupted storage server sending
inconsistent information during protocol Renew in proactive se-
cret sharing. Commitment schemes are used, where additional audit
data is computed and broadcasted to the storage servers to check

whether the shares received from the data owner are valid. For long-
term protection, Pedersen’s commitments [19] are utilized, which
allow the storage servers to check the validity of the shares received
while guaranteeing the privacy of the message in an information-
theoretic secure way. Pedersen’s commitment scheme is defined as
a triple (Setup,Commit,Open) of the following protocols:

• Setup takes as input a security parameter 𝜆 and outputs a
prime𝑞, a groupG of order𝑞, and distinct generators𝑔, ℎ ∈ G.

• Commit takes as input a message𝑚 ∈ F𝑞 and randomness
𝑟 ∈ F𝑞 and outputs commitment 𝑐 = 𝑔𝑚ℎ𝑟 .

• Open takes as input a commitment 𝑐 ∈ G, a message𝑚 ∈ F𝑞
and randomness 𝑟 ∈ F𝑞 and outputs ‘1’ if 𝑐 = 𝑔𝑚ℎ𝑟 and ‘0’
otherwise.

Due to space constraints, we cannot describe here the aforemen-
tioned protocols Share, Renew and Reconstruct of state-of-the-
art long-term secure storage systems at length, and we refer the
reader to [16] for more detail instead.

Adversary Model. The threat model for state-of-the-art long-
term secure storage systems is that of a mobile, active and com-
putationally bounded adversary that can never break into more
than 𝑡 − 1 storage servers simultaneously. Thus, an honest ma-
jority with 𝑛 ≥ 2𝑡 − 1 (where 𝑛 is the total number of servers) is
commonly required in this setting. It is proactive secret sharing
that provides long-term confidentiality by coping with a mobile
adversary, bounded to 𝑡 − 1 corrupted storage servers between each
two times protocol Renew is executed. Also, it is verifiable secret
sharing that provides long-term integrity by coping with an active
adversary that can mislead the nodes to deviate from the protocols
they are supposed to run. Furthermore, verifiable secret sharing
requires a broadcast channel to communicate the computed com-
mitments to the storage servers. Therefore, the adversary can also
connect to the broadcast channel, observe and corrupt all messages
that the corrupted storage servers or the data owner broadcast and
can also inject its own messages. However, it is assumed that the
adversary cannot prevent a benign storage server from receiving
any of the messages sent through the broadcast channel. Lastly,
note that the adversary is computationally bounded because of the
usage of Pedersen commitment schemes, which binds to the correct
message only computationally.

NetworkRequirements.The communication between the stor-
age servers is characterized by the following requirements as de-
picted in Figure 1a.
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(1) There is an IT-secure channel between any two storage
servers and between any data owner and each storage server.

(2) There exists a reliable broadcast channel including all the
nodes of the long-term secure storage system.

(3) The messages sent are reliably delivered.
(4) Authentication measures are in place to detect spoofing.

Thus, a synchronous network with access to a common global clock
is assumed.

Shortcomings. State-of-the-art long-term secure storage sys-
tems are a very costly solution. On the one hand, 𝑛 IT-secure chan-
nels are needed during Share and 𝑡 (𝑡−1)

2 + 𝑡 (𝑛 − 𝑡) IT-secure chan-
nels are needed to run Renew (with reconstructing threshold 𝑡 ).
As described in §1, IT-secure channels are very expensive to estab-
lish and maintain. Moreover, the required commitment schemes for
large messages are computationally expensive. For reasonably small
data, such as 1MB, this leads already to the computation of 15 625 · 𝑡
commitments, where 𝑡 ≥ 2, for a common finite field F𝑞 , e.g., with 𝑞
being a prime of 512 bits. Thus, commitment schemes are rarely
used in practice, leaving the integrity of data unprotected2.

3 SAFE: OUR SOLUTION

SAFE leverages a TEE for the generation, renewal and reconstruc-
tion of consistent shares in an integrity-protected and isolated
environment. This guarantees that the shares are generated, up-
dated and reconstructed as mandated by the underlying protocols
and that the consistency of the shares with the original document
is preserved. The integrity of the shares at the storage servers is
protected by means of (computationally secure) signature schemes,
which are issued and distributed to the storage servers by the TEE
together with the respective shares. In this way, the TEE checks the
shares before performing share renewal or the reconstruction of
the original document, and identifies if a storage server is compro-
mised (owns a corrupted share) by means of signature verification,
as shown in Figure 1b.

SAFE involves several parties as shown in Figure 1b: a) the data
owner(s) that own and issue the data that is to be outsourced, b) the
storage servers to which the shares are distributed for long-term
storage, and c) the TEE provider which manages the provision and
initiation of the trusted TEE instance, where the shares’ generation,
renewal and message reconstruction occur.
Network Requirements. As shown in Figure 1, the network re-
quirements for SAFE differ from those of the state-of-the-art long-
term secure storage systems (cf. §2) because SAFE needs fewer
IT-secure channels and a broadcast channel is no longer necessary.
Note that SAFE does not require a synchronous network with access
to a common global clock, since Renew is initiated and performed
by the TEE. Our network assumptions are as follows.

(1) There is an IT-secure channel between any storage server
and the TEE.

(2) There is an IT-secure channel between any data owner and
the TEE.

(3) The messages sent are reliably delivered.
(4) Authentication measures are in place.

2Note that, it is not possible to first hash the messages to commit because the linear
property necessary to verify the validity of the shares would be lost.

Only the data owners and the storage servers are directly connected
to the TEE provider, while we eliminate the need for a direct IT-
secure channel between any two storage servers and between each
data owner and each storage server.
AdversaryModel.We assume an adversary with identical capabil-
ities to that of state-of-the-art long-term secure storage systems, as
described in §2. Additionally, we inevitably assume an honest-but-
curious TEE provider that ensures service availability and initiates
the TEE service whenever necessary, and ensures it adheres to the
protocols and the periodic share renewal. More precisely, the TEE
provider can, in principle, be any entity (such as a computing server)
which is not trusted with the message or the shares generated. How-
ever, it is inevitably trusted to provide the TEE service and ensure
the service availability whenever required. The TEE instance is an
isolated and integrity-protected environment where the message
and shares are processed confidentially and protected against tam-
pering. The TEE provider can also migrate to another TEE instance,
for example, when security parameters of the signature scheme
need to be updated according to NIST recommendations [13] to
ensure long-term integrity. Denial-of-Service (DoS) attacks are an
inevitable threat to traditional secret sharing protocols and SAFE
alike and are out of scope in this paper. The TEE service, once
initiated, is assumed to provide isolated, secure and confidential
execution of the secret sharing protocols, such that no party can
access all the generated shares, including the TEE provider.

In face of memory corruption vulnerabilities, we assume de-
ployment of common code-reuse defenses, such as control-flow
integrity (CFI) [1] or code randomization [18]. Architectural side-
channel attacks [6, 8] leaking confidential data from TEE-based so-
lutions have been recently shown and several defenses [3, 10] have
been proposed to thwart them. However, TEE-based side-channel
leakage is a problem specific to particular TEE implementations,
while SAFE is not bound to any particular TEE implementation.
Thus, it is an orthogonal problem and out of scope for this work.

3.1 SAFE Protocols: Overview

In SAFE, the TEE performs the Share, Renew, and Reconstruct
protocols in a privacy-preserving manner. The architecture of our
system is shown in Figure 1b. The data owner only communicates
with the TEE at the beginning of Share and Reconstruct proto-
cols and is not required to be online after sending its data. Note
that at the beginning of each protocol, the trust anchor in place at
the TEE provider first attests the TEE’s integrity. It then initiates
the TEE to establish IT-secure channels with the other parties. Af-
terwards, computations inside the isolated TEE can proceed. For
simplicity, we do not describe the TEE initiation steps below.
Share. Our share initialization protocol runs between the data
owner, the TEE, and the storage servers. The data owner sends the
pertinent document to the TEE via an IT-secure channel and selects
the desired storage servers as well as the threshold number 𝑡 of
shares necessary to reconstruct the document. The TEE is initiated
and generates the document shares along with their integrity proofs
and distributes them to each of the selected storage servers via IT-
secure channels. Each storage server now holds its document share
and an integrity proof ready for the first round of share renewal
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Renew. Contrary to the state of the art [16], where each data owner
establishes an IT-secure channel with each of the storage servers,
we optimize this by requiring that the data owner establishes a
IT-secure channel with the TEE only. The TEE, in turn, establishes
an IT-secure channel with each of the storage servers.
Renew. Our share renewal protocol is performed periodically as
the state of the art [16]. However, our protocol is initiated by the
TEE sending an update request to each storage server. Upon receiv-
ing the document share and its integrity proof, the TEE verifies
the integrity of the share. If the share is valid, the TEE generates
a randomness value required to update the share, otherwise re-
ports malicious behavior to the TEE provider. The updated share
is computed by adding the randomness value to the old share and
sending the result to the corresponding storage server along with
a new proof of integrity. This is performed by the TEE for each
storage server 𝑆𝑖 , for 𝑖 = 1, 2, . . . , 𝑛 individually. Therefore, this
eliminates the need for IT-secure channels between every pair of
storage servers and significantly reduces the number of IT-secure
channels compared with state of the art (see Fig. 1).
Reconstruct. Our document reconstruction protocol is initiated
by the data owner sending a request to the TEE, which then col-
lects 𝑡 shares from 𝑡 storage servers to reconstruct the document.
Upon receiving the shares, the TEE verifies their integrity, then
reconstructs the document. Similar to our Share, we eliminate the
need for IT-secure channels between the data owner and each of the
storage servers. Instead, Reconstruct only requires that the data
owner establishes a single IT-secure channel with the TEE while
the TEE establishes IT-secure channels with the storage servers.

3.2 SAFE Protocols: In Detail

In SAFE, the TEE, encompassed in the TEE provider, performs the
secret sharing protocols, while public-key signatures are used to
verify the integrity of the provisioned shares before share renewal
and document reconstruction are performed. Therefore, commit-
ment schemes are no longer needed.

A document𝑀 can be expressed as the concatenation of multiple
chunks of size 𝐵, i.e.,𝑀 =𝑚1 | |𝑚2 | | . . . | |𝑚𝑁 , such that the number
of chunks is 𝑁 =

|𝑀 |
𝐵

. Each document has a unique identity 𝐼𝐷𝑀 .
Let 𝑛 be the total number of storage servers 𝑆1, 𝑆2, . . . , 𝑆𝑛 selected
by the data owner, 𝑖 be the unique identifier of storage server 𝑆𝑖 for
𝑖 = 1, 2, . . . , 𝑛, 𝑡 be the threshold of shares necessary to reconstruct
the document, and 𝜎𝑖,ℓ be a share of chunk𝑚ℓ , for ℓ = 1, 2, . . . , 𝑁 .
The document share 𝑆ℎ𝑖 = 𝜎𝑖,1 | |𝜎𝑖,2 | | . . . | |𝜎𝑖,𝑁 is a concatenation
of the shares 𝜎𝑖,ℓ , for ℓ = 1, 2, . . . , 𝑁 distributed to storage server 𝑆𝑖
for 𝑖 = 1, 2, . . . , 𝑛. The TEE owns a pair (𝑝𝑘, 𝑠𝑘) of public and secret
keys. All communication between the data owner, the TEE and the
storage servers described in the protocols below occurs through
IT-secure channels.
Share. The share initialization protocol Share involves all parties:
the data owner, the TEE provider, and storage servers 𝑆1, 𝑆2, . . . , 𝑆𝑛 .
Share is initiated by the data owner, who sends document𝑀 , its
identity 𝐼𝐷𝑀 , the number of storage servers 𝑛 together with their
identities, and the reconstructing threshold 𝑡 to the TEE through
an IT-secure channel. The TEE executes the following steps.
1. Receive𝑀 , 𝐼𝐷𝑀 , 𝑛, 𝑡 and servers’ identities from the data owner.
2. Split𝑀 into 𝑁 chunks,𝑀 =𝑚1 | |𝑚2 | | . . . | |𝑚𝑁 .

3. For each document chunk𝑚ℓ , such that ℓ = 1, 2, . . . , 𝑁 :
a. Let F𝑞 be a field with 𝑞 > 𝑛 elements, such that𝑚ℓ ∈ F𝑞 . A

polynomial 𝑓ℓ (𝑥) = 𝑎0,ℓ + 𝑎1,ℓ𝑥 + · · · + 𝑎𝑡−1,ℓ𝑥𝑡−1 is defined
such that 𝑎0,ℓ := 𝑚ℓ and 𝑎1,ℓ , . . . , 𝑎𝑡−1,ℓ ∈𝑅 F𝑞 are chosen
uniformly at random.

b. Compute 𝑛 shares such that 𝜎𝑖,ℓ := 𝑓ℓ (𝑖) for storage server 𝑆𝑖 ,
where 𝑖 is the unique ID of storage server 𝑆𝑖 , for 𝑖 = 1, . . . , 𝑛.

4. For each storage server 𝑆𝑖 , such that 𝑖 = 1, 2, . . . , 𝑛:
a. Aggregate document share s.t. 𝑆ℎ𝑖 = 𝜎𝑖,1 | |𝜎𝑖,2 | | . . . | |𝜎𝑖,𝑁 .
b. Sign document share and the document ID with the private

key 𝑠𝑘 , as follows: 𝑃𝑖 = 𝑠𝑖𝑔𝑛(𝑠𝑘, 𝑆ℎ𝑖 | |𝐼𝐷𝑀 ).
c. Send document share 𝑆ℎ𝑖 along with its signature 𝑃𝑖 to the

corresponding storage server 𝑆𝑖 through IT-secure channel.
Storage servers trust that the TEE generates consistent shares.
Therefore, document share 𝑆ℎ𝑖 and its signature 𝑃𝑖 are securely
provisioned to storage server 𝑆𝑖 .
Renew. The share renewal protocol runs periodically between the
TEE and storage servers 𝑆1, 𝑆2, . . . , 𝑆𝑛 . Renew is initiated by the
TEE that executes the following steps.
1. Send update requests to 𝑛 storage servers to retrieve the shares

of document 𝐼𝐷𝑀 .
2. Receive 𝑛 document shares 𝑆ℎ𝑖 and their signatures 𝑃𝑖 sent by

each 𝑆𝑖 through IT-secure channel, for 𝑖 = 1, 2, . . . , 𝑛.
3. Attest integrity of 𝑛 document shares by verifying signatures

as follows: 𝑣𝑒𝑟 (𝑝𝑘, 𝑃𝑖 , 𝑆ℎ𝑖 | |𝐼𝐷𝑀 ) ?
= true for 𝑖 = 1, 2, . . . , 𝑛. If the

check fails, the TEE recovers the original document 𝑀 from 𝑡

benign shares, notifies the service provider of the corruption of
storage server 𝑆𝑖 and executes Share.

4. For every share 𝜎𝑖,ℓ such that ℓ = 1, 2, . . . , 𝑁 :
a. Select a polynomial𝑔ℓ (𝑥) = 𝑏0,ℓ+𝑏1,ℓ𝑥+· · ·+𝑏𝑡−1,ℓ𝑥𝑡−1, where

𝑏0,ℓ = 0 and coefficients 𝑏1,ℓ , . . . , 𝑏𝑡−1,ℓ ∈𝑅 F𝑞 are chosen
uniformly at random.

b. Compute randomness value 𝑟𝑖,ℓ for storage server 𝑆𝑖 as
𝑟𝑖,ℓ := 𝑔ℓ (𝑖), for 𝑖 = 1, 2, . . . , 𝑛.

c. Compute the updated share 𝜎 ′
𝑖,ℓ

:= 𝜎𝑖,ℓ + 𝑟𝑖,ℓ , for 𝑖 = 1, . . . , 𝑛.
5. For each storage server 𝑆𝑖 , such that 𝑖 = 1, 2, . . . , 𝑛:
a. Aggregate document share 𝑆ℎ′

𝑖
= 𝜎 ′

𝑖,1 | |𝜎
′
𝑖,2 | | . . . | |𝜎

′
𝑖,𝑁

.
b. Sign document share with the private key 𝑠𝑘 as follows: 𝑃 ′

𝑖
=

𝑠𝑖𝑔𝑛(𝑠𝑘, 𝑆ℎ′
𝑖
| |𝐼𝐷𝑀 ).

c. Send document share 𝑆ℎ′
𝑖
along with its integrity-proof 𝑃 ′

𝑖
to

the corresponding storage server through IT-secure channel.
Storage server 𝑆𝑖 stores the new document share 𝑆ℎ′

𝑖
and its signa-

ture 𝑃 ′
𝑖
and deletes the old 𝑆ℎ𝑖 and 𝑃𝑖 .

Reconstruct. The document reconstruction protocol is initiated
by the data owner, who requests document𝑀 from the TEE. The
TEE executes the following steps.
1. Receive reconstruction request of document 𝐼𝐷𝑀 from data

owner.
2. Request 𝑡 document shares 𝑆ℎ𝑖 from 𝑡 storage servers, i.e.,

𝑖 = 1, 2 . . . , 𝑡 .
3. Receive 𝑡 document shares 𝑆ℎ𝑖 and their signatures 𝑃𝑖 through

IT-secure channels.
4. Attest integrity of 𝑡 document shares by verifying signatures

as follows: 𝑣𝑒𝑟 (𝑝𝑘, 𝑃𝑖 , 𝑆ℎ𝑖 | |𝐼𝐷𝑀 ) ?
= true. If the check fails, the

TEE requests another document share from a different storage
4
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server 𝑆 𝑗≠𝑖 to reconstruct the original document, and notifies
the service provider of the corruption of storage server 𝑆𝑖 .

5. For every ℓ = 1, 2, . . . , 𝑁 :
a. Take 𝑡 shares, 𝜎1,ℓ , 𝜎2,ℓ , . . . , 𝜎𝑡,ℓ and reconstruct polynomial

𝑓 ∗
ℓ
(𝑥) using Lagrange interpolation, where 𝑓 ∗

ℓ
(𝑥) is the poly-

nomial obtained by the sum of polynomial 𝑓ℓ (𝑥) used in share
initialization Share and the polynomials 𝑔ℓ (𝑥) used for every
round the share renewal protocol Renew was run. The ℓ-th
chunk is retrieved as 𝑓 ∗

ℓ
(0) =𝑚ℓ .

6. Aggregate document𝑀 =𝑚1 | |𝑚2 | | . . . | |𝑚𝑁 .
7. Send𝑀 to the data owner over an IT-secure channel.

TEE Migration. SAFE is TEE-agnostic where the Renew proto-
col allows for TEE migration, which is crucial for long-term secure
storage systems. This is required when the currently used TEE 𝑇1
(its availability or private key) is compromised, in which case the
TEE provider facilitates secure and seamless migration to another
TEE𝑇2. However, this does not guarantee the integrity of the shares
if the TEE is compromised. Moreover, migration allows for updating
the security parameters of the signature scheme used, e.g., accord-
ing to NIST recommendations [13].

For migration, TEE 𝑇2 requires its own public and private
keys 𝑝𝑘𝑇2 and 𝑠𝑘𝑇2 , respectively, and the public key of TEE 𝑇1,
𝑝𝑘𝑇1 to verify the integrity of the shares integrity of step 3. The
provisioning of the keys and secure migration is managed by the
(honest-but-curious) TEE provider. To compute the new signatures,
TEE 𝑇2 uses its own private key and proceeds in the next update
phase with its own public key.

The security analysis of the protocols of SAFE and a comparison
with related work can be found in Appendices A and B, respectively.

4 INSTANTIATION AND EVALUATION

We instantiate SAFE using Intel SGX [17] as the TEE and an
adaptation of an open-source implementation of Shamir’s proactive
secret sharing scheme by Fletcher Penney3. The implementation
supports secret sharing of texts character by character, i.e., utilizes
a field F28+1. It implements Share and Reconstruct and allows
for specifying the number of servers 𝑛 and the threshold 𝑡 . We
modified this implementation to include the Renew for proactive
secret sharing as described in §3.2, i.e., by creating shares of zero
and adding them on the existing shares. We also modified the code
such that it uses the CPU’s hardware random generator as its ran-
domness source through the rdrand instruction. For the public-key
signatures, we used the RSA implementation of OpenSSL 1.0.2g
with 3072-bit RSA moduli. We embedded this program in an SGX
enclave using the Graphene-SGX framework [23].

Performance. We measure the performance of all three protocols
on Intel SGX, i.e., of Share, Renew and Reconstruct as described
in §3.2. In our experiments, we vary the number of shares 𝑛 and
the reconstructing threshold 𝑡 and report performance results for
documents containing between 100 bytes and 30MBytes of random
data. We ran our tests on an Intel i7-7700 CPU clocked at 3.60GHz,
with 8GB of RAM and Ubuntu 16.04.5 OS.

Figure 2 shows the time required to perform Share, Renew, and
Reconstruct using different values for our parameters, namely
3https://github.com/fletcher/c-sss
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(a) Time required to create a set of shares using Share.
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(b) Time required to renew a set of shares with Renew.
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(c) Time required to reconstruct a set of shares using Reconstruct.

Figure 2: Runtimes of our algorithms.
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{𝑛 = 3, 𝑡 = 2}, {𝑛 = 5, 𝑡 = 3}, {𝑛 = 7, 𝑡 = 4}, {𝑛 = 9, 𝑡 = 5}, and
{𝑛 = 11, 𝑡 = 6}. In our experiment, the time required to perform the
secret-sharing computations scales linearly in the whole document
size range. The time required to sign a document scales linearly as
well, but there is also a constant-time component of approximately
2ms. Similarly, verifying a signature has a linear component and
a constant-time component of approximately 60µs. Creating and
renewing shares (Figure 2a, Figure 2b) requires multiple signatures,
so the time required does not increase significantly until 3KB, while
it increases linearly after 10KB. For a 30MB document, creating the
shares takes between 21s and 90s depending on the parameters 𝑛
and 𝑡 ; renewing the shares takes between 27s and 109s. Reconstruct-
ing the shares (Figure 2c) only requires signatures verification, so
it increases linearly in the whole range. Reconstructing the shares
of a 30MB document takes between 23s and 128s depending on
the parameters. To scale with larger document sizes, the document
can be segmented into smaller sized document blocks to reduce
the total share reconstruction latency. In doing so, the user request-
ing the total document can receive the reconstructed blocks in a
streamlined manner, rather than wait for the complete document.

Our prototype implementation stores the whole document and
the shares in enclave memory, which results in a bound on the size
of the document in our experiments. Modifying the implementation
to stream the shares to the enclave eliminates this bound entirely.
We can directly observe that the computation time scales linearly,
since the generation and verification of signatures contribute with
only a linear overhead to the overall runtime of the protocols.

5 CONCLUSION AND FUTUREWORK

In this paper, we introduced SAFE, a TEE-based long-term secure
storage system that provides a significantly more efficient means
to protect the confidentiality and integrity of outsourced data. It
leverages a TEE for the generation and periodic update of shares of
the data and securely provisions the shares to the storage servers.
SAFE requires significantly fewer information-theoretically secure
point-to-point channels and expensive commitment schemes are
no longer required because integrity is provided by signatures.
We instantiated the TEE for SAFE using Intel SGX and evaluated
the computation runtimes of the protocols. SAFE is TEE-agnostic;
any other TEE can be deployed and migration to another TEE
is also supported for stronger security and robustness guarantees.
Furthermore, SAFE, contrary to previous approaches, does not need
to assume a synchronous network.

For future work, we plan to address scenarios where the data has
to also be securely processed in a privacy-preserving manner (e.g.,
studies on genomic data) using secure multi-party computation.
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A SECURITY ANALYSIS

SAFE provides the same long-term confidentiality and integrity
guarantees as state-of-the-art secret sharing-based long-term se-
cure storage systems with Pedersen’s commitment, while signif-
icantly reducing the computation overhead and the number of
IT-secure channels required. On the one hand, long-term confiden-
tiality is provided by proactive secret sharing, where shares are
distributed to multiple storage servers and periodically renewed,
thus mitigating a mobile computationally bounded adversary. The
shares’ confidentiality during the execution of Share, Renew, and
Reconstruct is preserved because they are processed inside a TEE
and communicated over IT-secure channels (§3.2). On the other
hand, long-term integrity is provided because shares computed dur-
ing Share and Renew are created and signed by the TEE. Signature
schemes are deployed to verify the integrity of these shares prior to
Renew and Reconstruct. Share renewal allows SAFE to update
the security parameters of the signature scheme according to the
NIST recommendations, thus providing long-term security. Further-
more, if up to 𝑡 − 1 shares are found to be corrupted, the TEE can
recover the original document, or recompute correct shares and
redistribute them, thus preserving message integrity and providing
robustness. In short, the main primitives SAFE deploys to provide
the above guarantees are: 1) a Trusted Execution Environment,
2) Signature schemes and 3) IT-secure channels, detailed below.

Trusted Execution Environment.Wemake standard assump-
tions with respect to the trustworthiness of the TEE to guarantee
that it provides the state-of-the-art security guarantees described
above. Before processing any confidential data in the TEE, the trust
anchor at the TEE provider attests the integrity of the TEE. If the
TEE is in a trustworthy state, it is initiated and establishes IT-secure
channels with the involved parties to run the protocols, and com-
putations proceed securely and privately in the TEE. The shares
are generated in guaranteed isolation in the TEE; the honest-but-
curious TEE provider cannot acquire the shares and disclose the
outsourced data.

While leveraging the TEE allows us to achieve significant gains
in terms of efficiency (cf. §B.1), SAFE’s security guarantees rely
on the availability and trustworthiness of the TEE service and its
adherence to performing the computations as mandated by our
protocols (including the periodic share renewal), which is assumed
to be ensured by the TEE provider. Nevertheless, the TEE remains
vulnerable to DoS attacks which would compromise the confiden-
tiality and/or the integrity of the outsourced data. However, DoS
attacks are, in all use cases, a persistent threat for TEEs and are
thus out of scope in this paper.

We further emphasize that the TEE deployment and its specific
implementation is an orthogonal problem to our work. The TEE
service can be provided by a single isolated computing server that
serves only one data owner exclusively. Alternatively, it can also be
deployed as a cloud service that provides different TEE instances
for different data owners securely, or even within one of the storage
servers. Thus, SAFE is independent of the specific TEE implemen-
tation and is compliant with any TEE infrastructure that provides
the requirements outlined in §3.

Signature schemes. In state-of-the-art approaches, the in-
tegrity of shares (and thus, of the outsourced data) is provided

by Pedersen commitments, which are computationally binding,
i.e., integrity is provided against a computationally bounded ad-
versary only. SAFE does not weaken the adversary model since
it leverages signature schemes, which provide integrity against
a computationally bounded adversary as well. However, despite
providing the same security guarantees, SAFE achieves this at a
lower computation and communication cost. Moreover, because
signature schemes are deployed and always updated in compliance
with the NIST recommendations [13], SAFE guarantees resilience to
the growth of the computational power of the adversary over time.
The private key used for the signatures in SAFE is sealed in the
TEE provider, i.e., encrypted with the TEE’s secret key. However,
it is also possible to avoid this sealing mechanism by generating a
fresh pair of private-public keys at every occurrence of Renew as
follows: the shares that the Renew outputs at a certain round are
signed with the currently used private key. These signed shares are
provisioned to the storage servers. On the next round of Renew,
the signature of each share is first verified by the TEE with the
counterpart public key before proceeding with the share update.
However, the updated shares are then signed by the TEE using a
fresh private-public key pair generated at the beginning of Renew.
In this case, only the public key needs to be sealed, while the private
key is never stored or sealed by the TEE provider. To prevent replay
attacks where a compromised storage server may send the TEE an
old benign share and its signature, timestamps or version numbers
are included in the signatures computed by the TEE at every round
of Renew.

IT-secure channels. Finally, the security of SAFE relies, by defi-
nition, on the use of information-theoretically secure point-to-point
channels in the network, which are also required for the existing
solution discussed in §2. The difficulty in establishing such channels
remains a fundamental limitation (see §1) that long-term secure
storage systems face to provide their stringent security guarantees,
is not specific to SAFE, and is out of scope for this work. Neverthe-
less, the merit of SAFE lies in significantly optimizing the required
number of such IT-secure channels while still achieving the same
security guarantees as state-of-the-art approaches.4

B COMPARISONWITH RELATEDWORK

Besides Shamir’s secret sharing scheme, distributed storage sys-
tems can also be built over hierarchical secret sharing schemes,
where shares can be periodically renewed similarly to Shamir’s
scheme, as shown in [22]. Two main approaches exist for share
renewal: those with synchronous networks and those with asyn-
chronous networks. For synchronous networks, besides the seminal
approach by Herzberg et al. [16] (see §2), Desmedt and Jajoda [12]
proposed protocols that enable to dynamically add and remove
storage servers. However, verification was not possible, and thus
inconsistent shares from corrupted storage servers could not be
detected. Wong et al. [25] mitigated this issue by enabling the stor-
age servers in their protocols to verify their new shares once they
got distributed. However, it is assumed that all the storage servers
are honest during the redistribution phase. Gupta and Gopinath
4Note that IT-secure channels are required because it is assumed that the adversary
can capture and store communication traffic and decrypt them many decades later
once the underlying mathematical problems of cryptosystems become computationally
solvable. Otherwise, TLS channels could be used instead.
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eliminated this assumption in [14] by allowing an honest majority
among the storage servers during the redistribution phase by using
Feldman’s commitment scheme in their protocol. They proposed
a revised protocol in [15] using Pedersen’s commitment scheme
to achieve information-theoretic confidentiality of the outsourced
data. Brendel and Demirel in [4] optimized the number of IT-secure
channels by clustering the storage servers into groups that can
communicate securely only within the cluster. However, reducing
the number of IT-secure channels was their only goal and they
achieved that at the cost of further complicating the computations
through homomorphic enryption and further signature schemes.
Since we optimize both the number of IT-secure channels and the
computational cost, we do not consider this work in our compari-
son below. In contrast to synchronous networks, proactive secret
sharing in asynchronous networks does not have access to a com-
mon global clock. Hence, the initiation of share renewal cannot be
synchronized among all nodes, which have access to an abstract
timer, as shown in [7]. In [20], the time intervals in which the share
renewal is performed are defined by the events of the protocol
itself. Instead, in [26] a conservative estimation of the time is used
for executing the share renewal. Note that, because there is no
upper bound on message delivery delays, it is hard to detect cor-
rupted storage servers as it is not possible to distinguish a storage
server deviating from the protocol and not sending anything from
a storage server that simply is late in responding.

Because all computations are performed by the TEE, SAFE does
not require a global common clock among all storage servers. This
means that SAFE is also a solution for proactive secret sharing that
optimizes the number for IT-secure channels even for asynchronous
networks [7]. Furthermore, SAFE is not only TEE-agnostic, but
also secret sharing-agnostic as it can be instantiated for example
with hierarchical secret sharing [22] when shares with different
reconstruction need to be distributed.

B.1 Communication Comparison

One of the most significant challenges in deploying long-term se-
cure storage systems in practice is establishing IT-secure channels
between all relevant nodes. SAFE makes a considerable advance-
ment in this direction by reducing the number of IT-secure channels
needed to carry out the long-term secure storage of outsourced data.
We compare SAFEwith state-of-the-art approaches [14–16, 22] that
provide the same security guarantees, i.e., they assume an honest
majority (𝑛 ≥ 2𝑡 − 1), protect the integrity of the outsourced doc-
ument (not only its confidentiality), and do not relax the security
requirements of the point-to-point channels between nodes.

As shown in Table 1, SAFE significantly outperforms all previ-
ous systems in terms of the number of IT-secure channels needed
within the long-term secure storage system. When 𝑑 data owners
use the same long-term secure storage system composed of 𝑛 stor-
age servers, for Share and Reconstruct, SAFE needs, respectively,
𝑛 + 𝑑 and 𝑡 + 𝑑 IT-secure channels compared with the 𝑛𝑑 IT-secure
channels needed in state-of-the art approaches. That is because in
SAFE the data owners do not communicate directly with the stor-
age servers and, instead, they establish IT-secure channels with the
TEE, which works as a mediator node. Only the TEE is connected to

Protocol Share Renew Reconstruct
[14–16, 22] 𝑛𝑑

𝑡 (𝑡−1)
2 + 𝑡 (𝑛 − 𝑡) 𝑡𝑑

SAFE 𝑛 + 𝑑 𝑛 𝑡 + 𝑑
Table 1: Comparison of the number of IT-secure channels

needed in long-term secure storage systems for 𝑑 data own-

ers, 𝑛 storage servers and reconstructing threshold 𝑡 .

all the storage servers through 𝑛 IT-secure channels and this num-
ber does not depend on the number of data owners (cf Figure 1b).
Furthermore, in SAFE, the 𝑛 IT-secure channels already established
to run Share are sufficient to carry out Renew.

In contrast to SAFE, all other approaches require additional chan-
nels between the storage servers to perform share renewal dis-
tributedly. Renew and Reconstruct are compared assuming the
optimized version of the protocols, where only 𝑡 storage servers
are, respectively, actively generating and distributing randomness
values and provisioning the data owner with the necessary number
of reconstructing shares. The quantity 𝑡 (𝑡−1)

2 + 𝑡 (𝑛 − 𝑡) is always
larger than 𝑛, assuming a reasonable threshold 𝑡 ≥ 2 (otherwise
secret sharing becomes useless). In case 𝑛 ≫ 𝑡 , then 𝑡 (𝑛 − 𝑡) ≥ 𝑛,
and in case 𝑡 ∼ 𝑛, then 𝑡 (𝑡−1)

2 ≥ 𝑛.
Besides the number of IT-secure channels, the volume of traffic

communicated through the IT-secure channels in SAFE is reduced
in comparison with the other approaches. To protect integrity,
commitments to the coefficients of a polynomial of degree 𝑡 − 1
are communicated via a broadcast channel in all state-of-the-art
approaches. A broadcast channel is not needed in SAFE, instead,
only signatures on the generated document share for each of the 𝑛
shares are sent through the IT-secure channels.

B.2 Computation Comparison

SAFE has substantially lower computation overhead than [14–
16, 22]. More precisely, during Renew, SAFE requires that the
TEE computes only one polynomial of degree 𝑡 − 1 from which
the 𝑛 randomness values are generated and summed to the corre-
sponding old shares. Instead, 𝑡 (or 2𝑡 for [15] due to the usage of
Pedersen’s commitment scheme) polynomial evaluations for the
computation of 𝑡𝑛 (or 2𝑡𝑛) randomness values have to be performed
in [14–16, 22] even for the optimized protocol where 𝑡 servers gen-
erate randomness values. Furthermore, in SAFE only a signature
𝑃 ′
𝑖
= 𝑠𝑖𝑔𝑛(𝑠𝑘𝑇1 , 𝑆ℎ′𝑖 ) for each of the 𝑛 renewed document shares

𝑆ℎ′1, 𝑆ℎ
′
2, . . . , 𝑆ℎ

′
𝑛 is computed for the integrity check, as opposed

to the 𝑡2𝑁 (or 2𝑡2𝑁 for [15]) commitments that are computed for
each chunk in which the document is divided (𝑁 is the total num-
ber of chunks per document). We highlight that signatures are
computationally feasible to compute and are commonly adopted,
while it is still an open problem how commitment schemes can be
efficiently implemented. Similarly for Share, SAFE requires 𝑛𝑁
shares to be computed through polynomial evaluations and 𝑛 signa-
tures 𝑃1, 𝑃2, . . . , 𝑃𝑛 for the integrity check. Instead, in all previous
approaches, 𝑛𝑁 (or 2𝑛𝑁 for [15]) shares and additionally 𝑡𝑛𝑁 (or
2𝑡𝑛𝑁 for [15]) commitments have to be computed.
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