
Multi-Party Revocation in Sovrin: Performance
through Distributed Trust?

Lukas Helminger1,2, Daniel Kales1, Sebastian Ramacher3[0000−0003−1957−3725],
and Roman Walch1,2

1 Graz University of Technology, Graz, Austria
{lukas.helminger,daniel.kales,roman.walch}@iaik.tugraz.at

2 Know-Center GmbH, Graz, Austria
3 AIT Austrian Institute of Technology, Vienna, Austria

sebastian.ramacher@ait.ac.at

Abstract. Accumulators provide compact representations of large sets
and compact membership witnesses. Besides constant-size witnesses, public-
key accumulators provide efficient updates of both the accumulator itself
and the witness. However, bilinear group based accumulators come with
drawbacks: they require a trusted setup and their performance is not
practical for real-world applications with large sets.
In this paper, we introduce multi-party public-key accumulators dubbed
dynamic (threshold) secret-shared accumulators. We present an instanti-
ation using bilinear groups having access to more efficient witness gen-
eration and update algorithms that utilize the shares of the secret trap-
doors sampled by the parties generating the public parameters. Specifi-
cally, for the q-SDH-based accumulators, we provide a maliciously-secure
variant sped up by a secure multi-party computation (MPC) protocol
(IMACC’19) built on top of SPDZ and a maliciously secure threshold
variant built with Shamir secret sharing. For these schemes, a perfor-
mant proof-of-concept implementation is provided, which substantiates
the practicability of public-key accumulators in this setting.
We explore applications of dynamic (threshold) secret-shared accumula-
tors to revocation schemes of group signatures and credentials system. In
particular, we consider it as part of Sovrin’s system for anonymous cre-
dentials where credentials are issued by the foundation of trusted nodes.

Keywords: multiparty computation, dynamic accumulators, distributed
trust, threshold accumulators

1 Introduction

Digital identity management systems become an increasingly important corner
stone of digital workflows. Self-sovereign identity (SSI) systems such as Sovrin4

? This is the full version of a paper which appears in CT-RSA 2021 – The Cryptog-
raphers’ Track at the RSA Conference 2021, San Francisco, CA, USA, May 17-21,
2021.

4 https://sovrin.org/

https://sovrin.org/

are of central interest as underlined by a recent push in the European Union for
a cross-border SSI system.5 But all these systems face a similar issue, namely
that of efficient revocation. Regardless of whether they are built from signatures,
group signatures or anonymous credentials, such systems have to consider mecha-
nisms to revoke a user’s identity information. Especially for identity management
systems with a focus on privacy, revocation may threaten those privacy guaran-
tees. As such various forms of privacy-preserving revocations have emerged in
the literature including approaches based on various forms of deny- or allowlists
including [NFHF09,Ver16,BS01,BL11,BL12,ATSM09,CL02,FHM11,NKHF05,
NS04,GGM14] among many others.6

One promising approach regarding efficiency is based on denylists (or al-
lowlists) via cryptographic accumulators which were introduced by Benaloh and
de Mare [BdM93]. They allow one to accumulate a finite set X into a succinct
value called the accumulator. For every element in this set, one can efficiently
compute a witness certifying its membership, and additionally, some accumu-
lators also support efficient non-memberships witnesses. However, it should be
computationally infeasible to find a membership witness for non-accumulated
values and a non-membership witness for accumulated values, respectively. Accu-
mulators facilitate privacy-preserving revocation mechanisms, which is especially
relevant for privacy-friendly authentication mechanisms like group signatures
and credentials. For a denylist approach, the issuing authority accumulates all re-
voked users and users prove in zero-knowledge that they know a non-membership
witness for their credential. Alternatively, for a allowlist approach, the issuing
authority accumulates all users and users then prove in zero-knowledge that
they know a membership witness. As both approaches may involve large lists,
efficient accumulator updates as well as efficient proofs are important for build-
ing an overall efficient system. For example, in Sovrin [KL16] and Hyperledger
Indy7 such an accumulator-based approach with allowlists following the ideas
of [GGM14] is used. Their credentials contain a unique revocation ID attribute,
iR, which are accumulated. Each user obtains a membership witness proving that
their iR is contained in the accumulator. Once a credential is revoked, the cor-
responding iR gets removed from the accumulator and all users have to update
their proofs accordingly. The revoked user is no longer able to prove knowledge
of a verifying witness and thus verification fails.

Accumulators are an important primitive and building block in many cryp-
tographic protocols. In particular, Merkle trees [Mer89] have seen many applica-
tions in both the cryptographic literature but also in practice. For example, they
have been used to implement Certificate Transparency (CT) [Lau14] where all
issued certificates are publicly logged, i.e., accumulated. Accumulators also find
application in credentials [CL02], ring, and group signatures [LLNW16,DRS18],
anonymous cash [MGGR13], authenticated hash tables [PTT08], among many

5 https://essif-lab.eu/
6 For a discussion of approaches for group signatures, see, e.g., [SSU16].
7 https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/

0011-cred-revocation/README.html

2

https://essif-lab.eu/
https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-cred-revocation/README.html
https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-cred-revocation/README.html

others. When looking at accumulators deployed in practice, many systems rely
on Merkle trees. Most prominently we can observe this fact in CT. Even though
new certificates are continuously added to the log, the system is designed around
a Merkle tree that gets recomputed all the time instead of updating a dynamic
public-key accumulator. The reason is two-fold: first, for dynamic accumulators
to be efficiently computable, knowledge of the secret trapdoor used to generate
the public parameters is required. Without this information, witness generation
and accumulator updates are simply too slow for large sets (cf. [KOR19]). Sec-
ondly, in this setting it is of paramount importance that the log servers do not
have access to the secret trapdoor. Otherwise malicious servers would be able to
present membership witnesses for every certificate even if it was not included in
the log.

The latter issue can also be observed in other applications of public-key ac-
cumulators. The approaches due to Garman et al. [GGM14] and the one used
in Sovrin rely on the Strong-RSA and q-SDH accumulators, respectively. Both
these accumulators have trapdoors: in the first case the factorization of the RSA
modulus and in the second case a secret exponent. Therefore, the security of the
system requires those trapdoors to stay secret. Hence, these protocols require
to put significant trust in the parties generating the public parameters. If they
would act maliciously and not delete the secret trapdoors, they would be able
to break all these protocols in one way or another. To circumvent this prob-
lem, Sander [San99] proposed a variant of an RSA-based accumulator from RSA
moduli with unknown factorization. Alternatively, secure multi-party computa-
tion (MPC) protocols enable us to compute the public parameters and thereby
replace the trusted third party. As long as a large enough subset of parties is
honest, the secret trapdoor is not available to anyone. Over the years, efficient so-
lutions for distributed parameter generation have emerged, e.g., for distributed
RSA key generation [FLOP18, CCD+20, CHI+20], or distributed ECDSA key
generation [LN18].

Based on the recent progress in efficient MPC protocols, we ask the following
question: what if the parties kept their shares of the secret trapdoor? Are the
algorithms of the public-key accumulators exploiting knowledge of the secret
trapdoor faster if performed within an (maliciously-secure) MPC protocol than
their variants relying only on the public parameters?

1.1 Our Techniques

We give a short overview of how our construction works which allows us to
positively answer this question for accumulators in the discrete logarithm setting.
Let us consider the accumulator based on the q-SDH assumption which is based
on the fact that given powers gs

i ∈ G for all i up to q where s ∈ Zp is unknown,
it is possible to evaluate polynomials f ∈ Zp[X] up to degree q at s in the
exponent, i.e., gf(s). This is done by taking the coefficients of the polynomial, i.e.,
f =

∑q
i=0 aiX

i, and computing gf(s) as
∏q
i=0(gs

i

)ai . The accumulator is built by
defining a polynomial with the elements as roots and evaluating this polynomial
at s in the exponent. A witness is simply the corresponding factor canceled out,

3

i.e., gf(s)(s−x)−1

. Verification of the witness is performed by checking whether
the corresponding factor and the witness match gf(s) using a pairing equation.

If s is known, all computations are more efficient: f(s) can be directly evalu-
ated in Zp and the generation of the accumulator only requires one exponentia-
tion in G. The same is true for the computation of the witness. For the latter, the
asymptotic runtime is thereby reduced from O(|X |) to O(1). This improvement
comes at a cost: if s is known, witnesses for non-members can be produced.

On the other hand, if multiple parties first produce s in an additively secret-
shared fashion, these parties can cooperate in a secret-sharing based MPC pro-
tocol. Thereby, all the computations can still benefit from the knowledge of s.
Indeed, the parties would compute their share of gf(s) and gf(s)(s−x)−1

respec-
tively and thanks to the partial knowledge of s could still perform all operations
– except the final exponentiation – in Zp. Furthermore, all involved computations
are generic enough to be instantiated with MPC protocols with different trust
assumptions. These include the dishonest majority protocol SPDZ [DKL+13,
DPSZ12] and honest majority threshold protocols based on Shamir secret shar-
ing [Sha79]. While in SPDZ, an honest party can always detect malicious behav-
ior, Shamir adds robustness against parties dropping out or failing to provide
their shares.

1.2 Our Contribution

Starting from the very recent treatment of accumulators in the UC model [Can01]
by Baldimtsi et al. [BCY20], we introduce the notion of (threshold) secret-shared
accumulators. As the name suggests, it covers accumulators where the trapdoor
is available in a (potentially full) threshold secret-shared fashion with multiple
parties running the parameter generation as well as the algorithms that profit
from the availability of the trapdoor. Since the MPC literature discusses security
in the UC model, we also chose to do so for our accumulators.

Based on recent improvements on distributed key generation of discrete loga-
rithms, we provide dynamic public-key accumulators without trusted setup. Dur-
ing the parameter generation, the involved parties keep their shares of the secret
trapdoor. Consequently, we present MPC protocols secure in the semi-honest
and the malicious security model, respectively, implementing the algorithms for
accumulator generation, witness generation, and accumulator updates exploiting
the shares of the secret trapdoor. Specifically, we give such protocols for q-SDH
accumulators [Ngu05,DHS15], which can be build from dishonest-majority full-
threshold protocols (e.g., SPDZ [DKL+13, DPSZ12]) and from honest-majority
threshold MPC protocols (e.g., Shamir secret sharing [Sha79]). In particular, our
protocol enables updates to the accumulator independent of the size of the ac-
cumulated set. For increased efficiency, we consider this accumulator in bilinear
groups of Type-3. Due to their structure, the construction nicely generalizes to
any number of parties.

4

We provide a proof-of-concept implementation of our protocols in two MPC
frameworks, MP-SPDZ [Kel20] and FRESCO.8 We evaluate the efficiency of our
protocols and compare them to the performance of an implementation, having
no access to the secret trapdoors as usual for the public-key accumulators. We
evaluate our protocol in the LAN and WAN setting in the semi-honest and mali-
cious security model for various choices of parties and accumulator sizes. For the
latter, we choose sizes up to 214. Specifically, for the q-SDH accumulator, we ob-
serve the expected O(1) runtimes for witness creation and accumulator updates,
which cannot be achieved without access to the trapdoor. Notably, for the tested
numbers of up to 5 parties, the MPC-enabled accumulator creation algorithms
are faster for 210 elements in the LAN setting than its non-MPC counterpart
(without access to the secret trapdoor). For 214 elements the algorithms are also
faster in the WAN setting.

Finally, we discuss how our proposed MPC-based accumulators might im-
pact revocation in distributed credential systems such as Sovrin [KL16]. In this
scenario, the trust in the nodes run by the Sovrin foundation members can
further be reduced. In addition, this approach generalizes to any accumulator-
based revocation scheme and can be combined with threshold key management
systems. We also discuss applications to CT and its privacy-preserving exten-
sion [KOR19]. In particular, the size of the witnesses stored in certificates or
sent as part of the TLS handshake is significantly reduced without running into
performance issues.

1.3 Related Work

When cryptographic protocols are deployed that require the setup of public
parameters by a trusted third party, issues similar to those mentioned for public-
key accumulators may arise. As discussed before, especially cryptocurrencies had
to come up with ways to circumvent this problem for accumulators but also the
common reference string (CRS) of zero-knowledge SNARKs [CGGN17]. Here,
trust in the CRS is of paramount importance on the verifier side to prevent
malicious provers from cheating. But also provers need to trust the CRS as
otherwise zero-knowledge might not hold. We note that there are alternative
approaches, namely subversion-resilient zk-SNARKS [BFS16] to reduce the trust
required in the CRS generator. However, subversion-resilient soundness and zero-
knowledge at the same time has been shown to be impossible by Bellare et al.
Abdolmaleki et al. [ABLZ17] provided a construction of zk-SNARKS, which was
later improved by Fuchsbauer [Fuc18], achieving subversion zero-knowledge by
adding a verification algorithm for the CRS. As a result, only the verifier needs to
trust the correctness of the CRS. Groth et al. [GKM+18] recently introduced the
notion of an updatable CRS where first generic compilers [ARS20] are available
to lift any zk-SNARK to an updatable simulation sound extractable zk-SNARK.
There the CRS can be updated and if the initial generation or one of the updates
was done honestly, neither soundness nor zero-knowledge can be subverted. In

8 https://github.com/aicis/fresco

5

https://github.com/aicis/fresco

the random oracle model (ROM), those considerations become less of a concern
and the trust put into the CRS can be minimized, e.g., as done in the construction
of STARKs [BBHR19].

Approaches that try to fix the issue directly in the formalization of accu-
mulators and corresponding constructions have also been studied. For example,
Lipmaa [Lip12] proposed a modified model tailored to the hidden order group
setting. In this model, the parameter setup is split into two algorithms, Setup
and Gen where the adversary can control the trapdoors output by Setup, but
can neither influence nor access the randomness used by Gen. However, con-
structions in this model so far have been provided using assumptions based on
modules over Euclidean rings, and are not applicable to the efficient standard
constructions we are interested in. More recently, Boneh et al. [BBF19] revis-
ited the RSA accumulator without trapdoor which allows the accumulator to
be instantiated from unknown order groups without trusted setup such as class
groups of quadratic imaginary orders [HM00] and hyperelliptic curves of genus
2 or 3 [DG20].

The area of secure multiparty computation has seen a lot of interest both in
improving the MPC protocols itself to a wide range of practical applications.
In particular, SPDZ [DPSZ12, DKL+13] has seen a lot of interest, improve-
ments and extensions [KOS15, KOS16, CDE+18, OSV20]. This interest also led
to multiple MPC frameworks, e.g., MP-SPDZ [Kel20], FRESCO and SCALE-
MAMBA,9 enabling easy prototyping for researchers as well as developers. For
practical applications of MPC, one can observe first MPC-based systems turned
into products such as Unbound’s virtual hardware security model (HSM).10 For
such a virtual HSM, one essentially wants to provide distributed key genera-
tion [FLOP18] together with threshold signatures [DK01] allowing to replace a
physical HSM. Similar techniques are also interesting for securing wallets for the
use in cryptocurrencies, where especially protocols for ECDSA [GG18, LN18]
are of importance to secure the secret key material. Similarly, such protocols
are also of interest for securing the secret key material of internet infrastructure
such as DNSSEC [DOK+20]. Additionally, addressing privacy concerns in ma-
chine learning algorithms has become increasingly popular recently, with MPC
protocols being one of the building blocks to achieve private classification and
private model training as in [WGC19] for example. Recent works [SA19] also
started to generalize the algorithms that are used as parts of those protocols al-
lowing group operations on elliptic curve groups with secret exponents or secret
group elements.

2 Preliminaries

In this section, we introduce cryptographic primitives we use as building blocks.
For notation and assumptions, we refer to Appendix A.

9 https://homes.esat.kuleuven.be/~nsmart/SCALE/
10 https://www.unboundtech.com/usecase/virtual-hsm/

6

https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://www.unboundtech.com/usecase/virtual-hsm/

2.1 UC security and ABB

In this paper, we mainly work in the UC model first introduced by Canetti [Can01].
The success of the UC model stems from its universal composition theorem,
which, informally speaking, states that it is safe to use a secure protocol as a
sub-protocol in a more complex one. This strong statement enables one to an-
alyze and proof the security of involved protocols in a modular way, allowing
us to build upon work that was already proven to be secure in the UC model.
In preparation for the security analysis of our MPC accumulators, we recall the
definition of the UC model [Can01].

Definition 1. Let EXECΠ,A,E respectively EXECF,S,E denote the random vari-
ables describing the output of environment E when interacting with an adversary
A and parties performing protocol Π, respectively when interacting with a sim-
ulator S and an ideal functionality F . Protocol Π UC emulates the ideal func-
tionality F if for any adversary A there exists a simulator S such that, for any
environment E the distribution of EXECΠ,A,E and EXECF,S,E are indistin-
guishable.

The importance of the UC model for secure multiparty computation stems
from the arithmetic black box (ABB)as introduced by Damg̊ard and Nielsen [DN03].
The ABB models a secure general-purpose computer in the UC model. It allows
performing arithmetic operations on private inputs provided by the parties. The
result of these operations is then revealed to all parties. Working with the ABB
provides us with a tool of abstracting arithmetic operations, including addition
and multiplication in fields.

2.2 SPDZ, Shamir, and Derived Protocols

Our protocols build upon SPDZ [DPSZ12, DKL+13] and Shamir secret shar-
ing [Sha79], concrete implementations of the abstract ABB. SPDZ itself is based
on an additive secret-sharing over a finite field Fp with information-theoretic
MACs making the protocol statistically UC secure against an active adversary
corrupting all but one player. On the other hand, Shamir secret sharing is a
threshold sharing scheme where k ≤ n out of n parties are enough to evaluate
the protocol correctly. Therefore, it is naturally robust against parties dropping
out during the computation; however, it assumes an honest-majority amongst
all parties for security. Shamir secret sharing can be made maliciously UC secure
in the honest-majority setting using techniques from [CGH+18] or [LN17].

We will denote the ideal functionality of the online protocol of SPDZ and
Shamir secret sharing by FAbb. For an easy use of these protocols later in our
accumulators, we give a high-level description of the functionality together with
an intuitive notation. We assume that the computations are performed by n
(or k) parties and we denote by 〈s〉 ∈ Fp a secret-shared value between the
parties in a finite field with p elements, where p is prime. The ideal functionality
FAbb provides us with the following basis operations: Addition 〈a+ b〉 ← 〈a〉+

7

〈b〉 (can be computed locally), multiplication 〈ab〉 ← 〈a〉 · 〈b〉 (interactive 1-
round protocol), sampling 〈r〉 ←R Fp, and opening a share 〈a〉. For convenience,
we assume that we have also access to the inverse function 〈a−1〉. Computation
of the inverse can be efficiently implemented using a standard form of masking
as first done in [BB89]. Given an opening of 〈z〉 = 〈r · a〉, the inverse of 〈a〉 is
then equal to z−1〈r〉. However, there is a small failure probability if either a
or r is zero. In our case, the field size is large enough that the probability of a
random element being zero is negligible.

There is one additional sub-protocol which we will often need. Recent work [SA19]
introduced protocols – in particular based on SPDZ – for group operations of
elliptic curve groups supporting secret exponents and secret group elements. The
high-level idea is to use the original SPDZ in the exponent group and for the
authentication of the shares of an elliptic curve point a similar protocol as in
SPDZ. For this work, we only need the protocol for exponentiation of a public
point with a secret exponent. Let G be a cyclic group of prime order p and g ∈ G.
Further, let 〈a〉 ∈ Fp be a secret-shared exponent.

ExpG(〈a〉, g) : The parties locally compute 〈ga〉 ← g〈a〉.

Since the security proof of this sub-protocol in [SA19] does not use any exclusive
property of an elliptic curve group, it applies to any cyclic group of prime order.

All protocols discussed so far are secure in the UC model, making them safe
to use in our accumulators as sub-protocols. Therefore, we will refer to their
ideal functionality as FABB+. As a result, our protocols become secure in the
UC model as long as we do not reveal any intermediate values.

2.3 Accumulators

We rely on the formalization of accumulators by Derler et al. [DHS15]. We start
with the definitions of static and dynamic accumulators.

Definition 2 (Static Accumulator). A static accumulator is a tuple of PPT
algorithms (Gen,Eval,WitCreate,Verify) which are defined as follows:

Gen(1κ, q) : This algorithm takes a security parameter κ and a parameter q.
If q 6= ∞, then q is an upper bound on the number of elements to be ac-
cumulated. It returns a key pair (skΛ, pkΛ), where skΛ = ∅ if no trapdoor
exists. We assume that the accumulator public key pkΛ implicitly defines the
accumulation domain DΛ.

Eval((skΛ, pkΛ),X) : This algorithm takes a key pair (skΛ, pkΛ) and a set X to
be accumulated and returns an accumulator ΛX together with some auxiliary
information aux.

WitCreate((skΛ, pkΛ), ΛX , aux, xi) : This algorithm takes a key pair (skΛ, pkΛ),
an accumulator ΛX , auxiliary information aux and a value xi. It returns ⊥,
if xi /∈ X , and a witness witxi for xi otherwise.

Verify(pkΛ, ΛX ,witxi , xi) : This algorithm takes a public key pkΛ, an accumula-
tor ΛX , a witness witxi and a value xi. It returns 1 if witxi is a witness for
xi ∈ X and 0 otherwise.

8

Definition 3 (Dynamic Accumulator). A dynamic accumulator is a static
accumulator with PPT algorithms (Add,Delete,WitUpdate) defined as follows:

Add((skΛ, pkΛ), ΛX , aux, x) : This algorithm takes a key pair (skΛ, pkΛ), an ac-
cumulator ΛX , auxiliary information aux, as well as an element x to be
added. If x ∈ X , it returns ⊥. Otherwise, it returns the updated accumulator
ΛX ′ with X ′ ← X ∪ {x} and updated auxiliary information aux′.

Delete((skΛ, pkΛ), ΛX , aux, x) : This algorithm takes a key pair (skΛ, pkΛ), an
accumulator ΛX , auxiliary information aux, as well as an element x to be
added. If x 6∈ X , it returns ⊥. Otherwise, it returns the updated accumulator
ΛX ′ with X ′ ← X \ {x} and updated auxiliary information aux′.

WitUpdate((skΛ, pkΛ),witxi , aux, x) : This algorithm takes a key pair (skΛ, pkΛ),
a witness witxi to be updated, auxiliary information aux and an x which
was added to/deleted from the accumulator, where aux indicates addition or
deletion. It returns an updated witness wit′xi on success and ⊥ otherwise.

This formalization of accumulators gives access to a trapdoor if it exists and skΛ
is set to ∅ if it is not available. We recall collision freeness:

Definition 4 (Collision Freeness). A cryptographic accumulator is collision-
free, if for all PPT adversaries A there is a negligible function ε(·) such that:

Pr

[
(skΛ, pkΛ)← Gen(1κ, q), (witxi

?, xi
?,X ?, r?)← AO(pkΛ) :

Verify(pkΛ, Λ
?,witxi

?, xi
?) = 1 ∧ xi? /∈ X ?

]
≤ ε(κ),

where Λ? ← Eval((skΛ, pkΛ),X ?; r?) and the adversary gets access to the or-
acles O = {Eval((skΛ, pkΛ), ·),WitCreate((skΛ, pkΛ), ·, ·, ·)} and, if the accumu-
lator is dynamic, additionally to {Add((skΛ, pkΛ), ·, ·, ·),Delete((skΛ, pkΛ), ·, ·, ·),
WitUpdate((skΛ, pkΛ), ·, ·, ·)}.

2.4 Pairing-based Accumulator

We recall the q-SDH-based accumulator from [DHS15], which is based on the
accumulator by Nguyen [Ngu05]. The idea here is to encode the accumulated
elements in a polynomial. This polynomial is then evaluated for a fixed element
and the result is randomized to obtain the accumulator. A witness consists of the
evaluation of the same polynomial with the term corresponding to the respective
element cancelled out. For verification, a pairing evaluation is used to check
whether the polynomial encoded in the witness is a factor of the one encoded
in the accumulator. As it is typically more efficient to work with bilinear groups
of Type-3 [GPS08], we state the accumulator as depicted in Scheme 1 in this
setting. Correctness is clear, except for the WitUpdate subroutine: To update
witness witxi of the element xi after the element x was added to the accumulator

ΛX to create the new accumulator ΛX ′ = Λ
(x+s)
X , one computes:

ΛX · wit(x−xi)xi = Λ
(xi+s)·(xi+s)−1

X · Λ(x−xi)·(xi+s)−1

X

= Λ
(x+s)·(xi+s)−1

X = Λ
(xi+s)

−1

X ′

9

Gen(1κ, q) : Let BG = (p,G1,G2,GT , e, g1, g2)← BGen(κ). Choose s←R Z∗p and return

skΛ ← s and pkΛ ← (BG, (gs
i

1)qi=1, g
s
2).

Eval((skΛ, pkΛ),X) : Parse X ⊂ Z∗p. Choose r←R Z∗p. If skΛ 6= ∅, compute ΛX ←
g
r
∏
x∈X (x+s)

1 . Otherwise, expand the polynomial
∏
x∈X (x+X) =

∑n
i=0 aiX

i, and

compute ΛX ← ((
∏n
i=0 g

si

1)ai)r. Return ΛX and aux← (add← 0, r,X).
WitCreate((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r,X). If x 6∈ X , return ⊥. If

skΛ 6= ∅, compute and return witx ← Λ
(x+s)−1

X . Otherwise, run (witx, . . .) ←
Eval((skΛ, pkΛ),X \ {x}; r), and return witx.

Verify(pkΛ, ΛX ,witx, x) : Return 1 if e(ΛX , g2) = e(witx, g
x
2 · gs2), otherwise return 0.

Add((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r,X). If x ∈ X , return ⊥. Set X ′ ← X∪{x}.
If skΛ 6= ∅, compute and return ΛX ′ ← Λx+sX and aux′ ← (r,X ′, add ←
1, ΛX , ΛX ′). Otherwise, return Eval((skΛ, pkΛ),X ′; r) with aux extended with
(add← 1, ΛX , ΛX ′).

Delete((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r,X). If x 6∈ X , return ⊥. Set X ′ ←

X \{x}. If skΛ 6= ∅, compute and return ΛX ′ ← Λ
(x+s)−1

X and aux′ ← (r,X ′, add←
−1, ΛX , ΛX ′). Otherwise, return Eval((skΛ, pkΛ),X ′; r) with aux extended with
(add← 0, ΛX , ΛX′).

WitUpdate((skΛ, pkΛ),witxi , aux, x) : Parse aux as (⊥,⊥, add, ΛX , ΛX ′). If add = 0,

return ⊥. Return ΛX · witx−xixi if add = 1. If instead add = −1, return (Λ−1
X ′ ·

witxi)
(x−xi)−1

. In the last two cases in addition return aux← (add← 0).

Scheme 1: q-SDH-based accumulator in the Type-3 setting.

which results in the desired updated witness. Similar, if the element x gets
removed instead, one computes the following to get the desired witness:

(Λ−1
X ′ · witxi)

(x−xi)−1

= Λ
−(xi+s)·(xi+s)−1·(x−xi)−1

X ′ · Λ(x+s)·(xi+s)−1·(x−xi)−1

X ′

= Λ
(xi+s)

−1·(x−xi)−1·(x−xi+s−s)
X ′ = Λ

(xi+s)
−1

X ′

The proof of collision freeness follows from the q-SDH assumption. For com-
pleteness, we still restate the theorem from [DHS15] adopted to the Type-3
setting.

Theorem 1. If the q-SDH assumption holds, then Scheme 1 is collision-free.

Proof. Assume that A is an adversary against the collision freeness of the ac-
cumulator. We show that this adversary can be transformed into an efficient
adversary B against the q-SDH assumption. We perform a proof by reduction in
the following way:

– When B is started on a q-SDH instance

(
BG,

(
gs
i

1

)
i∈[q]

, gs2

)
, set pkΛ ←(

BG,
(
gs
i

1

)
i∈[q]

, gs2

)
and start A on pkΛ. The oracles for A are simulated by

forwarding the inputs directly to the corresponding algorithms with (∅, pkΛ)
as argument for the keys.

10

OEval(X) : Return Eval((∅, pkΛ),X).
OWitCreate(ΛX , aux, x) : Return WitCreate((∅, pkΛ),X).
OAdd(ΛX , aux, x) : Return Add((∅, pkΛ), ΛX , aux, x).
ODelete(ΛX , aux, x) : Return Delete((∅, pkΛ), ΛX , aux, x).
OWitUpdate(witx′ , aux, x) : Return WitUpdate((∅, pkΛ),witx′ , aux, x).

– At some point A outputs a set X ?, an element x? 6∈ X ?, a witness wit?x?
for x?, and the randomizer r?, such that for ΛX? , aux ← Eval((∅, pkΛ),X ?),
the verification relation e(ΛX? , g2) = e(wit?x? , g

x?

2 · gs2) holds. Now, compute
h(X) =

∏
x∈X?(x+X) and φ(X) such that h(X) = φ(X)(x?+X)+d, which

exists since x? 6∈ X ?. Then compute g
r?φ(s)
1 by expanding the polynomial

φ(X) and the gs
i

1 stored in pkΛ. Then, B outputs(
wit?x? ·

(
g
r?φ(s)
1

)−1
) 1
r?d

=

(
g
r?h(s)
x?+s

1 · g
−r?(h(s)−d)

x?+s

1

) 1
r?d

=

(
g
r?d
x?+s

1

) 1
r?d

= g
1

x?+s

1

and x? as solution to the q-SDH problem instance.

Hence, B succeeds with the same probability as A. ut

Remark 1. Note that for support of arbitrary accumulation domains, the accu-
mulator requires a suitable hash function mapping to Z∗p. For the MPC-based
accumulators that we will define later, it is clear that the hash function can be
evaluated in public. For simplicity, we omit the hash function in our discussion.

2.5 UC Secure Accumulators

Only recently, Baldimtsi et al. [BCY20] formalized the security of accumulators
in the UC framework. Interestingly, they showed, that any correct and collision-
free standard accumulator is automatically UC secure. We, however, want to
note, that their definitions of accumulators are slightly different then the frame-
work by Derler et al. (which we are using). Hence, we adapt the ideal function-
ality FAcc from [BCY20] to match our setting: First our ideal functionality FAcc

consists of two more sub-functionalities. This is due to a separation of the algo-
rithms responsible for the evaluation, addition, and deletion. Secondly, our FAcc

is simplified to our purpose, whereas FAcc from Baldimtsi et al. is in their words
“an entire menu of functionalities covering all different types of accumulators”.
Thirdly, we added identity checks to sub-functionalities (where necessary) to be
consistent with the given definitions of accumulators.

The resulting ideal functionality is depicted in Functionality 1 in Appendix C.
Note that the ideal functionality has up to three parties. First, the party which
holds the set X is the accumulator manager AM, responsible for the algorithms
Gen,Eval,WitCreate,Add and Delete. The second party H owns a witness and
is interested in keeping it updated and for this reason, performs the algorithm

11

WitUpdate. The last party V can be seen as an external party. V is only able to
use Verify to check the membership of an element in the accumulated set.

In the following theorem we adapt the proof from [BCY20] to our setting:

Theorem 2. If ΠAcc = (Gen,Eval,WitCreate,Verify,Add,Delete,WitUpdate) is
a correct and collision-free dynamic accumulator with deterministic Verify, then
ΠAcc UC emulates FAcc.

Proof. We will proceed by contraposition. Assume to the contrary that ΠAcc

does not UC emulate FAcc, i.e., there exists an environment E , for all simulators
S such that E can distinguish between the distributions of the random variables
EXECF,S,E and EXECΠ,A,E with non-negligible probability. Since the last
statement holds for all simulators, we can choose one. We want a simulator S that
interacts with the ideal functionality FAcc in a way such that their distribution
can not be distinguished by any environment from the real world, except when
it violates either correctness or collision-freeness. Such a simulator would be a
contradiction to our assumption and thereby prove the theorem.

Consider a simulator S that uses the standard corruption model from [Can01].
Further, S interacts with the environment E by forwarding any input to the real
adversary A and conversely forwarding any output from A directly to E . When
S receives the request (GEN,sid) from FAcc, it replies with the actual accumu-
lator algorithms. By construction of S, the only differences to the real world
that are visible for the environment E are the following instances where FAcc

returns ⊥: (i) WitCreate: 4., (ii) Verify: 1.b, (iii) Add: 6. and (iv) WitUpdate : 3.
The occurrence of one of the above cases would immediately imply a violation
of the classical definition. More concretely, if Verify 1.b would return ⊥, then the
collision-freeness would be violated. In the other instances, correctness would
not be given any more. ut

As a direct consequence of Theorems 1 and 2, the accumulator from Scheme 1
is also secure in the UC model of [BCY20] since it is correct and collision-free:

Corollary 1. Scheme 1 emulates FAcc in the UC model.

3 Multi-Party Public-Key Accumulators

With the building blocks in place, we are now able to go into the details of
our construction. We first present the formal notion of (threshold) secret-shared
accumulators, their ideal functionality, and then present our constructions.

For the syntax of the MPC-based accumulator, which we dub (threshold)
secret-shared accumulator, we use the bracket notation 〈s〉 from Section 2.2 to
denote a secret shared value. If we want to explicitly highlight the different
shares, we write 〈s〉 = (s1, . . . , sn), where the share si belongs to a party Pi.
We base the definition on the framework of Derler et al. [DHS15], where our
algorithms behave in the same way, but instead of taking an optional secret
trapdoor, the algorithms are given shares of the secret as input. Consequently,
Gen outputs shares of the secret trapdoor instead of the secret key. The static
version of the accumulator is defined as follows:

12

Definition 5 (Static (Threshold) Secret-Shared Accumulator). Let us
assume that we have a (threshold) secret sharing-scheme. A static (threshold)
secret-shared accumulator for n ∈ N parties P1, . . . , Pn is a tuple of PPT algo-
rithms (Gen,Eval,WitCreate,Verify) which are defined as follows:

Gen(1κ, q) : This algorithm takes a security parameter κ and a parameter q.
If q 6= ∞, then q is an upper bound on the number of elements to be
accumulated. It returns a key pair (skiΛ, pkΛ) to each party Pi such that
skΛ = Open(sk1

Λ, . . . , sk
n
Λ), denoted by 〈skΛ〉. We assume that the accumula-

tor public key pkΛ implicitly defines the accumulation domain DΛ.

Eval((〈skΛ〉, pkΛ),X) : This algorithm takes a secret-shared private key 〈skΛ〉 a
public key pkΛ and a set X to be accumulated and returns an accumulator
ΛX together with some auxiliary information aux to every party Pi.

WitCreate((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private
key 〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux
and a value x. It returns ⊥, if x /∈ X , and a witness witx for x otherwise to
every party Pi.

Verify(pkΛ, ΛX ,witx, x) : This algorithm takes a public key pkΛ, an accumulator
ΛX , a witness witx and a value x. It returns 1 if witx is a witness for x ∈ X
and 0 otherwise.

In analogy to the non-interactive case, dynamic accumulators provide additional
algorithms to add elements to the accumulator and remove elements from it,
respectively, and update already existing witnesses accordingly. These algorithms
are defined as follows:

Definition 6 (Dynamic (Threshold) Secret-Shared Accumulator). A
dynamic (threshold) secret-shared accumulator is a static (threshold) secret-shared
accumulator with an additional tuple of PPT algorithms (Add,Delete,WitUpdate)
which are defined as follows:

Add((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private key
〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux, as
well as an element x to be added. If x ∈ X , it returns ⊥ to every party Pi.
Otherwise, it returns the updated accumulator ΛX ′ with X ′ ← X ∪ {x} and
updated auxiliary information aux′ to every party Pi.

Delete((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private key
〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux, as
well as an element x to be added. If x 6∈ X , it returns ⊥ to every party Pi.
Otherwise, it returns the updated accumulator ΛX ′ with X ′ ← X \ {x} and
updated auxiliary information aux′ to every party Pi.

WitUpdate((〈skΛ〉, pkΛ),witxi , aux, x) : This algorithm takes a secret-shared pri-
vate key 〈skΛ〉 a public key pkΛ, a witness witxi to be updated, auxiliary
information aux and an element x which was added to/deleted from the ac-
cumulator, where aux indicates addition or deletion. It returns an updated
witness wit′xi on success and ⊥ otherwise to every party Pi.

13

Correctness and collision-freeness naturally translate from the non-interactive
accumulators to the (threshold) secret-shared ones. The work of Baldimtsi et al.
also introduced the property creation-correctness. Informally speaking, creation-
correctness allows the generation of witnesses during addition. In the above defi-
nitions, we see that adding an element to the accumulator and creating a witness
are two separate algorithms. Therefore, the notion of creation-correctness does
not immediately apply to our accumulators.

For our case, the ideal functionality for (threshold) secret-shared accumula-
tors, dubbed FMPC-Acc is more interesting. FMPC-Acc is very similar to FAcc and
is depicted in Functionality 2 in Appendix C. The only difference in describ-
ing the ideal functionality for accumulators in the MPC setting arises from the
fact that we now have not only one accumulator manager but n, denoted by
AM1, . . . ,AMn. More concretely, whenever a sub-functionality of FMPC-Acc –
that makes use of the secret key – gets a request from a manager identity AMi,
it now also gets a participation message from the other managers identities Aj
for j 6= i. Furthermore, the accumulator managers take the role of the witness
holder. The party V, however, stays unchanged.

3.1 Dynamic (Threshold) Secret-Shared Accumulator from the
q-SDH Assumption

For the generation of public parameters Gen, we can rely on already established
methods to produce ECDSA key pairs and exponentiations with secret expo-
nents, respectively. These methods can directly be applied to the accumulators.
Taking the q-SDH accumulator as an example, the first step is to sample the se-
cret scalar s ∈ Zp. Intuitively, each party samples its own share si and the secret
trapdoor s would then be s = Open(s1, . . . , sn). The next step, the calculation

of the basis elements gs
j

for j = 1, . . . , q, is optional, but can be performed to
provide public parameters, that are useful even to parties without knowledge of
s. All of these elements can be computed using ExpG and the secret-shared s,
respectively its powers. For the accumulator evaluation, Eval, the parties first
sample their shares of r. Then, they jointly compute shares of r ·f(s) using their
shares of r and s. The so-obtained exponent and ExpG produce the final result.

For witness creation, WitCreate, it gets more interesting. Of course, one could
simply run Eval again with one element removed from the set. In this case, we can
do better, though. The difference between the accumulator and a witness is that
in the latter, one factor of the polynomial is canceled. Since s is available, it is
thus possible to cancel this factor without recomputing the polynomial from the
start. Indeed, to compute the witness for an element x, we can compute (s+x)−1

and then apply that inverse using ExpG to the accumulator to get the witness.
Note though, that before the parties perform this step, they need to check if
x is actually contained in X . Otherwise, they would produce a membership
witness for a non-member. In that case, the verification would check whether
f(s)(s+x)−1(s+x) matches f(s), which of course also holds even if s+x is not a
factor of f(s). In contrast, when performing Eval with only the publicly available
information, this issue does not occur since there the witness will not verify. Add

14

and Delete can be implemented in a similar manner. When adding an element
to the accumulator, the polynomial is extended by one factor. Removal of an
element requires that one factor is canceled. Both operations can be performed
by first computing the factor using the shares of s and then running ExpG.

Now, we present the MPC version of the q-SDH accumulator in Scheme 2
following the intuition outlined above. Note, that the algorithm for WitUpdate is
unlikely to be faster than its non-MPC version from Scheme 1. Indeed, the non-
MPC version requires only exponentiations in G1 and a multiplication without
the knowledge of the secret trapdoor. We provide the version using the trapdoor
for completeness but will use the non-MPC version of the algorithm in practical
implementations. Note further that we let Gen choose the bilinear group BG, but
this group can already be fixed a priori.

Gen(1κ, q) : BG = (p,G1,G2,GT , e, g1, g2) ← BGen(κ). Compute 〈skΛ〉 ← sRand(Z∗p).
Compute h← Open(g

〈skΛ〉
2). Return pkΛ ← (BG, h).

Eval((〈skΛ〉, pkΛ),X) : Parse pkΛ as (BG, h) and X as subset of Z∗p. Choose 〈r〉 ←
sRand(Z∗p). Compute 〈q〉 ←

∏
x∈X (x+〈skΛ〉) ∈ Z∗p and 〈t〉 ← 〈q〉·〈r〉. The algorithm

returns ΛX ← Open(g
〈t〉
1) and aux← (add← 0,X).

WitCreate((〈skΛ〉, pkΛ), ΛX , aux, x) : Returns ⊥ if x /∈ X . Otherwise, 〈z〉 ← 〈(x +

〈skΛ〉)−1〉. Return witx ← Open(Λ
〈z〉
X).

Verify(pkΛ, ΛX ,witx, x) : Parse pkΛ as (BG, h). If e(ΛX , g2) = e(witx, g
x
2 · h) holds,

return 1, otherwise return 0.
Add((〈skΛ〉, pkΛ), ΛX , aux, x) : Returns ⊥ if x ∈ X . Otherwise set X ′ ← X ∪ {x}.

Return ΛX ′ ← ΛxX · Open(Λ
〈skΛ〉
X) and aux← (add← 1,X ′).

Delete((〈skΛ〉, pkΛ), ΛX , aux, x) : If x /∈ X , return ⊥. Otherwise set X ′ ← X \{x}, and

compute 〈y〉 ← 〈(x + 〈skΛ〉)−1〉. Return ΛX ′ ← Open(Λ
〈y〉
X) and aux ← (add ←

−1,X ′).
WitUpdate((〈skΛ〉, pkΛ),witxi , aux, x) : Parse aux as (add,X). Return ⊥ if add = 0

or xi /∈ X . In case add = 1, return witxi ← witxxi · Open(wit
〈skΛ〉
xi) and aux ←

(add ← 0,X). If instead add = −1, it compute 〈y〉 ← 〈(x + 〈skΛ〉)−1〉. Return

witxi ← Open(wit
〈y〉
xi) and aux← (add← 0,X).

Scheme 2: MPC-q-SDH: Dynamic (threshold) secret-shared accumulator from
q-SDH for n ≥ 2 parties.

Theorem 3. Scheme 2 UC emulates FAcc-MPC in the FABB+-hybrid model.

Proof. At this point, we make use of the UC model. Informally speaking, ac-
cumulators are UC secure, and SPDZ, Shamir secret sharing, and the derived
operations UC emulate FABB+. Therefore, according to the universal composi-
tion theorem, the use of these MPC protocols in the accumulator Scheme 2 can
be done without losing UC security. For a better understanding, we begin by
showing the desired accumulator properties for Scheme 2.

15

The proof of the correctness follows directly from the correctness proof from
Scheme 1 for the case where the secret key is known. Collision-freeness is also
derived from the non-interactive q-SDH accumulator. (It is true that now each
party has a share of the trapdoor, but without the other shares no party can
create a valid witness.) Since Verify is obviously deterministic, Scheme 2 fulfills
all necessary assumption of Theorem 2. After applying Theorem 2, we get a
simulator SAcc interacting with the ideal functionality FAcc. Since we now also
have to simulate the non-interactive sub-protocols, we have to extend SAcc. We
construct SAcc-MPC by building upon SAcc and in addition internally simulate
FABB+. As described in Section 2.2, the MPC protocols used in the above algo-
rithms are all secure in the UC model. Since we do not open any secret-shared
values besides uniformly random elements and the output or values that can
be immediately derived from the output, the algorithms are secure due to the
universal composition theorem. ut

Remark 2. In Gen of Scheme 2 we explicitly do not compute hi ← gs
i

1 . Hence,
using Eval without access to s is not possible. But, on the positive side, the
public parameters are significantly smaller and so is the runtime of the Gen
algorithm. If, however, these values are needed to support a non-secret-shared
Eval, one can modify Gen to also compute the following values: 〈t1〉 ← 〈s〉,
〈ti〉 ← 〈ti−1〉 · 〈s〉, and hi ← Open(g

〈ti〉
1) for i = 1, . . . , t. This opens up the

possibilities to trade an efficient Eval computation with an inefficient Gen step,
which could be precomputed before the actual accumulator is created. Updates
to this accumulator then still profit from the efficiency of the secret shared
trapdoor. Additionally, q gives an upper bound on the size of the accumulated
sets, and thus needs to be considered in the selection of the curves even though
the powers of g1 are not placed in the public key.

3.2 SPDZ vs. Shamir Secret Sharing

In this section, we want to compare two MPC protocols on which our MPC-q-
SDH Accumulator can be based on, namely SPDZ and Shamir secret sharing.
Both protocols allow us to keep shares of the secret trapdoor and improve per-
formance compared to the keyless q-SDH Accumulator. However, in relying on
these protocols for security, the trust assumptions of the MPC-q-SDH Accumu-
lator also have to include the underlying protocols’ trust-assumptions.

SPDZ is a full-threshold dishonest-majority protocol that protects against
n− 1 corrupted parties. Therefore, an honest party will always detect malicious
behavior. However, full-threshold schemes are not robust; if one party fails to
supply its shares, the computation always fails.

On the contrary, Shamir secret sharing is an honest-majority threshold pro-
tocol. It is more robust than SPDZ since it allows k ≤ n−1

2 corrupted parties
while still being capable of providing correct results. This also means, if some
parties (k ≤ n−1

2) fail to provide their shares, the other parties can still compute
the correct results without them. Thus, no accumulator manager on its own
is a single point of failure. However, if more than k parties are corrupted, the

16

adversaries can reconstruct the secret trapdoor and, therefore, compromise the
security of our MPC-q-SDH Accumulator.

4 Implementation and Performance Evaluation

We implemented the proposed dynamic (threshold) secret-shared accumulator
from q-SDH and evaluated it against small to large sets.11 Our primary im-
plementations are based on SPDZ with OT-based preprocessing and Shamir
secret sharing in the MP-SPDZ [Kel20]12 framework. However, to demonstrate
the usability of our accumulator, we additionally build an implementation in
the malicious security setting with dishonest-majority based on the FRESCO
framework. We discuss the benchmarks for the MP-SPDZ implementation in
this section. For a discussion of the FRESCO benchmarks we refer the reader to
Appendix E.

Remark 3. We want to note, that in our benchmarks we test the performance
of the MPC variant of WitUpdate from Scheme 2, even though in practice the
non-MPC variant from scheme Scheme 1 should be used.

MP-SPDZ implements the SPDZ protocol with various extensions [DPSZ12,
KOS15,KOS16,CDE+18], as well as semi-honest and malicious variants of Shamir
secret sharing [CDM00,CGH+18,LN17]. For pairing and elliptic curve group op-
erations, we rely on relic13 and integrate ExpG, Output-G, and the corresponding
operations to update the MAC described in [SA19] into MP-SPDZ. We use the
pairing friendly BLS12-381 curve [BLS02], which provides around 120 bit of
security following recent estimates [BD19]. We want to note, that our imple-
mentation can easily be adapted to support other pairing libraries, as well. For
completeness, we also implemented the q-SDH accumulator from Scheme 1 and
a Merkle-tree accumulator (cf. Appendix B) using SHA-256. This enables us to
compare the performance in cases where the secret trapdoors are available in
the MPC case and when they are not. In Table 1, we present the numbers for
various sizes of accumulated sets.

The evaluation of the MPC protocols was performed on a cluster with a
Xeon E5-4669v4 CPU, where each party was assigned only 1 core. The hosts
were connected via a 1 Gbit/s LAN network, and an average round-trip time
of < 1 ms. For the WAN setting, a network with a round-trip time of 100 ms
and a bandwidth of 100 Mbit/s was simulated. We provide benchmarks for both
preprocessing and online phases of the MPC protocols, where the cost of the pre-
processing phase is determined by the number of shared multiplications, whereas
the performance of the online phase is proportional to the multiplicative depth
of the circuit and the number of openings.

11 The source code is available at https://github.com/IAIK/MPC-Accumulator.
12 https://github.com/data61/MP-SPDZ
13 https://github.com/relic-toolkit/relic

17

https://github.com/IAIK/MPC-Accumulator
https://github.com/data61/MP-SPDZ
https://github.com/relic-toolkit/relic

Table 1. Performance of the accumulator algorithms without access to the secret
trapdoors. Time in milliseconds averaged over 100 executions.

Accu. |X | Gen Eval WitCreate Add WitUpdate Delete WitUpdate

Scheme 1
210 649 1 117 1 116 1 116 0.6 1 120 0.7
214 9 062 116 031 115 870 115 575 0.6 116 154 0.7

Merkle-Tree
210 − 1.12 0.05a 1.12 0.05a 1.12 0.05a

214 − 15.53 0.83a 15.53 0.83a 15.53 0.83a

a Assuming that the full Merkle-tree is known as auxiliary data. If not, the tree has
to be rebuilt, which adds the Eval-time.

Table 2. Number of Beaver triples, shared random values, and opening rounds required
by MPC-q-SDH.

Gen Eval WitCreate Add WitUpdate Delete WitUpdate

Beaver triples 0 |X | 1 0 0 1 1
Random values 1 1 1 0 0 1 1
Opening rounds 1 dlog2(|X |+ 1)e+ 1 3 1 1 3 3

a Note, semi-honest Shamir secret sharing does not require Beaver triples.

4.1 Evaluation of MPC-q-SDH

In the offline phase of the implemented MPC protocols, the required Beaver
triples [Bea91] for shared multiplication and the pre-shared random values are
generated. A shared inverse operation requires one multiplication and one shared
random value. In Table 2, we list the number of triples required for each operation
for the MPC-q-SDH accumulator. Except for Eval they require a constant num-
ber of multiplications and inverse operations and, therefore, a constant number
of Beaver triples and shared random elements. In Eval, the number of required
Beaver triples is determined by |X |. Furthermore, Table 2 lists the number of
opening rounds (including openings in multiplications, excluding MAC-checks)
of the online phase of the MPC-q-SDH accumulator allowing one to calculate
the number of communication rounds for different sharing schemes.

As discussed in Remark 2, Gen is not producing the public parameters hi.
If Eval without MPC is desired, the time and communication of Eval for the
respective set sizes should be added to the time and communication of Gen to
obtain an estimate of its performance.

Dishonest-Majority based on SPDZ. Table 3 compares the offline performance
of the MPC-q-SDH accumulator based on SPDZ in different settings. We give
both timings for the accumulation of |X | elements in Eval and the necessary
pre-computation for a single inversion, which is used in several other operations
(e.g., WitCreate). Additionally we also give the time for pre-computing a single
random element, which is required to generate the authenticated share of the
secret-key in Eval. Further note that batching the generation of many triples

18

Table 3. Offline phase performance of different steps of the MPC-q-SDH accumulator
with access to the secret trapdoor based on MP-SPDZ. Time in milliseconds.

LAN setting WAN setting
Operation |X | n = 2 3 4 5 2 3 4 5

BaseOTs 210, 214 0.03 0.08 0.14 0.23 0.14 0.31 0.56 0.84

S
em

i-
H

o
n

es
t Inverse 210, 214 0.78 1.72 3.06 4.03 209.9 227.5 322.8 331.0

Gen 210, 214 0.44 1.21 1.76 3.01 207.7 223.6 325.9 332.0

Eval
210 189 397 706 959 4 695 8 215 13 680 25 725
214 4000 8 308 14 380 17 928 55 542 109 720 214 585 356 330

M
a
li

ci
o
u

s Inverse 210, 214 4.34 7.93 11.5 15.3 840.5 1 262 1 538 1 914

Gen 210, 214 2.56 4.23 6.80 9.32 841.3 1 235 1 540 1 856

Eval
210 1 601 2 849 4 345 6 227 25 737 45 254 87 328 141 181
214 31 099 62 978 89 132 145 574 412 747 682 033 1 364 660 2 236 860

together like for the Eval phase is more efficient in practice than producing a
single triple and as these triples are not dependent on the input, all parties can
continuously generate triples in the background for later use in the online phase.

In Table 4, we present the online performance of our MPC-q-SDH accumula-
tor based on SPDZ for different set sizes, parties, security settings, and network
settings. It can clearly be seen, that – except for the Eval operation – the run-
time of each operation is independent of the set size. In other words, after an
initial accumulation of a given set, every other operation has constant time. In
comparison, the runtime of the non-MPC accumulators without access to the
secret trapdoor, as depicted in Table 1, depends on the size of the accumulated
set. Our MPC-accumulator outperforms the non-MPC q-SDH accumulators the
larger the accumulated set gets. In the LAN setting MPC-q-SDH’s Eval is faster
than the non-MPC version for all benchmarked players, even in the WAN settings
it outperforms the non-MPC version in the two player case. For 214 elements,
it is even faster for all benchmarked players in all settings, including the WAN
setting. In any case, the witnesses have constant size contrary to the log2(|X |)
sized witnesses of the Merkle-tree accumulator.

The numbers for the evaluation of the online phase in the WAN setting are
also presented in Table 4. The overhead that can be observed compared to the
LAN setting is influenced by the communication cost. Since our implementation
implements all multiplications in Eval in a depth-optimized tree-like fashion, the
overhead from switching to a WAN setting is not too severe.

On the first look, one can observe an irregularity in our benchmarks. More
specifically, notice that for four or more parties, the maliciously secure evaluation
of the Eval online phase is consistently faster than the semi-honest evaluation
of the same phase. However, this is a direct consequence of a difference in how
MP-SPDZ handles the communication in those security models, where commu-
nication is handled in a non-synchronized send-to-all approach in the malicious
setting and a synchronized broadcast approach in the semi-honest setting. The

19

Table 4. Online phase performance of the MPC-q-SDH accumulator with access to
the secret trapdoor based on SPDZ implemented in MP-SPDZ, for both the LAN and
WAN settings with n parties. Time in milliseconds averaged over 50 executions.

Semi-Honest Malicious
LAN setting WAN setting LAN setting WAN setting

Operation |X | n = 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

Gen
210 4 4 7 19 53 110 170 219 11 13 25 37 169 278 395 505
214 4 4 9 20 56 111 172 220 11 13 28 48 179 280 396 506

Eval
210 3 13 58 231 635 1 277 1 916 2 558 10 17 50 131 966 1 327 1 669 1 995
214 26 47 117 315 949 1 948 3 166 4 571 89 94 174 225 1 297 1 979 2 830 3 872

WitCreate
210 2 2 32 39 168 320 482 645 5 10 35 75 372 606 823 1 050
214 2 2 28 51 168 320 473 638 5 6 28 80 365 606 835 1 052

Add
210 2 2 8 17 47 107 166 213 5 5 17 31 170 273 388 499
214 2 2 5 14 50 108 170 214 5 5 17 42 173 271 383 491

WitUpdateAdd
210 2 2 5 30 60 108 154 214 5 7 12 34 159 276 390 495
214 2 2 3 20 60 107 152 217 5 6 10 54 154 275 390 500

Delete
210 2 2 21 58 156 319 488 639 5 10 47 78 379 598 818 1 034
214 2 2 23 55 158 318 489 642 5 6 38 87 385 603 822 1 033

WitUpdateDelete
210 2 2 52 47 165 320 475 643 5 10 26 100 374 604 828 1 044
214 2 4 43 57 162 323 475 639 5 10 35 74 365 599 827 1 048

Table 5. Communication cost (in kB per party) of the MPC-q-SDH accumulator with
access to the secret trapdoor based on SPDZ implemented in MP-SPDZ.

Semi-Honest Malicious
Operations |X | Offlinea Online Offlinea Online

Gen 210, 214 20 0.10 86 0.24

Eval
210 12 571 66 79 549 66
214 200 823 1 049 1 271 484 1 049

WitCreate, Delete, WitUpdateDelete 210, 214 33 0.15 164 0.37

Add, WitUpdateAdd 210, 214 4 0.05 4 0.14

a Includes BaseOTs for a new connection

synchronization in the latter case scales worse for more parties and, therefore,
introduces some additional delays.

Finally, Table 5 depicts the size of the communication between the parties
for both offline and online phases. The communication of Eval has to account
for a number of multiplications dependent on X and therefore scales linearly
with its size. As we already observed for the runtime of MPC-q-SDH, also the
communication of WitCreate, Add, Delete and WitUpdate is independent of the
size of the accumulated set, and additionally less than 200 kB for all algorithms.
Combined with the analysis of the runtime, we conclude that the performance of
the operations that might be performed multiple times per accumulator is very
efficient in both runtime and communication. When compared to the perfor-
mance of the non-MPC accumulators in Table 1, we see that the performance of

20

Table 6. Offline phase performance of different steps of the MPC-q-SDH accumulator
with access to the secret trapdoor in the semi-honest (SH) and malicious threshold
setting implemented in MP-SPDZ. Time in milliseconds.

LAN setting WAN setting
Operation |X | n = 3 4 5 3 4 5

S
H Inverse 210, 214 6 9 14 473 585 998

M
a
li
ci

o
u
s Inverse 210, 214 7 9 17 1 036 1 231 2 136

Gen 210, 214 6 11 17 1 008 1 256 2 233

Eval
210 20 29 48 1 232 2 089 2 629
214 218 245 510 3 431 8 130 8 519

operations that benefit from access to the secret trapdoor are multiple orders of
magnitude faster in the MPC accumulators and, in the LAN setting, even come
close to the performance of the standard Merkle-tree accumulator, for both the
semi-honest and malicious variant.

Honest-Majority Threshold Sharing based on Shamir Secret Sharing. In this
section, we discuss the benchmarks of our implementation based on Shamir
secret sharing. MP-SPDZ implements semi-honest Shamir secret sharing based
on [CDM00] and a maliciously secure variant following [LN17]14. In Table 6,
we present the offline phase runtime, in Table 7 we show the runtime of the
online phase, and in Table 8 we depict the size of the communication between
the parties for the 3-party case.

The most expensive part of the SPDZ offline phase is creating the Beaver
triples required for the Eval operation. As Table 6 shows, this step is several
orders of magnitudes cheaper in the Shamir-based implementation. This is espe-
cially true in the semi-honest setting, in which no Beaver triples are required in
the Shamir-based implementation. The offline runtime of the other operations is
similar to the SPDZ-based implementations.

The Shamir-based implementation’s online runtime is slightly cheaper than
the runtime of the SPDZ-based implementation, except for the Eval operation.
However, the difference in runtime of the Eval operation is also not significant,
especially when considering the trade for the much cheaper offline phase.

Similar behavior can be seen for the communication cost, as depicted in
Table 8. Offline communication is several orders of magnitude smaller in the
Shamir-based implementation than in SPDZ, while online communication is sim-
ilar to the SPDZ based version. Only the Eval operation requires about twice as
much online communication in the Shamir-based implementation. To summarize,
our honest-majority threshold implementation based on Shamir secret sharing

14 A newer version of MP-SPDZ now implements maliciously secure Shamir secret
sharing following [CGH+18].

21

Table 7. Online phase performance of the MPC-q-SDH accumulator with access to the
secret trapdoor in the threshold setting implemented in MP-SPDZ, for both the LAN
and WAN settings with n parties. Time in milliseconds averaged over 50 executions.

Semi-Honest Malicious
LAN setting WAN setting LAN setting WAN setting

Operation |X | n = 3 4 5 3 4 5 3 4 5 3 4 5

Gen
210 5 5 7 109 111 118 7 7 14 112 119 228
214 5 5 7 110 111 120 7 7 14 113 120 230

Eval
210 5 6 9 1 278 1 314 2 474 9 9 16 1 285 1 422 2 578
214 33 40 77 1 788 2 776 3 831 80 84 161 2 018 3 938 4 636

WitCreate
210 2 2 3 317 319 440 3 3 5 324 336 648
214 2 2 3 318 321 443 3 3 5 323 332 642

Add
210 2 2 3 109 108 114 3 3 5 109 111 215
214 2 2 3 107 108 113 3 3 5 110 112 220

WitUpdateAdd
210 2 2 3 107 107 112 3 3 5 107 112 217
214 2 2 3 107 108 114 3 3 5 108 114 220

Delete
210 2 2 3 320 321 438 3 3 5 320 332 642
214 2 2 3 317 321 439 3 3 5 321 331 642

WitUpdateDelete
210 2 2 3 320 321 441 3 3 5 321 333 647
214 2 2 3 316 320 441 3 3 5 320 332 645

provides much better offline phase performance, with similar online performance
compared to our dishonest majority full-threshold implementation.

4.2 Further Improvement

The maliciously secure MPC protocols we use in this work delay the MAC check
to the output phase after executing the Open subroutine. This means, it is pos-
sible for intermediate results to be wrong due to tampering of an attacker; how-
ever, since honest parties only reveal randomized values during the openings in
a multiplication, no information about secret values can be gained by attackers.

Similar to threshold signature schemes [GG18,DKLS19,DOK+20], the proto-
cols can be optimized by skipping the MAC checks at the end of WitCreate, Add,
Delete, and WitUpdate and use the Verify step of the accumulator to check for
correctness instead. The only feasible attack on this optimization is to produce
invalid accumulators/witnesses without leaking information on the secret trap-
door; however, false output values can be detected during verification. Therefore,
we can execute the semi-honest online phase and call Verify at the end, while
still protecting against malicious parties. This trades the extra round of commu-
nication in the MAC check for an evaluation of a bilinear pairing (≈ 10 ms on
our benchmark platform) which results in a further speedup, especially in the
WAN-setting.

22

Table 8. Communication cost (in kB per party) of the MPC-q-SDH accumulator in
the 3-party threshold setting implemented in MP-SPDZ.

Semi-Honest Malicious
Operation |X | Offline Online Offline Online

Gen 210, 214 0.26 0.20 0.65 0.20

Eval
210 0.26 66 459 131
214 0.26 1 049 7 340 2 097

WitCreate, Delete, WitUpdateDelete 210, 214 0.26 0.23 1.1 0.3

Add, WitUpdateAdd 210, 214 0 0.11 0 0.11

5 Applications

5.1 Credential Revocation in Distributed Credential Systems

As first application of MPC-based accumulators, we focus on distributed creden-
tial systems [GGM14], and in particular, on the implementation in Sovrin [KL16].
In general, anonymous credentials provide a mechanism for making identity as-
sertions while maintaining privacy, yet, in classical, non-distributed systems re-
quire a trusted credential issuer. This central issuer, however, is both a single
point of failure and a target for compromise and can make it challenging to de-
ploy such a system. In a distributed credential system, on the other hand, this
trusted credential issuer is eliminated, e.g., by using distributed ledgers.

We shortly recall how Sovrin implements revocation. When issuing a creden-
tial, every user gets a unique revocation identifier iR. All valid revocation IDs
are accumulated using a q-SDH accumulator which is published. Additionally,
the users obtains a witness certifying membership of its iR in the accumulator.
Whenever a user shows their credential, they have to prove that they know this
witness for their iR with respect to the published accumulator. When a new user
joins, the accumulator has to be updated. Consequently, all the witnesses have
to be updated as well, as otherwise they would no longer be able to provide a
valid proof. Similar, in the case that a user is revoked and thus removed from
the accumulator, all other users have to update their witnesses accordingly. Also,
the verifiers always have to check for updated accumulators.

Now, recall that the q-SDH accumulator supports all required operations
without needing access to the trapdoor. Hence, all operations can be performed
and, especially, the users can update their witnesses on their own if the corre-
sponding iRs are published on the ledger. While functionality-wise all operations
are supported, performance-wise a large number of users becomes an issue. With
potentially millions to billions of users, adding and deleting members from the
accumulator becomes increasingly expensive (cf. Table 1). Hence, at a certain
size, having access to the trapdoor would be beneficial. But, on the other side,
generating membership witnesses for non-members would then become possible.

23

The latter is also an issue during the setup of the system. Trusting one third
party to generate the public parameters of the accumulator might be undesired
in a distributed system as in this case. The special structure of the Sovrin ecosys-
tem with their semi-trusted foundation members, however, naturally fits to our
multi-party accumulator. First, the foundation members can setup the public
parameters in a distributed manner. Secondly, as all of them have shares of the
trapdoor, they can also run the updates of the accumulator using the MPC-q-
SDH-accumulator. Additionally, using a threshold secret sharing scheme can add
robustness against foundation members failing to provide their shares for compu-
tations. The change to this accumulator is completely transparent to the clients
and verifiers and no changes are required there. Furthermore, the Verify step of
the MPC-q-SDH-accumulator is equal to the Verify operation of the non-MPC q-
SDH-accumulator. Therefore, the same efficient zero-knowledge proofs [ACN13]
can be used to prove knowledge of a witness without revealing it. These proofs are
significantly more efficient then proving witnesses of a Merkle-Tree-accumulator,
even when SNARK-friendly hash functions (e.g., Poseidon [GKK+19]) are used.

5.2 Privacy-Preserving Certificate-Transparency Logs

We finally look at the application of accumulators in the CT ecosystem. Certifi-
cate Authorities request the inclusion of certificates in the log whenever they sign
a new certificate. Once the certificate was included in the log, auditors can check
the consistency of this log. Additionally, TLS clients also verify whether all cer-
tificates that they obtain were actually logged, thereby ensuring that log servers
do not hand out promises of certificate inclusion without following through.
Technically, the CT log is realized as a Merkle-tree accumulator containing all
certificates. As certificates need to be added continuously, it is made dynamic
by simply recalculating the root hash and all the proofs. Functionality wise, dy-
namic accumulators would perfectly fit this use-case. However, their real-world
performance without secret trapdoors is not good enough – recalculating hash
trees is just more efficient. Knowledge of the secret trapdoors would however be
catastrophic for this application, as the guarantees of the whole system break
down: log servers could produce witnesses for any certificate they get queried
on, even if it was never submitted to the log servers for inclusion.

In the CT ecosystem, the clients need to contact the log servers for the
inclusion proof, and therefore verifying certificates has negative privacy implica-
tions, as this query reveals the browsing behavior of the client to the log server.
Based on previous work by Lueks and Goldberg [LG15], Kales et al. [KOR19]
proposed to rethink retrieval of the inclusion proofs by employing multi-server
private information retrieval (PIR) to query the proofs. To further improve per-
formance, the accumulator is split into sub-accumulators based on, e.g., time
periods. All sub-accumulators are then accumulated in a top-level accumulator.
Consequently, the witnesses with respect to the sub-accumulator stay constant
and can be embedded in the server’s certificate and only the membership-proofs
of the sub-accumulators need to be updated when new certificates are added to
the log. Only these top-level proofs have to be queried using PIR, thus greatly

24

improving the overall performance, as smaller databases are more efficient to
query.

However, one drawback of this solution is the increase in certificate size if
one were to include this static membership witness for the sub-accumulator in
the certificate itself. Kales et al. [KOR19] propose to build sub-accumulators per
hour, which would result in sub-accumulators that hold about 216 certificates.
A Merkle-tree membership proof for these sub-accumulators is 512 bytes in size
when using SHA-256. In contrast, a membership proof for the q-SDH accumu-
lator is only 48 bytes in size (with the curve used in our implementation). A
typical DER-encoded X509 certificate using RSA-2048 as used in TLS is about
1-2 KB in size, meaning inclusion of the Merkle-tree sub-accumulator member-
ship proof would increase the certificate size by 25 − 50%, whereas the q-SDH
sub-accumulator membership proof only increases the size by 2.5− 5%.

We can now leverage the fact that their solution already requires two non-
colluding servers for the multi-server PIR. These servers hold copies of the
Merkle-tree accumulator and answer private membership queries for the top-level
accumulator. Switching the used accumulators to our MPC-q-SDH accumulator
would give the benefit of small, constant size membership proofs, while still be-
ing performant enough to accumulate and produce witnesses for all elements of
a sub-accumulator in one hour.

6 Conclusion

In this work, we introduced dynamic (threshold) secret-shared accumulators
which remove the need of a trusted third party for public-key accumulators.
By replacing the trusted party with a distributed setup algorithm, we achieved
even more: since shares of the secret trapdoor are now available, the otherwise
expensive algorithms can also be implemented as MPC protocol making use of
the trapdoor. Thereby we obtained – especially in the bilinear groups setting –
an efficient accumulator even for large sizes of accumulated sets.

Since our constructions are generic in a sense, improvements in the under-
lying MPC protocols and their implementations will directly translate to our
accumulators.

Acknowledgments. This work was supported by EU’s Horizon 2020 project
under grant agreement n◦825225 (Safe-DEED) and n◦871473 (KRAKEN), and
EU’s Horizon 2020 ECSEL Joint Undertaking grant agreement n◦783119 (SE-
CREDAS), and by the ”DDAI” COMET Module within the COMET – Com-
petence Centers for Excellent Technologies Programme, funded by the Austrian
Federal Ministry for Transport, Innovation and Technology (bmvit), the Aus-
trian Federal Ministry for Digital and Economic Affairs (bmdw), the Austrian
Research Promotion Agency (FFG), the province of Styria (SFG) and partners
from industry and academia. The COMET Programme is managed by FFG.

25

References

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A
subversion-resistant SNARK. In ASIACRYPT (3), volume 10626 of LNCS,
pages 3–33. Springer, 2017.

ACN13. Tolga Acar, Sherman S. M. Chow, and Lan Nguyen. Accumulators and u-
prove revocation. In Financial Cryptography, volume 7859 of LNCS, pages
189–196. Springer, 2013.

ARS20. Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. Lift-and-
shift: Obtaining simulation extractable subversion and updatable snarks
generically. In CCS, pages 1987–2005. ACM, 2020.

ATSM09. Man Ho Au, Patrick P. Tsang, Willy Susilo, and Yi Mu. Dynamic univer-
sal accumulators for DDH groups and their application to attribute-based
anonymous credential systems. In CT-RSA, volume 5473 of LNCS, pages
295–308. Springer, 2009.

BB89. Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant com-
puting in constant number of rounds of interaction. In PODC, pages 201–
209. ACM, 1989.

BB08. Dan Boneh and Xavier Boyen. Short signatures without random oracles
and the SDH assumption in bilinear groups. J. Cryptology, 21(2):149–177,
2008.

BBF19. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accu-
mulators with applications to iops and stateless blockchains. In CRYPTO
(1), volume 11692 of LNCS, pages 561–586. Springer, 2019.

BBHR19. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable
zero knowledge with no trusted setup. In CRYPTO (3), volume 11694 of
LNCS, pages 701–732. Springer, 2019.

BCY20. Foteini Baldimtsi, Ran Canetti, and Sophia Yakoubov. Universally com-
posable accumulators. In CT-RSA, volume 12006 of LNCS, pages 638–666.
Springer, 2020.

BD19. Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations
for pairings. J. Cryptology, 32(4):1298–1336, 2019.

BdM93. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A de-
centralized alternative to digital sinatures (extended abstract). In EURO-
CRYPT, volume 765 of LNCS, pages 274–285. Springer, 1993.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In CRYPTO, volume 576 of LNCS, pages 420–432. Springer, 1991.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. Nizks with an
untrusted CRS: security in the face of parameter subversion. In ASI-
ACRYPT (2), volume 10032 of LNCS, pages 777–804, 2016.

BL11. Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing
for hardware authentication and attestation. IJIPSI, 1(1):3–33, 2011.

BL12. Ernie Brickell and Jiangtao Li. Enhanced privacy ID: A direct anonymous
attestation scheme with enhanced revocation capabilities. IEEE Trans.
Dependable Sec. Comput., 9(3):345–360, 2012.

BLS02. Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic
curves with prescribed embedding degrees. In SCN, volume 2576 of LNCS,
pages 257–267. Springer, 2002.

BN05. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves
of prime order. In SAC, volume 3897 of LNCS, pages 319–331. Springer,
2005.

26

BP97. Niko Baric and Birgit Pfitzmann. Collision-free accumulators and fail-stop
signature schemes without trees. In EUROCRYPT, volume 1233 of LNCS,
pages 480–494. Springer, 1997.

BS01. Emmanuel Bresson and Jacques Stern. Efficient revocation in group signa-
tures. In PKC, volume 1992 of LNCS, pages 190–206. Springer, 2001.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In FOCS, pages 136–145. IEEE, 2001.

CCD+20. Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee,
Schuyler Rosefield, and Abhi Shelat. Multiparty generation of an RSA
modulus. In CRYPTO (3), volume 12172 of LNCS, pages 64–93. Springer,
2020.

CDE+18. Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaop-

ing Xing. SPDZ2k : Efficient MPC mod 2k for dishonest majority. In
CRYPTO (2), volume 10992 of LNCS, pages 769–798. Springer, 2018.

CDM00. Ronald Cramer, Ivan Damg̊ard, and Ueli M. Maurer. General secure
multi-party computation from any linear secret-sharing scheme. In EU-
ROCRYPT, volume 1807 of LNCS, pages 316–334. Springer, 2000.

CGGN17. Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Niz-
zardo. Zero-knowledge contingent payments revisited: Attacks and pay-
ments for services. In ACM CCS, pages 229–243. ACM, 2017.

CGH+18. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority MPC for
malicious adversaries. In CRYPTO (3), volume 10993 of Lecture Notes in
Computer Science, pages 34–64. Springer, 2018.

CHI+20. Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Mic-
ciancio, Tarik Riviere, Abhi Shelat, Muthuramakrishnan Venkitasubrama-
niam, and Ruihan Wang. Diogenes: Lightweight scalable RSA modulus gen-
eration with a dishonest majority. IACR Cryptol. ePrint Arch., 2020:374,
2020.

CL02. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and ap-
plication to efficient revocation of anonymous credentials. In CRYPTO,
volume 2442 of LNCS, pages 61–76. Springer, 2002.

DG20. Samuel Dobson and Steven D. Galbraith. Trustless groups of unknown
order with hyperelliptic curves. IACR ePrint, 2020:196, 2020.

DHS15. David Derler, Christian Hanser, and Daniel Slamanig. Revisiting crypto-
graphic accumulators, additional properties and relations to other primi-
tives. In CT-RSA, volume 9048 of LNCS, pages 127–144. Springer, 2015.

DK01. Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures
without a trusted dealer. In EUROCRYPT, volume 2045 of LNCS, pages
152–165. Springer, 2001.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. In ESORICS, volume 8134 of LNCS, pages
1–18. Springer, 2013.

DKLS19. Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold
ECDSA from ECDSA assumptions: The multiparty case. In IEEE S&P,
pages 1051–1066. IEEE, 2019.

DN03. Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable effi-
cient multiparty computation from threshold homomorphic encryption. In
CRYPTO, volume 2729 of LNCS, pages 247–264. Springer, 2003.

27

DOK+20. Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and
Haya Shulman. Securing DNSSEC keys via threshold ECDSA from generic
MPC. In ESORICS (2), volume 12309 of LNCS, pages 654–673. Springer,
2020.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO,
volume 7417 of LNCS, pages 643–662. Springer, 2012.

DRS18. David Derler, Sebastian Ramacher, and Daniel Slamanig. Post-quantum
zero-knowledge proofs for accumulators with applications to ring signatures
from symmetric-key primitives. In PQCrypto, volume 10786 of LNCS, pages
419–440. Springer, 2018.

FHM11. Chun-I Fan, Ruei-Hau Hsu, and Mark Manulis. Group signature with con-
stant revocation costs for signers and verifiers. In CANS, volume 7092 of
LNCS, pages 214–233. Springer, 2011.

FLOP18. Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny
Pinkas. Fast distributed RSA key generation for semi-honest and mali-
cious adversaries. In CRYPTO (2), volume 10992 of LNCS, pages 331–361.
Springer, 2018.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge snarks. In PKC (1), volume
10769 of LNCS, pages 315–347. Springer, 2018.

GG18. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA
with fast trustless setup. In ACM CCS, pages 1179–1194. ACM, 2018.

GGM14. Christina Garman, Matthew Green, and Ian Miers. Decentralized anony-
mous credentials. In NDSS. The Internet Society, 2014.

Gil99. Niv Gilboa. Two party RSA key generation. In CRYPTO, volume 1666 of
LNCS, pages 116–129. Springer, 1999.

GKK+19. Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy, Christian
Rechberger, and Markus Schofnegger. Starkad and poseidon: New hash
functions for zero knowledge proof systems. IACR ePrint, 2019:458, 2019.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applications
to zk-snarks. In CRYPTO (3), volume 10993 of LNCS, pages 698–728.
Springer, 2018.

GPS08. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings
for cryptographers. Discret. Appl. Math., 156(16):3113–3121, 2008.

HM00. Safuat Hamdy and Bodo Möller. Security of cryptosystems based on class
groups of imaginary quadratic orders. In ASIACRYPT, volume 1976 of
LNCS, pages 234–247. Springer, 2000.

Kel20. Marcel Keller. MP-SPDZ: A versatile framework for multi-party computa-
tion. In CCS, pages 1575–1590. ACM, 2020.

KL16. Dmitry Khovratovich and Jason Law. Sovrin: digitial signatures in the
blockchain area, 2016.

KOR19. Daniel Kales, Olamide Omolola, and Sebastian Ramacher. Revisiting user
privacy for certificate transparency. In EuroS&P, pages 432–447. IEEE,
2019.

KOS15. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT
extension with optimal overhead. In CRYPTO (1), volume 9215 of LNCS,
pages 724–741. Springer, 2015.

KOS16. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster mali-
cious arithmetic secure computation with oblivious transfer. In ACM CCS,
pages 830–842. ACM, 2016.

28

Lau14. Ben Laurie. Certificate transparency. ACM Queue, 12(8):10–19, 2014.

LG15. Wouter Lueks and Ian Goldberg. Sublinear scaling for multi-client private
information retrieval. In Financial Cryptography, volume 8975 of LNCS,
pages 168–186. Springer, 2015.

Lip12. Helger Lipmaa. Secure accumulators from euclidean rings without trusted
setup. In ACNS, volume 7341 of LNCS, pages 224–240. Springer, 2012.

LLNW16. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-
knowledge arguments for lattice-based accumulators: Logarithmic-size ring
signatures and group signatures without trapdoors. In EUROCRYPT (2),
volume 9666 of LNCS, pages 1–31. Springer, 2016.

LN17. Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over
arithmetic circuits with malicious adversaries and an honest-majority. In
CCS, pages 259–276. ACM, 2017.

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. In
ACM CCS, pages 1837–1854. ACM, 2018.

Mer89. Ralph C. Merkle. A certified digital signature. In CRYPTO, volume 435 of
LNCS, pages 218–238. Springer, 1989.

MGGR13. Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Ze-
rocoin: Anonymous distributed e-cash from bitcoin. In IEEE S&P, pages
397–411. IEEE, 2013.

NFHF09. Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki. Revocable
group signature schemes with constant costs for signing and verifying. In
PKC, volume 5443 of LNCS, pages 463–480. Springer, 2009.

Ngu05. Lan Nguyen. Accumulators from bilinear pairings and applications. In
CT-RSA, volume 3376 of LNCS, pages 275–292. Springer, 2005.

NKHF05. Toru Nakanishi, Fumiaki Kubooka, Naoto Hamada, and Nobuo Funabiki.
Group signature schemes with membership revocation for large groups. In
ACISP, volume 3574 of LNCS, pages 443–454. Springer, 2005.

NS04. Toru Nakanishi and Yuji Sugiyama. A group signature scheme with efficient
membership revocation for reasonable groups. In ACISP, volume 3108 of
LNCS, pages 336–347. Springer, 2004.

OSV20. Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. Overdrive2k:
Efficient secure MPC over Z2k from somewhat homomorphic encryption. In
CT-RSA, volume 12006 of LNCS, pages 254–283. Springer, 2020.

PTT08. Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos.
Authenticated hash tables. In ACM CCS, pages 437–448. ACM, 2008.

SA19. Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve
based protocol. In IMACC, volume 11929 of LNCS, pages 342–366.
Springer, 2019.

San99. Tomas Sander. Efficient accumulators without trapdoor extended abstracts.
In ICICS, volume 1726 of LNCS, pages 252–262. Springer, 1999.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

SSU16. Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. Linking-
based revocation for group signatures: A pragmatic approach for efficient
revocation checks. In Mycrypt, volume 10311 of LNCS, pages 364–388.
Springer, 2016.

Ver16. Eric R. Verheul. Practical backward unlinkable revocation in fido, german
e-id, idemix and u-prove. IACR ePrint, 2016:217, 2016.

29

WGC19. Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party
secure computation for neural network training. PoPETs, 2019(3):26–49,
2019.

A Notation and Assumptions

Notation. Notation-wise, let [n] := {1, . . . , n} for n ∈ N. For an algorithm A, we
write A(· · · ; r) to make the random coins explicit. We say that an algorithm is
efficient if it runs in probabilistic polynomial time (PPT).

Assumptions. Let G1,G2,GT be cyclic groups of prime order p. A pairing e : G1×
G2 → GT is a map that is bilinear (i.e., for all g1, g

′
2 ∈ G1 and g2, g

′
2 ∈ G2, we

have e(g1 ·g′1, g2) = e(g1, g2) ·e(g′1, g2) and e(g1, g2 ·g′2) = e(g1, g2) ·e(g1, g
′
2), non-

degenerate (i.e., for generators g1 ∈ G1, g2 ∈ G2, we have that e(g1, g2) ∈ GT
is a generator), and efficiently computable. Let BGen be a PPT algorithm that,
on input of a security parameter κ, outputs BG = (p,G1,G2,GT , e, g1, g2) ←
BGen(κ) for generators g1 and g2 of G1 and G2, respectively, and Θ(κ)-bit prime
p. If G1 = G2 the pairing is of Type-1 and if G1 6= G2 and no non-trivial
efficiently computable homomorphism G2 → G1 exists, then it is of Type-3.

We recall the q-SDH assumption for Type-3 bilinear groups [BB08].

Definition 7 (q-SDH assumption). For q > 0, we define the advantage of
an adversary A as

Advq-SDH
BGen,A(κ) = Pr

[
x←R Zp, (c, y)← A

(
BG,

(
gx

i

1

)
i∈[q]

, gx2

)
: y = g

(x+c)−1

1

]
.

The q-SDH assumption holds if Advq-SDH
BGen,A is a negligible function in the security

parameter κ for all PPT adversaries A.

In the Type-1 setting, the assumption can be simplified to only providing the
powers of g1 to the adversary, since g1 = g2.

B Merkle-tree Accumulator

In Scheme 3, we cast the Merkle-tree accumulator in the framework of [DHS15]
as done in [DRS18, KOR19]. In practical instantiations, the requirement that
Eval only works on sets of a size that is a power of 2 can be dropped. It is always
possible to repeat the last element until the tree is of the correct size. Correctness
can easily be verified. We restate the well-known fact that this accumulator is
collision-free.

Lemma 1. If {Hk}k∈Kκ is a family of collision-resistant hash functions, the
static accumulator in Scheme 3 is collision-free.

30

Gen(1κ, t) : Fix a family of hash functions {Hk}k∈Kκ with Hk : {0, 1}∗ → {0, 1}κ ∀ k ∈
Kκ. Choose k←R Kκ and return (skΛ, pkΛ)← (∅, Hk).

Eval((skΛ, pkΛ),X) : Parse pkΛ as Hk and X as (x0, . . . , xn−1). If @ k ∈ N so that

n = 2k return ⊥. Otherwise, let `u,v refer to the u-th leaf (the leftmost leaf is
indexed by 0) in the v-th layer (the root is indexed by 0) of a perfect binary tree.
Return ΛX ← `0,0 and aux← ((`u,v)u∈[n/2k−v])v∈[k], where

`u,v ←
{
Hk(`2u,v+1||`2u+1,v+1) if v < k, and
Hk(xi) if v = k.

WitCreate((skΛ, pkΛ), ΛX , aux, xi) : Parse aux as ((`u,v)u∈[n/2k−v])v∈[k] and return witxi
where

witxi ← (`bi/2vc+η,k−v)0≤v≤k, η =

{
1 if bi/2vc (mod 2) = 0
−1 otherwise.

Verify(pkΛ, ΛX ,witxi , xi) : Parse pkΛ as Hk, ΛX as `0,0, set `i,k ← Hk(xi). Recursively
check for all 0 < v < k whether the following holds and return 1 if so. Otherwise
return 0.

`bi/2v+1c,k−(v+1) =

{
Hk(`bi/2vc,k−v||`bi/2vc+1,k−v) if 2|bi/2vc
Hk(`bi/2vc−1,k−v||`bi/2vc,k−v) otherwise.

Scheme 3: Merkle-tree accumulator.

C Ideal Functionalities

In this section, we list the ideal functionalities used in the proofs in this paper.
In Functionality 1 we present the ideal functionality FAcc, in Functionality 2 we
present FMPC-Acc.

31

GEN: On input (gen, sid) from AM the functionality does the following:
1. If this is not the first gen command, or if sid does not encode the identity of AM, ignore

this command. Otherwise, continue.
2. t← 0.
3. Initialize an empty list A (keeps track of all accumulator states).
4. Initialize map S, and set S[0]← ∅ (maps operation counters to current accumulated sets).
5. Send (gen, sid) to S.
6. Get (algorithms, sid, (Gen, Eval,WitCreate,Verify,Add,Delete,WitUpdate)) from S. Their ex-

pected input output behavior is described in Definition 3. All of them should be polynomial-
time and Verify should be deterministic.

7. Run (sk, pk)← Gen(1λ).
8. Store sk, pk; add Λ∅ ← ∅ to A.
9. Send (algorithms, sid, (Gen, Eval,WitCreate,Verify,Add,Delete,WitUpdate)) to AM.

EVAL: On input (eval, sid,X) from AM the functionality does the following:
1. If sid does not encode the identity of AM, or if X 6⊂ DΛ, ignore this command. Otherwise,

continue.
2. t← t+ 1, and S[t]← X .
3. Run (ΛX , aux)← Eval((sk, pk),X).
4. Store aux; add ΛX to A.
5. Send (eval, sid, ΛX ,X) to AM.

WITCREATE: On input (witcreate, sid, x) from AM the functionality does the following:
1. If sid does not encode the identity of AM, or if x /∈ DΛ, ignore this command. Otherwise,

continue.
2. Run w ← WitCreate((sk, pk), ΛX , aux, x).
3. If x /∈ S[t], send ⊥ to AM and halt. Otherwise, continue.
4. If Verify(pk, ΛX , w, x) = 1 continue. Otherwise, send ⊥ to AM and halt.
5. Send (witness, sid, x, w) to AM.

VERIFY: On input (verify, sid, Λ,Verify′, x, w) from party V the functionality does the following:
1. If Verify′ = Verify ∧ Λ ∈ A:

(a) t← largest t such that S[t] corresponds to Λ.
(b) If AM not corrupted ∧ x 6∈ S[t] ∧ Verify(pk, Λ, x, w) = 1, send ⊥ to P. Otherwise,

continue.
(c) b← Verify(pk, Λ, w, x)
Otherwise, set b = Verify′(pk, Λ, w, x).

2. Send (verified, sid, Λ,Verify′, x, w, b) to V.
ADD: On input (add, sid, x) from AM the functionality does the following:

1. If sid does not encode the identity of AM, or if x /∈ DΛ, ignore this command. Otherwise,
continue.

2. If x ∈ S[t] send ⊥ to AM and halt. Otherwise, continue.
3. t← t+ 1, and S[t]← S[t− 1].
4. Run (ΛX′ , aux

′)← Add((sk, pk), ΛX , aux, x).
5. Run w ← WitCreate((sk, pk), ΛX′ , aux

′, x).
6. If Verify(pk, ΛX′ , w, x) = 0, send ⊥ to AM and halt. Otherwise, continue.
7. Store aux′; add x to S[t] and ΛX′ to A.
8. Send (added, sid, ΛX′ , x) to AM.

DELETE: On input (delete, sid, x) from AM the functionality does the following:
1. If sid does not encode the identity of AM, or if x /∈ DΛ, ignore this command. Otherwise,

continue.
2. If x /∈ S[t] send ⊥ to AM and halt. Otherwise, continue.
3. t← t+ 1, and S[t]← S[t− 1].
4. Run (ΛX′ , aux

′)← Delete((sk, pk), ΛX , aux, x).
5. Store aux′; remove x from S[t] and add ΛX′ to A.
6. Send (deleted, sid, ΛX′ , x) to AM.

WITUPDATE: On input (witupdate, sid, ΛXold
, ΛXnew , x, wold) from a partyH, the functionality

does the following:
1. If ΛXold

/∈ A ∨ ΛXnew /∈ A, send ⊥ to H and halt. Otherwise continue.

2. Run wnew ← WitUpdate((sk, pk), wold, aux, x).
3. If Verify(pk, ΛXold

, wold, x) = 1∧x ∈ S[t]∧Verify(pk, ΛXnew , wnew, x) = 0, send ⊥ to V and
halt. Otherwise, continue.

4. Send (updatedwit, sid, ΛXold
, ΛXnew , x, wold, wnew) to H.

Functionality 1: Ideal Functionality FAcc for dynamic accumulators

32

GEN: On input (gen, sidi) from all parties AMi, the functionality does the following:
1. If this is not the first gen command, or if for any i ∈ [n], sidi does not encode the identity

of AMi, ignore this command. Otherwise, continue.
2. t← 0.
3. Initialize an empty list A (keeps track of all accumulator states).
4. Initialize map S, and set S[0]← ∅ (maps operation counters to current accumulated sets).
5. Send (gen, sidi)i∈[n] to S.
6. Get (algorithms, (sid1, . . . , sidn), (Gen, Eval,WitCreate,Verify,Add,Delete,WitUpdate)) from
S. Their expected input output behavior is described in Definition 6. All of them should
be polynomial-time and Verify should be deterministic.

7. Run (sk, pk)← Gen(1λ). Store sk, pk; add Λ∅ ← ∅ to A.
8. Send (algorithms, sidi, (Gen, Eval,WitCreate,Verify,Add,Delete,WitUpdate)) to AMi, for all

i = 1, . . . , n.
EVAL: On input (eval, sidk,X) from AMk and (eval, sidj , ?) from all other parties AMj , for

j 6= k, the functionality does the following:
1. If for any i ∈ [n], sidi does not encode the identity of AMi, or if X 6⊂ DΛ, ignore this

command. Otherwise, continue.
2. t← t+ 1, and S[t]← X .
3. Run (ΛX , aux)← Eval((sk, pk),X). Store aux; add ΛX to A.
4. Send (eval, sidi, ΛX ,X) to AMi, for all i = 1, . . . , n.

WITCREATE: On input (witcreate, sidk, x) from AMk and (witcreate, sidj , ?) from all parties
AMj , for j 6= k, the functionality does the following:

1. If for any i ∈ [n], sidi does not encode the identity of AMi, or if x /∈ DΛ, ignore this
command. Otherwise, continue.

2. Run w ← WitCreate((sk, pk), ΛX , aux, x).
3. If x /∈ S[t], send ⊥ to all AMi and halt. Otherwise, continue.
4. If Verify(pk, ΛX , w, x) = 1 continue. Otherwise, send ⊥ to all AM〉 and halt.
5. Send (witness, sidi, x, w) to AMi, for all i = 1, . . . , n.

VERIFY: On input (verify, sid, Λ,Verify′, x, w) from party V the functionality does the following:
1. If Verify′ = Verify ∧ Λ ∈ A:

(a) t← largest t such that S[t] corresponds to Λ.
(b) If at least one AMi is not corrupted ∧ x 6∈ S[t]∧Verify(pk, Λ, x, w) = 1, send ⊥ to V.

Otherwise, continue.
(c) b← Verify(pk, Λ, w, x)
Otherwise, set b = Verify′(pk, Λ, w, x).

2. Send (verified, sid, Λ,Verify′, x, w, b) to V.
ADD: On input (add, sidk, x) from AMk and (add, sidj , ?) from all parties AMj , for j 6= k, the

functionality does the following:
1. If for any i ∈ [n], sidi does not encode the identity of AMi, or if x /∈ DΛ, ignore this

command. Otherwise, continue.
2. If x ∈ S[t] send ⊥ to all AMi and halt. Otherwise, continue.
3. t← t+ 1, and S[t]← S[t− 1].
4. Run (ΛX′ , aux

′)← Add((sk, pk), ΛX , aux, x). Run w ← WitCreate((sk, pk), ΛX′ , aux
′, x).

5. If Verify(pk, ΛX′ , w, x) = 0, send ⊥ to all AMi and halt. Otherwise, continue.
6. Store aux′; add x to S[t] and ΛX′ to A.
7. Send (added, sidi, ΛX′ , x) to AMi, for all i = 1, . . . , n.

DELETE: On input (delete, sidk, x) from AMk and (delete, sidj , ?) from all parties AMj , for
j 6= k, the functionality does the following:

1. If for any i ∈ [n], sidi does not encode the identity of AMi, or if x /∈ DΛ, ignore this
command. Otherwise, continue.

2. If x /∈ S[t] send ⊥ to all AMi and halt. Otherwise, continue.
3. t← t+ 1, and S[t]← S[t− 1].
4. Run (ΛX′ , aux

′)← Delete((sk, pk), ΛX , aux, x).
5. Store aux′; remove x from S[t] and add ΛX′ to A.
6. Send (deleted, sidi, ΛX′ , x) to AMi, for all i = 1, . . . , n.

WITUPDATE: On input (witupdate, sidk, ΛXold
, ΛXnew , x, wold) from AMk and

(witupdate, sidj , ?, ?, ?, ?) from all parties AMj , for j 6= k, the functionality does the
following:

1. If for any i ∈ [n], sidi does not encode the identity of AMi, or if x /∈ DΛ, ignore this
command. Otherwise, continue.

2. If ΛXold
/∈ A ∨ ΛXnew /∈ A, send ⊥ to all AMi and halt. Otherwise continue.

3. Run wnew ← WitUpdate((sk, pk), wold, aux, x).
4. If Verify(pk, ΛXold

, wold, x) = 1∧x ∈ S[t]∧Verify(pk, ΛXnew , wnew, x) = 0, send ⊥ to V and
halt. Otherwise, continue.

5. Send (updatedwit, sidi, ΛXold
, ΛXnew , x, wold, wnew) to AMi, for all i = 1, . . . , n.

Functionality 2: Ideal Functionality FAcc-MPC

33

D Strong-RSA Accumulator

We recall the strong RSA assumption [BP97].

Definition 8 (Strong RSA assumption). Given two appropriately chosen
primes p and q such that N = pq has bit-length κ, then it holds for all PPT
adversaries A that

Pr
[
u←R Z∗N , (v, w)← A(u,N) : vw ≡ u (mod N)

]
is negligible in the security parameter κ.

Major lines of work investigated accumulators in the hidden order groups,
i.e., RSA-based, and the known order groups, i.e., discrete logarithm-based, set-
ting. The first collision-free RSA-based accumulator is due to Baric and Pfitz-
mann [BP97]. The accumulator in this construction consists of a generator raised
to the product of all elements of the set. Then witnesses essentially consist of
the same value skipping the respective elements in the product. Thereby, the
witness can easily be verified by raising the power of the witness to the element
and checking if the result matches the accumulator. We recall the RSA-based
accumulator in Scheme 4.

Gen(1κ, t) : Choose an RSA modulus N = p · q with two large safe primes p, q, and let
g be a random quadratic residue mod N . Set skΛ ← ∅ and pkΛ ← (N, g).

Eval((skΛ, pkΛ),X) : Parse pkΛ as (N, g) and let X ⊂ P. Return ΛX ← g
∏
x∈X x

mod N and aux← (add← 0,X).

WitCreate((skΛ, pkΛ), ΛX , aux, x) : If x 6∈ X , return ⊥. If skΛ 6= ∅, return witx ← Λx
−1

X

mod N , otherwise return witx ← g
∏
x′∈X\{x} x

′
mod N .

Verify(pkΛ, ΛX ,witx, x) : Parse pkΛ as (N, g). If witxx = ΛX mod N holds, return 1,
otherwise return 0.

Add((skΛ, pkΛ), ΛX , aux, x) : Parse pkΛ as (N, g) and aux as X . If x ∈ X , return ⊥.

Set X ′ ← X ∪ {x}, aux′ ← (X ′, add ← 1), and ΛX ′ ← ΛxX mod N . Return ΛX ′

and aux′.
Delete((skΛ, pkΛ), ΛX , aux, x) : Parse pkΛ as (N, g) and aux as X . If x /∈ X , return ⊥.

If skΛ 6= ∅, set X ′ ← X \ {x}, aux′ ← (X ′, add← −1), and ΛX ′ ← Λx
−1

X mod N .
Otherwise, compute (ΛX ′ , aux

′)← Eval((∅, pkΛ),X \ {x}) with add← −1 in aux′.
Return ΛX ′ and aux′.

WitUpdate((skΛ, pkΛ),witxi , aux, x) : Parse pkΛ as (N, g) and aux as (X , add). If add =
0, return ⊥. Return witxxi mod N if add = 1. If instead add = −1 and skΛ 6= ∅,
then return witx

−1

xi mod N . Otherwise, compute a, b ∈ Z such that axi+bx = 1 and
return witbxi ·Λ

a
X mod N . In the last two cases in addition return aux← (add← 0).

Scheme 4: Strong RSA-based accumulator.

Note that, whenever the factorization ofN is available, the Chinese remainder
theorem can be used to speed up the computations. For WitCreate and WitUpdate

34

we can use the factorization to compute inverses mod (p− 1) · (q− 1). Deletion
of values from the accumulator is not possible if the factorization is unknown.

Correctness can easily be verified and collision freeness follows from the
strong RSA assumption:

Theorem 4 ([BP97]). If the strong RSA assumption holds, Scheme 4 is
collision-free.

Again, from Theorems 2 and 4, it follows that Scheme 4 is also secure in the UC
model:

Corollary 2. Scheme 4 emulates FAcc in the UC model.

D.1 Dynamic (Threshold) Secret-Shared Accumulator From the
Strong RSA Assumption

For our dynamic (threshold) secret-shared accumulator from the strong RSA
assumption, observe that the two main operations that have to be performed in
the context of an MPC protocol are the sampling of the secret prime factors as
well as the computation of the inverses of the public elements in the exponent.
Both operations are also performed during RSA key generation with the sole
difference that in this case, the public exponent is inverted. Therefore, we can
make use of any protocol for distributed RSA key generation. In particular,
our construction makes use of the state-of-the-art protocol by Frederiksen et
al. [FLOP18] for the two-party case.

In the following, we will recap the structure of this UC secure two-party pro-
tocol and highlight the most essential parts of the protocol. The key generation
in the malicious setting consists of the following four phases:

Candidate Generation: Both parties P1 and P2 choose random shares p1 ∈ N
respectively p2 ∈ N and commit to it. Based on maliciously secure OT, they
do a secure trial division of p = p1 + p2 with public threshold B1 ∈ N.

Construct Modulus: Given shared candidate primes p = p1 + p2, q = q1 + q2

the parties compute N = pq by a custom version of the Gilboa proto-
col [Gil99]. The candidate modulus N is send to both parties.

Verify Modulus: This phase consists of three steps:
1. Second trial division with threshold B2 > B1.
2. Secure biprimality test.
3. Proof of honesty that checks the commitments and whether gcd(e, φ(N)) =

1, where e is the public exponent.
Construct Keys: Computes the shares of d = d1 +d2 such that e(d1 +d2) ≡ 1

mod φ(N) (uses additional output from the proof of honesty).

We will denote this protocol by ΠRSA and by FRSA its ideal functionality. At a
later point in the RSA-based accumulator, we need to invert an element x ∈ P
in Z∗N . Since neither P1 nor P2 knows the order φ(N) of this ring, we employ
parts of the MPC protocol. For this task, we will perform the 3rd step of Verify
Modulus with e = x, and then immediately run Construct Keys. The output

35

Gen(1κ, t) : Generate an RSA modulus N = (p1 +p2) ·(q1 +q2) via the protocol ΠRSA,
where the party Pi receives (pi, qi) for i = 1, 2. Further, let g be a random quadratic
residue mod N . Set pkΛ ← (N, g).

Eval((skΛ, pkΛ),X) : Parse pkΛ as (N, g) and X ⊂ P. Return ΛX ← g
∏
x∈X x mod N

and aux← X .
WitCreate(((p1, q1), (p2, q2), pkΛ), ΛX , aux, x) : If x 6∈ X , return ⊥. Compute 〈y〉 ←

Invertφ(N)(x) and return witx ← Open(Λ
〈y〉
X mod N).

Verify(pkΛ, ΛX ,witx, x) : Parse pkΛ as (N, g). If witxx = ΛX mod N holds, return 1,
otherwise return 0.

Add(pkΛ, ΛX , aux, x) : Parse pkΛ as (N, g) and aux as X . If x ∈ X , return ⊥. Set

X ′ ← X ∪ {x}, aux′ ← (X ′, add ← 1), and ΛX ′ ← ΛxX mod N . Return ΛX ′ and
aux′.

Delete(((p1, q1), (p2, q2), pkΛ), ΛX , aux, x) : Parse pkΛ as (N, g) and aux as X . If x /∈ X ,

return ⊥. Set X ′ ← X \ {x}, aux′ ← (X ′, add ← −1), and 〈y〉 ← Invertφ(N)(x).

Return ΛX ′ ← Open(Λ
〈y〉
X mod N) and aux′.

WitUpdate(((p1, q1), (p2, q2), pkΛ),witxi , aux, x) : Parse pkΛ as (N, g) and aux as
(X , add). Return ⊥ if add = 0∨xi /∈ X . Return witxxi mod N if add = 1. If instead

add = −1 and compute 〈y〉 ← Invertφ(N)(x), then return Open(wit
〈y〉
xi mod N). In

the last two cases in addition return aux← (add← 0).

Scheme 5: MPC-RSA: Dynamic (threshold) secret-shared accumulator based
on RSA for two parties.

of this sub-protocol, which we will denote by Invertφ(N)(x), is a secret-shared
value 〈y〉 = y1+y2, where yi is the share of party i, s.t. x(y1+y2) ≡ 1 mod φ(N).

However, we have to note that the used distributed RSA key generation
protocols may leak a small amount of secret information. We refer to the full
version of [FLOP18] for a detailed discussion of this leakage. Since our protocol
may invert multiple elements, the parties might need to add bounds on the
maximum number of operations to prevent leakage of the secret key.

The last open point during Gen is the sampling of the quadratic non-residue
mod N . An option here is to simply sample g at random from Z∗N and checking
whether the Jacobi symbol satisfies (gN) = −1. Despite its definition as the
product of the Legendre symbols of the prime factors of N , the Jacobi symbol
can be computed efficiently without knowledge of the prime factors using an
algorithm analogous to the Euclidean algorithm. Hence, we perform this step
outside of the MPC protocol once N was generated.

In the security analysis of Scheme 5, we can reuse the arguments of Theo-
rem 3. Therefore, we will omit the proof of the following theorem. We, however,
note, that the theorem only holds provided that the parties keep track of the
number of potentially leaked bits and abort if this number gets too large.

Theorem 5. Scheme 5 UC emulates FAcc-MPC in the FABB+,FRSA-hybrid model.

36

Table 9. Offline phase performance of different steps of the MPC-q-SDH accumulator
with access to the secret trapdoor implemented in FRESCO. Time in seconds.

LAN setting WAN setting
Operation |X | n = 2 3 4 5 2 3 4 5

BaseOTs
210 21.5 60.3 104.6 148.9 76.5 215.0 364.2 504.3
214 21.5 60.3 104.6 148.9 76.5 215.0 364.2 504.3

Eval
210 54.4 154.0 265.0 409.1 95.7 283.1 465.2 683.3
214 825.8 2 259.5 4 048.8 6 150.9 1 449.8 3 587.1 6 578.4 10 056.3

Inverse
210 1.3 15.3 16.8 19.7 3.2 68.2 70.4 72.8
210 1.3 15.3 16.8 19.7 3.2 68.2 70.4 72.8

E FRESCO Benchmarks

In this section, we discuss the benchmarks of our q-SDH implementation in
the maliciously secure dishonest-majority setting in the FRESCO framework.
FRESCO is a Java framework facilitating fast prototyping of MPC-based appli-
cations and protocols. FRESCO implements the SPDZ protocol and various ex-
tensions [DPSZ12,KOS15,KOS16,CDE+18]. For pairing and elliptic curve group
operations, we rely on the ECCelerate library15 and integrate ExpG, Output-G,
and the corresponding MACCheckECC algorithms of [SA19] into FRESCO. As
a pairing-friendly curve, a 400-bit Barreto-Naehrig curve [BN05] is used, which
provides around 100 bit of security following recent estimates [BD19].

The offline phase performance of our FRESCO implementation can be seen
in Table 9. A comparison to our MP-SPDZ implementation (Table 3) shows
that the offline phase in FRESCO is not yet as optimized as the one of MP-
SPDZ (as an example, the BaseOTs used in FRESCO are not using elliptic
curve arithmetic) and that the performance of the latter is more indicative of an
optimized implementation. Further note that batching the generation of many
triples together like for the Eval phase is more efficient in practice than producing
a single triple and as these triples are not dependent on the input, all parties
can continuously generate triples in the background to fill a triple-buffer for use
in the online phase.

In Table 10, we present the online phase performance of our q-SDH imple-
mentation in the FRESCO framework. Since the FRESCO implementation does
not support a depth-optimized tree-like multiplication, the Eval operation scales
worse with the number of parties. Compared to our MP-SPDZ implementation
(Table 4) it is, therefore, much slower, especially in the WAN setting.

Finally, we present the communication cost of our q-SDH implementation
in the FRESCO framework in Table 11. Again, a comparison to our MP-SPDZ
implementation (Table 5) shows, that the FRESCO framework requires more
communication to achieve the same result. While some of this overhead can be

15 https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate

37

https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate

Table 10. Online phase performance of the MPC-q-SDH accumulator with access to
the secret trapdoor implemented in FRESCO, for both the LAN and WAN settings
with n parties. Time in milliseconds averaged over 50 executions.

LAN setting WAN setting
Operation |X | n = 2 3 4 5 2 3 4 5

Gen
210 78 106 301 772 604 1 124 1 399 1 684
214 75 110 246 766 608 1 118 1 401 1 673

Eval
210 133 354 4 062 14 193 52 316 56 802 58 728 60 043
214 1 389 4 362 61 222 196 563 828 522 892 293 918 445 935 274

WitCreate
210 40 84 279 906 1 109 1 858 2 156 2 444
214 41 98 267 992 1 120 1 853 2 152 2 442

Add
210 43 78 231 646 574 1 088 1 373 1 650
214 41 74 225 706 571 1 087 1 363 1 642

WitUpdateAdd
210 40 72 259 745 569 1 094 1 372 1 649
214 40 85 213 732 564 1 088 1 369 1 644

Delete
210 47 80 299 958 1 075 1 849 2 150 2 454
214 42 92 297 857 1 071 1 847 2 152 2 446

WitUpdateDelete
210 40 82 258 977 1 071 1 852 2 151 2 447
214 38 38 294 880 1 077 1 852 2 149 2 441

attributed to the different choice of elliptic curve, the rest is inherent to the
implementation of the framework.

38

Table 11. Communication cost (in MiB per party) of the MPC-q-SDH accumulator
with access to the secret trapdoor implemented in FRESCO.

Operations |X | Offline phasea Online Phaseb

Gen
210 0.297 0.103
214 0.297 0.103

Eval
210 220.971 0.176
214 3 530.148 3.164

WitCreate, 210 0.634 0.041
Delete,

214 0.634 0.041
WitUpdateDelete

Add, 210 0.297 0.039
WitUpdateAdd 214 0.297 0.039

a Includes BaseOTs for a new connection
b Includes the setup of a fresh MAC for each share

of the secret trapdoor

39

	Multi-Party Revocation in Sovrin: Performance through Distributed Trust

