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Abstract. As both notions employ the same key-evolution paradigm,
Bellare et al. (CANS 2017) study combining forward security with leak-
age resilience. The idea is for forward security to serve as a hedge in case
at some point the full key gets exposed from the leakage. In particular,
Bellare et al. combine forward security with continual leakage resilience,
dubbed FS+CL. Our first result improves on Bellare et al.’s FS+CL se-
cure PKE scheme by building one from any continuous leakage-resilient
binary-tree encryption (BTE) scheme; in contrast, Bellare et al. require
extractable witness encryption. Our construction also preserves leakage
rate of the underlying BTE scheme and hence, in combination with ex-
isting CL-secure BTE, yields the first FS+CL secure encryption scheme
with optimal leakage rate from standard assumptions.

We next explore combining forward security with other notions of
leakage resilience. Indeed, as argued by Dziembowski et al. (CRYPTO
2011), it is desirable to have a deterministic key-update procedure, which
FS+CL does not allow for arguably pathological reasons. To address this,
we combine forward security with entropy-bounded leakage (FS+EBL).
We construct FS+EBL non-interactive key exchange (NIKE) with de-
terministic key update based on indistinguishability obfuscation (iO),
and DDH or LWE. To make the public keys constant size, we rely on
the Superfluous Padding Assumption (SuPA) of Brzuska and Mittelbach
(ePrint 2015) without auxiliary information, making it more plausible.
SuPA notwithstanding, the scheme is also the first FS-secure NIKE from
iO rather than multilinear maps. We advocate a future research agenda
that uses FS+EBL as a hedge for FS+CL, whereby a scheme achieves
the latter if key-update randomness is good and the former if not.

1 Introduction

1.1 Background and Motivation

Leakage Resilience. When a cryptographic algorithm is implemented and
run, it must be done on some physical system. This introduces side channel
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attacks where the adversary obtains some leakage about secrets, via execution
time, power consumption, and even sound waves [23,31,32]. The cryptographic
community responded by extending the attack model so that the adversary gets
some “bounded” leakage about the secrets [2, 9, 30, 37]. Works further extended
this new model to consider “continual” leakage (CL) attacks [10, 14]. In that
model, the life of a secret key is divided into time periods, and in time period
t+ 1 one runs an update algorithm on the secret key of time period t to derive
the new secret key for time period t+ 1. (The old secret key is erased.) In each
time period, the adversary queries for a function with a bounded output length
applied to the current secret key.

Forward Security. Forward security (FS) [5] employs the same key-evolution
paradigm as CL to address the threat of exposure of the secret key in whole.
This can happen due to too much leakage. If a break-in happens during time
period i, it is required that security still holds relative to keys in time periods
1 ≤ i′ < i. Initial work on forward security has been extended and optimized in
numerous works, e.g. [1, 7, 8, 21,22,28,33,36].

Combining Leakage Resilience and Forward Security. As advocated by
Bellare et al. [6], one ought to use FS as a hedge in the context of leakage
resilience. Specifically, one would like to “fall back” to forward security if the
secret key at every time period up to some i′ is partially leaked, but then in
time period i′ the leakage happens to be so much that this time period’s entire
key is revealed. This combination of forward security and continual leakage re-
silience was dubbed FS+CL by Bellare et al. [6]. For constructions, Bellare et
al. start by examining tree-based constructs as in [5] and give such a construc-
tion of FS+CL signatures based on CL-signatures. They also provide a generic
approach to construct FS+CL encryption and signature schemes by combin-
ing what they call a key-evolution scheme (KE) that is forward one-way under
continual-leakage (FOWCL KE) with witness primitives, namely (extractable)
witness encryption [20] and witness signatures [4, 13] respectively.

1.2 Our Contributions in Brief

Our Goals. Extractable witness encryption is a suspect assumption [19] that
we would like to eliminate. We would also like to improve the leakage rates
of the Bellare et al.’s schemes. Finally, we would like to study complementary
notions of leakage resilience in this context. In this paper, we focus on asymptotic
efficiency and feasibility rather than practical efficiency. The design of more
practical constructions is an interesting question for future work.

Improved FS+CL Encryption Scheme. We improve upon Bellare et al.’s
FS+CL PKE scheme by carefully re-examining tree-based constructs. In partic-
ular, in their effort to construct FS+CL PKE, Bellare et al. explicitly dismissed
the idea of using a CL-secure binary-tree encryption (BTE) [12], because the
underlying hierarchical identity-based encryption scheme (HIBE) scheme must
tolerate joint leakage on multiple keys, whereas CL-security only allows leakage
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on each such key individually. We show this intuition is false and construct an
FS+CL-secure PKE scheme from any CL-secure BTE scheme. This, in turn,
can be realized from any CL-secure HIBE. CL-secure HIBE is known from sim-
ple assumptions on composite-order bilinear groups [10]. We also show that our
construction preserves the leakage rate of the base scheme. Hence, we obtain
FS+CL encryption enjoying optimal leakage rate from standard assumptions.

Alternative Models: FS+(C)EBL. Dziembowski et al. [17] argue it is desir-
able to have a deterministic key-update procedure. Indeed, randomness genera-
tion in practice can be buggy, either subverted or by poor implementation. CL
does not guarantee any security in such a case, as there is a trivial attack under it
if key-update is determinitic: the adversary just leaks some future key bit-by-bit
across time periods. Yet this attack is arguably contrived; if the key-update pro-
cedure is a complicated cryptographic operation, it’s unlikely real-world leakage
would compute it, let alone a non-noisy version of it. Accordingly, we seek mean-
ingful security notion that can be achieved when key-update is deterministic.

At a high-level, we combine forward security with entropic bounded leakage
(EBL) [37] instead of CL. To this end, we introduce a model called FS+EBL
(pronounced ee-bull). The FS+EBL model is defined with respect to any key
evolving scheme equipped with an update function. Our definition requires for-
ward security in the presence of leakage such that the current key always meets
an entropy bound. In particular, we require that the secret key in each time pe-
riod prior to the period of exposure retain enough residual entropy conditioned
on the leakage from each of the keys.

Such a restriction on key entropy seems overly severe, however, and mo-
tivates additional consideration of computational entropy. The point is that if
considering information-theoretic entropy, leakage on the current key necessar-
ily reduces the entropy of all other keys. But consider leaking (noisy) hamming
weight or physical bits of the current key, or even some one-way function of
the key. After an appropriate update function is applied, it is plausible that the
computational entropy of the new key is restored. To profit in such a case, we
introduce the FS+CEBL (pronounced see-bull — ’C’ for computational) that
parallels FS+EBL but uses computational entropy.

FS+EBL and FS+CEBL NIKE. Broadening our set of primitives consid-
ered, we study non-interactive key exchange (NIKE) in the FS+(C)EBL model.
We give an FS+EBL-secure NIKE in the common reference string (CRS) model
from indistinguishability obfuscation (iO), either DDH or LWE and a relaxed
variant of the Superfluous Padding Assumption (SuPA) on iO introduced in [11].

We remark that, before this work, even FS -NIKE was not known from iO.
Similar to the prior FS-NIKE construction from multilinear maps [38], our con-
struction of FS+EBL NIKE supports an a-priori bounded (but an arbitrary
polynomial) number of time periods. However, our construction achieves much
better parameters than the construction of [38]. In particular, the size of the
public parameter in [38] is O(T ), the secret key size is O(log T ), and the public
key size is constant (here T denotes the maximum number of time periods sup-
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ported by the scheme). In contrast, our FS+EBL NIKE achieves constant-size
secret keys and public parameters, and the size of our public keys is O(log T ).
Ours also enjoys an optimal leakage rate. Hence, relaxed SuPA notwithstanding,
our construction improves on [38].

NIKE in FS+CEBL Model. A nice feature of our FS+EBL NIKE construc-
tion is that the key update function can be instantiated by any entropic-leakage
resilient one-way function [9]. In the FS+CEBL setting, we suggest using the
PRG of Zhandry [40], because it is secure for any computationally unpredictable
seed. The issue is that leakage from time period i could leak from secret key i+1
which is the output of the PRG. Existing results do not explore the case where
the output of the PRG is also susceptible to leakage. We leave constructing
FS+CEBL NIKE for future work.

Discussion. A drawback of FS+EBL and FS+CEBL is that they are scheme-
dependent. This is because the entropy bound is required to hold with respect
to the specific update function of the underlying key evolving primitive. Thus,
the meaning of these security models in practice remains somewehat unclear.
Therefore, we raise the open question of devising a notion combining forward
security and leakage resilience that (1) admits schemes with deterministic key
update, and (2) is not scheme dependent. We leave this for future work. Impor-
tantly, we conjecture that such a model would not deem our FS+EBL NIKE
scheme insecure, but rather admit an improved security proof for it. We view
our result as a step towards resolution of the above question. Another direction
we suggest for future work is to design FS+CL schemes that simultaneously
meet FS+(C)EBL or another notion as a hedge when key-update randomness is
subverted or buggy.

2 Technical Overview

High-level Idea of the FS+CL PKE. Recall that a binary-tree encryption
(BTE) has a master public key (MPK) associated with the root node of a binary
tree and all the nodes have an associated secret key. Moreover, the secret key
of any node can be used to derive the secret keys for the children of that node.
To encrypt a message for a particular node, one uses MPK and the identity
of that node. The security notion requires the attacker to commit to a target
node w∗ in advance (i.e., before seeing MPK) and it gets the secret keys of
all nodes except for those which lie on the path from the root to the “target”
node (including both). Under CL, the adversary can also leak continuously from
the secrets keys of all these nodes. The goal of the adversary is then to win the
indistinguishability game with respect to the target node w∗.

To construct a FS+CL PKE scheme for T ≤ 2ℓ − 1 time period, we use a
continuous leakage-resilient BTE (CLR-BTE) scheme of depth ℓ and associate
the time periods with all nodes of the tree according to a pre-order traversal.
Let wi denote the node corresponding to time period i. The public key of the
FS+CL PKE scheme consists of the root public key MPK and the secret key
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for time period i consists of skwi (the secret key of wi) and the secret keys of
all right siblings of the nodes on the path from the root to wi. At the end of
time period i the secret key is updated as follows: If wi is an internal node,
then the secret keys of node wi+1 (the next node according to the pre-order
traversal) and its sibling (i.e., the two children of wi) are derived; otherwise the
secret key for wi+1 is already stored as part of the secret key. In either case,
skwi is erased. The secret keys of the all the nodes corresponding to time period
i+ 1 are then refreshed by running the key update algorithm of the underlying
CLR-BTE scheme.

Proof Strategy. In our proof, the reduction (which is an adversary Aclr-bte of
the underlying CLR-BTE scheme) simply guesses the time period i∗ in which
the FS+CL adversary Akee will attack.1 This corresponds to a challenge node
wi∗ which Aclr-bte forwards to its own challenger. If the guess is incorrect, the
reduction aborts outputting a random bit. Aclr-bte then receives the secret keys of
all the nodes that are right siblings of the nodes that lie in the path Pwi∗ from the
root node to wi∗ (the target node) and also the secret keys of both the children of
wi∗ . Using the knowledge of these keys Aclr-bte can simulate the update queries of
Akee. Now, let us see how to simulate the leakage queries of Akee. Note that, the
secret key corresponding to some time period i in the FS+CL scheme is of the
form SKi = (skwi , {skrs(Pwi )}), where skwi and {skrs(Pwi )} denote the (possibly
refreshed versions of the) secret keys corresponding to the node wi and the right
siblings of all the nodes that lie on the path Pwi respectively. Now, either of the
following two cases arise: (i) either the node wi lies in the path Pwi∗ (the path
from root to the target node wi∗) or (ii) wi does not lie in the path Pwi∗ . In
the first case, Aclr-bte already knows all the keys {skrs(Pwi )} and hence it can
translate the leakage function f (queried by Akee) to a related leakage function
f ′ only on the key skwi (by hard-wiring the keys {skrs(Pwi )} into f ′). For the
later case, Aclr-bte knows the key skwi and all the keys {skrs(Pwi )}, except exactly
one key corresponding to a node w that lies in the path Pwi∗ . So, Aclr-bte can
again translate the joint leakage function f to leakage just on the secret key of
node w.

To summarize, the key observation is that: in either case, the reduction knows
the secret keys of all nodes except one, and hence it can simulate the joint leakage
by leaking only on one node at a time. However, the adversary may also get
multiple (continuous) leakages on the secret key of a node. For e.g., consider the
secret key sk1 (corresponding to the right child of the root node). The secret
key sk1 is included in each secret key sk0w for any suffix w. However, note that,
when the secret keys from one time period are updated to the next time period
they are also refreshed by running the underlying key refresh algorithm of the
CLR-BTE scheme. Hence the CLR property of the BTE scheme allows us to
tolerate multiple leakages on the same node by making use of its leakage oracle.

1 We stress that our scheme supports an exponential number of time periods; however,
the adversary can only run for a polynomial number of them. Hence we incur a
polynomial security loss in making this guess.
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Constructing NIKE in the FS+EBL Model. The starting point of our
NIKE construction is the bounded leakage-resilient NIKE construction of [35]
(henceforth called the LMQW protocol) from indistinguishability obfuscation
(iO) and other standard assumptions (DDH/LWE) in the CRS model.

The main idea of the LMQW construction is as follows: Each user samples a
random string s as its secret key and sets its public key as x = G(s), where G is
a function whose description is a part of the CRS and can be indistinguishably
created in either lossy or in injective mode. In the real construction, the function
G is set to be injective. To generate a shared key with an user j, user i inputs its
own key pair (xi, si) and the public key xj of user j to an obfuscated program

Ĉ (which is also included as part of the CRS) which works as follows: The
circuit C (which is obfuscated) simply checks if si is a valid pre-image of either
xi or xj under G, i.e, it checks if either xi = G(si) or xj = G(si). If so, it
returns PRFK(xi, xj) (where the PRF key K is embedded inside the obfuscated
program); else it outputs ⊥.

Lifting the LMQW protocol to the FS setting. It is easy to see that the LMQW
protocol is not forward-secure. This is because, each public key is an injective
function of its corresponding secret key, and hence if a secret key s is updated to
s′, the public key no longer stays the same. We now describe how to modify the
above construction to achieve security in the FS+EBL setting. Similarly to the
LMQW protocol, the (initial) secret key of each user i in our construction is also

a random string s
(1)
i . The CRS also contains the description of the obfuscated

program Ĉ and the function G (as described above). However, the public key of

each party i is now an obfuscated circuit Ĉi (corresponding to a circuit Ci, whose

size is determined later) which has the initial/root secret key s
(1)
i (corresponding

to base time period 1) of party i embedded in it. It takes as input a key s
(t)
j of

user j (corresponding to some time period t) and works as follows: (a) First, it

updates the secret key s
(1)
i of user i (hard-coded in it) to s

(t)
i by running the

(deterministic) NIKE update function (to be defined shortly) t − 1 times, (b)

computes x
(t)
i = G(s

(t)
i ) and x

(t)
j = G(s

(t)
j ), and finally (c) internally invokes the

obfuscated circuit Ĉ (included as part of CRS) on input the tuple (s
(t)
j , x

(t)
i , x

(t)
j ).

To generate the shared key with an user i corresponding to time period t, user

j runs Ĉi with input its secret key s
(t)
j corresponding to time period t to obtain

the shared key PRFK(x
(t)
i , x

(t)
j ). It is easy to see that user i also derives the same

shared key for time period t by running the program Ĉj (public key of user j)

on input its own s
(t)
i corresponding to time period t. The key update function

for our FS+EBL NIKE can be any entropic-leakage resilient OWF [9]. This is
so that it remains hard to compute the prior key even given entropic leakage on
the pre-image of the OWF.

Security Proof. The security proof of our construction follows the proof tech-
nique of the LMQW protocol with some major differences as explained below.
The main idea of the proof of the LMQW protocol follows the punctured pro-
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gramming paradigm [39], where they puncture the PRF key K at the point
(xi, xj) and program a random output y. However, instead of hard-coding y di-
rectly they hard-core y ⊕ si and y ⊕ sj , i.e, the one-time pad encryption of y
under si and sj respectively. This allows the obfuscated program to decrypt y
given either si or sj as input. At this point, they switch the function G to be
in lossy mode and argue that the shared key y retain high min-entropy, even
given the obfuscated program with hard-coded ciphertexts, the public keys and
leakages on the secret keys si and sj . The entropic key k is then converted into
a uniformly random string by using an appropriate extractor.

However, for our construction, we cannot argue the last step of the above
proof, i.e., the shared key y (for time period t) retains enough entropy given all
the public information (CRS and public keys) and entropic leakage on the keys.

This is because the public keys Ĉi and Ĉj completely determine the keys s
(t)
i

and s
(t)
j respectively, even after switching the function G to be in lossy mode.

Indeed, the obfuscated programs Ĉi and Ĉj contains the base secret keys s
(1)
i

and s
(1)
j hard-coded in them, and hence, given the public keys, the secret keys

have no entropy left. To this end, we switch the public key Ĉi to an obfuscation

of a program that, instead of embedding the base secret key s
(1)
i embeds all

possible public keys (x
(1)
i , · · · , x(T )

i ) in it, where T is the total number of time

period supported by our scheme and x
(j)
i = G(s

(j)
i ) for j ∈ [T ]. Note that this

program is functionally equivalent but we need to pad Ci up to its size. Now,
since, the function G is lossy the shared key y still retains enough entropy,
even given the public key. A similar argument can be made for party j. By
setting the parameters appropriately, we can prove FS+EBL security of our
NIKE construction with optimal leakage rate.

Compressing the size of the public key using relaxed SuPA. Note that, in the
above proof step we needed to embed T values and hence the public key of
each user (which consists of the above obfuscated and padded circuit) scales lin-
early with T . With linear public key size, FS is trivial. However, what makes our
scheme different from the trivial one is that for us this issue is a proof problem for-
mally captured via the Superfluous Padding (SuP) Assumption [11]. Intuitively
the SuP assumption (SuPA) states that if two distributions are indistinguishable
relative to an obfuscated circuit C which was padded before obfuscation, then
the two distributions are also indistinguishable relative to the obfuscated circuit
C without padding. Or in other words, if an obfuscation of a padded circuit
hides something, then so does an obfuscation of the unpadded circuit.

Although non-standard, it is shown in [11] that SuPA holds for virtual black-
box obfuscation (VBB) as evidence it holds for iO. Unfortunately, as shown
in [26], assuming iO and one-way functions SuPA does not hold for iO if the
distinguisher is given auxiliary information. Crucially, we get around this by
using a relaxed variant of SuPA that does not give the distinguisher auxiliary
information. This relaxed SuPA is enough to prove the security of our NIKE
construction. We stress the impossibility result of [26] does not apply to this
relaxed SuPA, and in fact, we conjecture that, in the absence of any auxiliary
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information SuPA does hold for iO. In this case, the size of the public keys in
our NIKE scheme is not linear in T , but is only O(log T ). This is because the
obfuscated circuit just needs to know the maximum number of times it will need
to update its keys.

3 Preliminaries

3.1 Notations

Let x ∈ X denote an element x in the support of X . For a probability distribution
X , let |X | denote the size of the support of X , i.e., |X | =| {x |Pr[X = x] > 0} |.
If x is a string , we denote |x| as the length of x. Let x ← X be the process
of sampling x from the distribution X . For n ∈ N, we write [n] = {1, 2, · · · , n}.
When A is an algorithm, we write y ← A(x) to denote a run of A on input
x and output y; if A is randomized, then y is a random variable and A(x; r)
denotes a run of A on input x and randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗, the
computation of A(x; r) terminates in at most poly(|x|) steps. For a set S, we let
US denote the uniform distribution over S. For an integer α ∈ N, let Uα denote
the uniform distribution over {0, 1}α, the bit strings of length α. Throughout this
paper, we denote the security parameter by κ, which is implicitly taken as input
by all the algorithms. For two random variables X and Y drawn from a finite
set X , let δ(X,Y ) = 1

2 |
∑

x∈X Pr(X = x) − Pr(Y = x)| denote the statistical
distance between them. Given a circuit D, define the computational distance δD

between X and Y as δD(X,Y ) = |E[D(X)]− E[D(Y )]|.

3.2 Different Notions of Entropy

In this section, we recall some the definitions of information-theoretic and com-
putational notions of entropy that are relevant to this work and also state the
results related to them.

Unconditional (Information-theoretic) Entropy

Definition 1 (Min-entropy). The min-entropy of a random variable X, de-

noted as H∞(X) is defined as H∞(X)
def
= − log

(
maxx Pr[X = x]

)
.

Definition 2 (Conditional Min-entropy [16]). The average-conditional min-
entropy of a random variable X conditioned on a (possibly) correlated variable

Z, denoted as H̃∞(X|Z) is defined as

H̃∞(X|Z) = - log
(
Ez←Z [maxx Pr[X = x|Z = z]

)
= - log

(
Ez←Z [2−H∞(X|Z=z)]

)
.

Lemma 1 (Chain Rule for min-entropy [16]). For any random variable X,
Y and Z, if Y takes on values in {0, 1}ℓ, then

H̃∞(X|Y, Z) ≥ H̃∞(X|Z)− ℓ and H̃∞(X|Y ) ≥ H̃∞(X)− ℓ.

One may also define a more general notion of conditional min-entropy H̃∞(X|E),
where the conditioning happens over an arbitrary experiment E , and not just a
“one-time” random variable Y [3].
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Computational Entropy a.k.a pseudo-entropy

Computational entropy or pseudo-entropy is quantified with two parameters-
quality (i.e., how much distinguishable a random variable is from a source with
true min-entropy to a size-bounded (poly-time) distinguisher)) and quantity (i.e.,
number of bits of entropy).

Definition 3 (Hill Entropy [24, 27]). A distribution X has HILL entropy
at least k, denoted by HHILL

ϵ,s (X ) ≥ k, if there exists a distribution Y, where

H∞(Y) ≥ k, such that ∀D ∈ Drand,{0,1}
s , δD(X ,Y) ≤ ϵ. By, Drand,{0,1}

s we refer
to the set of all probabilistic circuits without {0, 1}.
Let (X ,Y) be a pair of random variables. Then, we say that X has conditional
HILL entropy at least k conditioned on Y, denoted HHILL

ϵ,s (X|Y) ≥ k, if there
exists a collection of distributions Zy for each y ∈ Y, yielding a joint distribution

(Z,Y) such that H̃∞(Z|Y) ≥ k, and ∀D ∈ Drand,{0,1}
s , δD

(
(X ,Y), (Z,Y)

)
≤ ϵ.

3.3 Primitives required for our constructions.

In this section, we outline the primitives required for our constructions.

Puncturable Pseudo-Random Functions.

In this section, we define the syntax and security properties of a puncturable
pseudorandom function family. We follow the definition given in [25].

A puncturable family of PRF pPRF : K×X → Y is given by a triple of polyno-
mial time algorithms (pPRF.setup, pPRF.puncture, pPRF.eval) and equipped with
an additional (punctured) key space Kp defined as follows:

• pPRF.setup(1κ) : This is a randomized algorithm that takes the security
parameter κ as input and outputs a description of the key space K, the
punctured key space Kp and the PRF pPRF.

• pPRF.puncture(K,x) : This is also a randomized algorithm that takes as in-
put a (master) PRF key K ∈ K, and an input x ∈ X , and outputs a key
Kx ∈ Kp, often denoted as the punctured key (punctured at the point x).
Without loss of generality, we can think of pPRF.puncture as a deterministic
algorithm also. This is because we can de-randomize the algorithm by gen-
erating its random bits using a PRF keyed by a part of the master key K
and given the point x as input.

• pPRF.eval(Kx, x
′) : This is deterministic algorithm that takes as input the

punctured key Kx ∈ Kp, and an input x′ ∈ X . Let K ∈ K, x ∈ X and
Kx ← pPRF.puncture(K,x). The correctness guarantee stipulates that:

pPRF.eval(Kx, x
′) =

{
pPRF(K,x) if x ̸= x′

⊥ otherwise
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Security of Puncturable PRFs: The security of puncturable PRFs is de-
picted by a game between a challenger and an adversary. The security game
consists of the following four stages:

1. Setup Phase: The challenger chooses uniformly at random a (master) PRF
key K ∈ K and a bit b ∈ {0, 1}.

2. Evaluation Query Phase: In this phase the adversary A queries a point
x ∈ X . The challenger sends back the evaluation pPRF(K,x) to A. These
queries can be made arbitrarily and adaptively by A polynomially many
times. Let E ⊂ X be the set of evaluation queries.

3. Challenge Phase: In this phase, the adversary A chooses a challenge point
x∗ ∈ X . The challenger computes Kx∗ ← pPRF.puncture(K,x∗). If bit b = 0,
C sends back (Kx∗ , pPRF(K,x∗)). Else, the challenger samples a uniformly
random y∗ ← Y, and sends back (Kx∗ , y∗) to A.

4. Guess Phase: A outputs a guess b′ for the bit b chosen by the challenger.

The advantage of A in the above game is defined by:

AdvpPRFA (κ) = Pr
[
b′ = b

∣∣ x∗ ← ApPRF.eval(K,·)(κ,K∗x) ∧ x∗ /∈ E
]
.

Definition 4. The punctured PRF pPRF is said to be secure if for all PPT
adversaries A participating in the above game, AdvpPRFA (κ) is negligible in κ.

Indistinguishability Obfuscation.

A uniform PPT machine iO is called an indistinguishability obfuscator for a
circuit class {Cκ}κ∈N if it satisfies the following conditions:

• (Functionality Preserving). For all security parameters κ ∈ N, for all C ∈ Cκ,
for all inputs x, we have that:

Pr
[
C ′(x) = C(x) : C ′ ← iO(κ,C)

]
= 1

• (Indistinguishability of Obfuscation). For any (not necessarily uniform) PPT
adversaries Samp, D, there exists a negligible function negl(·) such that the
following holds: if for all security parameters κ ∈ N, Pr

[
∀x,C0(x) = C1(x) :

(C0, C1, st)← Samp(κ)
]
> 1− negl(κ), then we have:∣∣∣Pr[D(st, iO(κ,C0)) = 1 : (C0, C1, st)← Samp(κ)

]
− Pr

[
D(st, iO(κ,C1)) = 1 : (C0, C1, st)← Samp(κ)

]∣∣∣ ≤ negl(κ).

where the probability is over the coins of D and iO.

We remark that the algorithms Samp and D pass state st, which can equivalently
be viewed as a single stateful algorithm B = (Samp,D).
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Lossy Functions.

A family of (n, k,m)-lossy functions is given by a triple of algorithms LF =
(Lossy, Inj,Eval) with the following syntax:

• Inj(1κ) is a randomized algorithm which outputs an injective function eval-
uation key ek.
• Lossy(1κ) is a randomized algorithm which outputs a lossy function evalua-
tion key ek.
• Evalek(x) is a deterministic algorithm, parametrized by an evaluation key ek
which takes as input x ∈ {0, 1}n and outputs some y ∈ {0, 1}m.

Security of Lossy Functions: We require a lossy function to satisfy the fol-
lowing properties:

• The function Evalek(·) where ek ← Inj(1κ) is injective with probability 1 −
negl(κ).
• The function Evalek(·) where ek ← Lossy(1κ) has image size at most 2n−k

with probability 1−negl(κ). In particular, we have that x has at least k bits
of min-entropy given Evalek(x).

• The evaluations keys ekinj ← Inj(1κ) and eklossy ← Lossy(1κ) are computa-
tionally indistinguishable.

Entropic Leakage-resilient OWF.

In this section, we recall the definition of leakage-resilient one-way functions (LR-
OWF) from [9]. Informally, a one-way function (OWF) g : {0, 1}n → {0, 1}m
is leakage-resilient if it remains one-way, even in the presence of some leakage
about pre-image. In entropy-bounded leakage model, instead of bounding the
length of the output of leakage functions (as in bounded leakage model), we
bound the entropy loss that happens due to seeing the output of the leakage
functions. We follow the definition of [14] to consider the entropy loss over the
uniform distribution as a measure of leakiness. We follow this definition since it
has nice composability properties as stated below.

Definition 5. [14]. A (probabilistic) function h : {0, 1}∗ → {0, 1}∗ is ℓ-leaky,

if for all n ∈ N, we have H̃∞(Un|h(Un)) ≥ n − ℓ, where Un denote the uniform
distribution over {0, 1}n.

As observed in [14], if a function is ℓ-leaky, i.e, it decreases the entropy of uniform
distribution by at most ℓ bits, then it decreases the entropy of every distribution
by at most ℓ bits. Moreover, this definition composes nicely in the sense that,
if the adversary adaptively chooses different ℓi-leaky functions, it learns only∑

i ℓi bits of information. We now define the security model for weak PRFs in
this entropy-bounded leakage model.
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Definition 6. (Entropic leakage-resilient one-wayness). Let A be an ad-
versary against g : {0, 1}n → {0, 1}m. We define the advantage of the adversary

A as AdvLR-OWF
A (κ) = Pr[g(x) = y |x∗ $←− {0, 1}n, y∗ = g(x∗);x← AOLeak(·)(y∗)].

Here OLeak is an oracle that on input h : {0, 1}n → {0, 1}∗ returns f(x∗), sub-
ject to the restriction that h is λ-entropy leaky. We say that g is λ-entropic
leakage-resilient one-way function (λ-ELR-OWF) if not any PPT adversary A
its advantage defined as above is negligible in κ.

As shown in [15], a second-preimage resistant (SPR) function with n(κ) bits
input and m(κ) bits output is also a λ(κ)-entropy leaky OWF for λ(κ) = n(κ)−
m(κ)− ω(log κ).

The Superfluous Padding Assumption.

Following [11], we present the Superfluous Padding Assumption (SuPA). Intu-
itively SuPA states that if two distributions are indistinguishable relative to an
obfuscated circuit C which was padded before obfuscation, then the two distri-
butions are also indistinguishable relative to the obfuscated circuit C without
padding. In other words, if an obfuscation of a padded circuit hides something,
then so does an obfuscation of the unpadded circuit. Unfortunately, as shown
in [26] assuming iO and one-way functions SuPA does not hold for iO if the
distinguisher is given arbitrary auxiliary information. We present a relaxed ver-
sion of the SuP assumption where the distinguisher is not given access to any
auxiliary input and we observe that this relaxed variant of SuPA is enough to
prove the security of our NIKE construction.

Following [11], we state the assumption in two steps: First, we define ad-
missible sampler and then define the SuP assumption with respect to such an
admissible sampler.

Definition 7 (Relaxed SuP-admissible Samplers). Let Obf be an obfusca-
tion scheme and let PAD : N × {0, 1}∗ → {0, 1}∗ be a deterministic padding
algorithm that takes as input an integer s and and a description of a circuit C
and outputs a functionally equivalent circuit of size s+ |C|. We say that a pair
of PPT samplers (Samp0,Samp1) is SuP-admissible for obfuscator Obf , if there
exists a polynomial s such that for any PPT distinguisher D its advantage in
the SuP[s] game (see Figure 1) is negligible:

Adv
SuP[s]
Obf,Samp0,Samp1,D

(κ) = 2 · Pr
[
SuP[s]DObf,Samp0,Samp1

(κ)
]
− 1 ≤ negl(κ).

Definition 8 (The Relaxed SuP assumption). Let Obf be an obfuscation
scheme and let Samp0 and Samp1 be two SuP-admissible samplers. Then, the
relaxed Superfluous Padding Assumption states that no efficient distinguisher D
has a non-negligible advantage in the SuP[0] game without padding:

Adv
SuP[0]
Obf,Samp0,Samp1,D

(κ) = 2 · Pr
[
SuP[0]DObf,Samp0,Samp1

(κ)
]
− 1 ≤ negl(κ).

12



Game SuP[s]DObf,Samp0,Samp1

b← {0, 1}
C ← Sampb(1

κ)

If s(κ) > 0, then return Ĉ ← Obf(PAD(s(κ), C))

Else, return Ĉ ← Obf(C))

b′ ← D(1κ, s, Ĉ, |C|)
Return (b′ = b)

Fig. 1. The SuP game parameterized by a polynomial s(κ). According to s, the circuit
C is padded (if s = 0 the original circuit C is used) before it is obfuscated and given
to distinguisher D, who additionally gets s as well as the size of the original circuit C.

4 Our Results in the FS+CL Model

4.1 Encryption in the FS+CL Model

In this section, following [6] we recall the syntax and security definition of en-
cryption schemes in the FS+CL Model.

Encryption in the FS+CL Model. A key-evolving encryption scheme KEE spec-
ifies the following PPT algorithms KEE.Kg, KEE.Upd, KEE.Enc, and KEE.Dec,
where KEE.Dec is deterministic. The encryption scheme KEE is associated with
the maximum number of time periods T = T (κ). Here, KEE.Kg(1κ) is used to
generate the initial key pair (sk1,pk). The key update algorithm KEE.Upd(1κ,pk,
i, ski) is used to evolve/update the key from time period i to i + 1, outputting
ski+1 in the process. KEE.Enc is used to encrypt a message m in time period i
using the public key pk. KEE.Dec is used to decrypt a ciphertext c, produced
in time i, with the help of secret key ski. We require the standard correctness
condition from KEE. The security game is presented in Figure 2. In this game
defining forward indistinguishability of key-evolving encryption scheme KEE un-
der continual leakage (FINDCL), an attacker is given access to three oracles : Up
(which it uses to update the key), Leak (which it uses to leak on the key with its
choice of leakage function L, and a one-time access to Exp which gives the entire
secret key skt∗ . One additional constraint is that the attacker A is δ-bounded,
i.e., A is allowed to leak at most δ(κ) bits from the secret keys per time period.
The attacker provides challenge messages i,m0,m1 and a time period i. It re-
ceives an encryption of mb for a randomly chosen bit b. A wins the game if it
correctly guesses the bit b and if i < t∗. An encryption scheme is FINDCL-secure
if the advantage of A in winning the above game is negligible.

4.2 Our Construction

In this section, we provide the details of our FS+CL encryption scheme. To this
end, we first abstract out a notion of continuous leakage-resilient binary tree
encryption (CLR-BTE) and use it to construct our FS+CL encryption scheme
achieving optimal leakage rate, i.e., 1− o(1).
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Game FINDCLA
KEE(κ)

b←$ {0, 1} ; t← 1 ; t∗ ← T (κ) + 1

(pk, sk1)←$ KEE.Kg(1κ)

(i,m0,m1, state)←$AUp,Leak,Exp
1 (1κ, pk)

If not (1 ≤ i < t∗) then return false

If |m0| ̸= |m1| then return false

(i, c)←$ KEE.Enc(1κ, pk, i,mb)

b′←$A2(1
κ, state, (i, c))

Return (b′ = b)

Up()

If t < T (κ) then

skt+1←$ KEE.Upd(1κ,pk, t, skt)

t← t+ 1

Else return ⊥

Leak(L)

Return L(sk)

Exp()

t∗ ← t ; Return skt

Fig. 2. Game defining forward indistinguishability of key-evolving encryption scheme
KEE under continual leakage.

Continuous Leakage-resilient Binary Tree Encryption. We now intro-
duce our notion of binary tree encryption in the continuous leakage model. Our
security model of the CLR-BTE scheme generalizes the definition of binary tree
encryption (BTE) (proposed by Canetti et al. [12]) in the setting of continuous
leakage. A BTE can be seen as a restricted version of HIBE, where the identity
tree is represented as a binary tree.2 In particular, as in HIBE, a BTE is also
associated with a “master” public key MPK corresponding to a tree, and each
node in the tree has its respective secret keys. To encrypt a message for a node,
one specifies the identity of the node and the public key MPK. The resulting
ciphertext can be decrypted using the secret key of the target node.

Definition 9. (Continuous leakage-resilient BTE). A continuous leakage-resilient
binary tree encryption scheme (CLR-BTE) consists of a tuple of the PPT algo-
rithms (Gen,Der,Upd,Enc,Dec) such that:

1. Gen(1κ, 1ℓ): The key generation algorithm Gen takes as input the security
parameter κ and a value ℓ for the depth of the tree. It returns a master
public key MPK and an initial (root) secret key SKε.

2. Der(MPK,w, Skw): The key derivation algorithm Der takes as input MPK,
the identity of a node w ∈ {0, 1}≤ℓ, and its secret key SKw. It returns secret
keys SKw0

, SKw1
for the two children of w.

3. Upd(w, Skw): The key update algorithm Upd takes as input the secret key
SKw of a node w and outputs a re-randomized key SK ′w for the same node
w, such that |SK ′w| = |SKw|.

4. Enc(MPK,w,M): The encryption algorithm Enc takes as input MPK, the
identity of a node w ∈ {0, 1}≤ℓ and a message M to return a ciphertext C.

5. Dec(MPK,w, Skw, C): The decryption algorithm Dec takes as input MPK,
the identity of a node w ∈ {0, 1}≤ℓ, its secret key SKw, and a ciphertext C.
It returns a message M or ⊥ (to denote decryption failure).

2 Recall that in HIBE the tree can have an arbitrary degree.
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Correctness: For all (MPK,SKε) output by Gen, any node w ∈ {0, 1}≤ℓ, any
secret key SKw correctly generated for this node (which can be the output of
(multiple invocations of) Upd also), and any message M , we have

Dec(MPK,w, SKw,Enc(MPK,w,M)) = M.

Security model for CLR-BTE. Our security model for CLR-BTE generalizes
the notion of selection-node chosen-plaintext attacks (SN-CPA) put forward by
Canetti et al. [12] to define the security of BTE. In our model, the adversary first
specifies the identity of the target node3 w∗ ∈ {0, 1}≤ℓ. The adversary receives
the public key MPK and the secret keys of all the nodes that do not trivially
allow him/her to derive the secret key of w∗4. Besides, the adversary is also
allowed to continuously leak from the secret keys of all the nodes that lie on the
path from the root node and w∗ (including both). The goal of the adversary is
then to win the indistinguishability game with respect to the target node w∗.

Definition 10. A CLR-BTE scheme is secure against continuous leakage selective-
node, chosen-plaintext attacks (λ(κ)-CLR-SN-CPA) if for all polynomially-bounded
functions ℓ(·), and leakage bound λ(κ), the advantage of any PPT adversary A
in the following game is negligible in the security parameter κ:

1. The adversary A(1κ, ℓ) outputs the name of a node w∗ ∈ {0, 1}≤ℓ. We will
denote the path from the root node to the target node w∗ by Pw∗ .

2. The challenger runs the algorithm Gen(1κ, ℓ) and outputs (MPK,SKε). In
addition, it runs Der(·, ·, ·) to generate the secret keys of all the nodes on
the path Pw∗ , and also the secret keys for the two children w∗0 and w∗1 . The
adversary is given MPK and the secret keys {SKw} for all nodes w of the
following form:

– w = w′b̄, where w′b is a prefix of w∗ and b ∈ {0, 1} (i.e., w is a sibling of
some node in Pw∗).

– w = w∗0 or w = w∗1 (i.e., w is a child of w∗; this is only when |w∗| < ℓ).

The challenger also creates a set T that holds tuples of all the (node) iden-
tities, secret keys and the number of leaked bits from each key so far.

3. The adversary Aclr-bte may also ask leakage queries. The adversary runs for
arbitrarily many leakage rounds. In each round:

– The adversary provides the description of a probabilistic leakage function
h : {0, 1}∗ → {0, 1}λ(κ), and an identity of a node w in the path Pw∗

3 Note that, this model where the adversary specifies the target node w∗ ahead of
time is weaker than the model where the adversary may choose the target adaptively
(analogous to the adaptive security of HIBE schemes). However, as we will show,
this model already suffices to construct of a FS+CL encryption scheme.

4 In particular, the adversary receives the secret keys of all the nodes that are siblings
of all the nodes that are on the path from the root node to the target node w∗.
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(that may also include both the root note and the target node w∗).5

The challenger scans T to find the tuple with identity w. It should be of
the form (w, SKw, Lw). The challenger then checks if Lw + |h(SKw)| ≤
λ(κ). If this is true, it responds with h(SKw) and updates Lw = Lw +
|h(SKw)|. If the check fails, it returns ⊥ to the adversary.

– At the end of each round, the challenger computes SK ′w ← Upd(w, SKw)
and updates SKw = SK ′w.

4. The adversary A then sends two messages M0 and M1 to the challenger

such that |M0| = |M1|. The challenger samples a random bit b
$←− {0, 1}, and

computes C∗ ← Enc(MPK,w∗,Mb). It then returns C∗ to the adversary
A. The adversary is not allowed to ask any further leakage queries after
receiving the challenge ciphertext C∗.6

At the end of this game, the adversary outputs a bit b′ ∈ {0, 1}; it succeeds if
b′ = b. The advantage of the adversary is the absolute value of the difference
between its success probability and 1/2.

Construction of CLR-BTE scheme. Our construction of the CLR-BTE
scheme can be instantiated in a straightforward manner from the continuous
leakage-resilient HIBE (CLR-HIBE) construction of Lewko et al. [34], tuned to
the setting of a binary tree. The resulting CLR-BTE is adaptively secure, since
the CLR-HIBE of [34] enjoys security against adaptive adversaries employing the
dual-system encryption technique. The security of the CLR-BTE scheme can be
proven under static assumptions over composite-order bilinear groups. We refer
the reader to [34] for the details of the CLR-HIBE construction and its proof.
As shown in [34], for appropriate choice of parameters, their CLR-HIBE scheme
achieves the optimal leakage rate of 1− o(1).

FINDCL encryption from CLR-BTE scheme. We now show a generic con-
struction of a FINDCL-secure encryption scheme starting from any CLR-BTE
scheme. The main idea of our construction is very simple: use the Canetti-Halevi-
Katz (CHK) transform [12] to the underlying CLR-BTE scheme to construct a
FINDCL encryption scheme. In particular, we show the applicability of the CHK
transform7 even in the setting of continuous leakage. However, as we show later,
the analysis of the CHK transform in the setting of leakage turns out to be quite
tricky.

5 This is equivalent to a definition where, in each round, the adversary asks for multiple
leakage functions adaptively, such that the output length of all these functions sum
up to λ(κ).

6 If the adversary is allowed to ask leakage queries after receiving the challenge cipher-
text, it can encode the entire decryption algorithm of C∗ as a function on a secret
key, and thus win the game trivially.

7 The original CHK transform [12] is used to construct a forward-secure PKE scheme
starting from a BTE scheme.
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Let (Gen,Der,Upd,Enc,Dec) be a CLR-BTE scheme. We construct our FINDCL
PKE scheme (KEE.Kg, KEE.Upd, KEE.Enc, KEE.Dec) as shown below. The con-
struction is identical to the CHK transform, with the underlying building blocks
appropriately changed.

Some additional notation: To obtain a FINDCL-secure encryption scheme with
T = 2ℓ−1, time periods (labeled through 1 to T ), we use a CLR-BTE of depth ℓ.
We associate the time periods with all nodes of the tree according to a pre-order
traversal. The node associated with time period i is denoted by wi. In a pre-order
traversal, w1 = ε (the root node), if wi is an internal node then wi+1 = wi0 (i.e.,
left child of wi). If wi is a leaf node and i < T − 1 then wi+1 = w′1 , where w′

is the longest string such that w′0 is a prefix of wi.

1. KEE.Kg(1κ, T ) : Run Gen(1κ, ℓ), where T ≤ 2ℓ−1, and obtain (MPK,SKε).
Set pk = (MPK,T ), and sk1 = SKε.

2. KEE.Upd(1κ, pk, i, ski) : The secret key ski is organized as a stack of node
keys, with the secret key SK ′wi on top, where SK ′wi is obtained by running
Upd of the CLR-BTE scheme (potentially multiple times) on the key SKwi .
We first pop this key off the stack. If wi is a leaf node, the next node
key on top of the stack is SK ′wi+1 (a refreshed version of the key SKwi+1).
If wi is an internal node, compute (SKwi0, SKwi1) ← Der(pk, wi, SKwi)
Ṫhen for b ∈ {0, 1}, compute SK ′wib ← Upd(w, SKwib). Further, for all
other node keys SKw remaining in the stack (corresponding to ski+1), run
SK ′w ← Upd(w, SKw). Then push SK ′wi1 and then SK ′wi0 onto the stack.
In either case, the node key SK ′wi is erased.

3. KEE.Enc(pk, i,m) : Run Enc(pk,wi,m). Note that wi is publicly computable
given i and T .

4. KEE.Dec(1κ, pki, ski, ci) : Run Dec(pk, w, SK ′wi , ci). Note that, SK ′wi is stored
as part of ski.

Theorem 1. Let λ : N → [0, 1]. Let Π = (Gen,Der,Upd,Enc,Dec) be a λ(κ)-
CLR-SN-CPA continuous leakage-resilient binary-tree encryption (CLR-BTE)
scheme. Let ℓ : N → N be a polynomial such that T ≤ 2ℓ − 1. Then Π ′ =
(KEE.Kg,KEE.Upd,KEE.Enc,KEE.Dec) is a λ(κ)-FINDCL secure encryption scheme
supporting up to T time periods.

Proof. Our proof follows the template of the CHK transformation for converting
a BTE scheme to forward-secure encryption scheme, with the crucial difference
in simulating the leakage queries.

Assume that we have an adversary Akee with advantage ϵ(κ) in an λ(κ)-
FINDCL security game of Π ′ = (KEE.Kg,KEE.Upd,KEE.Enc,
KEE.Dec). We construct an adversary Aclr-bte that obtains an advantage ϵ(κ)/T
in the corresponding attack against the underlying the CLR-BTE scheme Π =
(Gen,Der,Upd,Enc,Dec). The leakage rate tolerated by Π is exactly the same
as Π ′. We now describe how Aclr-bte simulates the environment for Akee:
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1. Aclr-bte chooses uniformly at random a time period i∗ ∈ [T ]. This define the
node wi∗ (the identity of the node corresponding to i∗). Aclr-bte then forwards
wi∗ to its challenger and obtains MPK and {SKw} for all the appropriate
nodes w8 from its challenger. Aclr-bte then sets pk = (MPK,T ), and forwards
the public key pk to the adversary Akee.

2. When Akee decides to break into the system, it provides the time period,
say j. If j ≤ i∗, then Aclr-bte outputs a random bit and halts. Otherwise,
Aclr-bte computes the appropriate secret key skj and gives it to Akee. Note
that, Aclr-bte can efficiently compute the secret keys skj for any j > i∗ from
the knowledge of {SKw} (the set of secret keys received in Step 1).

3. Akee may ask leakage queries on the secret key corresponding to any time
period, say i. The node associated with time period i is wi. The secret key
ski can be seen as a stack of node keys (derived using the underlying CLR-
BTE scheme) with the key SK ′wi on top of the stack. The other node keys in
the stack are secret keys corresponding to the right siblings of all the nodes
in the path Pwi from the root node to wi. Let us denote the secret key as
ski = (SK ′wi , {SK}′rs(Pwi )

), where {SK}′rs(Pwi )
denote the (refreshed) secret

keys of the right siblings of all nodes in path from the root to the node wi

(we denote this path by Pwi). Now, either one of the two cases must be true:
(1) wi ∈ Pwi∗ or (2) wi /∈ Pwi∗ , where Pwi∗ is the path containing the nodes
from the root node to the target node wi∗ (including both).

For the first case, Aclr-bte already knows all the keys {SK}rs(Pwi )) and it
does the following:
– Receive as input the leakage function f from Akee. Next, it calls Upd
on all the node keys {SK}rs(Pwi ) and receive the set of refreshed keys
{SK}′rs(Pwi )

. It then modifies the description of the function as h =

f{SK}′
rs(P

wi )
(·) = f

(
·, {SK}′rs(Pwi )

)
. In other words, Aclr-bte hardwires

the secret keys {SK}′rs(Pwi )
in the function f , and forwards h as the

leakage function to its challenger.

– On input the answer h(SK ′wi , {SK}′rs(Pwi )
) from its challenger, Aclr-bte

forwards this answer as the output of the leakage function f to Akee.
For the second case (i.e., when wi /∈ Pwi∗ ), there exists at most one node w ∈
Pwi∗ whose secret key is included {SK}′rs(Pwi )

. Apart from the secret key

of w, Aclr-bte knows the secret key of wi, SKwi , and the keys {SK}rs(Pwi )).
Thus, similar to above it can transform the joint leakage function f to a
leakage function h on SK ′w. It then returns the result to Akee.

It is clear that in both cases, Aclr-bte perfectly simulates the answers to the
leakage queries of the adversary Akee.

4. When Akee asks an update query KEE.Upd(i), Ablr-bte can easily compute
the key for the next time period using the knowledge of the keys {SKw}
received from its challenger in the beginning.

8 Recall that Aclr-bte receives the secret keys of all the nodes that are right siblings of
the nodes that lie on the path P from the root node to wi∗ .
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5. When Akee asks a challenge query with input (i,m0,m1), if i ̸= i∗ then
Aclr-bte outputs a random bit and halts. Otherwise, it forwards the tuple
(m0,m1) to its challenger and obtains the challenge ciphertext C∗. It then
gives C∗ to Akee.

6. When Akee outputs b′, A outputs b′ and halts.

It is easy to see that, if i = i∗, the above simulation by Aclr-bte is perfect. Since,
Aclr-bte guesses i∗ with probability 1/T , we have that Aclr-bte correctly predicts
the bit b with advantage ϵ(κ)/T . ⊓⊔

5 Our Results in the FS+(C)EBL Model

In this section we present the FS+(C)EBL model and present a construction of
NIKE in the FS+EBL model.

5.1 The FS+EBL Model

The Entropy Bounded Leakage (EBL) model was designed to capture security
against adversary who leaked on the secret key. However, to make the attack non-
trivial, it defines the legitimacy of the adversary. An adversary is legitimate if the
secret key sk still contains enough min-entropy, parametrized by α, even after
the leakage. This is a generalization of length-bounded leakage model where a
leakage function can leak at most, say, δ bits. Implicitly, the EBL model is defined
in the setting of a single time period (as there is only the one secret key). The
notion of length bounded leakage model was extended to the setting of multiple
time periods and this was called continual leakage model. In this setting, the
secret key is updated (using a randomized update function) across time periods
and an adversary can leak at most δ bits in every time period. In this section,
we consider deterministic key update functions and take the idea of entropic
bounded leakage model and extend it to the setting of multiple time periods. We
consider the combined problem of FS+EBL, i.e., schemes that are forward secure
and which are resilient to entropic bounded leakage. Specifically, we consider the
Forward Secure + Entropic Bounded Leakage Model, abbreviated as FS+EBL.
It is parametrized by T and α, where T is the maximum number of time periods
and α is the minimum residual entropy required. As before, one can define the
legitimacy of the attacker in this model.

Definition 11 (Definition of Legitimacy - FS+EBL Model). Let Π be
any key-evolving scheme with a deterministic key update algorithm. Let SKi

denote the random variable produced by the key update algorithm for time period
i. Then, any PPT adversary A making leakage queries denoted by Li(SKi) for
i = 1, . . . , T , is legitimate in the (T, α)-FS+EBL model if:

∀j ∈ [t∗],H∞
(
SKj |L1, · · · ,LT , RL1

, · · · , RLT

)
≥ α (1)

where RLi
denote the random coins of the adversary corresponding to the leakage

function Li, t
∗ ≤ T is the time period at which A is given skt∗ in full.
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Remark 1. In the above definition, one can also have H to be the computational
notion of entropy such as HILL entropy or unpredictability entropy [24,27].

5.2 NIKE in FS + EBL Model.

Non-interactive key exchange (NIKE) protocols allow two (or more) parties to
establish a shared key between them, without any interaction. It is assumed that
the public keys of all the parties are pre-distributed and known to each other.
In this work, we consider two-party NIKE protocols and extend them to the
setting of forward-security under entropy-bounded leakage model (FS+ EBL).
We provide the definition of NIKE in this model (we will often call such a
NIKE scheme as FS-EBLR-NIKE). To bypass the black-box impossibility result of
constructing leakage-resilient NIKE protocol in the plain model [35], we consider
the NIKE protocols in the common reference string (CRS) model, where we
rely on leak-free randomness to generate the CRS. Our security model for FS-
EBLR-NIKE scheme can be seen as a leakage-resilient adaptation of the model
of forward-secure NIKE (FS-NIKE) of Pointcheval and Sanders (dubbed as PS
model) [38]. Hence, we call our model of NIKE as the EBL-PS model.

5.3 Syntax of FS-EBLR NIKE.

A NIKE scheme NIKE in the FS+ EBL model consists of the tuple of algorithms
(NIKE.Setup, NIKE.Gen, NIKE.Upd, NIKE.Key). We associate to NIKE a public
parameter space PP, public key space PK, secret key space SK, shared key space
SHK, and an identity space IDS. Identities are used to track which public keys
are associated with which users; we are not in the identity-based setting.

• NIKE.Setup(1κ, (α, T )) : This is a randomized algorithm that takes as input
the security parameter κ (expressed in unary), parameters α and T of the
(T, α)-FS+ EBL model (where α is the leakage parameter and T denotes the
maximum number of time period supported by the system9) and outputs
public parameters params ∈ PP.
• NIKE.Gen(1κ, ID) : On input an identity ID ∈ IDS, the key generation
outputs a public-secret key pair (pk, skt) for the current time period t. We
assume that the secret keys implicitly contain the time periods. The current
time period t is initially set to 1.

• NIKE.Upd(skt) : The (deterministic) update algorithm takes as input the
secret key skt at time period t and outputs the updated secret key skt+1

for the next time period t + 1, if t < T . We require that the updated key
skt+1 ̸= skt. The key skt is then securely erased from memory. If t = T ,
then the secret key is erased and there is no new key.

• NIKE.Key(IDA, pk
A, IDB , sk

B
t ) : On input an identity IDA ∈ IDS asso-

ciated with public key pkA, and another identity IDB ∈ IDS with secret
key skBt corresponding to the current time period t, output the shared key

9 Our construction will achieve security for arbitrary polynomial T .
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Game EBL-PSAnike
NIKE (κ, α, T )

params← NIKE.Setup(1κ, α, T ) ; S,C,Q← ∅ // S, C and Q maintains the list of
honest, corrupt and exposed users respectively.

(IDA, IDB , t̃)← ARegHon,RegCor,CorrReveal,Leak,Exp
1 (params) // The descriptions of the

oracles RegHon, RegCor, CorrReveal, Leak and Exp are provided below the description
of this game.

b←$ {0, 1}
If b = 0 then Return shkAB

t̃ ← NIKE.Key(IDA, pkA, IDB , sk
B
t̃ )

Else Return shkAB
t̃ ←$ SHK

b′←$ARegHon,RegCor,CorrReveal,Leak,Exp
2 (shkAB

t̃ )

If (IDA,−,−, corrupt) ∈ C or (IDB ,−,−, , corrupt) ∈ C, then return ⊥
If (IDA, t

∗) ∈ Q and t∗ ≤ t̃, then return ⊥
If (IDB , t

∗) ∈ Q and t∗ ≤ t̃, then return ⊥
Return (b′ = b)

Fig. 3. Game defining security of NIKE scheme NIKE in the FS+ EBL model.

shkAB
t ∈ SHK or a failure symbol ⊥. If IDA = IDB , the algorithm outputs

⊥. Since the secret key skBt is associated with time period t, the shared key
shkAB

t between the two users IDA and IDB also corresponds to the same
time period t.

Correctness: The correctness requirement states that the shared keys computed
by any two users IDA and IDB in the same time period are identical. In other
words, for any time period t ≥ 1, and any pair (IDA, IDB) of users having key
pairs (pkA, skAt ) and (pkB , skBt ) respectively, it holds that:

NIKE.Key(IDA, pk
B , IDB , sk

A
t ) = NIKE.Key(IDB , pk

A, IDA, sk
B
t ).

5.4 Security Model for FS-EBLR NIKE.

Our security model for NIKE generalizes the model of forward-secure NIKE
of [38] (often referred to as the PS model). We refer to our model as the EBL-PS
model. Security of a NIKE protocol NIKE in the EBL-PS model is defined by
a game EBL-PS between an adversary Anike = (A1,A2) and a challenger C (see
Figure 3). Before the beginning of the game, the challenger C also initializes three
sets S, C and Q to be empty sets. The adversary Anike can query the following
oracles:

1. RegHon(ID) : This oracle is used by Anike to register a new honest user
ID at the initial time period. The challenger runs the NIKE.Gen algorithm
with the current time period as 1, and returns the public key pk to Anike. It
also adds the tuple (ID, sk1, pk, honest) to the set S. This implicitly defines
all the future keys sk2, · · · , skT (since the update function is deterministic).
This query may be asked at most twice by Anike. Users registered by this
query are called “honest”.
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2. RegCor(ID, pk) : This oracle allows the adversary to register a new corrupted
user ID with public key pk. The challenger adds the tuple (ID,−−, pk, corrupt)
to the set C. We call the users registered by this query as “corrupt”.

3. CorrReveal(IDA, IDB , t) : Anike supplies two indices where IDA was reg-
istered as corrupt and IDB was registered as honest. The challenger looks
up the secret key skB1 (corresponding to IDB) and computes the updated key
skBt corresponding to time period t. Then it runs NIKE.Key(IDA, pk

A, IDB , sk
B
t )

to get the shared key shkAB
t for time period t and returns shkAB

t to Anike.

4. Leak(L, ID, t) : The adversary Anike submits a leakage function L : PP ×
SK → {0, 1}∗ to leak on the secret key of user ID for time period t, provided
that Anike belongs to the class of legitimate adversaries (see Definition 11).

5. Exp(ID, t∗) : This query is used by Anike to get the secret key of an honestly
registered user ID corresponding to time period t∗. The challenger looks
for a tuple (ID, sk1, pk, honest). If there is a match, it computes skt∗ corre-
sponding to t∗ and returns skt∗ to Anike. Else, it returns ⊥. The challenger
adds (ID, t∗) to the set Q.

The formal details of our EBL-PS game is given in Figure 3.

Definition 12 (FS+ EBL-secure NIKE). A NIKE protocol NIKE is (T, α)-
forward-secure under computational-entropy-bounded leakage model ((T, α) -
FS+ EBL) with respect to any legitimate adversary Anike playing the above EBL-PS
game (see Figure 3), if the advantage defined below is negligible in κ.

Advfs-eblAnike
(κ) = |Pr[EBL-PSAnike

NIKE(κ, α, T )) = 1]− 1/2|

.

In other words, the adversary Anike succeeds in the above experiment if it is
able to distinguish a valid shared key between two users from a random session
key. To avoid trivial win, some restrictions are enforced, namely: (i) both the
targeted (or test) users needs to be honestly registered (ii) the adversary Anike

is not allowed to obtain the secret keys corresponding to any of the test users
prior to the challenge time period t̃, (iii) Anike is allowed to leak on the secret
keys of both the target users IDA and IDB , as long as it satisfies the legitimacy
condition (see Definition 11). We emphasize that the adversary can still obtain
the secret keys of the target users IDA and IDB for time periods t∗ > t̃, which
models forward security.

Variants of NIKE. Similar to [35], we consider different variants of NIKE
depending on whether the setup algorithm just outputs a uniformly random
coins or sample from some structured distributions. In particular, we say a NIKE
scheme is:

• a plain NIKE, if NIKE.Setup(1κ) just outputs (some specified number of)
uniform random coins. In particular, NIKE.Setup(1κ; r) = r.

• a NIKE in the common reference string model, if NIKE.Setup(1κ) can be
arbitrary (i.e., sample from an arbitrary distribution). In this case, we rely
on leak-free randomness to run the setup algorithm.
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Remark 2. We note that, in the original PS model of forward secure NIKE,
there can be multiple honest users, and the adversary is allowed to obtain the
secret keys of the honest users other than the target users (even prior to the
challenge time period t̃). In this work, we consider a simplified version where
there are only two honest users. The above simplified model can be shown to
be polynomially equivalent to the full-fledged PS model by following the same
reduction strategy as in [18][Theorem 8, Appendix B], where they show that
the CKS-light model (with two honest users) is polynomially equivalent to the
CKS-heavy model (where they can be multiple honest users). We emphasize that,
in our application of constructing FS+ EBL-secure PKE scheme from FS-EBLR
NIKE, we only require the above simplified model.

5.5 Construction of NIKE scheme in the FS + EBL model

In this section, we present our construction of forward-secure NIKE protocol
resilient to entropy-bounded leakage in the common reference string model.

Let iO be an indistinguishability obfuscator for circuits, pPRF = (pPRF.keygen,
pPRF.puncture, pPRF.eval) be a puncturable PRF with image space Y = {0, 1}y,
LF = (Inj, Lossy, f) be a (κ, k,m)10-lossy function, and LF′ = (Inj′, Lossy′, f ′) be
a (κ′, k′,m′)-lossy function, where κ′ ≥ m.

• NIKE.Setup(1κ, T ) : Choose a random key K ← pPRF.keygen(1κ). Sample
two injective evaluation keys ek ← Inj(1κ), ek′ ← Inj′(1κ). Consider the cir-
cuit C(r,Xi, Xj) that has the key K hard-coded (see Figure 4) and compute

Ĉ = iO(C). Set params = (Ĉ, ek, ek′).

Inputs: r,Xi, Xj .

Constant: K, ek, ek′

If fek(r) = Xi or fek(r) = Xj , output pPRF.eval(K, (f ′
ek′(Xi), f

′
ek′(Xj));

Else output ⊥.

Fig. 4. The Circuit C(r,Xi, Xj)

• NIKE.Gen(1κ, params, IDi) : To compute the key pair of an user IDi, sample

ski1
$←− {0, 1}κ. Consider the circuit Ci(skt, t) that has the keys ek, ek′, the

base secret key ski1, and the obfuscated circuit Ĉ (which is part of params)

hard-coded (See Figure 5) and compute Ĉi = iO(Ci). Set the public key as

pki = Ĉi.
• NIKE.Upd(1κ, skit) : On input of the user ID′is secret key skit at time pe-

riod t, computes skit+1, the secret key for the next time period t + 1. The
instantiation of the update function is mentioned below.

10 A (κ, k,m)-lossy function maps an input from x ∈ {0, 1}κ to an output y ∈ {0, 1}m.
In the lossy mode, the image size of the function is at most 2κ−k with high proba-
bility.
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Inputs: skt, t.

Constants: ski
1, ek, ek

′, Ĉ, T .

1. Check if t ≤ T . If not, output ⊥.
2. Update ski

t = NIKE.Updt−1(ski
1).

3. Compute Xi
t = fek(sk

i
t) and Xj

t = fek(skt).

Output the shared key shkij
t = Ĉ(skt, X

i
t , X

j
t ).

Fig. 5. Circuit Ci(skt, t)

• NIKE.Key(IDi, pk
i = Ĉi, IDj , sk

j
t ) : The user IDj runs the obfuscated cir-

cuit Ĉi = iO(Ci) on inputs the secret key skjt corresponding to time period
t to obtain the shared key shkijt at time period t.

Note on Update Function: The update function NIKE.Upd is one which takes a
secret key of the current period and produces a new secret key. As defined in
the security model, the adversary can issue leakage queries provided the keys
are α-entropic conditioned on the set of all leakage queries. It is not hard to
see that the update function should necessarily satisfy the one-wayness prop-
erty, essentially guaranteeing the non-invertibility of the earlier keys once the
secret key is exposed. Interestingly, for the above construction, we can abstract
away the update function to any entropic leakage resilient one-way function,
i.e., NIKE.Upd(·) = g(·), where g : {0, 1}κ → {0, 1}κ be a α-entropic leakage-
resilient one-way function (α-ELR-OWF). The definition of entropic leakage-
resilient OWF is given in Section 3.3.

Correctness. It is not hard to see that both the parties IDi and IDj end up
with the same shared key.

Shared key computation by party Pi: Party Pi computes the shared key as:

shkijt = NIKE.Key(IDj , pk
j = Ĉj , IDi, sk

i
t)

= Ĉj(sk
i
t, (X

i
t , X

j
t ))

= pPRF.eval
(
K, f ′ek′(X

i
t), f

′
ek′(X

j
t )
)

= pPRF.eval
(
K, f ′ek′(fek(sk

i
t)), f

′
ek′(fek(NIKE.Upd

t−1(skj1)))
)

= pPRF.eval
(
K, f ′ek′(fek(NIKE.Upd

t−1(ski1))), f
′
ek′(fek(NIKE.Upd

t−1(skj1)))
)

Shared key computation by party Pj: Party Pj computes the shared key as:

shkij
′

t = NIKE.Key(IDi, pk
i = Ĉi, IDj , sk

j
t )

= Ĉi(sk
j
t , (X

i
t , X

j
t ))

= pPRF.eval
(
K, f ′ek′(X

i
t), f

′
ek′(X

j
t )
)

= pPRF.eval
(
K, f ′ek′(fek(NIKE.Upd

t−1(ski1))), f
′
ek′(fek(sk

j
t ))

)
= pPRF.eval

(
K, f ′ek′(fek(NIKE.Upd

t−1(ski1))), f
′
ek′(fek(NIKE.Upd

t−1(skj1)))
)

Hence, we can see that shared keys computed by both parties Pi and Pj corre-

sponding to time period t are same, i.e., shkijt = shkij
′

t .
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Instantiations. Our FS-EBLR NIKE construction from above can be instantiated
based on the recent construction of iO from well-founded assumptions [29]. One
can construct lossy functions from DDH or LWE [35]. Besides, we need to rely on
the relaxed varaint of the Superfluous Padding Assumption (SuPA). In particular
we obtain FS+ECL NIKE from either DDH or LWE along with sub-exponential
SXDH on asymmetric bilinear groups, sub-exponential LPN, Boolean PRGs in
NC0 and relaxed SuPA.

5.6 Security Proof

Theorem 2. Let κ be the security parameter, and T = T (κ) be an arbitrary
but fixed polynomial. Assume that iO is an indistinguishability obfuscator for
circuits, and the superfluous padding assumption holds for iO. Let LF is an
(κ, k,m)-lossy function, LF′ is an (κ′, k′,m′)-lossy function where κ′ ≥ m, pPRF
is a family of puncturable PRFs with image size Y = {0, 1}y. Then, Construc-
tion 5.5 is a (α, T )-forward-secure entropy-bounded leakage-resilient NIKE in the
EBL-PS model with α ≥ y+ rT + r′− 2κ, where r = (κ− k), r′ = (κ′− k′), and
T denote the total number of time periods supported by the scheme.

Proof. We will now present the detailed proof of Theorem 2. Let Ext : {0, 1}n×
{0, 1}d → Y be an average-case strong randomness extractor to be determined
later. We prove the security of Theorem 2 via a sequence of hybrid experiments.
We will use Si to refer to the event that Anike wins in Gamei.

Game0 : This corresponds to the original security game EBL-PSAnike

NIKE(κ, α, T ),
except that the challenger guesses that challenge time period t̃. In particular,
the challenger does the following:

1. It chooses a time period t̃ as a guess for the challenge time period of the
adversary Anike. If Anike chooses any period other than t̃, the challenger
aborts. Note that the guess is correct with probability 1/T .

2. The challenger then runs NIKE.Setup to get params = (Ĉ = iO(C), ek, ek′).
The definition of the circuit C can be found in Figure 4.

3. It also chooses two secret keys ski1 and skj1. It sets pk
i = Ĉi = iO(Ci) where

Ci is defined in Figure 5.
4. It computes the challenge appropriately.
5. ll the leakage information that Anike asks can also be answered by the chal-

lenger with the knowledge of the secret keys ski1 and skj1.

Let E be the event that the challenger guesses the correct challenge time period.
Then,

Pr[S0] ≤ Pr[S0|E ] + Pr[Ē ] = Advfs-eblAnike
(κ) +

(
1− 1

T

)
Game1 : This is similar to Game0, except that the challenger sets pki = Ĉ∗i =

iO(C∗i ) (resp. pkj = Ĉ∗j = iO(C∗j )) where C∗i (resp. C∗j ) is a program which
is closely related to the original program Ci (resp. Cj). The difference in the
programs are that: Instead of embedding the base secret key ski1, the challenger
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computes the vector of values X⃗i = (Xi
1, . . . , X

i
T ) (resp. X⃗j = (Xj

1 , . . . , X
j
T ))

with knowledge of ski1 (resp. skj1). Note that, Xi
t = fek(NIKE.Upd

t−1(ski1)). The

challenger then embeds the vector X⃗i (resp. X⃗j) in the program C∗i (resp. C∗j ).
The definition of C∗i is defined in Figure 6. Note that, the two circuits Ci and
C∗i (resp. Cj and C∗j ) are functionally equivalent, and hence the distributions in
Game1 and Game0 are computationally indistinguishable by security of iO. In
other words,

|Pr[S1]− Pr[S0]| ≤ negl(κ).

Constants: X⃗i = (Xi
1, . . . , X

i
T ), ek, ek

′, Ĉ, T .

Inputs: skt, t.

1. Check if t ≤ T . If not, output ⊥.
2. Compute: Xj

t = fek(skt).

Output the shared key shkij
t = Ĉ(skt, X

i
t , X

j
t ).

Fig. 6. The Circuit C∗
i (skt, t).

Game2 : This is similar to Game1, with the exception that there is a change
in the generation of params: Instead of computing Ĉ = iO(C), the challenger

computes Ĉ(1) = iO(C(1)) where the program C(1) is closely related to C. The
difference in the programs are as follows: The challenger uses its guess of the
challenge period t̃ to embed the values of f ′ek′(X

i
t̃
) and f ′ek′(X

j

t̃
) in the pro-

gram C(1) (note that, the challenger can always compute these values using
its knowledge of the secret keys ski1, sk

j
1). Further, it also embeds the value

pPRF.eval
(
K, f ′ek′(X

i
t̃
), f ′ek′(X

j

t̃
)
)
in C(1). The program is defined in Figure 7.

Set params = (Ĉ(1), ek, ek′).
Note that the programs C and C(1) are functionally equivalent. This follows

from the fact that the functions f and f ′, are injective. Therefore, we have that
the distributions in Game1 and Game2 are computationally indistinguishable
by security of iO. In other words,

|Pr[S2]− Pr[S1]| ≤ negl(κ)

Game3 : This is similar toGame2 with the exception that now we will puncture
the pPRF at the points f ′ek′(X

i
t̃
), f ′ek′(X

j

t̃
) while generating params, i.e.

K ′ ← pPRF.puncture(K, f ′ek′(X
i
t̃), f

′
ek′(X

j

t̃
)) .

Instead of computing Ĉ(1) = iO(C(1)), the challenger computes Ĉ(2) = iO(C(2))
where the program C(2) is defined in Figure 8. The circuit C(2) has hard-coded
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Constant: K, ek, ek′, f ′
ek′(X

i
t̃), f

′
ek′(X

j

t̃
), pPRF.eval

(
K, f ′

ek′(X
i
t̃), f

′
ek′(X

j

t̃
)
)

Inputs: r, Xi, Xj .
If f ′

ek′(Xi) = f ′
ek′(X

i
t̃) and f ′

ek′(Xj) = f ′
ek′(X

j

t̃
), and

If f ′
ek′(fek(r)) = f ′

ek′(X
i
t̃) or f

′
ek′(fek(r)) = f ′

ek′(X
j

t̃
):

output pPRF.eval(K, (f ′
ek′(Xi), f

′
ek′(Xj)).

If fek(r) = Xi or fek(r) = Xj , output pPRF.eval(K, (f ′
ek′(Xi), f

′
ek′(Xj)).

Else output ⊥.

Fig. 7. Circuit C(1)(r,Xi, Xj).

in it the values the punctured key K ′, ek, ek′, f ′ek′(X
i
t̃
), f ′ek′(X

j

t̃
) and some ran-

dom value γ ← Y (instead of pPRF.eval
(
K ′, f ′ek′(X

i
t̃
), f ′ek′(X

j

t̃
)
)
). Set params =

(Ĉ(2), ek, ek′).
Therefore, we have that the distributions in Game2 and Game1 are compu-

tationally indistinguishable by the security of punctured PRF. In other words,

|Pr[S3]− Pr[S2]| ≤ negl(κ).

Constant: K′, ek, ek′, f ′
ek′(X

i
t̃), f

′
ek′(X

j

t̃
), γ

Inputs: r, Xi, Xj .
If f ′

ek′(Xi) = f ′
ek′(X

i
t̃) and f ′

ek′(Xj) = f ′
ek′(X

j

t̃
), and:

If f ′
ek′(fek(r)) = f ′

ek′(X
i
t̃) or f

′
ek′(fek(r)) = f ′

ek′(X
j

t̃
), then output γ.

If fek(r) = Xi or fek(r) = Xj , output pPRF.eval(K
′, (f ′

ek′(Xi), f
′
ek′(Xj)).

Else output ⊥.

Fig. 8. Circuit C(2)(r,Xi, Xj).

Game4 : We again change how we generate the parameters params. The chal-
lenger first samples two seeds si, s

′
i ← {0, 1}d.

• We first sample γ from Y.
• We compute zi = Ext(ski

t̃
, si)⊕ γ and zj = Ext(skj

t̃
, s′i)⊕ γ.

• We now replace iO(C(2)) with iO(C(3)) where C(3) is a closely related pro-
gram defined in Figure 9.

Note that the programs C(2) and C(3) are functionally equivalent. This fol-
lows from the definitions of functions f and f ′, i.e., they are injective, and
consequently both zi ⊕ Ext(r, si) and zj ⊕ Ext(r, s′i) evaluate to γ. Therefore, we
have that the distributions in Game4 and Game3 are computationally indis-
tinguishable by security of iO. In other words,
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Constant: K′, ek, ek′, f ′
ek′(X

i
t̃), f

′
ek′(X

j

t̃
), zi, zj , si, s

′
i

Inputs: r, Xi, Xj .
If f ′

ek′(Xi) = f ′
ek′(X

i
t̃) and f ′

ek′(Xj) = f ′
ek′(X

j

t̃
), and

If f ′
ek′(fek(r)) = f ′

ek′(X
i
t̃) output zi ⊕ Ext(r, si)

If f ′
ek′(fek(r)) = f ′

ek′(X
j

t̃
) output zj ⊕ Ext(r, s′i)

If fek(r) = Xi or fek(r) = Xj , output pPRF.eval(K
′, (f ′

ek′(Xi), f
′
ek′(Xj)).

Else output ⊥.

Fig. 9. Circuit C(3)(r,Xi, Xj).

|Pr[S4]− Pr[S3]| ≤ negl(κ)

Game5 : This is similar to Game4 with the only difference being in the way
we generate params. In this game, the challenger samples ek and ek′ from Lossy
instead of Inj. The keys ek and ek′ are now embedded in the programs C(3) and
C∗i (resp. C∗j ) to generate new programs C(4) and C∗∗i (resp. C∗∗j ). The resulting
distribution is indistinguishable from that of Game4 from the security of lossy
functions. In other words,

|Pr[S5]− Pr[S4]| ≤ negl(κ)

Game6 : This is similar to Game5 except that the value returned as the shared
key is entirely random. We will argue that Game5 and Game6 are statistically
indistinguishable by relying on the security of Ext. Specifically, we prove the
following claim.

Claim. The distribution of γ conditioned on E := (pk(i) = iO(C∗∗i ), pk(j) =
iO(C∗∗j ), params,L) is statistically indistinguishable from random. Here L de-
notes the view of the adversary based on the leakage queries it makes, and the
responses it receives.

Proof. To prove the above claim, it is sufficient to prove that the values zi =
Ext(Y i

t̃
, si)⊕ γ and zj = Ext(Y j

t̃
, s′i)⊕ γ look uniformly random. Notice that all

the elements of E can be generated from(
K ′, ek, ek′,L, Xi

1, . . . , X
i
T , X

j
1 , . . . , X

j
T , T, si, s

′
i, f
′
ek′(X

i
t̃), f

′
ek′(X

j

t̃
)
)

Note that, we ensured that C∗∗i , C∗∗j did not have the base secret keys ski1
and skj1 embedded in them. However, these do have the values of Xi

1, . . . , X
i
T and

Xj
1 , . . . , X

j
T which are dependent on the secret key chain. We need to estimate

the loss of entropy due to this value. However, observe that we have switched
the key ek← Inj to lossy function ek← Lossy. By the definition of lossy function
and relying on the chain rule of min-entropy, we have that:
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H̃∞(Y i
t̃ |L, X

i
1, . . . , X

i
T , f

′
ek′(X

i
t̃))) ≥ α− (κ− k)T − (κ′ − k′)

To complete the proof, we will make use of the following Theorem.

Theorem 3 (Generalized Leftover Hash Lemma [16]). Assume {Hx :
{0, 1}κ → {0, 1}y}x∈X be a family of universal hash functions. Then for any
random variables W and I, we have:

δ
(
(HX(W ),W, I), (Uy,W, I)

)
≤ ϵ,

where ϵ ≤ 1
2

√
2H̃∞(W |I)2y and δ(X,Y ) denotes the statistical distance between

two random variables X and Y .

In particular, universal hash functions are average-case (κ, n, y, ϵ)-strong extrac-
tors whenever y ≤ n− 2 log(1ϵ ) + 2.

Combining the above and the fact that y ≤ α − (κ − k)T − (κ′ − k′) + 2κ, we
obtain that zi is statistically close to uniform in {0, 1}y. A similar analysis can
be done for the case of zj . As a result, the distribution of γ is statistically close
to uniform in {0, 1}y. This concludes the proof of the claim. ■

Game7 : In the first game, i.e., Game1, the size of the program C∗i (resp. C∗j )

is linear in T . The reason is that we embedded the vectors X⃗i = (Xi
1, · · · , Xi

T )

(resp. X⃗j = (Xj
1 , · · · , X

j
T )) in the program C∗i (resp. C∗j ). Note that, C∗i is a

functionally equivalent padded version of the circuit Ci (used in the original
construction, i.e., in Game0) and can be written as C∗i = PAD(s(κ), Ci) where
s = mT . We have shown by the above sequence of hybrids that:

(γ1, iO(PAD(s(κ), Ci)) ≈c (γ6, iO(PAD(s(κ), Ci)),

where γ1 and γ6 are the values of the shared key at the end of Game1 and
Game6 respectively. Applying the SuP assumption for indistinguishability ob-
fuscation and identifying Samp0 with the sampler that runs Game1 and, simi-
larly, Samp1 with the sampler that runs Game6 we get that also

(γ1, iO(Ci) ≈c (γ6, iO(Ci))

are computationally indistinguishable. Hence, under the SuP assumption the
size of our public key is independent total number of time periods T .

Finally, note that the adversary has no advantage in Game7. ⊓⊔

Parameters. We can set the value of κ appropriately, such that α = poly(κ)
for an arbitrary polynomial poly(·) and any leakage rate ρ ≤ 1 − o(1). The size
of our public parameter (params) and the secret keys are O(1). By relying on
the SuP assumption the size of our public key is O(log T ).
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