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Abstract. The final exponentiation, which is the exponentiation by a
fixed large exponent, must be performed in the Tate and (optimal) Ate
pairing computation to ensure output uniqueness, algorithmic correct-
ness, and security for pairing-based cryptography. In this paper, we pro-
pose a new framework of efficient final exponentiation for pairings over
families of elliptic curves. Our framework provides two methods: the first
method supports families of elliptic curves with arbitrary embedding de-
grees, and the second method supports families with specific embedding
degrees of providing even faster algorithms. Applying our framework to
several Barreto—Lynn—Scott families, we obtain faster final exponentia-
tion than the previous state-of-the-art constructions.
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1 Introduction

Pairing-based cryptography is the study area of cryptographic protocols based
on pairings defined over elliptic curves, which enable the secure and efficient
realization of components for useful information services, such as efficient dig-
ital signature in blockchain [I1], elliptic curve direct anonymous attestation in
trusted computing [37], identity-based encryption and key exchange in real-time
applications [I§]. Now, pairing-based cryptography is the major field of study.
It is crucial to choose a suitable elliptic curve and an appropriate algorithm
for efficient cryptographic protocols based on pairings in practice because the
computation of pairing is the bottleneck. Recently, several researchers proposed
new recommendations of elliptic curves [2924T7J6/7IT9] and directions [30] based
on the state-of-the-art cryptanalysis reports [22134123]. A survey of current sta-
tus and security of elliptic curves is available at a draft [33]. The results of these
studies narrowed the choice of appropriate elliptic curves down. However, the
best choice is still hard. A careful look at listed up elliptic curves in the recom-
mendations [2924T7I6ITITII33], elliptic curves generated by Barreto-Lynn—Scott
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(BLS) families [8] are frequently selected to implement cryptographic protocols
with 128 bit, 192 bit, and 256 bit levels of security. The BLS families could be
considered to have some flexibility; therefore, elliptic curves generated by these
families are likely to be chosen in the future, even if there is inevitable progress in
the security assessment study. Hence, instead, focus on only one elliptic curve and
make it faster, the design of efficient algorithms, which supports many promising
elliptic curves, for example, elliptic curves generated by BLS families, would be
highly desired.

There are two major types of pairing computation algorithms called Tate
pairings and Weil pairings, and their efficient variants are called Ate pair-
ings and Eil pairings, respectively [STI2II3820]. For both major types, a gen-
eralized method to obtain efficient algorithms called pairing function is pro-
posed [3820]. In terms of the efficiency evaluation and high-speed implementa-
tion reports [TOJ3I4I36/TIBI24T 7286 ITIT3], optimal Ate pairings constructed
by pairing functions based on the Ate pairings are significantly efficient. Thus
we focus on efficient optimal Ate pairings in this paper. The optimal Ate pairing
consists of two parts, which are called the Miller loop and final exponentiation.
Hence, it is vital to construct efficient these algorithms for high-speed imple-
mentations of optimal Ate pairings.

The construction of an efficient Miller loop was not easy until around seven
years ago. Today, significantly fast Miller loop computation can be easily im-
plemented based on many studies and results [3TI2TI3820/9/2740126/TOI36ITI13]
because existing methods can apply to new recommendations [29/246/7UT9I33].
In particular, one can immediately obtain the computationally optimal Miller
loop over an elliptic curve generated by the BLS family [S[24/T7617].

On the other hand, there are a few studies of efficient final exponentiation
construction explained below.

Related Work. There are three existing approaches to construct efficient fi-
nal exponentiation: the vectorial addition chain method [35], the lattice-based
method [I6], and another heuristic method exploiting the structure of pair-
ings [40]. Since the lattice-based method can provide faster algorithms in the
literature [I6l/7], here we briefly describe only this because it seems to be the
state-of-the-art method. The idea of the lattice-based method is finding the ex-
pansion suitable for efficient pairing computation via lattice basis reduction. As
mentioned in their paper [16], the lattice-based method often requires several
trial-and-errors search and may not provide faster algorithms. A careful look
at the efficiency evaluation report [7] concerning the state-of-the-art cryptanal-
ysis [22I34123], the lattice-based method [I6] is not always used to construct
faster algorithms. A heuristic approach [40] gives a few efficient algorithms. This
situation naturally raises a question about the existence of a superior method,
which can provide faster algorithms than the existing ones. Because the pairing
itself might have the structure of efficient final exponentiation, but it is not well
studied in prior work.
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Our Contribution. In this paper, we address the above question and propose
a new framework to obtain more efficient final exponentiation for pairings over
families of elliptic curves. Our framework consists of the following two methods:

— The first method is the generalization of the method presented by Zhang
and Lin [40]. We show a formal theorem that useful structure for efficient
final exponentiation always underlies in the families of elliptic curves with
arbitrary embedding degrees.

— The second method is an extension of the first method to obtain more effi-
cient final exponentiation for specific embedding degrees of the forms k = 27,
37, and 237 for positive integers i and j. We also show formal theorems to
visualize the underlying structure of the second method.

The first method is an algorithm that recursively derives the coefficients of
the p-adic expansion of the hard part, similar to the three existing approaches
to construct efficient final exponentiation. This is a natural generalization of the
previous studies. On the other hand, the second method does not derive the
coefficients but directly factorizes the hard part as a two-variable polynomial.
The factorization can be obtained by using homogeneous cyclotomic polynomials
(later) constructed from cyclotomic polynomials, becouse cyclotomic structure
underlies in the polynomial parameters with families of elliptic curves.

Also, we compare with the existing approaches. We apply our framework to
BLS families with embedding degrees 9, 12, 15, 24, 27, and 48. Then we obtain
faster algorithms than the previous state-of-the-art algorithms presented in the
literature [40I2IT7IT428]. As these experimental results, the improvements are
modest, but it is confirmed that our framework can provide the fastest final
exponentiation. Our results reduce the number of multiplication operations on
the prime field in final exponentiation for BLS family with k& = 9,12, 15,24, 27
and 48 by about 18.6%, 6.1%, 13.7%, 9.7%, 4.7% and 14.8% respectively. See
the Table [l and for details in Section

[ Previous work [ This work

BLS-9 [14] | Io + 1052M; + 109085, Iy 4 856 M1 + 108725
BLS-12 [I7]| I.2 + 1135M; + 2889051 | Ii2 + 1066M; + 288905,
BLS-15 [14]| I:5 + 3632M1 + 2867451 | Ii5 + 3133M; + 286475,
]
|

BLS-24 [I7]| I24 + 5220M; + 6998451 | Ioa + 4716M1 + 699845

BLS-27 [40]|I27 4+ 19884 M; + 11512851 |27 + 18916 M1 + 1151285,

BLS-48 [28]|I4s + 36222M1 + 26487051 |14s + 30849 M, + 2643845,
Table 1: Complexity of final exponentiation on the various BLS families

Note that our framework does not always provide the fastest algorithm. How-
ever, our framework is useful in practice because our framework can support
and accelerate many practical elliptic curves with efficiently computable pair-
ings, for example, all the elliptic curves generated by BLS families. Recall that
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these elliptic curves are frequently selected as new recommendations to achieve
128 bit, 192 bit, and 256 bit levels of security in the literature of security assess-
ments [2924067UTIT7]; thus, our framework is useful to implement secure and
efficient pairing-based cryptography in practice.

Organization. In Section 2] we describe preliminaries, terminology, and notation
of pairings. An overview of the final exponentiation and prior work for its efficient
computations are described in Section [3] We show our main result: our frame-
work, two methods, related theorems, and lemmata, in Section 4] In Section
we explain the application of our methods to BLS families and the comparison
with the prior work. We conclude in Section [6}

2 Preliminaries

In this section, we briefly describe mathematical preliminaries, terminology, and
notation of elliptic curves and pairings [13].

Elliptic Curves. Let E be an elliptic curve defined over a finite field IF,, of field
order p > 3. The rational points group of E over the m-th extension field Fym
of IF,, is denoted by E(F,m ), and its unit element is the point at infinity O. The
scalar multiplication by an integer a over E is denoted by [a]. A map 7, : (z,y) —
(«P,yP) is the Frobenius endomorphism over E. An integer t =p+ 1 — #E(F,)
is the trace of Frobenius. If F is ordinary, then the complex multiplication (CM)
discriminant D is a square-free integer such that DV? = 4p — t2, where V is an
integer. Let r be another prime number such that ged(p,r) = 1, v | #E(F,),
and 72 { #E(F,). The r-th torsion group of F is denoted by E[r]. We say that
a positive integer k is the embedding degree with respect to r and p of E if k
is the smallest positive integer satisfying r | (p¥ — 1). The r-th roots of unity
over the multiplicative group F;k of Fpx is denoted by u,. As seen above, the
main property of an elliptic curve can be specified by a quintuple of the above
integers (k, D, p,r,t). (Usually, only focus on a triple (p,r,t).) Note that the CM
method [BI32] can give a corresponding elliptic curve E such that r | #E(F,)
from this quintuple.

Properties of Pairing. Let Gy == E[r]Nker(m,—[1]), let Gy == E[r]Nker(m,—[p]),
and let Gt = p,. The pairing function is a function e : Gy x Go — G (or
e: Gy x G; — Gr) satisfying the following three properties:

Bilinearity: For all P € Gy, for all Q € Go, and for all a € Z, e([a]P,Q) =
e(P, [a]Q) = e(P, Q)"

Non-degeneracy: e(P,Q) =1ifand only if P=0 or Q = O.

Efficiency: The number of operations to compute the pairing is a polynomial
in logr.
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Optimal Ate Pairing. Suppose an elliptic curve F holds the conditions described
above. Let x be an integer such that kK = mr with r + m, where m is an integer,
and let v = (cg, c1, . .., cw) be a vector of w+1 integers such that k = > /7, c;p".
Then the following function a, with suitable conditions forms a pairing function
based on the Ate pairing [38/20]:

a, : Go x G; = Gr,

pk—1

ks i fs. 1 cipt P "
(Q.P) (]‘[ 7o) T1 “+U][Q’};f]i§( )> :
i=0 i

=0

where s; == Z;“Z i ¢;jp?, Lr s and vg are the two normalized polynomial functions
over E with the divisors (R) 4+ (S) + (=R —S) — 3(0) and (R) + (—R) — 2(0),
respectively, and f, g is the Miller function (normalized rational function) over
E with the divisor a(R) — ([a]R) — (a — 1)(O) [31]. Typically, the computation
of products of the above functions f, ¢, and v with input P and @ is called the
Miller loop (also called the Miller’s algorithm), and the remaining exponentiation
by (p* —1)/r is called the final exponentiation.

For above v, define ||v||; = > |¢;|. Miller showed the square-and-multiply
algorithm that computes f, r(S) in O(loga) times operations [3I], and its
singed-binary variants have been proposed [I0J40J36]. Therefore, it is essential
to find v with very small ||v||;. According to the literature [3820], any non-
degenerate a,, satisfies ||v]|; > r/¢() where ¢ is the Euler’s totient function.
Roughly saying, a,, is an optimal Ate pairing if ||v||; is very close to r/¢(*) [38].

Family of Elliptic Curves. As described above, elliptic curves with pairings suit-
able for cryptographic purposes must have specific properties that randomly cho-
sen elliptic curves rarely have. Several researchers [I5] have proposed methods of
how to obtain appropriate quintuples satisfying the requirements. To resolve the
search problem, a method of how to obtain appropriate quintuples has been pro-
posed. The idea is the parameterization of three integers p, r, and t of a part of
quintuple by polynomials over Q as p(z), r(z), and t(z), respectively, that satisfy
several conditions to direct where appropriate quintuples are. Then the search
problem is transformed into the enumeration of integers of x, which provide
appropriate quintuples. For example, find an integer z such that p(z) and r(z)
are distinct large prime numbers simultaneously. This parameterized quintuple
(k,D,p(zx),r(x),t(x)) (or triple (p(x),r(x),t(x))) is called a family of elliptic
curves. We say that an elliptic curve E is in the family (k, D, p(z),r(x),t(z)) (or
(p(x),r(x),t(x))) if there exists an integer z such that E is defined over F.)
with trace of Frobenius ¢(z). We refer the reader to a survey [15] for details.
The method of the family of elliptic curves also contributes to high-
speed implementations. As described above, the Miller loop and final expo-
nentiation are square-and-multiply algorithms, and their loop parameters are
v = (co,c1,-..,¢y) and (p* — 1)/r, respectively. Using the family of ellip-
tic curves, they are also parameterized as v(x) = (co(z),c1(x), ..., cw(z)) and
(p(x)*—1)/r(x), respectively. In short, one can investigate and construct efficient
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algorithms based on such polynomial representations. Eventually, the construc-
tion can be reduced to find integers which provide appropriate quintuples with
efficiently computable pairings over corresponding elliptic curves. For example,
the optimal Ate pairing of each elliptic curve generated by BLS families [8] can
be written as a,(,)(Q, P) = (fw,Q(P))(p(z)k_l)/r(m); thus, an appropriate integer
of z with low Hamming weight yields an efficient Miller loop.

3 Overview of Final Exponentiation and Prior Work

In this section, we describe an overview of the final exponentiation and prior
work for its efficient algorithms.

3.1 Basic Structure

The computation of pairings consists of two parts called the Miller loop and final
exponentiation. After the computation of the Miller loop, obtain an element of
F;k/ (]F;k)’". Then the final exponentiation, namely exponentiation by a fixed

large exponent (p¥ — 1)/r, must be performed to obtain an element of G of
order r. This operation is also known as the cofactor clearing to ensure output
uniqueness, algorithmic correctness, and security for pairing-based cryptography.

Let k be the embedding degree such that k = ds, where d is a positive integer.
The fixed large exponent (p¥ — 1)/r of final exponentiation can be broken down
into two parts called the easy part and the hard part:

d—1 4
pkil :(psfl)' Zz:o p'LS . (pk(p)
r D (p) ro
Easy part Hard part

where @, is the k-th cyclotomic polynomial.

The easy part is usually products of sparse summations of powers of p, and
its specific form depends on the embedding degree k. For example, the easy part
can be decomposed by (p® —1) - (p? +1) if k = 12, and it can be decomposed by
(p® — 1) - (p> + p+ 1) if k = 15. The exponentiation of the easy part is almost
free since there is only one inversion and the computation of exponentiation by
a power of p over [« is significantly efficient.

Remark 1. Note that there obviously exists another decomposition of the easy
part. Indeed, we can also factorize (p°—1)-(p?+p+1) = (p*—1)-(p*+p>+p>+p+1)
if k = 15, however, we should select (p® — 1) - (p?> + p + 1) in practice from the
viewpoint of the number of operations.

On the other hand, the hard part computation is usually expensive because it
requires exponentiation by large exponents, not a power of p. The basic approach
of efficient computation is base-p expansion. Let A be an integer such that A\ =
m- P (p)/r with r t m, find a vector 7 of w+1 integers 7 = (Ag, A\1,. .., Ayw) such
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that A = 37", A\;p" and very small ||7||;. The hard part is also parameterized as
m(x) - Pg(p(x))/r(x) by a family of elliptic curves. In this case, the construction
of efficient hard part computation is finding suitable expansion based on p(x)
and z, and then also finding an appropriate integer z of x with low Hamming
weight.

3.2 Prior Work of Hard Part Computation

There are three existing approaches to construct efficient final exponentiation:
the vectorial addition chain method [35], the lattice-based method [16], and
another heuristic method [40]. Several researchers [2/I4/40/28] applied their
methodology to several BLS families in the study of efficiency evaluation and
high-speed implementation of pairings.

The vectorial addition chain method is used to efficiently compute a product
1, g} for fixed exponents Ao, A1, ..., A, and input bases go, g1, - - -, Gu-
The computation of hard part of the final exponentiation over family of elliptic
curves can be translated into this setting, for example, consider an expansion

yPe@@)/r@) = Ty oY Ai(@)p(@)" by p(z) and z as Gitio(k) = = yP®)'*"  Scott et
al [35] reported that this method could provide fast algorithms.

Fuentes-Castaifieda et al. [I6] showed a method of finding more efficient algo-
rithms. The idea is drawn from Vercauteren [38] that is the base-p expansion by
lattice basis reduction employed to find an efficient Miller loop. The construc-
tion of the target basis of a lattice is different and complicated to adapt this
method for expansion by p(x) and x. Its advantage is that giving a hint to find
an appropriate multiple of the exponent m(x) - ®x(p(x))/r(x), which enables a
faster algorithm. Fuentes-Castaneda et al. [16] reported that this method could
provide faster algorithms. However, as mentioned in [I6], this method often re-
quires several trial-and-errors search, and may not provide a faster algorithm
than that provided by the vectorial addition chain method [35]. A detailed nu-
merical example is in a book [I3] of the survey.

Zhang and Lin [40] pointed out that a recursive relation over the BLS family
with embedding degree 27 (called BLS27) as follows: p(z)™*! = r(x) - (x — 1)?
p(x)™ + 2 - p(x)™, then the hard part of this family is expanded by p(x) and x.
The resulting formula can be efficiently computable because it is a product of
summations of sparse terms. However, the background structure of such recur-
sive relation is still unclear, and a question remains about how to exploit it to
construct even faster algorithms than existing ones.

4 Main Result

In this section, we propose a new framework for efficient hard part computation
of the final exponentiation. Intuitively, our framework utilizes the underlying
structure of the cyclotomic polynomial that is substantially satisfied by families
of elliptic curves with efficient pairing. Concretely, our framework provides two
methods of obtaining suitable formulas of the exponent ®(p(x))/r(x) of the
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hard part computation via the underlying relationship of k, p(z), r(x), and
others. The first method is a generalization of the previous method proposed by
Zhang and Lin [40]. We show a theorem that there is a beneficial formula to
obtain a faster algorithm in an arbitrary embedding degree. The second method
is an extension of the first method to obtain an even faster algorithm for a
specific embedding degree. We also show a theorem that there is a beneficial
decomposition of the exponent ®x(p(z))/r(x) instead of the complete expansion
by p(x) and x considered in the prior work, and this decomposition approach is
a significant difference from the previous methods.

We describe the first method, related theorem, and an algorithm in Sec-
tion Next, we introduce a new tool, called homogeneous cyclotomic poly-
nomials, and describe its properties in Section [£.2] The purpose of this tool is
visualizing the decomposition of @ (p(x))/r(x) with specific embedding degree.
Finally, we describe detailed explanations of our second method using homoge-
neous cyclotomic polynomials in Section The application to BLS families
and efficiency evaluation of our methods and comparisons with prior work are
given in the next section.

Remark 2. Note that both methods cannot always provide faster algorithms
than previous ones. According to explanations in this section later, applications
and efficiency comparisons in the next section, our framework can provide faster
algorithms if the trace of Frobenius is t(x) = x + 1. This limitation cannot be
an issue in practice because the number of elliptic curves with efficient pairing
and trace of Frobenius ¢(z) = x + 1 is somewhat large. For example, the trace
of Frobenius of all the BLS families is t(z) = = + 1 (see Appendix E[)7 and the
recently published recommendations [2924JT7I6I7IT9I33] frequently choose ellip-
tic curves generated by the BLS families. Also, the applicability of our methods
is not limited to BLS families.

4.1 Arbitrary Embedding Degree

We generalize the efficient hard part computation of the final exponentiation for
optimal Ate pairings over families of elliptic curves.

Let @ () denote the k-th cyclotomic polynomial and let E an elliptic curve
with embedding degree k parametrized as families. Then the polynomial param-
eters t(x), r(x), p(x) of FE have the following representation:

r(z) = @4 (T (2))/ha(2),
p(x) = hi(z)r(z) + T(z), (1)
t(z) =T (z) + 1,

where the polynomial hy(z) € Q[z] is the quotient of p(z) divided by r(z) and
ha (), T (x) € Q[x].

For f € F,x computed in Miller loop, the value f(pk’l)/ " is computed in
the final exponentiation of optimal Ate pairings. This power (p¥ — 1)/r can be
decomposed by two parts (p* — 1)/®(p) and ®(p)/r. The exponent ®;(p)/r
can be decomposed as follows:
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Theorem 1. Set Oy (z) = ijo c;xt € Z[x]. Then we claim that:

d—1

D4 (p(x))/r(z) = ha(x) (Z Ai(ﬂf)p(l‘)i> + ha(),

i=0
where:

Ai(@) = T(@)Xig1 (@) + citr.
See Appendix for the proof of Theorem

{)\dl (z) = cq,

4.2 Homogeneous Cyclotomic Polynomial

In this section, we first describe the definition and properties of cyclotomic poly-
nomials, then give a new concept of homogeneous cyclotomic polynomials, and
prove the lemma that can be used in the main theorems.

Let (,, denote a primitive n-th root of unity in C. The n-th cyclotomic poly-
nomial ®,,(x) is

Su)= [[ @—ch

1<i<n
ged(i,n)=1

The cyclotomic polynomials are irreducible in Q, and its degree can be rep-
resented by the Euler’s totient function p(n). Also, it is well known that the
cyclotomic polynomials have integer coefficients. When enumerating the cyclo-
tomic polynomials from the smallest order n, we have

Pi(x)=x—1, y(x)=a+1, P3(x)=a’+x+1, Pyz)=2%+1,...
The basic equation for cyclotomic polynomials is that
™ =1 =[] ®i(x). (2)
ilm

Definition 1. For any positive integer n, we define an n-th homogeneous cy-
clotomic polynomial ¥, (x,p) as:

p?Me, (x/p) ifn>1,
Vo(z,p) = (w/) :

1 ifn=1.
where @ is the Euler’s totient function.

When enumerating the homogeneous cyclotomic polynomials from the small-
est order n, we have

Uy(x,p) =1, Uy(x,p) =2+ p,
Us(z,p) = 2 + px + p°, Uy(x,p) =a” +p°,...

The important properties of homogeneous cyclotomic polynomials is the follow-
ing lemma.
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Lemma 1. Let m > 2. Then the polynomial ™ ' 4pz™ 24 . 4pm 2z 4pm !
can be decomposed by homogeneous cyclotomic polynomials, i.e. we have:

m—1
> pam =[] Wi, p).
7=0

ilm
Proof. Dividing both sides of the equation by ®1(z) =2 — 1, it leads:

Zm1 —|—£Cm72 +...+x2+x+1 = H@Z({E)
ilm
i#1

m—1

Substituting a variable x for z/p and multiplying both sides by p , we have

the equation:

xm—l _i_men—Q 4. +pm—3x2 +pm—2x _|_pm—1 _ pm—l Hq)z(-r/p)
i#£1
Here it holds that Zi‘n (i) =n for any n € Zs( from the basic property of the
Euler’s totient function. Hence we obtain that:

2™ g™ p B2 T 2 = Hp“o(i)‘bi(x/p)
i
ilm

Note that the first homogeneous cyclotomic polynomial ¥q(z,p) = 1 conve-
niently by Definition (1] O

4.3 Specific Embedding Degree

Let E be an elliptic curve defined over IF,, with embedding degree £ parametrized
as families. In other words, each parameter p, r, t of the elliptic curve E can be
expressed by polynomials, which satisfies the equation .

The hard part of the final exponentiation for optimal Ate pairings is
computed as fE@E)N/T(@) for a value f € F,x. This exponentiation part
O (p(z))/r(x) is decomposed by using homogeneous cyclotomic polynomials
with & = 2¢, 37, and 2'3/. Prior works on the hard part focused on how to
search the coefficients \; in ®x(p(z))/r(z) = > \i(z)p(x)?, however this time, it
is essentially the same, we propose to decompose the hard part directly without
searching the coefficients.

Theorem 2. Let E be an elliptic curve with embedding degree k = 2™ for some
positive integer n parametrized as families. The hard part of the final exponenti-
ation for the optimal Ate pairing defined over E can be decomposed as follows:

i (p)

=i | [] wi(Tp) | + ha,
il(k/2)
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where the notation hy, ha, T are the polynomials stated in the equation .
See Appendix for a proof of Theorem

Theorem 3. Let E be an elliptic curve with embedding degree k = 3™ for some
positive integer n parametrized as families. The hard part of the final exponenti-
ation for the optimal Ate pairing defined over E can be decomposed as follows:

@i (p)

=i | [I w(T.p) | (T3 +p"%+1)+ b,
i|(k/3)

where the notation hy, ha, T are the polynomials stated in the equation .
See Appendix for a proof of Theorem

Theorem 4. Let E be an elliptic curve with embedding degree k = 2™3™ for
some positive integers m and n parametrized as families. The hard part of the
final exponentiation for the optimal Ate pairing defined over E can be decomposed
as follows:

=i | [I w(T.p) | (T +p"° 1)+ hs,
i|(k/6)

where the notation hy, ha, T are the polynomials stated in the equation .
See Appendix [B-4] for a proof of Theorem [

5 Application to BLS families

In this section, we apply the decomposition of final exponentiation for optimal
Ate pairings obtained in Section [4] to various BLS families, estimate the number
of operations in the finite field F,» and convert the cost to the number of op-
erations in the prime field F, for the cost of the multiplication and squaring in
Fok.

Let My, Sk, I, F,, E, denote the cost of the multiplication, squaring, inver-
sion, n-th Frobenius operation and the power of z in IF,» respectively. Let I.,.
denote the cost of the inversion in the cyclotomic subgroup Gg,. We use the
estimation My = 3My, M3 = 6M; and My = 9M; (resp. Sy = 351,53 = 65
and Ss = 951), as mentioned in [25/12]

Remark 3. It is assumed that there exists a more efficient extension operation
taking the cost of addition into account. However, to evaluate the complexity
equally, we ignore the cost of addition operation in common and use the above
estimation. Also, the costs E, and F,, depend on the parameters x and p when
converting to the number of operations on the prime field. However, for the same
reason, we evaluate the cost of final exponentiation with the parameters used in
each prior work.
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BLS family with k = 9. The elliptic curve E parametrized as BLS family with
embedding degree 9 has the following polynomial parameter:

r(z) = ®o(x)/3,
ple) = (z = 1)*(@* + 2 + 1)r(2) + =,
tx)=x+1.

The exponent to be computed in final exponentiation for optimal Ate pairings
over E is 0 )
p’—1 Do (p
=@ -1 :
r r

The final exponentiation of the BLS family with k = 9 is studied in [14]. In [I4],
using the LLL algorithm, they decomposed 3 - ®9(p)/r into Y \;p® instead of
decomposing ®g(p)/r, and searched its coefficient ;. The total complexity [14]
of the final exponentiation using the decomposition is

Iy +27Mg 4 30289 + 21oye + F1 + Fo + 2F3 + Fy + F3
=1y + 1052M; + 109085 .

See [14] for the cost of each operation.
Next, we evaluate the complexity of the final exponentiation using the de-
composition which we propose as in section [d Let hq,ha, T be

First, we apply Theorem [I| to this BLS family with & = 9. The exponent
Dg(p(x))/r(x) of the hard part is

5
@y (p(x))/r(z) = (x —1)* (Z Ai(ﬂ«“)p(w)i> +3,

i=0
where
As(z) =1, M () =z, A3(z) =
Ao(z) = zAs(x) + 1, A1(z) = zho(x), Ao(z) =

For the value f € IF,x, the final exponentiation can be computed by the following
values:

Z Xip’

3 _ —1)2
=" g=a",  g=gf , 93=92"95 " 9o
To compute the value go, we can deal with the following:

ho=g1, hi=hg, ha=hi, hs=h5-hy, ha=h3, hs=nhj.
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Using these values, we can compute go = h€5 : h’l’4 : hgs . h§2 - hY - hs. Therefore,
the total cost of the final exponentiation is
Iy + F3 + My) + 2E, 1 + (5Ey + 6Mg + Iy + F> + F3 + Fiy + Fs) + (2My
+S9)
=Ig + 25Mgy + 30259 + Fy + F5 + 2F5 + Fy + F5
=1y + 956 M + 108725,
where we use the parameter x = 243 4 237 + 27 + 1 in [I4].
Second, we apply Theorem [3] to this BLS family with & = 9. The exponent
Dy (p(x))/r(x) of the hard part is
Do(p(x))/r(z) = (x = 1)* U1 (z,p)Us(z,p) - (2° +p° +1) +3
=(@—1)?2 (@ +pr+p*) («®+p° +1)+3.

Therefore, the total cost of the final exponentiation is

(I + F3 + Mo) + (2E,_1) + (2B, + Fy + Fy + 2My) + (3E, + F3 + 2My)
+ (2My + So)

—1Io + 23Mg + 30259 + Fy + Fy + 2F3

— Iy + 856 M, + 108725).

BLS family with k = 12. The elliptic curve E parametrized as BLS family with
embedding degree 12 has the following polynomial parameter:

r(x) = ®12(x),

p() = (@ — 1)(2)/3 + =,

t(x)=a+1.

The exponent to be computed in final exponentiation of optimal Ate pairings

over F is B1o(p)
p-—1 D
— =0 NP+

The final exponentiation of the BLS family with & = 12 is studied in [2II7]. The
final exponentiation decomposition in [I7] is the same as the decomposition in
Theorem [} The total cost of the final exponentiation is

(Ii2 +2Mya + Fo) + (4B, + Eyjo + 8Miyg + S12 + Fy + Fo + F3)

=115 + 20M13 + 535512 + F1 + 2F5 + F3
=I5 + 1135M; + 28890.;.

12

See [2] for the cost of each operation.
Next, we apply Theorem [4] to this BLS family with £ = 12. Let hy, ha, T be
hi(z) = (z —1)%/3
hz(l') =1
T(z) = x.
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The exponent 3 - ®12(p(x))/r(x) of the hard part is

D12(p(x))

r(x

3- = (z—1)2 -y (x,p)Vs(2,p) - (2* +p* — 1)+ 3

=@ =12 4p) (@ 4R 1) 43

We use the parameter x = —2197 4+ 284 4+ 219 iy [I7]. The total cost of the final
exponentiation is

(Iig + Fy +2M12) + (4B, + Ey o 4+ TMip + S12 + F1 + )
=I5+ 19M15 + 535512 + Fy + 2F,
=115 + 1066 M7 + 28890S.

See [17] for the idea that we need not compute f*~1.

BLS family with k = 15. The elliptic curve E parametrized as BLS family with
embedding degree 15 has the following polynomial parameter:

r(x) = ®15(x),
p(z) = (x = 1)*(z* + = + 1)r(z)/3 +
t(r)=x+ 1.

The exponent to be computed in final exponentiation for optimal Ate pairings

over F is s ( )
pP—1 bi5(p
. =@’ -1D)@*+p+1): 13, :

The final exponentiation of the BLS family with k& = 15 is studied in [I4]. The
total cost of the final exponentiation [I4] is

9
L5 + 529815 4+ 63My5 + 410y + Z F,

=1

=I5 + 3632M; + 286745,.

See [I4] for the cost of each operation.
We evaluate the complexity of the final exponentiation using the decompo-
sition as in Theorem |1} Let hy, ho, T be

hi(z) = (x— D2(x? +2+1)/3
hg(l’) =
T(x) =

The exponent 3 - ®15(p(x))/r(x) of the hard part is

3.@1?(&()@)@ D22 +2+1) (ZA ) 3,
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where

A =1, e =xA7 — 1, A5 =x )¢, A =zX5 +1
)\3 = 1’)\4 — 1, )\2 :$>\3 + ].7 )\1 :l'>\2, )\0 :1'/\1 —1.

We use the parameter z = 248 4 241 429 428 4 1 in [14]. The total cost of the
final exponentiation is

(Iis + F5 + Mis) + (2F, +2Mi5) + 2E, 1 + (2B, + 2Mi5) + (TEy + 31y

7
+5Mys+ > Fi)+ (2Mi5 + Sis)
=1
7
=I5 + 54My5 + 529515 + 3Ly + 2F1 + F5s + »_ F,
=1

=I5 + 3133M; + 2864795,.

BLS family with k = 24. The elliptic curve E parametrized as BLS family with
embedding degree 24 has the following polynomial parameter:

r(x) = Poy(x),
pla) = (z = 1)*r(2)/3 + z,
t(x) =z +1.
The exponent to be computed in final exponentiation for optimal Ate pairings

over F is
P24(p)

24_1
= @ -t + 1) 220

r

The final exponentiation of the BLS family with k& = 24 is studied in [2II7]. The
total cost of the final exponentiation [I7] is

7
(I24 + 2May + Fy) + (8B, + Eyjg + 10May + Sog + ZFz
i=1
7
=Ips+ 30May + 432504 + Fy + Y _ F;
i=1

=14 + 5220M; + 699845;.

See [I7] for the cost of each operation.
We apply Theorem [4] to this BLS family with k = 24. Let hq, ho,T be

hi(z) = (z —1)%/3

1
T(z) = x.
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The exponent 3 - ®o4(p(x))/r(x) of the hard part is

P2u(p(x))

o) - (x —1)% - Wy (z,p)Ua(z,p)Vy(z,p) - (2* +p* —1) +3

3

= (@ -1 (z+p)(a®+p%) - (a" +p' 1) +3.
We use the parameter x = 218 — 239 4 226 iy [[7]. The total cost of the final
exponentiation is
(Iog + Fy + 2May) + (8E; + Eyjg + 8May + Soy + Iy + o + Fy)
=Jos + 28Moy + 432594 + F1 + F5 + 2Fy
=Io4 + 471601 + 699845; .

BLS family with k = 27. The elliptic curve E parametrized as BLS family with
embedding degree 27 has the following polynomial parameter:

r(x) = ®o7(x)/3,
p(z) = (x = 1)%r(z) +

t(x)=x+ 1.
The exponent to be computed in final exponentiation for optimal Ate pairings
over F is o7 )
pr—1 Por(p
=’ -1)- :
r T

The final exponentiation of the BLS family with k = 27 is studied in [40]. The
total cost of the final exponentiation [40] is

8
(Io7 + Fo + Ma7) + 2B, 1 + (8E, + 8Mar + 3 Fi) + (9Eq + Fo + 2Mar)

i=1

+ (2]\/[27 + 527)

8
=Io7 + 91 Mo7 + 533527 + 2Fy + Z F,
=1

=Io7 + 19884 M7 + 1151285;.

See [40] for the cost of each operation.
We apply Theorem [3] to this BLS family with k& = 27. Let hy, ho, T be

h(x) = (x — 1)?

hg(l‘) =3
T(x) =x.
The exponent ®o7(p(x))/r(x) of the hard part is
Q)Q’;(g;()x)) = (I - 1)2 : \Ill(lli,p)\llg(x7p)\119(l’,p) ! (19 +p9 + 1) +3

= (¢ = 1)*- (& + pz +p?)(2° + p’2® +p°) - («” +p” +1) + 3.
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We use the parameter z = 228 + 227 + 225 4 28 — 23 in [40]. Then the total cost
of the final exponentiation is

(Io7 + Fo + Ma7) +2E, 1 + (8E, + 4Ma7 + Fy + Fo + F5 + Fg) + (9E, + Fy
+ 2Ma7) + (2Mar + Sa7)

=Iy7 + 87TMy7 + 533897 + Fy + Fy + F5 + Fs + 2F

=Io7 + 18916 M, + 1151285, .

BLS family with k = 48. The elliptic curve E parametrized as BLS family with
embedding degree 48 has the following polynomial parameter:

r(x) = Pyg(x),
p(z) = (z —1)*r(x)/3 + z,
t(x)=x+1.

The exponent to be computed in final exponentiation for optimal Ate pairings
over I is
* -1 (p)

d
L = -+t + 1) 2

The final exponentiation of the BLS family with & = 48 is studied in [2412§].
The total cost of the final exponentiation [28] is
15
Lis + 22Mys + 1TE; + S + Fs + ) F;

i=1
15
=Iis + 73Mys + 545Sus + Fs + Y _ F;
i=1

=148 + 362220, + 2648705,

See [28] for the cost of each operation.
We apply Theorem [4 to this BLS family with &k = 48. Let hy, ho, T be

hi(z) = (z —1)%/3

hQ(IL’) =1
T(x) =x.
The exponent 3 - ®45(p(x))/r(x) of the hard part is

_ Pas(p(2))

r(x) (x —1)% - Uy (2, p) Vs (z, p) Uy, p)Us(z,p) - (25 +p® —1) + 3

3

= (- 1% (@ +p)(a®+p°) " +pY) - (@ +p° = 1) +3.
We use the parameter z = 232 — 218 — 210 _ 24 ip [28]. Then the total cost of the
final exponentiation is
(Isg +3Myg + Fg) + (16 E, + Ey o + 9Myg + Sag + F1 + o + Fy + Fy)
=148 + 63Myg + 544S4s + F1 + Fo + Fy + 2Fy
=145 + 30849M; + 2643845;.
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6 Conclusion

In this paper, we presented a new decomposition of hard part in final expo-
nentiation for optimal Ate pairings over families of elliptic curves. The first
decomposition method is that we derive the coefficients of base-p expansion of
hard part from cyclotomic polynomials for families of elliptic curves with arbi-
trary embedding degrees. The second decomposition method is that we directly
factorize hard part using a new tool, homogeneous cyclotomic polynomials, for
families of elliptic curves with specific embedding degrees k = 2%, 3/ and 2°37.
Both methods are effective for families of elliptic curves with trace = + 1, for
example BLS families, and our results give faster final exponentiation than the
previous state-of-the-art construction on BLS families.
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A BLS Elliptic Curve

In this section, we briefly describe the Barreto-Lynn—Scott (BLS) families pro-
posed by Barreto et al. [§], and their elliptic curve search method with general
embedding degree and general CM discriminant [g].

Family in Particular Case. The BLS families []] are defined as the four polyno-
mial parameterized quintuples with fixed CM discriminant D = 3 and specific
embedding degrees, as described in Fig.

Arbitrary Case. Barreto et al. [8] considered how to obtain elliptic curves with
arbitrary CM discriminant and arbitrary embedding degree suitable for pairing-
based cryptography. Given CM discriminant D and embedding degree k, their
search procedure seeks an integer z and an appropriate quintuple (k, D, p,r,t)
satisfying ¢t = z + 1, r = ®y(2), p = mr + z, where m is an integer. See [8] for
details.

B Proofs of Theorems

B.1 Proof of Theorem [II

Set @y (z) = Z?:o c;x'. For the polynomials r(x), p(x) as in , we consider
a decomposition of ®y(p(x))/r(x). As Zhang and Lin state in [40], we extract
the factor r(x) from the polynomial ®(p(x)) using a recurrent formula p™ =


https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
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(a) BLS family with k = 3, where i > 0
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(b) BLS family with k = 273, where j > 0

tx)=x+1,
r(z) = i (),

_ (@=1(x)
pla) = LT

(c) BLS family with k& = 3%¢®, where
i,s > 0 are integers, and ¢ > 3 is a prime
number

t(x) =x+1,

(o) = (@),

y(x) _ 2x3i—1qs—1 + 1’
m(e) =3 (257) (@) +3),

p(z) = m(z)r(z) + .

(d) BLS family with k = 3%27¢®, where
i,7,8 > 0 are integers, and ¢ > 3 is a
prime number

t(zx) =xz+1,

r(z) = i(a),

y(x) =272
m() =3 (25) w@? +3),

p(z) = m(z)r(z) + .

Fig. 1: BLS families with D = 3

hyrp™~! + Tp™~!. Reducing the degree of p using the above recurrent formula,

we obtain that:

pm — th‘pm_l 4 Tpm—l

= harp™ '+ T(harp™ 2 + Tp™ %)
— hl’l“pm_l 4 hl,erm—2 —|—T2(h17“pm_3 +Tpm—3)

3)

= hyrp™ L 4 hyrTp™ 2 4 hyrT?p™ 3 4 T Y (hyrp® 4+ TpO)
— hl’l“(TOpm_l + Tlpm—Q L Tm—1p0) L

=hir-gma +1™,

where

3
L

Im—1 (x)

T(w)'plz)™ "
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Second, we apply the equation (3] to each p(z)? (0 < i < d) of ®x(p(x)). Then:

d d
O((p(x) = _cip(x)' =D ci(hu(@)r(z) - gioa(z) + T(x)') + co
i=0 i=1
d d ‘
= hy(z2)r(z) Zczgl,l(x) + (Z cZT(xY) + co
i=1 =1
d
(T ()

Hence, we obtain:

d
P4 (p(x))/r(2) = ha(2) <Z cigil(w)> + ha(2).

Therefore, it is enough to prove that

d -1
Y cgioa(@) =Y Ni@)p(x)'.
i=1 i=0

Substituting the equation into g;—1(x) on the left side:

d d i—1
Zczngl(l‘) = Z (Ci ZT(x)z_l_]p(x)j>
i=1 i=1 j=0

Exchanging the sums, we obtain that:

i=0 \ \i=j+1

d d-1 d
Zcigifl(x) = Z (( Z CiT(x)i_l_j> p(w)j) :
i=1 j
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We represent the coefficient Z?:jﬂ e;T(x) =177 of p(z)? by Aj(x). Using ¢ =

d—j—1:

Aj (CC) = (Cd, Cd—1y---» Cd_g)

= (CdsCd—1,- -+, Ca—(t=1)) : + c4—¢T(x)°

= (CdsCd—1,- -+ Ca—(t-1)) . “T(x) + ca—e

= T(x)Aj11() + ¢jy1.
From the equation , we get Ag—1(x) = ¢4. This completes the proof. O

B.2 Proof of Theorem [2|

The k-th cyclotomic polynomial is of the form ®(z) = z*/2 + 1 for k = 2".
Since we have p™ = hyrp™ 1 4+ Tp™ from the equation , we can sequentially
reduce the polynomial ®(p) as:

Op(p) =p"* +1
= hl’I“(Tk/Q_l —‘,—ka/Q_Q 4+ +pk/2—2T+pk/2—1) 4 Tk/2 +1
:hlr(Tk/zil +ka/272+"'+pk/272T+pk/271)+h27".

Applying Lemma [I] to this polynomial completes the proof. O

B.3 Proof of Theorem [3]
The k-th cyclotomic polynomial is of the form ®(z) = x>*/3 4+ 2*/3 £ 1 for
k = 3". Since we have p™ = hyrp™~! + Tp™ from the equation , we can
sequentially reduce the polynomial ®(p) as:
Dy (p) = p*F/3 4 kP 41
— har{p?R/3=L f TpPR/3=2 L R/
+ (T*3 4 1)pk/3=1 o TRBY (TR 1)y - T2RB TR
— har{pF3 (M3 TR/ 4 TR/
+ (T3 + )3+ Tp*/ 372 4 4 TRB7H) o+ hor
— hl,r(pk/371 +Tpk/372 4. +Tk/371)(Tk/3 +pk/3 4 1) 4 hQT.
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Applying Lemma [1| to this polynomial completes the proof. O

B.4 Proof of Theorem [

The k-th cyclotomic polynomial is of the form ®(z) = x>*/¢ — 2*/6 1 1 for
k = 2™3". Since we have p™ = hyrp™ ! + Tp™ from the equation , we can
sequentially reduce the polynomial ®(p) as:
Oy (p) = p* 0+ p0 +1
_ hlr{pz'k/Gfl 4 Tp¥R/6=2 L k/6=1pk/6
+ (Tk/G _ l)pk/ﬁ—l 4+ +Tk/6_1(Tk/6 _ 1)} + T2~k/6 + Tk/ﬁ + 1
_ hlr{pk/G(pk/671 + Tpk/672 N Tk/Gfl)
+ (Tk/G _ 1)(pk/6—1 _|_Tpk/6—2 N Tk/ﬁ—l)} + hg?“
_ hl/r(pk/ﬁfl + Tpk/672 R Tk:/671)(Tk/6 +pk/6 _ 1) + hQT.

Applying Lemma [I] to this polynomial completes the proof. O
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