An Efficient CRT-based Bit-parallel Multiplier for
Special Pentanomials

Yin Li and Yu Zhang

Abstract—The Chinese remainder theorem (CRT)-based multiplier is a new type of hybrid bit-parallel multiplier, which can achieve
nearly the same time complexity compared with the fastest multiplier known to date with reduced space complexity. However, the
current CRT-based multipliers are only applicable to trinomials. In this paper, we propose an efficient CRT-based bit-parallel multiplier
for a special type of pentanomial ™ + z™m~k 4 gm—2k 4 gm=3k 1 5k < m < T7k. Through transforming the non-constant part
™ 4 g™~k 4 gm—2k 4 pm=3k into g binomial, we can obtain relatively simpler quotient and remainder computations, which lead to
faster implementation with reduced space complexity compared with classic quadratic multipliers. Moreover, for some m, our proposal
can achieve the same time delay as the fastest multipliers for irreducible Type Il and Type C.1 pentanomials of the same degree, but

the space complexities are reduced.

Index Terms—Chinese Remainder Theorem, hybrid multiplier, special pentanomial.

1 INTRODUCTION

The Finite field GF(2™) has important applications in
coding theory and cryptography [1]. Such a field can
be defined as a set of univariate binary polynomials
modulo an irreducible polynomial f(x) over F; of degree
m [2]. The field multiplication, which is crucial to field
arithmetic, consists of a regular binary polynomial mul-
tiplication followed by a reduction modulo f(x). During
the past decades, many works have been done to obtain
efficient bit-parallel GF'(2™) multipliers [3], [6], [11], [12].
Generally speaking, the underlying multipliers can be
classified into three categories according to their space
complexities, i.e.,, quadratic, subquadratic and hybrid
multipliers [13]. The first two types of multipliers have
the lowest time and space complexities, respectively. On
the other hand, the hybrid ones can provide a trade-off
between the time and space complexities. The hybrid
multipliers [4] usually apply a divide-and-conquer algo-
rithm to the polynomial multiplication, and then perfor-
m the modular reduction. Karatsuba algorithm (KA) is
the most frequently used divide-and-conquer algorithm,
and these KA-based hybrid multipliers usually require
at least one more T'x compared with the fastest quadratic
multipliers [4], [15], where Tx is the delay of one 2-
input XOR gate. Besides KA, Winograd short convolu-
tion algorithm and Chinese Reminder Theorem (CRT)
are other well-known divide-and-conquer algorithms,
and also widely applied to develop subquadratic space
complexity multipliers [8], [9].

Recently, CRT is applied to develop even faster hybrid
multipliers for trinomials =™ + 2% + 1, which can match
the fastest bit-parallel multipliers for some m values [13].

e Yin Li is with Dongguan University of Technology, P.R.China. Yu
Zhang are with Xinyang Normal University, P.R.China. email: yunfeiyan-
gli@gmail.com (Yin Li). This work is supported by the National Natural
Science Foundation of China (Grant no. 61601396).

This result was further extended by Zhang and Fan [14].
The key idea of the CRT-based schemes is transforming
the modular multiplication by 2™ +2"+1 to the quotient
and remainder computation w.r.t. its non-constant part
™ + z*. We note that 2™ + z* is a binomial, in which
the modular reduction is easier than that of 2™ + 2% + 1.
Consequently, their schemes can save some logic gates
at the cost of increasing the circuit delay slightly. Based
on the property of the ceiling function [-], for certain
values of m,k, the time complexity of their schemes
can match the fastest bit-parallel quadratic multiplier
[13], [14]. However, Fan’s scheme is only suitable for
trinomials. For other types of polynomials containing
more terms, their approach is not efficient.

In this paper, we propose an extension of Fan and
Zhang's work [13], [14]. We consider a special type of
irreducible pentanomial f(r) = 2™ + 2™~ F 4 am=2k 4
™7 3% + 1 proposed by Reyhani-Masoleh and Hasan
[5]. Quadratic multiplier for this type of pentanomial is
normally less efficient than those for irreducible Type II
[6], Type C.1 and Type C.2 pentanomials [10]. Neverthe-
less, when multiplying the non-constant part f(z)+1 by
1 + 2F, we have (f(z) + 1)(1 + zF) = 2™ 3F (2% 4+ 1).
Such an expression is likewise a binomial. Based on this
observation, we develop an efficient CRT-based multipli-
er for this type of pentanomials. Interestingly, for some
m values satisfying 5k < m < Tk, our proposal costs
even a lower space complexity compared with quadratic
multipliers, while its time complexity matches the fastest
multiplier for pentanomials.

Outline of the paper. In section 2, we first briefly
introduce the basic idea of CRT-based multipliers. Then,
in section 3, a new CRT-based multiplier architecture
for such pentanomials is proposed using the redundant
form of the specific pentanomial. Section 4 discusses
the space and time complexities of our proposal and
presents a comparison between the proposed multiplier

and some others. The last section summarizes the results
and highlights the concluding remarks.

2 CRT-BASED MULTIPLIER FOR TRINOMIALS

Now, we describe the overview of the CRT-based mul-
tiplier for irreducible trinomials [13].

Notations. Let f(z) be an irreducible polynomial over F
of degree m, and the finite field GF(2™) = Fy[z]/(f(x))
is defined by f(x). Given two arbitrary elements A, B €
GF(2™), the field multiplication of A, B is defined as
A-B mod f(x). Note that AB mod f(z) can be performed
by a polynomial multiplication plus a modular reduction
regarding to f(z). Let C and ¢ be the modular result and
the quotient divided by f(z), respectively.

The polynomial multiplication AB is derived as be-
low:

AB=f-q+C=(f+1q+ (C+q).

Since the degrees of ¢ and C are both less than m, the
quotient ¢ of f is equal to the quotient of f+1, and C'+¢
is the remainder of AB modulo f + 1. Also, in GF(2™),
C' can be rewritten as C = g + (C + ¢). At this time, the
field multiplication is transformed into two equivalent
steps:

(i) Compute the quotient ¢ of AB divided by f + 1;

(ii) Compute the remainder (C + ¢) of AB divided by

f+1

If f(x) is a trinomial 2™ + z¥ + 1, then f +1 = 2™ +
zk = 2%(2™~% + 1). In this case, Step (i) can be solved
using a simple recursion. Step (ii) can be settled by
first computing AB mod 2* and AB mod 2™~ + 1, and
then reconstructing the final result using CRT approach.
Both of them are easy to compute. Upon that, Fan
[13] developed a low complexity hybrid multiplier for
trinomials. The highlight of this type of multiplier is
that it has nearly the same time complexity as the fastest
quadratic multipliers with a lower space complexity. The
space complexity was further reduced in [14].

Apparently, for any irreducible polynomial f(z), if the
Step (i) and (ii) are easier than the modular multiplica-
tion w.r.t. f(z), one can also construct a CRT-based mul-
tiplier for f(x). However, except trinomial, other types
of irreducible polynomial, e.g., pentanomial and all-one-
polynomial (AOP) are not easy to apply Fan’s approach
[13] directly. The reason is that the solutions of (i) and
(ii) are highly relies on the number of terms contained in
f+1 and its factorization. The non-constant part of pen-
tanomial and AOP either contain much more terms or
their factors are very complicated, which make Step (i) or
(ii) hard to compute. To illustrate this assertion, we take
the irreducible pentanomial f(z) = 2?83+ 22427 +2°+1,
recommended by NIST [16], as a suitable example. In
this case, we have f +1 = 228 + 22 + 27 + 2°. Such
a polynomial totally has four factors, two of which are
quite simple (z° and x + 1). However, the rest two
factors are very complicated !, which makes Step (ii)

1. Explicit factorization of 2283 + 212 + 27 4 25 is available in the
online appendix [17].

even harder than the direct modular reduction about
f(z) itself. In addition, the computation of Step (i) here
is also complicated due to the four terms included in
f+1

In the following sections, we demonstrate that, for a
special class of irreducible pentanomials z™ + 2™~ % +
™2 4 gm=3k + 1, one can obtain significantly simpler
computations for Step (i) and (ii), by multiplying an
extra polynomial to its non-constant part. Based on
such a characteristic, an efficient CRT-based multiplier
is developed below.

3 CRT-BASED MULTIPLIER FOR z™ + 2™ % +
[Em—Qk + l.m—3k: _|_ 1

Now, we consider the irreducible pentanomial f(z) =
™ 4 gk o pm=2k 4 gm=3k 1 1 m > 3k. Different from
other type of pentanomials, the non-constant part of such
a pentanomial has a relatively simple factorization, i.e.,
flz)+1=am 3% @3 4+ 2% 4 2% 4+ 1). If we multiply this
expression by z* + 1, then,

(f(z) + 1)(zF + 1) = am =38 (3% 4+ 2% + 2k 4 1) (2% + 1),
— xm73k(z4k + 1) — merk + l.mf?)k'

Denoted by F(z) the above expression 2™ *+2™~3% We
can use a similar strategy as [13] to compute the quotient
and remainder w.r.t. F(z) firstly, and then amend the
results modulo f(z). More explicitly, let A and B be the
same as the ones defined in Section 2. We divide the
multiplication as

AB=gq-F+r=q(f+1)(a"+1)+r 1)

where deg(q) =2m —2—-—m —k =m — k — 2,deg(r) =
m~+k—1. Then, the field multiplication C = AB mod f(z)
can be derived as:

C q-F(z) 4+ rmod f(z)

q(f(z) + 1) (2% + 1) +r mod f(x)
rmod f(z) + q(a® + 1).

Please note that the degree of ¢(z* + 1) is less than
m — 2, no further reduction is needed. However, the
remainder r needs further reduction as its degree is
bigger than m. Thus, we partition r as r1z™ + ry, where
deg(r1) = k—1 and deg(r2) = m — 1. Thus, » mod f(x) =
ri(a™F 4 g™k 4 gm=3k 4 1) + ry. Consequently, the
field multiplication can be performed as:

C=qz"+1)+ri(z™ " 2™ 2 1 2m3F 1) £y, (2)

The computations of ¢, r are analogous with [13], which
is already elaborated as Steps (i) and (ii) in Section
2. However, the final correction step as presented in
(2) indicates that the CRT multiplier for this type of
pentanomial is still more complex than trinomials. In
the following, through the computation of ¢ and r, we
analyze the magnitude relation between m and k in
order to construct an efficient CRT multiplier.

3.1 Computation of the quotient ¢

Recall that ¢ is the quotient of AB divided by F(z) and
F(z) = 2™k 42m=3% combined w1th (1), we can see that
AB = qu+k+qu 3k yr.Let> ", 0 ? ¢;z* denote g and
meo s;x* denote the result of AB. The bit positions of
the term ADB are depicted in Figure 1. It is noteworthy
that deg(r) = m + k — 1, the higher m — k — 1 bits of AB
only consist of the coefficients of ¢ or their addition.

qu+k V4
I ;
4k blits Ii E m+ch bits
i PR
" kel biss
Fig. 1. Bit positions of the terms in AB = qaz™** +
g™ 3k 4,

Using simple iterative method as described in [13], we
can obtain the explicit formulation of g¢;:

qi = Sitmik,m—5k —1<i:<m-—-Fk—2, 3)
qi = Sitmik T Sitmisk, 0 <1 <m — 5k — 2.

The above equations hold, if m —k—1—4k <4k = m <
9k + 1, otherwise some ¢;s may contain more terms.

3.2 Computation of remainder r

For the sake of brevity, we use the symbol (x),,)
to denote the remainder of * modulo g(z). Clearly,
7 = (AB)ym-sk(ger 11y In order apply CRT to compute
r, we first need to calculate the multiplicative inverse
™7 3% mod z** + 1 and vice versa. The following Bezout
identity depends on the magnitude relations between m

and k.

m—3k Tk—m

g™ (T4 a™) 1 =1, if 3k <m < Tk

If m > 7k, the corresponding Bezout identities become
more complex, which makes related CRT multiplier cost-
ly. Thus, we skip this case. Accordingly, the remainder r
can be computed using the CRT as follows:

= <<AB>£m—3k ~((E4k+1)+<AB>x4k+1 ‘x4k>xm,+k+wm—3k' 4)
Obviously, (AB)ym-s = Y703 s;a’. But (AB)ar g =
((A)gsr 41 - (B)atr 1) ar,, implies further computation.
When m < 7k, the coefficients of (A4),ax; and (B) x4
can be obtained in one T’x delay in parallel, which cost
2(m — 4k) XOR gates. In detail,

4k—1 4k—1 m—4k—1
x4k+1 Z gzx = Z ala? + Z al+al+4k
m—4k
and
4k—1 4k—1 m—4k—1
) gk g1 = thfsz+ Z (bs + biyar)x

m—4k

The computation of (AB),s,, can be carried out by
multiplying (A),ax, 1 and (B)ga, firstly, and then
adding the higher 4k — 1 bits of the result to its lower
4k — 1 bits. More explicitly,

4k—1 dk—1 [i m—i—1
(AB) gk = Z tix' = Z (Zgjhi—j + Z gjhm—i> x
i=0 \j=0 j=i+1

®)

Plug the explicit formulations w.rt. (AB) m-sx and

(AB) 4ar 1 into (4), we can easily obtain the formulation
of r, i.e,

m+k—1 m—3k—1

Z Si— 4k;.’17+ Z

i=4k
m+k—1 4k 1

+ Y tiaa’+ Yt if 3k <m < Tk
i=4k m—3k

3.3 The computation of the field product C

According to (2), it is obvious that C consists of the com-
bination of ¢ and r. For simplicity, we split C' into two
parts and implement them in parallel, i.e,, C = S; + 53
where S; = ¢+ 72+ q12™ 3% and Sy = go2F + rl(xm’k +
xm=2k 4 pm=3k 4 1). Here, ¢ = q12™ ** + ¢, ¢1 denotes
the most significant 3k — 1 bits of ¢ and ¢» denotes the
rest. The formulations of S; and S, are given below

m—2
S1 = (Sm—aka + tm—4k—1)xm71+ Z (Sitm + Siak + ticar)x’

=m—k—1
m—k—2
+ (Sirmik + Sitm + Si—ak + ti—ar)z’
i=4k
4k—1 m—3k—1
+ (5i+7n+k: + 5i+m+ ti)ml+ § (SH'HH»IC_" si):rl
i=m—3k i=m—bk—1
m—5k—2
+ (Sitmtk + Sitmtsk + i)z,
i=0
(6)
m—1 m—k—1
So = (8i—3k + tiar)z' + E (Si—2k + ti—ok)x"
i=m—k i=m—2k
—2k—1 k—1
+ E (sick+tiow)x" + E Siym—ak+lizm—ar)z’ (7)
i=m—3k =0

m—3k—1 m—4k—2

i i
+ E Si+mT + E Sitm+akT ,
i—k i=k

where 5k+1 < m < 7k. We do not give the formulations
of S; and Sy of the case 3k < m < 5k + 1, as the
corresponding CRT multiplier in this case has higher
space complexity than the classic quadratic one [5],
where we explain later in Section 5.

After the computations of S; and S2, we only need to
add these two results to obtain the final result C. The
figure 2 depicts the schematic diagram of the entire CRT
multiplier.

compute
quotient ¢

left shift

higher 3&-1 bits

k bits

rest bits

compute

_ ABmod xm-3k |{ 1eft shift 4k P
b

(8k) bits

left shift 4k
(8k) bits

compute
ABmod x#+1

+k -3k
xmm Teft shift
m-kbits | |
®
left shift] SZ
m-2k bits
left shift
m-3k bits

Fig. 2. The schematic diagram of CRT multiplier for ™ + 2™ % 4 g™=2k 4 =3k 11 5k < m < 7k.

4 SPACE AND TIME COMPLEXITY ANALYSIS

In [13], the authors proposed two types of CRT multi-
pliers, denoted by Type-A and Type-B multipliers, which
follow the same design approach but use different ways
to organize the reusable terms. These multipliers can
provide different space-time trade-offs. Since we use a
redundant binomial z** +1 instead of z3* + z2¢ + 2% +1,
which costs more AND gates for the multiplication of
(A)garyq and (B)gax 1, we prefer to follow the idea of
Type-A multiplier and pursue a multiplier with a lower
space complexity.

Space complexity analysis. We first investigate the com-
putations of the coefficients of S; and S,, which are
essential to the whole multiplier. According to (6)-(7),
it is obvious that only three subexpressions, i.e.,

m—k—2 m—3k—1 4k—1

i i i
E Sitm+kT E 8%, E tix,
i=0 i=0 i=0

contain all the items required in S; and S,. Therefore, the
total number of AND gates required by our multiplier
is equal to the sum of AND gates required by above
subexpressions. Also, the total number of XOR gates is
the summation of the XOR gates required by them and
the additions in (6)-(7) as well as S; + Ss.

Since s;s are the coefficients of AB, we can write their
formulation directly:

S = m—1
{ i 1—m 5binj,
Furthermore, the formulation of ¢; is already given in
(5). As a result, the number of required AND and XOR
gates are
HAND = m? + 21k% — 4km — k,
#XOR = m? + 21k? + 5m — 4km — 20k — 3.

®)

0<i<m-—1,
m<i<2m-—2.

Time complexity analysis. We note that, among the
three subexpressions in (8), s; contain the coefficient
multiplications a;b; and ¢; contain g;h;, which require
one T, gate delay due to parallelism. After that, we
consider the XOR delay. Table 1 illustrates the number
of product item in each coefficient of z’. The products

in the square bracket are XORed using an independent
binary XOR tree firstly. Since the pre-computations of g;
and h; require one Tx delay, the expression containing ;
will cost more delay than adding its items using a binary
XOR tree, directly.

TABLE 1
The number of product terms in each ¢;

[

[Number of the product terms [
[m—k—i—1]+[m—5k—i—1]
+[i + 1]
m—k—i—1]+[+1]
[m—k—i—1] + [m—i—1] + 4k*

Ci

0<i<m-—5k—2

m—5k—1<i <m—-3k—1
m—-—3k<i<4k -1

SU gk <i<m—k—2 [m—k—i—1] + [i—4k + 1]
m —i— 1] + 4k*

m-—k—1<i<m-—2 [i — 4k + 1] + [m—i—1] + 4k*
i=m-—1 [m — 4k] 4 4k*
0<i<k-1 [i +m — 4k + 1] + 4k*
k<i<m-—d4k—2 [m—i—1]+[m — 4k — i — 1]
m—4k—1<i<m—-3k—1 | [m—i— 1]

Sy | m—38k<i<m—2k—1 | [i—k+1]+4k*

m—2k<i<m-k-—1
m—k<i<m-—2
it=m—1

[i — 2k + 1] + 4k*

[i — 3k + 1]+ 4k*

[m — 3k] + 4k*

*: each ¢; contains 4k items but needs to compute g;, h; at first.

Based on Table 1, for 0 < ¢ < m—5k—2, the maximum
gate delay is from the coefficient co = syt + Sm+5k + So-
Clearly, the term s,,1) is the summation of m — k — 1
product terms , while 5,455 is the summation of m —
5k — 1 product terms and sy = apby. Notice that m <
Th=>m—k—i—1>2(m-5k—i—1)and m—k—i—1>
2(i+ 1) for 0 < i < m — 5k — 2, which indicates that
during the period of computation s,,1%, so and Sy 45k
can finish their computation and be XORed pairwise.
Only one more T'x is needed to add s,,,1x With [s,, 455+
s0]- Therefore, the total XOR delay for ¢; in this case is
1+ [logy(m —k —1)].

For m—5k—1 <4 < m—3k—1, the maximum gate delay
is from the coefficient c¢,;,—51.-1 = Som—dk—1 + Sm—5k—1-
One can easily verify that the XOR delay is 1+ [log,(4k)].

For m—3k < i < 4k—1, we note that the product
items of ¢;s are not reused. Binary XOR trees for other

subexpressions can be embedded in its binary XOR tree
in order to obtain faster implementation. Here, we utilize
the same strategy of [13], [14] and obtain the XOR delay

(v + flogg((%] + 2)]) Tx = [log,(8k +2-2°)]Tx,

where 2V~ < m — 4k < 2v.
Similarly, for 4k < i < m—k—2 and m—k—1 <1i < m—1,

the XOR delay in these cases are

[logy(8k +3-2)| T,

[logy(8k 42 - 2"1)|Tx,

[logy (8k +22)|Tx,
where v, = [logy(m — 4k — 1)], va = [logy(m — 4k)].
Consider the XOR delay of 5; is equal to the maximum
XOR delays of all the cases, thus, the delay of S; is given

by
Dg, : Ta+[log,(8k+3-2")|Tx, (v = [logy(m—4k—1)]).

for 4k <i<m—k—2,
form—k—-1<i<m-2,
fori=m—1,

Using the same approach, one can easily obtain the
delay of S

Dg, : Ta + [logy(8k 4+ 2°)]Tx, (v = [logy(m — 3k)]).

We can check that Dyg, is slightly bigger than that of Dyg,,
Therefore, the parallel implementations of S; and .S, cost
Dg, delays. In addition, one more T’x is required for the
final addition S +.S2. Consequently, the time complexity
of our multiplier is

Ta+ (1+ [logy(8k +3-2°)])Tx,)
where v = [logy(m — 4k — 1)].

4.1

In order to illustrate the binary XOR tree partition and
the reused item of each ¢;, we consider z” +z0+2°+z*+1
as a small example. The complete version is available
online [17]. Here, m = 7 and k = 1. By (6) and (7), the
expressions of S; and S are given below

A small example

S = ([aob2+ a1bi+ az2bo] + goh2+ g1hi+ gaho+ g3h3)a?6
([aobl + a1bo]+[asbs] + goh1 + grho + g2hs + 93]12)235
([aobo + [asbs]+
([aob3 + a1ba + azb1 + asbo] + [asbs + aGbs]) 3
([a062 + a1b1 + azbo] + [asbs + asbs + a6b4])
([aobl + a1bo] + [asbs + asbs + asbs + 0653])

+
J’_
J’_
J’_
J’_
+ [aobo] + [azbe + asbs 4 aabs + asbs + asbe] + [acbe],

Q.

an
([aobs +a1ba+azb1 +aszbo]+ [goha+g1ha+g2hi +g3ho])z®

([aob3+a1b2+a2bl +asbo]+[gohs+g1ha+g2h1 + 93h0])9€5
([aob3+a1b2+a2b1 +asbo]+[gohs+g1ha+g2h1 + gaho])a?4

[a2bs + asbs + asbs + asbs + agba] + [asbb‘])x
+ [aobs+ a1b2+ a2b1+ asbo] + [gohs + g1he + g2h1 + g3ho],

where g; = a; + aj14,hi = b; +b; 14,1 =0,1,2 and g3 =
a3,h3 = bg.

[asbs+asbs]|+ goho+g1hs+gaho +93h1)m4

[aabs + asbs + aab4])$3 + ([a3b6 ~+ asbs + asbs + a6b3])$€2

The items in the same square bracket are XORed using
a same binary XOR tree and the results are reused. It is
clear that the computation of S; and S> require T4 +47x.
When adding S; and S3, one more Tx is needed. As a
result, the CRT multiplier only costs T4 + 5T, which
conforms to (9). Further more, above expressions costs
41 AND gates as well as 54 XOR gates. Conversely, the
classic quadratic multiplier proposed in [5] requires 49
AND gates and 54 XOR gates, with its time complexity
being T4 + 7Tx.

5 COMPARISON AND DISCUSSION

Note on space complexity. According to the formula-
tions pertaining to the numbers of AND and XOR gates,
if our proposal costs fewer gates than classic quadratic
multiplier [5], the parameters m, k must satisfy

m? + 21k%* —4km — k < m? = 21k < 4m — 1,

and

m2 + 21k +5m —4km — 20k —3<m?+m —2
= 21k% — 20k — 1 < 4m(k — 1) = 21k + k/(k — 1) < 4m.

That is to say, only if m > 5k our multiplier may costs
fewer logic gates. Using Maple, we have checked all the
irreducible polynomial 2™ +x™~F 4-gm=2k 4 gm=3k 1 1 of
degree in the range [100,1024] and found there are 141
such polynomials satisfying 5k < m < 7k. It is shown
that our proposed multipliers requires fewer gates for
118 polynomials among these polynomials, which can
save 8.5% logic gates on average.

Note on time complexity. From (9), we know the de-
lay of our proposal varies according to the magnitude
relations between m and k. Specifically, the gate delay
expressions include 2%, v = [log,(m — 4k — 1)], it is not
easy to compare the time complexity with other schemes.
But we can evaluate the upper bound of the time delay
instead. We mainly utilize the following inequality:

207l <m — 4k —1<2Y <2(m — 4k —1).
We then obtain

1+ [logy(8k +3-2Y)] <1+ [logy(8k + 3 - (2m—8k—2))]
< 1+ [logy(6m — 16k)]
<1+ [logy(4dm — 2k)].

It is obvious that the time complexity of our proposal is
smaller than T4+ (4+[log, m]), as proposed in [5]. Mean-
while, since these upper bounds approximately have one
Tx more than the fastest multiplier for other frequently-
used pentanomials, i.e., Type Il and Type C.1 pentanomi-
als, for certain m, our multiplier can achieve even the
same circuit delay with reduced space complexity. As an
example, for field GF(2'%9), the irreducible pentanomial
2169 4 g1l 4 13 4 285 4 1 yields a CRT multiplier
having a delay of T4 + 10Tx. Meanwhile, there exist an
irreducible Type II pentanomial 1% 4+ 26 4+ 215 4 214 41
yielding a SPB multiplier and a Type C.1 pentanomial
210942168 4 211 4 14+ 1 yielding a GPB multiplier, which

also have the delays of T4 + 10Tx. On the contrary, the
CRT multiplier can save about 8% gates compared with
previous multipliers.

6 CONCLUSION

In this work, we have proposed an efficient CRT-based
bit-parallel multiplier for a special type of pentanomial
™ 4 g™ 4 gm T2k 4 pm =3k 41 5k < m < Tk. Through
multiplying 2™+ k4 2m =2k 4 gm=3k by 2k + 1, we can
transform it into a binomial, which lead to relatively sim-
pler quotient and remainder computations. Compared
with classic quadratic multiplier for the same type of
pentanomials, our proposal has both lower space and
time complexities. Our experimental results demonstrate
that the proposed multiplier has the space complexity
reduced by 8.5% on average. Moreover, for some m, the
time complexity of the proposed multiplier even matches
the fastest multiplier for irreducible Type II and Type C.1
pentanomials.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Nisha Panwar and
Dr. Shantanu Sharma for their valuable comments and
suggestions.

REFERENCES

[1] Joachim Von Zur Gathen and Jurgen Gerhard. 2003. Modern
Computer Algebra (2 ed.). Cambridge University Press, New York,
NY, USA.

[2] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge
University Press, New York, NY, USA, 1996.

[3] B.Sunar and C.K. Kog, “Mastrovito multiplier for all trinomials,”
IEEE Trans. Comput., 48(5) (1999) 522-527.

[4] M. Elia, M. Leone, and C. Visentin. “Low complexity bit-parallel
multipliers for GF(2™) with generator polynomial 2™ +z* +1,”
Electronic Letters, 35(7):551-552, 1999.

[5] A. Reyhani-Masoleh and M.A. Hasan, “Low complexity bit
parallel architectures for polynomial basis multiplication over
GF(2™),” in IEEE Transactions on Computers, vol. 53, no. 8, pp.
945-959, Aug. 2004

[6] H. Fan and M.A. Hasan, “Fast bit parallel-shifted polynomial
basis multipliers in GF(2™),” IEEE Trans. Circuits Syst. I, Reg.
Papers, 53(12):2606-2615, Dec 2006.

[7] H.Fanand M.A. Hasan, “A New Approach to Subquadratic Space
Complexity Parallel Multipliers for Extended Binary Fields,” IEEE
Trans. Comput. vol. 56(2):224-233, Feb. 2007.

[8] B. Sunar, “A generalized method for constructing subquadratic
complexity GF(2F) multipliers,” in IEEE Transactions on Com-
puters, vol. 53, no. 9, pp. 1097-1105, Sept. 2004

[9] I Oseledets, “Improved n-Term Karatsuba-Like Formulas in
GF(2),” in IEEE Transactions on Computers, vol. 60, no. 8, pp.
1212-1216, Aug. 2011

[10] A. Cilardo, “Fast Parallel GF'(2™) Polynomial Multiplication for
All Degrees,” IEEE Trans. Comput., 62(5) (May 2013) 929-943.

[11] M. Cenk, M.A. Hasan and C. Negre, “Efficient Subquadratic
Space Complexity Binary Polynomial Multipliers Based on Block
Recombination,” IEEE Trans. Comput., 63(9):2273-2287, Sept. 2014.

[12] H. Fan and M.A. Hasan, “A survey of some recent bit-parallel
multipliers,” Finite Fields and Their Applications, 32 (2015) 5-43.

[13] H. Fan, “A Chinese Remainder Theorem Approach to Bit-Parallel
GF(2™) Polynomial Basis Multipliers for Irreducible Trinomials,”
IEEE Trans. Comput., 65(2): 343-352, February 2016.

[14]]J. Zhang, H. Fan, “Low space complexity CRT-based bit-parallel
GF(2n) polynomial basis multipliers for irreducible trinomials,”
Integration, the VLSI Journal, 58:55-63, February 2017.

[15] Y. Li, X. Ma, Y. Zhang and C. Qi, “Mastrovito Form of Non-
recursive Karatsuba Multiplier for All Trinomials,” IEEE Trans.
Comput., vol. 66, no.9, pp.1573-1584, 2017.

[16] Recommended Elliptic Curves for Federal Government Use,
http:/ /csre.nist.gov/groups/ST/toolkit/documents /dss/
NISTReCur.pdf, July, 1999.

[17] https://drive.google.com/file/d/1fnjIYebWT0g2sKvYr-x0fJJzZ1onOCBRC/

view?usp=sharing

