
EM-Side-Channel Resistant Symmetric-Key Authentication

Mechanism for Small Devices

Rick Boivie, Charanjit S. Jutla, Daniel Friedman and Ghavam Shahidi
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA

csjutla@us.ibm.com

Abstract

We provide a novel electro-magnetic (EM) side-channel resistant symmetric-key authen-
tication mechanism for small devices that uses a Benes network to permute the on-board
authentication-key before computing a MAC of a challenge with the key. The permutation
itself is derived from the challenge using a hash function acting as a random oracle. The solu-
tion has interesting applications such as forgery detection of currency bills.

1 Introduction

With widespread deployment of small devices such as in the “Internet of things” paradigm, it is
increasingly important to devise new authentication mechanisms for such devices which have a
small silicon footprint as well as other complexity measures. Such devices are also required to
hold a secret key to authenticate themselves to a legitimate server. Unfortunately, side channel
leakage [3] during the computation of authentication tag from this secret usually leaks too much
information to easily reveal the secret.

There are two well known solutions to this problem. One is to use a public key mechanism,
where the server holds a signing key, and each authentication request to the small device is signed
by the server, and the signature verified by the small device. Only if the signature verifies does the
small device actually process its secret. Unfortunately, this requires the small device to implement
a public key operation (such as an RSA signature verification). The other solution is to implement
the computation of authentication tag from the secret in a side-channel resistant manner [3, 2].
However, such an implementation can be rather costly, cumbersome and still not very resistant to
side-channel leakage.

In this paper, we propose a new side-channel resistant implementation, specifically tailored
for symmetric-key authentication mechanisms. To motivate the solution, as well as to make the
presentation less abstract, we specifically discuss a particular real-world problem. The real-world
problem is that of embedding a small device in each bank note (bill), such that when the bills come
into a legitimate bank or inspection center, the bills can be scanned for counterfeit bills.

We will refer to the chip embedded in the bill as the chip. Wand will refer to a device held at
each local bank which supplies power to the chip and also has the capability to do computations
and interact with both the chip and a central authority (henceforth called the Fed).

The new scheme is based on the simple idea of using a Benes network to permute the secret key,
where the permutation itself is defined by hashing the challenge. Thereafter, the authentication tag

1

is computed using the challenge and the permuted secret key. The scheme requires only a SHA-2
implementation and a Benes network implementation on the chip.

We now briefly discuss the solution based on public key operations and its down-side. This
scheme requires a public-key based signature scheme (with the signing key held by the Fed –
and not the wand). The corresponding public key is embedded in each chip. The chip must do
signature verifications. Also, a challenge-response protocol requires that the chip have a (pure)
random number generator. The down side of this implementation is three-fold:

1. The same signing key will have to be used for the lifetime of the bills (20 years?). This signing
key will be used rather extensively every day for 20 years. For a partial transition after 10
years, both signing keys will be have to be around to deal with two kinds of bills (the older
and the newer).

2. Before a batch of bills can be verified, the Wand must interact with the batch of chips (bills),
obtain a nonce for each, communicate with the Fed to get one signature (for the whole batch
of bills), and then communicate with each chip again and retrieve authentication information
which is then shipped back to the Fed (for verification).

3. The chip requires an RNG.

1.1 Symmetric-Key Authentication Mechanism

The main idea of the symmetric-key authentication mechanism is to use an on-chip secret k to
authenticate the chip (or bill). This secret is different for each chip and is randomly chosen or
set during either manufacturing time or by the Fed after the chip has been manufactured. The
secret value once set should not be malleable (other than small errors introduced due to use and
mis-handling over multiple years). Regardless, the secret k for each bill is also kept at the Fed
(and this is how the Fed authenticates a bill to be authentic). Modern silicon processes work at
such a low micron level that it is impossible to read off the secret from the chip unless using highly
expensive procedures and instrumentation. If an extremely expensive procedure (per chip) does
allow an Adversary to get to the secret, then that should be fine, as then the Adversary can possibly
produce multiple bills with same serial number and secret (but not too many, as that would easily
be detected as an anomaly).

Each chip also has a serial number s (maximum 128-bit). We will refer to the secret k on a chip
with serial no. s as ks. These values are stored as pairs on a Fed database.

In each authentication procedure, the wand will choose a random 128-bit number c (it is fine if
the same no. is used for all chips/bills in a batch), and send c to the chips. The chip then naively
computes

v ← SHA-2(c);u← SHA-2(〈v, s, ks〉); Output← SHA-2(u, v)

and sends the Output (along with s) to the wand, which then forwards it to the Fed (along with c
and serial numbers s) for verification. The output will be referred to as the MAC. However, this
naive solution is easily attacked using side-channel information.

The main new idea is to compute a permutation π (of 128-bits) from c. Then, instead of
computing output as above, the chip computes

v ← SHA-2(c);u← SHA-2(〈v, s, π(ks)〉); Output← SHA-2(u, v).

2

More precisely, the steps are as follows:

v1 ← SHA-2(c);

Use 128 ∗ log 128 bits from v1 to define a 128-bit permutation π.

v2 ← SHA-2(v1);

ps = Benes-Network(π, ks);

u← SHA-2(〈v2, s, ps〉);
Output← SHA-2(u, v2).

Each bit in ks (i.e. 128 bits) will be stored in a 2-bit encoding; a bit with value 0 will be stored
as 01 and a bit with value 1 will be stored as 10. The Benes-network will thus operate on 128 2-bit
words. Thus, in the above, the value ps will be a 256-bit quantity (or all odd-numbered bits can
be dropped to get back a 128-bit quantity). All steps in each level of the Benes-network should
preferably be done simultaneously. If this is not possible, as many steps as possible should be done
in parallel.

Note that the Fed can compute the exact same (MAC) Output given c and the serial number
s (as long as corresponding ks in its database is same as the ks on the chip).

1.1.1 Benes Network

A permutation of the secret k (considering two consecutive bits as a nibble) is performed as follows.
In other words, k[0..1] , k[2..3],....etc are considered as 128 nibbles and permuted using π. The
actual permutation is implemented as 13 rounds of a Benes network (each round taking 64 bits
from description of π). Each round of a Benes network is a parallel set of 64 2-by-2 switches (the
switch being decided by the 64 bits of π for this round). A following recursive definition of a Benes
network is sufficient. A Benes network on 2r bits consists of three divisions: two outer layers of 2r−1

2 by 2 switches (call them left and right layers), and an inner division consisting of two independent
Benes networks on 2r−1 bits. The output of the left layer is fed into the two smaller Benes networks
as follows: All odd number output bits are sent to the first smaller Benes network, and all even
numbered output bits are sent to the second smaller Benes Network. The outputs from the smaller
Benes network are then symmetrically fed into the right layer. Note that this leads to a total of
(2r − 1) layers of 2r−1 parallel 2 by 2 switches.

For simplicity, Fig 1 describes a 8-bit Benes Network (i.e. r = 3).

1.2 Handling errors in secret bits kept on the Chip

We also describe a scheme which is robust against errors in the secrets stored on the chip. This does
not require any error-correcting codes (over and above what is already standard in chip design).
The initial description of the scheme in the following sections will not mention this error-handling
capabilities.

2 Security Analysis

2.0.1 EM-Attack

An adversary can supply the chip a challenge c and observe the EM radiation emanating from the
chip. Specifically, the first time the secret ks is involved at all is in computation of ps in the Benes-

3

Figure 1: 8-Bit Benes Network

al ar bl br

s

br
outbl

out

2 X 2 Switch

s

Figure 2: Two by Two Switch

4

network. Note, the permutation π is known to the adversary. Thus, if the EM radiation profile
on switching a 0 value (i.e. 01 encoding) is different from switching a 1 value (i.e. 10 encoding),
say in bit location one of ks, the the adversary is in business. Clearly, this radiation profile is
muddled by all the other simultaneous switchings happening (and by many other environmental
factors emanating from inside and outside the chip). A simple implementation of a two-by-two
switch used in the Benes network is shown in Fig 2. Each bit is encoded as two bits. Note that
for each gate outputting a one, there is another gate outputting a zero. Moreover the two gates
are always in close proximity, and hence directional radiation capture is extremely expensive if not
infeasible. Thus, the adversary is left with capturing amplitude modulated signal [1]. But, the
above design ensures that amplitude modulated signal, which is an aggregate modulation of the
clock signal (for instance), does not leak any information about the secret key – either by simple
of differential EM attacks.

The next place that the secret key is used is in the hash function SHA-2. However, the secret
key is already permuted here. Let’s assume that the SHA-2 implementation uses a rather poor
8-bit architecture. Then, the first non-linear step involving the secret key (i.e. the permuted secret
key ps) is the following step in the SHA-2 compression function’s main loop (which is really a block
cipher with the round keys coming from the the expanded input w which in this case is ps): We
assume the reader is familiar with SHA-2 description.

for i from 0 to 63

S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)

ch := (e and f) xor ((not e) and g)

temp1 := h + S1 + ch + k[i] + w[i]

S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)

maj := (a and b) xor (a and c) xor (b and c)

temp2 := S0 + maj

h := g

g := f

f := e

e := d + temp1

d := c

c := b

b := a

a := temp1 + temp2

Note that it is the step of computing “temp1” that can cause differential leakage which can
reveal, say the bottom bit of w[0]. However, this requires that the same 8 bits of ks show up at w[0]
after permutation. The probability of this happening over random challenge values is 120!/128!
which is about 2−50. Note that the challenge values need not be random for this analysis to hold,
as SHA-2 itself acts as a randomizer, and the permutation is computed from the challenge and salt
in each chip using SHA-2 1. Thus, it would require about n ∗ 250 work to get n useful side-channel
samples.

1for simplicity, the above description of the EM-resistant authentication mechanism did not use a salt. However,
each chip should have a 64 bit salt value, i.e. a random but non-secret value, which is hashed together with the
challenge to produce the permutation bits. This salt value is also transmitted to the Fed server, or the Fed could
have it pre-stored along with the secret for this chip id.

5

More comprehensive analysis will be given in the full version of the paper.

3 Error Handling

There are many places that errors can happen. There can be errors in communication (between
the chip and the wand), but these can be handled by hashing the whole message (using SHA-2)
and requesting the message to be sent again if the hash of the message does not match (either
direction).

More challenging is handing errors in the stored value of ks. Any attempt to error-correct
ks while reading it may give a strong EM signal to an Adversary2. This is not a concern in the
public-key based solution, as no processing of ks is done till the wand is authenticated. However, in
the non-public-key solution this is definitely a serious issue. However, after the bits are permuted,
then error-correcting codes decoding can be used and will work if the syndrome calculator is also
given access to the permutation π and it incorporates π in the syndrome calculation.

Another way to handle errors is to have a 256-bit key ks instead of the 128-bit key required
above. Next, as usual in the 2-bit encoding it will be represented by 512 bits. Use the Benes
network to permute the 256 bits of ks now. However, instead of doing the rest of the SHA-2 MAC
computation on this permuted ks (i.e. ps), compute the MAC only on the first 128 bits of ps
(i.e. ignore the last 128 bits). Now, note that if there was a single bit error in ks, then after the
permutation, with probability 1/2 that erroneous bit will just get dropped.

The Fed will do the identical MAC computation (i.e. by dropping the last 128 bits of the
permuted secret).

If the erroneous bit(s) was in the front 128-bits, clearly the MACs will not match, but the whole
protocol can be repeated, and a new c will lead to a completely new permutation.

This methodology can also be used in the public-key signature based scheme, but now that
scheme must also implement a permutation. Alternatively, it can compute a 256 bit mask from c
or v (using SHA-2) and with high probability it will have about 128-bits ON. Then the masked can
be AND-ed with the 256-bit key ks , and hash computed on this masked 256-bit quantity. Again,
with probability 1/2 an erroneous bit will just get masked-off and hence MAC computation will
come out matching the one performed by the Fed.

References

[1] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The EM side-
channel(s). In Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, pages 29–45, 2002.
2.0.1

[2] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound ap-
proaches to counteract power-analysis attacks. In Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, pages 398–412, 1999. 1

2However, it is worth investigating if decoding procedures of Reed-Solomon codes and BCH codes do not give a
differential EM signal, especially with the 2 bit encoding and the fact that syndrome calculation is a linear operation
over GF2.

6

[3] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of
Lecture Notes in Computer Science, pages 388–397. Springer, 1999. 1

7

	Introduction
	Symmetric-Key Authentication Mechanism
	Benes Network

	Handling errors in secret bits kept on the Chip

	Security Analysis
	EM-Attack

	Error Handling

