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Abstract. Multi-client functional encryption (MCFE) is an extension of functional encryption (FE) in
which the decryption procedure involves ciphertexts from multiple parties. In this paper, we consider
MCFE schemes supporting encryption labels, which allow the encryptor to limit the amount of possible
mix-and-match that can take place during the decryption. This is achieved by only allowing the
decryption of ciphertexts that were generated with respect to the same label. This flexible form of FE
was already investigated by Chotard et al. at Asiacrypt 2018 and Abdalla et al. at Asiacrypt 2019.
The former provided a general construction based on different standard assumptions, but its ciphertext
size grows quadratically with the number of clients. The latter gave a MCFE based on Decisional
Diffie-Hellman (DDH) assumption which requires a small inner-product space. In this work, we overcome
the deficiency of these works by presenting three constructions with linear-sized ciphertexts based on
the Matrix-DDH (MDDH), Decisional Composite Residuosity (DCR) and Learning with Errors (LWE)
assumptions in the random-oracle model. We also implement our constructions to evaluate their concrete
efficiency.
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1 Introduction

Functional encryption (FE) [BSW11,O’N10] is an encryption scheme that goes beyond all-or-nothing de-
cryption, allowing users in possession of a secret functional decryption key to learn a specific function of
the encrypted message, and nothing else. More formally, in an FE scheme for a class of functions F , a
ciphertext encrypting a message x can be used in conjunction with a functional decryption key dkf , derived
for a function f from F , in order to compute f(x) while no more information about x is leaked. Due to its
generality, FE encompasses many existing notions, such as identity-based encryption [BF01,Coc01,Wat05]
and attribute-based encryption [GPSW06,OSW07,Wat11]. Now, general purpose FE is seen as a holy grail
for modern cryptography. Several works have made progress towards this goal [GGH+13,Wat15,BCP14], but
no constructions are known from standard assumptions. Since general-purpose FE still remains far from
reality, different lines of work focused on building FE for specialized classes of functions, such as predicate
encryption or inner-product FE.

Inner-product FE (IPFE) is a special case of FE [ABDP15] in which the encrypted messages are vectors
x, and the functional decryption keys dky, are associated with vectors y of the same dimension, and the
decryption yields the inner-product between those two vectors (i.e., 〈x,y〉). It was first considered in [ABDP15]
as the first efficient encryption scheme going beyond all-or-nothing decryption. The class of functions defined
is simple enough to allow practical instantiations, as it is only linear, but still allows for many applications.
In particular, it allows for any bounded depth computation by properly increasing the size of the inputs
[ALS16,AR17].

Multi-client FE (MCFE), introduced in [GKL+13], is a natural extension of FE where data comes from
different sources/clients that may not trust each other and can be independently and adaptively corrupted by
the adversary. The special case of Multi-input FE (MIFE) [ACF+18,AGRW17] corresponds to the setting
where the clients are honest but curious, and each coordinate of a vector can be encrypted separately before
being combined during the decryption procedure. The main challenge to overcome when designing MCFE is
that the different parts of the ciphertext have to be crafted without sharing any randomness, as opposed to
what happens in all the existing constructions for single-input IPFE (or simply IPFE).

MCFE with labels, introduced in [GKL+13] and recast in the context of the inner-product functionality
by [CDG+18a], allows for more control over the data during the encryption. In an MCFE scheme with labels,
ciphertexts strictly depend on labels. When combining ciphertexts during the decryption procedure, data
associated with different labels cannot be mixed to give a valid decryption or useful information. Thus, the
data from different sources can only be combined if they have the same label. The construction suggested in
[CDG+18a] for the inner-product functionality is based on the Decisional Diffie-Hellman (DDH) assumption,
and one of its drawbacks is that the decryption algorithm needs to compute the discrete logarithm of a group
element, which means it can only support a small range of values for the inner-products, thus limiting its
possible applications. Abdalla et al. [ABG19] proposed a general compiler from single-input FE to MCFE. In
their scheme, each client i encrypts its message xi as the vector (0|| . . . ||0||xi||0|| . . . ||0) + ti,` where ti,` is
generated by a PRF with shared keys such that

∑n
i=1 ti,` = 0, with n the number of clients. From there, by

applying a layer of single-input IPFE they get a labeled MCFE scheme. This explains why the size of the
ciphertext in their scheme is quadratic w.r.t the number of the slots/clients. Note that their scheme also
needs a master secret key of size O(n2) which is the number of keys ki,j shared between clients i and j.

1.1 Challenges and Contributions

This paper aims at constructing efficient labeled MCFE schemes based on different assumptions. Our
contributions can be summarized as follows:
Efficient decryption and shorter ciphertext. We present two constructions: one based on the Decisional
Composite Residuosity (DCR) assumption and the other one based on the Learning with Errors (LWE)
assumption. These constructions can cope with the drawbacks in the constructions of [CDG+18a] and
[ABG19], i.e. the size of the ciphertext is smaller (w.r.t the number of clients) and, compared to [CDG+18a],
they do not require a discrete-logarithm computation in the decryption algorithm.
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The security proof of our constructions based on DCR and LWE can be more challenging than the proof
of MCFE schemes based on DDH. This difficulty comes from the fact that MCFE is in the symmetric key
setting and the hybrid argument for many challenges can be complicated. More precisely, one needs to show
that in the current hybrid game, given the information regarding the master secret key that is leaked through
all other queries (encryption, functional keys, and random-oracle (RO) queries) the master secret key still
has enough entropy to hide the chosen bit in the challenge ciphertext. This is easier to prove in DDH-based
MCFE schemes since the master secret key is uniformly distributed over Zq and the ciphertexts are defined
in a group with the same order. This common modulus not only helps to interpret the leaked information
more straightforwardly, but also to prove that the chosen bit can be perfectly hidden.

However, for our DCR-based MCFE, this is not the case, and one needs to check how the leaked information
can change the lattice to which the master secret key belongs (since the master secret key is distributed over
the lattice Zn) and how it can affect the challenge which is a value modulo N . By relying on a theorem from
lattice-based cryptography, setting the parameters similarly to the single-input IPFE of [ALS16], and also by
a proper simulation of random-oracle queries one can guarantee that the information leaked through the
encryption queries is still tolerable, and that the security proof works. Slightly in detail, the proper simulation
of random-oracle queries let us unify the leakage from all other ciphertexts. This unified information is
the same as the leaked information from the public-key in [ALS16]. Then, we can use the same strategy
of [ALS16] to show that the challenge ciphertext hides the chosen bit statistically w.r.t a selective-security
notion. But the good point is that all other steps which are based on the computational-assumption DCR
are adaptively secure. Thus, we only need to lift the security from selective to adaptive in our statistical
argument, which is possible by a proper choice of parameters.

All left to discuss is the simulation of the RO queries such that it can unify and properly interpret the
leakage from all other ciphertexts. Here, we use the random self-reducibility of the DCR assumption which lets
us build polynomially many random samples of DCR from one given sample. RO queries can the be replaced
by these random samples. The common point about all these samples is that they are indistinguishable from
elements in the class of N residues in ZN2 and so they all have the same structure zN` mod N2. Having this
N common among all the RO queries is what we needed as a tool to unify the leakage from ciphertexts. More
precisely, the leakage from all other ciphertexts can be interpreted independently of ` as s mod λ (where s
is the secret-key, H(`)s appears in the ciphertexts, and λ is such that zNλ` = 1 mod N2).

For our LWE-based MCFE scheme (which can bee seen as the main contribution), it is more challenging
since the information that is leaked through the encryption queries cannot be simulated during the security
proof, due to the noise terms introduced by the LWE assumption. We overcome this challenge using noise
flooding techniques, and by avoiding the inefficiency drawback by rounding the ciphertext down to a smaller
space. This way, the noise vanishes during this rounding operation.

The remaining leakage concerns as part of the master secret key that is uniformly random, and can
easily be simulated. More precisely, in our LWE-based construction, ciphertexts include a multiplication
term Zi · H(`) where Zi = (si, ti) comes from the master key and H(`) is a hash function modeled as a RO.
This has to be a RO on Zq leading us to replace it with LWE samples (which give randomness over Zq) i.e.,
H(`) = (a`,Sa` + e`). The term ti · e` is what can dramatically leak information about Zi. In the proof
of Agrawal et al. [ALS16] for IPFE, the term Sa can be placed in the ciphertext directly since the client
knows the secret S. But for our labeled MCFE this is not the case and the term e` has to be there which
leads to the leakage ti · e`. Thus, we map the ciphertext from Zq to a small space Zq0 such that the term
ti · e` is small enough to be neglected after this change. The term ti · Sa` would be hidden through the term
si · a` where si is uniform4. These two strategies give us the guarantee that no information about ti is leaked
through encryption queries. We then show that given the other sources of information that the adversary may
access (functional keys and corruption queries), the master secret key ti still has enough entropy to be used
in a left-over hash lemma argument and statistically hides the message-challenge w.r.t a selective-security
notion. Then similar to our discussion for DCR-based MCFE, one can simply lift the security to the adaptive
case by a proper choice of parameters.

4 Note that we have Zi · H(`) = si · a` + ti · (Sa` + e`)
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Now we discuss the simulation of the RO queries in the LWE-based construction. A curious reader may
already have noticed that unlike the DCR-based MCFE scheme where we use the random self-reducibility
of the DCR assumption, we may not be able to do the same here. Fortunately, the definition of the LWE
problem already provides polynomially many samples for the same secret S as (a`,Sa` + e`) where S is a
vector. We simply extend it to the case where S is a matrix. Note that the requirement for a matrix-secret
instead of vector-secret comes from the security proof, since having S as a matrix gives ti as a vector (note
that in the ciphertext we have Zi · H(`) = si · a` + ti · (Sa` + e`) where Zi = (si, ti) is the secret-key). Then
having ti as a vector provides enough entropy in the term (x1 − x0) · (t1, . . . , tn)T which will be used in a
left-over-hash-lemma argument to conclude that the challenge ciphertext is statistically independent of the
chosen bit.
Various assumptions. Following the constructions proposed by Chotard et al. [CDG+18a], we present
a generalization of their scheme, relying on the Matrix-DDH (MDDH) assumption5. Our Labeled MCFE
scheme based on DCR assumption is the first labeled MCFE scheme with linear ciphertext size based on this
assumption. Our labeled MCFE scheme based on LWE is the most efficient MCFE scheme based on this
assumption compared to [ABG19,LT19], albeit in the ROM.
Implementation. We have also implemented our constructions showing that for applications with large
message spaces our DCR-based MCFE scheme is quite reliable while for small message space our LWE-based
MCFE scheme is more efficient. This gives enough flexibility to choose the scheme that better fits the
application. Apart from the size of the message space, other parameters are chosen so that the schemes can
support different applications.

1.2 Related Work

Here, we mainly discuss the three mentioned works [ABG19,CDG+18a,LT19] which are directly relevant to
our contributions. The main security notions used in these papers are one-security and pos+-security. In
one-security, the adversary can ask for many labels but for each label it can ask only one complete ciphertext.
In pos+-security, the adversary can ask for many ciphertexts per label.6

In [CDG+18a], instead of proving pos+-security, the authors first prove one-security for their construction
and then apply a compiler similar to [ACF+18,AGRW17] to lift the security to pos+. As in [ACF+18,AGRW17],
this compiler is actually a single-input IPFE layer. We also use this technique in this paper. The security
in [CDG+18a] relies on the DDH assumption in the ROM. The ciphertext in their scheme has the form
cti,` = gxi · H(`)si . The main challenge in the proof is to bound the leakage from the ciphertexts (as we
are in the symmetric key setting with many ciphertexts to be handled directly). The idea is to change the
RO queries in an indistinguishable way such that all the encryption queries, except for the challenge query,
have the same form (i.e., H(`) = gu` where u` = r` · a, a = (1 a)T , r`, a R← Zp) leading to the same leakage
si · a from all other encryption queries. This leakage, along with the leakage from the functional secret keys
and corrupted individual encryption keys, would change the distribution of the master secret key such that
the multiplication si · u`∗ (where u`∗ = u1a + u2a⊥, u1

R← Zp, u2
R← Z∗p) perfectly hides the chosen bit

in the challenge. More precisely, the secret key is computed as si + a⊥γ(x1
i − x0

i ) where γ = −1/u`∗ · aT
and si

R← Z2
p. The ciphertext is of linear size while one needs to compute a discrete-logarithm during the

decryption.
In [ABG19], as we mentioned at the beginning of this section, each client builds a value ti,` such that∑
ti,` = 0. For the security proof, they simply change the values of ti,` among the slots such that each ti,` is

replaced with a random value except one of them associated with an honest slot, called i∗, which takes care
of the relation

∑
ti,` = 0. Then, one-security would be reduced to the PRF property.7 Despite relying on

standard assumptions, their scheme needs O(n2) secret keys and the ciphertext-size is O(n2).
5 which is a generalization of the DDH assumption including many other assumptions such as k-LIN and 2-SCasc
[EHK+13], as special cases.

6 Note that these security notions are respectively called without repetition and with repetition in [CDG+18a,CDG+18b]
. Here we are following the terminologies of [ABG19].

7 In their construction, they apply the compiler, for going from one to pos+, which gives pos+ directly.
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Scheme |ski| |pp| |ct| q σ (msk) model
[ABG19]
[ALS16] O(nκ) O(n0(n0 + n) log q) n2 log q poly(n0) poly(n0) SM

[LT19] O(κ5) O(κ13) O(nκ7 log q) 2κ
2

O(2κ
2
) SM

ours n0 +m0 n0 +m0 n log q0 Ω(n0
ω(1)q0B) ω(1) ROM

Fig. 1: Comparison for LWE-based MCFE schemes

In [LT19], similarly to [CDG+18a], each ciphertext cti,` = GT
0 · xi + A(`)T · si + noise has a product term

AT (`) · si which hides the chosen bit in the challenge. Unlike our constructions, the matrix A(`) is built
from some public matrices and the label `, rather than a RO, using an idea from [LST18] to derive A(`)
from some public matrices using the Gentry-Sahai-Waters (GSW) fully homomorphic encryption scheme
[GSW13] (which is a source of inefficiency for the resulting MCFE scheme). That is, A(`) is the product of
GSW ciphertexts dictated by a special hash applied to `. The security proof relies on the fact that, with
noticeable probability, A(`) is a GSW encryption of 1. From there, it can be indistinguishably changed to the
GSW-encryption of 0 in all other encryption queries, except for the challenge. Finally, an argument similar
to [CDG+18a] (through the lossy form of matrix A) is used to conclude the proof. Another point is that in
[LT19], they use noise flooding to prevent the noise terms from leaking information on the master secret key,
while we are using the rounding-map leading to smaller ciphertexts.

Fig. 1 compares our LWE-based MCFE scheme with the schemes of [ABG19] and [LT19]. We have
considered the instantiation of [ABG19] based on the LWE-based IPFE scheme of [ALS16]. In this table, κ
and n0 are security parameters where n0 is the size of the secret. In our scheme, m0 > Ω(log q) for selective
security and m0 > Ω(log q + 4n · logP ) for the adaptive case where n is the number of slots and P defines
the bound of the message-space. And we also have q0 = poly(n0) and B is a constant as the bound of the
error-space. And σ stands for the standard-deviation used in the generation of msk. So, as one can conclude
from this table, for the client i, the size of its secret-key ski and also the size of public-parameters pp in
[ABG19], depend on the number of clients n, while in [LT19] and in our scheme they are constant (w.r.t n).
Still one can argue that for the scheme of [LT19], the size of ski and pp is much larger comparing with our
scheme. Note that the security parameter for their scheme is κ and for our scheme is n0 which means that
our scheme has linear-size of ski and pp w.r.t to the security parameter. While in [LT19] they are polynomials
respectively of degree 5 and 13 (w.r.t the security parameter). In [ABG19], the size of public-parameters also
depends on n0 which is the security-parameter for the underlying LWE scheme [ALS16]. In our scheme the
only public-parameter is the hash function (modeled as a random oracle) and it is a vector of size n0 +m0.
While [ALS16] has some matrices as the public parameters leading to a size of degree 2 polynomial for |pp|
(w.r.t the security parameter), while in our scheme it is linear. About size of the ciphertext ct, in [ABG19],
it has square-size w.r.t the number of clients and in [LT19] has 7-degree-size w.r.t the security parameter.
While in our scheme it is linear w.r.t to n and logarithmic w.r.t the security parameter.

Putting everything together, this table shows that having constant or linear size of ski, pp or ct w.r.t
n can be challenging and leads to a polynomial-size of large degree w.r.t other parameters. We avoid this
inefficiency by relying on the random oracle.

2 Preliminaries

Notation. We use [n] to denote the set {1, . . . , n}. We write x for vectors and xi for the i-th element. In
this paper, κ stands for the security parameter. The function poly(·) shows an arbitrary polynomial function.
The computational indistinguishability of two distributions G0 and G1, is denoted by G0 ∼= G1. The function
negl(·) denotes the negligible function. In this paper all the algorithms are Probabilistic Polynomial Time
(p.p.t.) with respect to the length of the input. For security parameter κ and additional parameters n, we
denote the winning probability of an adversary A in a game or experiment G as WinG

A(κ, n). The probability
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is taken over the random coins of G and A. We define the distinguishing advantage between games G0 and G1
of an adversary A in the following way: AdvG

A(κ, n) =
∣∣WinG0

A (κ, n)−WinG1
A (κ, n)

∣∣.
2.1 Multi-Client Functional Encryption

A labeled MCFE scheme is formally defined as follows, which is an adaptation of the MIFE definition
[GGG+14] with labels.

Definition 2.1 (Multi-Client Functional Encryption). Let F = {Fρ}ρ be a family (indexed by ρ) of
sets Fρ of functions f : Xρ,1×· · ·×Xρ,nρ → Yρ.8 Let Labels = {0, 1}∗ or {⊥} be a set of labels. A multi-client
functional encryption scheme (MCFE) for the function family F and the label set Labels is a tuple of five
algorithms MCFE = (Setup,KeyGen,KeyDer,Enc,Dec):

Setup(1κ, 1n): Takes as input a security parameter κ and the number of parties n, and generates public
parameters pp. The public parameters implicitly define an index ρ corresponding to a set Fρ of n-ary
functions (i.e., n = nρ).

KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys {ski}i∈[n] and a master secret
key msk.

KeyDer(pp,msk, f): Takes as input the public parameters pp, the master secret key msk and a function f ∈ Fρ,
and outputs a functional decryption key skf .

Enc(pp, ski, xi, `): Takes as input the public parameters pp, a secret key ski, a message xi ∈ Xρ,i to encrypt,
a label ` ∈ Labels, and outputs ciphertext cti,`.

Dec(pp, skf , ct1,`, . . . , ctn,`): Takes as input the public parameters pp, a functional key skf and n ciphertexts
under the same label ` and outputs a value y ∈ Yρ.

A scheme MCFE is correct, if for all κ, n ∈ N, pp ← Setup(1κ, 1n), f ∈ Fρ, ` ∈ Labels, xi ∈ Xρ,i, when
({ski}i∈[n],msk)← KeyGen(pp) and skf ← KeyDer(pp,msk, f), we have

Pr [Dec(pp, skf ,Enc(pp, sk1, x1, `), . . . ,Enc(pp, skn, xn, `)) = f(x1, . . . , xn)] = 1.

Please note that each slot i in a MCFE scheme has a different secret key ski, which can be individually
corrupted. In addition, one also needs to consider corruptions to handle possible collusions between different
parties. In the following, we formally define the security notion of a MCFE scheme.

Definition 2.2 (Security of MCFE). Let MCFE be an MCFE scheme and Labels a label set. For β ∈ {0, 1},
we define the experiment INDMCFE

β in Fig. 2, where the oracles are defined as:

Corruption oracle QCor(i): Outputs the encryption key ski of slot i. We denote by CS the set of corrupted
slots at the end of the experiment.

Left-Right oracle QLeftRight(i, x0
i , x

1
i , `): Outputs cti,` = Enc(pp, ski, xβi , `) on a query (i, x0

i , x
1
i , `). We

denote by Qi,` the number of queries of the form QLeftRight(i, ·, ·, `).
Encryption oracle QEnc(i, xi, `): Outputs cti,` = Enc(ski, xi, `) on a query (i, xi, `).
Key derivation oracle QKeyD(f): Outputs dkf = KeyGen(msk, f).

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS (i.e., slot i is corrupted): for any query QLeftRight(i, x0
i , x

1
i , `), x0

i = x1
i .

– For any label ` ∈ Labels, for any family of queries {QLeftRight(i, x0
i , x

1
i , `) or

QEnc(i, xi, `)}i∈[n]\CS , for any family of inputs {xi ∈ X}i∈CS , for any query QKeyD(f), we define
x0
i = x1

i = xi for any slot i ∈ CS and any slot queried to QEnc(i, xi, `), we require that: f(x0) =
f(x1) where xb = (xb1, . . . , xbn) for b ∈ {0, 1}.
We insist that, if one index i /∈ CS is not queried for the label `, there is no restriction.

8 All the functions inside the same set Fρ have the same domain and the same range.
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INDMCFE
β (κ, n,A)

pp← Setup(1κ, 1n)
({ski}i∈[n],msk)← KeyGen(pp)

α← AQCor(·),QLeftRight(·,·,·,·),QEnc(·,·,·),QKeyD(·)(pp)
Output: α if Condition (*) is satisfied,

or a uniform bit otherwise

Fig. 2: Security games for MCFE
The weaker versions of the security are defined as xx-yy-zz-INDMCFE

β (xx, yy, zz may be empty when we do
not have the corresponding restriction), where,
– When xx = sta: the adversary should output the set CS at the beginning of the game, and it does not
have access to the oracle QCor after that.

– When yy = one: for any slot i ∈ [n] and ` ∈ Labels, Qi,` ∈ {0, 1}, and if Qi,` = 1, then for any slot
j ∈ [n] \ CS, Qj,` = 1. In other words, for any label, either the adversary makes no left-right query or
makes exactly one left-right query for each i ∈ [n] \ CS.

– When yy = pos+: for any slot i ∈ [n] and ` ∈ Labels, if Qi,` > 0, then for any slot j ∈ [n] \ CS, Qj,` > 0.
In other words, for any label, either the adversary makes no left-right encryption query or makes at least
one left-right encryption query for each slot i ∈ [n] \ CS.

– When zz = sel: the adversary should output the challenges at the beginning of the game, and it does not
have access to the oracle QLeftRight after that. This case is referred as the selective security.

We define the advantage of an adversary A in the following way:

Advxx-yy-zz-IND
MCFE,A (κ, n) =

∣∣Pr[xx-yy-zz-INDMCFE
0 (κ, n,A) = 1]

− Pr[xx-yy-zz-INDMCFE
1 (κ, n,A) = 1]

∣∣.
A multi-client functional encryption scheme MCFE is xx-yy-zz-IND secure, if for any p.p.t. adversary A,
there exists a negligible function negl such that: Advxx-yy-zz-IND

MCFE,A (κ, n) ≤ negl(κ).

We omit n when it is clear from the context. We also often omit A from the parameter of experiments or
games when it is clear from context.

Definition 2.3 (1-label Security). Let MCFE be an MCFE scheme, F = {Fρ}ρ a function family indexed
by ρ and Labels a label set. For xx, yy, zz defined as Definition 2.2, and β ∈ {0, 1}, we define the experiment
xx-yy-zz-1-labelMCFE

β exactly as in Fig. 2, where the oracles are defined as for Definition 2.2, except:

Left-Right oracle QLeftRight(i, x0
i , x

1
i , `): Outputs cti,` = Enc(pp, ski, xβi , `) on a query (i, x0

i , x
1
i , `). This

oracle can be queried at most on one label. Further queries with distinct labels will be ignored.
Encryption oracle QEnc(i, xi, `) Outputs cti,` = Enc(pp, ski, xi, `). If this oracle is queried on the same

label that is queried to QLeftRight, the game ends and returns 0.

Condition (*) is defined as for Definition 2.2. We define the advantage of an A as follows:

Advxx-yy-zz-IND-1-label
MCFE,A (κ, n) =

∣∣Pr[xx-yy-zz-IND-1-labelMCFE
0 (κ, n,A) = 1]

− Pr[xx-yy-zz-IND-1-labelMCFE
1 (κ, n,A) = 1]

∣∣.
Lemma 2.4 (From one to many labels [ABG19]). Let MCFE be a scheme that is xx-yy-zz-IND-1-
label secure. Then it is also secure against p.p.t. adversaries that query QLeftRight on many distinct labels
(xx-yy-zz-IND security). Namely, for any p.p.t. adversary A, there exists a p.p.t. adversary B such that:

Advxx-yy-zz-IND
MCFE,A (κ, n) ≤ qEnc · Advxx-yy-zz-IND-1-label

MCFE,B (κ, n),

By qEnc we denote the number of distinct labels queried by A to QLeftRight.
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2.2 Inner-Product Functionality

We describe the functionalities supported by the constructions in this paper, by considering the index ρ of F
in more detail.

The index of the family is defined as ρ = (R, n,m,X, Y ) where R is either Z or ZL for some integer
L, and n,m,X, Y are positive integers. If X,Y are omitted, then X = Y = L is used (i.e., no constraint).
This defines Fρ = {fy1,...,yn : (Rm)n → R} where fy1,...,yn(x1, . . . ,xn) =

∑n
i=1〈xi,yi〉 = 〈x,y〉 , the vectors

satisfy the following bounds: ‖xi‖∞ < X, ‖yi‖∞ < Y for i ∈ [n], and x ∈ Rmn and y ∈ Rmn are the vectors
corresponding to the concatenation of the n vectors x1, . . . ,xn and y1, . . . ,yn respectively.

We note that since this work focuses on labeled MCFE schemes for the IP functionality, the setup
algorithm of all our constructions implicitly takes this functionality as an input.

3 Overview of the Constructions

In this section, we present over our MCFE constructions for the inner-product functionality based on
the MDDH, DCR and LWR assumptions. Intuitively, we extend the single-input IPFE techniques to their
counterpart MCFE schemes by considering each slot as an independent client such that the clients can
share the required randomness through the random oracle. While the IPFE constructions are based on a
combination of the randomness and the public-key, we replace it with a combination of the random oracle and
the master key in our MCFE schemes. The use of random oracles for generating randomness also explains why
we ended up with one-IND security (which can be easily extended to pos+-security via an existing compiler
[CDG+18b]). After the presentation of the construction, we present in Section 3.4 a general proof sketch
covering the main proof ideas of all three constructions

3.1 MCFE based on the MDDH Assumption

In this section, we present a MCFE scheme supporting labels, based on the MDDH assumption. One can see
this construction as an extension of the single-input IPFE scheme where the term hri is replaced with H(`)Si

(the value hi is the public-key of IPFE scheme) and the value H(`) generates the required randomness. The
MDDH assumption was initially introduced in [EHK+13]. We recap it here:

Definition 3.1 (Matrix Distribution [EHK+13]). Let `, k ∈ N with ` > k. We call D`,k a matrix
distribution if it outputs (in polynomial time and with overwhelming probability) matrices in Z`×kp of full rank
k. We define Dk = Dk+1,k.

Definition 3.2 (D`,k-Matrix Diffie-Hellman Assumption [EHK+13]). Let D`,k be a matrix distribu-
tion. We define the advantage of an adversary A for the D`,k-Matrix Diffie-Hellman Assumption in the
following way:

AdvMDDH
D`,k,A(κ) := |Pr[A(1κ,G, [A], [Aw]) = 1]− Pr[A(1κ,G, [A], [u]) = 1]|,

where G = (G, g, p) ← GGen(1κ),A ← D`,k,w ← Zkp,u ← Z`p. We say that the D`,k-Matrix Diffie-Hellman
Assumption (D`,k-MDDH) holds in group G, if for all p.p.t. adversaries A, there exists a negligible function
negl such that: AdvMDDH

D`,k,A(κ) ≤ negl(κ).

Our MDDH-based MCFE construction is given in Fig. 3.

Theorem 3.3. Assume that the Dk-MDDH assumption holds, then the MCFE scheme described in Fig. 3 is
one-IND-secure in the random oracle model.

The proof of correctness and security of this construction are given in Section 4.

7



Setup(1κ, n) :

G := (G, p, g)← GGen(1κ)

Select H : Labels→ Gk+1

Return pp := (G,H).
KeyGen(pp) :

Si ← Zm×(k+1)
p , ski = Si,msk = {Si}i∈[n]

Return ({ski}i∈[n],msk)

Enc(pp, ski,xi ∈ Zmp , `) :

ci,` := Si · u` + xi where [u`] := H(`) ∈ Gk+1

Return cti,` := [ci,`] ∈ Gm

KeyDer(pp,msk,y ∈ Zmnp ) :

For y = (y1, . . . ,yn), with yi ∈ Zmp

sky :=
∑
i∈[n]

S>i yi

Return sky

Dec(pp, sky, {cti,`}i∈[n],y, `) :

[u`] = H(`) ∈ Gk+1

C :=
∑
i∈[n]

[ci,`] · yi − [u>` ] · sky

Return log(C)

Fig. 3: MCFE based on the MDDH assumption.
3.2 MCFE based on the DCR Assumption

In this section we present a MCFE scheme based on the DCR assumption in the random oracle model. As we
mentioned, the main benefit of this construction is that one can retrieve the final result without computing the
discrete-logarithm. The following notations are used in this section. DZk,σ stands for the Gaussian distribution
over Zk with the standard deviation σ and the mean 0 (this notation is also used in the next section). ZN
is the additive group of integers modulo N and Z∗N denotes the multiplicative group of integers modulo N .
That is, including all a ∈ ZN such that gcd(a,N) = 1 where gcd(b, c) is the greatest common divisor of b and
c. Let N = pq be a safe modulus, meaning that p and q are large safe primes in the form of p = 2p′ + 1 and
q = 2q′ + 1, where p′, q′ > 2κ. In this paper SP(κ) is the algorithm producing safe-primes p, q as above. It is
believed that for a given N as above it is hard to find p, q.

The single-input functional encryption scheme based on the Paillier cryptosystem has been proposed by
Agrawal et al. [ALS16]. Their IPFE scheme is recalled in Appendix A.1. In their construction, the encryption
algorithm includes two main parts: ct0 = gr where r R← {1, . . . , [N4 ]} and cti = (1 +N)xi · hri for i = 1, . . . , n
where hi = gsi is the public key. The term hri = grsi can be replaced with H(`)si which removes the need for
sharing a random r among the clients, since the random oracle H(·) is publicly known. This explains the
intuition for our MCFE scheme represented in Fig. 4. Regarding the security proof, the indistinguishable
changes in RO-queries lead to an indistinguishable change in the (sub)lattice the master secret key belongs to
(Note that the master secret key is chosen from lattice Zn by a Gaussian distribution Dσ). From there, a
theorem from lattice-based cryptography and similar parameter setting to the single-input IPFE [ALS16]
guarantees that the new distribution of the master secret key (along side the proper change in the RO-query
associated with the challenge) is sufficient for the security proof.

Definition 3.4 (Decisional Composite Residuosity (DCR) Assumption). Let N = pq for two safe-
primes p and q. We define the advantage of an adversary A for the DCR assumption in the following
way:

AdvDCR
N,A(κ) := |Pr[A(1κ, zN mod N2) = 1]− Pr[A(1κ, z) = 1]|, where z ← Z∗N2 .

We say that the DCR Assumption holds, if for all p.p.t. adversaries A, there exists a negligible function
negl such that: AdvDCR

N,A(κ) ≤ negl(κ).

Theorem 3.5. Assume that the DCR assumption holds, then the MCFE scheme described in Fig. 4 is
one-IND-secure in the random-oracle model.

The proof of correctness and security can be found in Section 5.

3.3 MCFE based on the LWE Assumption

In this section, we propose a MCFE construction based on the LWE problem as an extension of single-input
FE presented by Agrawal et al. [ALS16] (see Appendix A.2).
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Setup(1κ, n) :

Run SP(κ) to get (p, q) and
Compute N = pq.
Let H : Labels→ Z∗N2 be a full-domain
hash function.

Set X <
√
N/2n

Return pp = (N,H, X)
KeyGen(pp) :

Sample s← DZn,σ where

σ >
√
κ ·N5/2 for the selective security

σ >
√
κ+ 2n · log(2X) ·N5/2 for the

adaptive security.
Return msk = s and ski = si.

Enc(pp, ski, xi, i, `) :

To encrypt a message x ∈ Zn with |xi| ≤ X:
Compute: cti = (1 +N)xi .H(`)si mod N2.
Return ct = {cti}i
KeyDer(pp,msk,y) :

For vector y ∈ Zn with |yi| ≤ Y <
√
N/2n:

Compute sky = Σiyi · si
Return sky
Dec(pp,y, sk, {cti,`}i∈[n], l) :

Compute C =
∏
i

ctyii,` · H(`)−sk

Return C − 1 mod N2

N

Fig. 4: MCFE based on the DCR assumption

Learning With Errors. The problem of Learning with Errors (LWE) was introduced in a seminal work
of Regev [Reg05]. The idea of the LWE problem is to provide a system of linear equations such that each
equation is associated with an error term. Regev showed that in this case the number of equations does not
really matter and it is hard to find any information about the secret. This problem is formally defined as
follows.

Definition 3.6 (Decisional LWE assumption). Let q, α be functions of parameter n0. The Learning
with Error (LWEq,α) problem is to distinguish two following distributions given access to polynomially many
samples for a fixed vector s R← Zn0

q ,

D = {(a, 〈a, s〉+ e) : a R← Zn0
q , e

R← DZ,αq}, D′ = {(a, u) : a R← Zn0
q , u

R← Zq}

Concretely, for any adversary A there exists a negligible function negl such that:

AdvLWE
A (n0) = |Pr[AD(s,·)(α, q, n0) = 1]− Pr[AD

′(·)(α, q, n0) = 1]| ≤ negl(n0)

where the oracles D(s, ·) and D′(·) output samples respectively from D (with a fixed secret s) and D′.

Although the intuition for our construction is similar to that of the previous constructions, we highlight
here the differences regarding the use of a rounding-map and the part of the secret key that is uniform.
In [ALS16] the mheLWE assumption is used to simulate all the queries in a correct way, as the inputs of
the assumption are enough for this purpose. After applying this assumption (on one ciphertext) a product
between parts of the master secret key and a uniformly random vector appears in the ciphertext. If the
first factor of this multiplication has enough min-entropy, conditioned on the information available to the
adversary, applying the leftover hash lemma guarantees that this product seems uniform, which concludes
the proof. Now all is left to prove is that the part of the master secret key that is involved has enough
min-entropy conditioned on what the adversary can see. Since in [ALS16], we are in the public-key setting,
all the information (regarding the master secret key) that the adversary can extract from honestly generated
ciphertexts is the same as what it can extract from the public-key. Thus, the leakage of all the honestly
generated ciphertexts can be precisely quantified, and simulated using only the information contained in the
public parameters. In this work, we need to change to the symmetric-key setting (as is the case in MCFE), so
it is not as straightforward how to quantify the leakage from all the ciphertext queries, and the information
required to simulate the ciphertexts during the proof cannot be hidden in the public parameters. And in
fact, in our case this leakage is really noticeable, especially since the ciphertexts are generated by different
parties and each ciphertexts can leak information about different parts of the master secret key. Leveraging
the use of a random oracle, we argue that the leakage coming from all the ciphertext queries can be deduced
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from the leakage of some secret matrix, together with some noise term, under the LWE assumption. The
leakage about the secret matrix is completely hidden by the uniform secret key si, whereas the rounding-map
completely removes the noise term ti · e` when the parameters are carefully selected.

Setup(1n0 , n) :

Set integers m0, q0 ≥ 2, q > q0,
K = nPV and α ∈ (0, 1).
Let H : Labels→ Zn0+m0

q be a
full-domain hash function
Return pp = (m0, q, α,K, P, V )
KeyGen(pp) :

SampleZi = (si, ti) R← Z1×n0
q ×DZ1×m0 ,αq

Return msk = {Zi}i∈[n] and ski = Zi.

Enc(pp, ski, xi, i, `) :

To encrypt xi ∈ {0, . . . , P − 1}:

Compute cti,` =
⌊
Zi · H(`) + b q

K
c · xi

⌉
q0

Return cti,`

KeyDer(pp,msk,y) :

For the vector y ∈ V:
Compute:

sky =
∑
i∈[n]

yi · Zi ∈ Z1×(m0+n0)

Return sky
Dec(pp,y, sk, {cti,`}i∈[n], `) :

Compute

µ′ =
∑
i∈[n]

yi · cti,` −
⌊
sk · H(`)

⌉
q0

mod q0

Return µ ∈ {−K + 1, . . . ,K − 1}

that minimizes |q0

q
b q
K
c · µ− µ′|.

Fig. 5: MCFE based on the LWE assumption.
Let

⌊
a
⌋
denote the largest integer smaller than a. In our construction, we are using a rounding-map which

is formally defined as follows.
Definition 3.7 (Rounding-map from Zq to Zq0). For q ≥ q0 ≥ 2, a rounding map

⌊
.
⌉
q0

: Zq −→ Zq0 is
defined as

⌊
x
⌉
q0

=
⌊
(q0/q) · x̄

⌉
where x̄ = x mod q and

⌊
·
⌉
is a classical rounding function over integers9.

This notation can be extended component-wise to vectors and matrices over Zq.
Our MCFE scheme based on the LWE assumption is given in Fig. 5.

Theorem 3.8. The presented MCFE scheme in Fig. 5, is an one-IND-secure MCFE scheme under the LWE
assumption and in the random-oracle model.

The proof of correctness and security can be found in Section 6.

3.4 Security Analysis

In this section, we give an overview over the security proof for the presented constructions.

Proof (Overview). To prove the security of our constructions under the different assumptions, we consider
the case where A only queries QLeftRight on one label `?, and never queries QEnc on `?. In more detail, we
show that: Advone-1-label

MCFE,A′ (κ, n) ≤ negl(κ), where Advone-1-label
MCFE,A (κ, n) is defined as described in Definition 2.3.

Then we use Lemma 2.4 to obtain the theorem.
For the proof of the 1-label security we proceed via a hybrid argument, using the games described in

Fig. 6. The game G0 corresponds to one-1-labelMCFE
0 (κ, n,A) and the game G7 to one-1-labelMCFE

1 (κ, n,A).
This yields: Advone-1-label

MCFE,A (κ, n) = |WinG0
A (κ, n)−WinG7

A (κ, n)|.

Intuitively, we change the random-oracle queries for ` 6= `∗ and ` = `∗ in a somehow orthogonal way.
Meaning that, the proper change for ` 6= `∗, changes the distribution of the master key (indistinguishable in
the adversary’s view) such that the multiplication of this master secret key and the new value for RO-query
associated with `∗ can perfectly (for MDDH scheme) or statistically (for DCR and LWE schemes) hide the
message in the challenge.
9 i.e.,

⌊
a
⌉
is
⌊
a
⌋
if a ≤

⌊
a
⌋

+ 1/2 and it is (
⌊
a
⌋

+ 1) if a >
⌊
a
⌋

+ 1/2.
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Game G1: In game G1, we replace the hash function H, that is evaluated in every random-oracle query `,
with a random function RF. The random function has different outputs corresponding to the different
schemes: The random function outputs an element z ← Zk+1

p in the case of the MDDH scheme, an
element z ← Z∗N2 in the case of the DCR scheme and a couple (a,u) with a ← Zn0

q and u ← Zm0
q

in the case of the LWE scheme. This results in a perfect transition from G0 to G1. This results in:
|WinG0

A (κ, n)−WinG1
A (κ, n)| = 0.

Game G2: In game G2, we answer the random-oracle queries for the label ` 6= `∗ with an element that is
indistinguishable from a random element, by relying on the corresponding computational assumption. We
describe the random-oracle outputs under the label ` in more detail:
MDDH: we output a vector z such that z is contained in the span of A, i.e. z = Ay with a random

vector y ← Zkp.
DCR: we output an element zN mod N2, with a random element z ← Z∗N2 .
LWE: we output a tuple (a,S · a + e), with S R← Zm0×n0 , a R← Zn0

q , e R← DZm0 ,αq. (we note that before
proceeding to the next game for LWE scheme we need some extra games where we remove ti · e
and ti · S from all ciphertexts queries through the property of the rounding-map and the uniform
distribution of si).

This results in: |WinG1
A (κ, n) −WinG2

A (κ, n)| ≤ negl(κ). where negl(κ) depends on the advantage of the
attacker to the underlying assumption.
Here we note that the current modifications also change the distribution of the master secret key in the
adversary’s view (in an indistinguishable way).
MDDH the master secret key for MDDH scheme is distributed as S + γ(x`∗1 − x`

∗

0 ) · (a⊥)T for some
γ ∈ Zq.

DCR the master secret key for DCR scheme is distributed as s + λ(x`∗1 − x`
∗

0 ) · µ for some µ ∈ Zn.
Where λ = 2p′q′ is the order of elements zN mod N2.

LWE the master secret key t for LWE scheme is distributed as t + (x`∗1 − x`
∗

0 ) · µ for some µ ∈ Zn (here
for the sake of simplicity, many details are missing).

Game G3: In game G3, we answer random-oracle queries for the label `? as follows:
MDDH: we rely on the fact that A has rank k and find a vector a⊥ ← Zk+1

p such that (a⊥)>A = 0
(this means (A,a⊥) is a base for Zk+1). Then we set RF(`∗) = A · RF′(`∗) + a⊥ · RF′′(`∗) such that
RF′′(`) 6= 0 (which is satisfies except with negligible probability negl), for random functions RF′ and
RF′′.

DCR: we rely on an isomorphism ε from ZN×Z∗N to Z∗N2 to write the random element RF(`∗) = z mod N2

in its corresponding representation ε−1(z) = (1 +N)a · bN mod N2 for a, b ∈ Z∗N (which is satisfied
expect with negligible probability negl).

LWE: we set RF(`∗) = S · a + e + RF′(`∗) where RF′ is a random function (again here there is an extra
game which remove the term ti · e from the ciphertext-challenge).

This results in: |WinG2
A (κ, n)−WinG3

A (κ, n)| ≤ negl(κ).
Game G4 : In game G4, we change the answers for left-or-right oracle queries under `? from encryptions of

x0
i to encryptions of x1

i . for the MDDH we manage to show this change is perfectly-indistinguishable,
while for the DCR and LWE schemes it needs a statistical argument to justify the transition from game
G3 to game G4. It follows that: |WinG3

A (κ, n)−WinG4
A (κ, n)| = f(κ). where for MDDH, f(κ) = 0 and for

DCR and LWE schemes f(κ) = 2−κ. In fact, we prove that a multiplication (which has already appeared
in the ciphertext-challenge) of the master secret key (in its new representation) and the new values RF(`∗)
can perfectly (for MDDH) or statistically (for DCR and LWE) hide the message in the challenge.

Games G5, . . . ,G8 One can define these games as the backward-counterparts of games G3 to G0 while hidden
bit associated with the challenge is b = 1.

Putting everything together, we obtain the theorem. ut
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Game cti,`? u` justification/remark
G0 Enc(pp, ski,x0

i , `
?) H(`)

G1 Enc(pp, ski,x0
i , `

?) RF(`) Replace the hash function
with a random function

G2 Enc(pp, ski,x0
i , `

?)
RF(`), ` = `?

z, ` 6= `?

Simulate the hash function for ` 6= `?

using z which is indistinguishable
from a random element if
the underlying hardness assumption
(MDDH, DCR, LWE) holds

G3 Enc(pp, ski,x0
i , `

?) RF(`), ` = `?

z, ` 6= `?

Simulate the hash function for ` = `?

using a different representation of
RF(`∗) corresponding to the
underlying assumption

G4 Enc(pp, ski, x1
i , `

?)
RF(`), ` = `?

z′, ` 6= `?
Change from left to right encryption

Fig. 6: Overview of the games to prove the security of the MCFE schemes.

4 Security Analysis of the MDDH-based Construction

Here we discuss the correctness and the security of our MDDH-based MCFE construction (Fig. 3).
Correctness. To prove the correctness of our construction, we consider the output of the decryption procedure
for a correctly generated encryptions of the vectors x1, . . . ,xn ∈ Zp under the same label ` ∈ Labels using a
correctly generated functional key sky with y := (y1, . . . ,yn) ∈ Zmnp :

C =
∑
i∈[n]

[ci,`] · yi − [u>` ] · sky

=
∑
i∈[n]

[Si · u` + xi] · yi − [u>` ] ·
∑
i∈[n]

S>i yi

=
∑
i∈[n]

[〈Si · u`,yi〉+ 〈xi,yi〉]−
∑
i∈[n]

[〈Si · u`,yi〉]

=
∑
i∈[n]

[〈xi,yi〉] = [〈x,y〉]

Since the decryption procedure outputs log(C), correctness directly follows.
After showing the correctness of our scheme, we are also proving its security.

Theorem 4.1. Assume that the Dk-MDDH assumption holds, then the MCFE scheme described in Fig. 3 is
one-IND-secure in the random-oracle model. Namely, for any p.p.t. adversary A, there exist a p.p.t. adversary
B such that:

Advone-IND
MCFE,A (κ, n) ≤ qEnc

(
4 · AdvMDDH

B (κ) + 2
p− 1 + 2

p

)
,

where qEnc denotes the number of distinct labels queried to QLeftRight.

Proof. To prove this statement, we consider the case where A only queries QLeftRight on one label `?, and never
queries QEnc on `?. We build a p.p.t. adversary B such that: Advone-1-label

MCFE,A (κ, n) ≤ 4 · AdvMDDH
B (κ) + 2

p−1 + 2
p ,

where Advone-1-label
MCFE,A (κ, n) is defined as described in Definition 2.3. Then we use Lemma 2.4 to obtain the

theorem.
For the proof of the 1-label security we proceed via a hybrid argument, using the games described in

Fig. 7. The game G0 corresponds to one-INDMCFE
0 (κ, n,A) and the game G4 to one-INDMCFE

1 (κ, n,A). This
yields:

Advone-1-label
MCFE,A (κ, n) = |WinG0

A (κ, n)−WinG7
A (κ, n)|.
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Game G1: In game G1, we replace the hash function H, that is evaluated in every random-oracle query `,
with a truly random function RF. This results in a perfect transition from G0 to G1. Namely, in Lemma 4.3,
we show that:

|WinG0
A (κ, n)−WinG1

A (κ, n)| = 0.

Game G2: In game G2, we replace the random function RF, that is evaluated in every random-oracle query `,
with an element in the span of a matrix A, sampled from a matrix distribution Dk. To generate the final
element in the span, we multiply A with a random element in Zkp , sampled using the random function
RF′. The transition from G1 to G2 is justified by the Multi-MDDH assumption. Namely, in Lemma 4.4,
we exhibit a p.p.t. adversary B0 such that:

|WinG1
A (κ, n)−WinG2

A (κ, n)| ≤ AdvMDDH
B0

(κ) + 1
p− 1 .

Game G3: In game G3, we answer a random-oracle query for the label `? with an element that is generated as
a linear combination of A and a⊥, with a⊥ ← Zk+1

p such that (a⊥)>A = 0. For every other random-oracle
query ` 6= `?, the output is still an element in the span of A. The transition between G2 and G3 is justified
by the MDDH assumption. Namely, in Lemma 4.5, we exhibit a p.p.t. adversary B1 such that:

|WinG2
A (κ, n)−WinG3

A (κ, n)| ≤ AdvMDDH
B1

(κ) + 1
p
.

Game G4 : In game G4, we change the answers for left-or-right oracle queries under `? from encryptions of
x0,`?
i to encryptions of x1,`?

i . We rely on complexity leveraging and a statistical argument to justify the
transition from game G3 to game G4. Namely, in Lemma 4.6, we show that:

|WinG3
A (κ, n)−WinG4

A (κ, n)| = 0.

Game G5: In game G5, we answer a random-oracle query for the label `? in the same way as for every other
label ` 6= `?, i.e. with an element in the span of A. The transition from game G4 to G5 is symmetric to the
transition from G2 to G3, justified by the MDDH assumption. Namely, it can be proven as in Lemma 4.5
that there exists a p.p.t. adversary B2 such that:

|WinG4
A (κ, n)−WinG5

A (κ, n)| ≤ AdvMDDH
B2

(κ) + 1
p
.

We defer to the proof of Lemma 4.5 for further details.
Game G6: In game G6, we answer every random-oracle query ` with the evaluation of a random function

RF(`) instead of an element in the span of A. The transition from game G5 to G6 is symmetric to the
transition from G1 to G2, justified by the Multi-MDDH assumption. Namely, it can be proven as in
Lemma 4.4 that there exists a p.p.t. adversary B3 such that:

|WinG5
A (κ, n)−WinG6

A (κ, n)| ≤ AdvMDDH
B3

(κ) + 1
p− 1 .

We defer to the proof of Lemma 4.4 for further details.
Game G7: This game is one-INDMCFE

1 (κ, n,A). The transition from G6 to G7 is symmetric to the transition
from G0 to G1. Namely, it can be proven as in Lemma 4.3 that:

|WinG6
A (κ, n)−WinG7

A (κ, n)| = 0.

We defer to the proof of Lemma 4.3 for further details.

Putting everything together, we obtain the theorem. ut
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Game cti,`? u` justification/remark

G0 Enc(pp, ski,x0,`?
i , `?) H(`)

G1 Enc(pp, ski,x0,`?
i , `?) RF(`), with RF(`) ∈ Zk+1

p

Replace the hash function
with a random function

G2 Enc(pp, ski,x0,`?
i , `?)

A← Dk
A · RF′(`), with RF′(`) ∈ Zkp

Simulate the hash function
using the span of A
(Multi-MDDH)

G3 Enc(pp, ski,x0,`?
i , `?)

A← Dk,a⊥ ← Zk+1
p \ {0}

s.t. (a⊥)>A = 0
A · RF′(`) + a⊥ · RF′′(`), if ` = `?

A · RF′(`), if ` 6= `?

with RF′(`) ∈ Zkp and RF′′(`) ∈ Z∗p

For ` = `? simulate using
a random element from
the span of A and a⊥

G4 Enc(pp, ski, x1,`?
i , `?)

A← Dk,a⊥ ← Zk+1
p \ {0},

s.t. (a⊥)>A = 0
A · RF′(`) + a⊥ · RF′′(`), if ` = `?

A · RF′(`), if ` 6= `?

with RF′(`) ∈ Zkp and RF′′(`) ∈ Z∗p

Change from left to
right encryption

G5 Enc(pp, ski,x1,`?
i , `?)

A← Dk
A · RF′(`), with RF′(`) ∈ Zkp

Simulate the hash function
using the span of A
(Multi-MDDH)

G6 Enc(pp, ski,x1,`?
i , `?) RF(`), with RF(`) ∈ Zk+1

p

Replace the hash function
with a random function

G7 Enc(pp, ski,x1,`?
i , `?) H(`)

Replace the random function
with a hash function

Fig. 7: Overview of the games to prove the security of the MCFE scheme based on the MDDH assumption.

Theorem 4.2 (Random self-reducibility of MDDH [EHK+13]). For any p.p.t. adversary A, there
exist a p.p.t. adversary B such that

|Pr[A(G, [A], ([Awi])i∈[n]) = 1]− Pr[A(G, [A], ([vi])i∈[n]) = 1]| ≤ AdvMDDH
B (κ) + 1

p− 1 ,

with A← Dk,wi ← Zkp and vi ← Zk+1
p for all i ∈ [n].

Lemma 4.3 (Transition from G0 to G1). For any p.p.t. adversary A, it holds that

|WinG0
A (κ, n)−WinG1

A (κ, n)| = 0.

Proof. This is a perfect simulation of the random-oracle H using a random function RF(`) ∈ Zk+1
p , which

gives us |WinG0
Adv,A(κ, n)−WinG1

Adv,A(κ, n)| = 0. ut

Lemma 4.4 (Transition from G1 to G2). For any p.p.t. adversary A, there exists a p.p.t. adversary B
such that

|WinG1
A (κ, n)−WinG2

A (κ, n)| ≤ AdvMDDH
B (κ) + 1

p− 1 .

Proof. We replace the random function RF(`) ∈ Zk+1
p in the random oracle with a truly random element in

the span of A, where matrix A is sampled from the Gaussian distribution Dk and multiplied with a random
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element generated by RF′(`) ∈ Zkp. This directly mirrors the random self-reducibility of MDDH assumption
as described in Theorem 4.2, which yields AdvMDDH

B (κ) + 1
p−1 as a bound. ut

Lemma 4.5 (Transition from G2 to G3). For any p.p.t. adversary A, there exists a p.p.t. adversary B′
such that

|WinG2
A (κ, n)−WinG3

A (κ, n)| ≤ AdvMDDH
B′ (κ) + 1

p
.

Proof. We change the output of the random oracle for the query `? from an element output in the span of A
to a linear combination of the matrices A and the vector a⊥. In more detail, we generate a random vector in
Zk+1
p by sampling u1 ← Zkp and u2 ← Z∗p and computing A · u1 + a⊥ · u2. Due to the way in which a⊥ is

constructed and the we can span the whole space Zk+1
p using A and a⊥. This sampling is justified by the

MDDH assumption, it changes the view of the adversary by statistical distance of 1
p , which yields the bound

above. ut

Lemma 4.6 (Transition from G3 to G4). For any adversary A, it holds that

|WinG3
A (κ, n)−WinG4

A (κ, n)| = 0.

Proof. We proceed in two different steps for this part of the proof:

1. We apply a complexity leveraging argument to change the games G3 and G4 from the adaptive security
case into the selective security case. The resulting games are denoted with G?3 and G?4.

2. We use a statistical argument to prove the transition from G?3 to G?4.

1. Let At be an adversary in the adaptive secure games Gt and B?t an adversary in the corresponding
selectively secure games G?t , for t = 3, 4.

We transform the adversary At into a selective adversary B?t , such that:

AdvGt
At(κ, n) ≤ 2−n · (2X)−2mn · AdvG?t

B?t
(κ, n), for t = 3, 4.

We describe the simulation of the adaptive security by the adversary B?t to At, for t = 3, 4, when B?t
interacts with the corresponding selective security experiment.

2. After adversary B?t made its guesses zi = (x0,`?
i ,x1,`?

i ) for the set label `? and all i ∈ [n]. It simulates
At’s experiment using its own selective experiment. When B?t receives a challenge query from At, it checks if
the guess was successful. If it was, it continues simulating At’s experiment, otherwise, it returns 0. When the
guess is successful, B?t perfectly simulates At’s view.

To show that the two distributions (with 〈u`? ,a⊥〉 6= 0):

{Si}i∈[n],zi and {Si −
1

〈u`? ,a⊥〉
(x0,`?
i − x1,`?

i )(a⊥)>}
i∈[n],zi

are indistinguishable, we show the simulation of B?t for the different queries:

Corruption oracle QCor(i): If slot i gets corrupted (and the simulation happened successfully), it holds that
x0,`?
i = x1,`?

i under label `?. This results in Si− 1
〈u`? ,a⊥〉

(x0,`?
i −x1,`?

i )(a⊥)> = Si− 1
〈u`? ,a⊥〉

·0·(a⊥)> = Si.
Key oracle QKeyD(y): The key generation procedure will output:

sky =
∑
i∈[n]

S>i · yi −
1

〈u`? ,a⊥〉
(a⊥)(x0,`?

i − x1,`?
i )> · yi

=
∑
i∈[n]

S>i · yi −
1

〈u`? ,a⊥〉
(a⊥) (〈x0,`?

i ,yi〉 − 〈x1,`?
i ,yi〉)︸ ︷︷ ︸

=0

,

which is equal to a functional key generated using {Si}i∈[n],zi
.
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Left-or-Right query QLeftRight(i,x0
i ,x

1
i , `

?): The term − 1
〈u`? ,a⊥〉

(x0,`?
i −x1,`?

i )(a⊥)> also appears in the
encryption queries under label `?.
The ciphertext under label `? has the structure

[Siu`? ]− 1
〈u`? ,a⊥〉

(x0,`?
i − x1,`?

i )(a⊥)>[u`? ] + [x0,`?
i ]

=[Siu`? ] + [− 1
〈u`? ,a⊥〉

· 〈u`? ,a⊥〉︸ ︷︷ ︸
=1

(x0,`?
i − x1,`?

i ) + x0,`?
i ]

=[Siu`? ] + [x1,`?
i ].

Encryption query QEnc(i,xi, `): If an encryption query gets asked for a label ` 6= `?, with u` = A ·RF′(`),
then the ciphertext has the following structure:

[Siu`]−
1

〈u`? ,a⊥〉
(x0,`?
i − x1,`?

i )(a⊥)>[A · RF′(`)] + [xi]

=[Siu`] + [− 1
〈u`? ,a⊥〉

(x0,`?
i − x1,`?

i ) (a⊥)>A︸ ︷︷ ︸
=0

·RF′(`)] + [xi]

=[Siu`] + [xi]
ut

5 Security Analysis of the DCR-based Construction

In this section, we present the proof of correctness and security for our DCR-based scheme.
We start by recapping the definition of Carmichael function and some theorems which will be used in the

security proof of DCR-based MCFE scheme. In the following definition lcm(b, c) stands for the least common
multiple of b and c.

Definition 5.1 (Carmichael function). The Carmichael function is defined as :

λ(n) =


lcm(λ(pa1

1 ), . . . , λ(pakk )) n = pa1
1 · p

a2
2 · . . . · p

ak
k

pa−1(p− 1) n = pa, p 6= 2 or a < 2
pa−1(p− 1)/2 n = pa, p = 2, a > 2

All through the paper we denote λ(N) as λ. The following lemma is due to the Carmichael theorem.

Theorem 5.2 (Carmichael Theorem). Assume that N = pq is a safe-prime modulus, then for any
w ∈ Z∗N2 : {

wλ = 1 mod N
wNλ = 1 mod N2

The following lemma is introducing an isomorphism between ZN × Z∗N and Z∗N2 .

Lemma 5.3 ([Pai99]). The function ε : ZN × Z∗N −→ Z∗N2 , defined as ε(a, b) = (1 +N)a · bn, is a bijective
map.

Now, we are ready to discuss the correctness and security of our DCR-based MCFE scheme (Fig. 4).
Correctness. We show that our construction in Fig. 4 is correct. Note that (1 +N) is of order N and the
following statement is satisfied.

∀ a ∈ Z : (1 +N)a = (1 + aN) mod N2.
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Now by the obtained value from decryption algorithm, we have:

C =
∏
i

ctyii .H(`)−sk = (1 +N)Σ
n
i=1xi.yi mod N mod N2 ⇒

C = (1 + (Σn
i=1xi · yi mod N) ·N) mod N2 ⇒

C − 1 mod N2

N
= Σn

i=1xi.yi mod N

Security Analysis. In this section we analysis the security of our construction. Our security proof is based
on a combination of proof techniques of [CDG+18a] and [ALS16]. In the security proof we aim for adaptive
security10, we have a sequence of games such that any two adjacent games can be proved indistinguishable
based on a computational assumption or a statistical argument.
Sketch of the proof. Here we give a simple but not accurate intuition of the proof. Many details are missing
due to the sake of simplicity.

We start with the real game conditioned the hidden bit is b = 0 (game G0). Then we try to replace the
RO-queries with RF′(`)N through the DCR assumption where RF′(`) is a truly random function (games
G1 and G2). From this point we start a hybrid argument over RO-queries, while all the RO-queries are
answered by RF′(`)N , the RO-query associated with the challenge would be replaced with RF(`) (Game G2.q.2)
which tanks to the isomorphism ε can be seen as (1 +N)a · bN . These two changes are somehow orthogonal
meaning that through H(`) = RF′(`)N we can simultaneously change the distribution of the master secret key
(s + λ(x1 − x0) · µ for some µ ∈ Z) such that this change is indistinguishable in the adversary’s view. Then
thanks to the new distribution of the master key and the change H(`q) = (1 +N)aq · bNq , one can see that a
new term as xb + aqλ · (x1 − x0) mod N would be appeared in the challenge-ciphertext. From there we just
need to say that this term can statistically hide the bit b in the challenge (by a statistical argument in G2.q.4).

We remark that our statistical argument (game G2.q.4) is the only game in the sequence which we cannot
directly prove its indistinguishability from its previous game, in an adaptive setting 11. Though, the positive
side is that since this restriction is happening only in the statistical argument, by a technique similar to
the complexity leveraging, one can find the proper parameters to lift the security again to the adaptive,
without losing any factor of security. That is why in the construction we have considered two cases for the
parameters-setting. This will help the user to set the parameters based on its chosen security model.

Theorem 5.4. The presented MCFE scheme in Fig. 4, is one-IND-MCFE secure under the DCR assumption
and in the random-oracle model. More precisely:

Advone-IND ≤ (2qEnc + 2) · AdvDCR + 4qEnc · negl1(κ) + qEnc · 2−κ

where qEnc is the number of random-oracle queries which are used in some LR encryption queries, negl1
shows the advantage of an adversary in distinguishing ZN from Z∗N and the term 2−κ is appeared due to the
fact that in our Gaussian distribution σ >

√
κ ·N5/2.

Proof. We define a sequence of games started from G0 which is the real game when the challenger answers to
LR queries through the chosen bit b = 0 and ended with G5 which is the real game for the bit b = 1.Thus,

Advone-IND
MCFE,A (κ, n) = |WinG0

A (κ, n)−WinG5
A (κ, n)|.

This sequence of games is shown in Fig. 8. In this table RF,RF ′, RFa, RFb are different random functions
respectively from labels set Labels to Z∗N2 ,Z∗N2 ,Z∗N ,Z∗N .
10 I.e., zz = ∅.
11 More precisely, the security notion here is selective per label (lSEL) where the adversary is restricted not to issue

LR-challenges on a new label as far as it has not completed the challenges associated with the label in the progress.
While it may ask secret-key queries or corruption-queries adaptively. This security notion make sense specially
in the time-stamp applications that one can not come back to the previous time-labels. This is, in a predefined
time-stamp all the ciphertexts should be provided otherwise any ciphertext would be discarded before going to the
next time-stamp.
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Game cti,` H(`) Justification

G0 (1 +N)xi0 · H(`)si mod N2 H(`) ∈ Z∗N2 real game b = 0

G1 (1 +N)xi0 · RF(`)si RF(`) ∈ Z∗N2 RO

G2 (1 +N)xi0 · RF′(`)Nsi RF′(`)N ∈ Z∗N2 DCR

G2.q.1
(1 +N)xi0 · RF′(`)Nsi ` ≥ `q
(1 +N)xi1 · RF′(`)Nsi ` < `q

RF′(`)N G2.1.1 = G2

G2.q.2

(1 +N)xi0 · RF′(`)Nsi ` > `q

(1 +N)xi0 · RF(`)si ` = `q

(1 +N)xi1 · RF′(`)Nsi ` < `q

RF′(`)N ` 6= `q

RF(`) ` = `q
DCR

G2.q.3

(1 +N)xi0 · RF′(`)Nsi ` > `q

(1 +N)xi0+a`sibNsi` ` = `q

(1 +N)xi1 · RF′(`)Nsi ` < `q

RF′(`)N ` 6= `q

(1 +N)a`bN` ` = `q
Lemma 5.3

G2.q.4

(1 +N)xi0 · RF′(`)Nsi ` > `q

(1 +N) xi1 +a`sibNsi` ` = `q

(1 +N)xi1 · RF′(`)Nsi ` < `q

RF′(`)N ` 6= `q

(1 +N)a`bN` ` = `q

stat.argu.

G2.q.4 ∼= G2,q+1.1

backward steps

G3 (1 +N)xi1 · RF′(`)Nsi H(`) = RF′(`)N G3 = G2.qEnc+1,1

G4 (1 +N)xi1 · RF(`)si H(`) = RF(`) ∈ Z∗N2 DCR

G5 (1 +N)xi1 · H(`)si H(`) ∈ Z∗N2

RO

real game b = 1

Fig. 8: Overview of the games for MCFE based on the DCR assumption

Game G0: is the real game where the challenger answers to the queries QLeftRight(x0, x1, i, `) by Enc(x0, i, `).
Note that hash function is modeled as random oracle H onto Z∗N2 .

Game G1: is similar to the game G0, except that, each new RO-query is answered by a fresh truly random
in Z∗N2 . That is, H(`) = RF(`). All other queries are simulated by running the real algorithms (based on
these current RO values). Clearly,

|WinG0
A (κ, n)−WinG1

A (κ, n)| = 0.

Game G2: is similar to the game G1, except that, each RO-query is answered by H(`) = RF′(`)Nmod N2.
Lemma 5.6 proves that,

|WinG2
A (κ, n)−WinG1

A (κ, n)| ≤ AdvDCR
B (κ) + qEnc · negl1 .

An adversary attacking to the random self-reducibility of DCR can simply simulate the game for the
attacker to the indistinguishability of G2 and G1. The random self-reducibility of DCR expresses that
from a single sample w ← D (similarly, w ← D′) given by the DCR challenger, one can build many
random samples w′ from the same distribution D (respectively, D′).

Game G3 : is similar to the game G2, except that, queries QLeftRight(x0, x1, i, `) are answered by Enc(x1, i, `).
In Lemma 5.7, we show that these two games are indistinguishable by a hybrid argument on RO-queries,
yielding that,

|WinG3
A (κ, n)−WinG2

A (κ, n)| ≤ qEnc · (2 · AdvDCR
B (κ) + 2 · negl1(κ) + 2−κ).
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We prove this claim through a sequence of hybrids on the RO-queries. As we already mentioned in the
proof-sketch, by the previous changes on the RO-queries, we are ready to start our statistical argument
here. We will show that the master secret key in the adversary’s view belongs to a sublattice. While in
the challenge, the message is added to the master secret key module N . From there, we use a theorem
from the lattice-based cryptography saying that if the variance of Gaussian distribution is enough larger
than N, then sampling from this sublattice module N is close to uniform distribution over ZN , which
then can hide bit b.

Games G4,G5: These games are respectively the counterparts of G2,G1,G0 and their indistinguishability
relies on a similar reasoning in the backward steps.

ut

Lemma 5.5 (Random self-reducibility of DCR [Pai99]). The DCR assumption is random self re-
ducible. Concretely, for any k ∈ N,

AdvDCR,k
A′ (κ) ≤ AdvDCR

A (κ) + k · negl1

where AdvDCR,k
A′ (κ), is the advantage of adversary receiving k random samples of DCR. I.e.,

AdvDCR,k
A′ (κ) = |Pr[A′(w′ R← D) = 1]− Pr[A′(w′ R← D′) = 1]|

where w′ = {w′i}ki=1 and D = {z R← Z∗N2} and D′ = {zN mod N2 : z R← Z∗N2}.

Proof. Let A be the attacker to the DCR assumption. It simulates the game for adversary A′ as follows:
– A receives a sample w from its challenger.
– It samples αi, βi R← ZN for i = 1, . . . , k.
– It sets w′i = wαi · βNi mod N2 and sends back w′i to A′.
– A outputs the bit b′ given by A′.

To show this simulation is correct, one should prove that if w ← D (similarly, w ← D′), then each w′i is
uniformly sampled from D (respectively, D′). If w ← D, then by Lemma 5.3, we can set w = (1 + N)abN
mod N2. Thus, wi = (1 + N)aαi · (bαiβi)N mod N2. Since a ∈ ZN is invertible expect with negligible
probability negl1, aαi mod N is uniform over ZN . Similarly, bαiβi mod N is uniform over Z∗N except with
negligible probability negl1 (because bαi is invertible in ZN ). Then, again by isomorphism ε, the value
w′i = (1 +N)aαi · (bαiβi)N mod N2 is uniform over Z∗N2 .

if w ← D′, then there exists ι ∈ Z∗N2 such that w = ιN . Thus, w′i = (ιαiβi)N mod N2. Since ι is
invertible over ZN2 , then ιαiβi is uniform over Z∗N2 except with negligible probability negl1. Consequently,
w′i is uniformly sampled from D′. ut

Lemma 5.6 (Transition from G1 to G2). For any adversary A, there exists an adversary B such that:

|WinG2
A (κ, n)−WinG1

A (κ, n)| ≤ AdvDCR
B (κ) + qEnc · negl1 .

Proof. Assume that B is the attacker to the random-self-reducibility of DCR problem (Lemma 5.5) and A is
the adversary trying to distinguish between games G1 and G2.

When the adversary A issues RO-queries, the adversary B simply returns RF(`) = w′` where w′` is a sample
from tis challenger. All other queries are answered by running the real algorithms.

If w′` for ` = 1, . . . , qEnc is sampled from the distribution D = {z R← Z∗N2}, then B is simulating the
G1, and if w′` is sampled from the distribution D′ = {zN mod N2 : z R← Z∗N2}, then B is simulating
G2. Thus, |WinG2

A (κ, n)−WinG1
A (κ, n)| ≤ AdvDCR,qEnc

B (κ). The upper-bound AdvDCR
B (κ) + qEnc · negl1 is due to

Lemma 5.5. ut

Lemma 5.7 (Transition from G2 to G3). Two mentioned games G2 and G3 in Theorem 5.4 are indistin-
guishable. More precisely,

|WinG3
A (κ, n)−WinG2

A (κ, n)| ≤ qEnc · (2AdvDCR
B (κ) + 2 negl1(κ) + 2−κ),

where qEnc and negl1 are as explained in Theorem 5.4.
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Proof. For each q = 1, . . . , qEnc, four games G2.q.1, to G2.q.4 are defined such that G2 ∼= G2.1.1, and for any q,
G2.q.1 ∼= G2.q.2 ∼= G2.q.3 ∼= G2.q.4 and G2.q.4 ∼= G2.q+1.1 where G2.qEnc+1.1 ∼= G3.

Game G2.q.1: without loss of generality, we consider a partial order relation for RO-queries. For the ciphertext
associated with labels less than `q, the LR queries are answered by bit b = 1 while the other LR queries
are answered by b = 0. Clearly, G2 = G2.1.1.

Game G2.q.2: is similar to the previous game, except that, qth RO-query associated with label `q is answered
by RF(`q). By the DCR assumption,

|WinG2.q.2
A (κ, n)−WinG2.q.1

A (κ, n)| ≤ AdvDCR
B (κ).

Game G2.q.3: is similar to the previous game, except that, qth RO-query associated with label `q is answered
by (1 +N)aq · bNq where aq = RFa(`q), bq = RFb(`q). By the isomorphism ε in Lemma 5.3, we have:

|WinG2.q.3
A (κ, n)−WinG2.q.2

A (κ, n)| ≤ negl1(κ).

The term negl1(κ) is appeared due to the fact that instead of aq R← ZN , as it is in Lemma 5.3, we have
aq

R← Z∗N . More precisely, negl1(κ) ≤ 1√
N

which is the advantage of the adversary in distinguishing ZN
from Z∗N .

Game G2.q.4: is similar to the game G2.q.3, except that, the encryption queries QLeftRight(x0, x1, i, `q) for
label `q corresponding to the qth RO-query is answered by Enc(x1, i, `q). Note that G2.q.4 = G2.q+1,1 and
G2,qEnc+1,1 = G3. In Lemma 5.8, we prove that

|WinG2.q.4
A (κ, n)−WinG2.q.3

A (κ, n)| ≤ 2−κ.
ut

Note that if qth RO-query is not used by any encryption query, then the games G2.q.4 and G2.q.3 are identical.
But for the case that it is used by an encryption query, we claim that G2.q.4 ∼= G2.q.3. This step is similar to
the security proof technique of single-input FE scheme based of Paillier in [ALS16]. The difference is that the
information leaked through different ciphertext in our MCFE scheme are the same as what the adversary
gets in single-input FE through the public key12. The formal proof is as follows:

Lemma 5.8 (Transition from G2.q.3 to G2.q.4). If σ >
√
κ+ 2n · log(2X) ·N5/2 and X <

√
N/2n, then

for any adversary A,
|WinG2.q.4

A (κ, n)−WinG2.q.3
A (κ, n)| ≤ 2−κ.

Proof. Here at first we prove that the selective13 versions of these two games are indistinguishable and then
by a technique similar to complexity leveraging we extend the security to their adaptive versions14. Let G∗2.q.3
and G∗2.q.4 be the selective versions of G2.q.3 and G2.q.4, respectively. We show that,

|WinG∗2.q.4
A (κ, n)−WinG∗2.q.3

A (κ, n)| ≤ 2−κ.

We define a new game Gb2.q.3, depending on a random bit b R← {0, 1} such that when b = 0 it is the same
as G∗2.q.3 and when b = 1 is the same as G∗2.q.4. Thus, in the game Gb2.q.3, we have QLeftRight(x0, x1, i, `q) =
12 Note that in MCFE, we are in the symmetric key setting and the security game is involved with many ciphertexts

queries
13 In fact, we can prove that their variants for selective per label are indistinguishable.
14 We emphasize that the standard complexity leveraging argument over a computational assumption reduces the

strength of the computational argument, whereas here it’s only leveraging on the statistical argument, so it’s not as
harmful.
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(1 +N)x
q
ib

+aqsi · bNsiq = ctiq (where xqib is the i-th entry of the message xqb associated with the challenge `q)
and all other queries are answered similar to the game G∗2.q.3. We claim that ctiq for i = 1, . . . , n, statically
hides b ∈ {0, 1}. To prove this, we try to show that conditioned on all the leaked information, X · (xqb + aqs)
mod N can statistically hide bit b where X is an invertible matrix modulo N and independent of bit b. This
can complete the proof.

Let xqβ = (xq1,β , . . . , x
q
n,β), β ∈ {0, 1} are the challenges associated with label `q and xq = 1

g (xq1 − xq0)
where g = gcd(xq1,1 − x

q
1,0, . . . , x

q
n,1 − x

q
n,0). Without loss of generality, we assume the n0 first entries of xq

are zero, and all remaining entries are non-zero. The matrix X is considered as X =
[
Xtop

Xbot

]
where Xtop and

Xbot are as follows:

Xtop =


In0

−xqn0+2 xqn0+1
−xqn0+3 xqn0+2

. . . . . .
xqn xqn−1

 , Xbot = (xq)T

For this matrix, det(XXT ) = (
∏n−1
i=n0+1 (xqi )

2) · ||xq||4. Each (xqi )2 is small and non-zero. Thus, the term
(
∏n−1
i=n0+1 (xqi )

2) is non-zero modulo N otherwise it gives a factorization for N . Similarly, we can assume that
gcd(||xq||, N) = 1, otherwise it gives a non-trivial factor of N . Putting together, det(X)2 6= 0 mod N which
means X is invertible over ZN . Coming back to the main goal, we show that X · (xqb + aqs) mod N hides
the bit b. In fact, what we would show is that Xtop · (xqb + aqs) mod N is completely independent of b and
Xbot · (xqb + aqs) mod N is close to uniform and therefore statistically hides b.

– Step 1: Xtop · (xqb + aqs) mod N is completely independent of b:
This is satisfied due to the fact that Xtop · (xq0 − xq1) = 0 over integers (one can check it through the
construction of matrix Xtop).

– Step 2: Xbot · (xqb + aqs) mod N is close to uniform: Which can be written as

〈xq,xqb〉+ aq〈xq, s〉 mod N. (1)

Let s0 = (s0
1 . . . , s

0
n) be a possible value for the master key. Now we try to find the distribution of s from the

adversary’s view. The adversary can get information about the master secret key through:
1. All ciphertexts associated with l 6= `q: the leaked information about s0 comes from RF′(`)Ns0 mod N2, ` 6=
`q. Note that the adversary also knows RF′(`)N through the RO queries.

2. Secret key queries: the leaked information is essentially 〈y, s0〉 for all the key quires y.
3. Corruption queries: It leaks the value s0

i for the corrupted slot i.

Thus, the distribution of master key in the adversary’s view is

{s0 + t : t R← DΛ,σ,−s0}

where the lattice Λ is as follows15:

Λ = {t : t = λ · (xq1 − xq0) · µ, µ ∈ Z}

And that is because for s = s0 + t,

RF ′(`)Ns = RF ′(`)Ns0 mod N2 ⇐⇒ s = s0 mod λ, for ` 6= `q

〈y, s〉 = 〈y, s0〉 over Z for all secret key queries y

si = s0
i for the corrupted slot i.

15 One may tend to consider the lattice Λ as a linear combination of (linearly independent) LR encryption queries.
But it essentially leaks the same information as what we have already considered
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Note that the first equality is satisfied due to the fact that RF′(`) is a random function onto Z∗N2 and
RF′(`)N is of order λ. We have also relied on the Condition(∗) of the security definition (Definition 2.2), in
two last equalities (and in the construction of vector t and matrix X as well). Due to the norm bounds,
〈x1 − x0,y〉 = 0 mod N means that 〈x1 − x0,y〉 = 0 over Z which is used in the second equality.
We write the lattice Λ as Λ = λ · Z · xq. Conditioned on the leaked information, the distribution 〈xq, s〉 is:

〈s0,x
q〉+Dλ·||xq||2·Z,||xq||σ,−c

where c = 〈s0,x
q〉 ∈ Z

Agrawal et al. showed that if σ >
√
κ · N5/2, then Dλ·||xq||2·Z,||xq||σ,−c over Λ0 = λ · ||xq||2 · Z modulo

the lattice Λ′0 = λ · ||xq||2 · (NZ) is within statistical distance 2−κ from the uniform distribution over Λ0
Λ′0

(adapted from [GPV08], corollary 2.8). And since gcd(λ · ||xq||2, N) = 1, then Λ0
Λ′0

is isomorphic to ZN . This
means that 〈xq, s〉 modulo N is within statistical distance 2−κ from the uniform distribution over ZN . Now
by the Eq. (1), since aq ∈ Z∗N is invertible modulo N , the term 〈xq,xqb〉 is statistically hidden. This completes
the proof for |WinG∗2.q.4

A (κ, n)−WinG∗2.q.3
A (κ, n)| ≤ 2−κ.

Then by applying a technique similar to complexity leveraging, we have:

WinG2.q.3
A (κ, n) = (2X)2n ·WinG∗2.q.3

A (κ, n), and WinG2.q.4
A (κ, n) = (2X)2n ·WinG∗2.q.4

A (κ, n)

Thus,
WinG2.q.4

A (κ, n)−WinG2.q.3
A (κ, n) = (2X)2n · (WinG∗2.q.4

A (κ, n)−WinG∗2.q.3
A (κ, n))

Meaning that if |WinG∗2.q.4
A (κ, n)−WinG∗2.q.3

A (κ, n)| ≤ 2−κ ·(2X)−2n then, |WinG2.q.4
A (κ, n)−WinG2.q.3

A (κ, n)| ≤ 2−κ.
Clearly, if in the last part of the proof one sets σ >

√
κ+ 2n · log(2X) ·N5/2 then the above reasoning result

in |WinG2.q.4
A (κ, n)−WinG2.q.3

A (κ, n)| ≤ 2−κ which proves the adaptive security. ut

Our DCR-based MCFE scheme can simply be extended to pos+-IND secure, IND secure or to the
decentralized version through some existing general compilers.

Extension to vectors per slots. Our construction can easily be extended to vectors associated with
clients (slots). In Fig. 9, we can consider |yi,j |, |xi,j | ≤

√
N

2nm where yi,j , xi,j are respectively the jth
component of ith slot (client) of the key and message vectors. Here (1 +N)xi · Hsi(`) is the column vector
((1 +N)xi,1 · Hsi,1(`), . . . , (1 +N)xi,m · Hsi,m(`)).

Security extension (from one to pos+). Abdalla et al. [ACF+18] gave a general conversion from one-time
MIFE to many-challenges MIFE. More precisely, they showed that by having a one-time MIFE and putting a
single-FE layer on it, we can get MIFE secure against many-ciphertexts challenges. Chotard et al. [CDG+18b]
used the same idea proving that if each client use another layer of single-input FE over the output of MFCE
scheme, then the security can be extended from one-ciphertext per label to many-ciphertexts per label (pos+).
The point is that the outer layer and the inner one should be compatible. It means that the ciphertext
produced by the inner layer should belong to the message space of the outer layer and the secret key produced
by the inner layer should belong to the (functional) key space of the outer layer. As it is also pointed out
in [CDG+18b] because of the restriction on the compatibility, the suggested conversion is not general. In
Fig. 10 we have directly instantiated the mentioned conversion by a single-input FE compatible with our
MCFE construction. The security proof is omitted due to its similarity to [ACF+18] and [CDG+18b]. Note
that this technique works when m > 2. Thus, we have considered the inputs of the clients as vectors. In this
instantiation as the outer layer, we are using the single-input FE scheme based on DCR assumption such
that the message space is an encoding of Z (as (1 +N)xi · Hsi(`), see Fig. 10).

Security extension (from pos+ to any). Another limitation of the security definition (Definition 2.2) is
the reliance on the assumption that when the adversary makes a LRencryption query it has to complete
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Setup(1κ, n,m) :

Run SP(κ) to get (p, q)
Compute N = pq.
Let H : Labels→ Z∗N2 be a
full-domain hash function.

Set X <

√
N

2nm
Return pp = (N,H, X)
KeyGen(pp) :

Sample s← DZm×n,σ

where s = (s1, . . . , sn), si ∈ Zm.

set σ >
√
κ ·N5/2

for the selective security and

σ >
√
κ+ 2nm log(2X) ·N5/2

for the adaptive security.
Return msk = s and ski = si.

Enc(pp, ski,xi, i, `) :

To encrypt a message xi ∈ Zm where

with |xij | ≤ X <

√
N

2nm ;

Compute cti,` = (1 +N)xi .H(`)si mod N2.
Return cti,`
KeyDer(pp,msk,y) :

To generate a key for y ∈ Zm×n

where y = (y1, . . . ,yn), yi ∈ Zmwith |yij | ≤ Y :

Compute sky = Σis
T
i · yi

Return sky
Dec(pp,y, sk, {cti,`}i∈[n], `) :

Compute C =
∏
i

(ctTi,`)yi .H(`)sk

Return C − 1 mod N2

N

Fig. 9: DCR-based MCFE (vectors per slots)

Setup(1κ, n,m) :

Run SP(κ) to get (p, q)
Compute N = pq.

Sample g′ R← Z∗N2

Compute g = g′2N mod N2.
Let H : Labels→ Z∗N2 be a
full-domain hash function.

Set X,Y <

√
N

2nm
Return pp = (N, g,H, X)
KeyGen(pp)

Sample ŝ← DZm×n,σ where ŝi ∈ Zm

Sample s← DZm×n,σ∗ where si ∈ Zm

Set σ >
√
κ ·N5/2

Set σ∗ = σ for the selective security

and σ∗ >
√
κ+ 2nm log(2X) ·N5/2 for

the adaptive security.
Return msk = (s, ŝ) and ski = (si, ŝi).

Enc(pp, ski,xi, i, l) :

To encrypt a message xi ∈ Zmwith |xij | ≤ X <;

Compute hi = gŝi mod N2.

Sample ri R← {0, . . . , [N4 ]}.

Set cti,` =
{
gri mod N2,

(1 +N)xi .H(`)si · hrii mod N2

Return cti,`
KeyDer(pp,msk,y) :

For y ∈ Zm×n where yi ∈ Zmwith |yij | ≤ Y :

Compute sky = Σis
T
i · yiand skyi = 〈yi, ŝi〉

Return (sky, {skyi}i∈[n])
Dec(pp,y, sk, {cti,`}i∈[n], `) :

Parse y as (y1, . . . ,yn), sk as (sky, {skyi}i∈[n]) and
cti,` as (ct0

i,`, ct1
i,`)

Compute C =
n∏
i=1

((ct1
i,`)T )yi · (ct0

i,`)−skyi · H(`)−sk

Return C − 1 mod N2

N

Fig. 10: DCR-based MCFE (pos+ secure)

the ciphertext. In this section for the simplicity, when there is no yy = one or yy = pos+ restriction in the
security definition we call it any-security. Abdalla et al. [ABKW19] and Chotard et al. [CDG+18b] have
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separately presented two compilers converting pos+-secure-MCFE to any-secure-MCFE, the former has a
square-size of the ciphertext16. While the latter is using pairing making it possible to achieve linear-size of
the ciphertext and is based on Q-fold DBDH assumption. Note that both schemes are relying on the random
oracle assumption which is what our MCFE construction is already involved with.

Extension to DMCFE. We use the decentralizing technique of [CDG+18a], this scheme uses two layers
of MCFE. For the adaptive case during the complexity leveraging phase, for the second layer of MCFE (to
compute

∑
siyi), one needs to guess just a scalar

∑
siyi. This comes from the fact that in this layer there

is only one secret-key query (corresponding with vector 1). Thus, σ′ >
√
κ+ log(1 +N ′2) ·N ′5/2. For the

correctness of the second layer, we need N ′ >
∑
siyi, this means N ′ > Y ·

∑
si. Based on the Markov’s

inequality Pr[|si| ≤ σ] ≥ 1− negl(κ) if σ = Θ(κε) and ε > 0. Then, N ′ > Y · n · σ2 and since Y <
√
N/2L,

one can set N ′ >
√
NL · σ2.

6 Security Analysis of the LWE-based Construction

Our security proof is using the following lemma which is applied in the security-reduction from LWE problem
to LWR problem in [BPR12].

Lemma 6.1 (Extracted from Theorem 3.2 [BPR12]). If X is a B-bounded distribution and q ≥
q0 · B · n0

ω(1), then for any distribution over a fixed vector s ∈ Zn0
q , the statistical difference between two

distributions {(a,
⌊
〈a, s〉

⌉
q0

) : a← Zn0
q } and {(a,

⌊
〈a, s〉+ e

⌉
q0

) : a← Zn0
q , e← X} is n0

−ω(1).

The above lemma shows that if the modulus q is chosen super-polynomially big, then the noise term in
the LWE problem can be absorbed in the rounding.

Here we discuss the correctness and security of our LWE-based MCFE scheme.

Decryption Correctness. To show the correctness of the scheme, we first define ei = cti,` − q0
q (Zi · H(`) +⌊

q
K

⌋
· xi) and e0 =

⌊
sk · H(`)

⌉
q0
− q0

q sk · H(`), thus:

µ′ =
∑
i∈[n]

yi · cti,` −
⌊
sk · H(`)

⌉
q0

=
∑
i∈[n]

yi

(
q0

q

(
Zi · H(`) +

⌊ q
K

⌋
· xi
)

+ ei)
)
−
(
q0

q
sk · H(`) + e0

)
=
∑
i∈[n]

q0

q

(
yiZi · H(`) +

⌊ q
K

⌋
· yixi

)
+ yiei −

q0

q
H(`)

∑
i∈[n]

yi · Zi − e0

= q0

q

⌊ q
K

⌋ ∑
i∈[n]

xiyi +
∑
i∈[n]

yiei + e0

To guarantee the correctness, the relation |
∑
yiei + e0| <

⌊
q0
2K
⌋
should be satisfied. Since, |ei| ≤ 1

2 and
|e0| ≤ 1

2 , |
∑
yiei + e0| ≤ 1

2 (
∑
yi + 1) ≤ 1

2 (nV + 1). Meaning that if q0 > K(nV + 1), then the scheme is
correct.

Security Analysis. To simplify the proof and without loss of generality, we consider the case where m = 1,
meaning that the input of each client is a scaler rather than a vector.

16 Note that though [ABKW19] is presenting the compiler for DMCFE, it is easy to specific it for MCFE. Simply by
unifying the algorithms KeyDerShare and KeyDerComb and replacing it with KeyDer algorithm.
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Game cti,` H(`) Justification

G0
⌊
Zi · H(`) + b q

K
c · x0

i

⌉
real game

G1

⌊
Zi · H(`) + b q

K
c · x0

i

⌉
=
⌊

(si + ti · S) · a` + ti · e` + b q
K
c · x0

i

⌉ ( a`
S·a`+e`

)
LWE

G2

⌊
(si + ti · S) · a` + b q

K
c · x0

i

⌉ (
a`

S·a`+e`

)
ti · e`

absorbed

by the rounding,

requires

q ≥ q0Bn0
ω(1),

where

|ti · e`| ≤ B

G2.γ.1

⌊
(si + ti · S) · a` + b q

K
c · x0

i

⌉
` > `γ⌊

si · a` + ti · (S · a` + e`) + b q
K
c · x0

i

⌉
` = `γ⌊

(si + ti · S) · a` + b q
K
c · x1

i

⌉
` < `γ

(
a`

S·a`+e`

) ti · e`γ
absorbed

by the rounding

G2.γ.2

⌊
(si + ti · S) · a` + b q

K
c · x0

i

⌉
` > `γ⌊

(si · a` + ti

(
S · a` + e` + RF(`γ)

)
+ b q

K
cx0

i

⌉
` = `γ⌊

(si + ti · S) · a` + b q
K
c · x1

i

⌉
` < `γ

(
a`

S · a` + e`

)
` 6= `γ(

a`

S · a` + e` + RF(`γ)

)
` = `γ

LWE

assumption

G2.γ.3

⌊
(si + ti · S) · a` + b q

K
c · x0

i

⌉
` > `γ⌊

(si + ti · S) · a` + ti · RF(`γ) + b q
K
c · x0

i

⌉
` = `γ⌊

(si + ti · S) · a` + b q
K
c · x1

i

⌉
` < `γ

(
a`

S · a` + e`

)
` 6= `γ(

a`
S · a` + e` + RF(`γ)

)
` = `γ

ti · e`γ
absorbed

by the rounding

Fig. 11: Overview of the games our MCFE scheme based on LWE.
Here

⌊
.
⌉
stands for

⌊
.
⌉
q0

and (a`,S · a` + e`) ∈ Zn0
q × Zq are LWE samples.
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Game cti,` H(`) Justification

G2.γ.4

⌊
s′i · a` + b q

K
c · x0

i

⌉
` > `γ⌊

s′i · a` + ti · RF(`γ) + b q
K
c · x0

i

⌉
` = `γ⌊

s′i · a` + b q
K
c · x1

i

⌉
` < `γ

(
a`

S · a` + e`

)
` 6= `γ(

a`
S · a` + e` + RF(`γ)

)
` = `γ

Rewriting,

same view

generated by

sampling s′i

instead of si

G2.γ.5

⌊
s′i · a` + b q

K
c · x0

i

⌉
` > `γ⌊

s′i · a` + ti · RF(`γ) + b q
K
c · x1

i

⌉
` = `γ⌊

s′i · a` + b q
K
c · x1

i

⌉
` < `γ

(
a`

S · a` + e`

)
` 6= `γ(

a`
S · a` + e` + RF(`γ)

)
` = `γ

statistical argument,

requires σ ≥ 10nV

and m = Ω(log(q))

G2.γ.6

⌊
(si + ti · S) · a` + b q

K
c · x0

i

⌉
` > `γ⌊

(si + ti · S) · a` + b q
K
c · x1

i

⌉
` = `γ⌊

(si + ti · S) · a` + b q
K
c · x1

i

⌉
` < `γ

(
a`

S·a`+e`

) backwards steps,

the next game

is G2.γ+1.1

and G2.qEnc.6 = G3

G3
⌊
(si + ti · S) · a` + b q

K
c · x1

i

⌉ (
a`

S·a`+e`

)
G4

⌊(
si + ti · S · a` + ti · e` + b q

K
c · x1

i

)⌉
=
⌊

Zi · H(`) + b q
K
c · x1

i

⌉ (
a`

S·a`+e`

)
ti · e` absorbed

by the rounding

G5
⌊
Zi · H(`) + b q

K
c · x1

i

⌉
LWE assumption

Fig. 12: Overview of the games our MCFE scheme based on LWE.
Here

⌊
.
⌉
stands for

⌊
.
⌉
q0

and (a`,S · a` + e`) ∈ Zn0
q × Zq are LWE samples.
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Theorem 6.2. The presented MCFE scheme in Fig. 5, is an one-IND-secure MCFE scheme under the LWE
assumption and in the random-oracle model. More precisely:

Advone-IND ≤ qEnc ·
(

6 negl1(n0) + 2AdvLWE
B (n0) + 2−κ

)
+ 2AdvLWE

B (n0)

where qEnc is the number of random-oracle queries, and the term 2−κ is appeared due to the fact that in our
Gaussian distribution parameters depend on κ. The term negl1 comes from the advantage of an adversary in
Lemma 6.1.

Proof. We define a sequence of the games started from G0, which is the real game when the challenger answers
to LR queries through the chosen bit b = 0, and ended with G5, which is the real game corresponding with
the bit b = 1. Thus,

Advone-IND
MCFE,A (n0, n) = |WinG0

A (n0, n)−WinG5
A (n0, n)|.

This sequence of games is shown in Figs. 11 and 12.

Game G0: is the real game where the challenger answer to QLeftRight(x0, x1, i, `) by Enc(x0, i, `). Note that
hash function is modeled as random oracle RO onto Zn0+m0

q .
Game G1: is similar to the game G0, except that, each new RO-query is answered by a fresh sample of

LWEq,α. Thus:

|WinG1
A (n0, n)−WinG0

A (n0, n)| ≤ AdvLWE
B (n0).

We note that since the LWE assumption is already involved with polynomially many samples, the
upper-bound does not depend to the number of queries. For the indistinguishability of G0 and G1, we
consider an extension of LWE problem which is as hard as the original definition. This extension considers
samples with the same given coefficients but different secrets which would let to have a matrix as the
secret.

Game G2: is similar to the game G1, except that, the value tie` is absorbed in the rounding. If q ≥ q0Bn0
ω(1)

where |ti · e`| ≤ B with overwhelming probability, then games G1 and G2 are indistinguishable. The proof
of indistinguishability is similar to the proof of Lemma 6.1. Giving that:

|WinG2
A (n0, n)−WinG1

A (n0, n)| ≤ qEnc · negl1(n0),

where negl1 is the probability of distinguishing ti · e` from 0 after applying the rounding map
⌊
·
⌉
q0
.

This change would let us remove the value ti · e` from all the encryption-queries such that this change is
indistinguishable for the adversary.

Game G3: is similar to the game G2, except that, the encryption queries QLeftRight(x0, x1, i, `) are answered
by Enc(x1, i, `). In Lemma 6.4, we show that these two games are indistinguishable by a hybrid argument
on RO-queries. And:

|WinG3
A (n0, n)−WinG2

A (n0, n)| ≤ 2qEnc · (2 negl1(n0) + AdvLWE
B (n0)) + qEnc · 2−κ.

Intuitively, by the current change in the RO-queries, we show that one can simultaneously change the
distribution of the master secret key ti as ti + µ(x1 − x0) for some µ ∈ Z such that this change is
indistinguishable for the adversary. Then, we show that if we change the vector H(`q) associated with the
challenge to a random vector u, the multiplication of the new master key and u can statistically hide the
message in the challenge.

Games G4,G5: Now from here we come back in reverse, in a similar way from G2 to the game G0. The last
game G5 is similar to the real game with b = 1.

ut

Lemma 6.3 (Transition from G0 to G1). For any adversary A, there exists an adversary B such that:

|WinG1
A (n0, n)−WinG0

A (n0, n)| ≤ AdvLWE
B (n0).
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Proof. At first we note that LWE problem with samples (a`,a` · si + ei,`) for i = 1, . . . ,m0 (i.e., when each
equation crosses through m0 different secrets s1, . . . , sm0) is as hard as the original LWE problem (the exact
proof is given in [PVW08], lemma 7.3). Now, for samples (a`, bi,`) from its challenger, the adversary B sends
(a`, b′`) to A where i-th entry of b′` equals bi,`. If bi,` is a` · si + ei,`, then b′` = S · a` + e` where the i-th row
of S is as si, which in this case it simulate the game G1. If each bi,` is chosen uniformly, then b′` is uniform,
which simulate the game G0. ut

Lemma 6.4 (Transition from G2 to G3). two mentioned games G2 and G3 in Theorem 5.4 are indistin-
guishable. More precisely,

|WinG3
A (n0, n)−WinG2

A (n0, n)| ≤ 2qEnc · (2 negl1(n0) + AdvLWE
B (n0)) + qEnc · 2−κ.

Proof. For each γ = 1, . . . , qEnc, six games G2.γ.1, . . . ,G2.γ.6 are defined such that G2 ∼= G2.1.1, and for any γ,
G2.γ.1 ∼= G2.γ.2 ∼= G2.γ.3 ∼= G2.γ.4 ∼= G2.γ.5 ∼= G2.γ.6 and G2.γ.6 ∼= G2.γ+1.1 where G2.qEnc.6

∼= G3.

Game G2.γ.1: is similar to its previous game, except that, for the label `γ , the term ti · e`γ is added to the
ciphertext. Again the proof of the indistinguishability is similar to the proof of Lemma 6.1. Thus,

|WinG2.γ.1
A (n0, n)−WinG2.γ.1

A (n0, n)| ≤ negl1(n0)

where G2.γ.1 is the game before G2.γ.1 (which might be G2 or G2.γ−1,6). The intuition for this change is to
add a random value beside the message which can statistically hide the message in the challenge.

Game G2.γ.2: is similar to the previous game, except that, RO-query for label `γ is replaced by S·a`γ+e`γ+u`.
Similar to the transition from game G0 to G1, one should consider LWE problem with samples (a`γ ,a`γ ·
s′i + ei,`γ ) for i = 1, . . . ,m0. Lemma Lemma 6.5 formally proves the computational indistinguishability
G2.γ.2 from its previous game i.e.,

|WinG2.γ.2
A (n0, n)−WinG2.γ.1

A (n0, n)| ≤ AdvLWE
B (n0)

Intuitively, this change will let us to remove ti · S from the ciphertexts by moving ti · S beside si where
si is uniform and can hide ti · S.

Game G2.γ.3: is similar to the previous game, except that, for the label `γ , the term ti · e`γ is removed from
the ciphertext. Again the proof of the indistinguishability is similar to the proof of Lemma 6.1. Thus,

|WinG2.γ.3
A (n0, n)−WinG2.γ.2

A (n0, n)| ≤ negl1(n0)

Game G2.γ.4: is similar to the game G2.γ.3, except that, in the master secret key generation (and thus in all
ciphertexts), si is computed as s′i − ti · S where we sampled a fresh random s′i. Clearly, this two games
are identical, since si is uniformly random. I.e.,

|WinG2.γ.4
A (n0, n)−WinG2.γ.3

A (n0, n)| = 0

Game G2.γ.5: is similar to the previous game, except that, the query QLeftRight(x0, x1, i, `γ), associated
with label `γ and corresponding to γth RO-query, is answered by Enc(x1

i , `γ). In Lemma 6.6 we show:

|WinG2.γ.5
A (n0, n)−WinG2.γ.4

A (n0, n)| ≤ 2−κ
ut

Lemma 6.5 (Transition from G2.γ.1 to G2.γ.2). If the LWE assumption holds, then two games G2.γ.1 and
G2.γ.2 are indistinguishable and:

|WinG2.γ.2
A (n0, n)−WinG2.γ.1

A (n0, n)| ≤ AdvLWE
B (n0)

Proof. The adversary B receives the samples (a`γ , bi,`γ ) from its LWE-challenger. It sends the vector (a`γ , b`γ )
to the adversary A. If bi,`γ = a`γ · si + ei,`γ , then it simulates the game G2.γ.1 and if bi,`γ is uniform, it
simulate the game G2.γ.2 (since u`γ is indistinguishable from S · a`γ + b`γ + u`γ for any uniform vector
u`γ ). ut
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Note that if γth RO-query is not used by any encryption query, then the games G2.γ.4 and G2.γ.5 are
identical. But for the case that it is used by an encryption query, we claim they are indistinguishable. This
step is similar to the security proof technique of single-input FE scheme based of LWE in [ALS16]17. The
formal proof is as follows:

Lemma 6.6 (Transition from G2.γ.3 to G2.γ.4 ). If Ω(log q + 4n logP ) ≤ m0 and nP 2 < q then:

|WinG2.γ.5
A (n0, n)−WinG2.γ.4

A (n0, n)| ≤ 2−κ

Proof. Here at first we prove that the selective18 versions of these two games are indistinguishable and then
by a technique similar to the complexity leveraging we lift the security to their adaptive versions. Let G∗2.γ.4
and G∗2.γ.5 be the selective versions of G2.γ.4 and G2.γ.5, respectively.

We show that
|WinG∗2.γ.5

A (n0, n)−WinG∗2.γ.4
A (n0, n)| ≤ 2−κ

We define a new game Gb2.γ , depending on a random bit b R← {0, 1} such that when b = 0 it is the same
as G∗2.γ.4 and when b = 1 is the same as G∗2.γ.5. Thus, in the game Gb2.γ , we have QLeftRight(x0, x1, i, `γ) =
s′i · a` + ti · u +

[
q
K

]
xγib = ctiγ (note that u = RF(`γ) and xγib is the i-th entry of the message xγb associated

with the challenge `γ) and all other queries are answered similar to the game G∗2.γ.3. We claim that ctiγ for
i = 1, . . . , n, statistically hides b ∈ {0, 1}. To prove this, we try to show that conditioned on all the leaked
information, X ·Tγ

b can statistically hide bit b where X is an invertible matrix module q and independent of
bit b and Tγ

b is as follows:

Tγ
b =

 tγ1b
...

tγnb

 , tγib = ti · u +
[ q
K

]
xγib (2)

This can complete the proof. Let xγβ = (xγ1,β , . . . , x
γ
n,β), β ∈ {0, 1} are the challenges associated with label `γ

and xγ = 1
g (xγ1 −xγ0 ) where g = gcd(xγ1,1 − x

γ
1,0, . . . , x

γ
n,1 − x

γ
n,0). Without loss of generality, we assume the l

first entries of xγ are zero, and all remaining entries are non-zero. The matrix X is considered as X =
[
Xtop

Xbot

]
where Xtop and Xbot are as follows:

Xtop =


Il
−xγl+2 xγl+1

−xγl+3 xγl+2
. . . . . .

xγn xγn−1

 , Xbot = (xγ)T

For this matrix, det(XXT ) = (
∏n−1
i=l+1 (xγi )2) · ||xγ ||4. Each (xγi )2 is small and non-zero (meaning that for all i,

gcd((xγi )2, q) = 1). Thus, the term (
∏n−1
i=l+1 (xγi )2) is non-zero modulo q. On the other hand, gcd(||xγ ||, q) = 1

due to the fact that nP 2 < q. Putting together, det(X)2 6= 0 mod q which means X is invertible over Zq.
Coming back to the main goal, we show that X ·Tγ

b mod q hides the bit b. In fact, what we would show is
that Xtop ·Tγ

b mod q is completely independent of b and Xbot ·Tγ
b mod q is close to uniform and therefore

statistically hides b.

– Step 1: Xtop ·Tγ
b mod q is completely independent of b:

This is satisfied due to the fact that Xtop · (xγ0 − xγ1) = 0 over q. One can check this relation through the
construction of matrix Xtop.
17 Note that in MCFE, we are in the symmetric key setting and the security game is involved with many ciphertexts

queries
18 In fact, we can prove that their variants for selective per label are indistinguishable.
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– Step 2: Xbot ·Tγ
b mod q is close to uniform:

For this, we show that the residual distribution of following vector, conditioned on all the leaked information,
has high minimum entropy.

Xbot ·T = Xbot ·

 t1
...

tn


Then using (a variant of) the leftover hash lemma with randomness Xbot ·T and seed u, we will then conclude
that conditioned on all the leaked information, the pair (u, Xbot · T · u) is close to uniform and hence it
statistically hides bit b in Eq. (2).

Lemma 6.8 confirms that Xbot ·T has the min-entropy m0 log(4/3). Thus, thanks to the leftover hash
lemma, having the min-entropy conditioned on I = (Xtop, XtopT), the pair (u,XbotT ·u) is within statistical
distance 1

2

√
2−H∞(Xbot·T|I) · 2log q. Which is less than 2−κ, when −H∞(Xbot ·T|I) + log q ≤ −2κ. Resulting

in the condition log(3/4) · (log q + 2κ) ≤ m0.
Now by applying a complexity leveraging technique, we have,

WinG2.γ.3
A (n0, n) = P 2n ·WinG∗2.γ.3

A (n0, n), and WinG2.γ.4
A (n0, n) = P 2n ·WinG∗2.γ.4

A (n0, n)

Thus,
WinG2.γ.4

A (n0, n)−WinG2.γ.3
A (n0, n) = P 2n · (WinG∗2.γ.4

A (n0, n)−WinG∗2.γ.3
A (n0, n))

Meaning that if |WinG∗2.γ.4
A (n0, n)−WinG∗2.γ.3

A (n0, n)| ≤ 2−κ ·P−2n then, |WinG2.γ.4
A (n0, n)−WinG2.γ.3

A (n0, n)| ≤
2−κ. Clearly, if in the last part of th proof one sets −H∞(Xbot ·T|I)+ log q ≤ −2(κ+2n logP ) or equivalently
log(3/4) · (log q + 2κ+ 4n logP ) ≤ m0, then |WinG2.γ.4

A (n0, n)−WinG2.γ.3
A (n0, n)| ≤ 2−κ and consequently, the

indistinguishability of the adaptive variants would be concluded. ut

Lemma 6.7. In Lemma 6.6, conditioned on all the leaked information, the min-entropy of Xbot · T is
≥ m0 log(4/3).

Proof. Here we describe what are the leaked information about T in the adversary’s view.

1. all the ciphertexts for ` 6= `γ : we note that these ciphertexts don’t contain any information about T.

2. secret key queries: it is essentially Σiyi ·Zi. And conditioning on this information is the same as conditioning
on Xtop ·T, since y can be written as a linear combination of rows of Xtop.

3. corruption queries for slot i: it leaks the key Zi.

We first consider the distribution of Xbot ·T conditioned on (Xtop,XtopT). Note that in XtopT and XbotT
matrices Xtop and Xbot act in parallel on the columns of T. We can hence restrict ourselves to the distribution of
XbotTi conditioned (Xtop,XtopTi), where Ti stands for the ith column of T. Fix T∗i arbitrary. The distribution
of Ti given (Xtop,XtopTi) is T?

i + DΛ,σ,−T?
i
, with Λ = {y ∈ Zn : Xtopy = 0}. By construction of X, we

have that Λ = Zxγ . As a result, the conditional distribution of XbotTi is 〈xγ ,T?
i 〉+D‖xγ‖2·Z,‖xγ‖σ,〈xγ ,−T?

i
〉.

Since σ ≥ 10 · nP 2 ≥ 10 · ||xγ ||2, we can apply Lemma 6.8. Thus, after conditioning with respect
to (Xtop,XtopT), each column of XbotT has min-entropy ≥ log(4/3). Due to the fact that columns are
independent, we have that,

H∞(XbotT|Xtop,XtopT) ≥ m0 log(4/3).

ut

Lemma 6.8. [ALS16,PR06] Let Λ = kZ be a 1-dimensional lattice. For any σ ≥ 10 ·k, b ∈ Λ and c ∈ R, we
have that DΛ,σ,c(b) ≤ 3/4. In particular, we have H∞(DΛ,σ,c) ≥ 0.4, where H∞(·) refers to the mini-entropy.
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Parameter Setting. In the next step, we analyze the setting of the parameters for our LWE-based
construction.
Correctness of scheme. We remind that for the correctness, we had the conditions q0 > K(nV + 1).
Reduction from LWE to our construction. The indistinguishability between games G1 and G2 needs q ≥
q0n0

ω(1)B, where |ti · e`| ≤ B with overwhelming probability. To present a precise bound, we find the value
B. By Markov’s inequality, for a Gaussian variable with mean 0,

Pr[|X| ≤ a] ≤ 1− 2 exp(−1
2σ

2λ2 − λa) for any λ

Thus, for a = σ and λ = 1,
Pr[|X| ≤ σ] ≤ 1− 2 exp(−σ)

Meaning that if σ = Θ(n0
ε), σ′ = Θ(n0

ε), ε > 0, where σ and σ′ = q · α′ are respectively standard deviations
for variables ti and e`, then,

Pr[|ti| ≤ σ] ≤ 1− negl(n0), Pr[|e`| ≤ σ′] ≤ 1− negl′(n0)

So, |ti · e`| ≤ σ · σ′ with overwhelming probability i.e., we can set B = σ · σ′.

The statistical argument from game G2.γ.3 to game G2.γ.5 needs σ ≥ 10.nP 2. And also Ω(log q) ≤ m0
and Ω(log q + 4n logP ) ≤ m0, respectively for the selective security and the adaptive security. One can set
κ = ω(1) where ω(1) comes from q > q0n0

ω(1)B.
Reduction from lattice problems to LWE. For this reduction, we need q ≥ Ω(√n0/α

′), Since module q is
super-polynomially-large, this condition is already satisfied.

Extension to vectors per slot. For the sake of simplicity we proved the security when each client has
a single scalar as its input. The construction can be easily extended to vectors-per-slot by considering
K = mnPV i.e, one should replace n with mn in the parameters setting.

Security extension (from one to pos+). One can use a single-input FE and an MCFE both based on
LWE assumption in the compiler of [CDG+18b] to get pos+ security. The construction is depicted in Fig. 13.

7 Implementation

To show the efficiency of our schemes, we provide three implementations of schemes described in Figs. 3
to 5. In this table the encryption time is considered per slot. Before describing the choices made during
implementation, we show the timings for these implementations in Fig. 14.

Before heading into details relative to each implementation, let us review the choices common to the three
implementations.
Instantiating the random oracle. We chose to replace the random oracle by the SHA-256 hash function,
thus we were able to take advantage of the OpenSSL library, that provides efficient and well spread
implementation of SHA-256. As the size of the random oracle were different to the output size of SHA-256,
we used it multiple times, changing the input each time by incrementing a counter that was concatenated
with the label.
Choice of the message space. We tested our code with vectors of dimension 100, computing the sum
of the first 100 squares. We wanted to keep the message space as small as 220 = 1048576, in order for
the LWE ciphertexts to be held by 32 bits integers. The message space was kept the same for the DCR
implementation for fair comparison. It is worth noting that the DCR implementation could have encrypted
vectors with coordinates up to 4000 bits large without being any slower, since the complexity only depends
on the dimensions of the vectors, and the only bound on the message space is that it has to stay smaller
than the RSA number N . On the other hand, the DDH implementation is limited by the computation of a
discrete logarithm regardless of the parameter choice, and the LWE implementation can hardly increase the
message space without having to pump the parameters. Indeed, the modulus is tied only to the message space
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Setup(1κ,m, n.n0, n0
′) :

Set integers m0,m0
′, q′, q0 ≥ 2, q > q0,

K = mnPV,K′ = mq0V and α, α′ ∈ (0, 1).
Let H : Labels→ Zn0+m0

q be a full-domain
hash function
Return pp = (m0,m0

′, q, q′, α, α′, P, V )
KeyGen(pp) :

Sample Zi = (si, ti) R← Zm×n0
q ×DZm×m0 ,αq

Sample A R← Zm0
′×n0

′
q , and Z′i R← τ ′

where τ ′ is a special distribution over Zm×m0
′
.

Return msk = (Zi,Z′i)i∈[n] and ski = (Z′i,Zi).
Enc(pp, ski,xi, i, `) :

To encrypt xi ∈ {0, . . . , P − 1}m:

Set Xi = Zi · H(`) + b q
K
c · xi mod q s.t.

Xi ∈ {0, . . . , q}

Set Xi =
⌊
Xi

⌉
q0
∈ {0, . . . , q0}m

Sample s′i
R← Zn0

′

q′ , e
′
i
R← DZm0′ ,α′q′

Set ct0
i,` = A · s′i + e′i mod q′

Compute ct1
i,` = b q

′

K′
cXi + Z′iAs′i mod q′

Return cti,` = (ct0
i,`, ct1

i,`)
KeyDer(pp,msk,y) :

For the vector y with y ∈ {0, . . . , V }m:

Compute sky =
∑
i∈[n]

yTi · Zi

Compute skyi = yTi Z′i.
Return sk = (sky, {skyi}i∈[n])
Dec(pp,y, sk, {cti,`}i∈[n], `) :

Set µi = yTi ct1
i,` − 〈skyi , ct0

i,`〉 mod q′

Find µi ∈ {−K′ + 1, . . . ,K′ − 1}
that minimize |bq′/K′c · µi − µ′i|

µ′ =
∑
i∈[n]

µi −
⌊
〈sky,H(`)〉

⌉
q0

mod q0

Return µ ∈ {−K + 1, . . . ,K − 1} that

minimizes |q0

q
b q
K
c · µ− µ′|.

Fig. 13: MCFE based on LWE (pos+ secure)

and not so to security as in the case of DCR, so we don’t have this spare space in the message space. We
wanted to keep the ciphertexts small enough so that we can rely on fast hardware optimizations of arithmetic
operations, using bigger message spaces would require to use large number libraries, which is doable.
Discussion. The timings are very reasonable, and can be brought down quite a lot for any given application.
We tried to push the parameters so that our implementations can be trusted as proofs of concept without
knowing what applications will come in the future, but for given specific requirements in terms of security
and efficiency, there is a lot of room for improvement. We also tried to give a flexible implementation that
can be used to estimate the timings for different parameters easily. This also leaves room for optimization
once the parameters are chosen for a particular application. If we are to compare the different schemes, it
looks like the scheme based on LWE is much more efficient than the scheme based on DCR. One has to be
careful when making such comparisons. Indeed, the DCR scheme supports very big messages, because the
modulus N has to be set very large for security reasons. In comparison, the efficiency of the LWE scheme

Operation mpk Generation msk Generation sky Derivation Encryption Decryption
DDH 0.038843 s 0.028417 s negligible 0.000439 s m µs
DCR 0.201445 s 1.576873 s negligible 0.280378 s 0.313167 s
LWE n/a 0.017957 s 0.048872 s 0.001207 s 0.000989 s

Fig. 14: Timings of the concrete implementations, encrypting vectors of dimension 100. The code was run on
a laptop running an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz. m is the discrete-logarithm value to be
retrieved (the inner-product value).
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Parameter Message space Ciphertext size Secret key size
DDH bounded by computation 512 bits 512 bits
DCR 4096 bits 9192 bits 55152 bits
LWE 20 bits 32 bits 704000 bits

Fig. 15: Capacity of the implementations and memory cost.

would degrade with the size of the messages to encrypt, so for applications with large messages, the DCR
implementation might actually become much faster.

In the next section, we give more details for each of the implementations.

7.1 DDH Implementation

Choice of the group. We chose to use an elliptic curve with a prime order that is 256 bits long, already
predefined in the openssl library. Hence, we used brainpoolP256t1, however, the design of the implementation
allows us to switch easily to another curve by changing the public parameters generation.

Decryption. The decryption is the most constraining part of the implementation because it needs to compute
a discrete logarithm. Here, we solve this problem by sequentially testing all numbers. The decryption is thus
efficient enough since our output is small, but if the output grows bigger, the decryption time becomes hard
to manage. It is possible to trade-off memory for space, using a baby-step giant-step algorithm to compute
the discrete logarithm.

7.2 DCR Implementation

Choice of parameters. As this implementation is a proof of concept, we decided to use very conservative
parameters, to show that the scheme can run with very large parameters. We advice anyone who wants to use
this work for an application to chose more carefully the parameters that fits their requirements for security
and efficiency. We used the OpenSSL library for big numbers for all the elements in the scheme, as well as
their RSA key generation in order to generate the public parameters, and chose a 4096 bits number N . The
discrete Gaussian was also overshot, and was required to be at least as large as N6. We also required the
output of the hash function to be at least 256 bits larger than the modulo, in order to be very close to the
uniform distribution (statistical distance less than 2−256).

Discrete Gaussian sampling. One of the main challenges in this implementation was to sample a very
large Gaussian distribution over the integers. We used the sampler described in [MW17] for large standard
deviations. To keep the implementation simple and readable, we decided to only use integers for computations,
so once again, with further work, this stage can be optimized, for both more precise sampling (we overshoot
the target a lot) and also faster sampling. We also took a very small ε = 2−256 when taking a bound on the
smoothing parameter of Z. This shouldn’t be required by most application, so there is room for improvement
there also. Our base sampler has standard deviation 64, is implemented using CDT, and has tails cut above
1023 and under -1023. At each step, zi is si divided by 16, which again, leaves space for improvement if
taking a more precise bound on the smoothing parameter.

Observations and possible optimizations. The main bottleneck in this implementation is the size of the
secret keys. The secret keys are very large, thus requiring a lot of space, and slowing down key generation
as well as encryption and decryption. Indeed, the secret keys are used as exponents during encryption and
decryption, and they cannot be reduced modulo the order of the group since it has to remain a secret. This
implies that those operation get slower and slower as the size of the secret keys grow. A first step to improve
the implementation is to get a closer look at the concrete requirements for security of the scheme, and sample
a Gaussian distribution with a standard deviation that matches more closely the requirements.
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7.3 LWE Implementation

Number representations and modulo. In order to have more efficient code, we chose to work with 128
bits numbers, so we had to choose a modulo that is smaller than 2128. To get the most efficient possible
modulo operation, we picked the twelfth Mersenne prime q = 2127 − 1. The ciphertexts were stored on 32 bits
integers, ensuring big enough rounding for security, but large enough for correctness.

Choice of parameters. As discussed previously, we decided to encrypt vectors of size 100, and have a
message space of K = 1048576. The dimensions for the keys are 500 for each of the s and t parts, and the
standard deviation chosen is 1000. Note that this is not the standard deviation for the error for the LWE
assumption, the standard deviation for the LWE assumption does not appear in the scheme since we are
instead using rounding. We don’t give a precise security estimate, since the proof allows for a trade-off in the
computational security against statistical security, meaning that the rounding errors can be smaller if we
decide to take a smaller standard deviation for the LWE problem, leading to less statistical loss during the
proof, but also relying on an easier LWE instance. For a given application, it is possible to optimize for the
security requirements, depending on the number of samples given to the adversary, the time it has got to
execute its attack and other considerations. We chose those parameters for a security of over a hundred bits
for reasonable applications.
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A Review of the [ALS16] Schemes

In this section, we review the DCR-based and the LWE-based single-input FE schemes of [ALS16].

A.1 A Review on Single-Input FE based on DCR

In this section, we recall the single-input functional encryption scheme based on Paillier, proposed by Agrawal
et al. [ALS16]. Their construction is presented in Fig. 16 which is mainly based on the idea of [BCP03,CS03].
Bresson et al. [BCP03] present a public key cryptosystem with two trapdoors: one is λ which needs the
knowledge of the factorization of N , and the second trapdoor is the secret key which makes the decryption
possible without knowing λ. The security of this scheme is based on a variant of the DDH assumption over
Z∗N2 . Agrawal et al. extended this idea to cyclic subgroups of 2N residues modulo N2 to design a secure
functional encryption system based on the DCR assumption. They showed that the decryption algorithm
based on the second trapdoor can be adopted to the FE setting by having functional secret keys (instead of
the secret key in public-key setting [BCP03]).

The use of cyclic group of 2N residues modulo N2 (instead of the quadratic residues group in [BCP03])
and the DCR assumption makes it possible to ensure that secret keys do not leak sensitive information in FE
case [ALS16].

Remark A.1 (A note on the space and distribution of master secret key). The master secret key is sampled
from Z through a Gaussian sampler. This can guarantee the correctness and the security as well. More
precisely, everyone holding the secret key and ciphertext should be able to compute the value C mod N2

and it means that sk has to be given over Z or modulo any multiple of λ (due to the fact that the order of g
is λ and ct−sk

0 = ctsk mod λ
0 mod N2). Having sk modulo λ can leak the value of λ through different secret

key queries and it means that anyone can directly decrypt the ciphertext to get the plain message x in a
similar way to [Pai99] or [BCP03] based on the first trapdoor. Thus, the value sk cannot be given modulo
k · λ for an arbitrary k ∈ Z. Moreover, during the security proof, it is required that the master secret key is
defined over the same set that sk is defined (since the distribution of the master secret key in the view of the
adversary is conditioned on the secret key values). Putting it all together, the master secret key s should be
sampled from the set Z and Gaussian distribution is a good candidate for this sampling. In fact, based on its
density function if the standard deviation is noticeably larger than N , then it seems like uniform distribution
modulo N and this fact is used in the security proof. In [BJL16], a special case of MCFE is considered where
there is just one functional-key y = (1, . . . , 1). For this special case one can expect to have the functional-key
modulo λ. And so the master secret-key is uniformly sampled from Zλ.
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Setup(1κ, n) :

Run SP(κ) to get safe-primes p, q.
Compute N = pq

Sample g′ R← Z∗N2

Compute g = g′2N mod N2.
Return pp = (N, g)
KeyGen(pp) :

Sample s← DZn,σ where DZn,σ

is the Gaussian distribution of

standard deviation σ >
√
κ ·N5/2.

Compute hi = gsi mod N2.

Return
{

mpk = {hi}i∈[n]

msk = s

Enc(pp,mpk,x) :

For vector x ∈ Zn with ||x||∞ ≤ X <
√
N/n:

Sample r R← {0, . . . , [N4 ]}.

Compute
{

ct0 = gr mod N2,

cti = (1 +N)xi · hri mod N2

Return ct = (ct0, {cti}i)
KeyDer(pp,msk,y) :

For vector y ∈ Zn with ||y||∞ ≤ Y <
√
N/n:

Compute sky = Σiyi.si over Z
Return sky
Dec(pp,mpk,y, sk, ct) :

Compute C =
∏
i

ctyii · ct−sk
0

Return C − 1 mod N2

N

Fig. 16: Single-input FE based on the DCR assumption [ALS16]

A.2 A Review on Single-Input FE based on LWE

Agrawal et al. [ALS16] proposed a single-input FE based on the LWE problem which is shown in Fig. 17.
In this construction P = {0, . . . , P − 1}n and V = {0, . . . , V − 1}n are respectively the message and the key
space associated with secret keys, for integers P, V . The inner product between message and key vectors
belongs to {0, . . . ,K − 1} with K = nPV and the prime modulus q is significantly larger than K. With this
construction, inner-product is evaluated over Z and the decryption algorithm is completely efficient. Their
single-input FE scheme is secure under a new hardness assumption named mheLWE. They also proved a
reduction from LWE to mheLWE. Their construction is reminded through Fig. 17.
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Setup(1n0 , n) :

Set integers m0, q ≥ 2
K = nPV and α ∈ (0, 1).

Sample A R← Zm0×n0
q

Return
pp = (A,m0, q, α,K, P, V )
KeyGen(pp) :

Sample Z R← τ where
τ is a special distribution
over Zn×m0 .
Compute U = Z ·A.
Return mpk = U and msk = Z.

Enc(pp,mpk,x) :

To encrypt the vector x ∈ P:

Sample s R← Zn0
q , e0

R← Dm0
Z,αq and e1

R← DnZ,αq.

Compute
{

ct0 = AT · s + e0 ∈ Zm0
q ,

ct1 = U · s+ e1 +
⌊
q
K

⌋
· x ∈ Znq

Return ct = (ct0, ct1)
KeyDer(pp,msk,y) :

To generate a secret key for the vector y ∈ V:

Compute sky = yT · Z ∈ Zm0

Return sky
Dec(pp,mpk,y, sk, ct) :

Compute µ′ = 〈y, ct1〉 − 〈sk, ct0〉 mod q

Return µ ∈ {−K + 1, . . . ,K − 1} that

minimizes |b q
K
c · µ− µ′|.

Fig. 17: Single-input FE based on LWE assumption [ALS16]
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