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Abstract

In multi-client functional encryption (MC-FE) for predicate queries, clients generate ciphertexts
of plaintexts xi,...,x, binding with a time period T and store them on a cloud server, and the cloud
server receives a function key corresponding to a predicate f from a trusted center and learns whether
f(x1,...,x,) = 1 or not by running the decryption algorithm on the multiple ciphertexts of the same time
period. MC-FE for predicates can be used for a network event or medical data monitoring system based
on time series data gathered by multiple clients. In this paper, we propose efficient MC-FE schemes that
support conjunctive equality or range queries on encrypted data in the multi-client settings. First, we pro-
pose an efficient multi-client hidden vector encryption (MC-HVE) scheme in bilinear groups and prove
the selective security with static corruptions. Our MC-HVE scheme is very efficient since a function key
is composed of four group elements, a ciphertext consists of O(¢) group elements where ¢ is the size of
a plaintext, and the decryption algorithm only requires four pairing operations. Second, we propose an
efficient multi-client range query encryption (MC-RQE) scheme and prove the selective weak security
with static corruptions. Our MC-RQE scheme which uses a binary tree is efficient since a ciphertext
consists of O(logD) group elements and a function key consists of O(nlogD) group elements where D
is the maximum value of a range.
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1 Introduction

Functional encryption (FE) for predicate queries is a generalization of public-key encryption that can per-
form queries on encrypted data [14,)27]. In FE for predicates, a sender creates a ciphertext CT by encrypting
an input x, and then a receiver who has a function key SKy associated with a predicate f can check whether
f(x) =1 or not by running the decryption algorithm without revealing the input x. FE for predicates can be
viewed as a special type of general functional encryption (FE) that allows a function key holder to compute
a specific function f(x) on encrypted data without learning anything else about x [12]. FE for predicates
can be widely used in situations where querying for encrypted data is required while preserving the privacy
of original data such as network log auditing, payment gateway, email filtering, and so on. An initial study
on FE for predicate queries began by supporting the equality query on encrypted data [[10]. In addition,
it has been shown that an FE scheme that supports arbitrary circuits can be constructed by using indistin-
guishability obfuscation at the theoretical level and this FE scheme also can be an FE scheme for arbitrary
predicates [19].

In FE for predicates, many clients can generate ciphertexts by using public parameters since it is a
public-key system, but the decryption algorithm of FE for predicates can only handle one ciphertext per
each operation [[14,27]]. If the decryption algorithm can process the query operation on a large number
of ciphertexts rather than a single ciphertext, it would be possible to apply FE for predicates to a wider
range of applications. One possible application is a network monitoring system that detects risks based on
data gathered from multiple network devices. In this case, the distributed network devices independently
encrypt the collected data and store the encrypted data in a cloud server. Then, the cloud server queries the
abnormal behavior based on the gathered encrypted data for monitoring. For this kind of applications, we
can construct a multi-client functional encryption (MC-FE) scheme for predicate queries by using previous
MC-FE schemes. However, the previous MC-FE schemes have some problems such that they are based
on inefficient indistinguishability obfuscation [22]] or they only support a limited number of function key
queries because of inner product operations [17].

We would like to build an efficient MC-FE scheme for predicate queries in which multiple clients gen-
erate ciphertexts independently and the decryption algorithm can proceed on these multiple ciphertexts. As
pointed out above, we can use the MC-FE scheme that supports arbitrary circuits, but this scheme is inef-
ficient due to indistinguishability obfuscation. We can consider extending a previous predicate encryption
(PE) scheme to an MC-FE scheme for predicate queries, but it is not easy for the decryption algorithm to
process multiple ciphertexts in a single decryption operation because of independent random values in ci-
phertexts. One possible idea for designing an efficient MC-FE scheme for predicate queries is to modify
a hidden vector encryption (HVE) scheme, which is a special PE scheme that supports conjunctive equal-
ity [[14]], to support multiple clients. Kamp et al. [41]] proposed the first MC-HVE scheme in bilinear groups
by following this approach. However, their MC-HVE scheme is inefficient because the number of pairing
operations linearly depends on the number of clients and the number of messages, and the security of their
scheme is only proven in the generic group model. Thus, it is an interesting problem to build an efficient
MC-HVE scheme with reduction proof under reasonable assumptions or to propose an efficient MC-FE
scheme for more expressive predicate queries.

Recently, Chotard et al. [17] proposed an MC-FE for inner product (MC-FE-IP) scheme that supports
inner product operations on encrypted data. Since HVE is a special form of FE and Katz et al. [27]] pro-
posed a transformation from an inner product predicate encryption (IPE) scheme into an HVE scheme, one
can try to construct an MC-HVE scheme from an MC-FE-IP scheme. However, it is not easy to build
an MC-HVE scheme from an MC-FE-IP scheme since their transformation only works for IPE, not FE-



IPEI The reason is that an MC-HVE scheme derived from an MC-FE-IP scheme exposes the inner prod-
uct results in the decryption process and an attacker can distinguish a challenge ciphertext by using the
exposed partial information of ciphertexts if he can obtain enough function keys. A detailed attack is de-
scribed as follows: Let xg,x; be challenge messages and y;,y, be function attributes of HVE such that
x0,Xx1 & {y1,y2}. By applying the transformation of Katz et al., the challenge message x, is encoded into
(rxp, —r) where r is random and the function attributes y,y, are encoded into (1,y;) and (1,y,) respec-
tively. An adversary can obtain g’»1) and g"»=»2) by decrypting the challenge ciphertext with two
function keys. Next, the adversary derives g"1 ) and distinguishes the challenge ciphertext by checking
whether (g’(/“*”))(x‘)*y 1)/01=32) = g"(%=31) or not. Thus the adversary can easily break the security of this
method with two function keys. Note that function key queries for y; and y, are allowed in HVE since
f(x0) = 0= f,(x1) by the definition fy(x) = 0 if x # y, but function key queries for (1,y;) and (1,y,) are
not allowed in FE-IP since f( ,,)((rxo, —7)) = ((rx0, =), (1,y:)) # ((rx1, =), (1,3:)) = fi1,y,) ((rx1,—7)).
Recall that FE-IP avoid this subtle issue by limiting the number of independent function key queries in the
security model. Unlike FE-IP, FE for predicate queries only reveals O or 1 in the decryption process, so it
is allowed for the attacker to request many independent function keys for a predicate f with the constraint
f(X5) = f(X;) € {0,1} where X, X; are challenge message vectors. Therefore, it is difficult to design an
MC-HVE scheme that can allow many independent function keys by using an MC-FE-IP scheme.

1.1 Our Results

In this work, we propose efficient MC-FE schemes that support conjunctive equality or range queries and
prove the selective security of the proposed schemes. Our results are summarized as follows.

Multi-Client Hidden Vector Encryption. We first propose an efficient and secure multi-client hidden vec-
tor encryption (MC-HVE) scheme that supports conjunctive equality queries in asymmetric bilinear groups.
In MC-HVE, each ciphertext is associated with a message vector X; = (x; 1, ... W Xi, ¢) with a time period T and
a function key is associated with function attributes ¥ = (¥,...,¥,) where ¥; = (yi1,...,yi¢). A conjunctive
equality predicate for ciphertexts with the same time period and a function key outputs 1 if x; ; = y; ; for
all 7 and j except wildcard positions. Our MC-HVE scheme is very efficient than the previous MC-HVE
scheme of Kamp et al. [41]] because the decryption algorithm requires only four pairing operations and a
function key consists of just four group elements. Our MC-HVE scheme is proven to be selectively secure
with static corruptions in the random oracle model. Note that it provides the selective strong security that
allows an attacker to query any function key for a predicate f that satisfies f(Xj) = f(X;) where X, X; are
challenge message vectors. Additionally, our MC-HVE scheme can be proven without random oracles if the
maximum value of a time period is limited to a polynomial value by increasing the size of public parameters.
Furthermore, our MC-HVE scheme also can be extended to support more expressive queries by following
the HVE encoding method of Boneh and Waters [|14].

Multi-Client Range Query Encryption. Next, we propose a multi-client range query encryption (MC-
RQE) scheme that supports conjunctive range queries on multiple ciphertexts by combining a binary tree
with the simple version of our MC-HVE scheme. The simplest way to support range queries is to apply the
HVE encoding method of Boneh and Waters [|14]] to the MC-HVE scheme. However, this encoding method
is inefficient since a ciphertext is composed of O(nD) group elements where 7 is the number of clients and D
is the maximum value of the range. In contrast, our MC-RQE scheme is more efficient because a ciphertext

'IPE and FE-IP are similar in that a ciphertext is associated with an attribute vector ¥ and a function key is associated with an
attribute vector ¥, and decryption is related to the inner product operation (X,y). However, the decryption of IPE outputs a binary
value indicating that (¥,¥) = 0 or not, whereas the decryption of FE-IP outputs the inner product value (¥,¥) itself.



is composed of nlog D group elements and a function key is composed of O(nlogD) group elements. We
prove that our MC-RQE scheme provides the selective security with static corruptions under well-known
static assumptions in the random oracle model. Our MC-RQE scheme only achieves the selective weak
security which allows for an attacker to query any function key satisfying f(X;) = f(X;) =0.

1.2 Our Techniques

In order to design a private-key HVE scheme, we can consider a simple method that encrypts plaintexts
by using a pseudo-random function (PRF). However, this PRF-based construction has a problem such that
the additional information of plaintexts is leaked because the outputs of PRF on the same plaintexts are the
same. To solve this leakage problem, we introduce additional random values and combine them with a cyclic
group to form a ciphertext as (g’,g/") and a function key as (v/",v") after calculating f = PRF(z,x) for a
message x. However, when this method is extended to support multiple clients, it is not easy to check the
equality of a message in a ciphertext and an attribute in a function key since individual clients use different
random exponents ¢; and £;.

To overcome this problem of extending the simple HVE scheme to support multiple clients, we use a
method of using a hash function H to synchronize the random values of all clients. For example, two clients
generate ciphertexts H(7')/t and H(T)/?, respectively for a time period T, and a center generates a function
key (v/1+2)r vy where f; = PRF (z1,x1) and f» = PRF (z2,x2). In this case, even though two clients per-
form encryption independently, they are forced to use the same random element H(7T') = g'. In addition, we
modify the function key of this MC-HVE scheme to include additional random values to prove the (strong)
security under static assumptions. That is, the ciphertexts are formed as (H(T)/',H (T)W/H JH (T)W,'l),
(H(T)",H(T)"21H(T)"22) respectively, and the function key is formed as (v\/iT/2)n WEWS VT V2 yT3)
where w; = U RRAR Wy = W22 and ri,ra,r3 are random values. The details of our design principle
are given in Section|3.1

The idea of designing an MC-RQE scheme that supports efficient range queries is to express the range of
values using a binary tree. That is, the value of a range is represented by the path of a binary tree, and a range
is represented by the minimum set of internal nodes that cover all leaf nodes corresponding to the range in
the binary tree. At this time, each node of the binary tree is set to be associated with the ciphertext and the
function key elements of the simple version of our MC-HVE scheme. In addition, we modify this scheme
to apply a secret sharing scheme to prevent collusion attacks that derive a new function key by combining
different function keys.

1.3 Applications

Secure Network Event Monitoring. Hacking attacks on computer systems tend to change from simple
attacks targeting a single system to wide-scale organized attacks targeting multiple systems. Thus, it is
difficult to grasp such recent network hacking attacks by only monitoring the events of an individual network
system. It is necessary to collect information from many network devices and judge a hacking event on the
basis of the collected information [32]]. One possible solution is for network devices of many companies
to collect information at each time period and entrust it to an external security surveillance cloud server.
This cloud server can then analyze the collected information to identify hacking attacks. In this case, these
companies want to maintain the privacy of the network information they gathered because they do not trust
the external surveillance cloud server. By using efficient MC-HVE or MC-RQE scheme, it is possible to
build a secure network event monitoring system which allows the cloud server to monitor the network status
while preserving the privacy of the information collected by individual devices.



Privacy-Preserving Medical Data Monitoring. With the development of small medical devices, it is
possible to collect medical data of a patient by using these devices that monitor various types of medical
information [33|]. To diagnose the medical condition of the patient, medical devices collect specialized
medical data and store this data in a central cloud server managed by a hospital. The cloud server can then
monitor the periodic status of the patient or determine an emergency situation based on the medical data
collected by the devices of each patient. However, patients do not want their personal medical data to be
exposed for privacy reason. One method to perform health monitoring with ensuring privacy is to use an
efficient MC-HVE or MC-RQE scheme. That is, medical devices of a patient periodically store encrypted
medical data in a cloud server, and the cloud server performs a query operation on the encrypted data to
check the current status of the patient.

1.4 Related Work

Searchable Encryption. Searchable symmetric encryption (SSE) is symmetric-key encryption that allows
a data owner to outsource encrypted data to a cloud server and then allow keyword searches on the encrypted
data. A practical SSE scheme for keyword searches on encrypted data was first proposed by Song et al. [40]].
Later, an extended SSE scheme that supports conjunctive keyword searches was proposed by Golle et al.
[23]]. To improve the performance of search queries, Cash et al. [[16] proposed a highly efficient SSE scheme
that can handle a large database with supporting conjunctive search queries. A multi-client SSE scheme
was presented by Curtmola et al. [[18]] which one client outsources the encrypted data to a cloud server and
other clients can submit search queries on the encrypted data. Although the previous SSE schemes are very
efficient, most SSE schemes have additional leakage. Cash et al. [[15] presented leakage-abuse attacks on
most SSE schemes and showed the danger of many SSE schemes. Recently, Lai et al. [28] proposed an
SSE scheme that combines a symmetric-key HVE scheme with Bloom filter indexing to support conjunctive
keyword searches with reduced leakage.

Functional Encryption. Functional encryption (FE) is a generalization of public-key encryption that allows
fine grained control on disclosure of encrypted data. In FE, a ciphertext CT is associated with an input x,
a function key SK is associated with a function f, and decryption outputs f(x) but nothing else about x
is revealed. The concept of FE was introduced by Boneh, Sahai, and Waters [[12,/13]] and they showed that
public-key cryptographic primitives such as identity-based encryption (IBE) [11]], attribute-based encryp-
tion (ABE) [26}35]], and predicate encryption (PE) [14}27] are special cases of F The first FE scheme
for general circuits was proposed by Garg et al. [19] by using indistinguishability obfuscation, public-key
encryption, and non-interactive zero-knowledge proof. In the bounded collusion model, FE for general cir-
cuits can be constructed from public-key encryption or identity-based encryption [6,24,34]. By extending
the concept of FE, Goldwasser et al. [22] proposed a multi-input functional encryption (MI-FE) scheme
that handles multiple ciphertexts in a single decryption process and a multi-client functional encryption
(MC-FE) scheme that performs the decryption on multiple ciphertexts generated by multiple clients with
the same label. Recently, efficient FE schemes that support inner products and quadratic functions were
proposed [2,5/7,/8]]. These FE schemes for inner products and quadratic functions also can be extended to
the multi-input and multi-client settings [|1,/3,4}7,/17,30].

Predicate Encryption. A special type of functional encryption is predicate encryption (PE) in which a
ciphertext is associated with an input x = (v,m) where v is a hidden attribute and m is a message, and a

ZFor instance, if a ciphertext is associated with an input x = (@,m) where @ is an access policy and m is a message, a function
key is associated with a function f; for an attribute u such that the function f;, is defined as f,,((¢,m)) := m if and only if @(u) =1,
then this FE is ciphertext-policy ABE.



function key is associated with a predicate f, and decryption outputs the message m if f(v) =1 is satis-
fied. Predicate-only encryption (POE) is a specific form of PE in which a binary value f(v) € {0,1} is only
revealed in the decryption process. PE was originally devised for public-key searchable encryption, and
anonymous IBE is one of the simplest PE [[10]. Boneh and Waters [14] introduced the concept of hidden
vector encryption (HVE) that supports conjunctive equality queries with a wildcard character and proposed
an efficient HVE scheme in bilinear groups. Katz et al. [[27]] proposed an inner-product predicate encryption
(IPE) scheme that supports more expressive inner product queries. After that, various PE schemes have
been proposed to provide better efficiency or additional functionality [9}294/36L39]]. Shi et al. [37] proposed
a multi-dimensional range query on encrypted data (MRQED) scheme that supports efficient conjunctive
range queries, and showed that it provides weak attribute hiding security, named the match-revealing secu-
rity. Later, Lu [31] proposed a symmetric-key PE scheme for range queries that provides strong attribute
hiding security. Gay et al. [20] showed that an MRQED scheme can be built in lattices. Gorbunov et al. [25]
showed that it is possible to design a PE scheme that supports arbitrary circuits using lattices, but it only
guarantees weak attribute hiding security. Recently, Kamp et al. [41] proposed a multi-client HVE (MC-
HVE) scheme that supports conjunctive equality queries on multiple clients and analyzed its security in the
generic group model.

2 Preliminaries

In this section, we first define asymmetric bilinear groups, complexity assumptions, and pseudo-random
functions. Next, we define the syntax and the security of multi-client functional encryption for predicates.

2.1 Bilinear Groups

A bilinear group generator G takes as input a security parameter A and outputs a tuple (p, G, G,Gr, e) where
p is arandom prime and G, G, and Gt be three cyclic groups of prime order p. Let g and ¢ be generators of
G and G, respectively. The bilinear map e : G x G — G has the following properties:

1. Bilinearity: Yu € G,V9 € G and Va,b € Z,, e(u®, ") = e(u,9)®.
2. Non-degeneracy: Jg € G, $ € G such that ¢(g, 8) has order p in Gr.

We say that G,G,Gr are asymmetric bilinear groups with no efficiently computable isomorphisms if the
group operations in G, G, and G7 as well as the bilinear map e are all efficiently computable, but there are
no efficiently computable isomorphisms between G and G.

2.2 Complexity Assumptions

We introduce two complexity assumptions in asymmetric bilinear groups. The symmetric external Diffie-
Hellman (SXDH) assumption is that the decisional Diffie-Hellman (DDH) assumption holds in two cyclic
groups G, G in asymmetric bilinear groups. The asymmetric 3-party Diffie-Hellman (A3DH) assumption is
the asymmetric bilinear group version of the composite 3-party Diffie-Hellman (C3DH) assumption, which
was introduced by Boneh and Waters [[14] to prove the security of their HVE scheme in composite order
bilinear groups. The generalization of this C3DH assumption was used to prove the security of predicate
encryption schemes [36,39].



Assumption 1 (Symmetric eXternal Diffie-Hellman, SXDH). Let (p,G,@,GT,e) be a bilinear group ran-
domly generated by G (1’1). Let g,¢ be random generators of G, G respectively. The decisional Diffie-
Hellman (DDH) assumption in G is that if the challenge tuple

D= ((P7G7G7GT,€)7g,ga,gb,§> and Z

are given, no probabilistic polynomial-time (PPT) algorithm A can distinguish Z = Zy = g from Z = Z; =
g¢ with more than a negligible advantage. The advantage of A is defined as Adv5”? (1) = ’Pr[A(D,Zo) =
0] — Pr[A(D,Z;) = 0]| where the probability is taken over random choices of a,b,c € Z,. The SXDH
assumption is that the DDH assumption holds in both G and G.

Assumption 2 (Asymmetric 3-party Diffie-Hellman, A3DH). Let (p,G, G,Gr, e) be a bilinear group ran-
domly generated by g(ll). Let g, 4 be random generators of G, G respectively. The A3DH assumption is
that if the challenge tuple

D= ((p,G,G,Gr,e),8.8° 8" .88 8.8",8") and Z

are given, no PPT algorithm A can distinguish Z = Zy = g¢ from Z = Z; = g? with more than a negligible
advantage. The advantage of A is defined as Adv’{”" (1) = | Pr[A(D,Zy) = 0] — Pr[A(D,Z;) = 0] | where
the probability is taken over random choices of a,b,c,d € Z,.

2.3 Pseudo-Random Function

A pseudo-random function (PRF) is an efficiently computable function F : K x X — ) where K is the key
space, X is the domain, and ) is the range. Let F(k,-) be an oracle for a uniformly chosen k € K and f(-)
be an oracle for a uniformly chosen function f : X — ). We say that a PRF is secure if for all efficient
adversaries A the advantage Adv5{*" (1) = ’Pr[.AF(k") = 1] —Pr[A/0) = 1| is negligible.

2.4 Multi-Client Functional Encryption for Predicates

Multi-client functional encryption (MC-FE) for predicates is a symmetric-key version of multi-input func-
tional encryption (MI-FE) introduced by Goldwasser et al. [22] in which each client holds an encryption
key, a ciphertext is additionally associated with a time period, and the output of a function f is restricted to
be {0,1}. A system that uses an MC-FE scheme for predicates consists of a trusted center that generates
function keys, a number of clients that create ciphertexts on plaintexts, and a cloud server that performs
decryption operations on encrypted plaintexts. First, the trusted center performs the setup algorithm to gen-
erate a master key MK, each encryption key EK; for each client, and the public parameter PP. Each client
generates a ciphertext CT; by encrypting a message x; for a time period 7 and transmits the ciphertext to the
cloud server. The cloud server receives a function key SKy for a predicate f from the trusted center. If the
ciphertexts CTy,...,CT, sent by the clients are generated at the same time period 7', then the cloud server
can obtain f(xj,...,x,) € {0,1} by running the decryption algorithm. The detailed syntax of the MC-FE
scheme for predicates is described as follows.

Definition 2.1 (Multi-Client Functional Encryption for Predicates). A multi-client functional encryption
(MC-FE) scheme for predicates consists of four algorithms Setup, GenKey, Encrypt, and Decrypt, which
are defined as follows:

Setup(1*,n). The setup algorithm takes as input a security parameter A and the number of clients n. It
outputs a master key MK, encryption keys EK|,...,EK, for all clients, and public parameters PP.



GenKey(f,MK,PP). The function key generation algorithm takes as input a predicate f, the master key
MK, and public parameters PP. It outputs a function key SK.

Encrypt(x;, T, EK;, PP). The encryption algorithm takes as input a message x;, a time period 7', an encryp-
tion key EK; for a client index i, and public parameters PP. It outputs a ciphertext CT; 7.

Decrypt(CT\ 7,...,CT, r,SKs, PP). The decryption algorithm takes as input ciphertexts CTy 7,...,CT, r
for the same time period 7" which are associated with messages X = (xy,...,x,), a function key SK
for a predicate f, and public parameters PP. It outputs f(X) € {0,1}.

The correctness property of the MC-FE scheme for predicates is defined as follows: For all MK, EK, ..., EK,,
PP generated by Setup, any SK; generated by GenKey for any predicate f, and all CT; 7,...,CT, 7 gen-
erated by Encrypt for any list of messages X = (xy,...,x,) with the same time period T, it is required
that

* Decrypt(CT 7,...,CT,r,SKs, PP) = f(X) except with negligible probability.

We define the selective security model with static corruptions of MC-FE for predicates by following
the security model of MC-FE defined by Goldwasser et al. [22]. In this security model, an attacker first
specifies corrupted clients and all challenge ciphertext queries in which each ciphertext query is specified
by two challenge messages Xy, X and a challenge time period 7', and then it receives the encryption keys of
corrupted clients and public parameters. After that, the attacker can query a function key for a predicate f
with a constraint f(Xo) = f(X1). And the attacker also queries a challenge ciphertext for challenge messages
Xo,X1 and a time period T that were submitted initially and receives challenge ciphertexts that are the
encryption of one of the two challenge messages. Finally, if the challenge message is correctly guessed, the
attacker wins this game. The detailed definition of this selective security is described as follows.

Definition 2.2 (Selective Security). The selective multiple-challenge IND-security with static corruptions of
an MC-FE scheme for predicates is defined in the following experiment EXPff “IND(}) between a challenger
C and a PPT adversary A:

1. Init: A initially submits the set of corrupted client indexes I C {1,...,n}. Let I = {1,...,n}\1 be
the set of uncorrupted client indexes. A additionally submits all challenge ciphertext queries. Each
challenge ciphertext query is specified with two challenge messages Xo = {x0,}icr, X1 = {x1,i}ier,
and a challenge time period 7" with the restriction that the time period should be distinct between each
query. C flips a random coin p € {0,1}.

2. Setup: C generates a master key MK, encryption keys EKj,...,EK,, and public parameters PP by
running Setup(1*,n). It keeps MK, {EK;}ic; to itself and gives PP, {EK;},; to A.

3. Query & Challenge: A adaptively requests function keys or challenge ciphertexts. C handles these
queries as follows:

* If this is a function key query for a predicate f with the restriction that f(Xo,-) = f(Xi,-) for
each challenge Xy, X, then C gives a function key SKy to A by running GenKey(f,MK, PP)
where - indicates the messages of corrupted clients.

* If this is a challenge ciphertext query for challenge messages Xy, X, and a time period 7T that
were already submitted in the initialization step, then C gives challenge ciphertexts {CT; r} to A
by running Encrypt(x, ;, T, EK;, PP) for each i.

9



4. Guess: A outputs a guess tt’ € {0,1} of u. C outputs 1 if u = p’ or 0 otherwise.

An MC-FE scheme for predicates is selectively IND-secure with static corruptions if for all PPT adversary
A, the advantage of A defined as Advf "VP(1) = ’ PrEXPS{™MP(1) = 1] - %’ is negligible in the security
parameter A.

Handling multiple challenge ciphertexts in the selective security proof is rather complicated. To facilitate
the proof of the selective security, we define the selective single-challenge security that considers single-
challenge ciphertext. Fortunately, it is known through existing studies that the single-challenge security and
the multiple-challenge security are the same by using a simple hybrid argument [|1,22].

Definition 2.3 (Selective Single-challenge Security). The selective single-challenge IND-security with static
corruptions of an MC-FE scheme for predicates is defined in the following experiment EXPff'l'IND (1)
between a challenger C and a PPT adversary A:

1. Imit: A initially submits the set of corrupted client indexes I C {1,...,n}. Let I = {1,...,n}\1 be
the set of uncorrupted client indexes. A also submits two challenge messages X; = {xa,-}ia and
X{ = {x{ ;}ies, and a challenge time period 7*. C flips a random coin p € {0,1}.

2. Setup: C generates a master key MK, encryption keys EKj,...,EK,, and public parameters PP by
running Setup(1*,n). It keeps MK, {EK;}ic; to itself and gives PP, {EK;},.; to A.

3. Query: A adaptively requests function keys or ciphertexts. C handles these queries as follows:

« If this is a function key query for a predicate f with the restriction that f(Xj,-) = f(X;,-), then
C gives a function key SK to A by running GenKey(f, MK, PP) where - indicates the messages
of corrupted clients.

» If this is a ciphertext query for a client index i € I, a message x;, and a time period 7" with the
restriction that 7' # T, then C gives a ciphertext CT; r to A by running Encrypt(x;, T, EK;, PP).

4. Challenge: C gives challenge ciphertexts {CT; 1+ }ics to A by running Enerypt(x;, ;, 7", EK;, PP) for
eachiel

5. Query: A additionally requests function keys or ciphertexts. C handles these queries in a similar way
to the previous query step.

6. Guess: A outputs a guess 1’ € {0,1} of p. C outputs 1 if 4 = ' or 0 otherwise.

An MC-FE scheme for predicates is selectively single-challenge IND-secure with static corruptions if for
all PPT adversary A, the advantage of A defined as Adv5f VP (1) = ’Pr[EXPff‘”N bay=1]- %‘ is
negligible in the security parameter A.

Remark 1. An MC-FE scheme for predicates is selectively single-challenge weak IND-secure with static
corruptions if each function key query for a predicate f is restricted to f(X;) = f(X;) =0.

3 Multi-Client Hidden Vector Encryption

In this section, we present an efficient MC-HVE scheme in asymmetric bilinear groups and analyze the
security of our scheme under static assumptions.
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3.1 Design Principle

To understand the design principle of our MC-HVE scheme, we consider a simple example in which two
clients encrypt messages x; and xp, respectively. We first note that an MC-HVE scheme is a private-key
setting since each client uses an independent encryption key. A simple method to achieve a conjunctive
equality operation in the symmetric-key setting is to use a pseudo-random function (PRF). That is, individual
clients encrypt messages x1,xz as fi = PRF(z;1,x1), f» = PRF(z,x;) by using a PRF and encryption keys
71,22, and a trusted center generates a function key for the list of attributes Y = (y1,y2) as fy = fi+ f2 =
PRF(z1,y1) + PRF (z2,y2). In this case, it is easy to check the conjunctive equality of PRF values by simply
comparing the PRF values. However, this method has a problem such that ciphertexts leak the partial
information of messages since the outputs of the PRF are deterministic. In addition, it is uncertain how to
bind a ciphertext with a time period T to prevent mix-and-match attacks.

In order to solve the partial information leakage problem, the PRF values should not be directly exposed
to an attacker, and the ciphertexts should be randomized by including additional random values. To do this,
we introduce a cyclic group G and form ciphertexts for each client as (g, g/1') and (g, g/*") in which the PRF
values are placed in the exponent of an element g € G and an additional random exponent ¢ is multiplied. If
the DDH assumption holds in the cyclic group, then these ciphertexts do not reveal the partial information
since these elements are not distinguished from random elements. A function key can also be constructed in
the form of (v(/1*/2)" ") using an additional random exponent r to prevent partial information leakage. The
problem of this method is that the handling of conjunctival equality queries is difficult since ciphertexts and
function keys are randomized. Fortunately, if an asymmetric bilinear group is used, it is possible to compute
e(g WWithry = ¢(glit2) v to check whether the conjunctive equality is satisfied or not.

However, in the multi-client setting, two clients generate ciphertexts by using different random expo-
nents #; and f, rather than the same random exponent 7. Because of this different randomness, it is difficult
to perform the conjunctive equality query by using the pairing operation since the exponent values fi#; and
Jata are not aggregated into (f + f2)(f1 +12). To overcome this problem, we adopt the method of using
a hash function which was used to build a synchronized aggregate signature scheme [21]] and to design a
privacy-preserving data aggregation scheme [38]]. That is, a hash value H(T') for a time period T is used to
create a ciphertext instead of using g’. In this case, client ciphertexts consist of H(7')/1, H(T)”> and a func-
tion key has the same form as before (v\/1+/2)" y"). Here, two clients can agree the same random element
by computing H(T) for the same time period 7', and the attacker cannot obtain the partial information of the
message without solving the discrete logarithm of H(T) = g'.

In the above construction, if the attacker does not request function key queries, then the construction
can be secure because the structure of ciphertexts is related to the DDH assumption. However, it is not
easy to prove the security of the above construction in the selective security model since an attacker can
query not only non-matching function key queries but also matching function key queries. In particular, in
the security model, the attacker is allowed to query on an arbitrary predicate f satisfying f(X;) = f(X}).
That is, not only the non-matching function key query of f(X;) = f(X;) = 0 but also the matching function
key query of f(X;) = f(X;) = 1 should be allowed. To prove the selective security, we modify the above
construction to include additional two random exponents in a function key. That is, a function key is formed
as (vUIHRmy2ywls vy v73) and two ciphertexts of clients are formed as (H(T)/1, H (T, H(T)"12)
and (H (T, H(T)"21,H(T)"22) where w; = v"11%21 and w, = y"127"22_ This method of adding additional
random exponents to the function key is widely used in the construction of previous HVE schemes [14,29,
39]. Specifically, we use the proof technique of Shi and Waters [39]], used for the construction of an efficient
delegatable HVE scheme, by associating two random exponents ry,r3 in a correlated way to handle the
matching function key queries in the security proof.
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3.2 Predicate for Conjunctive Equality with Wildcards

Let X be a finite set of attributes and let * be a special symbol not in £. We define £, = XU {*} where the star
% plays the role of a wildcard character. Let Y = (¥, ...,¥,) be a list of vectors where ¥; = (yi1,...,yis) € X
and X = (¥1,...,X,) be a list of vectors where X; = (x;1,...,X;¢) € xf. We define a predicate fy over X<
for conjunctive equality with wildcards as

. 1 if(xi’j:yi’j)\/(y@j:*) foralli e [n},jE [ﬁ]
fr(X) _{ 0 otherwise.

3.3 Construction

Let PRF be a pseudo-random function. Our MC-HVE scheme that supports conjunctive equality queries
with wildcards is described as follows.

MC-HVE.Setup(1*,n): Let A be the security parameter and n be the number of clients. It first obtains a
bilinear group (p,G,G,Gr,e) of prime order p by running G(1*). Let g, § be random generators of
G,G respectively. It chooses random PRF keys {z;}”" ; and a random element ¥ € G. It selects random
exponents {@;p, 60,72}12 , and calculates @) = Y/_; @; 1,02 = Y @;». It selects a hash function
H :{0,1}* — G from the family of hash functions. It outputs a master key MK = ({zl}l MATES

O Wy = \9“’2), encryption keys {EK,' (zi, @51, @ 2)} for all clients, and public parameters

PP = ((p,G,@,GT,e),g,g,n,ﬁ,H>.

MC-HVE.GenKey(Y, MK,PP): LetY = (¥1,...,y,) where y; = (yi.1,...,yi¢) € Lt and MK = ({z;}",, ¥,
Wi, W2). It first derives z; j = PRF (z;, j) for all i and j. Let S be the set of index tuples (i, j) that are
not wildcard positions in Y. It calculates fy = Y.(; jjcs PRF (zi j,yi,;) by using MK. It chooses random
exponents ry,r2,r3 € Z, and outputs a function key by implicitly including the wildcard positions of
Y as

SKy = (Ko = ﬁfY"‘WEZW;'g? Ky =V" Ky =V"? K3 = ‘73)-
MC-HVE.Encrypt(¥;, T,EK;,PP): Let X; = (xi1,...,Xi¢) € ¥ and EK; = (z;, w;1,0;7) for a client index

i. It first derives z; ; = PRF (z;, j) for all j € [¢]. It calculates f; ; = PRF(z; j,x; ;) for all j € [¢]. Tt
outputs a ciphertext by implicitly including i and T as

Clir = ({Cija = H(T)W}_,, Ga = H(T)™, Ciz = H(T)*?).

MC-HVE.Decrypt(CT\ 7,...,CT, r,SKy,PP): Let CT; 7 = ({C;, 1}J 1,Ci2,Ci3) for a time period T and
SKy = (Ko, K, K>, K3) for a list of vectors Y = (¥1,...,¥,). Let S be the set of index tuples (i, j) that
are not wildcard positions in Y. It checks the following equation

e(H(T) KO —6 H Clj17K1 HC127K2 HCI37K3
(i,j)es

If this check succeeds, it outputs 1. Otherwise, it outputs 0.
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3.4 Correctness

We show that our MC-HVE scheme satisfies the correctness property. If the messages of client’s ciphertexts
for the same time period and the attributes of a function key are the same except for the wildcard positions,
the following equation is satisfied.

(H(T), pLiijyes PRE (zi.jyij) i plisg @i1ra pLisy wi,zrz)
— e(H(T)Z(iﬁj)GSPRF(Zi,j,-xi,j) yl) ,e(H<T)Z;'1:1a)i,l yz) ,e(H(T)):;-’:lU)f.z";Vz)

=e H l],laKl HC123K2 HC137K3
(i)

In contrast, if the messages in ciphertexts and function key are different at least one position, then the
above equation is satisfied only with negligible probability since the outputs of PRF will be different when
the inputs are different.

3.5 Security Analysis

In this section, we show that our proposed MC-HVE scheme provides the selective single-challenge security.
To briefly describe the proof, we first show that our scheme is selectively single-challenge secure when all
clients are not corrupted. We next show that this scheme also provides the selective single-challenge security
even if statically fixed clients are corrupted.

The basic idea of proving the selective single-challenge security with no corruptions of our MC-HVE
scheme is to change all challenge ciphertext elements of the message positions having different challenge
message values to random elements. In this case, an attacker cannot win the security game because it cannot
obtain any useful information to distinguish X;j from X;". In order to implement this idea in the proof, it
is essential to devise a method to simulate function keys for any predicate fy satisfying fy(X;) = fr(X;)
requested by the attacker without knowing the master key. Specifically, it is needed for a simulator to
generate both non-matching function keys such that fy(X;) = fy(X;") = 0 and matching function keys such
that fy (X;) = fy (X}) = L.

In order to handle these non-matching function keys and matching function keys in the security proof,
we would like to use the proof methods of the previous HVE schemes [14,[29,(39]. One problem is that
the previous HVE schemes are defined in the public-key setting, but our MC-HVE scheme is defined in the
private-key setting. To overcome this problem, we observe that changing the pseudo-random function (PRF)
to truly random function (TRF) in the security proof allows the simulator to program the TRF outputs of
uncorrupted clients as desired by using the lazy sampling technique. Thus, we fix a target challenge message
in the selective security game and carefully program the TRF outputs to be similar to the proof setting of
the previous HVE schemes. Additionally, we modify the proof methods of previous HVE schemes to be
suitable for the multi-client setting. The detailed security proof of our MC-HVE scheme is given as follows.

Theorem 3.1. The above MC-HVE scheme is selectively single-challenge IND-secure with no corruptions
in the random oracle model if the SXDH and A3DH assumptions hold and the PRF is secure.

Proof. Suppose there exists an adversary that breaks the selective single-challenge IND-security game
with no corruptions. The adversary initially submits two challenge messages X = (%,17'“7%,n)9 X[ =

(¥] 15---,X] ,), and challenge time 7" where ¥, ; = (x ) € X', Let E be the set of index tuple

* k
Woids e ,xuM
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(i,j) such that xj; ; = xj, ; and E be the set of index tuple (i, ) such that xj ; ; # 1, ;- To argue that the
adversary cannot win this security game, we define a sequence of hybrid games which are defined as follows:

Game Go. This game G denotes the selective single-challenge game which is defined in Section[2.3|where
I = 0 for no corruptions.

Game G;. This game G, is almost identical to the game G except the generation of function keys. Let
S be the set of index tuple (i, j) that are not wildcard positions in function attributes ¥ = (¥1,...,¥,)
where ¥; = (yi1,...,yi¢). Any function key query requested by the adversary should be one of the
following types:

* A function key query is Type-1 if it satisfies fy(X;)

= fr(X{) = 1. In this query, we have
Yi,j =Xy, ; =] ;; for all index tuple (i, j) € S since Sﬂf 0.
fr(X

* A function key query is Type-2 if it satisfies fy(X;) =
Yi,j # X, ; and y; j # x7 ; ; for some index tuple (i, j) € S.

) = 0. In this query, we have

In this game, a simulator initially chooses a random value 7 € Z,. To handle a type-1 function key
query, the simulator chooses two random exponents r,r3 and sets r, = 7r3 in a correlated way by
using the fixed 7. To handle a type-2 function key query, the simulator chooses three independent
random exponents rq, 7, and r3.

Game G;. In this game G, we replace the pseudo-random function PRF (z; j,x) with the truly random
function TRF; j(x) for all i, j. This change can be easily done by the security of PRF.

Game G3. This game G3 is similar to the game G, except the generation of the challenge ciphertext. In
this game, the simulator slightly changes the generation of challenge ciphertext elements as Cj» =
H(T*)®1gPi and C;3 = H(T*)®2g% for all client index i € [n] with random exponents p; and ¢; that
satisty Y pi- T+ Y1 ; ¢ = 0. Note that even the adversary that has a type-1 function key cannot
distinguish the changed challenge ciphertext elements since it gets } /' | p;- T+ Y.;; ¢; = 0 during the
decryption process.

Game Gy. This final game Gy differs from the game Gs in that for all index tuple (i, j) € E, the challenge
ciphertext element C; ;| is generated as a random element. In this game, the challenge ciphertext
gives no information about the challenge message X;;. Therefore, the advantage of the adversary in
this game is zero.

Let Sfli be the event that an adversary wins in a game G;. From the following lemmas and
[3.5] we obtain the following result

AdvSEINP (L) < |Pr{ST] - Pr(SG]

4
G; G
+Pr[sS¢ Z’ rsS Pr[SA]‘—i—Pr[SA“]
=1
<AAVEPH (L) 4-nl - AdviRE (L) + (1 +nf) - AdvEPH (2)
where n/ is the size of the challenge message. This completes our proof. O

Lemma 3.2. If the SXDH assumption holds, then no polynomial-time adversary can distinguish between
Gy and G| with a non-negligible advantage.
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Proof. To prove this lemma, we introduce a new complexity assumption by extending the DDH assumption.
The multi-DDH assumption is that if the challenge tuple D = ((p,G,G,Gr,e),8,8.8%.8",...,8") and
7Z = (Zy,...,Z,) are given, no PPT algorithm A can distinguish Z = Zy = (g°*1,...,4%") from Z = Z; =
(g,...,8) with more than a negligible advantage where a,by,...,b,,c1,...,c, are randomly chosen in
Z,. The multi-DDH assumption holds if the DDH assumption holds from the random self-reducibility of
the DDH assumption [[17]].

Suppose there exists an adversary A that distinguishes between G¢ and G; with a non-negligible ad-
vantage. A simulator B that solves the multi-DDH assumption using .4 is given: a challenge tuple D =
((p,G,G,Gr,e),8,8,8%8",...,8%) and Z = (Z,,...,Z,) where Z = (§,...,§%) or Z = (¢°',...,8%)
where ¢ is the maximum number of type-1 queries. Then B that interacts with A is described as follows:
Init: A submits challenge message lists X = (Xo.1,...,%0,), X; = (X¥1.1,...,X1.0) € ¥, and a challenge
time period 7. B then flips a random coin  internally to fix X;; as the target message list.

Setup: B first chooses random PRF keys {z;}" ;. It also selects random exponents v/, {@; 1, w2 }!_, € Z,,,
calculates @ = Y7, @1, = YU, @; 2, and then implicitly sets ¥ = g, = 8" 1y = 8", Next, it
sets MK, {EK;}" |, and PP by using these selected elements.

Challenge: B creates challenge ciphertexts CTi r+,...,CT, 7+ for X; by running Encrypt(X;, ;, 7", EK;, PP)
for all client index i € [n] by using EK;.

Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows:
If this is a hash query for a time period T, then B proceeds as follows: If T was queried before, then it
retrieves (7,h,—) from a hash list and returns 4. Otherwise, it selects a random element & € G, stores
(T,h,—) to a hash list, and then returns #.

If this is a function key query for a list of vectors Y = (¥,...,¥,), then B generates a function key depending
on the type of function key queries as follows:

¢ Case Type-1: Let k be the index of type-1 function key queries. It calculates f, =3 ; ics PRF (zi,j»Yi,j)
by using MK. Next, it chooses a random exponent r; € Z, and creates a function key depending on
the index k as

Ky = \}}\fyrl (Zk)v/wl (gbk)v’a)z’ K = ﬁrl, K, = (Zk)v/, K5 = (gbk)vl.

If Z;, = g%, then B plays the game G since this function key is correctly distributed with setting
r :abk,r3 :bk,ﬂ:a as

Ko = N (gabk)‘/wl (gbk)v/wz — phn Wéllbkwgk — phn v/f/lrrs W?,
K| = ‘er’ Ky = (gabk)v/ _ ﬁabk _ ‘f}\n'r_g’ K; = (gbk)v/ _ ok el
Otherwise (Z; = g%), B plays the game Gy since it implicitly sets rp = ¢, r3 = by.
» Case Type-2: It simply creates a function key by running the GenKey algorithm since it knows MK.

If this is a ciphertext query for a client index i, a message vector X;, and a time period 7', then 3 generate a
ciphertext by running the Encrypt algorithm since it knows EK;.

Guess: A outputs a guess u’. If = g/, it outputs 1. Otherwise, it outputs 0. 0

Lemma 3.3. If the PRF scheme is secure, then no polynomial-time adversary can distinguish between G
and Gy with a non-negligible advantage.
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Proof. This proof is relatively straightforward from the security of PRFE. That is, we can use additional
hybrid games that change a PRF to a truly random function one by one. Note that there are at most n/¢
number of z; ; in the security proof. We omit the details of this proof. O

Lemma 3.4. [f the A3DH assumption holds, then no polynomial-time adversary can distinguish between
G, and G3 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes between G, and G3 with a non-negligible
advantage. A simulator B that solves the A3DH assumption using .4 is given: a challenge tuple D =

(p,G,G,Gr,e),g,8% 8", g%, g% 4,48 8%) and Z where Z = g or Z = R. Then B that interacts with A is
described as follows.

Init: A submits challenge message lists X; = (¥ |,..., %), X; = (¥} |,..., %} ) € £", and a challenge time

period T* where X Xy ;¢)- B flips a random coin pt € {0, 1} to fix X; as the target challenge
message list.

Xy o= (Xi1s-os

Setup: B proceeds the following steps:

1. Tt first selects random exponents {@; |, @5, p;, 9/ }1—| € Zp and defines {@; 1, @2}, as follows:

;) = a),-’] +(1/ab)p], ®;2:= a),-72+ (1/ab)¢;.

Next, it calculates @y = Y1 @], 0 =YL, 0,,p" =Y, p/,¢' = X[, ¢/ and implicitly sets ¥ =
/ ! / ! . .
8 Wy = (8%) @1 gP oo = (8%0)®¢?". Tt also sets 1 = —¢’ /p’ for type-1 function key queries.

2. We now define the value of TRF. Let x; j be a message for a client i and x, ; ; be the challenge message
for the same clientindex i. If x; ; = x# i then it defines TRF; j(x; j) : f ! by selecting a fixed random
for x;, j. Otherwise (x; j # xj, ; ), it deﬁnes TRF; j(x; ;) := (1+1/a)f; ; by selecting a fixed random

i for x; j. That is, it implicitly defines

prRFLG) = (gab) o Af g, *x.u ij PTREs ) = (gabgb) o if X, 7éxll7w
3. For the target message list X = (¥ ;,...,X, ,) Where X}, ; = (X}, ; 1,..., X}, ; ), it selects a random f; ;

n
and defines TRF; ;(x fl ; for all i€ n] € [{].

wij)

4. Tt initializes a hash table H-list and publishes PP = ((p,G,G,Gr,e),g,8,n,0,H).

Challenge: B retrieves {f;;} which are defined as TRF; ;(x}, ; ;) ==
Next, it implicitly sets H(T*) = g% and creates challenge ciphertexts for the time period T* as

1l j for the challenge messages X ;.

({Cusa = (™Y1}, Cia = (8") %02, Cia = ()22 ) foraili € [n].

If Z = g€, then it plays the game G by the following equations

!

Ci72 :(gabC)w£|+(l/ab)p{ _ (g“bc)wi/.l (gc‘)pi” Ci,3 _ (gabc)w,-/_2+(l/ab)¢,~’ _ (gahC) '2(g )q)i )
Otherwise (Z = R = g¢), it implicitly sets p; = (—c+d)p!, ¢; = (—c+d)¢] and plays G3 by the following
equations

Ci72 — abc>m{1+(1/ab)p{g

Ci73 :H(T*)wi’z 0 (gab ) @/ ,+(1/ab) ,g( ct+d)g] _ (gabc‘)a)iﬁz(gd)d’i.

(—e+d)p} — (

T
—~~
ﬂ
\./*
8
og 09
o
Il
—~
oQ
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Note that we have Y7, p; -+ Y5 ¢, =0sincen =—¢'/p' ==Y, ¢// Y7, p].
Query: A adaptively requests hash, function key, and ciphertext queries. I3 handles these queries as follows.

If this is a hash query for a time period T, then B proceeds as follows: If T was queried before, then it
retrieves (7, h, —) from a hash list and returns /. Otherwise, it performs:

» Case T = T*: It sets H(T*) = g and stores (T*,H(T*),—) to H-list. It then returns g®*°.

« Case T # T*: It selects a random exponent /' € Z,, and stores (T, H(T) = (g**)" ,i’) to H-list. It then
returns (g*?)" .

If this is a function key query for a list of vectors Y = (¥,...,,) where ¥; = (yi1,...,yir), then B generates
a function key as follows: It first defines two index sets A and A for the list of vectors Y as A = {(i,j) :

ij ##) AN i =% )} and A = {(i, ) : (vij #*) A (vij #X),; )} wherei € [n] and j € [£]. It then creates
a function key depending on the type of this function key as follows:

» Case Type-1: It implicitly calculates
fr =Liipes TRFj(%ij) = Eijeafi; = Ja

by retrieving ﬂ ; chosen at the setup since A =0 where f; = Y(ij)eA fl’ ;- It chooses random exponents
ry,ry € Z,, and implicitly defines the randomness as

ry:=r\/ab, ry:= @'ty /b, r3 := —p'ry /b

where r, and r3 are correlated as r, = 73 with the fixed £ = —¢’/p’. Next, it creates a function key
by using the randomness as

Ko =g/ (g) 010" Ky = gt Ko = ()7, Ka = (8P,
This type-1 function key is correctly distributed by the following equation

Ko :(gf\ab)f/gr’l/ab (gabw{+p’)¢,’§/b (gaba)é+¢')*P,/3/b _ g"f,«;r/l (ga)w{d)’rgfwép'rg )

* Case Type-2: It implicitly calculates
fr =L(ij)esTRFj(xij) = Lijjea i+ L ea(l +1/a)fi
=Yjpestij+opea(l/a)fi; = fs+(1/a)f3

by retrieving fl’ ; for the set A and selecting a fixed random fl’ ; for the set A since A # () where
fs = Liijesfi; and fr = Y j)eq fij- Tt chooses random exponents r{,r5,7; € Z, and implicitly
defines the randomness as

rii=14/b+ s fab, ry = 9'rb /b, ry = —firhJa—p'rh /b

where rq,r;, and r3 are independent random values since ff/T # 0 except with negligible probability.
Next, it creates a function key by using the defined randomness as

Ky :(g“l)fs'"l gf§¢”§gdf[%r’1 (g"a)w{¢’r’2 (gb)fa)éf/%r; (g”)*wﬁp'r’Z’
K =(8")1 89, Ko = ()0, Ky = (") i3 (g7) P,
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This type-2 function key is correctly distributed by the following equation

Aab)fy (r/b+9'rs ab) (gaba){+p’) o'y /b ( Aabwé+¢/) —fir3/a—p'ry /b

Aahfs by )rl/b+d)’r3/ab (gahwl)fp /b (gaba)z) —firi/a—p'ry /b (gq)’)*f,,iré/a

(
( sabfs )r’/h+¢/r3/ah(§bf )ﬁ/b(Aaba)l)‘P /b (g“bwz) —firi/a—p'ry/b
= (g ghes glan (o) O (87~ Tan (g) PR,

If this is a ciphertext query for a client index i, a message vector X; = (x;1,...,%;¢), and a time period

T # T*, then B retrieves (T, H(T) = (g®?)" i) from the H-list and generates a ciphertext as follows: For
each j € [{], it performs:

1. j» itcreates C; j 1 = (g“b)hfw since TRF; j(x; ;) :== fi; ;- Otherwise (x; #+xt
Cij1 = (gg")" i since TRFj(x; ;) = (1+1/a)f} ;.

o If x; j = x], ), it creates

[TRN2

j=v G2 = (g0)@laghPi, 5 = ()" @l2gh9r).
Guess: A outputs a guess ', If . = /, it outputs 1. Otherwise, it outputs 0.

Next, it generates a ciphertext as ({C;, 1}

To complete this proof, we show that {p; = (—c¢ —I—d) p!, ¢ = (—c+d)¢/}! | are random that satlsfy

Y pim+ Y ]q), = 0. First, we can see that {p/,¢/}?_, are well hidden by the setting ;| = 71 +
(1/ab)p;, @2 = ], + (1/ab)¢; since w; |, @}, are completely random. Next, since 7 = —Y/ ¢!/ Y7, p/,
we can easily see that p;, ¢; satisfy Y7 1p,7T—|—Zl 10 =Y (—c+d)pin+ Y (—c+d)¢! =0. O

Lemma 3.5. If the A3DH assumption holds, then no polynomial-time adversary can distinguish between
G3 and G4 with a non-negligible advantage.

Proof. We define a sequence of hybrid games Hj (1 o), H3 (1,1),-- -, H3 (1,0, H3 2.1)5 - - - s H3 (45 js) s - - H3, ()
for indexes is € [n] and js € [¢] where H3 (| ¢) = G3. For notational simplicity, we also define Hs (;; ;o) =
H3 (;, 0)- Recall that two sets E, E were defined as E = {(i, /) : x5, ; = x{,; ;} and E = {(i, j) : xo;, #x7; )
where xj; ; € X§ and x7; ; € X{. For notational simplicity, we define a comparison (i, j) < (is, j5) as

(i<ig)or(i=igNj<js). The game Hj ;; ;) is defined as follows:

Game H; 3 (i5.j5) I this game Hj (;; ;). we slightly change the generation of challenge ciphertext elements
in E. The simulator generates challenge ciphertext elements {C; ; | } as follows:

* If (i, j) € E, then it creates C; j | normally.
« If (i,j) € E and (i, ) < (is, js). then it creates C; ; | as a random element in G.
o If (i,j) € E and (i, ) > (is, js). then it creates C; ;| normally.

The simulator generates challenge ciphertext elements C;»,C; 3 as the same way as G3. It is obvious
that H3,(n,€) = Gy.

Suppose there exists an adversary A that distinguishes between Hj (;, ;- 1) and Hj (;; ;-) with a non-
negligible advantage. Without loss of generality, we assume that (ig, js) € E since H3 i5.55-1) = H3 3i5.55)
if (is,js) € E. A simulator B that solves the A3DH assumption using A is given: a challenge tuple D =
((p,G,G,Gr,e),8,8% 8" 8%, g%, 8%, 8”) and Z where Z = g¢ or Z = R. Then B that interacts with A is

described as follows.
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Init: A submits challenge message lists X5 = (X5 ,...,%0,), X{" = (X] ;,...,X],) € ¥, and a challenge
time period 7" where X}, ; = (x},; 1,- -, ; o) for ft € {0 1} and i € [n]. B flips a random coin u € {0,1} to
fix X;; as the target message list.

Setup: B proceeds the following steps:

1. Tt first selects random exponents {@; |, @/ ,,p;,§;}1_| € Z), and defines {@; 1, w; 2}, as follows:
W1 = (0@1 +(1/ab)p;, w;y:= (01324‘ (1/ab)¢;.
Next, it calculates @y = Y1 @], 0 =YL ),,p" =Y p/,¢' = XI, ¢/ and implicitly sets ¥ =
8% Wy = gb@gP oy = g“b‘*’2 8% Tt also sets T = —¢’/p’ for type-1 function key queries.

2. We define the value of TRF. Let x; j be a message for a client i and x), ; ; be the challenge message for
the same client index i.

* Case (i,j) # (i5,js): If xij = xj,; ;, then it defines TRF; j(x; ;) := f;; by selecting a fixed
random f’ for x; ;. Otherwise (x; ; # x}, ; ;), it defines TRF; i(xij) = (1 —i— 1/a) fl by selecting
a fixed random f’ for x; j. That is, it implicitly defines

prRFIGL) = (§ab) g if xi j = x4 pTREL ) = (§ab§b) g if xi j 7 X -

* Case (i,j) = (is,js): If x;j = x},; ;, then it defines TRF; ;(x; ;) := (1/ab)f ; by selecting a
fixed random f} ; for x; ;. Otherwise (x; ; #x# ij)» it defines TRF; j(x; j) := (1/a+1/ab)f; ; by
selecting a ﬁxed random f} ,j forx; j. That is, it implicitly defines

prRFLIGL) = (8) g if xi j = x4 prRFLIG) = (¢’ ) ” if xij # Xy j-
3. For the target message list X; = (¥}, ..., ,) where X, ; = (x], u i10- X ¢)s it selects a random f; ;

f(are.lll i.e.[n],j.e [, andthen defines TRF,J( X)) = (1 /ab 1f(z ]) (15,15) and TRF; j(x}, ; ;) :=
fi,j if (lv.]) 7& (l57.]5)
4. Tt initializes a hash table H-list and publishes PP = ((p,G,G,Gr,e),g,8,n,(,H).
Challenge: 3 sets H(T*) = g“¢ and outputs a challenge ciphertext as follows: For each (i, j) where i € [n]
and j € [¢], it performs:
* Case (i, j) < (i, j§): If (i, j) € E, then it chooses a random element P, j; € G and sets C; j1 = P, j .
Otherwise, it creates C; j,| = (g%)%is since TRF; GG ) =1
* Case (i, j) = (i, js): It creates C; j | — 7/iJ since (is,js) € E and TRF; j(x;, ; ;) := (1/ab)f;;

/!

» Case (i,]) > (is, js): It creates C; ;1 = (g™)/ts since TRF; j(x7,,; ;) = f}.

Next, it chooses a random element P = g* € G and generates the challenge ciphertext by implicitly setting
pi = (—c+s)p,¢i=(—c+s)¢; as

({Ci., A} oo = ()PPl iy = (7)Y ) for all i € [n].
If Z is a valid A3DH tuple, then B plays Hj ;; ;- 1). Otherwise, it plays Hj ;

is.js)"
Query: A adaptively requests hash, function key, and ciphertext queries. 3 handles these queries as follows.

If this is a hash query for a time period T, then B proceeds as follows: If T was queried before, then it
retrieves (7, h, —) from a hash list and returns s. Otherwise, it performs:
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s Case T =T*: It sets H(T*) = g and stores (T*,H(T*),—) to H-list. It then returns g*°.

« Case T # T*: It selects a random exponent /' € Z,, and stores (T,H(T) = (g®)" ,i’) to H-list. It then
returns (g*?)" .

If this is a function key query for a list of vectors Y = (¥1,...,y,) where ¥; = (yi1,...,yi¢), then B generates
a function key as follows: It first defines two index sets A and A for the list of vectors ¥ as A = {(i,j) :

(vij #*) N (vij :x:t,z}j)} and A = {(i,j) : (vij # =) A (i #xtl’l-?j)} where i € [n] and j € [¢]. It then creates
a function key depending on the type of this function key as follows:

» Case Type-1: In this case, we have (i3, j5) ¢ S since (is, j5) € E and SNE = 0. It implicitly calculates
fr =Liijes TRE:j () = L jpeafis = o

by retrieving f,{ ; chosen at the setup since A =0 where f; = Y(ij)eA ﬂ j- Itchooses random exponents
ry,ry € Z, and implicitly defines the randomness as

ry:=ry/ab, ry:= ¢'ry /b, r3:= —p'ry /b.
Next, it creates a function key by using the defined randomness as
Ko =g ()10 Ky = g, Ko = (¢, K3 = (89) P
This function key is correctly distributed since it is the same as that of Lemma [3.4]
 Case Type-2 and (ig, js) ¢ S: It implicitly calculates
fr =X(ij)esTRF i j(xij) = Liijjea fij+ L pea(l +1/a)fi
=Yijestij+Lipeall/a)fi;=fs+f;

by retrieving fl’ ; for the set A and selecting a fixed random fl’ ; for the set A since A # () where
fs = Liijesfi; and fr = Y j)eq fi ;- Tt chooses random exponents r, 75,75 € Z, and implicitly
defines the randomness as

P =y b+ 0/ ab, 1y = 0'rh b, rs = — firh Ja— p'rh b

where r1,r;, and r3 are independent random values since Z(i. j)ea fi i # 0 except with negligible prob-
ability. Next, it creates a function key by using the randomness as

Ko :(ga)férll gféd)/rggf[gr; (ga)wi(p/,/z (gb)fwéfﬁr; (ga)fwép/rlz’
K1 =(8")1 807, Ko = ()0, Ky = (@) i3 (g%) P,
This function key is correctly distributed since it is the same as that of Lemma [3.4]

* Case Type-2 and (i, j5) € S: Let S5 = S\ {(is,js)}, As = A\ {(i5. Js)}, and A5 = A\ {(i5, j5)}. It
implicitly calculates
fr =L jes TRF;j(xi;)
=X(i.j)eAs i/,j+2(i,j)ez5(l+1/a) i+ (t/a+1/ab)f ;.
=Y(i.jyess Jij+ L jyea, (L/a) fi j+ (t/a+1/ab) fi, ;.
=fs, +(1/a)fy +(t/a+1/ab)f;; ;;
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by retrieving ﬂ ; for the set A and selecting a fixed random ﬂ ; for the set A since A # (0 where
f§5 = L(i.j)<Ss fi/.,j and fﬁs = Z(id')exa J‘,{j and 7 =0if x;; j; = x;7i5,j5 and T = 1 otherwise.

It chooses random exponents r{,r5,r; € Z, and implicitly defines the randomness as

r ':q)'rﬁ/b%—(])'rg/ab ry:=¢'rh /b,
(fA +Tf i rsla— (fi 11 +p'r) /b~ fi .5 /ab

where ry,r,,r3 are independent random values since f +1f] . # 0 except with negligible proba-

i5:J5
bility. Next, it creates a function key by using the randomness as

)R ghs g (¢ ) (g s ) O gy ie'n

(gh) (f’ +sz5 !5) (g ) (f’s }sr’—s-p r2)g o) ’/,s s 37
Ki=(8")0"8%", K = (8%)°",
K3 :(g‘b) (f/; 3+Tf15 Js 3)(gf\a) (fl,S ]5r1+p/r/2)g,\7ﬂ5‘j5r§.

This function key is correctly distributed by the following equation
Ad )fyrl (Aabwl +p’ ) (gabw§+¢’)r3

Pk ghlis ) O B0 ab (TSl o

i5:Js

) o'r/b+9'ry/ab

sabwi+p’ ) 'ry /b (gabw2+¢ )”3

§iais )11 (505 ) 051 (P55 ) TP (gTigis ) O P
aa),)¢ Vz(Ap )(P rz/b(Aabwz_,_(p ) (f +rf,§ /§)r3/a (f! N /3’1+P’V§)/b*ﬁ’37_i3rg/ab
a)fsﬁ 9'n Afsé ¢’r§§f 9'n (g"rfrﬁ /é)q)lrll (gf\ffi,g,_/g)q)'rg/a (ga)a){d)’r’z

4 /

b) f + ft5 /5) (g ) (f’/é /8r1+p/r/2)§_w2 is /5 3.

=(8
(
(¢
(2 af55)¢ rl (Af55)¢ 7 ( 8 )M (gfﬁg)wr;/a
(
(¢
=(
(

If this is a ciphertext query for a client index i, a message vector X; = (x;,...,%;¢), and a time period
T # T*, then B retrieves (T,H (T) = (g*°)" , ') from the H-list and generates a ciphertext as follows: For
each j € [¢], it performs:
* Case (i, /) # (is, js): If x; j = x},; ;. it creates C; j1 = (gab)h/f;f since TRF; j(xi ) := f ;. Otherwise
(xij # Xy ;) it creates G j 1 = (g“bgb)hff since TRF; j(x; ;) == (1+1/a) l-’J

* Case (i,)) = (i5,js): I x; j=x;, ; ;, itcreates C; j 1 = ¢ since TRF;j(xij):= (1/ab)f; ;. Otherwise
(xij #* x;:“), it creates C; | = (gbg)h/f,{j since TRF,'J()C,'J) =(1/a+ l/ab)fi/,j'

Guess: A outputs a guess u’. If u = yt/, it outputs 1. Otherwise, it outputs 0. O

Next, it generates a ciphertext as ({C, i, 1}

21



We have shown that our MC-HVE scheme provides the selective single-challenge security when all
clients are not corrupted. Now we show that our MC-HVE scheme still provides the selective single-
challenge security when corrupted clients are statically fixed. In other words, if there is an attacker .4 that
breaks the selective single-challenge security with static corruptions of the MC-HVE scheme, then another
algorithm B that uses the attacker A as a sub-algorithm can break the selective single-challenge security
with no corruptions of the MC-HVE scheme.

The basic idea of this proof is that a simulator directly selects encryption keys for corrupted clients.
In this case, the generation of function keys can be problem since function key elements composed of
secret components corresponding to corrupted clients and uncorrupted clients. Fortunately, in our MC-HVE
scheme, it is possible to convert a function key SK for uncorrupted clients to another function key SK’
associated with all clients by using the encryption keys of corrupted clients. The detailed proof of this is
described in the following theorem.

Theorem 3.6. The above MC-HVE scheme is selectively single-challenge IND-secure with static corrup-
tions in the random oracle model if the MC-HVE scheme is selectively single-challenge IND-secure with no
corruptions.

Proof. Suppose there exists an adversary A that breaks the selective single-challenge IND-security with
static corruptions. By using .4, a simulator B try to break the selective single-challenge IND-security with
no corruptions played by a challenger C. The simulator B is described as follows:

Init: A submits the set of corrupted client indexes I, two challenge message lists X;, X}, and a challenge
time period T*. Let I = {1,...,n} \ I be the set of uncorrupted client indexes. B submits two challenge
message lists X, X, the challenge time period 7" to C. Note that C plays the selective single-challenge
game with no corruptions for the set /.

Setup: B receives PP from C. It chooses random PRF keys {z;};.; and random exponents {®; 1, ®;2};.;-
Next, it gives {EK; = (z;, ;,1, W;2) };c7 and PP to A. It derives z; j = PRF (z;, j) for all i € I and j € [/] for
later use.

Challenge: B receives challenge ciphertexts {CT; 7+ }ic; from C and gives {CT; 7+ }ic; to A.

Query: A adaptively requests hash, function key, and ciphertext queries. 3 handles these queries as follows:
If this is a hash query for a time period 7', then 5 relays this query to C and gives the response of C to .A.

If this is a function key query for a list of vectors ¥ = (¥1,...,¥,), then B proceeds as follows:

1. Tt first sets Y' = {y; }ie; derived from Y. It requests a function key for ¥’ to C and receives a function
key SKy = (K}, K}, K}, K}) for the set I.

2. Let S be the set of index tuples (i, ) that are not wildcard positions in ¥ = {¥;} It calculates

fir = (055 PRF (2,31 and computes Ko = Kb+ (KI)H - (K Ewr - (K Eer 0,

icl*

3. It gives SKy = (K(),K] = K{,Kg = Ké,Kg, = Kg) to A.

If this is a ciphertext query for a client index i € I, a message vector X;, and a time period 7 # T*, then B
relays this query to C and gives CT; r from C to A.

Guess: A outputs a guess 1’. B3 also outputs pt'. O
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Table 1: Comparison of MC-HVE schemes in bilinear groups

Scheme PP Size SK Size CT Size GenKey Encrypt Decrypt
KPEJ [41] o(1) 2nt 2nt 3nlE 3(E 2nlP
Ours o(1) 4 n(l+2) 6E ((+2)E 4P

Let n be the number of clients and ¢ be the number of attributes in each client. We count the number of group
elements to measure the size. We use symbols E for exponentiation and P for pairing.

3.6 Discussions

Efficiency Analysis. We compare our MC-HVE scheme with other MC-HVE schemes in Table In
our MC-HVE scheme, a ciphertext consists of £+ 2 group elements per each client, and n(¢ + 2) group
elements for n clients. A function key in our scheme is very compact because it consists of just 4 group
elements, regardless of the number of clients. The encryption algorithm consists of ¢ PRF operations and
£+ 2 exponentiation operations per each client. The function key generation algorithm consists of n¢ PRF
operations and 6 exponentiation operations. The decryption algorithm consists of O(nf) multiplication
operations and only 4 pairing operations, which are independent of the number of clients and the number of
messages. In the MC-HVE scheme of Kamp et al. [41]], a ciphertext consists of 2n¢ group elements and a
function key consists of 2n¢ group elements. The decryption algorithm of their scheme requires 2n¢ pairing
operations which are linearly dependent on the number of clients and the number of messages. Therefore,
our MC-HVE scheme is more efficient in terms of ciphertext size, function key size, and the performance
of the decryption algorithm compared to the previous MC-HVE scheme.

Supporting Comparison and Range Queries. Boneh and Waters [14] presented an HVE scheme which is a
special kind of predicate encryption, and showed that it can be extended to support conjunctive comparison,
range, and subset queries by carefully encoding the messages of ciphertexts and the attributes of function
keys. Our MC-HVE scheme also can be extended to support conjunctive comparison, range, and subset
queries in the multi-client setting by using the same extension method of them. However, this extension
method only works for a small domain {1,...,D} since the ciphertext of this extension method consists of
O(D) group elements. In order to overcome this problem, we propose a multi-client range query encryption
scheme which supports conjunctive range queries for a large domain in the next section.

Support for Dynamic Number of Clients. The number of clients supported by our MC-HVE scheme is
fixed at n. In a real environment, the number of clients can start with a small value and grow to a large
value over time. Fortunately, our MC-HVE scheme allows the number of clients to grow dynamically over
time because it supports a wildcard in the attributes of a function key. Let n be the maximum number of
clients and n; be the current number of clients. In this case, a trusted center generates a function key so that
all vectors yy,+1,-..,y, have a wildcard character. The encryption algorithm is the same as before, but the
center additionally creates ciphertext elements {C;»,C;3} for nj +1 <i < n and publishes these elements.
The decryption algorithm is the same as before. If the number of clients increases from n; to n, at a time
period T’, a new function key issued by the center can process ciphertexts associated with the same time
period T” > T’ which are generated by n, number of clients.

Support for Different Number of Attributes. In our MC-HVE scheme, the number of attributes supported
by each client is fixed to the same value ¢. With a slight modification, our MC-HVE scheme can handle a
case where the number of attributes for each individual client is different by using the fact that a wildcard can
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be included in the attributes of a function key. For example, suppose that a client with an index i supports
¢; number of attributes such that ¢; < ¢ where ¢ is the maximum number of attributes in each client. In
this case, the encryption algorithm is same as before except that it creates ciphertext elements up to ¢;. A
center, which stores all number of attributes for individual clients, creates a function key which is set with a
wildcard for all attributes y; ; in a client index i and a location j such that 1 <i<nand {;+1 < j</.

Removing Random Oracles. To provide multi-client functionality, our MC-HVE scheme uses a hash
function which is modeled as a random oracle in the security proof. That is, because each client generates
a ciphertext by using the same hash H(7T) for the same time period 7, all clients are synchronized to use
the same encryption random even if they independently perform the encryption algorithm. However, it is a
very strong assumption that the hash function works like the random oracle. Thus, it is necessary to design
an efficient MC-HVE scheme that does not use the random oracle. One way to remove the random oracle
is to provide all group elements associated with individual time periods to the public parameters. That is,
if the maximum time period 7, is restricted to be a polynomial value, all group elements Ay, ..., h, are
provided in the public parameters and the encryption algorithm uses iy instead of H(T).

4 Multi-Client Range Query Encryption

In this section, we propose a multi-client range query encryption scheme by using a binary tree and prove
the selective security under static assumptions.

4.1 Design Principle

To support efficient range queries, we use a binary tree to represent values. The method to effectively
represent values and ranges using a binary tree was used by Shi et al. [37] to design a multi-dimensional
range query on encrypted data (MRQED) scheme. In order to design a multi-client range query encryption
(MC-RQE) scheme, we try to combine a binary tree and a simplified MC-HVE scheme for each node in the
tree. However, the method of simply applying the MC-HVE scheme to the binary tree can lead to collusion
attacks such that different function keys can be mixed to derive new function keys. In order to prevent this
collusion attacks, we apply a secret sharing scheme so that only the function key elements contained in the
same function key can be combined for the decryption process.

4.2 Binary Tree

A perfect binary tree B7 is a tree data structure in which all internal nodes have two child nodes and all
leaf nodes have the same depth. Let D = 2¢ be the number of leaf nodes in B7". The number of all nodes
in BT is 2D — 1 and we denote v; as a node in B7. The depth d; of a node v; is the length of the path from
a root node to the node. The root node of a tree has depth zero. The depth of B7 is the length of the path
from the root node to a leaf node. A level of BT is a set of all nodes at given depth. Each node v; € BT has
an identifier L; € {0,1}* which is a fixed and unique string. A subtree 7; in BT is defined as a tree that is
rooted at a node v; € BT .
Let BT be a perfect binary tree with D = 2¢ leaf nodes. We define the following two functions in B7.

Path(B7 ,x): It takes as input a tree B7 and a value x € [D]. Let v, be a leaf node in B7 that is assigned to
x. Let (v0,Vx1,-.-,Vxe) be the path from a root node v, o to the leaf node v, = v,. It sets a path set
PV, = (Vx0,...,Vx¢) and outputs PV,.
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Cover(BT,y = (yr,yr)): It takes as input a tree BT and a range (yz,yr) € [D]? such that y; < yg. Let v,
and vg be leaf nodes assigned to y; and yg respectively. Let S be the set of leaf nodes from vy to vg,
and R be the set of all leaf nodes excluding S. It computes the Steiner Tree ST (R) which is the subtree
of BT that connects all nodes in R with the root node. Let 7y 1,...7,,, be all the subtrees of BT that
hang off ST (R), that is all subtrees whose roots vy 1,...v,, are not in ST (R) but adjacent to nodes of
outdegree 1 in ST (R). It outputs a cover set CV, = (Vy1,...,Vym).

For the path set PV, and the cover set CV, defined in the above two algorithms, the following properties
are established. 1) If x € [y, yg], then there is only one node in PV, NCV,,. 2) If x & [y, yr], then PV, NCV, =
0. 3) The maximum size of CV, is 2log D.

4.3 Predicate for Conjunctive Range

LetY = (y1,...,yn) be a list of ranges where y; = (yi,yig) and X = (xy,...,x,) be a list of values where
x; € [D]. We define a predicate fy over D" for conjunctive range as

|1 ifxi €yir,yir foralli € [n]
fr(X) = { 0 otherwise.

4.4 Construction

We propose an MC-RQE scheme that combines a simplified MC-HVE scheme with a binary tree to effi-
ciently process range queries. The detailed description of our scheme is given as follows.

MC-RQE.Setup(1*,n): Let n be the number of clients and ¢ be the depth of a perfect binary tree. It obtains
a bilinear group (p,G,G,Gr,e) of prime order p by running G(1%). Let g, 8 be random generators of
G, G respectively. It chooses random PRF keys {z;}”_,, random exponents {®; 1, ®;»}" ,, and a ran-
dom element ¢ € G. It selects a hash function H from the family of hash functions. It outputs a master
key MK = ({z,-}f‘zl,\?, {vf/m =P Wi = 19“"?2}:’:1), encryption keys {EK,- = (z,-,w,-7],a),-72)};.’:1 for
all clients, and public parameters

PP = ((vavﬁvGTae)agng7n7£7H)-

MC-RQE.GenKey(Y,MK,PP): Let BT be a perfect binary tree with depth £ and Y = (y; = (y1.2,Y18),
oo osYn = (Yn.L,YnR)) Where iz < ig.
1. It first selects random exponents ¥i,...,% -1 € Z, and sets ¥, = — Z;’;ll Y, to satisfy ' | % = 0.
2. For each client i € [n], it performs the following steps:
(a) It obtains a cover set CV; = (vi1,...,Vin) by running Cover(B7, (yiL,Yir))-

(b) For each node v; ; € CV;, it calculates f; j = PRF(z;,v; ;) and computes a node key by se-
lecting random exponents r; ;1,7 j 2,7 j3 € Zp as

_ _ aYinfiiri i ,\ri‘j.z ,\}"i'js _ ’\I"_ P _ ,\’-.‘ i NS i
NK; j= (Ki,j,o = gUONr W K g = 07 Ko = 0792 Ky =0 "’3>~

(c) It creates a client function key SK; = (CV;,NK;,...,NK;,,) where m; is the size of CV;.
3. Finally, it outputs a function key SKy = (SKi,...,SK,).
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MC-RQE.Encrypt(x;, T,EK;, PP): Let BT be a perfect binary tree with depth ¢ and EK; = (z;, @;.1, @i 2).
It first obtains a path set PV; = (v;0,Vi1,...,vir) by running Path(537 ,x;). For each node v; ; € PV,
it calculates f; ; = PRF (z;,v; j) and computes C; ;1 = H(T)/i. It outputs a ciphertext as

¢ . _
CTir = ({Ci,j,l }j:(), Cio=H(T)®', Ci3 = H(T)w,ﬁz)

MC-RQE.DQCI‘ypt(CTLT, e ,CTnVT,SKy,PP): Let CY}}T = ({C[J’l }ﬁ.:O,Cijg,C,-,g) and SKY = (SK1 yeee ,SKn)
where SK,‘ = (CVI‘,NK,"] yeen 7NKi,m,-) and NK,'J‘ = (Ki.,j,OyKi,j,lyKi,j,2aKi,j,3)-

1. For each combination { ((Ci j,1,Ci2,Ci3), (Ki,j0:Ki 11, Ki jr2s Ki,j,‘ﬁ)) }?:1 of CTy and SKy where
(Ciji,1:Cin,Ci3) € CTir for some j; and (K; 0, K; j1,K; j2,K; j3) € SK; for some Ji with the
restriction that the node depth of j; and the node depth of j; are the same, it checks the following
equation

n n n

n
?
e(H(T), HKi,j;.,O) = He(ci,j[.,l K1) He(ci,z,Ki,j;,z) : He(ciﬁa Kij3)-

i=1 i=1 i=1 i=1

If this check succeeds, it outputs 1 since it found a matching combination. Otherwise, it contin-
ues to the next combination.

2. Finally, it outputs O since it fails to find a matching combination.

4.5 Correctness

If fx(Y) =1 is satisfied for the message X of a ciphertext and the range Y of a function key, then one
common node exists for each client by the property of the path set in a ciphertext and the cover set in a
function key. Thus, we can derive the following equation since the PRF value f; ; of the ciphertext matches
one of the PRF values {f; ;} of the function key.

n n
e(H(T) , HKI',JLO) - e(H(T) , Hg?’i")fi.j,wri,_/,-J W:IIJ,ZW::ZJ,%)
i=1 i=1
n n n
— e(H(T),gZ?:l % H"}fi,ji'ri,j,-,l H")wi‘l”i,j,-,z H"}wi,zri‘ji‘})
i=1 i=1 i=1

n n

n
ety o) [Tear. o) [Te(ame:.om)
i=1
n

=1 i=1
n n
e(Ciji1:Kijia) - [[e(Cia,Kiji2) - []e(Cis Kiji3)-
i=1 i=1

I
—_

4.6 Security Analysis

In order to prove the selective single-challenge weak security of our MC-RQE scheme, we first prove this
security in the absence of corrupted clients, and then prove this security in the case where the corrupted
clients are statically fixed.

The basic idea of proving the selective single-challenge weak security of the MC-RQE scheme in the
no corrupted clients setting is similar to the proof of the MC-HVE scheme. That is, all challenge ciphertext
elements associated with different nodes among the path nodes which are associated with the challenge
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messages Xy, X, are changed to random elements. The overall structure of the security proof is similar to
that of the MC-HVE scheme. However, there is a considerable difference from the proof of the MC-HVE
scheme since the proof of our MC-RQE scheme must deal with nodes in the binary tree. For further details
of this proof, please refer to the following theorem.

Theorem 4.1. The above MC-RQE scheme is selectively single-challenge weak IND-secure with no corrup-
tions in the random oracle model if the A3DH assumption holds and the PRF is secure.

Proof. Suppose there exists an adversary that breaks the selective single-challenge weak IND-security game
with no corruptions. The adversary initially submits two challenge messages X; = (x(’g’l, . ,xgn) X[ =
(x}1,---,x],), and challenge time 7. We obtain PV, ; = (v}, ; 0: Vi 15---+ V) ;) Dy running Path(BT,x# ,)
for all u €{0,1} and i € [n]. From this path set PVJI, we define two node sets E; = {vj,; ;: (v, ; €
PV )N (o =viiyand Ej={vy s (v € PVy ) AV, ; # Vi, )} which are partitions of all nodes
in the path set. To argue that the adversary cannot w1n ‘this game, we define a sequence of hybrid games as
follows:

Game Gy. The first game Gq denotes the selective single-challenge weak security game which is defined
in Section [2.3|where I = 0 for no corruptions.

Game G;. In this game Gj, we replace the pseudo-random functions PRF(z;,x) with the truly random
function TRF;(x) for all i. This change can be easily done by the security of PRF.

Game G;. This game G; is similar to the game G except the generation of the challenge ciphertext. In
this game, the simulator slightly changes the generation of challenge ciphertext elements as C;» =
H(T*)®1gPi and C;3 = H(T*)®2g? for all index i € [n] with random exponents p; and ¢;.

Game G3. This final game G3 differs from the game Gy in that the challenge ciphertext elements {C; ;1 }
associated with E; are generated as random elements for all i € [n]. Thus the challenge ciphertext
gives no information about the challenge message X;;. Therefore, the advantage of the adversary in
this final game is zero.

Let Sf( be the event that an adversary wins in a game G;. From the following lemmas and
we obtain the following result
SE-1-IND : G G; G
AQVSEIND(3) < 21 ‘Pr[SA’"] —Pr[s]| + Pr[sG:]
1=
<n-AdvEFE (L) 4 (1 +nt) - AdviFPH ()
where n/ is the size of the challenge message. This completes our proof. O

Lemma 4.2. [f the PRF is secure, then no polynomial-time adversary can distinguish between Gy and G
with a non-negligible advantage.

Proof. This proof of this is relatively straightforward from the security of PRF. That is, we can use additional
hybrid games that change a PRF to a truly random function. Note that there are at most n number of z; in
the security proof. O

Lemma 4.3. If the A3DH assumption holds, then no polynomial-time adversary can distinguish between
G and G, with a non-negligible advantage.
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Proof. Suppose there exists an adversary A that distinguishes between G| and G, with a non-negligible
advantage. A simulator B that solves the A3DH assumption using 4 is given: a challenge tuple D =
((p,G,@,GT,e),g,g“,gh,g“h,g“bc,g,g",g”) and Z where Z = g° or Z = R. Then B that interacts with A is
described as follows.

Init: A submits challenge message lists Xg = (X3 1,---,%0,), X{ = (x] ,...,x],), and a challenge time
period T*. B flips a random coin p € {0,1} to fix X; as the target message list and obtains PV, =
(Viios- -+ Vi) by running Path(BT ,x}, ;) for all i € [n].

Setup: B proceeds the following steps:

1. Ttfirst selects random exponents {@; |, @/ 5, p;, ¢/ }i_| € Z), and defines {@; 1 := @; | +(1/ab)p;, ;2 :=
], + (1/ab)¢]}2_. Next, it implicitly sets = g%, {#;; = (§°)%1 8% ,w;2 = (§°) 2% }1_,

2. It now defines the value of TRF by using lazy sampling. Let v; ; be a node for a chent iand PV, ; be
the challenge path set for the same client i. If v; J € PV, ;, then it defines TRF i(vij):= by selectlng

a fixed random f; ; for v; ;. Otherwise (v; ; & PV ), it deﬁnes TRF;(vij) = (1+1/ a) by selecting
a fixed random f for v; j. That is, it implicitly deﬁnes

PTRFi0vi)) .= (5%0)/is if vij € PV, PTRFi(vi)) .= (g% gb) i if vij &PV,
3. For the target message list X; = (x}, |,...,x;,) with PV, = (v} ;¢,--., V) for all i, it selects a
random f; ; and defines TRF; ( Vi) = fiforalli€ [n],j€[0,£].

4. Tt initializes a hash table H-list and publishes PP = ((p,G,G,Gr,e),g.8,n,(,H).

Challenge: B retrieves {f; ;} since TRF;(v}, ; ;) :=
sets H(T*) = g and creates challenge ciphertexts for the time period T* as

’ ; j for the challenge messages X;;. Next, it implicitly
({Cl‘J’] = (gabc)f,/}iz()’ C,“yz = (g“bc)“’f'ﬁlzpil, Ci73 = (gabc)wl{»zz‘p’!) for all i (S [l’l]
If Z = g°, then it plays G, since ciphertext elements are well formed as
Ciy= (gab(:)a)i”l+(l/ab)pf _ (g“bc)wil,l (gc)pl-” Ciy= (gabc)w,-’_er(l/ab)d)i’ _ (gabc‘)a)i"z (g(:)(bt'

Otherwise (Z = R = g%), it plays Gj since ciphertext elements are created with setting p; = (—c + d)p/,
¢i = (_C+d)¢z, as

Ci,2 _ H(T*)“”'"lgp" — (gabc)a)i’J+(1/ab)P,-’g(—c+d)pi’ _ (gabc)a)i’_, (gd)p,-/’

Ci,3 _ H(T*)w,-,zg¢; — (gabc)w{,z-ﬁ-( /ab) ,g( ct+d)g] _ (gubc)w,'_z (gd)(l’i/_
Query: A adaptively requests hash, function key, and ciphertext queries. 3 handles these queries as follows.

If this is a hash query for a time period T, then B proceeds as follows: If T was queried before, then it
retrieves (7, h, —) from H-list and returns 4. Otherwise, it performs:

« Case T =T*: It sets H(T*) = g and stores (T*,H(T*),—) to H-list. It then returns g*>

« Case T # T*: It selects a random exponent /' € Z,, and stores (T,H(T) = (g®)" ,i’) to H-list. It then
returns (g*?)" .
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If this is a function key query for a list of ranges ¥ = (y,...,y,) where y; = (y;,yir), then B generates a
function key as follows:

1. It first derives cover sets CVy,...,CV, from yy,...,y,. For each CV;, it defines two node sets PV; and
Wi as PV, = {V,',j 1Vij € CVi/\v,',j € PVIj,i} and PV; = {Vw’ 1Vij € CV; AVij QPVJJ}.

2. Tt also defines three index sets I}, 1,13 C [n] which are partitions of client indexes. It defines I} = {i :
Jvij € CV; such that v; ; € PV;}. It next selects a random index 7 € [n] \ ; and defines I = {i}. It
then defines I, = [n] \ (I; Ulz). By using these index sets, it will define ¥; differently depending on the
index sets. For each client index i € I, it chooses a random exponent ¥/ and implicitly defines ¥ := /.

3. For each client i € [n], it performs the following steps:

(a) For each node v; j such that (i € I;) A (v; j € PV;), it proceeds as follows: It deﬁnes TRF i(vi,j) =
by retrlevmg fl chosen at the setup. It chooses random exponents ¥/, r/ T /2, i J 3 € ZLp,
sets Ai=pir; )+ q), 7} ;.3 and implicitly defines the randomness as
Y= —A;/ab+7, Fij1i= r,'.J’l/ab, Fijoi= rl{’jg/ab, rij3i= rg’jﬁ/ab.

Note that this ¥; is fixed for this index 7 since there is only one node v; ; € PV;. Next, it creates a
node key by using the defined randomness as

Ki jo = gl gliimiin goliriiz gt » Kiji =g, Kij2= g, Kij3 =gl
This node key is correctly distributed by the following equation

Kijo=2 —(p}r] j2 407} ;3)/ab+Y, (gahﬁ{j)ré,jﬁl/ab (gabw,{ﬁp{)rl{,j,z/ﬂb (gaba)i’.ﬁd) ) rijalab
Y gL T g2 gl s,

(b) For each node v; j such that (i € I}) A (v; ; € PV;), it proceeds as follows: It defines TRF;(v; ;) :=
(1+1/a)f! by retrieving fl chosen at the setup. Recall that the random ¥; Was already defined
as ¥ := —A;/ab+ Y, for some node v; y. It chooses random exponents rid’l, l.7j72, i}j’3 € Zp and
implicitly defines the randomness as

Fijj1 = Vz/'j 1/b+¢i/rl{j3/ab Tij2 = (Pi/r;,j,Z/ba
rijai=—firi;3/a—piri o /b+Aif/(¢ab).
Next, it creates a node key by using the defined randomness as
Kijo = 8 ()i gliudirisaglisfunn () ¥z (g0)~Malistisa (§4) ~ChaPirtsagatil 9],
Kij1=(8") 1 g3 Kija2= (g2, Kij3=(8")" fiiriss (g) P2 ghilol.
This node key is correctly distributed by the following equation

=8"

_ nabfl  Abf NF b0 L ab s aaba! . +p!\ O Y /b
Kijo= A/ab-H/( abfl; sbf}; ) rii1/b+eiri;5/a (gabw,>1+pl)¢,r,,j.z/

ljg
(g“bwi,2+¢i ) —fi7ija/a—Pir; 2 /b (9] ab)
:g){(gabf,{ ) 11 /b+e; f,3/ah(Abf[]) /b (Aaba) )(P,»’ri,,-,z/b

(g“ba’i/,z) 1t ia/a—pirt 2 /b+hi/(¢]ab)

:g’\’}{(g'\a) l]ljlgfqu)l t/3g j Ijl(g ) ll(pl i,j.2
(Ab>_ i,zfi.j’f,js (gA )_ i,zPi i,j‘Zgsz’/,ZAi/q)i,.
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(¢) Foreach node v; ; such that (i € L) A (v, j € PV;), it proceeds as follows: It defines TRF;(v; ;) :=
(1+1/a)f;; by using a fixed random f; ; for v; J Recall that 7: was already defined as y; := ¥/
for the set 12 It chooses random exponents 7/ it ,2, ; j 3 € Z, and implicitly defines the
randomness as

R !/ e A o ! !/
Fijj1-= ri7j,l/b+¢iri,j,3/ab7 i j2 = (Piri,j,Z/bv i j3 = _fz',jrhj,3/a_piri,j,2/b'
Next, it creates a node key by using the defined randomness as

K;

gA'J/(gA )fl] t]lgfl](pl 1/3g ] t/l(g ) l]¢l 1/2(g ) 12ftj 1/3(g ) wi/‘lpilrr{._/'l7
7J7 ( ) i‘,j,lgﬁbi’i,js’ Ki7j,2 — (g’\a)¢ir§‘j,27 Ki,j,3 — (g ) flj 173(g )*Pi’i,j,z.
This node key is correctly distributed by the following equation

Kijo _g" (gabﬁ j gbf//) 11 /DFOri 5/ ab (gabw,fﬁpf )‘7’5 rijalb (gabw{_ﬁfp/ ) —fijrijala=pirija/b

:A%(Aabfi/,j) i,jAl/b+¢,!rl/',j,3/ab(Abﬂ,j)r;,jAl/b(Aaba)i/?])(P,{rl/-,j.z/b(,\ubw[’ﬁz) T iala=piri 2 /b
gy(ga)l]l]lgl/‘] ,’fj3g ],,l(g) '1¢1r112(g"b) ',2””3(8') zzpz’Jljz

(d) For each node v; ; such that (i € I3) A (v, j € PV;), it proceeds as follows: It defines TRF (v, i) =
(1+1/a)f]; by using a fixed random f} ; for v; ;. It chooses random exponents r; ; |, 7 ;5,7; ;3 €
Z, and 1mp1101tly defines the randomness as

Y= Yier, (Ai/ab =) = Yien, Vi, Tijjo =111 /b+ i1} ;3/ab,
rij2 = 0iri a/b, rij3 = —fi i 3/a—piri /b —Yie, Ai/ ($ab).

Next, it creates a node key by using the defined randomness as

Kth g 21611'}/ 216127/( )f‘ljl]lgf;/¢lrl]3gf;/l,]:,l(g ) ;1¢1 ij2
( ) l l] lj3(g ) [.Zpi i,j.Zg_ i,ZZiEll Ai/(pi,’
Kiji1=(8 ) ljg i1 , Kijo= (gA“)‘Pi’f?fl, Kij3= (g’\b)ifi«jd‘jﬁ(g"a)fpi’{‘jlg"_z,iell Ail9]

This node key is correctly distributed by the following equation

Ki j 0 :§Zf€11 (Ai/abfﬁ)fzielz ’)/ (g(ab+b)f; ]) lj l/b+¢l ij, 3/017 (g’\abw I+p1 )¢’ r’ 3Js 2/}7
(‘gabw{_z-&-(i){) —fi 713/ a=PiT] j2/b=Yier, i/ ($]ab)

Yien ¥—Yien ¥ (g

—5 5abf] ; ) rija/b+eir ;s /ab ( < ) rija/b ( §b ) 9/rija/b
( Aaba, 2) —fii7ij3/a=pir} j2/b=Yier, Ai/(§]ab)
=g

Ztell %—Zielz v (g"a)fi/.jrz/',_/,l gﬁ‘/,j@/’f,j.a g’\fl{jrt/',_/,l (ga>wi/,1 z”flz
b) i fi T} i3 (g ) “’ﬁzpt{’f,j.ng*“’,{,z):iell Ai/q)i,.

(e) Next, it creates a client function key SK; = (CV;,NK; 1,...,NKin,).

4. Finally, it generates a function key SKy = (SKj,...,SK,).
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If this is a ciphertext query for a client index i, a message x;, and a time period 7 # T*, then B retrieves
(T,H(T) = (g**) , i) from the H-list and generates a ciphertext as follows: It obtains PV; = (vig,...,Vvi¢)
by running Path(B7 ,x;). For each v; ; € PV, it performs:

 Ifv;; € PV, itcreates C; 1 = (g"b)hfw since TRF;(v; ;) == f] ;- Otherwise (v; ; & PV} ,), it creates

Cij1 = (g"g")"/li since TRFi(vi ) := (1+1/a)f}.
Next, it generates a ciphertext as ({C; j, 1}} o Cio = (g)' @l gh'Pl, Ciy = () @02g!"9)),

Guess: A outputs a guess u’. If 1 = g/, it outputs 1. Otherwise, it outputs 0. O

Lemma 4.4. [f the A3DH assumption holds, then no polynomial-time adversary can distinguish between
G, and G3 with a non-negligible advantage.

Proof. We define a sequence of hybrid games Hj (1 ), Hy (1,1),- -+, Ho (1,0, Ho (2,1)5 - - - s Ha (i5,j5) - » H2,(n,0)
where Hy (1 oy = Go, (i5, js) € [n,/]. For notational simplicity, we also define Hy ;;_; ¢ = Hy (;; o). Recall
that two node sets E; and E; were defined for each client index i € [n] as E; = {v},; ;1 (v}, ; € PV )N (V0=
vigtand Ei={vy ;0 (v, € PV ) A (v, # Vi, )} The game Hy ;. ;. is defined as follows.

Game H; (;; ;. In this game H ;; ;). we slightly change the generation of challenge ciphertext elements

{C;i j1}. For each client i and node v; ; € PV ;, a simulator creates the element C; j 1 as follows:

 If v; ; € E;, then it creates C; j | normally.
« Ifv;; € E;and (i, j) < (is, js) then it creates C; ;| as a random element in G.

« Ifv;j € E;and (i, j) > (is, js). then it creates C; ; ; normally.

The simulator creates challenge ciphertext elements C;»,C; 3, as the same way as the game G3. It is
obvious that H, (, o) = Gs3.

Suppose there exists an adversary A that distinguishes between Hy ;; ;- 1) and Hy( with a non-

is,j5)
negligible advantage. Without loss of generality, we assume that v;; j; € E;; since Hy ;5 ;- 1) = Ha (55, j5)
if vi; js € Eis. A simulator B that solves the A3DH assumption using A is given: a challenge tuple D =
((p,G,G,Gr,e),g,8% 8", 8%, g%, 8%8") and Z where Z = g° or Z = R. Then B that interacts with A is

described as follows.

Init: A submits challenge message lists X5 = (X3 1,---,%0,)> X{ = (x] ,...,x],), and a challenge time
period T*. B flips a random coin p € {0,1} to fix X; as the target message list and obtains PV, =

(Viios- -+ Vi) by running Path(BT ,x}, ;) for all i € [n].

Setup: B proceeds as follows:
1. It first selects random exponents { @] |, ®; 5, p/, ¢/ }i_| € Z, and defines {@; 1 := @] +(1/ab)p], w2 :=
@; 5+ (1/ab)¢;};_,. Next, it implicitly sets § = g Wiy = (8%) llg”z,whz = (g @iz joa

2. It now defines the value of TRF by using lazy sampling. Let v; ; be a node for a client i and PV, ; be
the challenge path set for the same client i.

o Casei#is or vij # viy j5: If vi j € PV, then it defines TRF;(v; ;) := f] ; by selecting a fixed
random f; ; for v; ;. Otherwise (v; ; & PV* »), it defines TRF;(v; j) := (1+ l/a)ff by selecting a
fixed random f for v; ;. That is, it 1mp1101t1y defines

OTREOL) s () if vy € PV o 97RFU) = (g8 it v PV
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» Case i = is and v; ; = vj; j,: It defines TRF;(v; ;) := (1/ab) i/,j since v; j = v, js € PV, ; by
selecting a fixed random fl’ j forv; ;. That s, it implicitly defines

pTRFivis) .— (g)%is since vij € PV ;.

3. For the target message list X} = (x}, |,...,x},) With PV, = (v} ;0,---, v ,) for all i, it selects a

rz.mdF)m fi;and defines TRF;(v, ; ;) := (1/ab)f; ; if (i, j) = (i5,js) and TRF{(VZM) =i (i) #
(is,Js)-
4. Ttinitializes a hash table H-list and publishes PP = ((p,G, G, Gr,e),g,8,n,0,H).
Challenge: B first sets H(T*) = g% and creates each challenge ciphertext element C; j1 for each client
i € [n] and node v; ; € PV}; ; as follows:

!

« Case (i, j) < (i5, j5): If v; j € E;, then it creates C; ;| = (g¢)”iJ since TRF(v;,; ;) = fi - Otherwise
(vij € E)), it chooses a random element P ji1€GandsetsCj1 =P, .

* Case (i, j) = (i5, js): It creates C; ; | = 7/iJ since vis.js € Ei and TRF(vy,; ;) := (1/ab)f} ;.

* Case (i, ) > (i5, js): It creates C; j| = (g“b")ﬁf since TRF (v}, ; ;) := fl’]

Next, it chooses a random element P € G and generates challenge ciphertexts for the time period T* as
R o (oabc\@! pp!l . ( jabe\® , p@) .
{Cija }j:07 Cip = (g")"1 PP, Ci5 = (g")“2P% ) forall i € [n].

If Z = g°, then B plays Hj ;5 js—1) issjs)"

Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows.
If this is a hash query for a time period T, then B proceeds as follows: If T was queried before, then it
retrieves (7, h, —) from H-list and returns /. Otherwise, it performs:

. Otherwise, it plays Hj (

» Case T = T*: It sets H(T*) = g and stores (T*,H(T*),—) to H-list. It then returns g**°.

« Case T # T*: It selects a random exponent i’ € Z, and stores (T, H(T) = (g* ¥ i) to H-list. It then
returns (g*)" .

If this is a function key query for a list of vectors Y = (yi,...,y,) where y; = (yi,yir), then BB generates a
function key as follows:

1. It first derives cover sets CVy,...,CV, from yy,...,y,. For each CV;, it defines two node sets PV; and
Wi as PV, = {V,"j 1Vij € CV,‘/\V,'_’]' € PVIjJ} and Wi = {V,‘J‘ Vi € CV; AVij §ZPV[[J}.

2. Tt also defines three index sets /1, />,/3 C [n] which are partitions of client indexes. It defines I} = {i :
Jvi j € CV; such that v; ; € PV;}. It next selects a random index 7 € [n] \ I; and defines I5 = {i}. It then
defines I, = [n]\ (I; UL3). By using these sets, it will define ¥; differently depending on the index sets.
For each client index i € b, it chooses a random exponent ¥/ and implicitly defines % := /.

3. For each client i € [n], it performs the following steps:

(a) For each node v; ; such that (i € I) A (v; j € PV;), it proceeds as follows:
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» Case i # i5 or v;; # vis js: It defines TRF;(vi;) := i{j by retrieving fl’] chosen at the
setup. It chooses random exponents 7, r 3 € Lp, sets Ay = pj1; 5+ ¢/r] ; 3, and
implicitly defines the randomness as

] / /
[NATLINMILIN

Y= —A;/ab+7, i1 i= r,’-7j71/ab, Fij2i= rf’j,z/ab, rij3i= rl’-7j73/ab.

Note that this ¥; is fixed for this index i since there is only one tuple (i,v; ;) € PV for the
index i. Next, it creates a node key by using the defined randomness as

A

Kz]O ’)/ jl/]g t]r:12g 121/3 Ki,j,lngr;"i’]uK g , 113_grl{,j.3_
This node key is correctly distributed by the following equation

Ko 0 (pir} ;2 +0i1];5)/ab+ (gabf;{j)r,{‘j,l /ab (gaba)l-"l +p,~’)”,{,j.2/ab (gaha),{z+¢,-') 1l i3/ab

pu
8
g’\%g'\ﬁ/‘jrz{,j,lg’\wi/,lrt,}j.ZgAwi,,Zrz/'.j.B‘

* Case i =is and v; j = v;, j;: It defines TRF;(v; ;) := (1/ab)f] ; by using fl’J chosen at the
setup It chooses random exponents i,r§7j7],rl’<’j72, i3 €Ly, sets A = l,erJ +pjr ij2 T
o/ _j3» and implicitly defines the randomness as

Y= —Aijab+Y,, rij1:=7i;1/ab, rijo =71} ;,/ab, rij3:=r; 3 /ab.

Note that this ¥; is fixed for this index i since there is only one tuple (i,v; ;) € PV for the
index i. Next, it creates a node key by using the defined randomness as

- Y / J
Kijo =gV g iag®atiss, Ky = g, Ky jo = "2, Kij3 =805
This node key is correctly distributed by the following equation
Kijo=§ (7 jatpirs ot .,3)/ah+7/( ) . 1/“b(wbw |+Pl) rijo/ab (gabwf‘z+¢/)’f,j,3/“b

g
v

/ / / J
=g gAw[,lri.j,ZgAwi.Zri,_/ﬁ.

(b) Foreachnode v; j such that (i € I}) A (v; ; € PV;), it proceeds as follows: It defines TRF;(v; ;) :=
(1+1/a)f]; by retrieving f; ; chosen at the setup. Recall that the random ¥; was already defined
as vy 1= A /ab+ ¥, for some node v; . It chooses random exponents rw-?l, i-,j72’ i}j73 € Zp, and
implicitly defines the randomness as

rij1 =10 /b irt s /ab, rijo = iri /b,
Tij3 = fl,] z]3/a pz t]2/b+Ai/(¢i/ab)'

Next, it creates a node key by using the defined randomness as

KL/OZgA'J/(gA ) [// i,j,1 fl/¢t zj%gft/ l/l(g ) zld’t zjz(g ) szlj tj"%(g ) wz‘/72pt'/rz€j.2g’\wz'/,2Ai/¢z'l7
Ko = (@189, Ky = (899502, Koy = (8) s (g0) Pzl

This node key is correctly distributed since it is almost the same as that of Lemma[d.3]
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(¢) Foreach node v; ; such that (i € L) A (v, j € PV;), it proceeds as follows: It defines TRF;(v; ;) :=
(1+1/a)f;; by using a fixed random f; ; for v; J Recall that 7: was already defined as y; := ¥/
for the set 12 It chooses random exponents 7/ it ,2, ; j 3 € Z, and implicitly defines the
randomness as

Tijj1 = r;7j,l/b+¢i,rz{,j,3/abv Tij2 = ‘Pi/rf,j,z/ba Tij3 = _]Ci/,jr;7j,3/a_pz{rz{,j,2/b'
Next, it creates a node key by using the defined randomness as
Ki é’/(g st s ghir () P dirisa (g0)Olafisua ()~ haiTz,
Kijo = (8189703, Kijo = (8)%02, Kija = (&) 7is (87) 7P,

This node key is correctly distributed since it is almost the same as that of Lemma

(d) For each node v; j such that (i € I3) A (v; j € PV), it proceeds as follows: It defines TRF i(vij)=
(1+1/a)f{; by using a fixed random f} ; for v; ;. It chooses random exponents r; ; |, 7 ;5,7; ;3 €
Z, and 1mp11c1tly defines the randomness as

:Ziell(A'/ab_'yl) 21612'}/ Fij1 _rljl/b+ 1113/ab
Fij2 ‘Pz zjz/b rij3 = fi,jri,jg/a*Pi i,j,z/b*Ziell Ai/(¢iab)~

Next, it creates a node key by using the defined randomness as

Kz]O g 2161] ’J/ 21612’)/( ) z/ ljlgflj¢lrlj3g ij ;,jAl(ga)wl{l(pi/rl,lj,Z
( ) e z,%(g ) o ,pir i‘j.2g’\_ i,ZZiell Ai/‘l’f/’
Ki,j71 _( )rlqu)/z,z K i = (ga)q);l’:.j.z’ Ki,j,3 — (gb)*fil,_jr?,js (gAa)*Pi/rz".j,zg*):ie/l Ai/qji/.

This node key is correctly distributed since it is the same as that of Lemma

(e) Next, it creates a client function key SK; = (CV;,NK; 1,...,NKin,).
4. Finally, it generates a function key SKy = (SKj,...,SK,).

If this is a ciphertext query for a client index i, a message vector X; = (x;1,...,%;¢), and a time period
T # T*, then B retrieves (T,H(T) = (g**)" i) from the H-list and generates a ciphertext as follows: It
obtains PV; = (vip,...,vi¢) by running Path(BT,x;). For each v; ; € PV;, it performs:

» CaseiFisorv,;# v js: Ifvi; € PV ; itcreates C; j1 = (gab)h’fi’,,- since TRF;(v; j) := fl’] Otherwise

(vij & PV ), itcreates C; j 1 = (gg?)"/is since TRF; (vij) = (1+1/a)f];
» Casei=isandv;; = v, ;: Itcreates C; ;| = ghlﬂd' since TRF;(v; j) := (l/ab)fl{j.

. . Y4 ! o' It
Next, it generates a ciphertext as ({C; ;1 }j:O’ Ciz = (g°)/ @l gh'P!, C;5 = (g0)"@lagh'dl).
Guess: A outputs a guess u’. If = g/, it outputs 1. Otherwise, it outputs 0. 0

Theorem 4.5. The above MC-RQE scheme is selectively single-challenge weak IND-secure with static cor-
ruptions in the random oracle model if the MC-RQE scheme is selectively single-challenge weak IND-secure
with no corruptions.
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Proof. Suppose there exists an adversary A that breaks the selective single-challenge weak IND-security
with static corruptions. By using .4, a simulator B try to break the selective single-challenge weak IND-
security with no corruptions played by a challenger C. The simulator 5 is described as follows:

Init: A submits the set of corrupted client indexes I, two challenge message lists X;,X;, and a challenge
time period T*. Let I = {1,...,n}\ I be the set of uncorrupted client indexes. B submits two challenge
message lists X, X[, the challenge time period 7" to C. Note that C plays the selective security game with
no corruptions for the set /.

Setup: B receives PP from C. It chooses random PRF keys {z;};.; and random exponents {®; 1, ®;2};c7-
Next, it gives {EK,‘ = (Z,‘, w; 1, coi,z)}ig and PP to A.

Challenge: B receives challenge ciphertexts {CT; 7+ }ic; from C and gives {CT; 7+ }ic; to A.

Query: A adaptively requests hash, function key, and ciphertext queries. 3 handles these queries as follows:
If this is a hash query for a time period T, then B relays this query to C and gives the response of C to A.

If this is a function key query for a list of vectors ¥ = (yy,...,y,), then BB proceeds as follows:

1. It first sets Y’ = {y;}ic; derived from Y. It requests a function key for ¥’ to C and receives a func-

tion key SKy' = {SK; = (NK] ;,...,NK},,) }ier Where NK; ; = (K} ;,...,K; ; 3). It selects a random

~ A . . ~ ~p
exponent r € Z, and sets v = ¢, which is formed as ¥ = ¥" for some unknown random .

2. It selects random exponents Vi,...,%,—1 € Z, and sets ¥, = — Z:’;ll 7, to satisty Y, 7 = 0.

3. For each uncorrupted client i € /, it performs the following steps:
(a) Let SK] = (NKi’J, .. ,NKI.’72£)},~€1 where NKZ"J = (Kl-’7j70, .
(b) For each j € [2/], it modifies a node key as NK; ; = (Kj jo = Kl.’7j70 8% K1 =K

l,j,l’ i7j72
! / 3 A
K} ;5 Kij3 =K ;) by using the random ¥;.

(c) Itsets SK; = {NK;1,...,NK;2}.

' ’K/:]~3)

1

4. For each corrupted client i € I, it performs the following steps:

(a) It obtains a cover set CV; = (vj1,...,Vim) by running the Cover algorithm for the range y; =
()’i,LJi,R)-

(b) For each node v; ; € CV;, it calculates f; ; = PRF(z;,v; j) and compute a node key by selecting
random exponents ri,j,l s I",'7j72, ri’j73 as

NKi,j — (Ki,j,o — gyi‘jﬁ,j‘ri‘j,l";wi‘l"i,jz‘jwi,Zri,j,S’Ki’j,l = il 7Ki,j,2 — ‘*;rz:j,z’l(w,73 — \7"1',12,3)
(c) Next, it creates a client function key SK; = (CV;,NK; 1,...,NKim,).
5. It gives a function key SKy = ({SK;}ic1, {SKi} o) to A.

If this is a ciphertext query for a client index i € I, a message x;, and a time period 7' # T*, then B relays
this query to C and gives CT; 7 from C to A.

Guess: A outputs a guess u’. B also outputs u’. O
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Table 2: Comparison of MC-RQE and MRQED schemes

Scheme PP Size SK Size CT Size Encrypt Decrypt Math
MRQED [37] o(nf) o(nf) o(nf) o(nl) o) BLM
MRQED [20] O(nt) Oo(nf) O(nt) O(nt) o) Lattice
Ours o(1) O(nf) Oo(nt) o(0) Oo(n2") BLM

Let n be the number of clients (or dimensions in MRQED) and ¢ be the depth of a binary tree. We use BLM
for bilinear maps.

4.7 Discussions

Efficiency Analysis. In our MC-RQE scheme, a ciphertext consists of ¢+ 2 group elements per each
client and n(¢+ 2) group elements for n clients where ¢ is the depth of a binary tree. Since a function
key is associated with 2/ tree nodes per each client and each node requires 4 group elements, a function
key for n clients consists of 8n¢ group elements. The encryption algorithm requires O(nf) exponentiation
operations, and the function key generation algorithm also requires O(nf) exponentiation operations. The
decryption algorithm is the slowest algorithm, and it checks whether the pairing expression is satisfied for
each combination of function key elements and ciphertext elements. In this case, the number of possible
combinations is at most 2" since the node depth of function keys is known and 3n -+ 1 pairing operations
are required for each combination. Thus, the decryption algorithm requires O(n2") pairing operations. The
detailed performance is given in Table

Allowing Matching Function Keys. We proved that our MC-RQE scheme is secure in a weak security
model where matching function keys (f(X;) = f(X;) = 1) are not allowed. In fact, we can prove that our
MC-RQE scheme is secure even in a security model where one matching function key is allowed by using
the fact that the underlying MC-HVE scheme allows many matching function keys. However, it is not easy
to prove the security of our MC-RQE scheme in a strong security model in which two or more matching
function keys are allowed. The fundamental reason of the difficulty is that the matching node of a binary tree
that succeeds in decryption is additionally exposed during the decryption process of the MC-RQE scheme.
That is, for two challenge messages X and X", an attacker first prepares two matching function keys in
which the tree node of successful decryption is the same for X}, and the tree node for X7 is changed. Then
the attacker decrypts a challenge ciphertext by using these matching function keys. At this time, the attacker
can distinguish the challenge ciphertext by checking whether the tree node that is successfully decrypted is
the same or changed.

Comparison with MRQED Scheme. Our MC-RQE scheme can be compared with the MRQED scheme
of Shi et al. [37] in terms of effectively supporting range queries on encrypted data. As described above,
our MC-RQE scheme uses the path set and cover set of a binary tree to handle range queries in the same
way as the MRQED scheme. However, the MRQED scheme is a public-key cryptosystem that combines
an anonymous IBE scheme with a binary tree, and it handles a single ciphertext in the decryption process.
In contrast, our MC-HVE scheme is a private-key cryptosystem that combines our MC-HVE scheme and
a binary tree, and it can handle multiple ciphertexts in the decryption process. The detailed comparison is
given in Table 2]
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5 Conclusion

In this paper, we presented efficient MC-FE schemes that support conjunctive equality or range queries on
encrypted data in bilinear groups. Our MC-HVE scheme is a construction that efficiently supports conjunc-
tive equality queries with wildcards for ciphertexts generated by multiple clients at the same time period.
Our MC-RQE scheme uses binary trees to efficiently support conjunctive range queries while the size of a
ciphertext and a function key is very compact. We also proved that our MC-HVE and MC-RQE schemes
are selectively secure with static corruptions under static assumptions.

This work leaves some interesting problems: The first problem is to devise an efficient MC-FE scheme
that supports more expressive predicate queries than conjunctive equality or range queries. As an example,
extending an IPE scheme to the multi-client setting can be interesting. The second problem is to construct
an MC-HVE scheme that supports not only the message hiding security but also the function hiding security.
The third problem is to devise an efficient MC-RQE scheme that provides the strong security.
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