
An extended abstract of this work appears in CRYPTO’20. This is the full version.

A Classification of Computational Assumptions
in the Algebraic Group Model

Balthazar Bauer1 Georg Fuchsbauer2 Julian Loss3

1 Inria, ENS, CNRS, PSL, France
2 TU Wien, Austria

first.last@{ens.fr,tuwien.ac.at}
3 University of Maryland, USA

jloss@umiacs.umd.edu

Abstract

We give a taxonomy of computational assumptions in the algebraic group model (AGM).
We first analyze Boyen’s Uber assumption family for bilinear groups and then extend it in
several ways to cover assumptions as diverse as Gap Diffie-Hellman and LRSW. We show
that in the AGM every member of these families is implied by the q-discrete logarithm (DL)
assumption, for some q that depends on the degrees of the polynomials defining the Uber
assumption.

Using the meta-reduction technique, we then separate (q + 1)-DL from q-DL, which
yields a classification of all members of the extended Uber-assumption families. We finally
show that there are strong assumptions, such as one-more DL, that provably fall outside our
classification, by proving that they cannot be reduced from q-DL even in the AGM.
Keywords: Algebraic Group Model, Uber Assumption, Pairing-Based Cryptography

1 Introduction
A central paradigm for assessing the security of a cryptographic scheme or hardness assumption
is to analyze it within an idealized model of computation. A line of work initiated by the seminal
work of Nechaev [Nec94] introduced the generic group model (GGM) [Sho97, Mau05], in which
all algorithms and adversaries are treated as generic algorithms, i.e., algorithms that do not
exploit any particular structure of a group and hence can be run in any group. Because for many
groups used in cryptography (in particular, groups defined over some elliptic curves), the best
known algorithms are in fact generic, the GGM has for many years served as the canonical tool to
establish confidence in new cryptographic hardness assumptions. Moreover, when cryptographic
schemes have been too difficult to analyze in the standard model, they have also directly been
proven secure in the GGM (for example LRSW signatures [LRSW99, CL04]).

Following the approach first used in [ABM15], a more recent work by Fuchsbauer, Kiltz, and
Loss [FKL18] introduces the algebraic group model, in which all algorithms are assumed to be
algebraic [PV05]. An algebraic algorithm generalizes the notion of a generic algorithm in that
all of its output group elements must still be computed by generic operations; however, the
algorithm can freely access the structure of the group and obtain more information than what
would be possible by purely generic means. This places the AGM between the GGM and the
standard model. In contrast to the GGM, one cannot give information-theoretic lower bounds

in the AGM; instead, one analyzes the security of a scheme by giving security reductions from
computational hardness assumptions.

Because of its generality and because it provides a powerful framework that simplifies the
security analyses of complex systems, the AGM has readily been adopted, in particular in the
context of SNARK systems [FKL18, MBKM19, Lip19, GWC19]. It has also recently been used
to analyze blind (Schnorr) signatures [FPS20], which are notoriously difficult to prove secure in
the standard or random oracle model. Another recent work by Agrikola, Hofheinz and Kastner
[AHK20] furthermore shows that the AGM constitutes a plausible model, which is instantiable
under falsifiable assumptions in the standard model.

Since its inception, many proofs in the AGM have followed a similar structure, which often
consists of a series of tedious case distinctions. A natural question is whether it is possible to
unify a large body of relevant hardness assumptions under a general ‘Uber’ assumption. This
would avoid having to prove a reduction to a more well-studied hardness assumption for each
of them in the AGM separately. In this work, we present a very rich framework of such Uber
assumptions, which contain, as special cases, reductions between hardness assumptions in the
AGM from prior work [FKL18, Los19]. We also show that there exists a natural hierarchy
among Uber assumptions of different strengths. Together, our results give an almost complete
classification in the AGM of common hardness assumptions over (bilinear) groups of prime order.

1.1 Boyen’s Uber Assumption Framework

The starting point of our generalizations is the Uber assumption framework by Boyen [Boy08],
which serves as an umbrella assumption in the bilinear GGM. Consider a bilinear group
G = (G1,G2,GT , e, p), where Gi is a group of prime order p and e : G1 × G2 → GT is a
(non-degenerate) bilinear map, and let g1, g2 and gT be generators of G1, G2 and GT , re-
spectively. Boyen’s framework captures assumptions that are parametrized by polynomials
R1, . . . , Rr, S1, . . . , Ss, T1, . . . , Tt and F in a set of formal variables X1, . . . , Xm as follows. The
challenger picks a vector of randomly chosen points ~x = (x1, . . . , xm) ∈ Zmp and gives the
adversary a list of group elements(

g
R1(~x)
1 , . . . , g

Rr(~x)
1 , g

S1(~x)
2 , . . . , g

Ss(~x)
2 , g

T1(~x)
T , . . . , g

Tt(~x)
T

)
.

The adversary is considered successful it is able to compute gF (~x)
T . Note that for this not to be

trivially computable, F must be independent from ~R, ~S and ~T . That is, it must not be a linear
combination of elements from ~T and (pairwise products of) elements of ~R and ~S; otherwise,
g
F (x)
T could be computed from the given group elements via group operations and the bilinear
map.

Boyen gives lower bounds for this family of assumptions following the common proof paradigm
within the GGM. He also extends the idea of this first Uber assumption [BBG05] with a fixed
target polynomial F to an adaptive version called flexible Uber Assumption, in which the
adversary can choose the target polynomial F itself (as long as it satisfies the same notion
of independence from ~R, ~S and ~T that makes computing gF (~x)

T non-trivial). Finally, Boyen
proposes an extension of his bounds to assumptions in which the elements of (~R, ~S, ~T) and
F may be rational fractions, that is, fractions of polynomials. We start with considering a
straightforward generalization of Boyen’s framework where the solution the adversary must find
can also be in one of the source groups, that is, of the form g

F1(~x)
1 or gF2(~x)

2 , as long as they
satisfy some non-triviality conditions (Def. 3.3). We next discuss the details of our adaptation
of (our generalization of) Boyen’s framework to the AGM.

2

1.2 An Uber-Assumption Framework for the AGM

The main challenge in analyzing Boyen’s framework in the AGM setting is that we can no
longer prove lower bounds as in the GGM. The next best thing would be to reduce the Uber
assumption to a well-established assumption such as the discrete logarithm (DLog) assumption.
Due to the general nature of the Uber assumption, this turns out to be impossible; in particular,
our negative result (see below) establishes that algebraic reductions in the AGM can only reduce
DLog to Uber assumptions that are defined by linear polynomials.

Indeed, as for Boyen’s [Boy08] proofs in the GGM, the degrees of the involved polynomials are
expected to appear in our reductions. In our first theorem in Sect. 3 we show that in the AGM
any Uber assumption is implied by a parametrized variant of the discrete logarithm problem:
in the q-DLog problem the adversary, on top of the instance gz, is also given gz2

, . . . , gz
q and

must compute z. We prove that if the maximum total degree of the challenge polynomials in
(~R, ~S, ~T) of an Uber assumption is at most q, then it is implied by the hardness of the q-DLog
problem. This establishes that under q-DLog, anything that is not trivially computable from a
given instance (represented by (~R, ~S, ~T)) is infeasible to compute. We prove this by generalizing
a technique first used by Fuchsbauer et al. [FKL18] to prove soundness of Groth’s SNARK
[Gro16] under the q-DLog assumption in the AGM.

Proof idea. To convey our main idea, consider a simple instance of the Uber assumption
parametrized by polynomials R1, . . . , Rr, F1 and let ~S = ~T = ∅. That is, the the adversary
is given group elements U1 = g

R1(~x)
1 , . . . ,Ur = g

Rr(~x)
1 for a random ~x and must compute

U′ = g
F1(~x)
1 . For this problem to be non-trivial, F1 must be linearly independent of R1, . . . , Rr,

that is, for all ~a ∈ Zrp we have R′(~X) 6=
∑
i aiRi(~X).

Since the adversary is assumed to be algebraic (see Def. 2.4), it computes its output U′
from its inputs U1, . . . ,Ur by generic group operations, that is, for some vector ~µ we have
U′ =

∏
i U

µi
i . In the AGM, the adversary is assumed to output this vector ~µ. Taking the

logarithm of the previous equation yields

R′(~x) = sumr
i=1µiRi(~x). (1)

Since R′ is independent from ~R, the polynomial P (~X) := R′(~X)−
∑
i µiRi(~X) is non-zero. On

the other hand, (1) yields P (~x) = 0 for a successful adversary.
The adversary has thus (implicitly) found a non-zero polynomial P , which has the secret ~x

among its roots. Now, in order to use this to solve a q-DLog instance (g1, g
z
1 , . . . , g

zq
1), we embed

a randomized version of z into every coordinate of ~x. In particular, for random vectors ~y and ~v,
we implicitly let xi := yiz + vi mod p. By leveraging linearity, the reduction can compute the
group elements Ui = g

Ri(~x)
1 , etc, from its DLog instance.

If P (~X) is non-zero then Q(Z) := P (y1Z + v1, . . . , ymZ + vm) is non-zero with overwhelming
probability: the values vi guarantee that the values yi are perfectly hidden from the adversary
and, as we show (Lemma 2.1), the leading coefficient of Q is a non-zero polynomial evaluated
at y1, . . . , ym, values that are independent of the adversary’s behavior. Schwartz-Zippel thus
bounds the probability that the leading coefficient of Q is zero, and thus, that Q ≡ 0. Since
Q(z) = P (~x) = 0, we can factor the univariate polynomial Q and find the DLog solution z,
which is among its roots.

Extensions. We next extend our approach to a flexible (i.e., adaptive) version of the static
Uber assumption, where the adversary can adaptively choose the polynomials (Sect. 4) as well
as a generalization from polynomials to rational fractions (Sect. 5). We combine the flexible
framework with the rational fraction framework in Sect. 6. After these generalizations, our

3

framework covers assumptions such as strong Diffie-Hellman [BB08], where the adversary must
compute a rational fraction of its own choice in the exponent.

In a next step (Sect. 7), we extend our framework to also cover gap-type assumptions
such as Gap Diffie-Hellman (GDH) [OP01], which was recently proven equivalent to the DLog
assumption in the AGM by Loss [Los19]. GDH states that the CDH assumption remains true
even when the DDH assumption no longer holds. Informally, the idea of the proof given in
[Los19] (first presented in [FKL18] for a restricted version of GDH) is to argue that the DDH
oracle given to an algebraic adversary is useless, unless the adversary succeeds in breaking CDH
during an oracle query. The reduction simulates the DDH oracle by always returning false. We
generalize this to a broader class of assumptions, using a different simulation strategy, which
avoids a security loss.

We also present (Sect. 8) an extension of our (adaptive) framework that allows to capture
assumptions as strong as the LRSW assumption [LRSW99], which forms the basis of the
Camenisch-Lysyanskaya signature scheme [CL04]. The LRSW assumption falls outside (even
the adaptive version of) Boyen’s Uber framework, since the adversary need not output the
polynomial it is computing in the exponent.

The LRSW and GDH assumptions were previously studied in the AGM in the works of
[FKL18, Los19], who gave very technical proofs spanning multiple pages of case distinctions.
By comparison, our Uber Framework offers a more general and much simpler proof for both of
these assumptions. Finally, we are able to prove all these results using tight reductions. This, in
particular, improves upon the non-tight reduction of DLog to LRSW in [FKL18].

1.3 Classifying Assumptions in our Framework

Finally, we prove two separation results that show the following:

Separating (q+1)-DLog from q-DLog. This shows that with respect to currently known (i.e.,
algebraic) reduction techniques, the Uber assumption, for increasing degrees of the polynomials,
defines a natural hierarchy of assumptions in the AGM. More concretely, the q-lowest class within
the established hierarchy consists of all assumptions that are covered by a specific instantiation
of the Uber assumption which can be reduced from the q-DLog problem. Our separation result
(Theorem 9.1) shows that there is no algebraic reduction from the q-DLog problem to the
(q + 1)-DLog problem in the AGM. This implies that assumptions within different classes are
separated with respect to algebraic reductions. Interestingly, we are even able to show our
separation for reductions that can rewind and choose the random coins of the solver for the
(q + 1)-DLog problem freely.

Separating OMDL from q-DLog. Our second result (Theorem 10.1) shows a separation
result between the one-more-DLog problem (OMDL) (where the adversary has to solve q DLog
instances and is given an oracle that computes discrete logarithms, which it can access q − 1
times) and the q-DLog problem (for any q) in the AGM. Our result strengthens a previous result
by Bresson, Monnerat, and Vergnaud [BMV08], who showed a separation between the discrete
logarithm problem (i.e, where q = 1) and the 2-one-more-DLog problem with respect to black-box
reductions. By comparison, our result holds even in the AGM, where reductions are inherently
non-black-box, as the AGM implicitly assumes an efficient extractor algorithm that extracts
algebraic coefficients from the algebraic adversary. As the extractor is non-black-box (since it
depends on the algebraic adversary), neither is any reduction that non-trivially leverages the
AGM.

Our result clearly establishes the limits of our framework, as it excludes the OMDL family
of assumptions. Unlike our first separation, this one comes with the caveat that it only applies

4

to reductions that are “black-box in the AGM”, meaning that they simply obtain the algebraic
coefficients via the extractor, but cannot rewind the adversary or choose its random coins.

1.4 Related Work

A long line of research has considered frameworks to capture general classes of assumptions. We
give an overview of the most closely related works. The first Uber assumptions were introduced
by Boyen et al. [BBG05, Boy08]. Others later gave alternative concepts to classify assumptions
within cyclic groups. The works of Chase et al. [CM14, CMM16] study assumptions in bilinear
groups of composite order, which are not considered in the original Uber framework. They
show that several q-type assumptions are implied by (static) “subgroup-hiding” assumptions.
This gives evidence that this type of assumption, which is specific to composite-order groups, is
particularly strong.

More recently, Ghadafi and Groth [GG17] studied a broader class of assumptions in which
the adversary must compute a group element from GT . Like our work, their framework applies
to prime-order groups and extends to the case where the exponents can be described by rational
fractions, and they also separate classes of assumptions from each other. However, their
framework only deals with non-interactive assumptions, which do not cover the adaptive type of
assumptions we study in our flexible variants (in fact, the authors mention extending their work
to interactive assumptions as an open problem [GG17]). Their work does not cover assumptions
such as GDH or LRSW, which we view as particularly interesting (and challenging) to classify.
Indeed, our framework appears to be the first in this line of work that offers a classification
comprising this type of assumptions.

A key difference is that Ghadafi and Groth’s results are in the standard model whereas we
work in the AGM. While this yields stronger results for reductions, their separations are weaker
(in addition to separating less broad types of Uber assumptions), as they are with respect to
generic reductions, whereas ours hold against algebraic reductions that can assume that the
adversary is algebraic. Furthermore, their work considers black-box reductions that treat the
underlying solver as an (imperfect) oracle, while we show the non-existence of reductions in the
AGM, which are, by definition, non-black-box (see above). A final difference to the work of
[GG17] lies in the tightness of all our reductions, whereas non of theirs are tight.

At CT-RSA’19 Mizuide, Takayasu, and Takagi [MTT19] studied static (i.e., non-flexible)
variants and generalizations of the Diffie-Hellman problem in prime-order groups (also with
extensions to the bilinear setting) by extending proofs from [FKL18] in the obvious manner.
Most of their results are special cases of our Uber assumption framework. Concretely, when
restricting the degrees of all input polynomials to 1 in our static Uber Assumption, our non-
triviality condition implies all corresponding theorems in their paper (except the ones relating
to Matrix assumptions, which are outside the scope of this work). By our separation of q-DLog
for different q, our results for higher degrees do not follow from theirs by currently known
techniques. Finally, they do not cover the flexible (adaptive) variants nor oracle-enhanced- and
hidden-polynomial-type assumptions (such as GDH and LRSW).

A further distinction that sets our work apart from these prior works is our formulation of the
aforementioned ‘hidden-type’ assumptions, where we allow the adversary to solve the problem
with respect to a group generator of its own choice instead of the one provided by the game. A
recent work [BMZ19] shows that even in the GGM, allowing randomly chosen generators results
in unexpected complications when proving lower bounds. Similarly, giving the adversary this
additional freedom makes proving (and formalizing) our results more challenging. We also give
this freedom to the reductions that we study (and prove impossible) in our separation results.

5

2 Algebraic Algorithms and Preliminaries
Algorithms. We denote by s $← S the uniform sampling of the variable s from the (finite) set
S. All our algorithms are probabilistic (unless stated otherwise) and written in uppercase letters
A,B. To indicate that algorithm A runs on some inputs (x1, . . . , xn) and returns y, we write
y $← A (x1, . . . , xn). If A has access to an algorithm B (via oracle access) during its execution,
we write y $← AB (x1, . . . , xn).

Polynomials and rational fractions. We denote polynomials by uppercase letters P,Q
and specify them by a list of their coefficients. If m is an integer, we denote by Zp[X1, . . . , Xm]
the set ofm-variate polynomials with coefficients in Zp and by Zp (X1, . . . , Xm) the set of rational
fractions in m variables with coefficients in Zp. We define the total degree of a polynomial
P (X1, . . . , Xm) =

∑
~i∈Nm

λi1,...,im
∏m
j=1X

ij
j ∈ Zp[X1, . . . , Xm] as max

~i∈Nm :λi1,...,im 6≡p0

{∑m
j=1 ij

}
.

For the degree of rational fractions we will use the “French” definition [AW98]: for (P,Q) ∈
Zp[X1, . . . , Xm]× (Zp[X1, . . . , Xm] \ {0}) we define

deg P
Q

:= degP − degQ.

This definition has the following properties: The degree does not depend on the choice of the
representative; it generalizes the definition for polynomials; and the following holds: deg(F1·F2) =
degF1 + degF2, and deg(F1 + F2) ≤ max{degF1, degF2}.

We state the following technical lemma, which we will use in our reductions.

Lemma 2.1 Let P be a non-zero multivariate polynomial in Zp[X1, . . . , Xm] of total degree d.
Define Q(Z) ∈ (Zp[Y1, . . . , Ym, V1, . . . , Vm])[Z] as Q(Z) := P (Y1Z + V1, . . . , YmZ + Vm). Then
the coefficient of maximal degree of Q is a polynomial in Zp[Y1, . . . , Ym] of degree d.

Proof. P is of the form P (~X) =
∑

~i∈Nm : Σjij≤d
λi1,...,im

∏m
j=1X

ij
j for coefficients λi1,...,im and thus

Q(Z) =
∑

~i∈Nm : Σjij≤d

λi1,...,im

m∏
j=1

(YjZ + Vj)ij

=
∑

~i∈Nm : Σjij≤d

λ~i

m∏
j=1

(∑ij
k=0

(ij
k

)
Y k
j Z

k V
ij−k
j

)

=
∑

~i∈Nm : Σjij≤d

λ~i

i1∑
k1=0
· · ·

im∑
km=0

m∏
j=1

(ij
kj

)
Y
kj
j Zkj V

ij−kj
j

=
d∑
`=0

∑
~i∈Nm : Σjij≤d

λ~i
∑

~k∈Nm : Σjkj=`

m∏
j=1

(ij
kj

)
Y
kj
j Zkj V

ij−kj
j =

∑d
`=0 λ

′
` Z

`

with λ′` :=
∑

~i∈Nm : Σjij≤d

λ~i
∑

~k∈Nm : Σjkj=`

m∏
j=1

(ij
kj

)
Y
kj
j V

ij−kj
j .

By assumption P 6≡ 0. Thus for some i1, . . . , im ≥ 0 with
∑
j ij = d we have λi1,...,im 6= 0, while

λi1,...,im = 0 when
∑
j ij > d. By the latter we have

λ′d =
∑

~i∈Nm : Σjij≤d

λ~i
∑

~k : Σjkj=d

m∏
j=1

(ij
kj

)
Y
kj
j V

ij−kj
j =

∑
~i∈Nm : Σjij=d

λ~i

m∏
j=1

Y
ij
j ,

6

where the last step follows since kj ≤ ij for all j and
∑
j ij ≤ d,

∑
j kj = d implies that kj = ij

for all j. Since P is a polynomial of total degree d, for some ~i ∈ Nm we have
∑
j ij = d and

λ~i 6= 0. We conclude that λ′d is a polynomial in (Y1, . . . , Ym) of total degree d.

We will use the following version of the Schwartz-Zippel lemma [DL77]:

Lemma 2.2 Let P ∈ Zp[X1, . . . , Xm] be a non-zero polynomial of total degree d. Let r1, . . . , rm
be selected at random independently and uniformly from Z∗p. Then

Pr
[
P (r1, . . . , rm) ≡p 0

]
≤ d

p−1 .

Bilinear Groups. We next state the definition of a bilinear group.

Definition 2.3 (Bilinear group). A bilinear group is a tuple G = (G1,G2,GT , e, φ, ψ, p) where

• Gi is a cyclic group of prime order p, for i ∈ {1, 2, T};
• e is a non-degenerate bilinear map e : G1 × G2 → GT , that is, for all a, b ∈ Zp and
all generators g1 of G1 and g2 of G2 we have that gT := e(g1, g2) generates GT and
e(ga1 , gb2) = e(g1, g2)ab = gabT ;
• φ is an isomorphism φ : G1 → G2, and ψ is an isomorphism ψ : G2 → G1.

All group operations and the bilinear map e must be efficiently computable. G is of Type 1 if
the maps φ and ψ are efficiently computable; G is of Type 2 if there is no efficiently computable
map φ; and G is of Type 3 if there are no efficiently computable maps φ and ψ. We require that
there exist an efficient algorithm GenSamp that returns generators g1 of G1 and g2 of G2, so that
g2 is uniformly random, and (for Types 1 and 2) g1 = ψ(g2) or (Type 3) g1 is also uniformly
random. By GenSampi we denote a restricted version that only returns gi.

In the following, we fix a bilinear group G = (G1,G2,GT , e, φ, ψ, p).

(Algebraic) Security games. We use a variant of (code-based) security games [BR04]. In
game GG (defined relative to G), an adversary A interacts with a challenger that answers oracle
queries issued by A. The game has a main procedure and (possibly zero) oracle procedures
which describe how oracle queries are answered. We denote the output of a game GG between a
challenger and an adversary A by GA

G . A is said to win if GA
G = 1. We define the advantage of A

in GG as AdvG
G,A := Pr

[
GA
G = 1

]
and the running time of GA

G as TimeG
G,A. In this work, we

are primarily concerned with algebraic security games GG , in which we syntactically distinguish
between elements of groups G1,G2 and GT (written in bold, uppercase letters, e.g., Z) and all
other elements, which must not depend on any group elements.

We next define algebraic algorithms. Intuitively, the only way for an algebraic algorithm to
output a new group element Z is to derive it via group operations from known group elements.

Definition 2.4 (Algebraic algorithm for bilinear groups). An algorithm Aalg executed in an
algebraic game GG is called algebraic if for all group elements Z ∈ G (where G ∈ {G1,G2,GT })
that Aalg outputs, it additionally provides a representation in terms of received group elements
in G and those from groups from which there is an efficient mapping to G; in particular: if
U0, . . . ,U` ∈ G1, V0, . . . ,Vm ∈ G2 and W0, . . . ,Wt ∈ GT are the group elements received so
far then Aalg provides vectors ~µ, ~ν, ~ζ, ~η, ~δ and matrices A = (αi,j), B = (βi,j),Γ = (γi,j) such that

• Z ∈ G1 (Type 1 and 2): Z =
∏
i U

µi
i ·

∏
i ψ(Vi)νi

(Type 3): Z =
∏
i U

µi
i

7

• Z ∈ G2 (Type 1): Z =
∏
i φ(Ui)ζi ·

∏
i V

ηi
i

(Type 2 and 3): Z =
∏
i V

ηi
i

• Z ∈ GT : Z =
∏
i

∏
j e
(
Ui,Vj

)αi,j ·∏i

∏
j e
(
Ui, φ(Uj)

)βi,j ·∏i

∏
j e
(
ψ(Vi),Vj

)γi,j ·∏i W
δi
i ,

where βi,j = 0 for Type 2 and βi,j = γi,j = 0 for Type 3.

We remark that oracle access to an algorithm B in the AGM includes any (usually non-
black-box) access to B that is needed to extract the algebraic coefficients. Thus, our notion of
black-box access in the AGM mainly rules out techniques such as rewinding B or running it on
non-uniform random coins.

2.1 Generic Security Games and Algorithms

Generic algorithms Agen are only allowed to use generic properties of a group. Informally, an
algorithm is generic if it works regardless of what group it is run in. This is usually modeled by
giving an algorithm indirect access to group elements via abstract handles. It is straight-forward
to translate all of our algebraic games into games that are syntactically compatible with generic
algorithms accessing group elements only via abstract handles. We measure the running times
of generic algorithms as queries to an oracle that implements the abstract group operation, i.e.,
every query accounts for one step of the algorithm. We highlight this difference by denoting
the running time of a generic algorithm with the letter o rather than t. We say that winning
algebraic game GG is (ε, o)-hard in the generic group model if for every generic algorithm Agen it
holds that

TimeG
G,Agen ≤ o =⇒ AdvG

G,Agen ≤ ε.

As all of our reductions run the adversary only once and without rewinding, the overhead in
the running time of our reductions is additive only. We make the reasonable assumption that,
compared to the running time of the adversary, this is typically small, and therefore ignore the
losses in the running times for this work in order to keep notational overhead low.

We assume that a generic algorithm Agen provides the representation of Z relative to all
previously received group elements, for all group elements Z that it outputs. This assumption
is w.l.o.g. since a generic algorithm can only obtain new group elements by querying two
known group elements to the generic group oracle; hence a reduction can always extract a
valid representation of a group element output by a generic algorithm. This way, every generic
algorithm is also an algebraic algorithm.

Furthermore, if Bgen is a generic oracle algorithm and Aalg is an algebraic algorithm, then
Balg := BAalg

gen is also an algebraic algorithm. We refer to [Mau05] for more on generic algorithms.

Security Reductions. All our security reductions are (bilinear) generic algorithms, which
allows us to compose all of our reductions with hardness bounds in the (bilinear) generic group
model (see next paragraph). Let GG ,HG be security games. We say that algorithm Rgen is
a generic (∆(·)

ε ,∆(+)
ε ,∆(·)

o ,∆(+)
o)-reduction from HG to GG if Rgen is generic and if for every

algebraic algorithm Aalg, algorithm Balg defined as Balg := RAalg
gen satisfies

AdvH
G,Balg ≥

1
∆(·)
ε

·
(
AdvG

G,Aalg −∆(+)
ε

)
,

TimeH
G,Balg ≤ ∆(·)

o ·
(
TimeG

G,Aalg + ∆(+)
o

)
.

Furthermore, for simplicity of notation, we will make the convention of referring to
(
1,∆ε, 1,∆o

)
-

reductions as (∆ε,∆o)-reductions.

8

q-dlog A
Gi

01 g $← GenSampi
02 z $← Z∗p
03 z∗ $← A

(
g, gz, gz

2
, . . . , gz

q)
04 Return (z∗ = z)

(q1, q2)-dlog A
G

01 (g1, g2) $← GenSamp
02 z $← Z∗p
03 z∗ $← A

(
g1, g

z
1 , g

z2
1 , . . . , g

zq1
1 , g2, g

z
2 , . . . , g

zq2
2
)

04 Return (z∗ = z)

Figure 1: q-discrete logarithm game q-dlog Gi (left) and (q1, q2)-discrete logarithm game
(q1, q2)-dlog G (right) relative to group Gi, i ∈ {1, 2} and G, resp., and adversary A.

Composing information-theoretic lower bounds with reductions in the AGM.
The following lemma from [Los19] explains how statements in the AGM compose with bounds
from the GGM.

Lemma 2.5 Let GG and HG be algebraic security games and let Rgen be a generic
(
∆(·)
ε ,∆(+)

ε ,

∆(·)
o ,∆(+)

o
)
-reduction from HG to GG. If HG is (ε, o)-secure in the GGM, then GG is (ε′, o′)-secure

in the GGM where

ε′ = ε ·∆(·)
ε + ∆(+)

ε , o′ = o/∆(·)
o −∆(+)

o .

The q-discrete logarithm assumption and variants. For this work, we consider two
generalizations of the DLog assumption, which are parametrized (i.e., “q-type”) variants of
the DLog assumption. We describe them via the algebraic security games q-dlog Gi and
(q1, q2)-dlog G in Fig. 1.

The following lemma, which follows similarly to the generic security of q-SDH [BB08], was
proved (asymptotically) by Lipmaa [Lip12]. For completeness, we give a concrete proof in
Appendix A.

Lemma 2.6 Let o, q1, q2 ∈ N, let q := max{q1, q2}. Then q-DLog and (q1, q2)-DLog are((o+q+1)2q
p−1 , o

)
-secure in the bilinear generic group model.

We remark that all though our composition results are stated in the bilinear GGM, it is
straight forward to translate them to the standard GGM if the associated hardness assumption
is stated over a pairing-free group. This is true, because in those cases, our reductions will also
be pairing-free and hence are standard generic algorithms themselves.

3 The Uber-Assumption Family
Boyen [Boy08] extended the Uber-assumption framework he initially introduced with Boneh
and Goh [BBG05]. We start with defining notions of independence for polynomials and rational
fractions (of which polynomials are a special case):

Definition 3.1 Let ~R ∈ Zp(X1, . . . , Xm)r and W ∈ Zp(X1, . . . , Xm). We say that W is linearly
dependent on ~R if there exist coefficients (ai)ri=1 ∈ Zrp such that

W =
r∑
i=1

aiRi.

We say that W is (linearly) independent from ~R if it is not linearly dependent on ~R.

9

Definition 3.2 Let ~R, ~S, ~F and W be vectors of rational fractions from Zp(X1, . . . , Xm) of
length r, s, f and 1, respectively. We say that W is (“bilinearly”) dependent on (~R, ~S, ~F) if there
exist coefficients {ai,j}, {bi,j}, {ci,j} and {dk} in Zp such that

W =
r∑
i=1

s∑
j=1

ai,jRiSj +
r∑
i=1

r∑
j=1

bi,jRiRj +
s∑
i=1

s∑
j=1

ci,jSiSj +
f∑
k=1

dkFk.

We call the dependency of Type 2 if bi,j = 0 for all i, j and of Type 3 if bi,j = ci,j = 0 for all i, j.
Else, it is of Type 1. We say that W is (Type-τ) independent from (~R, ~S, ~F) if it is not (Type-τ)
dependent on (~R, ~S, ~F). (Thus, W can be Type-3 independent but Type-2 dependent.)

Consider the Uber-assumption game in Fig. 2, which is parametrized by vectors of polynomials
~R, ~S and ~F and polynomials R′, S′ and F ′. For a random vector ~x, the adversary receives the
evaluation of the (vectors of) polynomials in the exponents of the generators g1, g2 and gT ; its
goal is to find the evaluation of the polynomials R′, S′ and F ′ at ~x in the exponents. Note
that we do not explicitly give the generators to the adversary. This is without loss of generality
because we can always set R1 = S1 = F1 ≡ 1.

The game can be efficiently solved if one of the following conditions hold (where we distinguish
the different types of bilinear groups and interpret all polynomials over Zp):

(Type 1) If R′ is dependent on ~R and ~S, and S′ is dependent on ~R and ~S, and F ′ is Type-1
dependent (Def. 3.2) on (~R, ~S, ~F).

(Type 2) If R′ is dependent on ~R and ~S, S′ is dependent on ~S, and F ′ is Type-2 dependent
(Def. 3.2) on (~R, ~S, ~F).

(Type 3) If R′ is dependent on ~R, S′ is dependent on ~S, and F ′ is Type-3 dependent (Def. 3.2)
on (~R, ~S, ~F).

For example, in Type-2 groups, if R′ =
∑
i a
′
iRi +

∑
i b
′
iSi and S′ = 1, and F ′ =

∑
i

∑
j ai,jRiSi +∑

i

∑
j ci,jSiSj , then from a challenge (~U, ~V, ~W), one can easily compute a solution U′ :=∏

i U
a′i
i · ψ(

∏
i V

b′i
i), V′ := g2, W′ :=

∏
i

∏
j e(Ui,Vj)ai,j ·

∏
i

∏
j e(ψ(Vi),Vj)bi,j .

In our main theorem, we show that whenever the game in Fig. 2 cannot be trivially won,
then for groups of Type τ ∈ {1, 2}, it can be reduced from q-dlog G2

, and for Type-3 groups, it
can be reduced from (q1, q2)-dlog G (for appropriate values of q, q1, q2). To state the theorem for
all types of groups, we first define the following non-triviality condition (which again we state
for the more general case of rational fractions):

Definition 3.3 (Non-triviality). Let ~R ∈ Zp(X1, . . . , Xm)r, ~S ∈ Zp(X1, . . . , Xm)s, ~F ∈ Zp(X1, . . . ,

Xm)f , R′, S′, F ′ ∈ Zp(X1, . . . , Xm). We say that the tuple (~R, ~S, ~F ,R′, S′, F ′) is non-trivial for
groups of type τ , for τ ∈ {1, 2, 3}, if the following holds:

• either R′ is linearly independent from ~R and ~S in case τ ∈ {1, 2},
R′ is linearly independent from ~R in case τ = 3; (τ .1)

• or S′ is linearly independent from ~R and ~S in case τ = 1,
S′ is linearly independent from ~S in case τ ∈ {2, 3}; (τ .2)

• or F ′ is Type-τ “bilinearly” independent (Def. 3.2) from (~R, ~S, ~F). (τ .T)

We have argued above that if the tuple (~R, ~S, ~F ,R′, S′, F ′) is trivial then the (~R, ~S, ~F ,
R′, S′, F ′)-über problem is trivial to solve, even with a generic algorithm. In Theorem 3.5 we
now show that if the tuple is non-trivial then the corresponding Uber assumption holds for

10

(~R, ~S, ~F ,R′, S′, F ′)-überAalg
G

01 (g1, g2) $← GenSamp ; gT ← e(g1, g2)
02 ~x = (x1, . . . , xm) $← Zmp
03 ~U := (gR1(~x)

1 , . . . , g
Rr(~x)
1)

04 ~V := (gS1(~x)
2 , . . . , g

Ss(~x)
2)

05 ~W := (gF1(~x)
T , . . . , g

Ff (~x)
T)

06 (U′,V′,W′) $← Aalg(~U, ~V, ~W)
07 Return

(
(U′,V′,W′) = (gR

′(~x)
1 , g

S′(~x)
2 , g

F ′(~x)
T)

)
Figure 2: Algebraic game for the Uber assumption relative to bilinear group G and adversary
Aalg, parametrized by (vectors of) or polynomials ~R, ~S, ~F ,R′, S′ and F ′

algebraic algorithms, as long as a type of q-DLog assumption holds (whose type depends on the
type of bilinear group).

The (additive) security loss of the reduction depends on the degrees of the polynomials
involved (as well as the group type and its order). E.g., in Type-3 groups, if R′ is independent of
~R then the probability that the reduction fails is the maximum degree of R′ and the components
of ~R, divided by the order of G. In Type-1 and Type-2 groups, due to the homomorphism
ψ, the loss depends on the maximum degree of R′, ~R and ~S. Similar bounds hold when S′ is
independent of ~S (and ~R for Type 1); and slightly more involved ones for the independence
of F ′. If several of R′, S′ and F ′ are independent then the reduction chooses the strategy that
minimizes the security loss.

Definition 3.4 (Degree of non-trivial tuple of polynomials). Let (~R, ~S, ~F ,R′, S′, F ′) be a
non-trivial tuple of polynomials in Zp[X1, . . . , Xm]. Define d~R := max{degRi}1≤i≤r, d~S :=
max{degSi}1≤i≤s, d~F := max{degFi}1≤i≤f . We define the type-τ degree dτ of (~R, ~S, ~F ,R′, S′, F ′)
as follows:

• If (τ .1) holds, let dτ.1 := max{degR′, d~R, d~S} in case τ ∈ {1, 2} and
dτ.1 := max{degR′, d~R} in case τ = 3.

• If (τ .2) holds, let dτ.2 := max{degS′, d~R, d~S} in case τ = 1 and
dτ.2 := max{degS′, d~S} in case τ ∈ {2, 3}.

• If (τ .T) holds, let dτ.T := max{degF ′, 2 d~R, 2 d~S , d~F } when τ = 1,
dτ.T := max{degF ′, d~R + d~S , 2 d~S , d~F } in case τ = 2 and
dτ.T := max{degF ′, d~R + d~S , d~F } in case τ = 3.

If (τ, i) does not hold, we set dτ,i :=∞ and define dτ := min{dτ.1, dτ.2, dτ.T }. (By non-triviality,
we have dτ <∞.)

Theorem 3.5 (DLog implies Uber in the AGM). Let G be of type τ ∈ {1, 2, 3} and
(~R, ~S, ~F ,R′, S′, F ′) ∈ (Zp[X1, . . . , Xm])r+s+f+3 be a tuple of polynomials that is non-trivial for
type τ and define d~R := max{degRi}, d~S := max{degSi}, d~F := max{degFi}. Let q, q1, q2 be
such that q ≥ max{d~R, d~S , d~F /2} as well as q1 ≥ d~R, q2 ≥ d~S and q1 + q2 ≥ d~F . If

(Type 1) q-dlog G1
or q-dlog G2

is (ε, t)-secure in the AGM,
(Type 2) q-dlog G2

is (ε, t)-secure in the AGM,

11

(Type 3) (q1, q2)-dlog G is (ε, t)-secure in the AGM,

then (~R, ~S, ~F ,R′, S′, F ′)-überG is (ε′, t′)-secure in the AGM with

ε′ ≤ ε+ dτ
p−1 and t′ ≤ t+ o1,

where dτ is the maximal degree of (~R, ~S, ~F ,R′, S′, F ′), as defined in Def. 3.4,

o1 := o0 + 2 + (2blog2(p)c)((d~R + 1)r + (d~S + 1)s+ (d~F + 1)f + dτ) + rd~R + sd~S + fd~F

with o0 := d~R + d~F + 2 for Types 1 and 2, and o0 := d~F + 1 for in Type 3.

Proof. We give a detailed proof for Type-2 bilinear groups and then explain how to adapt it to
Types 1 and 3. For u ∈ Zp and i ∈ {1, 2, T} we let [u]i denote gui .

Let Aalg be an algebraic algorithm against überG that wins with advantage ε in time t. We
construct a generic reduction with oracle access to Aalg, which yields an algebraic adversary
Balg against q-dlog G2

. There are three (non-exclusive) reasons for (~R, ~S, ~F ,R′, S′, F ′) being
non-trivial, which correspond to conditions (2.1), (2.2) and (2.T) in Def. 3.3. Each condition
enables a different type of reduction, of which Balg runs the one that minimizes d2 from Def. 3.4.

We start with Case (2.1), that is, R′ is linearly independent from ~R and ~S.

Adversary Balg(g2,Z1, . . . ,Zq): On input a problem instance of game q-dlog G2
with Zi = [zi]2,

Balg simulates überG for Aalg. It defines g1 ← ψ(g2) and gT ← e(g1, g2). Then, it picks
random values ~y $← (Z∗p)m and ~v $← Zmp , implicitly sets xi := yiz + vi mod p and computes
~U := [~R (x1, . . . , xm)]1, ~V := [~S (x1, . . . , xm)]2, ~W := [~F (x1, . . . , xm)]T from its q-DLog
instance, the isomorphism ψ : G2 → G1 and the pairing e : G1 ×G2 → GT . It can do so
efficiently since the total degrees of the polynomials in ~R, ~S and ~F are bounded by q, q
and 2q respectively.1

Next, Balg runs (U′,V′,W′) $← Aalg(~U, ~V, ~W). Since Aalg is algebraic, it also returns
vectors and matrices ~µ, ~ν, ~ζ, ~δ, A = (αi,j)i,j , Γ = (γi,j)i,j such that

U′ =
∏
i U

µi
i ·

∏
i ψ(Vi)νi (2a)

V′ =
∏
i V

ηi
i (2b)

W′ =
∏
i

∏
j e
(
Ui,Vj

)αi,j ·∏i

∏
j e
(
ψ(Vi),Vj

)γi,j ·∏i W
δi
i . (2c)

Balg then computes the following multivariate polynomial, which corresponds to the
exponents of (2a):

P1(~X) = R′(~X)−
∑r
i=1 µiRi(~X)−

∑s
i=1 νiSi(~X), (3)

which is non-zero because in Case (2.1) R′ is independent from ~R and ~S. From P1, it
defines the univariate polynomial

Q1(Z) := P1(y1Z + v1, . . . , ymZ + vm). (4)

If Q1 is the zero polynomial then Balg aborts. (∗)
Else, it factors Q1 to obtain its roots z1, . . . (of which there are at most max{degR′, d~R, d~S};
we analyse the degree of Q1 below). If for one of them we have gzi2 = Z, then Balg returns zi.

1E.g., Balg can compute [xq1]1 = [(y1z + v1)q]1 as
∏
i
ψ(Zi)(

q
i)yi

1v
q−i
1 and [x2q

1]T as e
(∏

i
ψ(Zi)(

q
i)yi

1v
q−i
1 ,∏

i
Z(q

i)yi
1v

q−i
1

i

)
and similarly for terms in more variables.

12

We analyze Balg’s success probability. First note that Balg perfectly simulates game überG ,
as the values xi are uniformly distributed in Zp and ~U, ~V and ~W are correctly computed.
Moreover, if Balg does not abort in (∗) and Aalg wins game überG , then U′ = [R′(~x)]1. On the
other hand,

U′ =
∏
i U

µi
i · ψ(

∏
i V

νi
i) =

[∑
i µiRi(~x) +

∑
i νiSi(~x)

]
1.

Together, this means that P1(~x) ≡p 0 and since xi ≡p yiz + vi, moreover Q1(z) ≡p 0. By
factoring Q1, reduction Balg finds thus the solution z.

It remains to bound the probability that Balg aborts in (∗), that is, the event that 0 ≡ Q1(Z) =
P1 (y1Z + v1, . . . , ymZ + vm). InterpretingQ1 as an element from (Zp[Y1, . . . , Ym, V1, . . . , Vm])[Z],
Lemma 2.1 yields that its maximal coefficient is a polynomial Qmax

1 in Y1, . . . , Ym whose degree
is the same as the maximal (total) degree d of P1. From P1 6≡ 0 and P1(~x) = 0, we have d > 0.

We note that the values y1z, . . . , ymz are completely hidden from Aalg because they are
“one-time-padded” with v1, . . . , vm, respectively. This means that the values (~µ, ~ν) returned
by Aalg are independent from ~y. Since ~y is moreover independent from R′, ~R and ~S, it is also
independent from P1, Q1 and Qmax

1 . The probability that Q1 ≡ 0 is thus upper-bounded by the
probability that its maximal coefficient Qmax

1 (~y) ≡p 0 when evaluated at the random point ~y.
By the Schwartz-Zippel lemma, the probability that Q1(Z) ≡ 0 is thus upper-bounded by d

p−1 .
The degree d of Q1 (and thus of Qmax

1) is upper-bounded by the total degrees of P1, which is
max{d′R, d~R, d~S} = d2.1 in Def. 3.4. Balg thus aborts in line (*) with probability at most d2,1

p−1 .
Case (2.2), that is, S′ is linearly independent from ~S, follows completely analogously, but

with d = d2.2 = max{dS′ , d~S}.
Case (2.T), when F ′ is type-2-independent of ~R, ~S and ~F , is also analogous; we highlight

the necessary changes: From Aalg’s representation (A = (αi,j),Γ = (γi,j), ~δ) ∈ Zr×sp × Zs×sp × Zfp
for W′ (see (2c)), that is,

W′ =
∏
i

∏
j e
(
Ui,Vj

)αi,j ·∏i

∏
j e
(
ψ(Vi),Vj

)γi,j ·∏i W
δi
i

=
[∑

i

∑
j αi,jRi(~x)Sj(~x) +

∑
i

∑
j γi,jSi(~x)Sj(~x) +

∑
i δiFi(~x)

]
T
. (5)

Analogously to (3) we define

PT (~X) := F ′(~X)−
∑r
i=1

∑s
j=1 αi,jRi(~X)Sj(~X)

−
∑s
i=1

∑s
j=1 γi,jSi(~X)Sj(~X)−

∑f
i=1 δiFi(~X), (6)

which is of degree at most d2.T := max{degF ′, d~R+d~S , 2 ·d~S , d~F }. Polynomial PT is non-zero by
Type-2-independence of F ′ (Def. 3.2). The reduction also computes QT (Z) := PT (y1Z + v1, . . . ,
ymZ + vm).

If Aalg wins then W′ = [F ′(~x)]T , which together with (5) implies that PT (~x) ≡p 0 and thus
QT (z) ≡p 0. Reduction Balg can find z by factoring QT ; unless QT (Z) ≡ 0, which by an analysis
analogous to the one for case (2.1) happens with probability d2.T

p−1 . (We detail the reduction for
the case where W′ is independent in the proof of Theorem 5.2, which proves a more general
statement.)

Theorem 3.5 for Type-2 groups follows since Advq-dlog
G2,Balg

≥ Advüber
G,Aalg

−Pr[Balg aborts] and Balg

follows the type of reduction that minimizes its abort probability to min
{ d2.1
p−1 ,

d2.2
p−1 ,

d2.T
p−1

}
= d2

p−1 .

Groups of Type 1 and 3. The reduction for bilinear groups of Type 1 to q-dlog G2
is almost

the same proof. The only change is that for Case (1.T) the polynomial PT in (6) has an extra
term −

∑r
i=1

∑r
j=1 βi,jRi(~X)Rj(~X), because of the representation of W′ in Type-1 groups (see

Def. 2.4); the degree of PT is then bounded by max{degF ′, 2 d~R, 2 d~S , d~F }. Analogously for Case

13

m-f-überAalg
G

01 Q1,Q2,QT ← ∅
02 (g1, g2) $← GenSamp ; gT ← e(g1, g2)
03 ~x = (x1, . . . , xm) $← Zmp
04 ((U∗,V∗,W∗), (R∗, S∗, F ∗)) $← AO(·,·)

alg ()

05 Return
(
(U∗,V∗,W∗) = (gR

∗(~x)
1 , g

S∗(~x)
2 , g

F ∗(~x)
T)

∧ (Q1,Q2,QT , R∗, S∗, F ∗) non-trivial for type of G
)

O(i, P (~X))
06 Qi = Qi ∪ {P}
07 Return g

P (~x)
i

Figure 3: Algebraic game for the flexible Uber assumption

(1.2), S′ can now depend on ~S as well as ~R. The reduction for Type-1 groups to q-dlog G1
is

completely symmetric by swapping the roles of G1 and G2 and replacing ψ by φ.
The reduction for Type-3 groups relies on the (q1, q2)-dlog G assumption, as it requires

{[zi]1}q1
i=1 and {[zi]2}q2

i=1 to simulate {[Ri(~x)]1}ri=1 and {[Si(~x)]2}si=1. without using any homo-
morphism φ or ψ. Apart from this, the proof is again analogous. (We treat the Type-3 case in
detail in the proof of Theorem 5.2.) In Appendix B we detail the analysis of the running times
of these reductions.

Using Lemmas 2.5 and 2.6 we obtain the following corollary to Theorem 3.5:

Corollary 3.6 Let G be of type τ and (~R, ~S, ~F ,R′, S′, F ′) be non-trivial for τ of maximal degree
dτ . Then (~R, ~S, ~F ,R′, S′, F ′)-überG is

((o+o1+1+q)2q
p−1 + dτ

p−1 , o
)
-secure in the generic bilinear

group model.

Comparison to previous GGM results. Boneh, Boyen and Goh [BBG05, Theorem A.2]
claim that the decisional Uber assumption for the particular case r = s and f = 0 is

((o+2r+2)2q
2p , o

)
-

secure in the generic group model, and with the same reasoning, one can obtain the more general
bound

((o+r+s+f+2)2q
2p , o

)
. Note that the loss in their bound is only linear in the maximum degree

while ours cubic. Our looser bound is a result of our reduction, whereas Boneh, Boyen and Goh
prove their bound directly in the GGM.2

4 The Flexible Uber Assumption
Boyen [Boy08] generalizes the Uber assumption framework to flexible assumptions, where the
adversary can define the target polynomials (R′, S′ and F ′ in Fig. 2) itself, conditioned on
the solution not being trivially computable from the instance, for non-triviality as in Def. 3.3.
In Sect. 6 we consider this kind of flexible Uber assumption in our generalization to rational
fractions and thereby cover assumptions like q-strong Diffie-Hellman [BB08].

For polynomials, we generalize this further by allowing the adversary to also (adaptively)
choose the polynomials that constitute the challenge. The adversary is provided with an oracle
that takes input a value i ∈ {1, 2, T} and a polynomial P (~X) of the adversary’s choice, and returns
g
P (~x)
i , where ~x is the secret value chosen during the game. The adversary then wins if it returns
polynomials (R∗, S∗, F ∗), which are independent from its queries, and

(
g
R∗(~x)
1 , g

S∗(~x)
2 , g

F ∗(~x)
T

)
.

The game for this flexible Uber assumption is specified in Fig. 3.
2We did not consider the bound from [Boy08, Theorem 1], as it is an incorrect copy of the one in [BBG05].

14

Theorem 4.1 Let m ≥ 1, let G be a bilinear-group of type τ ∈ {1, 2, 3} and consider an adversary
Aalg in game m-f-überG. Let d′1, d′2, d′T , d∗1, d∗2, d∗T be such that Aalg’s queries (i, P (~X)) satisfy
degP ≤ d′i and its output values R∗, S∗, F ∗ satisfy degR∗ ≤ d∗1, degS∗ ≤ d∗2, degF ∗ ≤ d∗T . Let
q, q1, q2 be such that q ≥ max{d′1, d′2, d′T /2} as well as q1 ≥ d′1, q2 ≥ d′2 and q1 + q2 ≥ d′T . If

(Type 1) q-dlog G1
or q-dlog G2

is (ε, t)-secure in the AGM,
(Type 2) q-dlog G2

is (ε, t)-secure in the AGM,
(Type 3) (q1, q2)-dlog G is (ε, t)-secure in the AGM,

then m-f-überG is (ε′, t′)-secure in the AGM with

ε′ ≤ ε+ dτ
p−1 and t′ ≈ t,

where dτ is as in Def. 3.4 after the following replacements: d~R ← d′1, d~S ← d′2, d~F ← d′F ,
degR′ ← d∗1, degS′ ← d∗2 and degF ′ ← d∗T .

Proof sketch. Inspecting the proof of Theorem 3.5, note that the values [Ri(~x)]1, [Si(~x)]2 and
[Fi(~x)]T need not be known in advance and can be computed by the reduction at any point, as
long as the degrees of Ri and Si are bounded by q and those of Fi by 2q. The adversary could
thus specify the polynomials via oracle calls and the reduction can compute Ui, Vi and Fi on
the fly.

Likewise, the polynomials P1, P2 and PT (and their univariate counterparts which the
reduction factors) are only defined after Aalg stops; therefore, R′, S′ and F ′, from which they
are defined, need only be known then. The proof of Theorem 3.5 is thus adapted to prove
Theorem 4.1 in a very straightforward way.

5 The Uber Assumption for Rational Fractions
Reconsider the Uber assumption in Fig. 2, but now let ~R, ~S, ~F ,R′, S′ and F ′ be rational fractions
over Zp rather than polynomials. We will show that even this generalization of the Uber
assumption is implied by q-DLog assumptions. We start with introducing some notation. We
view a rational fraction as defined by two polynomials, its numerator and its denominator, and
assume that the fraction is reduced. For a rational fraction R ∈ Zp(X1, . . . , Xm), we denote
its numerator by R̂ and its denominator by Ř. That is R̂, Ř ∈ Zp[X1, . . . , Xm] are such that
R = R̂/Ř. As rational fractions are not defined everywhere, we modify the game from Fig. 2
so the adversary wins should the experiment choose an input ~x for which one of the rational
fractions is not defined. The rational-fraction uber game is given in Fig. 4.

For a vector of rational fractions ~R ∈ Zp(X1, . . . , Xm)r, we define its common denominator
Den(~R) as a least common multiple of the denominators of the components of ~R. In particular,
fix an algorithm LCM that given a set of polynomials returns a least common multiple of them.
Then we define:

Den(~R) = Den
(
R̂1/Ř1, . . . , R̂r/Řr

)
:= LCM{Ř1, . . . , Řr}.

We let ď~R denote the degree of Den(~R) and d~R denote the maximal degree of the elements of
~R, that is d~R := max{deg(R1), . . . ,deg(Rr)}. Note that this integer could be negative and is
lower bounded by −ď~R. The security loss in Theorem 5.2 depends on the type of the bilinear
group, the reason for the tuple (~R, ~S, ~F ,R′, S′, F ′) being non-trivial, as well as the degrees of
the numerators and denominators of the involved rational fractions. We summarize this in the
following technical definition.

15

(~R, ~S, ~F ,R′, S′, F ′)-rüberAalg
G // Ri = R̂i/Ři, for R̂i, Ři ∈ Zp[~X], etc

01 (g1, g2) $← GenSamp ; gT ← e(g1, g2)
02 ~x = (x1, . . . , xm) $← Zmp
03 If for some i: Ři(~x) ≡p 0 or Ši(~x) ≡p 0 or F̌i(~x) ≡p 0 then return 1
04 If Ř′(~x) ≡p 0 or Š′(~x) ≡p 0 or F̌ ′(~x) ≡p 0 then return 1

05 ~U := (gR1(~x)
1 , . . . , g

Rr(~x)
1) ; ~V := (gS1(~x)

2 , . . . , g
Ss(~x)
2) ; ~W := (gF1(~x)

T , . . . , g
Ff (~x)
T)

06 (U′,V′,W′) $← Aalg(~U, ~V, ~W)
07 Return

(
(U′,V′,W′) = (gR

′(~x)
1 , g

S′(~x)
2 , g

F ′(~x)
T)

)
Figure 4: Algebraic game for the Uber assumption relative to bilinear group G and adversary
Aalg, parametrized by (vectors of) rational fractions ~R, ~S, ~F ,R′, S′ and F ′

Definition 5.1 (Degree of non-trivial tuple of rational fractions). Let (~R, ~S, ~F ,R′, S′, F ′) be
a non-trivial tuple whose elements are rational fractions in Zp(X1, . . . , Xm). Let dden :=
ď~R‖~S‖~F‖R′‖S′‖F ′ . We define the type-τ degree dτ of (~R, ~S, ~F ,R′, S′, F ′) as follows, distinguishing
the kinds of non-triviality defined in Def. 3.3.

(Type 1) • If (1.1) holds, let d1.1 := dden + ďR′ + ď~R‖~S + max{dR′ , d~R, d~S}

• if (1.2) holds, let d1.2 := dden + ďS′ + ď~R‖~S + max{dS′ , d~R, d~S}

• if (1.T) holds, d1.T := dden + ďF ′ + ď~R‖~S‖~F + ď~R‖~S + max{dF ′ , 2d~S , 2d~R, d~F }

(Type 2) • If (2.1) holds, let d2.1 := dden + ďR′ + ď~R‖~S + max{dR′ , d~R, d~S}

• if (2.2) holds, let d2.2 := dden + ďS′ + ď~S + max{dS′ , d~S}
• if (2.T) holds, d2.T := dden + ďF ′ + ď~R‖~S‖~F + ď~S + max{dF ′ , 2d~S , d~R + d~S , d~F }

(Type 3) • If (3.1) holds, let d3.1 := dden + ďR′ + ď~R + max{dR′ , d~R}
• if (3.2) holds, let d3.2 := dden + ďS′ + ď~S + max{dS′ , d~S}
• if (3.T) holds, d3.T := dden + ďF ′ + ď~R‖~F + ď~S + max{dF ′ , d~R + d~S , d~F }

If (τ, i) does not hold, set dτ,i :=∞. Define dτ := min{dτ.1, dτ.2, dτ.T }.

Theorem 5.2 (DLog implies Uber for rational fractions in the AGM). Let G be a
bilinear group of type τ ∈ {1, 2, 3} and let (~R, ~S, ~F ,R′, S′, F ′) ∈ (Zp(X1, . . . , Xm))r+s+f+3 be
a tuple of rational fractions that is non-trivial for type τ (Def. 3.3). Let q, q1 and q2 be such
that q ≥ ď~R‖~S‖~F + max{d~R, d~S , d~F /2} and q1 ≥ ď~R‖~F + d~R and q2 ≥ ď~S + d~S as well as
q1 + q2 ≥ ď~R‖~F + ď~S + d~F . If

(Type 1) q-dlog G1
or q-dlog G2

is (ε, t)-secure in the AGM,
(Type 2) q-dlog G2

is (ε, t)-secure in the AGM,
(Type 3) (q1, q2)-dlog G is (ε, t)-secure in the AGM,

then (~R, ~S, ~F ,R′, S′, F ′)-rüberG, as defined in Fig. 4, is (ε′, t′)-secure in the AGM with

ε′ ≤ ε+ dτ
p−1 and t′ ≈ t,

where dτ is the maximal degree of (~R, ~S, ~F ,R′, S′, F ′), as defined in Def. 5.1.

16

(~R, ~S, ~F)-f-rüberAalg
G

01 (g1, g2) $← GenSamp ; gT ← e(g1, g2)
02 ~x = (x1, . . . , xm) $← Zmp
03 If for some i: Ři(~x) ≡p 0 or Ši(~x) ≡p 0 or F̌i(~x) ≡p 0 then return 1

04 ~U := (gR1(~x)
1 , . . . , g

Rr(~x)
1) ; ~V := (gS1(~x)

2 , . . . , g
Ss(~x)
2) ; ~W := (gF1(~x)

T , . . . , g
Ff (~x)
T)

05 ((U∗,V∗,W∗), (R∗, S∗, F ∗)) $← Aalg(~U, ~V, ~W)

06 Return
(
(U∗,V∗,W∗) =

(
g
R∗(~x)
1 , g

S∗(~x)
2 , g

F ∗(~x)
T

)
∧ (~R, ~S, ~F ,R∗, S∗, F ∗) non-trivial for type of G

)
Figure 5: Algebraic game for the flexible-targets Uber assumption

The proof extends the ideas used to prove Theorem 3.5 by employing a technique from
[BB08]. Consider a group of Type 1 or 2. The reduction computes D := Den(~R‖~S‖~F), a least
common multiple of the denominators of the instance. Given a q-DLog instance g2, g

z
2 , g

z2
2 , . . .,

it first implicitly sets xi := yiz + vi mod p, then it checks whether any denominator evaluates
to zero at ~x (this entails the additive loss dden). Then it computes a new random generator
h2 := g

D(y1z+v1,...,ymz+vm)
2 and h1 := ψ(h2). For rational fractions Si = Ŝi/Ši, it then uses h1, h2

to compute the Uber challenge elements hSi(~x)
2 as gS(~x)

2 for the polynomial S(~X) := (Ŝi ·D/Ši)(~X),
and likewise for Ri and Fi. This explains the lower bound on q in the theorem statement. When
the adversary returns a group element hR

′(~x)
i so that R′ is non-trivial, then from the algebraic

representations of this element we can define a polynomial (which with overwhelming probability
is non-zero) that vanishes at z. The difference here is that we expand by the denominator of
R′ in order to obtain a polynomial. The degree of this polynomial is bounded by the values
in Def. 5.1, which also bound the failure probability of the reduction. In Type-3 groups, the
reduction can set h1 := g

Den(~R‖~F)(~x)
1 and h1 := g

Den(~S)(~x)
2 , which leads to better bounds. We

detail this case in our proof of Theorem 5.2, which can be found in Appendix C.

6 The Uber Assumption for Rational Fractions and Flexible
Targets

For rational fractions, we can also define a flexible generalization, where the adversary can choose
the target polynomials R′, S′ and F ′ in Fig. 2 itself, conditioned on the tuple (~R, ~S, ~F ,R′, S′, F ′)
being non-trivial. The game is specified in Fig. 5. This extension covers assumptions such as the
q-strong DH assumption by Boneh and Boyen [BB08], which they proved secure in the generic
group model. A q-SDH adversary is given (gi, gzi , gz

2
i , . . . , g

zq
i) for i = 1, 2 and must compute

(g(z+c)−1

1 , c) for any c ∈ Zp \ {−z} of its choice. This is an instance of the flexible game in Fig. 5
when setting m = 1, r = s = q + 1, f = 0 and Ri(X) = Si(X) = Xi−1, and the adversary
returns R∗(X) = 1/(X + c), S∗(X) = F ∗(X) = 0.

Theorem 6.1 (DLog implies flexible-target Uber for rational fractions in the AGM).
Let G be a bilinear group of type τ ∈ {1, 2, 3} and let (~R, ~S, ~F) ∈ (Zp(X1, . . . , Xm))r+s+f be a
tuple of rational fractions.

Consider an adversary Aalg in game (~R, ~S, ~F)-f-rüber (Fig. 5) and let d∗1, d∗2, d∗T , ď∗1, ď∗2, ď∗T be
such that Aalg’s outputs R∗, S∗, F ∗ satisfy degR∗ ≤ d∗1, degS∗ ≤ d∗2, degF ∗ ≤ d∗T , deg Ř∗ ≤ ď∗1,
deg Š∗ ≤ ď∗2 and deg F̌ ∗ ≤ ď∗T .

17

(~R, ~S, ~F)-f-drüberAalg
G

01 (g1, g2) $← GenSamp ; gT ← e(g1, g2)
02 ~x = (x1, . . . , xm) $← Zmp
03 If for some i: Ři(~x) ≡p 0 or Ši(~x) ≡p 0 or F̌i(~x) ≡p 0
04 then return 1
05 ~U := (gR1(~x)

1 , . . . , g
Rr(~x)
1)

06 ~V := (gS1(~x)
2 , . . . , g

Ss(~x)
2)

07 ~W := (gF1(~x)
T , . . . , g

Ff (~x)
T)

08 ((U∗,V∗,W∗), (R∗, S∗, F ∗)) $← AO(·,·)
alg (~U, ~V, ~W)

09 Return
(
(U∗,V∗,W∗) = (gR

∗(~x)
1 , g

S∗(~x)
2 , g

F ∗(~x)
T)

∧ (~R, ~S, ~F ,R∗, S∗, F ∗) non-trivial for type of G
)

O(P (~X), (Y1, . . . ,Yn))
10 For i = 1, . . . , n do
11 let ιi ∈ {1, 2, T} s.t.

Yi ∈ Gιi

12 yi ← loggιiYi

13 Return
(
P (~y) ≡p 0

)

Figure 6: Algebraic game for the flexible-targets Uber assumption with decisional oracles

Let q, q1 and q2 be such that q ≥ ď~R‖~S‖~F + max{d~R, d~S , d~F /2} and let q1 ≥ ď~R‖~F + d~R and
q2 ≥ ď~S+d~S and q1 +q2 ≥ ď~R‖~F + ď~S+d~F , where ď~R = ď(R̂1/Ř1,...,R̂r/Řr) = deg LCM{Ř1, . . . , Řr}.
If

(Type 1) q-dlog G1
or q-dlog G2

is (ε, t)-secure in the AGM,
(Type 2) q-dlog G2

is (ε, t)-secure in the AGM,
(Type 3) (q1, q2)-dlog G is (ε, t)-secure in the AGM,

then (~R, ~S, ~F)-f-rüberG is (ε′, t′)-secure in the AGM with

ε′ ≤ ε+ dτ
p−1 and t′ ≈ t,

where dτ is defined as in Def. 5.1, except for defining dden := ď~R‖~S‖~F and replacing ďR′ , ďS′ , ďF ′ ,
dR′ , dS′, and dF ′ by ď∗1, ď∗2, ď∗T , d∗1, d∗2, and d∗T), respectively.

Proof sketch. Much in the way the proof of Theorem 3.5 is adapted to Theorem 4.1, Theorem 6.1
is proved similarly to Theorem 5.2. Since P1, P2 and PT are only defined once the adversary
returns its rational fractions R∗, S∗, F ∗, they need not be known in advance. (Note that, unlike
for polynomials (Theorem 4.1), the instance (~R, ~S, ~F) does have to be fixed, as the reduction
uses it to set up the generators h1 and h2.) A difference to Theorem 6.1 is the value dden in the
security loss, which is now smaller since the experiment need not check the denominators of the
target fractions.

7 Uber Assumptions with Decisional Oracles
In this section we show that we can provide the adversary, essentially for free, with an oracle
that checks whether the logarithms of given group elements satisfy any polynomial relation.
In more detail, the adversary is given access to an oracle that takes as input a polynomial
P ∈ Zp[X1, . . . , Xn] and group elements Y1, . . . ,Yn (from any group G1,G2 or GT) and checks
whether P (log Y1, . . . , log Yn) ≡p 0. Decisional oracles can be added to any type of Uber
assumption; for concreteness, we extend the most general variant from the previous section. The

18

game f-drüber (“d” for decisional oracles) is defined in Fig. 6. This extension covers assumptions
such as Gap Diffie-Hellman (DH) [OP01], where the adversary must solve a DH instance while
being given an oracle that checks whether a triple (Y1,Y2,Y3) is a DH tuple, i.e., Ylog Y2

1 = Y3.
This oracle is a special case of the one in Fig. 6, when called with P (X1, X2, X3) := X1X2 −X3.

Theorem 7.1 (DLog implies flexible-target Uber for rational fractions with deci-
sional oracles in the AGM). The statement of Theorem 6.1 holds when f-rüber is replaced
by f-drüber.

Proof sketch. The reduction Balg from (~R, ~S, ~F)-f-drüber to q-DLog (or (q1, q2)-DLog) works
as for Theorem 6.1 (as detailed in the proof of Theorem 5.2), except that Balg must also answer
Aalg’s oracle queries, which we describe in the following for Type-3 groups.

As for Theorem 6.1, Balg, on input (~Y, ~Z) with Yi = [zi]1 and Zj = [zj]2, for 0 ≤ i ≤ q1
and 0 ≤ j ≤ q2, computes LCMs of denominators D := Den(~R‖~S‖~F), D1 := Den(~R‖~F) and
D2 := Den(~S). It picks ~y $← (Z∗p)m and ~v $← Zmp , implicitly sets xi := yiz + vi mod p and checks
if D(~x) ≡p 0. If so, the reduction derives the corresponding univariate polynomial and finds z.
Otherwise it computes h1 := [D1(~x)]1, h2 := [D2(~x)]2 (note that D1(~x) and D2(~x) are non-zero),
Ui = [(D1 ·Ri)(~x)]1, Vi = [(D2 · Si(~x)]2 and Wi = [(D1 ·D2 · Fi)(~x)]T .

Consider a query O(P, (Y1, . . . ,Yn)) for some n and P ∈ Zp[X1, . . . , Xn], and Yi ∈ Gιi for
ιi ∈ {1, 2, T}. Since Aalg is algebraic, it provides representations of the group elements Yi with
respect to its input (~U, ~V, ~W); in particular, for each Yi, depending on the group, it provides
~µi or ~ηi or (Ai, ~δi) such that:

(Yi ∈ G1) Yi =
∏r
j=1 Uµi,j

j =
[∑r

j=1 µi,j(D1 ·Rj)(~x)
]
1 =:

[
Qi(z)

]
1

(Yi ∈ G2) Yi =
∏s
j=1 Vηi,j

j =
[∑s

j=1 ηi,j(D2 · Sj)(~x)
]
2 =:

[
Qi(z)

]
2

(Yi ∈ GT) Yi =
∏r
j=1

∏s
k=1 e(Uj ,Vk)αi,j,k ·

∏f
j=1 Wδi,j

j

=
[∑r

j=1
∑s
k=1 αi,j,k(D1 ·Rj)(~x) (D2 · Sj)(~x) +

∑f
j=1 δi,j(D1 ·D2 · Fj)(~x)

]
T

=:
[
Qi(z)

]
T
,

where D1 ·Rj as well as D2 ·Sj and D1 ·D2 ·Fj are multivariate polynomials (not rational fractions)
and Qi is the polynomial defined by replacing Xi by yiZ + vi. Let D′i(Z) be defined from Di(~X)
analogously. Then we have loggιiYi = Qi(z) and furthermore loghιiYi = Qi(z)/Dιi(z), where
DT := D1 ·D2.

To answer the oracle query, Balg must therefore determine whether the function P (Q1/Di1 , . . . ,
Qn/Din) vanishes at z. Since D1(z), D2(z) 6≡p 0, this is the case precisely when P := Dd

1 ·Dd
2 ·

P (Q1/Di1 , . . . , Qn/Din) vanishes at z, where d is the maximal degree of P . Note that P is a
polynomial. The reduction distinguishes 3 cases:

1. P ≡ 0: in this case, the oracle replies 1.
2. P 6≡ 0: in this case, Balg factorizes P to find its roots z1, . . ., checks whether Z1 = gzi for

some i. If this is the case, it stops and returns the solution zi to its (q1, q2)-DLog instance.
3. Else, the oracle replies 0.

Correctness of the simulation is immediate, since the correct oracle reply is 1 if and only if
P (z) ≡p 0.

8 The Flexible Gegenuber Assumption
In this section, we show how to extend the Uber framework even further, by letting the adversary
generate its own generators (for the outputs), yielding the GeGenUber assumption. Consider

19

the LRSW assumption [LRSW99] in Type-1 bilinear groups: given (X = gx, Y = gy) (which
can be viewed as a signature verification key [CL04]) and an oracle, which on input (a message)
m ∈ Zp returns (a signature) (ga, gay, ga(x+mxy)) for a random a $← Zp, it is infeasible to return
(a signature on a fresh message)

(
(ga∗ , ga∗y, ga∗(x+m∗xy),m∗)

)
for any a∗ and m∗ different from

the queried values. Since the adversary need not return the value a∗, this cannot be cast
into the Uber framework. Associating the values a1, . . . , a` chosen by the signing oracle to
formal variables A1, . . . , A`, in the Uber framework ~X would correspond to (X,Y,A1, . . . , A`)
and signing queries to the polynomials Ai, AiY and AiX +miAiXY . Now the adversary can
choose a fresh generator g∗ := ga

∗ and must return ((g∗)R∗i (~X))3
i=1 for R∗1 ≡ 1, R∗2 = Y and

R∗3 = X +m∗XY for some m∗ ∈ Z∗p of its choice.
Another example is the simultaneous Diffie-Hellman assumption [PW17], stating that given

(g, gx1 , gx2) it is hard to compute (Y, Y 1/x1 , Y 1/x2) for some generator Y of the adversary’s
choice.3

Our last generalization now extends the flexible Uber assumption from Sect. 4 by letting
the adversary generate its own generators U, V and W of G1, G2 and GT , resp., and return
polynomials R∗, S∗ and F ∗, as well as (UR∗(~x),VS∗(~x),WF ∗(~x)). The game m-gegenüber is
defined in Fig. 7. This additional freedom for the adversary induces a necessary change in the
definition of non-triviality, as illustrated by the following simple (univariate) example: after the
challenger chooses x $← Zp, the adversary makes queries R1 := X and R2 := X3 and receives
U1 and U2. For all Uber assumptions so far, the polynomial R∗ := X2 would be considered
non-trivial. However, in game gegenüber the adversary could return U := U1 = gx and
U∗ := U2 = gx

3 = UR∗(x).
Whereas until now the target polynomial R∗ was not allowed to be a linear combination

of the queried polynomials P1, . . . , P` (or of products of such polynomials, depending on the
group types), for the Gegenuber assumption we also need to exclude fractions of such linear
combinations (such as X3/X in the example above) to thwart trivial attacks.

For a family E of polynomials, we denote by Span(E) all linear combinations of elements of
E, which we extend to fractions as

FrSp(E) :=
{
P̂ /P̌

∣∣ (P̂ , P̌) ∈ Span(E)× (Span(E) \ {0})
}
.

Moreover, by E1 ∗ E2 we denote the set {P1 · P2 | (P1, P2) ∈ E1 × E2}.

Definition 8.1 (Non-triviality for Gegenuber assumption). Let Q1,Q2 and QT be sets of
polynomials and let R∗, S∗ and F ∗ be polynomials. We say that (Q1,Q2,QT , R∗, S∗, F ∗) is
gegenuber-non-trivial for groups of type τ , if the following holds:

• Either R∗ /∈ FrSp(Q1 ∪Q2) for τ ∈ {1, 2} and R∗ /∈ FrSp(Q1) for τ = 3, (τ.1)
• or S∗ /∈ FrSp(Q1 ∪Q2) for τ = 1 and S∗ /∈ FrSp(Q2) for τ ∈ {2, 3}, (τ.2)
• or F ∗ /∈ FrSp(QT ∪ (Q1 ∪Q2) ∗ (Q1 ∪Q2)) for τ = 1 (1.T)

F ∗ /∈ FrSp(QT ∪ (Q1 ∪Q2) ∗ Q2) for τ = 2 (2.T)
F ∗ /∈ FrSp(QT ∪ (Q1 ∗ Q2)) for τ = 3. (3.T)

Definition 8.2 (Degree of non-triviality for Gegenuber assumption). Let (Q1,Q2,QT , R∗, S∗, F ∗)
be a non-trivial tuple of polynomials in Zp[X1, . . . , Xm]. For i ∈ {1, 2, T} define d′i :=
max{degP}P∈Qi . We define the type-τ degree dτ of (Q1,Q2,QT , R∗, S∗, F ∗) as follows:

• If (τ.1) holds, let dτ.1 := max{1, degR∗} ·max{d′1, d′2} in case τ ∈ {1, 2} and
dτ.1 := max{1,degR∗} · d′1 in case τ = 3.

3As originally stated [PW17], the adversary is given (ga, gax1 , gax2) for a random a. This is equivalent to our
statement since we consider a random generator g.

20

m-gegenüberAalg
G

01 Q1,Q2,QT ← ∅
02 (g1, g2) $← GenSamp ; gT ← e(g1, g2)
03 ~x = (x1, . . . , xm) $← Zmp
04
(
(U,V,W,U∗,V∗,W∗), (R∗, S∗, F ∗)

) $← AO(·,·)
alg ()

05 Return
(
U 6= 1 ∧V 6= 1 ∧W 6= 1

∧ (U∗,V∗,W∗) = (UR∗(~x),VS∗(~x),WF ∗(~x))
∧ (Q1,Q2,QT , R∗, S∗, F ∗) gegenuber-non-trivial for type of G

)

O(i, P (~X))
06 Qi = Qi ∪ {P}
07 Return g

P (~x)
i

Figure 7: Algebraic game for the flexible Gegenuber assumption

• If (τ.2) holds, let dτ.2 := max{1,degS∗} ·max{d′1, d′2} in case τ = 1 and
dτ.2 := max{1, degS∗} · d′2 in case τ ∈ {2, 3}.

• If (τ.T) holds, let dτ.T := max{1, degF ∗} ·max{2 d′1, 2 d′2, d′T } for τ = 1
dτ.T := max{1,degF ∗} ·max{d′1 + d′2, 2 d′2, d′T } for τ = 2,
dτ.T := max{1,degF ∗} ·max{d′1 + d′2, d

′
T } for τ = 3.

If (τ, i) does not hold, set dτ,i :=∞. Define dτ := min{dτ.1, dτ.2, dτ.T }.

Note that for all Uber variants, the adversary only outputs one element per group Gi, which
is without loss of generality, as a vector of group elements would be non-trivial if at least one
component is non-trivial. We defined the Gegenuber assumption analogously, so one might
wonder how this covers LRSW, where the adversary must output group elements corresponding
to two polynomials Y and X +m∗XY . The reason is that LRSW holds even if the adversary
only has to output the latter polynomial (the former is required to verify the validity of a
solution using the pairing): In the GGM this follows from LRSW being an instance of Gegenuber,
Theorem 8.3 (see below for both) and Lemmas 2.5 and 2.6.

To show that LRSW is gegenuber-non-trivial, consider the set of queries an adversary can
make, namely:

Q :=
{
1, X, Y, {Ai, AiY,AiX +miAiXY }`i=1

}
.

To prove that the stronger variant of LRSW satisfies non-triviality as defined in Def. 8.1, we show
that for 0 6= m∗ /∈ {m1, . . . ,m`}: R∗ := X +m∗XY /∈ FrSp(Q). For the sake of contradiction,
assume that for some P̌ , P̂ ∈ Span(Q), P̌ 6≡ 0:

(X +m∗XY)P̌ = P̂ . (7)

Since P̂ ∈ Span(Q), its total degree in X and Y is at most 2, which implies that P̌ must be of
degree 0 in X and Y . We can thus write P̌ as η +

∑`
j=1 αjAj for some η and ~α. Since X is a

factor of the left-hand side of (7), P̂ cannot have terms without X and must therefore be of the
form P̂ = ξX +

∑`
j=1 µjAj (X +mjXY) for some ξ and ~µ. Equation (7) becomes thus

(X +m∗XY)
(
η +

∑`
j=1 αjAj

)
= ξX +

∑`
j=1 µjAj (X +mjXY) .

By equating coefficients, we get: η = ξ (from coeff. X) and m∗η ≡p 0 (from XY) and for all
j ∈ [1, `]: αj = µj (from AjX) and αjm

∗ ≡p µjmj (from AjXY). Since m∗ 6= 0, we have
η = ξ = 0. Furthermore, if αj 6= 0 for some j, then mj = m∗, meaning it was not a valid
solution. If αj = 0 for all j then P̌ ≡ 0, which shows such P̂ and P̌ do not exist and thus
X +m∗XY /∈ FrSp(Q).

21

Theorem 8.3 Let m ≥ 1, let G be a bilinear group of type τ ∈ {1, 2, 3} and let Aalg be an
adversary in game m-gegenüberG. Let d′1, d′2, d′T , d∗1, d∗2, d∗T be such that Aalg’s queries (i, P (~X))
satisfy degP ≤ d′i and its output satisfies degR∗ ≤ d∗1, degS∗ ≤ d∗2, degF ∗ ≤ d∗T . Let q, q1, q2
be such that q ≥ max{d′1, d′2, d′T /2}, as well as q1 ≥ d′1, q2 ≥ d′2 and q1 + q2 ≥ d′T . If

(Type 1) q-dlog G1
or q-dlog G2

is (ε, t)-secure in the AGM,
(Type 2) q-dlog G2

is (ε, t)-secure in the AGM,
(Type 3) (q1, q2)-dlog G is (ε, t)-secure in the AGM,

then gegenüberG is (ε′, t′)-secure in the AGM with

ε′ ≤ ε+ dτ
p−1 and t′ ≈ t,

with dτ from Def. 8.2 after replacing degR∗, degS∗ and degF ∗ by d∗1, d∗2 and d∗T , respectively.

The proof can be found in Appendix D. It is an adaptation of the one for the flexible
uberassumption, which adapts the proof of Theorem 3.5. We highlight the main difference
for non-triviality of type (2.1). Recall that in the proof Theorem 3.5, the adversary returns
a solution U′ and its algebraic representation so that (2a) holds. From this and the fact that
U′ = [R′(~x)]1, we derived the polynomial P1 in (3), which is non-zero by non-triviality.

In the proof of Theorem 8.3, the adversary also outputs a new generator U, whose algebraic
representation yields a polynomial Q ∈ Span(Q1 ∪Q2) so that U = [Q(~x)]1. For a valid solution
U∗, we thus have U∗ = [R∗(~x) · Q(~x)]1. On the other hand, the representation of U∗ yields
U∗ = [Q∗(~x)]1 for some Q∗ ∈ Span(Q1∪Q2). We thus have that P1(~X) := R∗(~X)·Q(~X)−Q∗(~X)
vanishes at ~x. By non-triviality, R∗ /∈ FrSp(Q1 ∪ Q2), which implies P1 6≡ 0, so the reduction
can find the roots of P1(y1Z + x1, . . . , ynZ + xn) and solve q-DLog.

9 Separation of (q + 1)-DL from q-DL
Now that we have shown that every Uber assumption falls into a (minimal) class of assumptions
that are equivalent to q-DLog, we show that these classes can be separated according to their
parameter q. We prove that, assuming that q-DLog is hard, there does not exist an algebraic
reduction from q-DLog to (q + 1)-DLog. In particular, we show that if there exists a reduction
Ralg that has access to a (q+1)-DLog (algebraic) adversary Aalg and can solve q-DLog, then there
exists a meta-reduction that uses Ralg to break q-DLog. In the following, we use the notation
Ralg(Aalg) to denote that Ralg has complete access to Aalg’s internal state. In particular, Ralg is
allowed to rewind Aalg to any point of an execution and run Aalg on any choice of random coins
as many times as it wants.

Theorem 9.1 Let Gi be a group of prime order p. There exists an algorithm M such that the
following holds. Let Ralg be an algebraic algorithm s.t. for every algorithm Aalg that (t, ε)-breaks
(q+1)-dlogGi , B = Ralg(Aalg) is an algorithm that (t′, ε′)-breaks q-dlogGi . If t ≥ 2 (2q+1)dlog2 pe
then MRalg (t′, ε′)-breaks q-dlogGi.

We start with a proof overview. Consider a reduction Ralg, which on input a q-DLog instance
(g, gx, . . . , gxq) can run an algebraic adversary Aalg multiple times on (q + 1)-DLog instances
(Z,Zy, . . . ,Zyq+1); that is, Ralg can choose a new generator Z and a new problem solution
y. Since Ralg is algebraic, it outputs a representation of the group elements composing its
(q + 1)-DLog instance in terms of the received q-DLog instance. We distinguish two cases: if (a)
y is independent from x then the representation reveals y, which means that a meta-reduction

22

M can simulate a successful Aalg to Ralg, and the latter must thus find x. On the other hand, if
(b) y depends on x, then this yields a non-trivial equation in x, which the meta-reduction can
solve and thereby (without needing to simulate Aalg) solve the q-DLog instance.

To simplify the probability analysis, we let M simulate Aalg even when Ralg behaves as in the
second case (as it can compute y from x). To correctly argue about the probability distributions,
we ensure that any malformed instance provided by the algebraic reduction Ralg is detected. We
will use the following lemma in the proof of Theorem 9.1:

Lemma 9.2 Let q ≥ 1, let F ∈ Zp(X) and let 0 6≡ P ∈ Zp[X] be of degree at most q. If F q+1·P
is a polynomial and of degree at most q, then F is constant.

Proof. Let F̂ , F̌ ∈ Zp[X] be coprime such that F = F̂ /F̌ . Then F̂ q+1 and F̌ q+1 are coprime as
well. From this and the premise that F̂ q+1 · P/F̌ q+1 is a polynomial, we get that F̌ q+1 divides
P , and thus (q + 1) · deg F̌ ≤ degP . Since the latter is at most q, we have deg F̌ = 0.

Furthermore, we assumed that q ≥ deg(F q+1 ·P) = (q+1)·deg F̂+degP , and thus deg F̂ = 0.
Together, this means F is constant.

Proof of Theorem 9.1. Let Ralg be an algebraic algorithm s.t. for every algorithm Aalg that
(t, ε)-breaks (q + 1)-dlogGi , B = Ralg(Aalg) is an algorithm that (t′, ε′)-breaks q-dlogGi . In the
following, we describe a meta-reduction M s.t. MRalg (t′, ε′)-breaks q-dlogGi .

M(g,X1, . . . ,Xq): Run Ralg on the received q-DLog instance (g, gx, . . . , gxq). Whenever Ralg
runs adversary Aalg on (q + 1)-DLog input (Z0,Z1, . . . ,Zq+1), do the following. Let
~zi = (zi,0, . . . , zi,q) for 0 ≤ i ≤ q+1 be the representation vectors for Z0, . . . ,Zq+1 provided
by Ralg; that is, Zi =

∏q
j=0(gxj)zi,j .

If Z0 = 1 then return ⊥. (∗)
Else define

Pi(X) :=
∑q
j=0 zi,jX

j for 0 ≤ i ≤ q + 1 and (8)
Qi := Pi+1P0 − PiP1 for 0 ≤ i ≤ q. (9)

M now distinguishes two cases:

(a) Qi ≡ 0 for all i ∈ [0, q]: Then (as we argue below) P1/P0 ≡ c, that is, a constant
polynomial. M returns c as Aalg’s output.

(b) For some k ∈ [0, q]: Qk 6≡ 0: Compute the roots x1, . . . of Qk and check if for some j:
gxj = X1. If not, then return ⊥ as Aalg’s output. (∗∗)
Else let y := P1(xj)/P0(xj) mod p. (1 6= Z0 = gP0(xj), thus P0(xj) 6≡p 0.) If for some
i ∈ [1, q + 1] : Zi 6= Zy

i

0 , return ⊥ as Aalg’s output. (∗∗∗)
Else return y.

Correctness of simulation. We now argue that M always correctly simulates an adversary
Aalg that solves (q + 1)-DLog if it received a correct instance, and returns ⊥ otherwise. Consider
the case where Ralg provides a valid (q + 1)-DLog instance, that is Z0 6= 1 and

∃ y ∈ Z∗p ∀ i ∈ [1, q + 1] : Zi = Zy
i

0 . (10)

By (8), we have Zi = gPi(x) for all i. Since Z0 6= 1, M does not stop in line (∗) and P0(x) 6≡p 0.
Moreover, from (10) we have y ≡p P1(x)/P0(x) and

Pi+1(x) ≡p P1(x)/P0(x) · Pi(x), (11)

23

in other words, Qi(x) ≡p 0 for all i ∈ [0, q].
In case (a), Qi ≡ 0, and thus, letting F := P1/P0, we have (by definition (9)) Pi+1 = F · Pi

for all i, and by induction:
∀ i ∈ [0, q + 1] : Pi = F i · P0,

and in particular Pq+1 = F q+1 · P0. Since Pq+1 and P0 are polynomials of degree at most q,
by Lemma 9.2 we get F ≡ c for c ∈ Zp. The meta-reduction M thus returns c ≡p F (x) ≡p
P1(x)/P0(x) ≡p y.

In case (b), since Qk 6≡ 0 but, by (11), Qk(x) ≡p 0, the meta-reduction finds x and M does
not stop in line (∗∗) and neither in line (∗∗∗), since y ≡p P1(x)/P0(x).

Now consider the case that Ralg sends a malformed instance: if Z0 is not a generator then
Aalg returns ⊥ in line (∗). Assume Z0 is a generator (and thus P0(x) 6≡p 0), but (10) is not
satisfied. Using the algebraic representations of Z0, . . . ,Zq+1, this is equivalent to

∀ y ∈ Z∗p ∃ k ∈ [1, q + 1] : Pk(x) 6≡p ykP0(x). (12)

We first show that the meta-reduction M goes to case (b): Indeed, if Qi ≡ 0 for all i ∈ [0, q],
then Pi+1(x) ≡p P1(x)/P0(x) · Pi(x) for all i and, by induction, Pi(x) ≡p (P1(x)/P0(x))i · P0(x),
which, setting y := P1(x)/P0(x) mod p, contradicts (12).

Let k ∈ [0, q] be such that Qk 6≡ 0. If x is not among the roots of Qk, then M returns ⊥ in
line (∗∗). Otherwise, it sets y := P1(x)/P0(x) mod p. If for some i ∈ [1, q + 1]: Pi(x) 6≡p yiP0(x)
then M returns ⊥ in line (∗∗∗). If not then this contradicts (12). Therefore, the simulation will
return ⊥ on invalid inputs.

For the simulation of Aalg the meta-reduction needs to compute at most 2q + 1 exponentiations,
each of which require at most 2dlog2 pe group operations using square and multiply. The
simulation of Aalg is thus perfect and takes at most t steps. The meta-reduction M succeeds in
winning q-dlogGi whenever B = Ralg(Aalg) wins q-dlogGi . Therefore, we obtain

Pr
[
q-dlogM

Gi = 1
]

= Pr
[
q-dlogB

Gi = 1
]
≥ ε′.

Moreover, the running time of M is that of B, i.e., t′. This completes the proof.

A similar result can be shown for (q1, q2)-dlogG , that is, (q1, q2)-dlogG is not implied by
(q′1, q′2)-dlogG if q′1 > q1 or q′2 > q2.

10 Separation of 2-One-More DL from q-DL
We conclude with showing that “one-more”-discrete logarithm (OMDL) assumptions fall outside
of our q-DLog taxonomy. While it is known that there is no black-box reduction from DLog to
OMDL [BMV08], we show that there is no algebraic reduction either, even one for algebraic
adversaries.

To obtain the strongest possible impossibility result, we show that for no q ∈ N, there exists
an algebraic reduction from q-DLog (a stronger assumption than DLog) to 2-OMDL (the weakest
variant of OMDL assumptions), unless q-DLog is easy. The game for 2-OMDL is depicted in
Fig. 8. The proof uses the same high-level idea as for Theorem 10.1. If the representation of the
group elements the reduction gives to the adversary is independent of its own q-DLog challenge,
then the meta-reduction can directly simulate the adversary. Else, they depend on the q-DLog
challenge in a way that allows the meta-reduction to derive a q-DLog solution. Compared to the
previous section, we now restrict the algebraic reduction to only have black-box access (according
to our notion of black-box) to the adversary. This is because a reduction that can choose the

24

2-omdl Aalg
Gi

00 Q← 0
01 g $← GenSampi
02 y1, y2

$← Z∗p
03 (y∗1, y∗2) $← AO(·)

alg
(
g, gy1 , gy2

)
04 Return

(
(y∗1, y∗2) = (y1, y2)

)

O(Z)
05 if Q = 0 then
06 Q← 1
07 Return logg Z
08 Return ⊥

Figure 8: Game for 2-one-more discrete logarithm 2-omdl Gi relative to bilinear group Gi, i ∈
{1, 2} and adversary Aalg

random coins of the adversary in a non-uniform (adaptive) way can make the simulation of the
adversary by our meta-reduction fail.

We need to define the adversary’s behavior, that is, its oracle call, beforehand; in particular,
it must not depend on the type of representations obtained from the reduction, which makes the
proof more complicated and restricts the simulation to adversaries that can fail with negligible
probability. The adversary, after receiving a 2-OMDL challenge (Y0,Y1,Y2), makes a query
(Yr1

1 Yr2
2) for random r1, r2 to its DLog oracle and then returns the 2-OMDL solution (logY0Y1,

logY0Y2). We now show how the meta-reduction simulates this adversary.
Since the reduction is algebraic, it provides with its 2-OMDL instance representations ~zi =

(zi,0, . . . , zi,q) in terms of its q-DLog challenge (g, gx, . . . , gxq), such that logg Yi ≡p
∑q
j=0 zi,jx

j .
From the reply y to the adversary’s single oracle query, we get the following equation: 0 =
logg(Yr1

1 Yr2
2)− logg Yy

0 ≡p
∑q
j=0

(
r1z1,j + r2z2,j − yz0,j

)
xj .

The q-DLog challenge x is thus the root of the polynomial with coefficients aj := (r1z1,j +
r2z2,j − yz0,j) mod p, and the meta-reduction can find x if one of these coefficients is non-zero.
Using x, it can then compute logg Yi for all i from the representations and from that the OMDL
solution (logY0Y1, logY0 Y2).

If, on the other hand, aj = 0 for some j then by plugging in the definition of y, we get
another polynomial which vanishes at x. We then show that, due to the randomizers r1 and r2,
with overwhelming probability, the coefficients of this polynomial are non-zero – unless for some
c1, c2 we have ~z1 = c1~z0 and ~z2 = c2~z0. But in this case (c1, c2) is the solution to the 2-OMDL
instance and the meta-reduction can therefore finish the simulation of the adversary.

Theorem 10.1 Let Gi be a group of prime order p. There exists an algorithm M such that the
following holds: Let Ralg be an algebraic reduction s.t. for every algorithm Aalg that (t, ε)-breaks
2-omdlGi , B = RAalg

alg is an algorithm that (t′, ε′)-breaks q-dlogGi . If t ≥ (6 + 2q)dlog2 pe+ 1 and
ε ≤ 1− 1/p then MRalg (t′, ε′)-breaks q-dlogGi.

Proof. Let Ralg be an algebraic reduction s.t. for every algorithm Aalg that (t, ε)-breaks 2-omdlGi ,
B = RAalg

alg is an algorithm that (t′, ε′)-breaks q-dlogGi .
We first specify a hypothetical algebraic adversary Aalg which (t = (6+2q)·dlog2 pe+1, ε = 1−

1/p)-breaks 2-OMDL: on input (Y0,Y1,Y2), if Y0 is not a generator, it returns⊥. Else, it chooses
two uniform values r1, r2

$← Zp and queries its oracle O(·) on Yr1
1 Yr2

2 , providing representation
(0, r1, r2) in basis (Y0,Y1,Y2). If it does not obtain the correct answer logY0Yr1

1 Yr2
2 , it returns

⊥. Else it returns the 2-OMDL solution logY0Y1 and logY0Y2 with probability 1− 1/p.
We now construct a meta-reduction M, s.t. MRalg (t′, ε′)-breaks q-dlogGi , as follows. On input

a q-dlogGi instance (g, gx, . . . , gxq), the meta-reduction runs Ralg on (g, gx, . . . , gxq). Every time
Ralg invokes 2-OMDL adversary Aalg on a challenge (Y0,Y1,Y2), M simulates Aalg as follows.

25

If Y0 is not a generator, it returns ⊥. Since Ralg is algebraic, along with (Y0,Y1,Y2), it
provides corresponding representation vectors ~zi = (zi,0, . . . , zi,q) ∈ Zq+1

p for i ∈ [0, 2] such that

Yi =
∏q
j=0(gxj)zi,j = g

∑q

j=0 zi,jx
j

for i ∈ [0, 2] . (13)

Let k be such that z0,k 6= 0 (which exists, since Y0 6= 1). The meta-reduction chooses r1, r2
$← Zp

and queries O(Yr1
1 Yr2

2) to obtain y. If Yy
0 6= Yr1

1 Yr2
2 then M returns ⊥. Otherwise, let

di,j := zi,kz0,j − zi,jz0,k mod p
aj := yz0,j − r1z1,j − r2z2,j mod p for 1 ≤ i ≤ 2 and 1 ≤ j ≤ q .

M distinguishes three cases and simulates Aalg accordingly:

(a) di,j = 0 for all i, j: in this case, M computes (modulo p) z1,kz
−1
0,k and z2,kz

−1
0,k, which Aalg

returns as the OMDL solution (we argue correctness below).

(b) aj 6= 0 for some j: in this case, M factors the polynomial with coefficients a0, . . . , aq. If x
is among its roots then M computes the following modulo p and lets Aalg return it:(∑q

j=0 z1,jx
j
)(∑q

j=0 z0,jx
j
)−1 and

(∑q
j=0 z2,jx

j
)(∑q

j=0 z0,jx
j
)−1 (14)

(since
(
(logg Y1)(logg Y0)−1, (logg Y2)(logg Y0)−1) ≡p (logY0Y1, logY0Y2), by (13), this

is thus the OMDL solution).

(c) For the remaining case, let i∗, j∗ be such that di∗,j∗ 6= 0. In this case, M factors the
polynomial with coefficients di∗,0, . . . , di∗,q. If x is among its roots then Aalg returns the
values from (14). Otherwise M returns ⊥.

When Ralg stops and returns x then M also stops and returns x.

We now show that the meta-reduction M correctly simulates every run of Aalg that Ralg invokes,
in particular, that Aalg solves the OMDL instance with probability at least 1− 1/p. First note
that Yy

0 = Yr1
1 Yr2

2 , which together with (13) yields:

0 ≡p
∑q
j=0(yz0,j − r1z1,j − r2z2,j)xj ≡p

∑q
j=0 ajx

j =: P~a(x) . (15)

(where P~a is the polynomial with coefficients (a0, . . . , aq)).
In Case (a), we have that (z1,kz

−1
0,k, z2,kz

−1
0,k) is the OMDL solution since for i = 1, 2:

Y
zi,kz

−1
0,k

0
(13)= g

∑q

j=0 zi,kz
−1
0,kz0,jxj di,j=0

= g
∑q

j=0 zi,jx
j (13)= Yi .

In Case (b), the polynomial P~a defined in (15) is non-zero. Since by (15), x is one of its roots,
M can find it and use it to compute logY0Yi via (14).
In Case (c), we have ak = 0 and thus (by definition of ak):

yz0,k ≡p r1z1,k + r2z2,k . (16)

Multiplying (15) by z0,k we get∑q
j=0(yz0,kz0,j − r1z1,jz0,k − r2z2,jz0,k)xj ≡p 0 ,

which, when substituting yz0,k by the right-hand side of (16), yields

r1
∑q
j=0(z1,kz0,j − z1,jz0,k)xj + r2

∑q
j=0(z2,kz0,j − z2,jz0,k)xj ≡p 0 .

26

Using di,j ≡p zi,kz0,j − zi,jz0,k, this can be written as

r1
∑q
j=0 d1,jx

j + r2
∑q
j=0 d2,jx

j ≡p 0 . (17)

Recall that in Case (c), for some i∗, j∗: di∗,j∗ 6= 0. If D :=
∑q
j=0 di∗,jx

j ≡p 0, then M finds
x by factoring P~di∗ and thus finishes the simulation. In the remaining case we have D 6≡p 0;
moreover, the values x and ~di∗ are independent of ri∗ , which was chosen after the reduction
(implicitly) defined ~di∗ . Equation (17), that is, ri∗D ≡p −r3−i∗

∑q
j=0 d3−i∗,jx

j , thus only holds
with probability 1/p. The meta-reduction therefore makes Aalg return ⊥ on correct inputs with
probability at most 1/p.

Finally, we show that the simulation of Aalg takes at most t steps. Computing Yy
0, Yr1

1 , and
Yr2

2 via square and multiply requires 3 · 2dlog2(p)e group operations, and computing Yr1
1 ·Y

r2
2

takes one. Checking if the roots of the polynomial
∑q
i=0 aiX

i (in Case (b)) or
∑q
j=0 di∗,jX

j (in
Case (c)) are equal to x requires q · 2dlog2(p)e group operations.

M succeeds in winning q-dlogGi whenever Balg = RAalg
alg wins q-dlogGi . Therefore, we obtain

Pr
[
q-dlogM

Gi = 1
]

= Pr
[
q-dlogB

Gi = 1
]
≥ ε′ .

Moreover, the running time of M is that of B, i.e., t′. This completes the proof.

Acknowledgements. This work is funded in part by the MSR–Inria Joint Centre. The second
author is supported by the Vienna Science and Technology Fund (WWTF) through project
VRG18-002. Parts of this work were done while he was visiting the Simons Institute for the
Theory of Computing.

References
[ABM15] Michel Abdalla, Fabrice Benhamouda, and Philip MacKenzie. Security of the J-PAKE

password-authenticated key exchange protocol. In 2015 IEEE Symposium on Security and
Privacy, pages 571–587. IEEE Computer Society Press, 2015.

[AHK20] Thomas Agrikola, Dennis Hofheinz, and Julia Kastner. On instantiating the algebraic group
model from falsifiable assumptions. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 96–126. Springer, 2020.

[AW98] Claude Deschamps André Warusfel, François Moulin. Mathématiques 1ère année : Cours et
exercices corrigés. Editions Dunod, 1998.

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH
assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, 2008.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 440–456. Springer, 2005.

[BMV08] Emmanuel Bresson, Jean Monnerat, and Damien Vergnaud. Separation results on the “one-
more” computational problems. In Tal Malkin, editor, CT-RSA 2008, volume 4964 of LNCS,
pages 71–87. Springer, 2008.

[BMZ19] James Bartusek, Fermi Ma, and Mark Zhandry. The distinction between fixed and random
generators in group-based assumptions. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 801–830. Springer, 2019.

27

[Boy08] Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and
Kenneth G. Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 39–56. Springer,
2008.

[BR04] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331, 2004. http://eprint.iacr.org/
2004/331.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
56–72. Springer, 2004.

[CM14] Melissa Chase and Sarah Meiklejohn. Déjà Q: Using dual systems to revisit q-type assumptions.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of
LNCS, pages 622–639. Springer, 2014.

[CMM16] Melissa Chase, Mary Maller, and Sarah Meiklejohn. Déjà Q all over again: Tighter and
broader reductions of q-type assumptions. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 655–681. Springer, 2016.

[DL77] Richard A DeMillo and Richard J Lipton. A probabilistic remark on algebraic program testing.
Technical report, Georgia Inst of Tech Atlanta School of Information and Computer Science,
1977.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 33–62. Springer, 2018.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed
ElGamal encryption in the algebraic group model. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 63–95. Springer, 2020.

[GG17] Essam Ghadafi and Jens Groth. Towards a classification of non-interactive computational as-
sumptions in cyclic groups. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part II, volume 10625 of LNCS, pages 66–96. Springer, 2017.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
305–326. Springer, 2016.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
169–189. Springer, 2012.

[Lip19] Helger Lipmaa. Simulation-extractable SNARKs revisited. ePrint Cryptogoly Archive, Report
2019/612, 2019.

[Los19] Julian Loss. New techniques for the modular analysis of digital signature schemes. PhD thesis,
Ruhr University Bochum, Germany, 2019.

[LRSW99] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In
Howard M. Heys and Carlisle M. Adams, editors, SAC 1999, volume 1758 of LNCS, pages
184–199. Springer, 1999.

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P.
Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796
of LNCS, pages 1–12. Springer, 2005.

28

http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2004/331
https://eprint.iacr.org/2019/953

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 2111–2128. ACM Press, 2019.

[MTT19] Taiga Mizuide, Atsushi Takayasu, and Tsuyoshi Takagi. Tight reductions for Diffie-Hellman
variants in the algebraic group model. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405
of LNCS, pages 169–188. Springer, 2019.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 1994.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. In Kwangjo Kim, editor, PKC 2001, volume 1992 of
LNCS, pages 104–118. Springer, 2001.

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equivalent to
discrete log. In Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS, pages 1–20.
Springer, 2005.

[PW17] David Pointcheval and Guilin Wang. VTBPEKE: Verifier-based two-basis password exponential
key exchange. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi, editors,
ASIACCS 17, pages 301–312. ACM Press, 2017.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, 1997.

A Proof of Lemma 2.6
We prove the statement for (q1, q2)-DLog; the proof for q-DLog follows analogously. We give a
proof in Maurer’s version of the GGM [Mau05], in which an adversary Agen can access elements
from the groups G1, G2 and GT only via abstract handles. These are maintained by the challenger
in lists L1, L2, and LT , which correspond to the groups G1, G2, and GT , respectively.

For (q1, q2)-DLog the lists L1 and L2 initially contain the handles to the elements 1, Z, Z2, . . . ,
Zq1 and 1, Z, Z2, . . . , Zq2 ∈ Zp[Z], respectively, that correspond to the (q1, q2)-DLog challenge
given to Agen. The challenger also samples z $← Z∗p, the solution, and we will argue that this
value remains information-theoretically hidden from Agen.

The adversary is granted access to oracles of two types. Oracles Oi(·), for i ∈ {1, 2, T}, take
as input two handles h1, h2 ∈ Li for polynomials P1(Z), P2(Z) ∈ Zp[Z], respectively, and output
a handle h for the polynomial P1(Z) + P2(Z); Li is accordingly updated with the handle h.
Oracle Oe(·), on input two handles h1 ∈ L1 and h2 ∈ L2 for P1(Z) and P2(Z), outputs the
handle hT to the element P1(Z) · P2(Z) and updates LT accordingly.

Following the standard argument in the generic group model, we consider a so-called collision
event E which occurs if there exist two distinct handles h1, h2 ∈ L1 ∪ L2 ∪ LT that point to
polynomials P1(Z) and P2(Z), respectively, such that P1(Z) 6= P2(Z), yet P1(z) = P2(z).

One can show that non-adaptively generating group elements until a collision occurs is
the best possible strategy for a generic algorithm. Thus, to lower-bound the number of oracle
interactions that are needed until Agen finds z, it suffices to lower-bound the time until E happens.

Before E occurs, z is a uniformly random value and thus the probability that two computed
elements are equal after t steps of computation (i.e., oracle calls) can be upper-bounded by the
Schwartz-Zippel Lemma (Lemma 2.2). In particular, let P1(Z) and P2(Z) be distinct polynomials
of degree at most 2q. Then Schwartz-Zippel upper-bounds the probability that P1(z) ≡p P2(z)
for a uniform element z ∈ Z∗p by 2q/(p − 1). As initially the set L1 ∪ L2 ∪ LT is of size q + 1

29

(where q := max{q1, q2}) and an oracle call by Agen adds at most one polynomial of degree at
most q1 + q2 < 2q to one of the lists, there are at most

(t+q+1
2
)
such equations after t steps of

computation. Thus, the probability of a collision occurring is at most (t+q+1)2 ·2q/(2(p−1)) =
(t+ q + 1)2 · q/(p− 1).

B Running Time of the Generic Reduction of Theorem 3.5
Fact B.1 Let G a group of order p. The square-and-multiply algorithm in G takes as input a
group element X ∈ G and a scalar a ∈ Zp and returns Xa after computing at most 2dlog(p)e
group operations.

Analysis. We give an upper bound on the running time of computation, in terms of bilinear
group operations, of the reduction B in Theorem 3.5. Let oexp denote the number of group
operations required to compute an exponentiation.

First, B computes the “core” elements, that is, gzkT for 0 ≤ k ≤ d~T and gzk1 for 0 ≤ k ≤ d~R
in Types 1 and 2, which requires d~T + 1 computations of e and (for Types 1 and 2) d~R + 1
computations of the morphism ψ.

Let i ∈ {1, . . . , r}, j ∈ {1, . . . , s}, and k ∈ {1, . . . , f}. Then we denote

Ri(y1Z + x1, . . . , ymZ + xm) =
d~R∑
`=0

λRi,`Z
`,

Sj(y1Z + x1, . . . , ymZ + xm) =
d~S∑
`=0

λSj ,`Z
`, and

Fk(y1Z + x1, . . . , ymZ + xm) =
d~F∑
`=0

λFk,`Z
`.

Next, B computes the monomials
(
gz

`

1
)λRi,` = g

λRi,`z
i

1 , for all ` ∈ {0, . . . , d~R}, as well as(
gz

`

2
)λSj,` = g

λSj,`z
`

2 for ` ∈ {0, . . . , d~S}, and
(
gz

`

T

)λFk,` = g
λFk,`z

`

T for ` ∈ {0, . . . , d~F }. This
requires at most

(
rd~R + sd~S + fd~F + 3

)
oexp group operations. Finally, B computes, for all

i ∈ {0, . . . , r}, all j ∈ {1, . . . , s}, and k ∈ {1, . . . , f}:
d~R∏
`=0

g
λRi,`z

`

T = g
Ri(y1z+x1,...,ymz+xm)
1 ,

d~S∏
`=0

g
λSj,`z

`

2 = g
Sj(y1z+x1,...,ymz+xm)
2 , and

d~F∏
`=0

g
λFk,`z

`

T = g
Fk(y1z+x1,...,ymz+xm)
T ,

which requires rd~R + sd~S + fd~F group operations. This concludes the computation of Aalg’s
input.

After computing Q1 (or Q2 or QT depending on the case) from Aalg’s output, and its roots
z1, . . . , reduction B verifies gzi ?= gz. Since the polynomial has at most dτ roots, this last step
requires at most dτ · oexp group operations.

We can therefore upper-bound the number of group operations performed by BA by t+ o1
with o1 := o0 + 2 +

(
(d~R + 1)r + (d~S + 1)s + (d~F + 1)f + dτ

)
oexp + rd~R + sd~S + fd~F with

30

o0 := d~R + d~F + 2 for Types 1 and 2, and o0 := d~F + 1 for Type 3. By applying Fact B.1, we
obtain the time bound claimed in Theorem 3.5.

C Proof of Theorem 5.2
We will use the following lemma in the proof of Theorem 5.2.

Lemma C.1 Let n be an integer, (Pi)ni=1 ∈ (Zp[X1, . . . , Xm])n and ~x ∈ Zmp . Then Pi(~x) ≡p 0
for some i ∈ [1, n] if and only if LCM(P1, . . . , Pn)(~x) ≡p 0.

Proof. Let i be such that Pi(~x) ≡p 0. Since Pi divides LCM(P1, . . . , Pn), we have

LCM(P1, . . . , Pn)(~x) ≡p 0.

Now suppose LCM(P1, . . . , Pn)(~x) ≡p 0. Since LCM(P1, . . . , Pn) divides
∏n
i=1 Pi, we have∏n

i=1 Pi(~x) ≡p 0. Because Zp is an integer domain, this implies that Pi(~x) ≡p 0 for some i.

Whereas in the proof of Theorem 3.5 we focused on Type-2 groups, for the sake of variation,
we give the details for Type-3 groups, and then explain what changes for Types 1 and 2. Again,
for i ∈ {1, 2, T}, we denote gui by [u]i for u ∈ Zp.

Let Aalg be an algebraic algorithm against rüberG , defined by a tuple (~R, ~S, ~F ,R′, S′, F ′) of
(vectors of) rational fractions, that wins with advantage ε in time t. We construct an algebraic
adversary Balg against (q1, q2)-dlog G . Depending on why the tuple is non-trivial (conditions
(3.1), (3.2) and/or (3.T) in Def. 3.3), Balg uses a different strategy, minimizing d3 in Def. 5.1.

We detail the most complex case, which is (3.T); that is, F ′ is Type-3 independent from
(~R, ~S, ~F).

Adversary Balg(g1,Y1, . . . ,Yq1 , g2,Z1, . . . ,Zq2): On input a (q1, q2)-DLog instance with Yi =
[zi]1 and Zi = [zi]2, reduction Balg simulates rüberG for Aalg.

It first computes a least common multipleD := Den(~R‖~S‖~F‖R′‖S′‖F ′) of the denominators
of ~R, ~S, ~F ,R′, S′, F ′. It then picks random values ~y $← (Z∗p)m and ~v $← Zmp and uses them
to implicitly define xi := yiz + vi mod p.
If D′(Z) := D(y1Z + v1, . . . , ymZ + vm) is the zero polynomial, it aborts. (∗)
Else, for each root zi of D′, the reduction checks whether gzi1 = Y1; if such zi exists, it
stops the simulation and outputs zi. (])
If Balg has not stopped then D(~x) 6≡p 0. It now computes a least common multiple
D1 := Den(~R‖~F) of the denominators of ~R and ~F and D2 := Den(~S).

From its (q1, q2)-DLog instance, it then computes h1 := g
D1(~x)
1 , h2 := g

D2(~x)
2 . Note that for

all i ∈ {1, 2}, hi 6= 1 (since Di is a divisor of D, and D(~x) 6≡p 0).

For 1 ≤ i ≤ r, Balg computes Ui := [(R̂i · D1/Ři)(~x)]1 = h
Ri(~x)
1 (where D1/Ři is a

polynomial by construction of D1). This can be computed from Y1, . . . ,Yq1 , since
q1 ≥ deg(D1) +d~R. Likewise, for 1 ≤ i ≤ s, Balg computes Vi := [(Ŝi ·D2/Ši)(~x)]2 = h

Si(~x)
2

from Z1, . . . ,Zq2 . Finally, Balg computes e(g1, g2)zi = [zi]T for 1 ≤ i ≤ q1 + q2 from its
instance, from which it then computes Wi := [D2 · F̂i · D1/F̌i(~x)]T = e(h1, h2)Fi(~x) for
1 ≤ i ≤ f .

With these values, Balg runs (U′,V′,W′) $← Aalg(~U, ~V, ~W), which also returns represen-
tations ~µ for U′, ~η for V′ and (A,~δ) for W′ (so that (2) holds with νi = γi,j = 0 for all
i, j).

31

Balg defines the following polynomial:

PT := F̌ ′ ·D1 ·D2 ·
(
F ′ −

∑r
i=1

∑s
j=1 αi,j Ri Sj −

∑f
i=k δkFk

)
. (18)

Note that PT is indeed a polynomial, because F̌ ′ ·F ′, as well as D1 ·Ri, D2 ·Sj and D1 ·Fk
for all i, j, k are all polynomials.
From PT , the reduction defines P ′T (Z) := PT (y1Z + v1, . . . , ymZ + vm). If P ′T is the zero
polynomial then Balg aborts. (∗∗)
Else, it factors P ′T to obtain its roots z1, . . . If for one of them we have gzi1 = Y1, then Balg
returns zi. (]])

We analyze Balg’s success probability. First note that Balg solves the DLog challenge if it
stops in line (]) and it fails if it aborts in line (∗). Otherwise, Balg perfectly simulates game
rüber (Fig. 4), as the values xi are uniformly distributed in Zp, and the tests in lines 03 and
04 in rüber are all done: For some i: Ři(~x) ≡p 0 or Ši(~x) ≡p 0 or F̌i(~x) ≡p 0, or Ř′(~x) ≡p 0 or
Š′(~x) ≡p 0 or F̌ ′(~x) ≡p 0 if and only if a least common denominator of all these polynomials
vanishes at ~x, i.e. D(~x) ≡p 0 (by Lemma C.1), and Balg only proceeds if the latter is not the
case. In this case Aalg’s inputs, ~U, ~V and ~W are correctly computed.

If Balg does not stop in line (∗∗) either and Aalg is successful then

W′ = e(h1, h2)F ′(~x) =
[
D1(~x)D2(~x)F ′(~x)

]
T
. (19)

On the other hand, from Aalg’s representation (A,~δ) of W′ and from the definitions of Ui, Vj

and Wk we have:

W′ =
∏
i

∏
j e
(
Ui,Vj

)αi,j ·∏k Wδk
k

=
[∑

i

∑
j αi,j(R̂i ·D1/Ři)(~x) (Ŝj ·D2/Šj)(~x) +

∑
k δk(D2 · F̂k ·D1/F̌k)(~x)

]
T
. (20)

Equating the representations of W′ in (19) and (20) in base e(g1, g2) yields
(
D1 · D2 · F ′ −

∑
i

∑
j αi,j R̂i · D1/Ři · Ŝj · D2/Šj +

∑
k δkD2 · F̂k · D1/F̌k

)
(~x) ≡p 0 . (21)

Multiplying the above by F̌ ′(~x) yields PT (~x) ≡p 0 and since xi ≡p yiz + vi, we have P ′T (z) ≡p 0
as well. By factoring P ′T , reduction Balg finds thus the solution z.

We have shown that unless Balg aborts in lines (∗) or (∗∗), it finds the (q1, q2)-DLog solution
whenever Aalg wins rüber. In the remainder of the proof we bound the probability that Balg
aborts. It aborts if and only if the following polynomial is zero: Q(Z) := (D′ · P ′T)(Z) =
(D · PT) (y1Z + v1, . . . , ymZ + vm). It thus suffices to upper-bound the probability that the
coefficient of maximal degree of this polynomial is zero. By Lemma 2.1, this coefficient can be
represented as a polynomial Qmax in variables (Y1, . . . , Ym) that is of the same degree as D · PT ,
which we bound as follows (recall that dden = degD; cf. Def. 5.1):

deg(D · PT) ≤ dden + deg F̌ ′ + degD1 + degD2 +
max{degF ′, degRi + degSj , degFk}1≤i≤r,1≤j≤s,1≤k≤f

= dden + ďF ′ + ď~R‖~F + ď~S + max{dF ′ , d~R + d~S , d~F }

= d3.T

As the values y1z, . . . , ymz are completely hidden from Aalg (they are “one-time-padded”
with v1, . . . , vm, resp.), the values (A,~δ) returned by Aalg are independent from ~y. Since ~y is

32

moreover independent from F ′, ~R, ~S and ~F , it is also independent from PT , D,Q and Qmax.
The probability that Q ≡ 0 is thus upper-bounded by the probability that Qmax(~y) ≡p 0
when evaluated at the random point ~y. By Lemma 2.2 (Schwartz-Zippel), the probability that
Qmax(~y) ≡p 0 is thus upper-bounded by d3.T

p−1 .
We turn to the remaining cases (3.1) and (3.2), which follow similarly, except that PT in

(18) is replaced by different polynomials P . Moreover, we can optimize the loss of the security
reduction, by reducing the degree of P . Note that the two properties which are used in the proof
are:

• P is a non-zero polynomial, and
• if Aalg wins the game then P (~x) ≡p 0.

In Case (3.1), that is, when R′ is linearly independent from ~R, from Aalg’s output U′ =
h
R′(~x)
1 = [D1(~x)R′(~x)]1 and its representation ~µ of U′ =

∏
i U

µi
i = [

∑
i(R̂i ·D1/Ři)(~x)]1, we get

that the following function vanishes at ~x (which corresponds to (21) above):

D1 ·R′ −
∑
i µi R̂i ·D1/Ř .

Multiplying this by Ř′ yields a polynomial. In contrast to case (3.T), we can moreover divide by
D1/Den(~R) and still obtain a polynomial. We thus define:

P1 := Ř′ ·Den(~R) ·
(
R′ −

∑r
i=1 µiRi

)
.

Since P1 is of degree at most ďR′ + ď~R + max{dR′ , d~R}, the probability of Balg aborting is d3.1
p−1 .

For Case (3.2), from Aalg’s representation ~η of V′, we analogously define

P2 := Š′ ·Den(~S) ·
(
S′ −

∑s
i=1 ηiSi

)
,

which is of degree at most ďS′ + ď~S + max{dS′ , d~S} = d3.2.
The theorem for Type-3 groups now follows because

Adv(q1, q2)-dlog
G,Balg

≥ Advrüber
G,Aalg

− Pr[Balg aborts]

and Balg follows the strategy that minimizes its abort probability to min
{ d3.1
p−1 ,

d3.2
p−1 ,

d3.T
p−1

}
= d3

p−1 .

Groups of Type 1 and 2. The reductions for bilinear groups of Types 1 and 2 to q-dlog G2
work

analogously; the main difference is that we can only redefine g2 as h2, since h2 defines h1 = ψ(h2).
This means that instead of D1 and D2 as in the proof above, we define D1,2 := Den(~R‖~S‖~F)
and set h2 := g

D1,2(~x)
2 . For Type-2 groups, let (~µ, ~ν), ~η and (A,Γ, ~δ) be Aalg’s representations of

U′, V′ and W′, respectively. Then Balg defines the polynomials P1, P2 and PT as follows:

P1 := Ř′ ·Den(~R‖~S) ·
(
R′ −

∑r
i=1 µiRi −

∑s
i=1 νiSi

)
P2 := Š′ ·Den(~S) ·

(
S′ −

∑s
i=1 ηiSi

)
PT := F̌ ′ ·Den(~R‖~S‖~F) ·Den(~S) ·(

F ′ −
∑r
i=1

∑s
j=1 αi,j Ri · Sj −

∑s
i=1

∑s
j=1 γi,j Si · Sj −

∑f
i=1 δiFi

)
.

As for the case (3.T) above, by applying Lemmas 2.1 and 2.2 to D · P1, D · P2, and D · PT ,
we deduce that the probability of aborting is bounded by d2

p−1 .

33

For Type-1 groups, let (~µ, ~ν), (~η, ~ζ) and (A,B,Γ, ~δ) be Aalg’s representations of U′, V′ and
W′, respectively. Then Balg defines the polynomials P1, P2 and PT as follows:

P1 := Ř′ ·Den(~R‖~S) ·
(
R′ −

∑r
i=1 µiRi −

∑s
i=1 νiSi

)
P2 := Š′ ·Den(~R‖~S) ·

(
S′ −

∑r
i=1 ζiRi −

∑s
i=1 ηiSi

)
PT := F̌ ′ ·Den(~R‖~S‖~F) ·Den(~R‖~S) ·

(
F ′ −

∑r
i=1

∑s
j=1 αi,j Ri · Sj

−
∑r
i=1

∑r
j=1 βi,j Ri ·Rj −

∑s
i=1

∑s
j=1 γi,j Si · Sj −

∑f
i=1 δiFi

)
.

By an analysis analogous to the above, the abort probability is bounded by d1
p−1 .

D Proof of Theorem 8.3
We give a detailed proof for Type-2 bilinear groups. Let Aalg be an algebraic algorithm against
gegenüber G that wins with advantage ε in time t. We construct a generic reduction with
oracle access to Aalg, which yields an algebraic adversary Balg against q-dlog G2

. There are three
(non-exclusive) types of reasons that (Q1,Q2,QT , R∗, S∗, F ∗) is non-trivial; that is (2.i) from
Def. 8.1 holds for some i ∈ {1, 2, T}. Each condition enables a different type of reduction, of
which Balg runs the one that minimizes dτ . We start with Case (2.1), that is, R∗ /∈ FrSp(Q1∪Q2).

Adversary Balg(g2,Z1, . . . ,Zq): On input a problem instance of game q-dlog G2
with Zi = [zi]2,

Balg defines g1 ← ψ(g2) and gT ← e(g1, g2). Then, it picks random values ~y $← (Z∗p)m
and ~v $← Zmp , sets xi := yiz + vi mod p (implicitly), and runs

(
(U1,V1,W1,U2,V2,W2),

(R∗, S∗, F ∗)
) $← Aalg

O(·,·)(). Oracle calls O(i, P (~X)) are answered by computing and
returning YP,i := [P (x1, . . . , xm)]i from the q-DLog instance, the morphism ψ : G2 → G1
and the pairing e : G1 ×G2 → GT . Balg can do so efficiently since the total degree of the
polynomials in Q1, Q2 and QT are bounded by q, q and 2q, respectively.
Since Aalg is algebraic, for all k1, k2, k3 ∈ {1, 2} it also returns vectors and matrices
~µ(k1), ~ν(k1), ~ζ(k2), ~δ(k3), A(k3) = (α(k3)

j,k)j,k, Γ(k3) = (γ(k3)
j,k)j,k respectively indexed by Q1, Q2,

Q1, QT , Q1 ×Q2 and Q2 ×Q2 such that

Uk1 =
∏
R∈Q1 Yµ

(k1)
R
R,1 ·

∏
R∈Q2 ψ(YR,2)ν

(k1)
R (22a)

Vk2 =
∏
R∈Q2 Yζ

(k2)
R
R,2 (22b)

Wk3 =
∏
R∈Q1

∏
S∈Q2 e

(
YR,1,YS,2

)α(k3)
R,S (22c)

·
∏
R∈Q2

∏
S∈Q2 e

(
ψ(YR,2),YS,2

)γ(k3)
R,S ·

∏
R∈QT Yδ

(k3)
R
R,T . (22d)

Balg then computes the following multivariate polynomial, which corresponds to the
logarithm of UR∗(~x)

1 ·U−1
2 in base g1:

P1(~X) := R∗(~X)
(∑

R∈Q1 µ
(1)
R R(~X) +

∑
R∈Q2 ν

(1)
R R(~X)

)
−
∑
R∈Q1 µ

(2)
R R(~X)−

∑
R∈Q2 ν

(2)
R R(~X).

Since in Case (2.1) we have R∗ /∈ FrSp (Q1 ∪Q2), the polynomial P1 is non-zero. From P1,
the reduction defines Q1(Z) := P1(y1Z + v1, . . . , ymZ + vm). If Q1 is the zero polynomial
then Balg aborts. (∗)
Else, it factors Q1 to obtain its roots z1, . . . (of which there are at most max{degR∗, 1} ·
max{d′1, d′2}). If for one of them we have gzi2 = Z, then Balg returns zi.

34

We analyze Balg’s success probability. First note that Balg perfectly simulates game gegenüber G ,
as the values xi are uniformly distributed in Zp and oracle calls are correctly computed.

Moreover, if Balg does not abort in (∗) and Aalg wins game gegenüber G , then UR∗(~x)
1 ·U−1

2 = 1.
Substituting the right-hand side of (22a) for U1 and U2 in this equation and considering the
discrete logarithm in base g1, this yields P1(~x) ≡p 0. Since xi = yiz + vi, we moreover have
Q1(z) = 0. By factoring Q1, reduction Balg finds thus the solution z.

It remains to bound the probability that Balg aborts in (∗), that is, the probability that
0 ≡ Q1(Z) = P1 (y1Z + v1, . . . , ymZ + vm). The analysis is analogous to all previous theorems:

We upper-bound the probability that the coefficient of maximal degree, say d, is zero. By
Lemma 2.1, this coefficient can be represented as a polynomial Qmax

1 in variables (Y1, . . . , Ym)
of the same degree d. The values y1z, . . . , ymz are completely hidden from Aalg because they
are “one-time-padded” with v1, . . . , vm, respectively. This means that the values ~µ(1), ~µ(2), ~ν(1)

nad ~ν(2) returned by Aalg are independent from ~y. Since ~y is moreover independent from ~R∗, Q1
and Q2, QT , it is also independent from P1, Q1 and Qmax

1 . The probability that Q1 ≡ 0 is thus
upper-bounded by the probability that Qmax

1 (~y) ≡p 0 when evaluated at the random point ~y.
By the Schwartz-Zippel lemma, the probability that Q1(Z) ≡ 0 is thus upper-bounded by d

p−1 .
The degree d of Q1 (and thus of Qmax

1) is upper-bounded by the total degrees of P1, which is
max{1,degR∗} ·max{d′1, d′2} = d2.1 in Def. 8.2. Balg thus aborts in line (*) with probability at
most d2,1

p−1 .
Cases (2.2) (where we have S∗ /∈ FrSp(Q2)) and (2.T) are treated analogously. Theorem 8.3

for Type-2 groups now follows because

Advq-dlog
G2,Balg

≥ Advgegenüber
G,Aalg

− Pr[Balg aborts]

and Balg follows the strategy that minimizes its abort probability to min
{ d2.1
p−1 ,

d2.2
p−1 ,

d2.T
p−1

}
= d2

p−1 .
The proofs for groups of Type 1 and Type 3 are done by analogous adaptations of Theorem 3.5

as just shown for Type 2.

35

	Introduction
	Boyen's Uber Assumption Framework
	An Uber-Assumption Framework for the AGM
	Classifying Assumptions in our Framework
	Related Work

	Algebraic Algorithms and Preliminaries
	Generic Security Games and Algorithms

	The Uber-Assumption Family
	The Flexible Uber Assumption
	The Uber Assumption for Rational Fractions
	The Uber Assumption for Rational Fractions and Flexible Targets
	Uber Assumptions with Decisional Oracles
	The Flexible Gegenuber Assumption
	Separation of (q+1)-DL from q-DL
	Separation of 2-One-More DL from q-DL
	Proof of Lemma 2.6
	Running Time of the Generic Reduction of Theorem 3.5
	Proof of Theorem 5.2
	Proof of Theorem 8.3

