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Abstract. A high-quality outsourced storage service is crucial for many existing appli-
cations. For example, hospitals and data centers need to guarantee the availability of their
systems to perform routine daily activities. Such a system should protect users against down-
time and ensure data availability over time. Continuous data availability is a critical property
to measure the quality of an outsourced storage service, which implies that outsourced data
is continuously available to the server during the entire storage period. We formally study the
Proof of Storage-Time (PoSt), the notion initially proposed in the Filecoin whitepaper, which
enables a verifier to audit the continuous data availability of an outsourced storage service.
We provide a formal security model of PoSt and generic constructions that are proven secure
under our definition. Moreover, our concrete instantiation can yield a PoSt protocol with an
extremely efficient verification: a single hash computation to verify a proof of size around
200 bits. This makes our scheme applicable even in the decentralized storage marketplace
enabled by blockchain.
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1 Introduction

Outsourced storage has become a common practice over the years for backup, data sharing, and
more. Increasingly enterprises and individuals choose to rely on a cloud service provider, for exam-
ple, Amazon Simple Storage Service (S3), to store and maintain their data. If the server collapses,
as several occurrences reported recently, e.g., [46, 2], there would be severe repercussions hinder-
ing business operations, causing productivity decrease, customer dissatisfaction, or even revenue
reduction. The consequences are particularly dire for certain applications that need to be run 24/7
[10]. Therefore, a system that ensures consistent service availability is highly desirable for those
mission- and business-critical applications.

Continuous availability, on the other hand, becomes one distinguishing feature that several
major storage providers, such as DELL EMC [43] and IBM [39], readily advertise. How to provide
such a property from a system perspective has been intensively studied by various researchers [19,
29, 34]. In general, continuous availability should protect users against downtime, whatever the
cause, and ensures that files remain accessible to users anytime and anywhere.

Continuous data availability or possession is an enhanced storage integrity feature that is diffi-
cult to achieve. To provide a highly reliable service, cloud providers have to deal with all kinds of
failures, power outages, or even attacks on their servers. They have to include more replications,
devote more redundant hardware and software components, and handle complex administrative
workloads. It is thus straightforward to recognize that providing continuous data availability is
costly and forces cloud storage providers to adopt specialized hardware and software solutions [12].
A dishonest provider would likely offload those burdens and provide an inferior service without
continuous data availability. Moreover, data owners are charged more for reliable storage [35] and
may require an irrefutable guarantee that the service they are paying for is being provided cor-
rectly. An immediate question arises: how can we verify that a storage provider is indeed supplying
continuous data availability, i.e., the provider is virtually always in possession of the outsourced
data so that the data owner can retrieve it at any time?

? A preliminary version of this paper appeared at NDSS 2020. The authors are listed in alphabetical order.
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Similar to other data availability techniques, such as proof of data possession (PDP) [8] and
proof of retrievability (PoR) [31], the verification procedure should be as efficient as possible, both
in terms of computation and communication. Ideally, those costs should be independent of the
data size and the length of time for continuous storage.

We strive for a very light verification procedure also due to the emerging application of de-
centralized storage marketplaces powered by Ethereum [49] or Filecoin [40]. This new storage
framework is believed to provide superior resilience and reduce costs [16]. In such a setting, data
owners simply publish a smart contract that pays storage peer nodes once a succinct and valid
proof of storage is received. As smart contracts use on-chain messages and can be expensive to
run, it’s crucial to minimize both the size and computational cost of verification.

The above discussion highlights a central question we would like to study in this article:

How can we efficiently monitor storage providers to ensure outsourced data is continuously
available?

Naive attempts. Proof of data possession (PDP) [8] and proof of retrievability (PoR) [31] are
cryptographic protocols that enable a client to efficiently verify whether data stored at the cloud
provider is intact and available. The original PoR scheme, based on hidden sentinels, worked only
for encrypted files and a limited number of challenges. PDP, based on homomorphic tags, had no
such restrictions and offered public verifiability where everybody, not just the data owner, can
verify the proofs. The field evolved rapidly and schemes with better efficiency [44, 9, 17, 45, 5], or
advanced properties [50, 51, 20] were introduced. New PoR schemes are based on homomorphic
tags and can be seen as PDP schemes coupled together with erasure coding. This extra step,
while costly, guarantees retrievability of the file [7]. However, PDP/PoR protocols certify data
integrity and availability only at the time a valid proof is processed. Between two proofs, there is
nothing that can be guaranteed about the availability of the outsourced data. In principle, a rogue
storage node could delegate storage contracts to other nodes that may offer inferior service and
then recover the data in time to respond to the next challenge. It’s possible to request the client to
challenge the storage provider frequently, but this method is inefficient in terms of communication
and computational cost for the client that must verify multiple proofs. Besides, it requires the
client to be always online.

1.1 Our contributions

To address the problem of efficiently verifying continuous data availability, we give a formal and
systematic treatment for the new notion of proof of storage-time (PoSt) (Filecoin initially proposed
a similar notion called proof of spacetime [40], but the name “spacetime” now refers to an existing
primitive [33] so we renamed it to avoid confusion). PoSt is a challenge-response protocol that
allows the prover to convince the verifier that data is continuously available and retrievable for a
range of time. Efficiency in our context means that the proof from the prover must be succinct,
and the verifier does not have to be always online.

In particular, we first formally define the security properties of PoSt, i.e., what continuous
availability precisely means. We then give a warm-up construction paired with a rigorous security
analysis, followed up by our main construction with further efficiency improvements as well as
supporting advanced properties such as “public verifiability/validation”. We also demonstrate the
efficiency of our protocol by implementing it for various choices of the parameters.

Formally defining PoSt. The syntax of PoSt is similar to PoR/ PDP. The verifier sends a
challenge and receives a succinct response after a time T specified by the verifier. The verifier can
be offline most of the time.

Providing a precise security model is intricate. We need to define the continuous availability
requirement formally, i.e., the data is possessed by the prover at any time during the storage
period. Intuitively, we shall upgrade the soundness definition of PDP/PoR [8, 44], which defines
an extractor algorithm (similar to the classical notion of proof of knowledge) that the data can be
extracted via (non-black-box) interaction with the prover. To capture continuous availability, we
could define a stronger extractor algorithm that can extract the data from the prover at any point
in time. But, a critical question arises: how do we ensure the extracted knowledge of data is indeed
presently possessed by the prover at a specific time?



Proof of Storage-Time: Efficiently Checking Continuous Data Availability 3

Informally, the non-black-box PoSt prover is modeled as an interactive Turing machine (ITM);
thus, any knowledge/data that is presently possessed by the machine must be either preserved in
the configuration (memory) at that time point or hardcoded in the transition function. This allows
us to capture “continuous extractability” by requiring the extractor to operate after is provided
with the configuration of the prover’s ITM at any specified execution step along with the transition
function.

To make our definition more general, we choose a parameter t to characterize the approximation
of the above idealized “continuous extractability”, i.e., the extractor is provided by a bunch of
configurations that correspond to an epoch with length t instead of one single step. Of course, the
smaller t is the better approximation of the continuous availability the model will be. Intuitively,
this approximation mimics the trivial solution that the data is audited every epoch with length t.4

Non-triviality of the construction. Constructing a PoSt requires special care. Simple improve-
ments over naive attempts may still suffer from various nuisances. For example, the verifier may
execute a PoR in each time slot t during the range period T . To relieve the verifier from being
always online, he could send all challenges in advance. However, the prover could cheat by com-
puting all PoR proofs rapidly and, thus, spending less time than t for each challenge. On the other
hand, if all challenges are sent at the end of the period, the prover could keep data offline for most
of the time and then retrieve it when required. So the main challenge is to find a protocol where
the prover is challenged often (e.g., once every time slot t) without requiring the verifier to stay
online and interact with the prover.

Filecoin proposed a candidate PoSt construction in their whitepaper [40]. Their idea is to let
the prover generate a sequence of PDP/PoR proofs, where the challenge for each proof is derived
from hashing the antecedent proof in the sequence. In this way, the verifier needs to provide only
the first challenge and then can stay put offline.

While the idea is reasonable and intuitive, it does not provide the security guarantee needed for
a PoSt protocol. The main issue is that the prover can run proof-of-storage protocols much faster
than expected or estimated by the verifier. Once all proofs are computed, a malicious storage
provider could simply put data offline until it is rechallenged. This is a severe drawback since
proof-of-storage schemes can be accelerated through parallelism.

Warm-up construction. The time constraints of PoSt are quite strict and critical. One way
to build a PoSt protocol that can be proven secure is to leverage the recently proposed notion
of verifiable delay function (VDF). In a verifiable delay function, the evaluation of the function
must be delayed by a specified amount of time (currently measured by the number of certain unit
operations), but the results can be verified much more efficiently. More importantly, the delay holds
even if one uses a parallel computer. With the help of a VDF, we could now compel the storage
provider to generate a PDP/PoR proof in every time slot with length t.

Intuitively, we require the prover to generate the challenge for each PDP/PoR instance from
the output of a VDF. Concretely, each challenge ci = H (VDF.Eval(G(pi−1))), where pi−1 is the
antecedent PDP/PoR proof, G(·),H(·) are properly-chosen hash functions, and VDF.Eval(·) is the
VDF evaluation algorithm. The prover returns all challenge-proof pairs together with the respective
VDF proofs. Recall that the execution time is divided into a specific number of slots. Then, the
verifier selects a proper VDF delay time to ensure the prover calculates at least one PDP/PoR
proof per time slot. If the prover is not fast enough, the PoSt will not be computed in time.

Striving for efficient verification. The intuitive protocol above is quite simple and provably
secure, but it’s very inefficient. The communication cost is high, and the verification procedure
is computationally expensive. The homomorphic aggregation techniques originally introduced in
PDP [8] are not applicable here since the sequentiality of challenges is critical to PoSt.

One of our main innovations is to come up with a different strategy. Our idea is to let the verifier
reproduce the same sequence of PDP/PoR instances as the prover. Thus, rather than verifying all
proofs and VDFs, the verifier must simply check that two sequences of PDP/PoR proofs are the
same. The comparison can be efficiently realized through collision-resistant hash functions.

4 In practice, when t is reasonably small, the cost for the storage provider to frequently move the data
back and forth could be even higher than simply keeping them online. On the other hand, there should
be a natural trade-off between efficiency and precision, which is expressed by the extra parameter t.
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However, we still must overcome two remaining challenges to make our idea practical: (1) the
prover algorithm needs to be deterministic to ensure that the reproduction performed by the verifier
is the same; (2) the verifier algorithm must be efficient. The first point is simple to address since we
can rely on multiple and suitable PDP/PoR candidates [31, 8, 44, 45]. Controlling the computation
cost of the verifier is challenging, and we make two additional observations:

– We could leverage an asymmetric VDF in the sense that there is a trapdoor that allows anyone
to compute the evaluation function efficiently without any delay. These computations can be
moved to the setup phase. Our construction of PoSt can be viewed as a practical application
of the notion of trapdoor delay function (TDF) mentioned by Wesolowski [48].

– We could adopt a bounded-use PDP/PoR that supports only a limited number of challenges.
Given the structure of our protocol, this is not a limitation and allows us to reduce costs signifi-
cantly. Indeed, bounded-use proof of storage protocols can be obtained purely from symmetric-
key primitives, and enjoy greater efficiency than the algebraic constructions.

We demonstrate our method in Fig. 1.

Fig. 1. Structure of our construction

Public validation. In the application of a decentralized storage marketplace as proposed by
Filecoin [40], the data owner could crowdsource the storage service and leverage a smart contract
that pays providers if they can produce a valid PoSt proof of continuous data availability. Therefore,
we could consider the notion of public validation where a smart contract or any third party could
validate PoSt proofs from public knowledge. An even stronger property, public verifiability, insists
that the verifier possesses no trapdoor at all, see section 4 for details. Note that the warm-up
construction introduced above provides public verifiability while its compact version, which is
presented later, provides public validation.

Indeed, consider the following observation. When comparing two sequences of proofs, it’s pos-
sible to check the digests (hashes) of the two sequences directly. Thus, the verifier could further
hash the digest of the sequence to derive d and then make d public or embed it into the smart
contract. Anyone with d can check whether h(π) = d, where h(·) is a collision-resistant hash and
π is the PoSt proof. In the end, we obtain a PoSt protocol whose verification algorithm performs
only a single hash computation!

An efficient instantiation. Note that in a PoSt, the prover’s computational cost is intrinsic
since the nature of PoSt requires the prover to access data blocks frequently. Thus, the main
concern relevant to efficiency is the setup step. However, since we can use a stateless PoR from
highly efficient symmetric-key primitives, the total cost of the setup procedure can also be made
practical. According to our experiment results (section 7), the setup procedure for a file of size
64 MB, which is supposed to be stored for 1 month and verified every hour, will take less than 4
minutes. As a comparison, a 64MB-file setup procedure of the outsourced PoR scheme Fortress [5]
would cost more than 10 minutes for both the prover and the verifier. Also, note that we did not
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perform any optimization, and the main costly component is due to hashing large files (which can
be pre-computed and optimized in various ways).

Although VDFs somehow ensure that adversaries cannot evaluate the function much faster,
precautions are needed when instantiating the concrete parameters for the VDF evaluations. (1) A
(small) gap exists between the number of unit operations needed for an honest evaluator and that
for the adversary. We resolve this by selecting parameters to guarantee that the adversary cannot
finish the proof ahead of time while the honest evaluator can finish the work within a reasonable
extension; (2) The calculation of unit operations could be expedited. Several organizations, in-
cluding Filecoin and Ethereum, have made substantial investments in finding the fastest machine
possible for these tasks. We provide more detailed discussions on these issues in Sec. 6.2.

Security analysis. Rigorously analyzing the security of PoSt turned out to be challenging. For
soundness, we need to extract data via interacting with a “partial” legitimate prover, i.e., the only
items the extractor gets are a subset of configurations and the code of the transition function.
The main difficulty is that it seems impossible to unify the strategies of a cheating prover by only
knowing that the final proof is admissible. Thus, it is complicated to recover the sequence of each
computation step and provide an extractor with a universal strategy.

To address this obstacle, we leverage random oracles. Specifically, we design our PoSt s.t., for an
admissible PoSt prover, all PoR challenges except the first one must be generated from the random
oracle, while all other PoR proofs except the last one must be queries to the random oracle. Since
the PoSt prover is evaluated, and the extractor simulates the random oracle, PoR challenges and
responses can be seen by the extractor. It becomes possible for the extractor to invoke a PoR
extractor and recover the data by controlling the random oracle. Our extraction strategy may be
of independent interest.

1.2 Related works

Ateniese et al. introduced Provable Data Possession (PDP) [8] to allow a cloud provider to prove to
its clients that their data is intact and available. Proof of Retrievablity (PoR) was initially proposed
by Juels and Kaliskiand [31] and improved in a series of subsequent works [44, 18, 24, 47, 45, 20, 4].
PoR requires the existence of an extractor to completely recover the stored data. PDP/PoR can
be extended with various advanced features, such as supporting dynamic updates [20, 45], multiple
servers [21, 18, 36], or replication [4, 37, 28, 23]. For better efficiency, it’s possible to outsource PoR’s
verification workload to a third party auditor [5]. However, the auditor must continuously challenge
the storage server and “compress” and forward the responses to the data owner. Moreover, the
construction in [5] requires a trusted randomness beacon to generate PoR challenges periodically.

A primitive named Proof of Space-Time has recently been proposed by Moran and Orlov [33].
Their notion is distinct from the one introduced in the Filecoin whitepaper and that we consider in
this paper. In their paper, “space-time” is meant to capture the use of space as a resource over time
but does not consider the availability of content. In this respect, their concept can be viewed as
an extension of Proof of Space [6, 27]. Another similar notion is sustained-memory complexity [3],
which requires that any algorithm evaluating a specific function must use a large amount of memory
for many steps.

2 Preliminary

In this section, we introduce several preliminary notions.

2.1 Interactive Turing machine.

An interactive Turing machine (ITM) is to model interactive algorithms used in real-life computing
systems. It was initially used by Goldwasser, Micali, and Rackoff [30] to model interactive proof
systems. An ITM has an input tape, an output tape, a randomness tape, and k working tapes, and
it changes its state step by step following the instruction described by a transition function.

We have the following definition of an ITM.
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Definition 1. An interactive Turing machine (ITM) with k work tapes is a 5-tuple

T = (Σ,Ω,Q, qinit, F, δ),

where

– Σ is a non-empty alphabet,
– Q is a set of states,
– qinit is the initiate state,
– F is the state of finial states,
– The transformation function

δ : Q×Σ ×Σ ×Σk −→
Q× {none, right} × {none, right} ×

(
Σk, {left, none, right}k

)
× ({Σ ∪ ⊥}, {none, left}) .

At each step, the ITM will read one symbol from the input tape, one symbol from the random
tape and k symbols from the work tapes. Then based on the current state and the transformation
function δ, it will decide

– which state to change to,
– to move the header on the reading tape to right or stay,
– to move the header on the random tape to right or stay,
– to print k symbols on the work tapes,
– to move the headers on work tapes to right or left or stay,
– to print one symbol on the writing tape or give up to output,
– to move the header on the writing tape to left or stay.

It is convenient to use a transition function based on configurations to describe the execution
procedure of an ITM. A configuration consists of a state, the contents of the tapes and the positions
of the tape headers, denoted as (q, v1, . . . , vk, i1, . . . , ik), for a state q ∈ Q, strings on one of work
tapes vj ∈ Σ∗ and integers 1 ≤ ij ≤ |vj +1| for every 1 ≤ j ≤ k. Let Q be the set of configurations.
The initial configuration qinit is the configuration consisting of the initial state and k empty tapes,
with the tape heads at the first position. So the transition function can be written as

δ : Q×Σ → Q× {none, right} × {Σ ∪ ⊥}.

Consequently, the running of an ITM is sequentially changing the configurations, according to the
transition function and the symbols on the input tape. More importantly, given one configuration
at a specific time and the transition function, anyone can run the ITM from that point on.

2.2 Proof of retrievability.

Proof of retrievability [31, 44] is a proof-of-storage scheme which provides strong retrievability
guarantees. The soundness of PoR requires that if a server can pass an audit then a special extractor
algorithm, interacting with the server, must be able (w.h.p.) to extract the file. Our PoR syntax
is adapted from [44] by Shacham and Waters, except that we specify the interaction between the
prover and the verifier as a challenge-and-response procedure. Formally, a proof of retrievability
scheme defines four algorithms, PoR.Kg, PoR.Store, PoR.V and PoR.P:

– PoR.Kg: Generate a public-private keypair (pk, sk).
– PoR.Store(sk,D): Taking as input a secret key sk and a file D ∈ {0, 1}∗, the “setup” algorithm

encodes D into D∗ as the file to be stored, and generates a public tag tg for further proof and
verification.

– PoR.V: The verification algorithm consists of two parts: 1). PoR.Vcha, which generates a chal-
lenge c, and 2). PoR.Vvalid, which verifies the response p from the prover P corresponding to the
challenge c. Specifically, PoR.Vcha(pk, sk, tg) takes the public key pk, the secret key sk and the
tag tg as inputs, and generates a challenge c. PoR.Vvalid(pk, sk, tg, c, p) takes the public key pk,
the secret key sk, the tag tg, the challenge c, the corresponding proof p as inputs, and outputs
a bit b which is either 1 or 0 to indicate whether the verifier accepts or not.
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– PoR.P(pk, tg,D∗, c): The proving algorithm takes as input the public key pk, the file tag tg
output by PoR.Store, the encoded file D∗ and the challenge c, and outputs a proof p after
computation.

Publicly verifiable. If the verification algorithm PoR.V does not need to take the secret key sk
as input, we call this PoR scheme publicly verifiable.

Stateful/stateless PoR. A PoR scheme can be either stateful [31] or stateless [44]. A PoR scheme
is stateful if the number of audit interactions between the prover and verifier is bounded, and the
verifier has to maintain a state to record the number of interactions. While a PoR scheme is
stateless if the verifier does not need to maintain a state, and can invoke the audit procedure an
unlimited (polynomial) number of times.

Correctness and soundness. A PoR scheme should satisfy both correctness and soundness.
Correctness requires that the verification algorithm always accepts the proof when interacting
with an honest prover. Soundness aims to model that any party who can convince the verifier must
be storing that file. The formal soundness definition of PoR follows the classical notion of proof
of knowledge [44]. Mainly, soundness requires that for any ITM P ′ generated by the adversary
that implements a legitimate prover in the proof-of-retrievability protocol, there is an extractor
algorithm Extr(pk, sk, tg,P ′) taking as input the public and private keys, the file tag tg, and the
description of the ITM P ′, that outputs the file D ∈ {0, 1}∗. Note that Extr is given non-black-box
access to P ′ and can, in particular, rewind it. The logic behind this extractability definition is that
the best way to guarantee the prover possesses the data is to recover it via interacting with the
prover.

Unpredictability. To facilitate our PoSt construction, we define a special property for the chal-
lenge response style of PoR, named unpredictability. It ensures that the prover cannot guess a valid
response before he sees the corresponding challenge. Formally, we have the following definition.

Definition 2. A challenge-response style PoR scheme is unpredictable if for any P.P.T adversary
A, the following holds,

Pr
[
p←$A(pk, tg,D∗) ∧ 1← Vvalid(pk, sk, tg, c, p)

∣∣ c←$Vcha
]
< negl(λ).

where PoR.V := (Vcha,Vvalid), and λ is the security parameter.

Note that unpredictability is not provided by default5, but it is achieved by most existing PoR
schemes, e.g., compact PoR [44], since the prover’s response has enough high entropy.

3 Delay Function

A delay function is a function F : X → Y that, even when using multiple processors and parallelism,
cannot be evaluated in less than a prescribed time [14]; while, on the other hand, there exists an
algorithm so that honest evaluators can terminate the computation in a similar amount of time.
Here we introduce two variants of the delay function. One is the verifiable delay function (VDF)
[14], which enables the evaluator to generate a succinct proof to show the correctness of the result.
The other is the trapdoor delay function (TDF) [48], which enables the holder of the secret trapdoor
to evaluate the function without delay. The formal definitions are given next.

3.1 Verifiable delay function

A VDF is a scheme consisting of the following three algorithms [15, 48]:

– VDF.Setup(λ, s) is a randomized algorithm that given as input the security parameter λ and
a delay parameter s (measured by Turing machine steps), generates the public parameters pp.
The input and output spaces, X and Y, are determined by pp. For meaningful security, the
delay parameter s is restricted to be sub-exponentially sized in λ.

5 A counterexample is that the prover returns all the data independently of the challenge.
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– VDF.Eval(pp, x) is a randomized algorithm that given as input the public parameters pp and
x ∈ X , outputs the answer y ∈ Y and a proof π.

– VDF.Verify(pp, x, y, π) is a deterministic algorithm that given as input the public parameters
pp, x ∈ X , y ∈ Y, and the proof π, emits one bit 1 or 0 to denote an acceptance or a rejection.

A VDF must satisfy the following three properties [15]:

- δ-evaluation time: For all pp generated by VDF.Setup(λ, s) and all x ∈ X , the algorithm
VDF.Eval(pp, x) must run in steps (1 + δ)s with poly(log(s), λ) processors.6

- Sequentiality: A parallel algorithm A, using at most poly(λ) processors, that runs in sequen-
tial steps less than s cannot compute the function. Specifically, for a random x ∈ X and pp
output by VDF.Setup(λ, s), if (y, π)← VDF.Eval(pp, x) then Pr[A(pp, x) = y] is negligible.

- Uniqueness: For an input x ∈ X , exactly one y ∈ Y will be accepted by VDF.Verify. Specif-
ically, let A be an efficient algorithm that given pp as input, outputs (x, y, π) such that
VDF.Verify(pp, x, y, π) = accept. Then Pr[VDF.Eval(pp, x)] 6= y] is negligible.

3.2 Trapdoor delay function

A TDF F : X → Y is a scheme consisting of the following three algorithms [48]:

– TDF.Setup (λ, s) is a randomized algorithm that takes as input a security parameter λ and a
delay parameter s (measured by Turing machine steps), and outputs public parameters pp and
a trapdoor tr. The delay parameter s is sub-exponential in λ.

– TDF.Eval(pp, x) takes as input x ∈ X and outputs a y ∈ Y.

– TDF.TrapEval(pp, tr, x) takes as input x and a trapdoor tr, outputs a y ∈ Y.

TDF must satisfy δ-evaluation time and sequentiality as in the case of standard VDF. Similarly,
we assume 0 < δ � 1 for TDF. In fact, the gap between the honest evaluator and the malicious
one that is characterized by δ could be even smaller than that in VDF, because no proof needs to
be generated. Besides, the following two unique requirements must be satisfied by TDF:

- Trapdoor efficiency: TDF.TrapEval must run in total steps polynomial in O(log s) and λ.
Therefore TDF.TrapEval is much faster than TDF.Eval.

- Correctness: TDF.Eval and TDF.TrapEval will produce the same result on the same input.

The TDF can be easily instantiated via the RSA trapdoor as following [48]:

– TDF.Setup(λ, s): Output two objects:

• A finite abelian group G of unknown order

• An efficiently computable hash function H : X ← G that we model as a random oracle.

We set the public parameters pp to be pp := (G, H, s) and the trapdoor tp to be the real order
d of G.

– TDF.Eval(pp, x): compute y ← H(x)2
s ∈ G by computing T squaring in G starting with H(x),

and output y

– TDF.TrapEval (pp, tr, x): Let d be the order of the group and 2s mod d = r′, we just need to
compute y = H(x)r

′
.

For an implementation, one can choose G as the RSA group, so the trapdoor d = φ(N) where
N is the RSA modulus and φ is the Euler’s function.

6 It has recently been shown in [25, 48] that one can convert a VDF into a tight one which can be
evaluated in sequential steps s + O(1) with an honest prover using O(log(s)) processors and space.
Therefore, without loss of generality, we assume 0 < δ � 1 in the following sections.
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4 Formalizing Proof of Storage-Time

Now we are ready to give a formal definition of PoSt. Recall that PoSt is a protocol that enables
the verifier to audit that the data is continuously available at the server for a specific range of
time. The syntax of PoSt is similar to the challenge-response style of PDP/PoR in section 2.2,
except that time parameters must now be considered. How to measure time is a tricky question,
and indeed, time is hard to capture by algorithms. Instead, we consider using the number of unit
steps of a Turing machine (which can be seen as a mathematical abstraction of CPU clock cycles)
as a measure of time similar to the time-lock puzzles [42] and the VDF [14]. In the following, the
time parameters are all represented as the number of steps of the Turing machine.

The ideal version of continuous data availability is a continuous notion that makes it challenging
to instantiate. A discretized approximation seems to be inevitable, and this can be accomplished by
choosing an audit frequency parameter t. Hence, the large time range T can be arbitrarily divided
into time segments of length t, and the prover must provide a valid proof at least once in every
time slot. Obviously, a smaller t would result in a better availability guarantee.

Specifically, the key generation phase of PoSt takes as input the audit frequency parameter t,
and a deposit time T which expresses the time that the data file is supposed to be stored at the
server. Besides, the verifier needs to keep a timer for checking whether the final proof is received
on time. For simplicity, we do not consider the communication latency. Formally, a PoSt scheme
consists of the following four algorithms.

– PoSt.Kg(λ, t, T ): Given the security parameter λ, the audit frequency parameter t and the data
storage time T , this randomized algorithm generates a public-private key pair (pk, sk).

– PoSt.Store(sk,D): The file-storing algorithm takes as input a secret key sk and the content
D ∈ {0, 1}∗, encodes D into D∗ as the file to be stored, and computes a tag tg for further proof
and verification.

– PoSt.V is the verification algorithm which has two subroutines PoSt.Vcha and PoSt.Vvalid for
the challenge generation and the response validation, respectively. PoSt.Vcha(pk, sk, tg) takes
as input the public key pk, the secret key sk and the tag tg, and generates a challenge c as well
as setting a public timer to be 0. PoSt.Vvalid(pk, sk, tg, c, p, timer) takes as input the public key
pk, the secret key sk, the tag tg, the challenge c, the corresponding response p and the time of
the timer for receiving the response p, and outputs a bit b to indicate “reject” or “accept”.

– PoSt.P(pk, tg,D∗, c): The randomized proving algorithm takes as input the public key pk, the
file tag tg output by St, the decoded file D∗ and the challenge, outputs a response p after a
period of computation and sends it back to the verifier immediately after the computation is
finished.7

A PoSt scheme may possess other advanced features.

Compactnesss. A PoSt scheme is compact, if the cost of the verification algorithm PoSt.V =
(PoSt.Vcha,PoSt.Vvalid) is independent of the storage time T and the size of the file.

Public verifiability. Similar to PDP/PoR, if the subroutines PoSt.Vcha and PoSt.Vvalid of the
verify algorithm do not need the secret key sk as input, we call this scheme publicly verifiable. It
implies that continuous data possession can be verified by any third party, not only by the data
owner.

Public validation. Consider the case where only PoSt.Vvalid does not require the secret key as
input, while PoSt.Vcha still needs it. In this case, the response p can be publicly validated, given
the challenge c. We call these PoSt schemes publicly validatable. Unlike publicly verifiable schemes,
PoSt.Vcha may still take sk as input so that challenges cannot be generated publicly. Therefore, the
timer for verification should be initiated by the data owner but can be seen by everyone. Although
not as flexible as publicly verifiable schemes, validatable PoSt schemes are sufficient for many useful
applications, including those related to decentralized storage markets, as advocated by Filecoin.

7 In practice, PoSt.P is supposed to send back the final response after the storage period ends; otherwise
it is impossible to detect malicious attempts such as discarding the stored data at the last moment.
Therefore, either the computation of PoSt.P takes longer time than T , or an intentional delay is included
in the algorithm.
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8 In particular, data owners can outsource their data to any party in the network and publish a
privately-generated challenge together with the parameters of the smart contract (the public key
pk, the tag tg, and the initial time t1). Any party that stores the data can submit a response p in
time t2, and the contract can publicly evaluate PoSt.Vvalid with pk, tg, p and t2 − t1 as input. The
storage provider earns his reward if the output bit b equals to 1.

Stateful/Stateless PoSt. A PoSt scheme is stateful, if it supports a limited number of audits
after the setup procedure and a state must be maintained. The state is updated after a challenge is
used, i.e., PoSt.Vcha(pk, sk, tg, state)→ (c, timer, state). The PoSt.Store algorithm is parameterized
by an integer `, which indicates the maximum number of interactions. The variable state records
the times that the server has been queried. In practice, a new challenge cannot be generated
when the bound is reached unless the data owner retrieves all the data and relaunches the store
procedure. On the contrary, the audit interaction for a stateless PoSt can be invoked an unbounded
(polynomial) number of times.

Generally, a PoSt scheme should satisfy both properties of Correctness and Soundness.

4.1 Correctness

Correctness requires that the verification algorithm accepts the proof when interacting with a valid
prover.

Definition 3. A stateless PoSt scheme is correct if for all keypairs (pk, sk) output by PoSt.Kg(λ, t, T ),
for all files D ∈ {0, 1}∗, and for all (D∗, tg) output by PoSt.Store(sk,D), the verification algorithm
accepts the proof when interacting with a valid prover. Specifically, if p is the response generated
by PoSt.P(pk, tg,D∗, c) on the challenge c generated by PoSt.Vcha(pk, sk, tg) and sent back to the
verifier immediately after the proof computation is finished, PoSt.Vvalid(pk, sk, tg, c, p, timer) always
outputs 1.

For the stateful PoSt, the correctness definition is the same, except the state is involved in
PoSt.Vcha.

4.2 Soundness

As illustrated in the introduction, providing a suitable and rigorous definition for soundness is a
challenging task. A natural choice is to upgrade the PoR soundness, which requires an extractor
algorithm to extract the data while interacting with a legitimate prover. This follows the classical
definition of proof of knowledge. It is not hard to imagine, in an ideal version of PoSt, to have
an extractor that extracts the data possessed by a legitimate prover at any specific point within
the time range T . Our strategy is to characterize the prover algorithm as an Interactive Turing
Machine (ITM), which is executed to generate a proof after receiving a challenge. We intend to
mimic the situation where someone runs a computer but ends at a specific time point, “freezes” its
memory, and then checks the data preserved on the machine. Intuitively, the data on a computer
should be either preserved in the memory (characterized as configurations) or hardcoded in the
program (characterized as the transition function). Therefore, for the notion of soundness, the data
should be extracted from the configuration corresponding to any specific time and the transition
function. To facilitate the construction, we provide a more general definition for the above-idealized
version: instead of selecting a configuration of one step, we allow the extractor to choose a bunch
of configurations that correspond to a time slot with length t.

In general, the soundness experiment of PoSt consists of two procedures as in PDP/PoR, i.e.,
the setup game and the extraction algorithm. The setup game lets the adversary generate a prover
algorithm P ′. In the extraction algorithm, the extractor recovers the data from the generated algo-
rithm P ′. The setup game of PoSt is similar to that of PDP/PoR, while the extraction procedure
needs to be defined specifically.

8 Ideally, they would also demand the stronger public verifiability property so that PoSt could be integrated
into the mining procedure.
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Fig. 2. PoSt soundness model.

Setup Game The first procedure is the following setup game between an adversary A and an
environment, which simulates the procedure that the adversary generates a malicious prover P ′
by getting arbitrary storage data from an honest data owner and then freely interacts with the
verifier.

Step 1. The environment generates a keypair (pk, sk) by running PoSt.Kg, and provides pk to A
Step 2. The adversary now interacts with the environment. It can make queries to a store oracle,

providing, for each query, some file D. The environment computes (D∗, tg) by invoking
PoSt.Store(sk,D) and gives both D∗ and tg back to A. If the PoSt is stateful, the envi-
ronment initiates and maintains a verifier’s state for each storage query.

Step 3. For any D on which it previously made a store query, the adversary undertakes executions
of the PoSt challenge-response interaction, by specifying the corresponding tag tg. In these
protocol executions, the environment plays the part of the verifier, and the adversary plays
the part of the prover. Specifically, the environment maintains a timer for each interaction.
When a protocol execution completes, the adversary is provided with the output of V.
These protocol executions can be arbitrarily interleaved with each other and with the
store queries described in Step 2. For the stateful PoSt, the environment also updates the
state as a verifier, so the adversary can only interact with the verifier a limited number of
times for a specific storage.

Step 4. Finally, the adversary outputs a challenge tag tg returned from some store query, and the
description of a prover P ′, which is an ITM defined before.

Specifically, the prover P ′ for a file D and storage time T is ε-admissible for a stateless PoSt if
it convincingly answers an ε fraction of challenges, i.e., Pr[〈PoSt.V(·),P ′〉 = 1] ≥ ε. Similarly, for
the stateful scheme we require that Pr[〈PoSt.V(·, state),P ′〉 = 1] ≥ ε for any state from 1 to l. The
probability is over the coins of the verifier and the prover.

Extraction The second procedure is to allow the extractor to extract the data from the prover
P ′. As discussed above, we provide a generalized notion of “continuous extractability”, which
aims to capture that if one chooses any time period with length t during the storage time, the
data is available for at least one time point in this period. Intuitively, if the interval between two
data audits is larger than t, the data may not be available for this interval, and hence cannot be
extracted from the corresponding bunch of configurations and the transition function. So t actually
characterizes the largest interval between two data audits, and it represents the checking frequency
parameter.

Specifically, we design an extract experiment which has two procedures. To guarantee that the
extracted data is indeed “on the machine” during that chosen time slot, we run two procedures. The
first procedure, named Extr1, is to honestly run the algorithm P ′ as an ITM, to get the sequence
of the configurations, and to cut out a bundle of sequential ITM configurations which correspond
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to a length of time t. The second procedure, named Extr2, can use this bundle of sequential ITM
configurations, along with the transition function of P ′, to extract the data.

In our definition, the behavior of Extr1 is fixed, but the strategy of Extr2 is arbitrary. Moreover,
the execution time of P ′ must be longer than the deposit time T . Particularly, when given the
transition function and a bunch of configurations corresponding to one time slot, Extr2 may rewind
a portion of the computations of P ′ by himself. The sketch of the experiment can be seen in Fig.
2.

Definition 4 (Soundness). A PoSt scheme is ε-sound if for every adversary A which plays the
setup game and outputs an ε-admissible prover P ′ for a file D as an ITM with k tapes, there is
an extractor Extr which has two subroutine ITMs, Extr1 and Extr2, that can perform the following
tasks.

– Extr1 is an ITM with k + 1 working tapes. Extr1’s input is the description of P ′. He devotes
k of his working tapes to simulate all the tapes of P ′. Extr1 first writes an arbitrary challenge
on the simulated input tape of P ′, then simulates every step of P ′ following the instructions of
P ′’s transition function. After each step of P ′, Extr1 records the current configurations of P ′
on his extra tape before starting to simulate the next step of P ′. After finishing all of P ′ steps,
Extr1 will randomly pick t successive configurations of P ′ to write on his output tape together
with the description of the transition function of P ′.

– The input of Extr2 is directly obtained from the output tape of Extr1. Extr2 must recover D
purely from the information s returned by Extr1 except a negligible probability, no matter which
t successive configurations of P ′ is chosen by Extr1. Hence the probability

Pr (D←$Extr2(s)|s←$Extr1(P ′)) > 1− negl(λ)

for the randomnesses of both Extr1 and Extr2.

5 Constructions for PoSt

In this section, we provide two PoSt constructions which are proven secure in the above model.
Each of them has its own advantages.

The first construction follows the structure of the ad-hoc proposal from the Filecoin white paper
[40] but can be proven secure. Intuitively, it uses a VDF and random oracles to force the prover to
generate PoR proofs sequentially. This scheme is stateless, which means that the prove procedure
can be launched an unlimited number of times after storing. Also, this scheme is publicly verifiable;
hence a third party can verify the continuous availability of data by interacting with the server.
The drawback of this scheme is that the size of the final proof is linear with respect to the storage
time. Given that the verification time is also linear, we consider this just a warm-up construction.

The next construction is our main one which achieves compact proofs, so its communication
size is independent of the default time. Particularly, its verification algorithm is extremely efficient.
Nevertheless, this construction is stateful, i.e., after a limited number of PoSt interactions, no more
proofs can be generated until rerunning the storing phase. Moreover, this scheme provides public
validation, but it is not publicly verifiable. This means that the verifier needs a secret key for the
generation of the challenge; however, the verification of the PoSt proof does not.

5.1 Basic PoSt Scheme

Next, we describe our first construction called the basic PoSt. Our main building blocks are a
stateless unpredictable PoR scheme (defined in Subsection 2.2) and a VDF scheme. The main
intuition is to force the PoSt prover to sequentially generate one PoR proof every once in a while
during the entire storage period. To achieve this goal, we let the challenges of the next PoR be
derived from the output of VDF, whose input is the previous PoR proof (see the right side of Fig.
1). Therefore, a malicious prover cannot generate all the PoR proofs at once at the beginning of
the storage period, because each PoR procedure is connected to the next one in series by a delay
function. Also, the prover cannot discard the data first and wait until the last moment to retrieve
it and generate all the PoR proofs at once, otherwise he will risk not sending the final response in
time due to the delay function.
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Specifically, the following primitives will be used in the construction. A stateless publicly-
verifiable PoR scheme with unpredictability consists of a tuple of algorithms

(PoR.Kg,PoR.Store,PoR.P,PoR.V)

where PoR.V = (PoR.Vcha,PoR.Vvalid). PoR.Vcha and PoR.Vvalid denote the verifier’s algorithms for
generating the challenge and verifying the proof, respectively. H and G are hash functions that can
be viewed as random oracles. (VDF.Setup,VDF.Eval,VDF.Verify) are the algorithms for a verifiable
delay function with δ-evaluation time for some constant δ. D denotes the storage file. The PoSt
scheme needs a global timer which is initiated by the data owner but can be seen by everyone.

The PoSt is parameterized by the storage time T and checking frequency t. Without loss of
generality, T and t are measured by the number of steps of a Turing machine (to mimic the CPU
clock). Note that since the adversary may evaluate the delay function slightly faster than the
honest prover, we require them to check the data more frequently than the requested frequency
t. Based on T and t, PoSt scheme will choose the VDF delay time t′ ≤ t − 2δT . Precisely, we set
the delay parameter of VDF as t′. Hence, the sequential steps for evaluating VDF should be larger
than t′ for any parallel adversary with poly(λ) processors; on the other hand, the honest server can
finish the VDF evaluation within time (1+δ)t′ (see Section 6.2 for more detailed discussions about
the parameter setting). Moreover, we assume that the time cost of generating one PoR proof and
evaluating one hash function is much smaller than t (thus, it can essentially be ignored), and our
construction guarantees that the largest time interval between two PoRs is less than t′ + 2δT ≤ t.

The PoSt works as follows:

– PoSt.Kg(λ, t, T ): Use PoR.Kg to generate a PoR public-private key pair (PoR.pk,PoR.sk). t′

is the largest number of ITM steps such that t′ ≤ t − 2δT and k = T/t′ is an integer. Use
VDF.Setup (λ, t′) to generate the public parameter VDF.pp for VDF where the time cost is at
least t′. The public key pk of PoSt is (PoR.pk,VDF.pp, T, k) and the secret key sk is PoR.sk.

– PoSt.Store(pk, sk,D): Take a secret key sk and a file D ∈ {0, 1}∗ as input. Use PoR.Store to
process D and output D∗ and a tag tg = PoR.tg.

– PoSt .V = (PoSt.Vcha,PoSt.Vvalid):
• PoSt.Vcha(pk, tg): Use PoR.Vcha to generate a challenge c0 and set its timer to 0.

• PoSt.Vvalid(pk, tg, c0, p): When the PoSt proof p is received from the prover, PoSt.Vvalid first
check the current timer T ′. If the timer T ′ is smaller than T or larger than (1 + δ)T , output
reject, otherwise run Algorithm 2 with input p, tag tg and processed data D∗ and release
its output. Intuitively, the verifier needs to check all hash evaluations, all PoR proofs, and
all VDF evaluations.

– PoSt.P(pk, tg,D∗, c0): Defined as Algorithm 1. Intuitively, the prover sequentially computes
PoR instances where the next PoR challenge is generated from the previous PoR proofs via
hash functions and VDF.

Algorithm 1 The PoSt prove algorithm PoSt.P
Require: The initial challenge c0, the stored data D∗, the public key pk = (POR.pk,VDF.pp, k, T ) and

the tag tg = PoR.tg
Ensure: The PoSt proof p
1: for i = 0 to k − 1 do
2: vi ← PoR.P (ci, D

∗,PoR.pk,PoR.tg) // Generate a PoR proof.
3: ui = G(vi)
4: (di, πi)← VDF.Eval(ui,VDF.pp) // Compute VDF while generate its proof.
5: ci+1 = H(di)

6: vk ← PoR.P(ck, D
∗,PoR.pk,PoR.tg)

7: p =
(
{ci, vi}ki=0, {ui, πi, di}k−1

i=0

)
8: return p
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Algorithm 2 PoSt Verification Algorithm

Require: The PoSt proof p, the public key pk = (POR.pk,VDF.pp), and the tag tg = (PoR.tg, k, T )
Ensure: The verification result b
1: parse p as

(
{ci, vi}ki=0, {ui, πi, di}k−1

i=0

)
2: for i = 0 to k − 1 do
3: if ui 6= G(vi) then return reject

4: if ci 6= H(di) then return reject

5: if 0← PoR.Vvalid(PoR.pk,PoR.tg, ci, vi) then return reject

6: if 0← VDF.Verify(VDF.pp, di, ui, πi) then return reject

7: if 0← PoR.Vvalid(PoR.pk,PoR.tg, ck, vk) then
8: return reject
9: else

10: return accept

Correctness. Note that the final PoSt proof procedure includes k VDF evaluations where k =
T/t′. Since we assume that the time spent evaluating one VDF (with δ-evaluation time) is shorter
than (1+δ)t′, and the time cost for PoRs and evaluating hash is comparatively negligible, the total
time for an honest prover to generate a PoSt proof is less than (1 + δ)T . Hence the correctness of
our PoSt directly follows from those of the PoR and the VDF schemes.

Soundness. Our goal is to prove that the largest time interval between two PoRs is less than t.
Therefore, for an admissible prover, any successive configurations of any time epoch with length t
must contain at least one PoR. Ideally, one can use the PoR extractor to recover the data from the
partial configurations and the transition function. However, one problem is that since the strategy
of a malicious prover cannot be predicted, it is hard to let the extractor access each PoR’s challenge
and response. To solve this problem, our soundness proof fully exploits the unpredictability of the
random oracle. Specifically, since an admissible prover must inevitably query the random oracle,
the challenge and response for each PoR can be located via querying the random oracle G and H
respectively, hence we can extract the data via the PoR extractor.

Theorem 1. PoR is a stateless PoR scheme with ε-soundness and unpredictability. VDF is a VDF
scheme with δ-evaluation time. The time cost of PoR and evaluating a hash function is negligible
w.r.t. t. The time cost of s0 sequential steps on the server processor is t′. If t′ + 2δT < t, the PoSt
scheme is stateless and has ε-soundness.

Proof. Assume that an adversary A outputs a cheating prover PoSt.P ′ in the setup game, which
can return a valid proof p =

(
{ci, vi}ki=0, {ui, πi, di}

k−1
i=0

)
with probability ε. To show the soundness

of the scheme, we need to construct the extractor PoSt.Extr2 which can recover the data D from the
successive configurations of a t length time epoch and transit function returned by PoSt.Extr1, no
matter which epoch is chosen by PoSt.Extr1. Generally, our proof consists of two steps. In the first
step, we prove that the prover will execute one PoR in the epoch randomly chosen by PoSt.Extr1.
In the second step, we will invoke the PoR extractor to recover the data from the configurations
the epoch and the transition function.

For the first step, let T0 and Tk are the starting and ending time points for running PoSt.P ′.
For i from 1 to k − 1, we set each time point Ti+1 to be the first time when PoSt.P ′ queries the
random oracle H on di. Similarly, we set each time point Ri as the first time when PoSt.P ′ queries
the random oracle G on vi. Then we will prove that:

Claim 1) Ti must precede Ti+1,
Claim 2) the length of each time slot [Ti, Ti+1) is longer than t′,
Claim 3) the length of each time slot [Ti, Ti+1) is shorter than t′ + δT ,
Claim 4) each Ri belongs to the time slot [Ti, Ti+1) and the time slot [Ti, Ri) is shorter than δT .

If above claims are all proved, the random time epoch with length t > t′+2δT chosen by PoSt.Extr1
must contain at least one interval [Ti, Ri) for some i. This is because T1, . . . , Tk−1 divides the whole
execution time of PoR.Extr into k slots whose lengths are all shorter than t. So any epoch with
length t must contain some Ti. Since t > t′ + 2δT , the epoch must contain either Ti−1 or Ri,
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otherwise the length of the interval [Ti−1, Ri) is longer than t. So either the interval [Ti−1, Ri−1)
or [Ti, Ri) is contained in this epoch.

Next we prove the above claims one by one.
For Claim 1), we show that each di−1 must be firstly queried to the random oracle H before

di. We prove it by contradiction. If not, PoSt.P ′ must be able to either generate the PoR challenge
ci before di−1, which violates the unpredictability of the random oracle H; or generate the PoR
response vi before ci, which violates the unpredictability of PoR; or generate the VDF input ui
before vi, which violates the unpredictability of the random oracle G; or generate the VDF output
di before ui, which violates the sequentiality of VDF.

For Claim 2), we prove that the length of each time slot [Ti, Ti+1) is longer than t′. By the
unpredictability of the random oracle, the output of the VDF di must be generated before the
time point Ti+1. On the other hand, the PoR response vi must be generated via the PoR on the
challenge ci after the time point Ti. Therefore, a VDF function must be evaluated within the time
slot [Ti, Ti+1). By the sequentiality of VDF, the length of [Ti, Ti+1) must be longer than t′.

For Claim 3), we prove that the length of each time slot [Ti, Ti+1) is shorter than t′ + δT . Let
us denote the execution time of PoSt.P ′ as T ′. By the correctness of the verification algorithm,
T ′ < (1 + δ)T . Since we have proved that the length of each time slot [Ti, Ti+1) is longer than t′,
the longest slot should be shorter than (1 + δ)T − (k − 1)t′ = δT + t′.

For Claim 4), the thing left is to show that the PoR response vi must have been queried to the
random oracle G in this time slot [Ti, Ti+1) and the time slot [Ti, Ri) is shorter than δT . On the
one hand, the output of the VDF di is queried at the time point Ti+1. So the input of the VDF
ui must be generated by PoSt.P ′ before the time Ti+1 according the sequentiality of VDF. By the
unpredictability of the random oracle, G must be queried on input vi before the time Ti+1. On
the other hand, according to the unpredictability of PoR mentioned in 2.2, PoSt.P ′ can not figure
out the PoR proof vi before the time point Ti when the PoR challenge ci is generated. Given all
this, vi must have been queried to the random oracle G in time slot [Ti, Ti+1). Furthermore, since
the maximum length of [Ti, Ti+1) and the evaluation time of VDF is longer then t′, the time slot
[Ti, Ri) is shorter than δT .

For the second step of the proof, we show that given the bunch of configurations for PoSt.P ′
for time slot [Ti, Ri) (or [Ti−1, Ri−1)) and the code of the transition function, ci and vi can be
easily accessed by the PoSt.Extr. Indeed, since both random oracles H and G are maintained by
the extractor, a cheating PoR prover PoR.P ′ can be constructed by manipulating the output of the
random oracle H as the PoR challenge, rewinding the part of the PoSt.P ′ corresponding to time
segment [Ti, Ri) (or [Ti−1, Ri−1)) and collecting the queries of the random oracle G as the PoR
response. Since there is a PoR extractor to recover the storage data from PoR.P ′, the soundness
proof of PoSt completes. ut

5.2 Compact PoSt scheme

Although the above basic PoSt already achieves the purpose of verifying the continuous availability
of data, the large proof size makes it impractical for many applications, including the decentralized
storage market advocated by Filecoin. One approach could be to let the prover compress all tran-
scripts and prove the validity of each challenge and the final compressed proof using zk-SNARK
as in [40]. Unfortunately, the generic method that employs zk-SNARK to prove the corresponding
statement incurs a prohibitive cost (both computational and memory-wise); thus, it is practically
infeasible.9

Next, we describe our compact PoSt. The structure of our construction can be seen in Fig. 1.
As in our basic construction, the prover here also executes the sequential PoR schemes where each

9 The proof time of SNARK is proportional to the circuit size, and the memory cost grows even faster.
According to the latest report [11] by Ben-Sassone et al., the time cost for generating the proof is roughly
0.1 ms multiplied by the number of circuit gates. If one wants to store the data for one month and check
it every hour, the basic PoSt prover is required to compute 720 PoRs. Even if we adopt the simplest
PoR, e.g., the HMAC based one [31], the storage provider still needs to compute more than 227 hashes
for 64MB data, and the gates for one hash function are at least 213 according to the estimation by
Bernstein [13]. Therefore, the total proof generation time, if we use SNARKs, would require more than
five years. If one turns the entire prove procedure into a giant circuit, the circuit size becomes larger
than 237, and the memory cost would be about 1TB already for all HMAC-based PoRs.
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next challenge is the output of the delay function, and the verifier gives only the first challenge.
But instead of verifying each PoR instance, we let the verifier perform the same work as the prover
during the storing phase, except that he can compute the delay function much faster thanks to the
trapdoor. Therefore, the verifier only needs to check that all PoR challenges and responses from
the prover are the same as the ones he computed. Hence, the final proof consists of the hash of all
PoR challenges and responses, and the tag denotes the hash image of this value. Besides, challenges
in our compact PoSt can only be generated by the data owner; therefore, it provides only public
validity, but not public variability according to the formulation in Section 4.

Comparing with the previous construction, the communication size of our scheme is constant.
But the scheme is stateful. That means that the number of challenges is bounded and the verifier
must record the previous challenge history. If the bound is reached, the data owner must retrieve
the data and rerun the storing procedure.

Our compact PoSt construction uses a publicly verifiable stateful or stateless PoR scheme and
a TDF construction. The PoR scheme consists of a tuple of algorithms

(PoR.Kg,PoR.Store,PoR.P,PoR.V),

where PoR.V = (PoR.Vcha,PoR.Vvalid). Specifically, the PoR scheme should be deterministic, which
means there is only one valid response to a specific challenge, and unpredictable, which means the
response can not be predicted in advance before viewing the challenge. The TDF scheme with δ-
evaluation time consists of a tuple of algorithms (TDF.Setup,TDF.Eval,TDF.TrapEval). Moreover,
H, H1, H2, H3 and G are hash functions which can be viewed as random oracles. D is the data to
be stored. SE = (SKg,Enc,Dec) is a semantically secure symmetric-key encryption. Let l denote
the bound of interaction times between the prover and verifier. The compact PoSt scheme needs a
global timer which is initiated by the data owner but can be seen by everyone.

The compact PoSt is parameterized by the storage time T and the checking frequency t′. As
before, the data is checked more frequently than the requested frequency. In the construction, the
delay parameter of TDF is set as t′ where t > t′ + 2δT . Here T , t and t′ are all measured by the
unit steps of a Turing machine, which corresponds to the CPU clock. See Section 6.2 for more
detailed discussions.

The compact PoSt scheme is as follows.

– cPoSt.Kg(λ, t, T ): Invoke PoR.Kg(λ) to generate a PoR key pair PoR.pk and PoR.sk. Also
generate a secret key SE.sk for symmetric encryption via SKg(λ). Choose t′ as the largest
number of ITM steps such that t′ < t− 2δT and k = T/t′ is an integer. Run TDF.Setup(λ, s0)
to generate the TDF’s public parameter TDF.pp and trapdoor TDF.tr where the time cost on
the server processor is t′. The public key pk = (PoR.pk,TDF.pp, T, k), while the secret key
sk = (PoR.sk, SE.sk,TDF.tr).

– cPoSt.Store(pk, sk, l,D): Take as input the public key pk, the secret key sk, the expected storage
time T , the bounded number l and a file D ∈ {0, 1}∗, then run Algorithm 3 to generate the
encoded file D∗ and the tag tg. Intuitively, the data owner sequentially computes PoR instances
where the next PoR challenge is generated from the previous PoR proof via hash functions
and TDF trapdoor evaluations. Then he keeps the hash values of all the PoR challenges and
responses together for further verification.

– cPoSt .V = (cPoSt.Vcha, cPoSt.Vvalid):
• cPoSt.Vcha(pk, sk, tg, state): Keep a variable state to record the number of interactions. If
state = i < l, cPoSt.Vcha uses SE.sk to decrypt the ciphertext C in the tag tg, gets the
corresponding challenge ci and sends it to the prover. Meanwhile, reset the timer as 0 and
increment state.
• cPoSt.Vvalid(pk, tg, state, p): When receiving the PoSt proof p from the prover, cPoSt.Vvalid

first check the current timer. If the timer is shorter than T or longer than (1 + δ)T ,
cPoSt.Vvalid outputs reject, otherwise cPoSt.Vvalid checks whether H3(p) = tgi for state = i.
If it is true, cPoSt.Vvalid outputs accept, otherwise outputs reject.

– cPoSt.P(c0, pk, tg,D
∗): After receiving a challenge c0 from the verifier, the prover runs Al-

gorithm 4 to generate a proof p. Intuitively, the prover sequentially computes PoR instances
where the next PoR challenge is generated from the previous PoR proof via hash functions and
TDF evaluations without trapdoor. Then he hashes all the PoR challenges and responses to
generate the final PoSt proof.
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Algorithm 3 The compact PoSt storing algorithm cPoSt.Store

Require: The public key pk, the secret key sk, the number l and a file D ∈ {0, 1}∗
Ensure: D∗ for storage and a tag tg
1: Parse pk = (PoR.pk,TDF.pp, T, k)
2: Parse sk = (PoR.sk, SE.sk,TDF.tr)
3: (D∗, tg∗)← PoR.Store(PoR.pk,PoR.sk,D)// Run the PoR storing
4: for j = 1 to l do
5: c0,j ← PoR.Vcha(PoR.pk, tg∗)
6: for i = 0 to k − 1 do
7: vi,j ← PoR.P(PoR.pk, ci,j , D

∗, tg∗)// Generate a PoR proof.
8: ui,j = G(vi,j)
9: di,j ← TDF.TrapEval(TDF.pp,TDF.tr, ui,j)// Use the trapdoor to evaluate TDF efficiently

10: ci+1,j = H(di,j)

11: vk,j ← PoR.P(PoR.pk, ck,j , D
∗, tg∗)

12: cj = H1(c0,j , . . . , ck,j)
13: vj = H2(v0,j , . . . , vk,j)
14: tgj = H3(cj , vj)

15: C = EncSE.sk(c1, . . . , cl)
16: tg = (C, tg∗, tg1, . . . , tgl)
17: return D∗ and tg

Algorithm 4 The compact PoSt prove algorithm cPoSt.P
Require: The initial challenge c0, the stored data D∗ and the tag tg
Ensure: The PoSt proof p
1: Parse pk = (PoR.pk,TDF.pp, k, T )
2: Parse tg = (C, tg∗, tg1, . . . , tgl)
3: for i = 0 to k − 1 do
4: vi ← PoR.P(PoR.pk, ci, D

∗, tg∗)// Generate a PoR proof.
5: ui = G(vi)
6: di ← TDF.Eval(TDF.pp, ui)// Evaluate TDF without trapdoor
7: ci+1 = H(di)

8: vk ← PoR.P(PoR.pk, ck, D
∗, tg)

9: c = H1(c0, . . . , ck)
10: v = H2(v0, . . . , vk)
11: return p = (c, v)

Correctness Note that the final PoSt proof procedure includes k VDF evaluations where k = T/t′.
Since we assume that the time of evaluating one VDF with δ-evaluation time is shorter than (1+δ)t′,
the total time cost for an honest prover to generate a PoSt proof is less than (1 + δ)T . Hence the
correctness of our compact PoSt directly follows from that of the PoR and VDF schemes.

Soundness The proof strategy of the Compact PoSt scheme is similar to the proof in Theorem
1. In general, the verification algorithm of the compact PoSt requires the prover to compute all
PoR challenges and responses and evaluate the TDFs as in the storing phase, so we can easily
conclude that all the PoR responses are valid and the TDFs are evaluated as expected. Because
of the unpredictability of PoR and the sequentially of TDF, the PoR proofs must be generated
sequentially. Moreover, the random time epoch with length longer than t must contain at least one
PoR execution, and both the input and output of the PoR can be located via random oracles G
and H, respectively. Therefore, we can invoke the PoR extractor to recover the data.

Theorem 2. PoR is a PoR scheme with ε-soundness and unpredictability. TDF is a TDF scheme
with δ-evaluation time. Assume that the time cost for TDF is at least t′ and t > t′+ 2δT , then the
above compact PoSt scheme is stateful with l permitted challenges and has ε-soundness.

Proof. Assume that an adversary A outputs a cheating prover cPoSt.P ′ in the setup game. To show
the soundness of the scheme, we need to construct the extractor cPoSt.Extr = (cPoSt.Extr1, cPoSt.Extr2)
to recover the data D from PoSt.P ′. In general, the verification algorithm of the compact PoSt
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requires the prover to compute all PoR challenges and responses and evaluate the TDFs as in
the setup phase, so we can easily conclude that all the PoR responses are valid and the TDFs
are evaluated as deemed. Therefore, we can use the strategy similar to Theorem 1 to construct
cPoSt.Extr.

Specifically, let T0 and Tk be the starting and ending time points for running PoSt.P ′. Similar
to Theorem 1, we need to set T1, . . . , Tk−1 and R0, . . . , Rk−1 as the points of respective queries to
the random oracle H and G for PoSt.P ′, so that:

Claim 1) Ti must precede Ti+1,
Claim 2) the length of each time slot [Ti, Ti+1) is longer than t′,
Claim 3) the length of each time slot [Ti, Ti+1) is shorter than t′ + δT ,
Claim 4) each Ri belongs to the time slot [Ti, Ti+1) and the time slot [Ti, Ri) is shorter than δT .

Therefore, the random time epoch with length t > t′ + 2δT chosen by PoSt.Extr1 must contain
at least one interval [Ti, Ri) for some i. Hence a cheating PoR prover PoR.P ′ can be constructed by
PoSt.Extr2 since both random oracles H and G are maintained and hence able to be manipulated
by the extractor. ut

6 Instantiations

Although we have provided a generic framework for PoSt with asymptotically compact proofs,
we still need to discuss the practical instantiations of our two main building blocks: PoR and
VDF(TDF).

6.1 An efficient PoR instantiation

When taking into account the concrete efficiency, we note that the verification phase of our compact
PoSt is extremely efficient since only one evaluation of a hash function is involved. The cost of
its proof phase is inherent since the server inevitably needs to keep computing the delay function.
However, the cost of the setup phase affects the overall efficiency. Based on our design, the data
owner needs to compute all PoRs and TDFs sequentially. Since he holds the trapdoor of the TDF,
computing PoR proofs becomes the main burden when the data size is large. For instance, if the
expected storage time is one month and the audit frequency is every hour, the setup phase consists
of about 720 PoRs. In this case, the classic PoR based on bilinear pairings [44] or RSA group [8]
are not satisfactory.

Stateful PDP/PoRs achieve higher efficiency since they can be built from symmetric-key prim-
itives [31]. However, stateless PoR schemes only support a very limited (usually constant) number
of challenges. At first glance, these schemes are not suitable for the compact PoSt; however, we
observe that the limited number of challenges is due to the verification algorithm of PoR, which
by our design, we never invoke in our compact PoSt construction. The prove algorithm of stateless
PoRs does support a polynomial number of challenges. Accordingly, we can adopt a simple stateful
PoR, as in [31], in our PoSt construction.

Let H be a HMAC and G be a hash function. The PoR scheme is as follows:

– PoR.Kg(λ): Taking as input the security parameter λ, randomly choose the secret key sk as
a sequence of bit strings from {0, 1}λ, i.e., sk = (r1, . . . , rn) ∈ {0, 1}λ×n. Note that no public
key is needed in this scheme.

– PoR.St(sk,D): Take as input a secret key sk = (r1, . . . , rn) and a file D ∈ {0, 1}∗, then
compute the MAC pi = H(ri, D) w.r.t. the key ri for i = 1, . . . , n. Let ti = G(pi) and the PoR
tag tg = (t1, . . . , tl).

– PoR.V = (PoR.Vcha,PoR.Vverify):
• PoR.Vcha(sk, state) : For the state = i < n, send the random string ci = ri to the verifier.
• PoR.Vverify(ci, tg): Given the response pi from the prover when the state is i, if ti = G(pi),

output accept, otherwise reject.
– PoR.P(ci, D): Given the challenge ci, compute the MAC value pi = H(ci, D) w.r.t. the key ci.

In practice, H can be instantiated via the HMAC with SHA-3 [26]. The above scheme is a
secure PoR when we model H and G as random oracles since the extractor can easily recover data
from the random oracle queries. Similarly, we achieve the unpredictability of the PoR from the
properties of the random oracle.
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6.2 Instantiations of the delay function

In the described PoSt constructions, the time is measured by the number of the ITM steps, which
aims to mimic the CPU clock. But for a practical system, we must set the concrete parameters
for the VDF/TDFs according to the time and verification frequency. Indeed, as in computational
timestamping [14] or other applications of VDFs, a reasonable estimation of the attacker’s evalua-
tion speed of the delay function is needed for PoSt. Three items should be considered: 1) choosing
the proper instantiation of the delay functions, 2) setting the concrete parameters for VDF/TDF,
and 3) making the estimation of the forced delay time as accurate as possible.

First of all, choosing a proper instantiation of the VDF/TDF for our PoSt needs special care.
Given the time T and checking frequency t as chosen by the data owner, our PoSt constructions
require the parameter δ of the delay function to be smaller than t

2T ; otherwise, the key generation
algorithm cannot find a suitable t′. Therefore, to achieve a small enough δ, it is recommended to
instantiate the VDF/TDF schemes as the tight ones in [25, 48], which can be evaluated in sequential
steps t+O(1) with an honest prover using O(log(t)) processors and space.

Note that in our PoSt model, the storage time T , and the frequency parameter t are measured
by the number of steps of the ITM. Since existing delay functions are evaluated via specific unit
operations, such as modular squaring [14, 48, 38], a more practical method would be to choose the
number of unit operations directly. Specifically, given the parameter δ for the delay function, the
client can choose the desired storage time T and checking frequency t (both measured in minutes),
then choose a time t′ such that t′ < t − 2δT and k = T/t′ is an integer. After that, the client
estimates the time of each unit operation and find a number s0 such that the time spent to compute
s0 unit operations is the closest to (but smaller than) (1 + δ)t′. Consequently, the honest prover
can sequentially run s0 operations for one delay function and compute a valid PoSt within time
(1 + δ)T. On the other hand, any malicious server would spend at least t′ time for one delay
function, so that the largest interval between two PoRs must be less than t.

Note that the adversary may still deploy some special hardware to speed up the computation of
unit operations, which would violate the security guarantee. Indeed, such a concern was recognized
by the community, and Ethereum/Filecoin invested significant resources in developing specialized
hardware and in optimizing implementation runtimes [32, 41] to obtain the fastest implementation
of the delay function. In our setting, it is more rational to focus on providing an excellent storage
service than investing in an arms race with organizations that are centered on hardware manufac-
turing. Nevertheless, more strategies are needed when estimating concrete parameters considering
this aspect.

7 Evaluation

Implementation. To evaluate the performance of our scheme, we implemented a prototype in
C++, employing the Crypto++ library Version 8.2 [22] for cryptographic operations. The exper-
iments were run on a MacBook Pro with 32 GB 2400MHz DDR4 memory and a 2.9 GHz Intel
Core i9 CPU. Specifically, we estimate the cost for different storage times (1 to 5 months) and
various file sizes (32MB to 256MB) and require the prover to check up the file according to different
frequencies. All hash functions in our algorithms are instantiated with SHA-3 [26]. As for the files,
we use randomly generated files of different sizes. The numbers are the averages of 5 runs.

Setup cost. The main cost of our compact PoSt is the setup algorithm, which consists of two
parts. The first part is to compute the PoR in Section 2.2. The second part is to evaluate the TDF
with the trapdoor. We observe that the time cost for the trapdoor evaluation is almost the same
for the RSA based TDF construction [48], no matter how long the delay time is. Therefore, we
estimate the cost of TDF.TrapEval by computing the modulus exponentiation in an RSA group for
a random exponent. The RSA modulus used here is of size 1024 bits. The results of our experiments
with four different data available time T (delay function parameter δ and checking frequency t)
and varying file sizes are depicted in Fig. 3 (Fig. 4 and Fig. 5 respectively). According to the
experimental results, the setup algorithm for a file of size 64 MB, which is supposed to be stored
for 1 month, takes about 4 minutes.

One may observe that in Fig.3, the setup time cost increases a little bit faster than linear to the
storage time. This is because t′ gets smaller for larger T due to t′ < t− 2δT , so the honest prover
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Fig. 3. The compact PoSt setup times for various file sizes and different data available periods, with hourly
check up policy and δ = 0.0001 of the delay function.

Fig. 4. The compact PoSt setup times for various file sizes and different δ of the delay function, with
hourly check up policy and 30 days data available period.
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Fig. 5. The compact PoSt setup times for various file sizes and different checking frequency, with δ = 0.0001
and 30 days data available period.

has to check the data more frequently to guarantee the same level of proved checking frequency for
the adversary even for same t. This is not hard to imagine since when the storage time is longer,
it is harder to achieve the same accuracy for the delay time.

Verification cost. It is easy to see that our verification only computes a hash; thus, the cost can
be considered negligible. If a smart contract is instantiated by our compact PoSt, to check whether
the submitted string p is the hash pre-image of the fixed value tgi only costs 36 gas (worth less
than 0.0001 USD[1]) in Ethereum if the hash is instantiated via SHA-3.

Proof cost. The cost of computing delay functions is inherent for the PoSt. Besides, the prover
is doing PoR proofs, whose cost can be ignored compared to the delay time.

Discussions. The setup time of our PoSt scheme may be noticeable, but there could be multiple
ways to optimize the performance further. (1) Setup only needs to be done once for every storage
period. Thus pre-computation can always be performed except for the first storage period. For
example, consider the case where the user initially stores his files for half a year, and he would
like to extend the contract for another half a year. The setup can be finished before the second
storage phase begins. (2) One major factor affecting the setup times is hashing large files (used in
the simple PoR scheme). An optimized approach, such as using parallel processors, would improve
setup times considerably.

8 Conclusions

In this paper, we systematically studied the notion of Proof of Storage-time, which enables a client
to efficiently verify that outsourced data is continuously retrievable from a storage provider. We
proposed formal definitions and presented efficient constructions with rigorous security analyses.
Our result is the first step towards studying advanced concepts of continuous data availability. Sev-
eral open problems remain, including making PoSt stateless and without relying on any trapdoor,
reducing setup cost, supporting proof of replication, and dynamic updates.
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