
Improved Threshold Signatures,
Proactive Secret Sharing, and Input Certification

from LSS Isomorphisms

Diego F. Aranha1, Anders Dalskov2, Daniel Escudero1, and Claudio Orlandi1

1 Aarhus University, Denmark
2 Partisia, Denmark

Abstract. In this paper we present a series of applications steming from
a formal treatment of linear secret-sharing isomorphisms, which are linear
transformations between different secret-sharing schemes defined over
vector spaces over a field F and allow for efficient multiparty conversion
from one secret-sharing scheme to the other. This concept generalizes the
folklore idea that moving from a secret-sharing scheme over Fp to a secret
sharing “in the exponent” can be done non-interactively by multiplying
the share unto a generator of e.g., an elliptic curve group. We generalize
this idea and show that it can also be used to compute arbitrary bilinear
maps and in particular pairings over elliptic curves.

We include the following practical applications originating from our
framework: First we show how to securely realize the Pointcheval-Sanders
signature scheme (CT-RSA 2016) in MPC. Second we present a construc-
tion for dynamic proactive secret-sharing which outperforms the current
state of the art from CCS 2019. Third we present a construction for MPC
input certification using digital signatures that we show experimentally
to outperform the previous best solution in this area.

1 Introduction

A (t, n)-secure secret-sharing scheme allows a secret to be distributed into n
shares in such a way that any set of at most t shares are independent of the
secret, but any set of at least t+ 1 shares together can completely reconstruct
the secret. In linear secret-sharing schemes (LSSS), shares of two secrets can be
added together to obtain shares of the sum of the secrets. A popular example of
a (n− 1, n)-secure LSSS is additive secret sharing, whereby a secret s ∈ Fp (here
Fp denotes integers modulo a prime p) is secret-shared by sampling uniformly
random s1, . . . , sn ∈ Fp subject to s1 + · · ·+ sn ≡ s mod p. Another well-known
example of a (t, n)-secure LSSS is Shamir secret sharing [Sha79] that distributes
a secret s ∈ Fp by sampling a random polynomial f(x) over Fp of degree at most
t such that f(0) = s, and where the i-th share is defined as si = f(i).

Linear secret-sharing schemes are information-theoretic in nature: they do
not rely on any computational assumption and therefore tend to be very efficient.
Furthermore, they are widely used in multiple applications like distributed

storage [GGJR00] or secure multiparty computation [CDM00]. Linear secret-
sharing schemes can be augmented with techniques from public-key cryptography,
such as elliptic-curve cryptography. As an example, consider (a variant of)
Feldman’s scheme for verifiable secret sharing3 [Fel87]: To distribute a secret
s ∈ Fp, the dealer samples a polynomial of degree at most t such that f(0) = s,
say f(x) = s+ r1x+ · · ·+ rtx

t, and sets the i-th share to be si = f(i). On top
of this, the dealer publishes s ·G, r1 ·G, . . . , rt ·G, where G is a generator of an
elliptic-curve group G of order p for which the discrete-log problem is hard. Each
party can now detect if its share si is correct by computing si ·G and checking
that it equals s ·G+ i1(r1G) + i2(r2G) + · · ·+ it(rtG).

While the general idea of using secret sharing “in the exponent” has been
used multiple times in the literature, we find that this has been done in a rather
ad-hoc way. Thus, a more formal and general treatment of these techniques is
currently missing.

1.1 Our Contributions

In this work we expand the range of applications which benefits from performing
“MPC in the exponent” by considering the case of secure signatures, proactive
secret sharing and input certification, providing novel protocols in each of these
settings that improve over the state of the art. We also provide experimental
results for some of our protocols. Furthermore, we generalize the idea of “secret
sharing in the exponent” by using a formal mathematical definition of linear
secret sharing, extending it to general vector spaces—of which elliptic curves are
particular cases—and using linear transformations between these vector spaces to
convert from one secret-shared representation to a different one. Less expressive
frameworks were presented in prior work like [DKO+20,ST19,CCXY18], to cite
some examples. Among other things our extensions show how generic multiplica-
tion triples over Fp can be used to securely compute general bilinear maps, of
which bilinear pairings are a particular case.

The contributions made in this work are summarized below. This listing also
serves as an overview of the rest of the paper.

– We show how generic multiplication triples can be used to compute securely
any bilinear map, after presenting an adequate mathematical foundation for
LSS isomorphisms. As we have mentioned, this is achieved by formalizing
the concept of linear secret-sharing isomorphisms (LSS isomorphisms)
which can be seen as a generalization of the idea of “putting the share in the
exponent”. This is done in Section 2.

– We demonstrate how LSS isomorphisms allow computation of scalar products
and furthermore show that it is possible to use our techniques to compute
bilinear pairings over secret-shared data using any secure computation proto-
col. This is done in Section B in the Appendix, where the first part shows

3 A verifiable secret-sharing scheme is one in which parties can verify that the dealer
shared the secret correctly.

2

how to compute scalar multiplications and bilinear pairings, and where the
second part shows how to instantiate our techniques with various popular
secret-sharing schemes.

– To illustrate the usefulness of our LSS isomorphisms, we provide 3 applications.
The first of these is a demonstration of how digital signatures can be computed
and verified on secret-shared data. This is done in Section 3.

– Our second application demonstrates a protocol for dynamic proactive secret-
sharing (PSS). This uses the digital signatures and the result is a dynamic
PSS protocol with better communication complexity than the current state
of the art. This is done in Section 4.

– Our final application is input certification. We present a method for verifying
that a certain party provided input to a secure computation that was previ-
ously certified by a trusted party. We benchmark our protocol experimentally
and show that it significantly outperforms the previous best solution for input
certification for any number of inputs. The protocol is presented in Section 5,
and our experiments are presented in Section 6.

1.2 Related Work

As already mentioned, the idea of “putting the shares in the exponent” is folklore
and dates back at least to verifiable secret sharing [Fel87]. It has since then been
used in a variety of other contexts such as e.g. threshold decryption [CDI05,Sho00],
attribute-based encryption [GPSW06], polynomial commitments [KZG10], etc.
More recent works [DKO+20,ST19] have made use of this idea to develop generic
protocols for MPC over elliptic curves, mostly motivated by threshold ECDSA
signatures (a task which has received much attention lately due to its impact on
developing secure key-management solutions for cryptocurrencies). Compared to
previous work, our approach is to describe the folklore idea in the most general
framework, applying it to any linear secret-sharing scheme and also any vector
space isomorphism, since we believe that by providing a more general framework
we can enable a wider class of applications, as demonstrated by the example
applications in this paper. Other works have formalized a similar notion, like
the K-linear secret-sharing schemes from [CCXY18]. However, transformations
across these schemes have not been considered in full generality before.

In a recent work [FN20] the authors present protocols to securely compute
over elliptic curves (and also over lattices). The authors consider key generation
of elliptic-curve ElGamal, as well as decryption, based on generic MPC protocols.
In addition, a protocol for solving the discrete log of a secret-shared value is
presented. We present an alternative to such a decoding scheme in Appendix G.2
which can be seen as complimentary to their approach.

In [CKR+20] the authors construct protocols for multiplying matrices and
other bilinear operations such as convolutions based on the observation that the
widely used Beaver multiplication technique [Bea92] extends to these operations
as well. This turns out to be a particular instantiation of our framework from
Section 2 when the vector spaces are instantiated with matrix spaces and the
bilinear map is instantiated with matrix product.

3

Multiple works have addressed the problem of proactive secret-sharing. It
was originally proposed in [HJKY95,OY91], and several works have built on
top of these techniques [HJJ+97,SLL08,BELO15,BELO14,MZW+19], including
ours. Among these, the closest to our work is the state-of-the-art [MZW+19],
which also makes use of pairing-friendly elliptic curves to ensure correctness
of the transmitted message. However, a crucial difference is that in their work,
a commitment scheme based on elliptic curves, coupled with the technique of
“putting the share in the exponent” is used to ensure each player individually
behaves correctly. Instead, in our work, we use elliptic curve computation on the
secret rather than on the shares, which reduces the communication complexity,
as shown in Section 4.

Finally, not many works have been devoted to the important task of input
certification in MPC. For general functions, the only works we are aware of
are [BB16,KMW16,ZBB17,BJ18]. Among these, only [BJ18] tackles the problem
from a more general perspective, having multiple parties and different protocols.
In [BJ18], the concept of signature schemes with privacy is introduced, which
are signatures that allow for an interactive protocol for verification, in such
a way that the privacy of the message is preserved. The authors of [BJ18]
present constructions of this type of signatures, and use them to solve the input
certification problem. However, the techniques from [BJ18] differ from ours at
a fundamental level: Their protocols first computes a commitment of the MPC
inputs, and then engage in an interactive protocol for verification to check the
validity of these inputs. Furthermore, these techniques are presented separately
for two MPC protocols: one from [DN07] and one from [DKL+13]. Instead, our
results apply to any MPC protocol based on linear secret-sharing schemes, and
moreover, is much simpler and efficient as no commitments, proofs of knowledge,
or special verification protocol are needed.

2 LSS Isomorphisms and Bilinear Maps

Let F be a prime field of order p. We use a ∈R A to represent that a is sampled
uniformly at random from the finite set A.

2.1 Linear Secret Sharing

In this section we define the notion of linear secret sharing that we will use
throughout this paper. Most of the presentation here can be seen as a simplified
version of [CDN15, Section 6.3], but it can also be regarded as a generalization
since we consider arbitrary vector spaces. Similar notions have been considered
in the literature before. For example, the same concept presented in a slightly
different way has been consider in [CCXY18] under the term of general K-linear
secret-sharing schemes.

Definition 1. Let F be a field. A linear secret sharing scheme (LSSS) S over F
for n players is defined by a matrix M ∈ Fm×(t+1), where m ≥ n, and a function

4

label : {1, . . . ,m} → {1, . . . , n}. We say M is the matrix for S. We can apply
label to the rows of M in a natural way, and we say that player Plabel(i) owns the
i-th row of M . For a subset A of the players, we let MA be the matrix consisting
of the rows owned by players in A.

To secret-share a value s ∈ F, the dealer samples uniformly at random a
vector rs ∈ Ft+1 such that its first entry is s, and sends to player Pi each row of
M · rs owned by this player.4 We write Js, rsK for the vector of shares M · rs, or
simply JsK if the randomness vector rs is not needed. Observe that the parties
can obtain shares of s1 + s2 from shares of s1 and shares of s2 by locally adding
their respective shares. We denote this by Js1 + s2K = Js1K + Js2K.

The main properties of a secret sharing scheme are privacy and reconstruction,
which are defined with respect to an access structure. In this work, and for the
sake of simplicity, we consider only threshold access structures. That said, our
results generalize without issue to more general access structures as well.

Definition 2. An LSSS S = (M, label) is (t, t+ 1)-secure if the following holds:

– (Privacy) For all s ∈ F and for every subset A of players with |A| ≤ t, the
distribution of Mrs is independent of s

– (Reconstruction) For every subset A of players with |A| ≥ t + 1 there is a
reconstruction vector eA ∈ FmA such that eᵀA(MArs) = s for all s ∈ F.

2.2 LSS over Vector Spaces

Let V be a finite-dimensional F-vector space, and let S = (M, label) be an LSSS
over F. Since V is isomorphic to Fk for some k, we can use the LSSS S to
secret-share elements in V by simply sharing each one of its k components. This
is formalized as follows.

Definition 3. A linear secret-sharing scheme over a finite-dimensional F-vector
space V is simply an LSSS S = (M, label) over F. To share a secret v ∈ V , the
dealer samples uniformly at random a vector rv ∈ V t+1 such that its first entry
is v, and sends to player Pi each row of M · rv ∈ V m owned by this player.
(t, t+ 1)-security is preserved. To reconstruct, a set of parties A with |A| > t uses
the reconstruction vector eA as eᵀA(MArv) = v.

As before, given v ∈ V we use the notation Jv, rvKV , or simply JvKV , to denote
the vector in V m of shares of v. Similar notions have appeared in the literature
under the name multi-linear [BBPT14] or folded-linear [BBFP21] secret sharing.

4 Note that the use of the vector rv here where all but one entries are random is similar
to e.g., the choice of a random polynomial with a fixed 0-coefficient in Shamir’s secret
sharing.

5

2.3 LSS Isomorphisms

Let U and V be two finite-dimensional F-vector spaces, and let φ : V → U be a
vector-space isomorphism (we extend the definition of φ to operate on vectors
over V pointwise when convenient). According to the definition in Section 2.2,
any given LSSS S = (M, label) over F can be seen as an LSSS over V or over U .
However, the fact that there is a vector-space isomorphism from V to U implies
that, for any v ∈ V , the parties can locally get Jφ(v)KU from JvKV . We formalize
this below.

Definition 4. Let U and V be two finite-dimensional F-vector spaces, and let
φ : V → U be a vector-space isomorphism. Let S = (M, label) be an LSSS over
V . We say that the pair (S, φ) is a linear secret-sharing isomorphism.

The following simple proposition illustrates the value of considering LSS
isomorphisms.

Proposition 1. Let U and V be two finite-dimensional F-vector spaces, and let
(S, φ) be a LSS isomorphism from U to V . Given v ∈ V and Jv, rvKV , applying
φ to each share leads to Jφ(v), φ(rv)KU .

Proof. Observe that φ (Jv, rvKV) = φ(Mrv) = Mφ(rv) = Jφ(v), φ(rv)KU . ut

Remark 1 (About generalizing to LSS homomorphisms). In the definition above
we could have considered, more generally, LSS homomorphisms, where the map-
ping φ : V → U is a homomorphism that is not necessarily a bijection. If φ is
not surjective we can simply restrict the codomain to the vector space φ(V) ⊆ U .
However, when φ is not injective, then (t, t + 1)-security may not hold on the
resulting LSSS over φ(V), which makes the notion meaningless. This can be seen,
for example, if φ is the zero mapping, in which case the resulting scheme over
φ(V) = {0} only allows sharing the value 0 with zero-shares.

2.4 LSSS with Bilinear Maps

In Section 2.3 we saw how the parties could locally convert from sharings in one
vector space to another vector space, provided there is a linear transformation
between the two. The goal of this section is to extend this to the case of bilinear
maps. More precisely, let U, V,W be F-vector spaces of dimension d, and let
S = (M, label) be an LSSS over F. From Section 2.2, S is also an LSSS over U ,
V and W . Let ψ : U × V →W be a bilinear map, that is, the functions ψ(·, v)
for v ∈ V and ψ(u, ·) for u ∈ U are linear.

We show how the parties can obtain Jψ(u, v)KW from JuKU and JvKV , for
u ∈ U and v ∈ V . Unlike the case of a linear transformation, this operation
requires communication among the parties. Intuitively, this is achieved by using a
generalization of “multiplication triples” [Bea92] to the context of bilinear maps.
At a high level, the parties preprocess “bilinear triples” (JαKU , JβKV , Jψ(α, β)KW)

6

where α ∈ U and β ∈ V are uniformly random, open δ = u− α and ε = v − β,
and compute Jψ(u, v)KW as

ψ(δ, ε) + ψ(δ, JβKV) + ψ(JαKU , ε) + Jψ(α, β)KW = Jψ (δ + α, ε+ β)KW
= Jψ (u, v)KW .

In Appendix A we formalize this intuition and define a protocol Πbilinear parame-
terized by the map ψ, which takes as input JuKU , JvKV and outputs JwKW with
w = ψ(u, v).

3 Threshold Signature Schemes

In this section we show how our techniques can be used to securely sign and
verify messages that are secret shared, using keys that are similarly secret-shared.
More precisely, we present here three protocols: First, a key generation protocol
ΠKeygen for generating (pk, JskK) securely where pk is a public key and JskK a
secret-shared private key. Second, a signing protocol ΠSign protocol that on input
a secret shared message JmK and JskK output from ΠKeygen outputs JσK where σ
is a signature on m under sk. Finally, we present a verification protocol ΠVerify

which on input JmK, JσK and pk outputs JbK where b is a value indicating whether
or not σ is a valid signature on m under the private key corresponding to the
public key pk.

We choose to use the signature scheme [PS16] by Pointcheval and Sanders
(henceforth PS) as our starting point. The primary reason for choosing the PS
scheme is that signatures are short and independent of the message length, and
that messages do not need to be hashed prior to signing.5

Primitives for MPC. For this section, and for the rest of the paper, we will rely
on the existence of several functionalities to securely compute on secret-shared
data. We list them here in brief. Also, for a functionality/protocol Fabc/Πabc, we
denote by Cabc its total communication cost, in bits.

– FMulTriple outputs a triple (JaK , JbK , JcK) where c = ab.
– FDotProd takes as input (JxiK)Li=1 and (JyiK)Li=1, and produces JzK, where

z =
∑L
`=1 φ(x`y`).

– FMul takes two inputs JxK and JyK, and outputs JwK where w = xy. FMul is a
particular case of FDotProd for L = 1 (with φ the identity function).

– FRand(K) outputs JxK where x ∈ K, where K is a F-vector space. Notice
that it is enough to have a functionality which samples a secret-shared field
element: to get a secret point, parties can locally apply an appropriate LSS
isomorphism to obtain a secret-shared group element.

– FCoin(K) outputs a uniformly random s ∈ K to all parties.

5 A downside of e.g., ECDSA signatures is that messages have to be hashed first,
which creates a significant problem when messages are secret-shared, as hashing
secret-shared data is quite expensive.

7

The functionalities above are defined irrespectively of whether the adversary
is passive (that is, they respect the protocol specification) or active (the adversary
may deviate arbitrarily).6 The following functionality only makes sense for settings
with active security.

– FDotProd∗ takes as input (JxiK)Li=1 and (JyiK)Li=1, and produces Jz + δK, where

z =
∑L
`=1 φ(x`y`) and δ ∈ F is an error provided by the adversary.

The reason to consider this dot product functionality, which produces incorrect
results, is that (1) for some secret-sharing schemes this functionality can be
instantiated with a communication complexity that is independent of the length
L, and (2) that it suffices for some of the applications we consider later on. How
these functionalities are instantiated depends naturally on the choice of secret-
sharing scheme. We discuss instantiations for popular secret sharing schemes,
including the ones we will focus on what follows (additive and Shamir secret
sharing), in Section C in the Appendix.

3.1 The PS Signature Scheme

The PS signature scheme [PS16] signs a vector of messages m ∈ Fr as follows
(we present the multi-message variant here):

– Setup(1λ): Output pp ← (p,G1,G2,GT , e) where G1 6= G2 and where no
efficient homomorphism exists between G1 and G2 (i.e., a type-3 pairing).

– Keygen(pp): Select random H ← G2 and (x, y1, . . . , yr) ← Fr+1. Com-
pute (X,Y1, . . . , Yr) = (xH, y1H, . . . , yrH) set sk = (x, y1, . . . , yr) and pk =
(H,X, Y1, . . . , Yr).

– Sign(sk,m): Select random G ← G1 \ {0} and output the signature σ =
(G, (x+

∑r
i=1miyi) ·G).

– Verify(pk,m, σ): Parse σ as (σ1, σ2). If σ1 6= 0 and e(σ1, X +
∑
miYi) =

e(σ2, H) output 1. Otherwise output 0.

The remainder of this section will focus on how to instantiate the threshold
PS signature scheme securely.

3.2 Threshold PS Signatures

The ΠKeygen protocol presented below shows how to generate keys suitable for
signing messages of r blocks. The protocol proceeds as follows: parties invoke
FCoin and FRand a suitable number of times to generate the private key and then
use an appropriate LSS isomorphism to compute the public key.

6 One caveat is that the shares on their own may not define the secret if the adversary
is allowed to change the corrupt parties’ shares, which is the case for an active
adversary. This is an issue for example with additive secret sharing and an dishonest
majority (which can be fixed by adding homomorphic MACs), but not for Shamir
secret sharing with an honest majority. We discuss this in detail in Section C in the
Appendix.

8

Protocol ΠKeygen

Inputs: pp = (p,G1,G2,GT , e), r
Outputs: (pk, JskK)

1. Parties invoke FCoin(G2) to obtain H, and invoke FRand(F) a total of r + 1
times to obtain (JxK , Jy1K , . . . , JyrK).

2. Let φ2 : F → G2 be LSS-isomorphism given by φ2 : x 7→ xH. Using φ2,
compute JXKG2

= φ2(JxK) and JYiKG2
= φ2(JyiK) for i = 1, . . . , r.

3. Parties open X ← JXKG2
and Yi ← JyiKG2

for i = 1, . . . , r. Output the pair
(pk, JskK) where pk = (H,X, Y1, . . . , Yr) and JskK = (JxK , Jy1K , . . . , JyrK).

The communication complexity of ΠKeygen is CKeygen = CCoin(1) + CRand(r +
1) + COpen(r + 1) field elements.

Next up is computing Sign on secret-shared inputs (assumed to be generated
by a FInput functionality) given the tools we have described so far. The ΠSign

protocol below outputs a signature (σ1, Jσ2KG1
). The reasons for keeping σ1 public

are (1) that it simplifies things when we use this later, and (2) makes signing
more efficient. If, however, σ1 cannot be revealed then ΠPairing is needed for step
3.

Protocol ΠSign

Inputs: JskK = (JxK , Jy1K , . . . , JyrK), JmK = (Jm1K , . . . , JmrK)
Outputs: JσK

1. Parties obtain σ1 ∈R G1 by invoking FCoin(G1). If σ1 = 0, repeat this step.
2. Parties invoke JzK← FDotProd ((JyiK)ri=1, (JmiK)ri=1) and then compute JwK =

JxK + JzK.
3. Parties use the LSS isomorphism x 7→ x · σ1 to compute locally Jσ2KG1

←
ΠScalarMul(JwK , σ1).

4. Output (σ1, Jσ2KG1
).

Protocol ΠSign produces a correct signature with communication complexity
CCoin(1) + CDotProd(r).

Finally, we show a verification protocol ΠVerify in which a secret-shared GT
element JbKGT

where b = 1GT
if the signature was valid, or a uniform random

group element otherwise. While this is not a bit, it nevertheless carries the same
information. Below the signature we verify is (σ1, Jσ2KG1

), however if this is not
the case (in particular, if σ1 is secret-shared) then ΠPairing is needed in step 4.

Protocol ΠVerify

Inputs: pk = (H,X, Y1, . . . , Yr), JmK = (JmiK)ri=1, σ = (σ1, Jσ2KG1
)

Outputs: JbKGT
= J1GT K if Verify(pk,m, σ) = 1 and a random value otherwise.

1. If σ1 = 0 then output JµKGT
← FRand(GT).

9

2. Compute JαKGT
= e(Jσ2K , H) using the LSS isomorphism x 7→ xH.

3. Locally compute JβKGT
= e(σ1, X+

∑r
i=1 JmiKYi) using LSS isomorphisms.

4. Output JbKGT
← ΠScalarMul(JρK , JαKGT

/ JβKGT
) where JρK was obtained by

invoking FRand.

The communication complexity of the ΠVerify protocol is CRand(1)+CScalarMul(1).
We now argue security.

Lemma 1. Protocol ΠVerify outputs a secret-sharing of 1GT
if σ = (σ1, Jσ2KG1

)
is a valid signature on JmK with public key pk, otherwise the protocol outputs a
secret-sharing of a uniformly random element.

Proof. Note that JαKGT
/ JβKGT

= Je(σ1, X +
∑
imiYi)/e(σ2, H)KGT

which is

1GT
if and only if e(σ1, X +

∑
imiYi) = e(σ2, H); that is, if the signature is valid.

Thus we have that the distribution of JbKGT
= J(a/β)ρKGT

is either uniformly
random (if α 6= β), or 1GT

(if α = β). To see that JbKGT
is uniformly random

when α 6= β it suffices to note that α/β is a generator of GT and that ρ was
picked at random. ut

It is likewise possible to see that any successful attack on (ΠKeygen, ΠSign, ΠVerify)
can easily be turned into an attack on the original PS signature scheme, in par-
ticular on the EUF-CMA [GMR88] property of the PS signature scheme.

We consider an ideal threshold signature functionality roughly equivalent
to the Ftsig functionality presented in [CGG+20], the main difference being
that we do not consider key refreshment. It is possible to show that ΠPS =
(ΠKeygen, ΠSign, ΠVerify) securely realizes this functionality

The Ftsig functionality records a message as signed once it has received a sign
request from t+1 parties. During verification, Ftsig receives a tuple (m,σ, pk) and
does one of three things: If (m,σ, b) was previously recorded, then b is returned
(that is, the signature was previously verified and b was the result); If m was
never signed, then b = 0 is returned, and if (m,σ) was not previously verified
but m was signed, then b = Verify(pk,m, σ) is returned.

Importantly, distinguishing between ΠPS and Ftsig happens only if the ad-
versary manages to input a pair (m,σ, pk) such that m was never signed, but
1 = Verify(pk,m, σ). However, this corresponds precisely to breaking the EUF-
CMA property of the PS signature scheme.

Due to our black-box use of the MPC functionality, the security of the resulting
threshold-signature scheme will inherit the same security properties (e.g., number
of parties, honest vs. dishonest majority, passive vs. active security, stand-alone
vs. UC security, etc.) as the MPC protocol used to implement the functionality.

Extensions to other schemes. Our techniques, here presented for the PS signature
scheme, could easily generalize to any other “sufficiently algebraic” signature
scheme (a formal definition of “algebraic signatures” has recently appeared
in [DHH+21]). In fact, most signatures used for anonymous credentials are

10

similarly algebraic e.g., CL [CL04], BBS+ [CL04,ASM06], Boneh-Boyen [BB04],
as well as algebraic MACs [CMZ14,CPZ20] (note that one can see PS signatures
as an instance of an algebraic MAC from [CMZ14] instantiated in a group with
a pairing to enable public verification).

4 Applications to Proactive Secret Sharing

Secret sharing allows a dealer to distribute a secret such that an adversary with
only access to some subset of the shares cannot learn anything about the secret.
However as time passes it becomes harder to argue that no leakage beyond this
subset takes place, and thus that the secret remains hidden from the adversary.
Proactive Secret-sharing (PSS) deals with this problem by periodically “refreshing”
(or proactivizing) shares such that shares between two proactivization stages
become “incompatible”.

Typically, the case of interest in the PSS setting is honest majority, since in
this case the value of the underlying secret is determined by the shares from
the honest parties only. In this section we focus on Shamir secret-sharing, as
described in Section C.2 in the Appendix, and we denote such sharings by J·K.
We assume that 2t+ 1 = n. Multiple PSS schemes have been proposed for this
case, but for the special situation of dynamic PSS (a PSS scheme is dynamic if
the number of parties and threshold can change between each proactivization),
CHURP is presented in [MZW+19]. In a nutshell, CHURP first performs an
optimistic proactivization and, if cheating is detected, falls back to a slower
method that is able to detect cheaters.

In what follows we show how to use the protocols for signatures developed
in Section 3 to obtain a conceptually simple and efficient dynamic PSS with
abort. We first develop a highly efficient protocol for proactivizing a secret that
guarantees privacy, but allows the adversary to tamper with the transmitted
secret. Then, we use our signatures to transmit a signature on the secret, that
can be checked by the receiving committee. In this way, due to the unforgeability
properties of the signature scheme, an adversary cannot make the receiving
committee accept an incorrectly transmitted message. This construction leads to
a 9-fold improvement in terms of communication with respect to the optimistic
protocol from [MZW+19].

We say that the parties have consistent sharings of a secret x if each Pi knows
a value si such that there exists a polynomial f(x) of degree at most t with
f(i) = si and f(0) = s.

4.1 Proactive Secret Sharing

We present here the definitions of proactive secret sharing, or PSS for short. We
remark that our goal is not to provide formal definitions of these properties but
rather a high level description of what a PSS scheme is, so that we can present
in a clear manner our optimizations to the work of [MZW+19].

11

In a PSS scheme a set of n parties have consistent Shamir shares of a secret
JsK = (s1, . . . , sn) with threshold t. At a given stage, a proactivization mechanism
is executed, from which the parties obtain Js′K = (s′1, . . . , s

′
m). A PSS scheme

satisfies:

– (Correctness). It must hold that s = s′

– (Privacy). An adversary corrupting a set of at most t parties before the
proactivization, and also a (potentially different) set of at most t′ parties
after the proactivization, cannot learn anything about the secret s.

The PSS schemes we consider in this work are dynamic in that the set of
parties holding the secret before the proactivization step may be different than
the set of parties holding the secret afterwards. Note that the number of parties,
as well as the threshold, can change as part of the proactivization.

4.2 Partial PSS

In what follows we denote by C = {Pi}ni=1 and C′ = {P ′i}mi=1 the old and new

committees, respectively. Furthermore, we denote U = {Pi}t+1
i=1 and U ′ = {P ′i}

t′+1
i=1 .

As mentioned before, we consider Shamir secret-sharing, with threshold t < n/2
(resp. t′ < m/2). This ensures that the corrupt parties cannot modify their
shares without resulting in an error, thanks to error-detection, as discussed in
Section C.2 in the Appendix. Our protocol ΠPartialPSS is inspired by the protocol
from [BELO15], except that, since we do not require the transmitted message to
be correct, we can remove most of the bottlenecks like the use of hyper-invertible
matrices or consistency checks to ensure parties send shares consistently.

Protocol ΠPartialPSS(JsKC)

Inputs A shared value JsKC = (s1, . . . , sn) among a committee C.

Output: Either a consistently shared value Js′KC
′

or abort. If all parties behave
honestly then s′ = s.

1. Each Pi ∈ C samples si1, . . . , si,t+1 ∈R F such that si =
∑t+1

j=1 sij and sends
sij to Pj for j = 1, . . . , t+ 1.

2. Each Pi ∈ U samples rki ∈R F for k = 1, . . . , t′, and sets r0,i = 0.

3. Each Pi ∈ U sets aij = sji +
∑t′

k=0 rki · j
k and sends aij to P ′j , for each

j = 1, . . . ,m.

4. Each P ′j ∈ C′ sets s′j :=
∑t′+1

i=1 aij .
5. The parties in C′ output the shares (s′1, . . . , s

′
m).

Theorem 1. Protocol ΠPartialPSS satisfies the following properties.

1. Assume that initially the parties in C had consistent shares of a secret s.
Then the protocol results in the parties in C′ having consistent shares of s+ δ,
where δ is an additive error known by the adversary.

12

2. An adversary simultaneously controlling t parties in C and t′ parties in C′

does not learn anything about the secret input s.

The proof appears in Section D in the Appendix.

Extending to group elements. ΠPartialPSS can be extended to proactivize shares
JαKCG, where G is an elliptic curve group by running the same protocol “in the
exponent”. More formally, the LSS isomorphism x 7→ x ·G, where G is a generator
of G, is used. This will be used later on in our protocol. Finally, observe that
ΠPartialPSS communicates a total of n(n+ 1) field elements.

4.3 Simple and Efficient PSS with Abort

The protocol ΠPartialPSS presented in the previous section guarantees privacy and
consistency of the new sharings, but it does not satisfy the main property of a
PSS, which is guaranteeing that the secret remains the same. More precisely, a

malicious party may disrupt the output as Js+ γKC
′
← ΠPartialPSS(JsKC), where

γ is some value known by the adversary. This is of course not ideal, but it can
be fixed by making use of the signature protocols proposed in Section 3. In
a nutshell, the committee C uses ΠPartialPSS to send to C′ not only the secret
s, but also a signature on this secret using a secret-key shared by C. Then,
upon receiving shares of the message-signature pair, the parties in C′ proceed
to verifying this pair securely using C’s public key, and if this check passes then
it can be guaranteed that the message was correct, since the adversary cannot
produce a valid message-signature pair for a new message.

The protocol is presented more formally in Protocol ΠPSS below. The setup
regarding secret/public key pairs is also presented in the protocol.

Protocol ΠPSS(JsKC)

Inputs: A shared value JsKC = (s1, . . . , sn) among a committee C.

Output: Consistent shares JsKC
′

or abort.
Setup: Parties in C have a shared secret-key JskCKC, and its corresponding
public key pkC is known by the parties in C′. This can be easily generated by
using protocol ΠKeygen from Section 3.

1. Parties in C call (σ1, Jσ2KC)← ΠSign(JskCKC , JsKC).

2. Parties in C∪C′ call Js′KC
′
← ΠPartialPSS(JsKC) and Jσ′2K

C′ ← ΠPartialPSS(Jσ2KC).
3. P1, . . . , Pt+1 all send σ1 to the parties in C′. If some party in Pj ∈ C′

receives two different σ1 from two different parties, then the parties abort.

4. Parties in C′ call JvKC
′
← ΠVerify(Js′K

C′
, (σ1, Jσ′2K

C′
), pkC) and open v using

error detection. If v = 0GT then the parties in C′ output Js′KC
′
. Else, they

abort.

Intuitively, the protocol guarantees that the parties do not abort if and only
if the message is transmitted correctly. This follows from the unforgeability of

13

the signature scheme: If an adversary can cause the parties to accept with a
wrong message/signature pair, then this would constitute a forged signature. The
fact that privacy is maintained regardless of whether the parties abort or not is
more subtle, but essentially follows from the fact that decision to abort can be
shown to be independent of the secret (thus ruling out a selective failure attack).
Put differently, a decision depends only on the error introduced by the adversary
which is independent of the secret.

We summarize these properties in Theorem 2 below. In our proof we do
not reduce to the unforgeability of the signature scheme, but instead to a hard
problem over elliptic curves directly. This is easier and cleaner in our particular
setting, given that the signatures are produced and checked within the same
protocol. The computational problem we reduce the security of Protocol ΠPSS

to is the following, which can be seen as a natural variant of Computational
Diffie-Hellman (CDH) problem over G1.

Definition 5 (co-CDH assumption). Let G ∈ G1 and G′ ∈ G2 be generators.
Given (G,G′, aG, bG′) for a, b,∈R F, an adversary cannot efficiently find (ab)G.

With this assumption at hand, which is assumed to hold for certain choices
of pairing settings (see [FG12]), we can prove the following about the security of
ΠPSS.

Theorem 2. Protocol ΠPSS instantiates the PSS-with-abort functionality de-
scribed in Section 4.1, that is, if the parties do not abort in the protocol ΠPSS,

then the parties in C′ have shares JsKC
′
, where JsKC was the input provided to the

protocol. Furthermore, privacy of s is satisfied regardless of whether the parties
abort or not.

The proof appears in Section D in the Appendix.
Although we did not address this in our security arguments, the setup needed

for the protocol ΠPSS, namely that the parties in C have a shared secret-key
for which the parties in C′ know the corresponding public key, can be reused
for multiple successful proactivizations. Intuitively, this holds because, if the
adversary cheats in the proactivization, Theorem 2 shows that this is detected
with overwhelming probability, and if the adversary does not cheat then no extra
information about the secret-key from the committee C is leaked to the adversary.

Communication Complexity. The communication complexity of the ΠPSS protocol
when proactivizing L values is CPartialPSS(L+ 1) + CSign(L) + CVerify(L). We ignore
the opening of JvK at the end as this is independent of L. Recall that CSign(L) =
CCoin(1) + CDotProd(L), and CVerify(L) = CRand(1) + CScalarMul(1) For the case of
Shamir secret sharing, CRand(1) = 2n log |F|, using the protocol from [DN07]
and amortizing over multiple calls to FRand. Also, CDotProd(L) = 5.5n log |F|, and
CScalarMul(1) = 5.5n log |F| too, using a specialized bilinear protocol Πshm

DotProd for
Shamir SS described in Section C.2. We ignore the cost CCoin(1) since it can be
instantiated non-interactively using a PRG.

Given the above, the total communication complexity of the ΠPSS protocol is

log(|F|) · ((L+ 1) · n · (n+ 1) + 13n) bits.

14

Comparison with CHURP. The dynamic PSS protocol proposed in [MZW+19],
is to our knowledge state-of-the-art in terms of communication complexity. At a
high level, CHURP is made of two main protocols, Opt-CHURP, which is able to
detect malicious behavior during the proactivization but is not able to point out
which party or parties cheated, and Exp-CHURP, which performs proactivization
while enabling cheater detection at the expense of requiring more communication.
Since in this work we have described a PSS protocol with abort, we compare our
protocol against Opt-CHURP.

The total communication complexity of Opt-CHURP is 9Ln2 log |F| bits in
point-to-point channels, plus 256n bits over a blockchain,7 so our novel method
presents a 9-fold improvement over the state of the art. Furthermore, although
not mentioned in our protocol, a lot of the communication that appears in the
13n term in our ΠPSS protocol can be regarded as preprocessing, that is, it is
independent of the message being transmitted and can be computed in advance,
before the proactivization phase.

We note that our novel protocol ΠPSS is conceptually much more simple than
Opt-CHURP. Unlike in Opt-CHURP, our protocol does not require the expensive
use of commitments and proofs at the individual level (i.e. per party) in order
to ensure correctness of the transmitted value. Instead, we compute a global
signature of the secret and check its validity after the proactivization.

Finally, we present an optimization if multiple shared elements are to be
proactivized in Section F in the Appendix.

5 Applications to Input Certification

MPC does not put any restriction on what kind of inputs are allowed, yet such
a property has its place in many applications. For example, one might want to
ensure that the two parties in the classic millionaires problem [Yao82] do not lie
about their fortunes.

Signatures seem like the obvious candidate primitive for certifying inputs in
MPC: A trusted party T will sign all inputs xi of party Pi that need certification.
Then, after Pi have shared its input Jx′iK, which it may change if it is misbehaving,
parties will verify that Jx′iK is a value that was previously signed by T . While this
approach clearly works (if Pi could get away with sharing x′i, then Pi produced
a forgery) it is nevertheless hindered by the fact that signature verification is
expensive to compute on secret-shared values, arising from the fact that the usual
first step in verifying a signature is hashing the message, which is prohibitively
expensive in MPC. In this section we show that by using our secure PS signatures
from Section 3, this approach is no longer infeasible, and in fact, it is quite
efficient.

7 For a more detailed derivation of this complexity, see Section E in the appendix.

15

5.1 Certifying inputs with PS signatures

We consider a setting in which n parties P1, . . . , Pn wish to compute a function
f(x1, . . . ,xn), where xi ∈ FL corresponds to the input of party Pi. We assume that
all parties hold the public key pk of some trusted authority T , who provided each
Pi with a PS signature (σi1, σ

i
2) on its input xi. We also assume a functionality

FInput that, on input xi from Pi, distributes to the parties consistent shares
Jxi1K , . . . , JxiLK. We also assume the existence of a broadcast channel.

Our protocol, ΠCertInput, allows a party Pi to distribute shares of its input,
only if this input has been previously certified. (If multiple parties are providing
inputs, just repeat the protocol for all Pi’s).

Protocol ΠCertInput

Input: Index i ∈ {1, . . . , n} and
(
(xj)

L
j=1, σ1, σ2

)
from Pi.

Output: JxjK if Verify(pk, JxjK , (σ1, σ2)) = 1 for all j = 1, . . . , L, or abort.

1. Pi calls FInput to distribute
(

(JxjK)Lj=1, Jσ2KG1

)
. Also, Pi broadcasts σ1 to

all parties.
2. Parties call JbKGT

← ΠVerify(pk, (JxjK)Lj=1, σ1, Jσ2KG1
).

3. Parties open JbKGT
, who output (JxjK)Lj=1 if b = 1GT and abort otherwise.

Complexity analysis. The communication complexity of the protocol ΠCertInput is
CInput(L) + CVerify(L) + COpen(1) bits.

Security. The ΠCertInput protocol provides security in the sense defined in [BJ18].
In a nutshell, ΠCertInput guarantees that, if ΠCertInput succeeds, then the inputs
provided by the parties were certified by some authority. Indeed, this follows
immediately from the security of the protocols presented in Section 3: If a corrupt
Pi sends an incorrect share to an honest party, then that directly corresponds to
creating a forgery in the PS signature scheme.8

We present an optimization if multiple parties are intended to provide input
in Section F in the Appendix.

Comparison with [BJ18]. Certifying inputs for MPC with the help of signatures
has been studied previously in [BJ18]. However, the approach followed in that
work is conceptually much more complex than the one we presented here. At a
high level, instead of verifying the signature in MPC, the parties jointly produce
commitments of the secret-shared inputs, and then each input owner uses these
commitments, together with the signatures, to prove via an interactive protocol
(that roughly resembles a zero-knowledge proof of knowledge) “possession” of
the signatures. Furthermore, the protocols presented in [BJ18] depend on the

8 Notice that in the case the protocol does not succeed, nothing can be said about
what caused it to abort. If this property is desired, then the protocol underlying
ΠCertInput have to support identifiable abort.

16

underlying secret-sharing scheme used, and two ad-hoc constructions, one for
Shamir secret-sharing (using the MPC protocol from [DN07]) and another one for
additive secret sharing (using the MPC protocol from [DKL+13]), are presented.
Instead, our approach is completely general and applies to any linear secret-
sharing scheme, as defined in Section 2.

There are no claims about round complexity in [BJ18], but we counted eight
rounds of communication and two zero-knowledge proofs that can be made non-
interactive. Our protocol requires only 3 rounds: one to distribute the signature
and shares of the inputs, another to perform arithmetic in GT in MPC for
verifying the signature, and the final opening of the verification result.

We present in Section 6.1 a more experimental and quantitative comparison
between our work and [BJ18]. We observe that, in general, our approach is at
least 2 times more efficient in terms of computational and communication costs.

6 Implementation and Benchmarking

We implemented our protocols with the RELIC toolkit [AGM+] using the 128-
bit-secure pairing-friendly BLS12-381 curve. This curve has embedding degree
k = 12 and a 255-bit prime-order subgroup, and became popular after it was
adopted by the ZCash cryptocurrency [BCG+14]. It is now in the process of
standardization due to its attractive performance characteristics, including an
efficient towering of extensions, efficient GLV endomorphisms for scalar multipli-
cations, cyclotomic squarings for fast exponentiation in GT , among others. In
terms of security, the choice is motivated by recent attacks against the DLP in
GT [KB16] and is supported by the analysis in [MSS16]. Our implementation
makes use of all optimizations implemented in RELIC, including Intel 64-bit
Assembly acceleration, and extend the supported algorithms to allow computa-
tion of arbitrarily-sized linear combinations of G2 points through Pippenger’s
algorithm. We take special care to batch operations which can be performed
simultaneously, for example merging scalar multiplications together or combining
the two pairing computations within MPC signature verification as a product of
pairings. We deliberately enabled the variable-time but faster algorithms in the
library relying on the timing-attack resistance built in MPC, since computations
are performed essentially over ephemeral data. The resulting code was included
in the library.

We benchmarked our implementation on an Intel Core i7-7820X Skylake
CPU clocked at 3.6GHz with HyperThreading and TurboBoost turned off to
reduce noise in the benchmarks. Each procedure was executed 104 times and the
averages are reported in Table 1. It can be seen from the table that the MPC
versions of scalar multiplications and exponentiations introduce a computational
overhead ranging from 1.59 to 1.78, while pairing computation becomes only
30% slower. For the PS protocol, key generation and signature verification in
MPC are penalized in comparison to local computation by less than a 2-factor,
while the cost of signature computation stays essentially the same. There is no

17

Operation Local (cc) Two-party (cc)

Scalar multiplication in G1 386 612
Scalar multiplication in G2 1,009 1,796
Exponentiation in GT 1,619 2,772
Pairing computation 3,107 4,063

PS key generation (1 msg) 2,670 4,723
PS signature computation (1 msg) 626 654
PS signature verification (1 msg) 5,153 8,065

PS key generation (10 msgs) 11,970 23,464
PS signature computation (10 msgs) 656 668
PS signature verification (10 msgs) 10,144 12,953

Table 1. Efficiency comparison between local computation and two-party computation
of the main operations in pairing groups and PS signature computation/verification.
We display execution times in 103 clock cycles (cc) for each of the main operations in
the protocols and report the average for each of the two parties.

Number of messages

1 10 102 103 104 105 106

Ours 8.07 12.95 62.71 357.45 2,334.74 22,281.05 220,572.62
Comm. 0.93 1.22 4.10 32.90 320.90 3,209.00 32,090.00

[BJ18] 11.45 18.69 103.95 970.20 9,723.00 111,090.00 -
Comm. 1.02 2.81 20.70 200.00 1,950.00 19,500.00 195,000.00

Table 2. Efficiency comparison between our certified input protocol from Section 5 and
the one presented in [BJ18]. Performance numbers are measured in millions of clock
cycles (cc), and communication cost is represented in thousands of bytes (KB). Figures
are presented per party with highest runtime/communication cost.

performance penalty for signature computation involving many messages because
of the batching possibility in the PS signature scheme.

6.1 Certified Inputs

Here we compare our protocol for input certification from Section 5 with the
experimental results reported in [BJ18]. We choose [BJ18] as our point of com-
parison as it is the only other work which performs input certification using a
general n-party protocol. In their paper, the experiments are conducted with
three parties. To perform a fair comparison, we converted the timings from
the second half of Table 2 in [BJ18] to clock cycles using the reported CPU
frequency of 2.1GHz for an Intel Sandy Bridge Xeon E5-2620 machine. We used
as reference the largest running time or transmission cost of the running parties

18

(input provider and another party) reported in [BJ18], since the computation
would be bounded by the maximum running time and the communication latency
by the maximum bandwidth requirement. Each procedure in our implementation
was executed 104 times for up to 102 messages, after which we decreased the
number of executions linearly with the increase in number of messages. Our
results are shown in Table 2, and show that our implementations are already
faster for small numbers of messages, but improve on related work by a factor
of 2–5 when the number of messages is at least 100. Similar savings can be
observed in communication. While the two benchmarking machines are different
(Intel Sandy Bridge and Skylake), our implementations do not make use of any
performance feature specific to Skylake, such as more advanced vector instruction
sets. Hence we claim that the performance of our implementations would not be
different enough in Sandy Bridge to explain the difference, and just converting
performance figures to clock cycles makes the results generally comparable. The
efficiency improvements are also large enough that they would be preserved if
our implementation were scaled up to three parties as in [BJ18].

7 Acknowledgments

The authors would like to thank Greg Zaverucha and the anonymous reviewers
for useful feedback on earlier versions of this paper.

This work has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
under grant agreements No 669255 (MPCPRO) and No 803096 (SPEC), the
Concordium Blockhain Research Center at Aarhus University (COBRA), the
Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM), and the Danish Independent Research Council under Grant-ID DFF-
6108-00169 (FoCC). The first and last authors are affiliated to the DIGIT Centre
for Digitalisation, Big Data and Data Analytics at Aarhus University.

References

AFL+16. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma
Ohara. High-throughput semi-honest secure three-party computation with
an honest majority. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages
805–817. ACM Press, October 2016.

AGM+. D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao.
RELIC is an Efficient LIbrary for Cryptography. https://github.com/

relic-toolkit/relic.
ASM06. Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In

Roberto De Prisco and Moti Yung, editors, SCN 06, volume 4116 of LNCS,
pages 111–125. Springer, Heidelberg, September 2006.

BB04. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In
Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 56–73. Springer, Heidelberg, May 2004.

19

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic

BB16. Marina Blanton and Fattaneh Bayatbabolghani. Efficient server-aided secure
two-party function evaluation with applications to genomic computation.
PoPETs, 2016(4):144–164, October 2016.

BBFP21. Michael Bamiloshin, Aner Ben-Efraim, Oriol Farràs, and Carles Padró.
Common information, matroid representation, and secret sharing for matroid
ports. Des. Codes Cryptogr., 89(1):143–166, 2021.

BBPT14. Amos Beimel, Aner Ben-Efraim, Carles Padró, and Ilya Tyomkin. Multi-
linear secret-sharing schemes. In Yehuda Lindell, editor, TCC 2014, volume
8349 of LNCS, pages 394–418. Springer, Heidelberg, February 2014.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459–474. IEEE Computer Society Press, May 2014.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
420–432. Springer, Heidelberg, August 1992.

BELO14. Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky.
How to withstand mobile virus attacks, revisited. In Magnús M. Halldórsson
and Shlomi Dolev, editors, 33rd ACM PODC, pages 293–302. ACM, July
2014.

BELO15. Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky.
Communication-optimal proactive secret sharing for dynamic groups. In
Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Poly-
chronakis, editors, ACNS 15, volume 9092 of LNCS, pages 23–41. Springer,
Heidelberg, June 2015.

BIB89. Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant com-
puting in constant number of rounds of interaction. In Piotr Rudnicki,
editor, 8th ACM PODC, pages 201–209. ACM, August 1989.

BJ18. Marina Blanton and Myoungin Jeong. Improved signature schemes for secure
multi-party computation with certified inputs. In Javier López, Jianying
Zhou, and Miguel Soriano, editors, ESORICS 2018, Part II, volume 11099
of LNCS, pages 438–460. Springer, Heidelberg, September 2018.

CCXY18. Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amor-
tized complexity of information-theoretically secure MPC revisited. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III,
volume 10993 of LNCS, pages 395–426. Springer, Heidelberg, August 2018.

CDI05. Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseu-
dorandom secret-sharing and applications to secure computation. In Joe
Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 342–362. Springer,
Heidelberg, February 2005.

CDM00. Ronald Cramer, Ivan Damg̊ard, and Ueli M. Maurer. General secure multi-
party computation from any linear secret-sharing scheme. In Bart Preneel,
editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 316–334. Springer,
Heidelberg, May 2000.

CDN15. Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus Nielsen. Secure
multiparty computation. Cambridge University Press, 2015.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and
Udi Peled. Uc non-interactive, proactive, threshold ecdsa with identifiable
aborts. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’20, page 1769–1787, New York, NY,
USA, 2020. Association for Computing Machinery.

20

CKR+20. Hao Chen, Miran Kim, Ilya P. Razenshteyn, Dragos Rotaru, Yongsoo
Song, and Sameer Wagh. Maliciously secure matrix multiplication with
applications to private deep learning. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 31–59.
Springer, Heidelberg, December 2020.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In Matthew Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pages 56–72. Springer, Heidelberg, August 2004.

CMZ14. Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs
and keyed-verification anonymous credentials. In Gail-Joon Ahn, Moti Yung,
and Ninghui Li, editors, ACM CCS 2014, pages 1205–1216. ACM Press,
November 2014.

CPZ20. Melissa Chase, Trevor Perrin, and Greg Zaverucha. The signal private group
system and anonymous credentials supporting efficient verifiable encryption.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1445–1459. ACM Press, November 2020.

DEK20. Anders Dalskov, Daniel Escudero, and Marcel Keller. Secure evaluation of
quantized neural networks. Proceedings on Privacy Enhancing Technologies,
2020(4):355 – 375, 01 Oct. 2020.

DHH+21. Nico Döttling, Dominik Hartmann, Dennis Hofheinz, Eike Kiltz, Sven
Schäge, and Bogdan Ursu. On the impossibility of short algebraic sig-
natures. Cryptology ePrint Archive, Report 2021/738, 2021. https:

//eprint.iacr.org/2021/738.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. In Jason Crampton, Sushil Jajodia, and
Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages 1–18.
Springer, Heidelberg, September 2013.

DKO+20. Anders Dalskov, Marcel Keller, Claudio Orlandi, Kris Shrishak, and Haya
Shulman. Securing DNSSEC Keys via Threshold ECDSA From Generic
MPC. In Computer Security - ESORICS 2020 - 25th European Symposium
on Research in Computer Security, United Kingdom, September 14-18, 2020,
2020.

DN07. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 572–590. Springer, Heidelberg, August 2007.

Fel87. Paul Feldman. A practical scheme for non-interactive verifiable secret
sharing. In 28th FOCS, pages 427–437. IEEE Computer Society Press,
October 1987.

FG12. Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large
polynomials and matrix computations, with applications. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 501–512. ACM
Press, October 2012.

FJT13. Pierre-Alain Fouque, Antoine Joux, and Mehdi Tibouchi. Injective encodings
to elliptic curves. In Colin Boyd and Leonie Simpson, editors, ACISP 13,
volume 7959 of LNCS, pages 203–218. Springer, Heidelberg, July 2013.

FN20. Brett Hemenway Falk and Daniel Noble. Secure computation over lattices
and elliptic curves. Cryptology ePrint Archive, Report 2020/926, 2020.
https://eprint.iacr.org/2020/926.

21

https://eprint.iacr.org/2021/738
https://eprint.iacr.org/2021/738
https://eprint.iacr.org/2020/926

GGJR00. Juan A Garay, Rosario Gennaro, Charanjit Jutla, and Tal Rabin. Secure
distributed storage and retrieval. Theoretical Computer Science, 243(1-
2):363–389, 2000.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, April 1988.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In Ari
Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 2006, pages 89–98. ACM Press, October / November 2006.
Available as Cryptology ePrint Archive Report 2006/309.

GS92. Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials.
Information processing letters, 43(4):169–174, 1992.

GS20. Vipul Goyal and Yifan Song. Malicious security comes free in honest-
majority mpc. Cryptology ePrint Archive, Report 2020/134, 2020. https:

//eprint.iacr.org/2020/134.
HJJ+97. Amir Herzberg, Markus Jakobsson, Stanislaw Jarecki, Hugo Krawczyk,

and Moti Yung. Proactive public key and signature systems. In Richard
Graveman, Philippe A. Janson, Clifford Neuman, and Li Gong, editors,
ACM CCS 97, pages 100–110. ACM Press, April 1997.

HJKY95. Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proac-
tive secret sharing or: How to cope with perpetual leakage. In Don Copper-
smith, editor, CRYPTO’95, volume 963 of LNCS, pages 339–352. Springer,
Heidelberg, August 1995.

KB16. Taechan Kim and Razvan Barbulescu. Extended tower number field sieve:
A new complexity for the medium prime case. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 543–571. Springer, Heidelberg, August 2016.

KMW16. Jonathan Katz, Alex J. Malozemoff, and Xiao Wang. Efficiently enforcing
input validity in secure two-party computation. Cryptology ePrint Archive,
Report 2016/184, 2016. https://eprint.iacr.org/2016/184.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer,
Heidelberg, December 2010.

MSS16. Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with
assessing the impact of NFS advances on the security of pairing-based
cryptography. In Mycrypt, volume 10311 of LNCS, pages 83–108. Springer,
2016.

MZW+19. Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng
Zhang, Ari Juels, and Dawn Song. CHURP: Dynamic-committee proactive
secret sharing. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019, pages 2369–2386. ACM Press,
November 2019.

OY91. Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks
(extended abstract). In Luigi Logrippo, editor, 10th ACM PODC, pages
51–59. ACM, August 1991.

Pei06. Chris Peikert. On error correction in the exponent. In Shai Halevi and Tal
Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 167–183. Springer,
Heidelberg, March 2006.

22

https://eprint.iacr.org/2020/134
https://eprint.iacr.org/2020/134
https://eprint.iacr.org/2016/184

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In
Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 111–126.
Springer, Heidelberg, February / March 2016.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

Sho00. Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 207–220. Springer, Heidelberg,
May 2000.

SLL08. David A. Schultz, Barbara Liskov, and Moses Liskov. Mobile proactive
secret sharing. In Rida A. Bazzi and Boaz Patt-Shamir, editors, 27th ACM
PODC, page 458. ACM, August 2008.

ST19. Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve
based protocol. In Martin Albrecht, editor, 17th IMA International Confer-
ence on Cryptography and Coding, volume 11929 of LNCS, pages 342–366.
Springer, Heidelberg, December 2019.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

ZBB17. Yihua Zhang, Marina Blanton, and Fattaneh Bayatbabolghani. Enforcing in-
put correctness via certification in garbled circuit evaluation. In Simon N. Fo-
ley, Dieter Gollmann, and Einar Snekkenes, editors, ESORICS 2017, Part II,
volume 10493 of LNCS, pages 552–569. Springer, Heidelberg, September
2017.

23

Supplementary Material

A Bilinear maps for MPC

We formalize the intuition from Section 2.4 below where we describe the protocol
Πbilinear in detail.

For this protocol we assume a functionality FOuterProd that produce ran-
dom shares Ja1K , . . . , JadK , Jb1K , . . . , JbdK over F, together with JaibjK for i, j ∈
{1, . . . , d}. This is used to produce the “bilinear triples” mentioned earlier. (No-
tice further that the case where d = 1, FOuterProd corresponds to a classical
triple-preprocessing functionality.) Also, in the protocol below we assume that
{u1, . . . , ud} is a basis for U and that {v1, . . . , vd} is a basis for V .

Protocol Πbilinear

Inputs: JuKU and JvKV .
Output: JwKW where w = φ(u, v) ∈W .

OFFLINE PHASE

1. The parties call
(
{JaiK}di=1, {JbiK}di=1, {JaibjK}di,j=1

)
← FOuterProd.

2. The parties use the LSS isomorphisms x 7→ x · ui and x 7→ x · vi to locally
compute JαKU =

∑d
i=1 JaiK · ui and JβKV =

∑d
i=1 JbiK · vi, respectively.

3. The parties compute Jφ(aiui, bjvj)KW ← JaibjK · φ(ui, vj) using the LSS
isomorphisms x 7→ x · φ(ui, vj).

4. The parties compute locally Jφ(α, β)KW =
∑d

i,j=1 Jφ(aiui, bjvj)KW .

ONLINE PHASE

1. The parties open δ ← JuKU − JαKU and ε← JvKV − JβKV
2. The parties use the LSS isomorphism φ(δ, ·) to compute Jφ(δ, β)KW ←

φ(δ, JβKV), and similarly they use the LSS isomorphism φ(·, ε) to compute
Jφ(α, ε)KW ← φ(JαKU , ε).

3. The parties compute locally and output Jφ(u, v)KW = φ(δ, ε) + Jφ(δ, β)KW +
Jφ(α, ε)KW + Jφ(α, β)KW .

B Instantiations

In the previous section we developed a theory for LSS isomorphisms and secure
computation for bilinear maps based on an arbitrary linear secret sharing scheme
and an arbitrary linear transformation between vector spaces. Let G be an
elliptic curve group of order a prime p, which in particular means that G is
an F-vector space, and let G be a generator of G. Consider the isomorphism
φ : F → G given by x 7→ x · G. Let S = (M, label) be an LSSS over F. Given
what we have seen so far, S can be seen as an LSSS over G. To secret-share a
curve point P ∈ G, the dealer samples random points (P1, . . . , Pt), computes

24

(Q1, . . . , Qm)ᵀ = M · (P, P1, . . . , Pt)
ᵀ ∈ Gm, and sends Qi to party Plabel(i).

Furthermore, if s ∈ F is secret shared as JsK, the LSS isomorphism property
applied to φ implies that each party can locally multiply its share by the generator
G to obtain Js ·GKG. By instantiating the secret-sharing scheme with popular
constructions such as additive or Shamir secret-sharing, we obtain different
techniques used in previous works in the literature, as cited in the introduction.

Now, by choosing different bilinear maps we also obtain some techniques used
in previous works, such as [DKO+20,ST19]. Consider the scalar multiplication
map f : F×G→ G given by f : x, P 7→ x ·P . Using ΠBilinear with f we can obtain
the protocol ΠScalarMul (more precisely, ΠScalarMul is a special case of ΠBilinear when
the LSS isomorphism is f and the dimensions of the inputs are 1), described below,
which computes a scalar multiplication between a scalar and point when both
scalar and point are secret-shared. We remark that this protocol was presented
in [ST19] and as such our presentation here can be considered as illustrating
that ΠBilinear generalizes the techniques in their work. We assume access to a
triple pre-processing functionality FMulTriple that produces (JaK , JbK , Ja · bK), where
a, b ∈ F are uniformly random.

Protocol ΠScalarMul

Inputs: JxK and JP KG
Outputs: Jx · P KG

OFFLINE PHASE

1. Parties call (JaK , JbK , Ja · bK)← FMulTriple.
2. Parties use the LSS isomorphism x 7→ x · G for a generator G of G to

compute JBKG = JbK ·G and JCK = Ja · bK ·G.

ONLINE PHASE

1. Parties open d← JxK− JaK and Q← JP KG − JBKG.
2. Using the LSS isomorphism, parties compute JEKG = JaK ·Q and JF KG =

d · JBKG.
3. Parties compute locally Jx · P KG = JEKG + JF KG + d ·Q+ JCKG.

Bilinear Pairings. Consider G1,G2,GT elliptic curve groups of order a prime p. As
usual in the field of pairing-based cryptography, we use additive notation for the
groups G1,G2, and multiplicative notation for GT . We denote by 0G1

, 0G2
and 1GT

the identities of G1,G2 and GT , respectively. Consider a pairing e : G1×G2 → GT
satisfying:

1. For all G ∈ G1, H ∈ G2 and a, b ∈ F, e(aG, bH) = e(G,H)ab.
2. For P1 ∈ G1, P2 ∈ G2 with P1 6= 0, P2 6= 0, e(P1, P2) 6= 1.
3. The map e can be computed efficiently.

This notation will be used for the rest of the paper. In the context of Section 2,
the groups G1,G2,GT can be viewed as F-vector spaces of dimension 1, so we can

25

apply the techniques presented there to compute Je(P1, P2)KGT
from JP1KG1

and
JP2KG2

. We summarize the resulting protocol below. We let G1 and G2 denote
generators of G1 and G2, respectively.

Protocol Πpairing

Inputs: JP1KG1
and JP2KG2

.
Output: Je(P1, P2)KGT

.

OFFLINE PHASE

1. The parties call (JaK , JbK , Ja · bK)← FMulTriple.
2. The parties use the LSS isomorphisms x 7→ x ·G1 and x 7→ x ·G2 to locally

compute JQ1KG1
= JaK ·G1 and JQ2KG2

= JbK ·G2, respectively.
3. Using the LSS isomorphism x 7→ e(G1, G2)x, the parties compute

Je(Q1, Q2)K = Je(a ·G1, b ·G2)KGT
← e(G1, G2)JabK

ONLINE PHASE

1. The parties open D1 ← JP1KG1
− JQ1KG1

and D2 ← JP2KG2
− JQ2KG2

2. The parties use the LSS isomorphism e(Q1, ·) to compute Je(D1, Q2)KGT
←

e(D1, JQ2KG2
), and similarly they use the LSS isomorphism e(·, D2) to

compute Je(Q1, D2)KGT
← e(JQ1KG1

, D2).
3. The parties compute locally and output Je(P1, P2)KGT

= e(D1, D2) ·
Je(D1, Q2)KGT

· Je(Q1, D2)KGT
· Je(Q1, Q2)KGT

.

C Some Linear Secret Sharing Schemes

C.1 Additive Secret-Sharing

In this scheme each party Pi gets a uniformly random value ri ∈ F subject to∑n
i=1 ri = s, where s ∈ F is the secret. More formally, this scheme Sadd is defined

as (Madd, labeladd), where Madd ∈ Fn×n is given below, and labeladd(i) = i:
r1
r2
...

rn−1
s− r1 − · · · − rn−1

 =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
1 −1 −1 · · · −1


︸ ︷︷ ︸

Madd∈Fn×n

·


s
r1
r2
...

rn−1



It is easy to see that this scheme is (n−1, n)-secure. Let us denote additive secret

sharing of s by JsKadd, and abussing notation, we write JsKadd = (r1, . . . , rn),
where each ri is the share of party Pi. Given an elliptic curve group G of order p,
having G as generator, the parties can obtain shares of s ·G by locally multiplying
the generator G by their share ri; that is, Js ·GKadd = (r1 ·G, . . . , rn ·G).

26

Reconstruction. The scheme Sadd is mostly used in the dishonest majority
setting. However, at reconstruction time, a maliciously corrupt party can lie
about his share, causing the reconstructed value to be incorrect. To help solve
this issue, actively secure protocols in the dishonest majority share a secret s
as JsKadd, together with Jr · sKadd, where r is a global uniformly random value

that is also shared as JrKadd. We denote this by JsKadd∗. At reconstruction time,

the adversary may open JsKadd to s + δ where δ is some error known to the
adversary. To ensure that δ = 0 (so the correct value is opened), the parties

compute (s + δ) JrKadd − Jr · sKadd, open this value, and check it equals 0. It is
easy to see that this value equals r · δ, but since the adversary may cheat in this
opening, this opened value may be r · δ − ε. However, if δ 6= 0, this opened value
equals 0 if and only if r = ε/δ, which happens with probability at most 1/|F|
since ε and δ are chosen independently of the uniformly random r.

The same check can be performed over G: The sharings Js ·GKaddG are accom-

panied by Jr · s ·GKaddG , where r is a global uniformly random value that is also

shared as JrKadd. At reconstruction time Js ·GKaddG can be opened to (s+ δ) ·G,

and to ensure δ = 0 the parties open JrKaddG · (s+ δ) ·G− Jr · s ·GKaddG and check
that this point is the identity. It is easy to see that, like in the case over F, the
check passes with probability at most 1/|F| if δ 6= 0.

C.2 Shamir Secret-Sharing

Consider a setting with n parties, and let 0 < t < n. In this scheme each party
Pi gets f(i) where f(x) ∈R F≤t[x] subject to f(0) = s, and s ∈ F is the secret.9

We denote JsKshmF = (f(1), . . . , f(n)). More formally, this scheme Sshm is defined
as (Mshm, labelshm), where Mshm ∈ Fn×(t+1) is given below, and labelshm(i) = i:

s1
s2
...

sn−1
sn

 =


10 11 12 · · · 1t

20 21 22 · · · 2t

...
(n− 1)0 (n− 1)1 (n− 1)2 · · · (n− 1)t

n0 n1 n2 · · · nt


︸ ︷︷ ︸

Mshm∈Fn×(t+1)

·


s
r1
r2
...
rt



It is easy to see that this scheme is (t − 1, n)-secure. Over a vector space
V , sharing a point α ∈ V is done by sampling r1, . . . , rt ∈R V , and setting
the i-th share to be αi = α +

∑t
j=1 i

j · rj . In this way, αi = f(i), where

f(x) = α+
∑t
j=1 x

j · rj ∈R V≤t[x]. We denote this by JSKshmV .

Reconstruction. Consider a shared value JsKshm = (f(1), . . . , f(n)). If t ≥ n/2,
then it can be shown that, like in the additive scheme from Section C.1, the

9 We assume that |F| > n+ 1

27

adversary can succeed in opening an incorrect value by modifying the shares
of the corrupt parties. However, if t < n/2, this cannot be done: The honest
parties will be able to detect that the opened value is not correct. Furthermore,
if t < n/3, the honest parties can do better: On top of detecting whether the
open value is the right one, they can correct the errors and compute the right
secret. We describe these below, and we also discuss extensions to elliptic curves.

Error detection (t < n/2). Assume t < n/2, and suppose that at most t shares
among (s1, . . . , sn) are incorrect. If all shares (s1, . . . , sn) lie in a polynomial of
degree at most t, then the reconstructed secret must be correct, given that a
polynomial of degree at most t is determined by any t+ 1 points, in particular, it
is determined by the t+ 1 ≤ n− t correct shares. In this way, by verifying if all
the shares lie in a polynmial of the right degree, the parties can detect whether
the reconstructed value is correct or not. This can be done by interpolating a
polynomial of degree at most t using the first t + 1 shares, and then checking
whether the other shares are consistent with this polynomial.

Alternatively, the parties can use the parity check matrix H ∈ F(n−t−1)×n,
which satisfies that H · (s1, . . . , sn)T is the zero-vector if and only if the shares si
are consistent with a polynomial of degree at most t. This check can be performed
for the group sharings JP KG as well.

Error correction (t < n/3). If t < n/2 then the parties can detect whether a
reconstructed value is correct or not, but they cannot “fix” the errors in case the
value is not correct. Under the additional condition t < n/3, this can actually
be done, that is, the parties can reconstruct the correct value, regardless of any
changes the adversary does to the shares from corrupted parties. The algorithm
to achieve this proceeds, at least conceptually, as follows: The parties find a
subset of 2t+ 1 shares among the announced shares that lies in a polynomial of
degree at most t; this set exists because there are at least n− t ≥ 2t+ 1 correct
shares. Then, the secret given by this polynomial is taken as the right secret. This
is correct because of the same reason as in the previous case: This polynomial is
determined by any set of t+ 1 points among the 2t+ 1 ones that are consistent,
and in particular, it is determined by the t+ 1 = 2t+ 1− t correct shares, since
at most t of them can be incorrect.

The main bottleneck in the reconstruction algorithm sketched above is finding
a consistent subset of 2t+ 1 shares, since there are exponentially-many such sets.
To this end, an error-correction algorithm like Berlekamp Welch is used [GS92],
which has a running time that is polynomial in n.

Finally, it is important to remark that, unlike the error-detection mechanism
above, this error-correction procedure cannot be performed over the group G.
This interesting result was shown in [Pei06].

Dot Products of Shared Vectors. Let 2t+ 1 = n, and let U, V,W be F-vector
spaces of dimension d with bases {ui}di=1, {vi}di=1 and {wi}di=1, respectively.10

10 As in Section 2, the condition that all three spaces have the same dimension is not
necessary.

28

Consider a bilinear map φ : U × V →W . For the rest of this section we consider
Shamir secret sharing, and we omit the superscript shm from the sharings, and
consider explicitly the degree of the polynomial used for the sharing: J·Kh denotes
Shamir secret sharing using polynomials of degree at most h.

Consider shared values Jx1K
t
U , . . . , JxLKtU , Jy1K

t
V , . . . , JyLKtV . In this section

we describe a protocol to compute Jz + δKtW , where z =
∑L
`=1 φ(x`y`) and δ ∈W

is some error known to the adversary. The main building blocks of the protocol
are the following:

– The parties can locally obtain Jφ(α, β)K2tW from JαKtU and JβKtV . To see this,

write JαKtU = (f(1), . . . , f(n)) and JβKtU = (g(1), . . . , g(n)), for some f(x) ∈
U≤t[x] and g(x) ∈ V≤t[x] such that f(0) = α and g(0) = β. Write f(x) =∑t
i=0 x

i · ri and g(x) =
∑t
i=0 x

i · si, and let h(x) =
∑t
i,j=1 x

i+j · φ(ri, sj) ∈
W≤2t[x]. It is easy to see that h(0) = φ(α, β) and that h(i) = φ(f(i), g(i))

for all i = 1, . . . , n, so Jφ(α, β)K2tW = (h(1), . . . , h(n)).

– There exists a protocol ΠDoubleSh that produces a pair (JwKtW , JwK2tW), where

w ∈R W . Such a pair can be produced from d pairs (JriK
t
F , JriK

2t
F) by defining

JwKkW =
∑d
i=1 JriK

k · wi for k = t, 2t. These pairs over F can be produced
using the protocol from [DN07].

With these tools at hand we are ready to describe our main protocol.

Protocol Πshm
DotProd

Inputs: Shared values Jx1KU , . . . , JxLKU , Jy1KV , . . . , JyLKV .

Output: Jz + δKW , where z =
∑L

`=1 φ(x`, y`) and δ ∈W is some error known
to the adversary.

1. Call (JwKtW , JwK2tW)← ΠDoubleSh

2. Parties locally compute Jφ(x`, y`)K2tW ← φ(Jx`KtU , Jy`K
t
V), for ` = 1, . . . , L;

3. Parties compute JeKW = JwK2tW +
∑L

`=1 Jφ(u`, v`)K2tW and send the shares of
e to P1.

4. P1 uses the n = 2t + 1 shares received to reconstruct e + δ (where δ is
the error the adversary may introduce by lying about its shares), and
broadcastsa e+ δ to all parties.

5. All parties set Jz + δKtW = (e+ δ)− JwKtW .

a A proper broadcast channel must be used.

The protocol is private because the only value that is opened is e, which is a
perfectly masked version of the sensitive value z, given that w is uniformly random
and unknown to the adversary. The communication complexity of Πshm

DotProd is
CshmDotProd = d · log(|F|) · 5.5 · n, using the optimization from [GS20].

C.3 Replicated Secret Sharing

This is a (1, 2)-secure LSSS for 3 parties. In this scheme each party Pi gets
(ri, ri+1), where the sub-indexes wrap modulo 3, and s = r1 + r2 + r3, where

29

s ∈ F is the secret. We denote JsKrepF = ((r1, r2), (r2, r3), (r3, r1)). More formally,
this scheme Srep is defined as (Mrep, labelrep), where Mrep ∈ F6×3 is given below,
and labelrep(i) = di/2e for i = 1, . . . , 6.

r1
r2
r2

s− r1 − r2
s− r1 − r2

r1

 =


0 1 0
0 0 1
0 0 1
1 −1 −1
1 −1 −1
0 1 0


︸ ︷︷ ︸
Mrep∈F6×3

·

 s
r1
r2



Reconstruction. Consider a shared value JsKrep = ((r1, r2), (r2, r3), (r3, r1)). To
open this share, P1 sends (r1, r2), P2 sends (r2, r3), and P3 sends (H(r3), H(r1)),
where H is a collision resistant hash function. To verify that the opening is done
correctly, the shares announced by P1 and P2 are checked against the hashes
announced by P3. If they are consistent, since at most one party is corrupt, the
secret is correct.

Dot Products of Shared Vectors. Like in Section C.2, let U, V,W be F-vector
spaces of dimension d with bases {ui}di=1, {vi}di=1 and {wi}di=1, respectively, and
consider a bilinear map φ : U × V →W . For the rest of this section we consider
replicated secret sharing, and we omit the superscript rep from the sharings.

Consider shared values Jx1KU , . . . , JxLKU , Jy1KV , . . . , JyLKV . In this section

we describe a protocol to compute Jz + δKW , where z =
∑L
`=1 φ(x`y`) and δ ∈W

is some error known to the adversary. The only building blocks required for this
protocol are the following:

– The parties can locally obtain Jφ(α, β)KaddW from JαKrepU and JβKrepV . To see this,
write JαKrepU = ((α1, α2), (α2, α3), (α3, α1)) and JβKrepU = ((β1, β2), (β2, β3), (β3, β1)),
where α = α1+α2+α3 and β = β1+β2+β3. Let γi = φ(αi, βi)+φ(αi+1, βi)+
φ(αi, βi+1), for i = 1, 2, 3, which can be computed locally by party Pi. It is
easy to see that φ(α, β) = γ1 + γ2 + γ3, which completes the claim.

– A protocol for generating random shares J0KrepW . This can be done by generat-

ing d random shares J0KrepF , . . . , J0KrepF , and setting J0KrepW =
∑d
i=1 J0KrepF · wi.

Furthermore, generating each J0KrepF can be done non-interactively by dis-
tributing some shared keys among the parties in a setup phase, as shown in
[AFL+16].

– An interactive protocol for obtaining Jw + δKrepW from JwKaddW , where δ ∈ W
is an additive error known to the adversary. If JwKaddW = (η1, η2, η3), this is
achieved by letting each Pi send ηi to Pi+1, so JwKrepW = ((η1, η2), (η2, η3), (η3, η1)).
It is shown in [AFL+16] that the only attack the adversary may carry in this
protocol is adding an error δ.

Our main protocol is described below.

30

Protocol Π rep
DotProd

Inputs: Shared values Jx1KU , . . . , JxLKU , Jy1KV , . . . , JyLKV .

Output: Jz + δKW , where z =
∑L

`=1 φ(x`, y`) and δ ∈W is some error known
to the adversary.

1. Parties locally compute Jφ(x`, y`)KaddW ← φ(Jx`KrepU , Jy`KrepV), for ` = 1, . . . , L;

2. Parties sample J0KaddW and then locally compute JzKaddW = J0KaddW +∑L
`=1 Jφ(x`, y`)KaddW .

3. Parties convert Jz + δKrepW ← JzKaddW .

D Proofs

D.1 Proof of Theorem 1

Proof. We begin by introducing some notation. Let A ⊆ C and A′ ⊆ C′ be the
corresponding subsets of corrupt parties. For an honest party Pi it should hold
that si =

∑t+1
j=1 sij , where sij is the additive share sent by Pi to Pj in step 1.

However, for Pi ∈ A, this may not be the case, so we define δi ∈ F such that
si + δi =

∑t+1
j=1 sij . Finally, each Pi ∈ U is supposed to send aij in step 3, but

naturally, parties in A∩ U may not follow this. We define εij for Pi ∈ A∩ U and
j = 1, . . . , n in such a way that aij + εij is the value sent by Pi to P ′j in step 3.

It is easy to see that the value reconstructed by P ′j in step 4 is s′j =
∑t+1
i=1 aij =

εj + δj + sj +
∑t
k=0 rk · jk, where εj =

∑t+1
i=1 εij , rk =

∑t+1
i=1 rki (notice that

r0 = 0). This can be written as s′j = γj+h(j), where h(x) = f(x)+g(x) ∈ F≤t[x],

g(x) =
∑t
k=0 rk · xk ∈ F≤t[x] and γj = εj + δj .

Now we are ready to argue consistency of the final sharings. The honest
parties P ′j ∈ C′ \ A′ output the sharings s′j = γj + h(j). On the other hand, the
adversary knows all γi, so we can re-define the shares s′j ← s′j − γj + q(j) for

P ′j ∈ A′, where q(j) ∈ F≤t[x] is such that q(i) = γi for Pi ∈ C′ \ A′.11 This way
the sharings (s′1, . . . , s

′
j) are consistent with the polynomial h(x) + q(x) ∈ F≤t[x],

whose underlying secret is f(0) + g(0) + q(0) = s+ 0 + q(0) = s+ δ.
Finally, we argue privacy. For this we assume that q(x) ≡ 0 (that is, the

adversary did not cheat overall). This simplifies notation, but it is also without
loss of generality because as we saw above the worst thing an adversary can do
is shifting the secret by an amount the adversary itself knows. First, notice that
the view of the adversary is

({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈U∩A︸ ︷︷ ︸
Sampled locally

, {sij}Pi∈C,Pj∈U∩A︸ ︷︷ ︸
Received in step 1

, {aij}Pi∈U,P ′j∈A′︸ ︷︷ ︸
Received in step 4

),

where gi(x) =
∑t
k=0 rki · xt (notice that g(x) =

∑t+1
i=1 gi(x)). We claim that this

view is independent of the secret s. To see this, we define a simulator S that, on

11 Here we are using the fact that n = 2t+ 1 rather than the more general n ≥ 2t+ 1.

31

input ({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈U∩A) and without knowledge of s, produces an
indistinguishable view.

The simulator S is defined as follows:

– Sample sij ∈R F for Pi ∈ C \ A, Pj ∈ U ∩ A, and set sij := sij for Pi ∈
A, Pj ∈ U ∩ A.

– Define aij := sji + gi(j) for Pi ∈ U ∩ A, P ′j ∈ A′, and aij ∈R F for Pi ∈
U \ A, P ′j ∈ A′

– Output

({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈A, {sij}Pi∈C,Pj∈U∩A, {aij}Pi∈U,P ′j∈A′).

The two views are perfectly indistinguishable: {sij}Pi∈C,Pj∈U∩A ≡ {sij}Pi∈C,Pj∈U∩A
because, given that |U ∩ A| ≤ t < t+ 1, in the real execution the honest parties
Pi ∈ C \ A sample {sij}Pj∈U∩A independently and uniformly at random, like
in the simulation. Also {aij}Pi∈U,P ′j∈A′ ≡ {aij}Pi∈U,P ′j∈A′ given the rest of the

views because, in the real execution, {aij}Pi∈U\A,P ′j∈A′ are uniformly random

since they are only conditioned on aj =
∑t+1
i=1 aij = sj + g(j) for P ′j ∈ A′, but

since |A′| ≤ t and g(x) ∈R F≤t[x] with g(0) = 0, {g(j)}P ′j∈A′ are independent

and uniform so {aj}Pj∈A′ look uniform and independent to the adversary. ut

D.2 Proof of Theorem 2

Proof (Sketch). We only provide a sketch of the corresponding simulation-based
proof. Let s′ = s + δ and σ′2 = σ2 + γ, where δ ∈ F and γ ∈ G1 are the
errors introduced by the adversary in the ΠPartialPSS protocol. Our simulator
simply emulates the role of the honest parties, with these virtual honest parties
using random shares as inputs. The simulator also emulates all the necessary
functionalities like FDotProd∗, FCoin and FRand. Using an argument along the lines
of the proof of Theorem 1, the simulator is then able to learn the errors δ and γ.
The simulator then makes the virtual parties abort if δ 6= 0 or γ 6= 0G1 .

We show that the simulated execution is indistinguishable to the adversary
from a real execution. To see this, first observe that in the real execution, the
honest parties abort if the output of Verify∗ is not 0. Furthermore, it is easy to

see that the output of ΠVerify(Js′K
C′
, (σ1, Jσ′2K

C′
), pkC) is equal to 0 if and only if

δ · e(σ1, Y) = e(γ,H). Given this, the only scenario in which the two executions
(real and simulated) could differ is if δ 6= 0 or γ 6= 0G1 , but δ · e(σ1, Y) = e(γ,H),
since in this case the honest parties in the real execution do not abort, but the
honest parties in the ideal execution do. However, we show this cannot happen:
If δ 6= 0 or γ 6= 0G1

, then δ · e(σ1, Y) 6= e(γ,H), with overwhelming probability.
To see why the claim above holds, we make a reduction to the co-CDH

problem defined above: An adversary gets challenged with (α1H,α2H
′), and

its goal is to find α1α2H. The adversary then plays the simulator above, but
uses σ1 = α1H and Y = α2H

′. Now suppose that in the simulation δ 6= 0
and δ · e(σ1, Y) = e(γ,H ′). We can see then that this equation implies that
δα1α2 = β, where β ∈ F is such that γ = βH ′. In particular, it implies that

32

α1α2H = δ−1βH = δ−1γ, so the adversary, who knows δ and γ, can compute
α1α2H as above, thus breaking co-CDH. Finally, it is easy to see that if γ 6= 0
and δ · e(σ1, Y) = e(γ,H), then δ 6= 0 with high probability since otherwise
e(γ,H) = 0, so the same argument as above works. This finishes the sketch of
the simulation-based proof of the theorem. ut

E Communication Complexity of CHURP

CHURP, a dynamic PSS protocol proposed in [MZW+19], is the state of the
art in terms of communication complexity. At a high level, CHURP is made
of two main protocols, Opt-CHURP, which is able to detect malicious behavior
during the proactivization but is not able to point out which party or parties
cheated, and Exp-CHURP, which performs proactivization while enabling cheater
detection at the expense of being heavier in terms of communication. Since in
this work we have described a PSS protocol with abort, we compare our protocol
against Opt-CHURP.

The protocol Opt-CHURP is comprised of three main subprotocols: Opt-
ShareReduce, Opt-Proactivize and Opt-ShareDist. In the first sub-protocol, Opt-
ShareReduce, the parties in C distribute shares of their shares towards the parties
in C′. A threshold of 2t is used for these “two-level” shares to account for the
fact that the adversary may control t parties in each committee C and C′. We
could avoid such high degree sharing in our ΠPartialPSS protocol since there the
parties do not share their shares directly. In Opt-ShareReduce, to ensure that a
party sends the right share, the parties must also communicate commitments
and witnesses for certain polynomial commitment scheme (see [MZW+19] for
details). The concrete communication complexity of this step is 2Ln2 elements,
where L is the amount of shared field elements being proactivized.

In the second stage, Opt-Proactivize the parties in C′ produce reduced-shares
(that is, “shares of shares”) of 0 that are added to the reduce-shares of the secret.
We will not discuss the details of this procedure here, beyond mentioning that
this requires the parties to exchange shares and proofs in order to ensure the
correctness of this method. This incurs a communication complexity of 5Ln2

field elements, on top of requiring publishing n hashes on a blockchain, say 256n
bits using SHA256, which is a requirement that our protocol ΠPSS does not have.

In the final stage, Opt-ShareDist, each party in C′ sends the reduce-shares
of the i-th share to party P ′i , who reconstructs the refreshed share. Again,
opening information for certain commitments must be transmitted. This leads to
a communication complexity of 2Ln2.

We see then that the total (off-chain) communication complexity in Opt-
CHURP is 9Ln2 log(|F|) bits.

F Optimizations

33

F.1 Optimizations to PSS

If multiple shared elements Js1K
C
, . . . , JsLKC are to be proactivized, we can make

use of the fact that the signature scheme described in Section 3 allows for cheap
signing and verification of long messages without penalty in communication.

Also, as we noted in Section 3.2, we can use the more efficient functionality
FDotProd∗ instead of FDotProd, at the expense of allowing the adversary to produce
incorrect signatures by adding any error to the second component of the signature.
However, this is completely acceptable in our setting. In fact, the adversary can
already add an error to the second component of the signature when using the
ΠPartialPSS protocol. Hence, in our protocol ΠPSS we use the modified version of
ΠSign that uses FDotProd∗ instead of FDotProd.

Additionally, the fact that the worst that can happen in the ΠPartialPSS protocol
is that the transmitted message is wrong by an additive amount known by the
adversary implies that other methods to ensure correctness of the transmitted
value can be devised, like the MACs described in Section C.1 in the Appendix for
additive secret-sharing. Although the overall computation is much more efficient
since it does not involve any public-key operations, the communication of the
method we present here is worse by a factor of 2.

F.2 Optimization to Input Certification

If all parties P1, . . . , Pn use ΠCertInput to certify their input, each party can call
ΠCertInput, which, in the case that a protocol with guaranteed output delivery is
used to compute ΠVerify, allows parties to identify exactly which party provided
a faulty input. However, one can improve the communication complexity if a
“global” abort is accepted, that is, if the parties do not abort then all the inputs
are correctly certified, but if they do abort, then it is not possible to identify which
party provided an incorrect input (however, for protocols without guaranteed
output delivery, this is acceptable since the abort can already happen due to
malicious behavior in other parts of the protocol).

The optimization works as follows. Consider the n ΠCertInput executions, cor-
responding to all parties. At the end of step 2, n shares Jr1KGT

, . . . , JrnKGT
have

been produced. The parties then locally compute JrKGT
=

∏n
i=1 JriKGT

(recall
that GT is a multiplicative group), open r, and accept the secret-shared inputs if
and only if this opened value equals 1GT

. Notice that, if at least one signature
is incorrect, then at least one ri is uniformly random, so r will be uniformly
random too and therefore the probability that it equals 1GT

in this case is at most
1/|GT |. Even though this allows the adversary to introduce multiple errors, this
optimization is still secure. Indeed, if r = 1 and either all ri = 1 for all i = 1, . . . , n
or there exists two i, j with i 6= j such that ri 6= 1, rj 6= j, but ri · rj = 1 ∈ GT .
However, this implies that hρi = g−ρj for random bases g, h. (That g and h
are random follows from the fact that we assume the keys and signatures are
generated correctly). However, ρi and ρj are both chosen at random (as they are
output by FRand) so clearly cheating cannot happen with high probability.

34

G Secure Computation over Elliptic Curves

So far we have presented a fairly comprehensive “toolbox” for performing secure
computation over elliptic curves. We may view the LSS isomorphism φ : Fp → G
defined by φ(x) = x · G as a function that encodes x into the exponent of G.
While this enables the applications we presented in Section 3, Section 4 and
Section 5, it does not enable an efficient way of decoding.

The following example illustrates why this might lead to issues in some
applications: Parties hold JmKF and wish to encrypt it using El-Gamal. Using an
LSS isomorphism on JmK would effectively encode m in the exponent, and then
we could use secure computation over elliptic curves to compute the encryption
of m.

The above works for encryption. But what if the parties wish to recover JmK
from the encryption? Clearly, a party cannot recover mi from mi ·G since mi

(the share) is a random field element. On the other hand, we cannot reconstruct
m ·G towards a party as that would reveal the message.12

The issue above arises from the fact that the encoding of JmK was done using
the LSS isomorphism x 7→ x ·G, which is highly efficient due to its linearity, but
has a “one-wayness” to it, making it very hard to decode. In the following, we
show a different way of encoding a shared field element JmK in such a way that,
although the encoding itself is interactive (and therefore less efficient than the
LSS isomorphism encoding described above), the decoding process is practically
efficient. This enables a seamless interplay between traditional secure computation
over F, and secure computation over an elliptic curve group as defined here.

G.1 Preliminaries

In the following, we assume J·K corresponds to a secret-sharing scheme capable of
detecting errors, such as Shamir secret-sharing (cf. C.2). Additionally, we will
use two auxiliary functionalities which we describe here.

Functionality FsRand. The functionality FsRand used in the secure injective
encoding in Section G.2 has also seen other uses, in particular in connection with
secure truncation protocols such as in [DEK20]. FsRand can easily be realized
with a functionality for generating random bits. To obtain a k bit value r such
that its lower ` bits are zero, do the following:

1. Sample k − ` random bits JbiK for i = 0, . . . , k − `− 1.

2. Each party locally computes JrK = −2k−1bk−`−1 + 2`
∑k−`−1
i=0 2ibi.

Protocols ΠIsSqr and ΠSqrt. We present here two protocols: One for testing if
a number is a square, and another for computing the root of a square number.

12 A recent work show how to compute these discrete logs on secret-shared inputs and
their method can be seen as complimentary to ours [FN20].

35

Note that neither protocol is private if the input is 0. However, for our purposes
this is fine as we use them on random values only.

Protocol ΠIsSqr

Inputs: JxK.
Outputs: 1 if x is a quadratic residue modulo p and 0 otherwise.

1. Invoke JbK← FRand(F) and compute JcK← FMul(JbK , JbK).
2. Compute JdK← FMul(JxK , JcK) and open d.
3. Compute d(p−1)/2 = x(p−1)/2c(p−1)/2.
4. If d ∈ {0,−1} output 0. Otherwise (d = 1) output 1.

Protocol ΠIsSqr has complexity CIsSqr = CRand(1) + CMul(2) + COpen(1).

Lemma 2. Protocol ΠIsSqr securely computes the Legendre symbol x.

Proof. Since c = b2, its Legendre symbol is 1. Thus the Legendre symbol of
d is determined entirely by x. Notice that b 6= 0 with probability 1 − 1/|F|.
As for privacy: Since b is random, b2 = c is random as well and thus acts as
a multiplicative mask of x. Thus revealing d reveals nothing about x, except
whether x is a square or not. ut

We next show how to compute the square root of a number modulo p. In
ΠSqrt below we assume that p ≡ 3 (mod 4) as that allows for an efficient method
of finding y such that x = y2 (mod p), given x. More precisely, given x, we can
find y by computing y = x(p+1)/4. Observe that y2 = (x(p+1)/4)2 = x(p+1)/2 =
x · x(p−1)/2 = x since x is a square. (In practice, p is chosen such that it is
congruent to 3 modulo 4 for exactly this reason, so our protocol is compatible
with all standardized curves.) It remains to figure out how to compute this
formula without revealing x, which we do following a similar approach as in
ΠIsSqr. More precisely, we produce a couple of random values of a specific format
and use them as a multiplicative mask on the input. The masked input is then
opened, and we compute the square root of the masked value. Finally, the mask
is removed, in order to obtain the final result. The values that we need for the
mask can be produced using the FMulTriple functionality and a trick for computing
the inverse of a random element as described in [BIB89].

Protocol ΠSqrt

Inputs: JxK where x has a square root.
Outputs: JyK such that y2 = x.

OFFLINE PHASE

1. Obtain a random triple (JaK , JbK , Jc = a · bK)← FMulTriple.
2. Open c and compute c−1 JbK =

q
(a · b)−1b

y
=

q
a−1

y
.

3. Compute
q
a2

y
← FMul(JaK , JaK).

4. Store the values (
q
a2

y
,
q
a−1

y
).

36

ONLINE PHASE

1. Compute JzK← FMul(JxK ,
q
a2

y
) and open z.

2. Output JyK = z(p+1)/4 ·
q
a−1

y
.

Protocol ΠSqrt computes the square root of its input with complexity CSqrt =
CMulTriple(1) + CMul(2) + COpen(2).

Lemma 3. Protocol ΠSqrt computes the square root of x securely.

Proof. Observe that z(p+1)/4 = (xa2)(p+1)/4 = x(p+1)/4a, and thus we obtain
y = z(p+1)/4a−1 = x(p+1)/4 as desired (as with ΠIsSqr, the mask a is non zero
with high probability). As for privacy, it suffices to note that a is random and
thus acts as a mask for the input, and thus z leaks nothing about x. ut

G.2 Secure Encoding and Decoding

In the following section we assume that J·K corresponds to a secret-sharing scheme
capable of detecting errors, such as Shamir secret-sharing. We now show how to
map secret-shared messages into curve points, and back, in the presence of an
active adversary and an honest majority. Consider the following commonly used
injective encoding for encoding bit-strings into points on the curve G over F (see
[FJT13]): To encode a message m ∈ {0, 1}`, with ` ≤ (1/2− ε) log2 p for a fixed
ε ∈ (0, 1/2), pick a random integer x ∈ [0, p− 1] such that m = x mod 2`. If x is
a valid curve-point for G, then output (x, y), and otherwise pick a new random
x and start over. We denote this encoding by En and its inverse as De (notice
that De simple discards y and returns x mod 2`).

Our aim now is to implement (En,De) securely; that is, we wish to compute
JEn(x)K given JxK with x ∈ {0, 1}`, and JDe(X)K given JXKG with En(m) = X ∈ G
for some m. For this we will use two functionalities: The first protocol is FIsSqr,
which takes as input a secret-shared value JxK and outputs 1 if x is a square, and
0 otherwise. That is, if FIsSqr outputs 1, then there exists a value y such that
x2 = y mod p. The other protocol is FSqrt which, on input a square JxK, outputs
JyK satisfying y = x2 mod p.

In the following, we assume that the curve is given as y2 = x3 + ax+ b where
a and b are constants.

Decoding. We begin with decoding. Given a secret-sharing JEn(m)KG where
En(m) = (x, y) and m ≡ x mod 2`, the goal is to obtain JmK. Besides JEn(m)KG,
we assume that we also have access to a secret-sharing of the upper `− log2 p bits
of x and we denote this value as JrK. Write JzKG = JEn(m)KG and let xi, resp. yi
be the values that comprise the i’th party’s share of z. To decode z, each party
first re-shares the xi and yi they hold, after which everyone computes the point
addition formula over all the coordinates. In a nutshell, this is the same idea
used when decomposing a number into bits. In this scenario, parties mask the

37

value they want to bit-decompose and then compute a binary adder to unmask
each bit.

Protocol ΠDecode

Inputs: JXKG, JrK where r was the randomness added during encoding.
Outputs: JmK the encoded message, secret-shared over the basefield.

1. Each party Pi parses their share of JXKG as the pair (xi, yi) and secret-shares
JxiK, JyiK towards the other parties.

2. Parties verify that the reshared values are consistent (cf. C.2).
3. For j = 2, . . . , t+ 1 where t is the number of corrupt parties, compute the

curve addition of the shares over the secret-shared coordinates:
(a) Invoke JaK = FRand(F).
(b) JzK← FMul(Jxj − xj−1K , JaK) and open z.
(c) Compute JdK =

q
(xj − xj−1)−1

y
= z−1 JaK, JλK =

FMul(Jyj − yj−1K , JdK) and finally
q
λ2

y
= FMul(JλK , JλK).

(d) Compute Jx′K =
q
λ2

y
− JxjK− Jxj−1K.

(e) Compute Jy′′K = FMul(JλK , Jxj − x′K) and Jy′K = Jy′′K− JyjK.
(f) Set JxjK = Jx′K and JyjK = Jy′K.

4. Output Jxt+1K− JrK.

Protocol ΠDecode computes the injective encoding with complexity CShare(n) +
CCheck(n) + (t+ 1)(CRand(1) + CMul(4) + COpen(1)).

Lemma 4. Protocol ΠDecode securely outputs the lower ` bits of JXKG.

Proof. Let Xi = (xi, yi) be the i’th party’s share of X = (x, y). Notice that X can

be reconstructed as a linear combination of the Xi’s; in particular, X =
∑t+1
i=1Xi

(we omit constants in this linear combination for the sake of simplicity). This
linear combination is computed in step 3 in the protocol, so, at step 3.f, parties
hold shares of the coordinates of X, secret-shared over the base field. Finally,
JxK− JrK removes the randomness located in the upper log2 p− ` bits of x. Step
1 potentially poses a problem, as a corrupt party may secret-share an incorrect
value. However, the parity check applied in step 2 ensures this cannot happen, as
the adversary can only modify at most t shares. ut

Encoding. To encode a value x ∈ F, recall that we first need to add a bit of
randomness to it, in order to have a chance at hitting a valid x-coordinate for our
curve. Let ` be an upper bound on the size of x, i.e., x ≤ 2`. We first consider
a straightforward, but ultimately insecure, approach utilizing FCoin: Parties use
FCoin to sample a random value r < p such that its lower ` bits are 0. Parties
then call FIsSqr(JxK + r), and restart the process (i.e., go back and pick another r)
if this protocol outputs 0. However this fails to be secure. Indeed, if x is of low
entropy, then revealing whether or not JxK + r is a square, reveals information
about x itself (in particular, the adversary can rule out values x′ for which x′ + r
is a square).

38

We must thus resort to fancier machinations that allows us to sample an
appropriate r without revealing it. Luckily, sampling a random value where its
lower bits are zero has been used before—in particular in connection with secure
truncation protocols (see e.g., [DEK20]). We thus assume a functionality FsRand

which outputs a secret-shared r suitable for our purposes. The final thing we
require is a tuple (JRKG , JrxK , JryK) where R = (rx, ry). Such a tuple can be
generated by sampling a random JRKG and then using step 2 in ΠDecode to obtain
JrxK and JryK.

Protocol ΠEncode

Inputs: JmK the message to be encoded.
Outputs: JEn(m)KG, JrK.

1. Sample JrK = FsRand and compute JxK = JmK + JrK.
2. Call FIsSqr(JxK). If the return value is 0, go back to the previous step.
3. Call JyK = FSqrt(

q
x3

y
+JxK a+b). Note that parties now have JxK, JyK which

are secret-sharings of En(m) in the field.
4. Parties then compute the curve addition formula between the points

(JxK , JyK) and (JrxK , JryK). Let (JzxK , JzyK) be the result.
5. JzxK and JzyK is opened. Write Z = (zx, zy).
6. Output JEn(m)KG = JXKG = Z − JRKG and JrK.

Protocol ΠEncode computes the injective encoding of m with complexity

CEncode = CsRand(k) + CIsSqr(k) + CSqrt(1) + 2COpen(1) + CRand(1) + CMul(4).

Security comes from the fact that, at the end of step 5, parties hold Z = X +R,
and since R is random, nothing is revealed about X. In the cost formula, k
denotes the number of repetitions of the first two steps. [FJT13] proves that a
suitable r is found in expected 3 iterations (i.e., k has expected value 3).

39

	Improved Threshold Signatures, Proactive Secret Sharing, and Input Certification from LSS Isomorphisms

