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Abstract

We introduce the notion of a Succinct Parallelizable Argument of Knowledge (SPARK).
This is an argument of knowledge with the following three efficiency properties for computing
and proving a (non-deterministic, polynomial time) parallel RAM computation that can be
computed in parallel time T with at most p processors:

— The prover’s (parallel) running time is T + polylog(T · p). (In other words, the prover’s
running time is essentially T for large computation times!)

— The prover uses at most p · polylog(T · p) processors.

— The communication and verifier complexity are both polylog(T · p).
The combination of all three is desirable as it gives a way to leverage a moderate increase in
parallelism in favor of near-optimal running time. We emphasize that even a factor two overhead
in the prover’s parallel running time is not allowed.

Our main contribution is a generic construction of SPARKs from any succinct argument of
knowledge where the prover’s parallel running time is T ·polylog(T ·p) when using p processors,
assuming collision-resistant hash functions. When suitably instantiating our construction, we
achieve a four-round SPARK for any parallel RAM computation assuming only collision resis-
tance. Additionally assuming the existence of a succinct non-interactive argument of knowledge
(SNARK), we construct a non-interactive SPARK that also preserves the space complexity of
the underlying computation up to polylog(T · p) factors.

We also show the following applications of non-interactive SPARKs. First, they immediately
imply delegation protocols with near optimal prover (parallel) running time. This, in turn, gives
a way to construct verifiable delay functions (VDFs) from any sequential function. When the
sequential function is also memory-hard, this yields the first construction of a memory-hard
VDF.
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1 Introduction

Interactive proof systems, introduced by Goldwasser, Micali, and Rackoff [GMR89], are one of the
most fundamental concepts in theoretical computer science. Such systems consist of a prover who
is able to convince a verifier of the validity of some statement if and only if it is true. The “if”
direction is called completeness and the “only if” direction is called soundness. Proof systems
where soundness is only guaranteed to hold for efficient (i.e., polynomial-time) provers are called
argument systems.

We focus on succinct argument systems for NP: argument systems where the total communica-
tion is essentially independent of the size of the verification circuit of the language and even shorter
than the statement. Since their introduction [Kil92, Mic00, BCC+17], succinct argument systems
have drawn significant attention due to their appealing efficiency properties. Nowadays they are
widely implemented and used in various systems, most notably in numerous blockchain platforms.

One aspect of such argument systems that has been the center of many recent works (e.g., [BC12,
CFH+15, WZC+18, HR18] to name a few) is prover efficiency. Consider the application of succinct
arguments to delegating (possibly non-deterministic) computation, where a prover performs some
expensive computation and then uses a succinct argument to convince an efficient verifier of the
validity of the output. If computing a proof takes much longer than the computation (even, say,
a multiplicative factor of two), this would cause a significant delay making the system useless in
various realistic settings. This motivates the following question:

Is it possible to compute a proof in parallel
to the computation while incurring no additional delay?

SPARKs. In this work, we answer the above question affirmatively for any non-deterministic
parallel RAM computation. We introduce succinct parallelizable arguments of knowledge (SPARKs)
where the prover’s running time is “essentially” optimal. More precisely, an interactive argument
(P,V) is a SPARK if instances solvable in (non-deterministic) parallel time T using p processors can
be proven with the following efficiency requirements (ignoring dependence on the security parameter
or statement size):

• The prover’s parallel time is T + polylog(T · p).1 (In other words, the prover’s running time
is essentially T for large computations!)

• The prover uses at most p ·polylog(T · p) processors. In other words, the prover preserves the
total work and parallelism of the underlying computation up to polylogarithmic factors.

• The communication and verifier complexity are polylog(T · p).

We note that the third property is standard for succinct arguments. The first two properties
stipulate that the running time of a prover, with only a moderate number of parallel processors
over those used by the computation, is optimal—even a factor two overhead in terms of a prover
running time is not allowed. Without the first property, there are existing succinct arguments with
time T · p ·polylog(T · p) using only a single processor (e.g., [BS08, BCGT13]). Without the second
property, there are existing constructions with parallel time T + polylog(T · p) but require roughly
T ·p processors (e.g., [BCGT13]). No prior construction achieves all three properties simultaneously.

1Only the additive polylog(T · p) term is allowed to additionally depend on the security parameter or statement
size.
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1.1 Our Results

Our main results consider succinct arguments for arbitrary non-deterministic polynomial-time
PRAM computation. Specifically, we consider machines M that run in parallel time T when
using p processors.

For our main technique, we give a generic transformation which starts with any succinct ar-
gument of knowledge, and shows how to transform multiplicative prover overhead to only additive
overhead. Specifically, given a succinct argument of knowledge where the prover has α? multiplica-
tive overhead (over the depth of the underlying computation) when using p processors, we show
how to obtain an argument with poly(α?) additive overhead when using roughly p · α? processors.
More precisely, we prove the following theorem.

Theorem 1.1 (Informal; see Theorems 6.1 and 6.18). Assuming collision-resistant hash functions,
any succinct argument of knowledge for NP where the prover runs in parallel time T · α? when
using p processors can be generically transformed into a succinct argument where the prover runs
in parallel time T + (α?)2 · polylog(T · p) when using p ·α? · polylog(T · p) processors. Additionally,
if the original argument is non-interactive, then so is the resulting one.

We refer to arguments with multiplicative prover overhead α? ∈ polylog(T · p) when using p
processors as depth-preserving as they preserve the parallelism and depth of the underlying compu-
tation up to polylog(T · p) multiplicative factors. It immediately follows that any depth-preserving
succinct argument of knowledge implies a SPARK, assuming collision resistance.

Theorem 1.2 (Informal; see Theorems 7.2 and 7.6). Assuming collision-resistant hash functions,
any depth-preserving succinct argument of knowledge for NP can be generically transformed into
a SPARK. Additionally, if the underlying argument is non-interactive, then so is the resulting
SPARK.

By instantiating the underlying succinct arguments in the above theorem, we get the following
main results. First, by using Kilian’s succinct argument [Kil92] with a depth-preserving PCP
(which can be obtained from the PCP of Ben-Sasson et al. [BCGT13]), we construct four-round
SPARKs based on the existence of collision-resistant hash functions alone.

Theorem 1.3 (Informal; see Theorem 7.4). Assuming collision-resistant hash functions, there
exists a four-round SPARK for non-deterministic polynomial-time PRAM computation.

Additionally assuming the existence of any SNARK (not necessarily depth-preserving), we can
construct depth-preserving SNARKs based on the construction of Bitansky et al. [BCCT13]. Their
SNARK construction also has the property that it is space-preserving, meaning that the space
used to construct the proof is at most a polylog(T · p) multiplicative overhead over the space of the
computation. The resulting SPARK is therefore also space-preserving, which yields the following
theorem.

Theorem 1.4 (Informal; see Theorem 7.8). Assuming collision-resistant hash functions and any
SNARK, there exists a space-preserving, non-interactive SPARK for non-deterministic polynomial-
time PRAM computation.

Model of Computation. We define and build SPARKs for PRAM computations, where our
SPARK prover is also a PRAM machine. While the PRAM model of computation is very expressive
in theory, there is clearly not an exact one-to-one correspondence with real computers. For example,
we do not take into account the performance of caches or other optimizations in modern processors
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that can easily result in additional overhead. As such, we view the results in this paper as showing a
theoretical feasibility for practical implementations of SPARKs. We next briefly discuss and justify
both the model of computation and the notion of time used in this work. For further details, see
Section 3.1.

Recall that a RAM machine is a Turing machine with random access to its memory string.
Between accesses, the machine applies some transition function to determine its next memory
access. Each access is either a read or write, and we additionally assume that every time a process
writes a value to a location in memory, it receives the previous value at that location. We define
the running time of a RAM machine as the number of memory accesses it makes. For parallel RAM
machines, we define the parallel running time as the number of “rounds” of memory accesses made
by all processors, so if two processors access memory during the same logical round, we only count
it as a single unit of parallel time. In other words, a SPARK proves a PRAM computation that
makes T rounds of parallel memory accesses with T + polylog(T · p) rounds of parallel accesses.

Similar models have been used in other contexts for delegating RAM computation (see e.g.,
[KP16, HR18]), but they were less sensitive to the model since they did not care about small mul-
tiplicative overheads. However, we believe that the above timing model we propose is reflective
of real programs. For memory-intensive programs, our model captures the fact that memory ac-
cesses are practically the most time-consuming operations. For compute-intensive tasks, where the
memory accesses are more sparse, it is only better that the overhead of a SPARK scales with the
number of memory accesses and not the computation time itself.

1.2 Applications

Below, we present applications of SPARKs, which rely on the fact that in a SPARK, the prover
both computes and prove the validity of a computation in parallel time which is essentially as
efficient as possible. While our focus here is on establishing theoretical feasibility results, we expect
that our ideas may also be useful in practical constructions, which we leave for future work.

Time-tight delegation of PRAM computation. In the problem of verifiable delegation of
computation [GKR15, RRR16, KP16], there is a client who wishes to outsource an expensive
(possibly non-deterministic) computation M on an input x to a powerful yet untrusted server.
The server should not only produce the output y but also a proof that the computation was done
correctly.

A non-interactive SPARK for a class of PRAM computations directly gives a delegation protocol
for the same class. This is because SPARKs satisfy a “delayed-output” property—the output y of
the computation need not be known to the SPARK prover or verifier in advance, as it is computed
in parallel to the proof. Therefore, using a non-interactive SPARK, a server can perform a PRAM
computation as well as compute a proof with essentially no overhead in running time. Specifically,
for T -time computations with p processors, the server runs in time T + polylog(T · p) and uses at
most p · polylog(T · p) processors. We call delegation schemes with this property time-tight.

We emphasize that our non-interactive SPARK construction yields a time-tight delegation pro-
tocol for non-deterministic computations that use any amount of parallelism. For example, consider
the case where a client wants to outsource a PRAM computation over a large database (stored at
the server) but only knows a hash of the database. The server can perform the computation
while proving both that the output is correct and the database is consistent with the client’s hash.
Furthermore, if both the server and the client have agreed upon the hash at the beginning of
the protocol, the running time depends only on the time of the PRAM computation (otherwise,
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the server will need to prove that the initial database hashes to the correct value, which requires
computing a hash over the whole database and will be expensive if the database is large).

VDFs from sequential functions. Verifiable delay functions (VDFs) are functions that require
some “long” time T to compute (where T is a parameter given to the function), yet the answer
to the computation can be efficiently verified given a proof that can be jointly generated with the
output (with only small overhead) [BBBF18, BBF18, Pie19, Wes19]. The original work of Boneh
et al. [BBBF18] suggests a theoretical construction of VDFs based on succinct non-interactive
arguments (SNARGs) and any iteratively sequential function (ISF).2 Other known constructions of
VDFs [Pie19, Wes19] rely on the repeated squaring assumption—a concrete ISF.

Let us recall what ISFs are. A sequential function (SF) is a function that takes a long time to
compute, even if one has many parallel processors. An ISF is the iteration of some round function
and the assumption is that iterating the round function is the fastest way to evaluate the ISF, even
if one has many parallel processors. Clearly, any VDF implies an SF and so any construction of
VDFs will necessarily rely on such (but this is not the case for an ISF3). It is thus a very natural
question whether we can get a VDF based on only SFs and SNARGs. Note that the construction
of Boneh et al. [BBBF18] inherently relies on the iterated structure of the underlying sequential
function.4

We observe that any non-interactive SPARK for computing and proving an SF implies a VDF:
simply compute the non-interactive SPARK for the SF. Therefore by our main result, any SF,
SNARK, and collision-resistant hash function imply a VDF.

Theorem 1.5 (Informal; see Theorem 9.4 and Corollary 9.8). Assuming the existence of a collision-
resistant hash function, a SNARK, and a sequential function, there exists a VDF.

In fact, one way to view our main construction is by improving existing techniques for con-
structing verifiable computation for iterated functions from SNARGs to arbitrary functions using
SNARKs (and collision-resistant hash functions). An interesting open question is how to construct
verifiable computation for arbitrary functions from only SNARGs, rather than SNARKs.

Memory-hard VDFs. A particularly appealing extension of the application above is to the ex-
istence of memory-hard VDFs. Recall that VDFs only guarantee that a long computation has been
performed (and anyone can verify this publicly). It is very natural to require that not only a time-
consuming computation was performed but also that the computation required many resources, for
example, a large portion of the memory across time.

Clearly any VDF that is based on an ISF is not memory hard. The reason is that even if the
basic round function is memory-hard, upon every iteration the memory consumption goes to zero!
Since the VDF construction discussed above does not necessarily have to be instantiated with an
ISF but rather any SF (and a SPARK for computing it), we can use a memory hard sequential
function (e.g., [DGN03, DNW05, AS15, ACK+16, ABP17, ABP18, DLP18]) and get a VDF where
the computation not only takes a long time, but also requires large memory throughout.

2Actually, their original construction relied on incremental verifiable computation [Val08], which exists based on
SNARKs [BCC+17], and any ISF. In an updated version they show that actually SNARGs, along with ISFs, are
sufficient.

3However, a continuous VDF [EFKP20] does imply an ISF.
4In the construction based on SNARGs and ISFs, they need to be able to “break” the computation of the function

in various mid-points of the computation and the internal “state” in those locations has to be small for efficiency of
the construction. In the construction based on SNARKs and ISFs, they rely on a tight construction of incremental
verifiable computation but the number of parallel processors required for the latter is as large as the cost of a single
step [BCCT13, BCG+13, PHGR16], and so many steps are needed.
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Theorem 1.6 (Informal; see Theorem 9.4 and Corollary 9.11). Assuming the existence of a
collision-resistant hash functions, a SNARK, and a memory-hard sequential function, there exists
a memory-hard VDF.

Lastly, we note that sequentiality and memory-hardness are two examples of functions that are
hard to compute with bounded resources. Since a SPARK computes a function and constructs the
proof in parallel, then the above transformations can be used to preserve any hardness property of a
PRAM computation, so long as the function remains hard after an additive increase in the parallel
running time (and an small increase in the number of parallel processors). This enables generically
turning hard functions into verifiable hard functions (see Theorem 9.4 for a formal version of this
claim).

1.3 Related Work

Succinct arguments with efficient provers. We elaborate on the existing succinct arguments
that focus on prover efficiency. We consider the general setting of proving computation that take
T parallel time using p processors (although most works only explicitly consider the setting where
p = 1 and T is the total time).

First, we recall that Kilian’s succinct argument consists of a prover who commits to a PCP
using a Merkle tree and locally opens a set of random locations specified by the verifier. As such,
efficient PCP constructions immediately give rise to succinct arguments with an efficient prover.
Specifically in [BS08, BCGT13], they show how to construct PCPs in quasi-linear time, which yield
succinct arguments with a prover running in T · p · polylog(T · p) time for computation with total
work T ·p. In [BCGT13], they show how to construct a quasi-linear size PCP that can be computed
in polylog(T ·p) depth with roughly T ·p processors, when given the transcript of the computation.
This results in a succinct argument where the prover runs in parallel time T + polylog(T · p) using
roughly T · p processors. When restricting the prover to use at most p · polylog(T · p) processors,
as required by SPARKs, this yields a succinct argument where the prover runs in parallel time
T · p · polylog(T · p). Furthermore, the above arguments can be made non-interactive by applying
the Fiat-Shamir transformation [FS86, Mic00].

A different line of work has focused additionally on the prover’s space complexity. Bitansky
et al. [BCCT13] (following Valiant’s [Val08] incrementally verifiable computation framework using
recursive proof composition) construct complexity-preserving SNARKs, in which both the time
and space of the underlying computation up to (multiplicative) polynomial factors in the security
parameter. For the task of delegating deterministic (T · p)-time S-space computation, Holmgren
and Rothblum [HR18] give a prover with T ·p ·polylog(T ·p) total time and S+o(S) space assuming
sub-exponential LWE.

Tight VDFs. As we describe shortly in Section 2, our construction splits the computation into
“chunks” and proves each of them in parallel. This idea is inspired by the recent transformations
of Boneh et al. and Döttling et al. [BBBF18, DGI+19] in the context of verifiable delay functions
(VDFs) [BBBF18, BBF18]. Those works show how to use a VDF for an iterated sequential function
where the honest evaluator has some overhead, into a VDF where the honest evaluator uses multiple
parallel processors and has essentially no parallel time overhead. However, iterated functions can
be naturally split into chunks and so most of the technical difficulty in our work does not arise in
that context. See Section 2 for more details.
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IOPs. In an effort to bring down the quasi-linear overhead of PCPs, Ben-Sasson et al. [BCS16]
and Reingold et al. [RRR16] introduced the concept of interactive oracle proofs (IOPs).5 IOPs are
a type of proof system that combines aspects of interactive proofs (IPs) and PCPs: in every round
a prover sends a possibly long message but the verifier is allowed to read only a few bits. IOPs
also generalize Interactive PCPs [KR08]. The most recent IOP is due to Ron-Zewi and Rothblum
[RZR19] (improving Ben-Sasson et al. [BCG+17]) and achieves nearly optimal overhead in proof
length (i.e., a 1+ε factor for an arbitrary ε > 0) and constant rounds and query complexity, however
the prover’s running time is some unspecified polynomial.

2 Technical Overview

In this section, we present the main techniques underlying our transformation from succinct argu-
ments of knowledge with small multiplicative prover overhead to SPARKs.

2.1 Warmup: SPARKs for Iterated Functions

Our starting point stems from the recent works of Boneh et al. and Döttling et al. [BBBF18,
DGMV19]. For concreteness, we describe the setting of [BBBF18], which focuses on the simplified
case of proving correctness of the output of an iterated function g(T )(x0) = (g ◦ . . .◦g)(x0) for some
T ∈ N. Rather than proving that g(T )(x0) = xT directly, they split the computation into different
sub-computations of geometrically decreasing size such that the proof for every sub-computation
completes by time T .

To demonstrate this idea, suppose for simplicity that each iteration takes one unit of time to
compute and that there is a succinct argument that can non-interactively prove any computation
of k iterations of g in 2k additional time. Then, in order to prove that g(T )(x0) = xT , they
first perform 1/3 of the computation to obtain g(T/3)(x0) = xT/3 and then prove its correctness.
Observe that xT/3 can be computed in time T/3 and the proof can be generated in time 2T/3 by

assumption, so the proof that g(T/3)(x0) = xT/3 completes by time T . In parallel to proving that

g(T/3)(x0) = xT/3, they additionally compute and prove 1/3 of the remaining computation (namely,

that g((T−T/3)/3)(xT/3) = x5T/9) in a separate parallel thread, which also will finish by time T .
They continue in this fashion recursively until the remaining computation can be verified directly.

In this construction, the prover only needs to start at most O(log T ) parallel computation
threads and finishes in essentially parallel time T . The final proof consists of O(log T ) proofs
of the intermediate sub-computations. The verifier checks each proof for the sub-computations
independently and accepts if all checks pass and the proposed inputs and outputs are consistent with
each other. More generally, if the given non-interactive argument had α? multiplicative overhead,
the resulting number of threads needed would be O(α? ·log T ). So, when the overhead is quasi-linear
(i.e. α? ∈ polylog T ), the resulting argument is still succinct.

2.2 Extending SPARKs to Arbitrary Computations

The focus of this work is extending the above example to handle arbitrary non-deterministic
polynomial-time computation (possibly with a long output) which introduces many complications.
For now, we focus on the case of RAM computation that uses only a single processor (we later
show how to extend this to arbitrary parallel RAM computations). Specifically, suppose we are

5To clarify notation, IOPs (introduced by [BCS16]) are equivalent to the notion of Probabilistically Checkable
Interactive Proofs (introduced concurrently and independently by [RRR16]).
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given a statement (M,x, T ) with witness w, where M is a RAM machine and we want to prove that
M(x,w) outputs some value y within T steps. We emphasize that our goal is to capture general
non-deterministic, polynomial-time computation where the output y is not known in advance, so
we would like to simultaneously compute y given (M,x, T ) and w, and prove its correctness. Since
M is a RAM machine, it has access to some (potentially large) memory D consisting of n words in
memory. We let λ be the security parameter and size of a word, and T be an arbitrary polynomial
in λ. Let us try to employ the above strategy in this more general setting.

As M does not necessarily implement an iterated function, the first problem we encounter is
that there is no natural way to split the computation into many sub-computations with small input
and output. For intermediate statements, the näıve solution would be to prove that running the
RAM machine M for k steps starting at some initial memory Dstart results in final memory Dfinal.
However, this is a problem because the size of the memory, n, may be large—perhaps even as large
as the full running time T—so the intermediate statements we need to prove may be huge!

A natural attempt to mitigate this would be to instead provide a succinct digest of the memory
at the beginning and end of each sub-computation, and then have the prover additionally prove
that it knows a memory string consistent with each digest. Concretely, each sub-computation
corresponding to k steps of computation would contain digests cstart, cfinal. The prover would show
that there exist strings Dstart, Dfinal such that (1) cstart, cfinal are digests of Dstart, Dfinal, respectively,
and (2) starting with memory Dstart and running RAM machine M for k steps results in memory
Dfinal. This seems like a step in the right direction, since the statement size for each sub-computation
would only depend on the output size of the digest and not the size of the memory. However, the
prover’s witness—and hence running time to prove each sub-computation—still scales linearly with
the size of the memory in this approach. Therefore, the main challenge we are faced with is removing
the dependence on the memory size in the witness of the sub-computations.

Using local updates. To overcome the above issues, we observe that in each sub-computation
the prover only needs to prove that the transition from the initial digest cstart to the final digest
cfinal is consistent with k steps of computation done by M . At a high level, we do so by proving
that there exists a sequence of k local updates to cstart which result in cfinal. Then in order to verify
a sub-computation corresponding to k steps, we can simply check the k local updates to the digest
of the memory, rather than checking the memory in its entirety. To formalize this idea, we rely on
short hash functions that allow for local updates which can be efficiently computed in parallel to
the main computation. We call these concurrently updatable hash functions.

Given such hash functions, will use a succinct argument of knowledge (PsARK,VsARK) for an NP
language Lupd that corresponds to checking that a sequence of local updates are valid. Specifically,
a statement (M,x, k, cstart, cfinal) ∈ Lupd if and only if there exists a sequence of updates u1, . . . , uk
such that, starting with short digest cstart, running M on input x for k steps specifies the updates
u1, . . . , uk that result in a digest cfinal. Then, as long as the updates are themselves succinct, the
size of the witness scales only with the number of steps of the computation and not with the size
of the memory.

In order to make the above approach work, we need updatable hash functions that satisfy the
following two properties:

1. Updates can be computed efficiently in parallel to the main computation.

2. Updates can be verified as modifying only the specified locations in memory.

We next explain how we obtain the required hash functions satisfying the above properties. We
believe that this primitive and the techniques used to obtain it are of independent interest.

7



Concurrently Updatable Hash Functions. Roughly speaking, concurrently updatable hash
functions are computationally binding hash functions that supports updating parts of the underly-
ing message without re-hashing the whole message. For efficiency, we additionally require that one
can perform several sequential updates concurrently. For soundness, we require that no efficient
adversary can find two different openings for the same location even if it is allowed to perform
polynomially many update operations. A formal definition appears in Section 5.

We focus on the case where each update is local (a single word per time step), but we show how
to extend this to updating many words in parallel in Section 5. Our construction relies on Merkle
trees [Mer89] and hence can be instantiated with any collision resistant hash function. Recall
that a Merkle tree uses a compressing hash function, which we assume for simplicity is given by
h : {0, 1}2λ → {0, 1}λ, and is obtained via a binary tree structure where nodes are associated with
values. The leaves are associated with arbitrary values and each internal node is associated with a
value that is the hash of the concatenation of its children’s values.

It is well known that Merkle trees, when instantiated with a collision resistant hash function h,
act as short (binding) commitments with local opening. The latter property enables proving claims
about specific blocks in the input without opening the whole input, by revealing the authentication
path from some input block to the root (i.e. the hashes corresponding to sibling nodes along the
path from the leaf to the root). Not only do Merkle trees have the local opening property, but the
same technique allows for local updates. Namely, one can update the value of a specific word in
the input and compute the new root value without recomputing the whole tree (by updating the
hashes along the authentication path of the updated block). All of these local procedures cost time
which is proportional to the depth of the tree, log2 n, as opposed to the full memory n. We denote
this update time as β (which may additionally depend polynomially on λ, for example, to compute
the hash function at each level in the tree).

Let us see what happens when we use Merkle trees as our hash function. Recall that the Merkle
tree contains the hash of the memory at every step of the computation, and we update its value
after each such step. The latter operation, as mentioned above, takes β time. So even with local
updates, using Merkle trees näıvely incurs a β delay for every update operation which implies a β
multiplicative delay for the whole computation (which we want to avoid)! To handle this, we use a
pipelining technique to perform the local updates in parallel.

Pipelining updates. Consider two updates u1 and u2 that we want to apply to the current Merkle
tree sequentially. We observe that since Merkle trees updates work “level by level,” we can first
update the first level of the tree (corresponding to the leaves) according to u1. Then, update the
second layer according to u1 and in parallel update the first layer using u2. Continuing in this
fashion, we can update the third layer according to u1 and in parallel update the second layer
using u2, and so on. The idea can be generalized to pipeline u1, . . . , uk, so that the final update
uk completes after (k − 1) + β steps, and the memory is consistent with the Merkle tree given by
performing update operations u1, . . . , uk sequentially. The implementation of this idea requires β
additional parallel threads since the computation for at most β updates will overlap at a given time.
A key point that allows us to pipeline these concurrent updates is that the operations at each level
in the tree are data-independent in a standard Merkle tree. Namely, each processor can perform
all of the reads/writes to a given level in the tree at a single time step, and the next processor can
continue in the next time step without incurring any delay.

Verifying that updates are local. With regards to the soundness of this primitive, a subtle—yet
important—point that we need in our application is that it must be possible to prove that a valid
update only modifies the locations it specifies. For example, suppose a cheating prover updates
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the digest with respect to one location in memory while simultaneously rewriting other locations in
memory in a way that does not correspond to the memory access done by the machine M . Then,
the prover will later be able to open inconsistent values and prove that M computes whatever it
wants. Moreover, the prover could gradually make these changes across many different updates.
Fortunately, the structure of Merkle trees allow us to prove that a local update only changes a
single location. At a high level, this is because the authentication path for a leaf in a Merkle tree
effectively binds the root of the tree to the entire memory. Thus, we show that if a Merkle tree
is updated at some location, one can use the authentication path to prove that no other locations
were modified. Furthermore, we show in the general case how to extend this for updating many
locations in a single update.

Ensuring optimal prover run-time. Using the above ingredients, we discuss how to put ev-
erything together to ensure optimal prover run-time. Concretely, suppose we have a concurrently
updatable hash function where each update takes time β, and a succinct non-interactive argument
of knowledge with quasilinear prover overhead for the language Lupd. Recall that a statement
(M,x, k, cstart, cfinal) ∈ Lupd if there exists a sequence of k hash function updates such that (1)
the updates are consistent with the computation of M and (2) applying these updates to cstart

results in cfinal. Let α? be the multiplicative overhead of the succinct argument with respect to the
number of updates (so a computation with k ≤ T updates takes time k · α? to prove). Note that
α? ∈ poly(β, log T ), as we require that the total time to prove a Lupd statement is quasilinear in
the work, and a statement for at most T updates requires T · β total work.

As discussed above, to prove that M(x,w) outputs a value y in T steps, we split the computation
into m sub-computations which all complete by time T . The ith sub-computation will consist of
a “compute” phase, where we compute ki steps of the total T computation steps, and a “proof”
phase, where we use the succinct argument to prove correctness of those ki steps. For the “compute”
phase, recall that performing ki steps of computation while also updating the digest takes ki · β
total work. However, as described above, we can pipeline these updates so that the parallel time
to compute these updates is only (ki − 1) + β.

For the “proof” phase to complete in the desired amount of time, we need to set the values of
ki appropriately. Each proof for ki ≤ T steps of computation takes at most ki ·α? time. Therefore,
the largest “chunk” of computation we can compute and prove by roughly time T is T/(α? + 1).
For convenience, let γ , α? + 1. Then, in the first sub-computation, we can compute and prove
k1 = T/γ steps of computation. In each subsequent computation, we compute and prove a γ fraction
of the remaining computation. Putting everything together, we get that ki = (T/γ) · (1− 1/γ)i−1

for i ∈ [m − 1] and then km < γ is the number of remaining steps such that
∑m

i=1 ki = T . This
results in roughly γ log T ∈ poly(β, log T ) total sub-proofs, meaning that the proof size depends
only polylogarithmically on T .

In Figure 1 we show the structure of the compute and proof phases for all m sub-computations.
We emphasize that the entire protocol completes within T +α? · γ + β parallel time, since the first
m− 1 sub-proofs complete by time T +β, and the proof of the final γ steps takes roughly α? ·γ+β
time to prove. Since α?, γ, and β are in poly(λ, log T ), this implies that we only have a small
additive rather than multiplicative overhead.

We note that in the overview where we construct SPARKs for iterated functions, we have the
verifier directly check the final sub-computation itself. Rather than having the prover send the
witness in the clear for the verifier to check, we instead have the prover provide a succinct proof
for the last sub-computation. The main reason for this is since in the case of general parallel RAM
computations, having the verifier directly verify the computation would require that the verifier
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Parallel time T β

k1 k1 · α?
β-gap

k2 k2 · α?

k3 k3 · α?

k4 k4 · α?

k5 k5 · α?

β

Figure 1: The “compute” and “proof” phases for each of m sub-computations. The ith sub-
computation consists of ki steps, while pipelining updates which each take β time. After finishing
all updates, the prover computes the proof which takes ki · α? time.

also use parallelism and also would require greater communication.
Next, we note that we have a β gap between the time that the “compute” phase ends and the

“proof” phase begins for a particular sub-computation. This is because we have to wait β additional
time to finish computing the updates before we can start the proofs. However, we can immediately
start computing the next sub-computation without waiting for the updates to complete. Lastly,
the number of processors used in the protocol is β at all times in the constantly running “compute”
phase which is additionally computing updates to the digest in parallel. Then, to run each of the
m sub-proofs in parallel, we get at most a factor of m times the number of processors used by a
single sub-proof.

Computing the initial digest. Before giving the full protocol, we address a final issue, which
is for the prover to compute the digest of the initial memory string. Specifically, the prover needs to
hash a string D ∈ {0, 1}n, which the RAM machine M assumes contains its inputs (x,w). Directly
hashing to the string x||w would require roughly |x|+|w| additional time, which could be as large as
T . To circumvent the need to compute the initial digest, we simply do not compute a digest of the
initial memory! Instead, we start with a digest of an uninitialized memory that can be computed
efficiently and allows each position to be initialized exactly once whenever it is first accessed.

We extend our hash function definition to enable this as follows. We start with a dummy value
⊥ for the leaves of the Merkle tree. Because the leaves all have the same value, we can compute the
root of the Merkle tree efficiently without touching all of the nodes in the tree. Specifically, if the
leaves have the value dummy(0), we can define the the value of the nodes at level j recursively as
dummy(j) = h(dummy(j−1)||dummy(j−1)). Then the initial digest is just the root dummy(log n).
Note that here, the prover does not need to initialize the whole tree in memory with dummy values,
it simply needs to compute dummy(log n) as the initial digest.

Whenever the prover accesses a location in D for the first time, it performs the corresponding
local update to the Merkle tree. However, performing this update is non-trivial as many of the
nodes in the Merkle tree may still be uninitialized. What saves us is that any uninitialized node
must correspond to leaves that are also uninitialized, so they still have the value ⊥. As such, we
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can compute the value of any uninitialized node at level j efficiently as dummy(j). To maintain
efficiency, the prover can keep track of a bit for each node to check if it has been initialized or not.

Given a single authentication path for a newly initialized location in memory, the verifier can
check that this path is a valid opening for ⊥ with the previous digest and for the new value with
the updated digest. This guarantees that only the newly initialized value was modified, and the
verifier can make sure each location is updated at most once by disallowing the prover from updating
locations to ⊥. Furthermore, the verifier can check that any initialized value not part of the witness
(corresponding to the input x) is consistent with what M expects.

2.3 Our SPARK Construction

We now summarize our full SPARK construction. Suppose that we have (1) a concurrently up-
datable hash function that starts as uninitialized where each update takes time β and (2) a suc-
cinct non-interactive argument of knowledge (PsARK,VsARK) for the update language Lupd with
α? ∈ poly(λ, log T ) multiplicative overhead. Let γ , α? + 1, as described above, which is the frac-
tion of remaining computation done at each step. The protocol (P,V) for a statement (M,x, T ) is
as follows:

1. V samples public parameters pp for the hash function and sends them to P.

2. Using pp, P computes the digest cstart for the uninitialized memory Dstart = ⊥n.

3. P computes T/γ steps of M(x,w) while in parallel updating Dstart and performing the cor-
responding local updates to digest c1 = cstart.

4. After completing the T/γ steps of the computation (but not necessarily completing all corre-
sponding updates), P starts recursively computing and proving the remaining T − T/γ steps
in parallel.

5. Let u1, . . . , uT/γ be the current updates, which result in digest c′1. After computing the current
updates, P uses PsARK(u1, . . . , uT/γ) for language Lupd to prove that starting with digest c1,
running M on input x for T/γ steps results in digest c′1.

6. P continues until there are at most γ steps of the computation, at which point P computes
and proves the remaining steps and sends the proof to V.

7. After finishing the computation and all corresponding updates, P uses the final digest to open
the output y and give a proof of its correctness. V accepts if the proof certifying y verifies
and VsARK accepts all sub-protocols, which are consistent with each other.

Handling interactive protocols. The same transformation described above applies to inter-
active r-round succinct argument of knowledge. However, since the protocol is interactive, the
prover starts an interactive protocol in order to prove that sub-computations were performed cor-
rectly. It is not necessarily the case that the messages in the various interactive arguments will be
“synced” up, and so our transformation suffers from (at most) a polylog T factor increase in the
round complexity. For specific underlying succinct arguments, however, it may be the case that we
can synchronize the rounds to reduce the round complexity. Indeed, this is the case for Kilian’s
succinct argument, which we discuss in Section 7.1.
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Extending to PRAM computation. We next discuss how to extend the protocol given above
to deal with parallel RAM computation with any number of processors. We assume for simplicity
that in the given machine no two processors access the same location in memory concurrently.
Suppose M is a PRAM machine where M(x,w) runs in parallel time T using p processors. In
the above protocol, we emulate each step of M while performing the corresponding hash function
updates in parallel. The SPARK prover can use p processors to emulate M , but as M might access p
locations in memory at each step, the hash function needs to support updating any set of p positions
concurrently. We show how to generalize the updatable hash function scheme described above to
handle such updates while still supporting pipelining for each set of updates. As for efficiency, we
observe that this naively increases the overhead to compute each sub-proof by a factor of p (if the
overhead scales with the total work rather than the depth of the underlying computation). As
such, we need to use an underlying succinct argument that has overhead α? ∈ polylog(T · p) in the
depth of the underlying computation while using at most p processors. We refer to such arguments
as depth-preserving and discuss how to construct them using known techniques in Sections 7.1
and 7.2.

Security proof and argument of knowledge definition. We note that proving security in
the above construction is somewhat non-trivial. The key issue is that we need to simultaneously
extract witnesses from super logarithmically many concurrent or parallel arguments of knowledge,
without causing a blow-up in the complexity of the resulting extractor. In the non-interactive case,
it is pretty straightforward to deal with this since the statements are all “fixed” and so concurrent
composition just works. However, the interactive setting is more challenging since there are more
dependencies. This issue came up and was resolved in previous works, e.g., [Lin03, PR08], where
new extraction techniques and definitions were introduced. In our case, we introduce yet another
argument of knowledge definition, which (1) enables dealing with this issue in our proof of security,
(2) is equivalent to common definitions of proofs of knowledge, and (3) we believe is conceptually
simpler and much easier to work with. We view this definition as an additional independent
contribution. See Section 4 for additional details in the context of SPARKs and Appendix A in the
context of standard notions of succinct arguments of knowledge.

3 Preliminaries

Basic notation. For a distribution X we denote by x ← X the process of sampling a value x
from the distribution X. For a set X , we denote by x ← X the process of sampling a value x
from the uniform distribution on X . Supp(X ) denotes the support of the distribution X. For an
integer n ∈ N we denote by [n] the set {1, 2, . . . , n}. We use PPT as an acronym for probabilistic
polynomial time.

A function negl : N→ R is negligible if it is asymptotically smaller than any inverse-polynomial
function, namely, for every constant c > 0 there exists an integer Nc such that negl(λ) ≤ λ−c for all
λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally
indistinguishable if for any non-uniform PPT algorithm A = {Aλ}λ∈N there exists a negligible
function negl such that

∣∣Pr
[
Aλ(1λ, Xλ) = 1

]
− Pr

[
Aλ(1λ, Yλ) = 1

]∣∣ ≤ negl(λ) for all λ ∈ N. For a
language L with relation RL, we let RL(x) denote the set of witnesses w such that (x,w) ∈ RL. We
say that an ensemble {Xn}n∈N is uniformly computable if there exists a Turing Machine M such
that M(1n) outputs Xn in time polynomial in n.
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3.1 RAM Model

Random Access Memory (RAM) computation consists of a machine M which keeps some local
state state and has read/write access to memory D ∈ ({0, 1}λ)n (equivalent to the tape of a Turing
machine). Here, λ is the security parameter and length of a word,6 and n ≤ 2λ is the number of
words in memory used by M . We assume that M specifies n and that |(M,x)| ≤ n. When we
write M(x) to denote running M on input x, this means that M expects its initial memory D to
be equal to x||0nλ−|x|. The computation is defined using a function step, which has the following
syntax:

(state′, op, `, vwt) = step(M, state, vrd).

Specifically, step takes as input the description of the machine M , the current state state, and a
word vrd that was read in the last step from memory. Then, it outputs the next state state′, the
operation op ∈ {rd,wt} to do next, the next location ` ∈ [n] to access, and the word vwt to write
next if op = wt (or ⊥ if op = rd).

Using step, we can define each step of RAM computation to run step, and then either do a read
or a write. We assume that each write operation returns the value in the memory location before
the write. Formally, starting with an initially empty state state0 and letting vrd

0 = ⊥, the ith step
of computation for i ≥ 1 is defined as:

1. Compute (statei, opi, `i, v
wt
i ) = step(M, statei−1, v

rd
i−1).

2. If opi = rd, let vrd
i be the word in location `i of D.

3. If opi = wt, let vrd
i be the word at location `i in D and write vwt

i to that location.

The computation halts when step outputs a special halting value with the output y of M(x)
written at the start of the memory, where we assume that the final state specifies the output length.
Without loss of generality, we assume that the state size can hold O(log n) bits.

Parallel RAM Computation. Our main results will be in the parallel-RAM (PRAM) setting,
where each step of the machine can potentially branch to multiple processes that have access
to the same memory D. This can be formalized by allowing step to output multiple tuples
(state′, op, `, vwt), each associated with a process identifier specifying the process to continue the
computation from that state. Then, each process continues by running step at each step, as above.
The computation halts when there are no running processes.

For convenience, we define an algorithm parallel-step which logically runs step for all active
processes. It has the following syntax:

(State′,Op, S, V wt) = parallel-step(M, State, V rd).

Here, all inputs and outputs are tuples containing a value for each process. Specifically, if there
are p active processes before the step, and p′ resulting processes, then State = (statei)i∈[p], V

rd =

(vrd
i )i∈[p], State

′ = (state′i)i∈[p′], Op = (opi)i∈[p′], S = (`i)i∈[p′], V
wt = (vwt

i )i∈[p′]. For each i ∈ [p],

in the previous step the ith process had state statei and read (or overwrote) value vrd
i . For each

i ∈ [p′], the ith process after the step has state state′i, and accesses location `i in memory by either
writing vwt

i to it when opi = wt, or reads from it when opi = rd. Note that V wt contains ⊥ for each

6We note that the length of a word only needs to be greater than logn, but can be as large as any fixed polynomial
in λ. We set it to λ for simplicity.
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element corresponding to a read operation. Also, note that if process i was spawned in this step,
then state′i will be its initial state.

For ease of notation, we will also define an algorithm access, which accesses a set of locations
in memory, and then reads and writes to them as specified. Specifically, accessD(Op, S, V wt) has
memory access to D, takes as input Op, S, and V wt as defined above, and does the following for
each i ∈ [|Op|]:

1. If opi = rd, let vrd
i be the word at location `i of D.

2. If opi = wt, let vrd
i be the word at location `i in D and write vwt

i to that location.

It then outputs V rd = (vrd
1 , . . . , v

rd
|Op|).

Using parallel-step and access, we can then formalize a full PRAM computation as follows.
Starting with State0 = (state0), where state0 is an initially empty state, and V rd

0 = (⊥), the ith
step of the PRAM computation M for i ≥ 1 is defined as:

1. Compute (Statei,Opi, Si, V
wt
i ) = parallel-step(M,Statei−1, V

rd
i−1).

2. Let V rd
i = accessD(Opi, Si, V

wt
i ).

The computation halts when all running processes reach a halting state, and the output y of M(x)
is written to the start of the memory, where we additionally assume that the output length is
encoded in the final state(s).

We are in the exclusive-read exclusive-write (EREW) model, i.e., the most restrictive PRAM
model, where if some process accesses a location (either a read or a write) in memory while another
process accesses the same location (either a read or a write), there are no guarantees for the resulting
effect. In addition to specifying the memory size n, we also assume that a PRAM machine specifies
the number of concurrent processes p it uses, and that p ≤ n, as we are in the EREW model.
Lastly, we assume that all processes in a PRAM computation have local registers that can be used
to communicate the results of each step.

(P)RAM Complexity. Each step of RAM computation is allowed to make a single access to
memory. We think of step, which computes the transition function from state to state′, as being
implemented by an efficient CPU algorithm with access to a constant number of words.

As a result, we define the running time of a RAM machine M as the number of accesses it
makes to its working memory. For PRAM machines, each step of computation may make multiple
parallel accesses to memory via different processors.

To model the complexity of a (P)RAM machine M , we consider two complexity measures:
work and depth. Specifically, we let workM (x) denote the total amount of computation done by all
processors measured in steps (or equivalently memory accesses). When M is a non-deterministic
machine, we denote this by workM (x,w) where w is the witness. We let depthM (x) (analogously,
depthM (x,w)) denote the number of sequential steps until M halts, where steps that occur in
parallel are counted as one step. For a (non-parallel) RAM machine, we simply denote its running
time by workM (x).

We also assume that n words in memory can be allocated and initialized to zeros for free.

3.2 Universal and NP Relations

Next, we define a variant of the universal relation, introduced by [BG08]. For efficiency reasons, it
will be helpful to define this relative to different computational models, so we give definitions for
Turing machine computation and RAM machine computation.
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Definition 3.1. [Universal Relation] The universal relation for Turing machines RTM
U is the set of

instance-witness pairs ((M,x, y, L, t), w) where M is a Turing machine such that M(x,w) outputs
y within t steps, and additionally |y| ≤ L. We let LTM

U be the corresponding universal language.
We similarly define RPRAM

U and LPRAM
U to the be universal relation and language, respectively, for

PRAM computation, where the given machine M is a PRAM machine.

The main difference between our definition and the standard universal relation of [BG08] is
that we consider computation with long outputs y, and we also include an upper bound L on the
length of y. We include y so as to have a definition which captures both deterministic and non-
deterministic polynomial-time computation. A similar relation was given in [CLP13] to define a
canonical relation for P. Moreover, the universal relation of [BG08] is linear-time reducible to our
definition above. With regards to L, we include this because in our main construction of SPARKs,
the output y of the computation will not be known in advance. However, the complexity of the
scheme inherently depends on L (as the output of the protocol is y).

Finally, we note that for a statement (M,x, y, L, t) with respect to PRAM computation, we do
not place any restriction on the length of the witness w. Specifically, the machine M may only
access t positions in w, but it could be the case that |w| is significantly greater than t.

3.3 Interactive Arguments

We consider interactive (P)RAM machines and interactive protocols. Formally, we assume there is
a specified part of a machine’s memory for input from and output to another interactive machine,
so the time for an interactive machine to send a message is simply the time to write it to its output
tape. Given a pair of interactive machines P and V, we denote by 〈P(x),V(y)〉(z) the random
variable representing the output of V with common input z and private input y, when interacting
with P with private input x, when the random tape of each machine is uniformly and independently
chosen. The round complexity of the protocol is the number of distinct messages sent between P
and V. We say that a protocol is non-interactive if it consists of one message from P to V and
then V computes its output. To define the complexity of an interactive machine A, we let workA(x)
denote the maximum amount of work done by A(x) over any possible interactions.

We defer the formal definition of a succinct argument of knowledge to Appendix A.

4 Succinct Parallelizable Arguments of Knowledge

In this section we define succinct parallelizable arguments of knowledge for non-deterministic
polynomial-time PRAM computation, using the following syntax for interactive protocols. We
denote by 〈P(w),V〉 the output of V in the interaction, which may be of arbitrary (polynomial)
length. Furthermore, we let V output ⊥ to indicate reject, and output y 6= ⊥ to accept the output
y.

Definition 4.1 (SPARKs for NP Relations). A Succinct Parallelizable Argument of Knowledge
(SPARK) for a relation R ⊆ RPRAM

U is a tuple of probabilistic interactive machines (P,V) where P
is a PRAM machine, satisfying the following properties.

• Completeness: For every λ ∈ N and ((M,x, y, L, t), w) ∈ R where M has access to n ≤ 2λ

words in memory,

Pr
[
〈P(w),V〉(1λ, (M,x, t, L)) = y

]
= 1,

where the probability is over the random coins of P and V.
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• Argument of Knowledge for NP: There exists a probabilistic oracle machine E and a poly-
nomial q such that for every non-uniform polynomial-time prover P? = {P?λ}λ∈N and every
constant c ∈ N, there exists a negligible function negl such that for every λ ∈ N, z, s ∈ {0, 1}∗,
and (M,x, t, L) ∈ {0, 1}∗ with |M,x, t| ≤ λ, L ≤ λ, M having access to n ≤ 2λ words in
memory and pM processors, and t · pM ≤ |x|c, the following hold.

Let P?λ,z,s denote the machine P?λ with auxiliary input z and randomness s fixed, let Vr denote

the verifier V using randomness r ∈ {0, 1}l(λ) where l(λ) is a bound on the number of random
bits used by V(1λ, ·). Then:

1. The expected time of EP?λ,z,s,Vr(1λ, (M,x, t, L)) is bounded by q(λ, t · pM ), where the ex-
pectation is over r ← {0, 1}l(λ) and the random coins of E.

2. It holds that

Pr

 r ← {0, 1}l(λ)
y = 〈P?λ,z,s,Vr〉(1λ, (M,x, t, L))

w ← EP?λ,z,s,Vr(1λ, (M,x, t, L))

: y 6= ⊥ ∧ ((M,x, y, L, t), w) 6∈ R

 ≤ negl(λ).

• Succinctness: There exist polynomials q1, q2 such that for any λ ∈ N, (M,x, t, L) ∈ {0, 1}∗
where M has access to n ≤ 2λ words in memory and pM processors, it holds that

workV(1λ, (M,x, t, L)) ≤ q1(λ, |(M,x)|, L, log(t · pM ))

and the length of the transcript produced in the interaction between P(w) and V on common
input (1λ, (M,x, t, L)) is bounded by q2(λ, L, log(t · pM )).

• Optimal prover depth: There exist polynomials q1, q2 such that for all λ ∈ N and ((M,x, y,
L, t), w) ∈ R where M has access to n ≤ 2λ words in memory and pM processors, it holds
that

depthP(1λ, (M,x, t, L), w) ≤ t+ q1(λ, |(M,x)|, L, log(t · pM ))

and the total number of processors used by P is at most pM · q2(λ, log(t · pM )).

If the above holds for R = RPRAM
U , we say that (P,V) is a SPARK for non-deterministic polynomial-

time PRAM computation.

We next remark about some subtleties in our definition and compare to related notions.

Remark 1 (Delayed output). We note that our definition of SPARKs has a “delayed output”
property where the prover picks the output of the protocol rather than it being known a priori to
both the prover and verifier. For typical NP languages, this distinction is not important because
the prover is always trying to prove that the relation outputs 1. However, for proving more general
polynomial-time computation, the output may not be known in advance, so the prover must compute
both the output and a proof.

Remark 2 (Execution by execution extraction). Since there may be many possible outputs y of the
computation, it is very important that the extractor finds a witness for the actual output y that V
accepts in the interaction. Morally, this definition should capture the fact that the prover actually
knows a witness for that output, instead of a witness for an arbitrary output y′ that the prover
may never convince the verifier of. This is particularly relevant for NP relations, since when a
prover convinces a verifier of an accepting witness (i.e., one where the relation outputs 1) it is not
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meaningful to extract a witness which makes the relation output 0. Note that it does not suffice to
run the protocol and simply give the extractor y (and require the extractor to provide a witness for
that output), as the malicious prover may only convince V of any particular y with small probability.

A similar challenge motivated the work on precise proofs of knowledge [MP06], where they
defined arguments of knowledge where the extractor’s behavior depended on a specific instance of
the protocol.7 To capture this, their extractor receives a uniformly sampled view of the prover
in the protocol and extracts a consistent witness. In our definition above, we choose to give the
extractor oracle access to the fixed prover as well as the verifier with fixed randomness which results
in accepting a particular output y. This is akin to giving the extractor an oracle version of the view,
while additionally making the extractor black-box in both the malicious prover and (fixed) verifier.
As such, the extractor can emulate the interaction to deterministically figure out the output y it
needs to extract for.

Remark 3 (On composition). It is often important for arguments of knowledge to be composable—
that is, to be able to be used as a sub-protocol (possibly many times). Indeed, we require this for
our transformation from arguments of knowledge to SPARKs. Often, the challenge with composing
proofs of knowledge is obtaining the desired running time of the final extractor.

One definition which composes well is precise argument of knowledge [MP06]. As explained
above, in that definition the extractor receives the prover’s view in the protocol, and for every view,
the running time of the extractor is a fixed polynomial (in the prover’s running time on that view).
However, this notion is quite strong, and hence is not known to hold for standard arguments of
knowledge. A more standard notion is witness-extended emulation [Lin03], where the extractor is
not given a view, but instead must output a uniformly distributed view of the verifier as well as
a witness. Moreover, the extractor only needs to run in expected polynomial time, and may use
rewinding. However, when this is used as a sub-protocol, the view picked by the extractor may not
be compatible with the external view in the rest of the protocol.

To fix this issue, our definition essentially gives the extractor a uniformly sampled view, and we
require that the extractor runs in expected polynomial time over the choice of the view. This can be
seen as a relaxation of precise argument of knowledge, since it doesn’t need to be efficient for every
view, but also as a (conceptual) strengthening of witness-extended emulation, because the extractor
must work on a given view, rather than being able to sample one itself.

Remark 4 (On the dependence on parallelism). An important contribution of our SPARK defini-
tion is decoupling the time of a PRAM computation from the total work done. As such, we briefly
discuss the dependence on the number of processors used by the underlying PRAM machine.

For a PRAM machine M that uses pM processors and runs in time t, we note that the work of
M can be generically bounded by t · pM . Therefore, we use t · pM in place of the usual notion of
work for succinctness and prover efficiency.

The only other dependence on pM in our SPARK definition is in the amount of processors we
allow the prover to use. As the prover must emulate M(x,w) in roughly the same depth that M
uses, the prover needs to at least use pM processors. Furthermore, we require in our definition
that the parallelism is preserved up to multiplicative poly(λ, log(t · pM )) factors, following similar
definitions for complexity-preserving arguments [BC12].

Non-interactive SPARKs. Next, we define non-interactive SPARKs for non-deterministic
polynomial time PRAM computation. Non-interactive SPARKs differ from SNARKs (Defini-
tion A.3) in two key ways, analogously to the interactive setting. First, a non-interactive SPARK

7They considered instances with different running times, whereas we consider instances with different outputs.
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must compute the output of the (possibly non-deterministic) computation while computing the
proof, and second, we require near-optimal prover efficiency. However, the other requirements,
most notably the argument of knowledge definition, are nearly the same as in SNARKs.

Definition 4.2 (Non-interactive SPARKs for NP Relations). A Non-interactive Succinct Paral-
lelizable Argument of Knowledge (niSPARK) for a relation R ⊆ RPRAM

U is a tuple of probabilistic
algorithms (Gni,Pni,Vni) with the following syntax:

• (crs, st)← Gni(1
λ): A PPT algorithm that on input a security parameter λ outputs a common

reference string crs and a verification state st.

• (y, π) ← Pni(crs, (M,x, t, L), w): A probabilistic algorithm that on input a common reference
string crs, a statement (M,x, t, L), and a witness w, outputs a value y and a proof π.

• b← Vni(st, (M,x, y, L, t), π): A PPT algorithm that on input a verification state st, a statement
(M,x, y, L, t), and a proof π, outputs a bit b indicating whether to accept or reject.

We require the following properties:

• Completeness: For every λ ∈ N and ((M,x, y, L, t), w) ∈ R where M has access to n ≤ 2λ

words in memory,

Pr

 (crs, st)← Gni(1
λ)

(y, π)← Pni(crs, (M,x, t, L), w)
b← Vni(st, (M,x, y, L, t), π)

: b = 1

 = 1.

• Adaptive Argument of Knowledge for NP: For all non-uniform polynomial-time provers
P? = {P?λ}λ∈N, there exists a probabilistic machine E and a polynomial q such that for every
constant c ∈ N, there is a negligible function negl such that for every λ ∈ N and z, s ∈ {0, 1}∗,
the following hold.

Let P?λ,z,s denote the machine P?λ with auxiliary input z and randomness s fixed. Then:

1. The running time of E(crs, z, s) is bounded by q(λ, t·pM ), where t is given by the statement
(M,x, y, L, t) output by P?λ,z,s(crs) and pM is the number of processors used by M .

2. It holds that

Pr


(crs, st)← Gni(1

λ)
((M,x, y, L, t), π)← P?λ,z,s(crs)
b← Vni(st, (M,x, y, L, t), π)
w ← E(crs, z, s)

:
b = 1 ∧
((M,x, y, L, t), w) 6∈ R ∧
t · pM ≤ |x|c

 ≤ negl(λ),

where pM is the number of processors used by M .

• Succinctness: There exist polynomials q1, q2 such that for any λ ∈ N, (crs, st) in the support
of Gni(1

λ), (M,x, t, L) ∈ {0, 1}∗ where M uses n ≤ 2λ words in memory and pM processors,
witness w, and (y, π) in the support of Pni(crs, (M,x, t, L), w), it holds that

• workVni
(st, (M,x, y, L, t), π) ≤ q1(λ, |(M,x)|, L, log(t · pM )),

• |y| ≤ L, and

• |π| ≤ q2(λ, L, log(t · pM )).
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• Optimal prover depth: There exists polynomials q1 and q2 such that for all λ ∈ N and
((M,x, t, L, y), w) ∈ R where M has access to n ≤ 2λ words in memory and pM processors,
it holds that

depthPni
(crs, (M,x, t, L), w) = t+ q1(λ, |(M,x)|, L, log(t · pM ))

and the total number of processors used by Pni is in pM · q2(λ, log(t · pM )).

If the above holds for R = RPRAM
U , we say that (Gni,Pni,Vni) is a non-interactive SPARK for non-

deterministic polynomial-time PRAM computation. When st = crs for Gni(1
λ), we say that the

non-interactive SPARK is publicly verifiable and write crs← Gni(1
λ).

5 Concurrently Updatable Hash Functions

In this section, we define and construct a hash function that (1) allows concurrently updating
arbitrary positions in the string underlying the digest (2) has the property that different updates
can be computed concurrently using multiple processors in a pipelined fashion (described in more
detail below). This can be seen as a strengthening of locally updatable hash functions, with extra
efficiency properties. We define our construction in the PRAM model.

For a security parameter λ ∈ N, our hash function will be for strings D consisting of n ≤ 2λ

words of length λ. It will be helpful for us to capture the case when D is not defined at every
location, that is, some words are set to ⊥. To formalize this, below we define the notion of a partial
string, which is simply a succinct way to represent strings over ({0, 1}λ ∪{⊥})n.

Definition 5.1 (Partial string). For any string s ∈ ({0, 1}λ ∪{⊥})∗ of words, the partial string D
representing s is defined as follows. D is given by tuple (n, I, A), where n is the number of words
(or ⊥ elements) in s, I ⊆ [n] is the set of non-⊥ locations in s, and A ∈ {0, 1}|I| is the assignment
to those indices. We let Di denote the ith word in s.

Next, we define the hash functions used in this paper. A concurrently updatable hash function
is a tuple of algorithms (C.Gen,C.Hash,C.Open,C.Update,C.VerOpen,C.VerUpd) with the following
syntax.8

• pp← C.Gen(1λ, n): A PPT algorithm that on input the security parameter λ in unary and an
integer n, outputs public parameters pp.

• (ptr, digest) = C.Hash(pp, D): A deterministic algorithm that on input public parameters pp and
a partial string D, outputs a pointer ptr to a location in memory and a string digest.

• (V, π) = C.Open(pp, ptr, S): A read-only deterministic algorithm that on input public parame-
ters pp, a pointer ptr, and an ordered set S = (`1, . . . , `p) of locations `i ∈ [n], outputs a tuple
V = (v1, . . . , vp) of values vi ∈ {0, 1}λ ∪{⊥}, and a proof π.

• (digest, τ) = C.Update(pp, ptr, S, V ): A deterministic algorithm that on input public parameters
pp, a pointer ptr, an ordered set S = (`1, . . . , `p) of locations `i ∈ [n], and a tuple V =
(v1, . . . , vp) of words vi ∈ {0, 1}λ, outputs a digest digest and a proof τ .

8For simplicity, the only randomized algorithm in our definition is the key generation algorithm, and the rest are
deterministic. However, with minor modifications to our main protocol, we could use a scheme where all algorithms
may be randomized.
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• b = C.VerOpen(pp, digest, S, V, π): A deterministic algorithm that on input public parameters
pp, a digest digest, an ordered set S = (`1, . . . , `p) of locations `i ∈ [n], a tuple V = (v1, . . . , vp)
of values vi ∈ {0, 1}λ ∪{⊥}, and a proof π, outputs a bit b.

• b = C.VerUpd(pp, digest, S, V, digest′, τ): A deterministic algorithm that on input public param-
eters pp, a digest digest, an ordered set S = (`1, . . . , `p) of locations `i ∈ [n], a tuple
V = (v1, . . . , vp) of words vi ∈ {0, 1}λ, a digest digest′, and a proof τ , outputs a bit b.

We assume for simplicity the there are no duplicate locations specified by the set S in the above
algorithms. We note that when S is a single location ` and V is a single word v, to simplify notation
we let C.Open, C.Update, C.VerOpen, and C.VerUpd take ` and v as input rather than the singleton
ordered set (`) and tuple (v). We require the following completeness, soundness, and efficiency
properties.

At a high level, completeness says that opening or updating an honestly generated digest gives
a valid proof, and that the string underlying the digest is correct. Moreover, this holds after any
sequence of updates to the digest.

Definition 5.2 (Completeness). Let λ, n ∈ N with n ≤ 2λ, pp be in the support of C.Gen(1λ, n),
D = (n, I, A) be a partial string, and m ≥ 0. For any ordered sets S(i) ⊆ [n] and tuples V (i) ∈
({0, 1}λ)|S(i)| for i ∈ [m], do the following:

1. Compute (ptr, digest(0)) = C.Hash(pp, D).

2. For i = 1, . . . ,m, compute (digest(i), τ (i)) = C.Update(pp, ptr, S(i), V (i)).

Let D′ be the partial string resulting from writing each word in V (i) to D at the corresponding
location in S(i) for i = 1, . . . ,m. Then, the following hold for any p ∈ N and ordered set S =
(`1, . . . , `p) of locations in [n]:

• Open Completeness. Let (V, π) = C.Open(pp, ptr, S) where V = (v1, . . . , vp). Then,

C.VerOpen(pp, digest(m), S, V, π) = 1 ∧ D′`i = vi ∀i ∈ [p].

• Update Completeness. For any tuple V ∈ ({0, 1}λ)p, let (digest, τ) = C.Update(pp, ptr, S, V ).
It holds that

C.VerUpd(pp, digest(m), S, V, digest, τ) = 1.

Next, we define soundness, which informally says that no PPT adversary can give a digest and
a sequence of valid updates which update some position ` to a word vprev, and then open ` to a
different value vfinal 6= vprev.

Definition 5.3 (Soundness). For all non-uniform PPT adversaries A = {Aλ}λ∈N, there exists a
negligible function negl such that for all λ ∈ N, it holds that for all with n ≤ 2λ,

Pr


C.VerOpen(pp, digest(0), S(0), V (0), π(0)) = 1 ∧
∀i ∈ [m] : C.VerUpd(pp, digest(i−1), S(i), V (i), digest(i), τ (i)) = 1 ∧
C.VerOpen(pp, digest(m), S, V, π) = 1 ∧
∃` ∈ S ∩ S(0) : vprev 6= vfinal

 ≤ negl(λ),

the probability is over the choice of pp ← C.Gen(1λ, n) and (m,
{

(digest(i), S(i), V (i), τ (i))
}
i∈[m]

,

digest(0), S(0), V (0), π(0), S, V, π)← Aλ(pp), and vprev and vfinal are defined as follows:
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• vprev is the value in V (i) at the index of ` in S(i), where i ∈ {0, . . . ,m} is the largest index
with ` ∈ S(i).

• vfinal is the value in V at the index of ` in S.

Lastly, we require the following efficiency properties, which at a high level say that any sequence
of k updates can be computed (while opening the previous values) in a pipelined fashion with only
additive overhead.

Definition 5.4 (Parallel Efficiency). Let β : N → N. We say that a concurrently updatable hash
function satisfies β-parallel efficiency if the following hold for all λ, n ∈ N with n ≤ 2λ, pp in the
support of C.Gen(1λ, n), and ordered sets S ⊆ [n]:

• The algorithms C.Open, C.Update, C.VerOpen and C.VerUpd when given public parameters pp
and locations S can each be computed with |S| · β(λ) work, which can be decoupled into depth
β(λ) with |S| · β(λ) processors.

• Computing C.Hash(pp, D) for any partial string D = (n, I, A) can be done with |I| ·β(λ) work,
which can be decoupled into depth β(λ) with |I| · β(λ) processors.

• For any pointer ptr, and tuple V ∈ ({0, 1}λ)|S|, define (V ′, π, digest, τ) as follows:

– (V ′, π) = C.Open(pp, ptr, S)

– (digest, τ) = C.Update(pp, ptr, S, V )

There exists an algorithm OpenUpdate(pp, ptr, S, V ) which outputs (V ′, π, digest, τ), such that
k sequential calls to OpenUpdate, each on at most pmax locations, can be computed with pmax ·
β(λ) work, which can be decoupled into depth (k−1)+β(λ) using at most pmax·β(λ) processors.

When β is a polynomial, we say the scheme satisfies parallel efficiency.

Remark 5. We emphasize that the completeness and soundness properties we give for concurrently
updatable hash functions must hold for any sequence of m “valid” updates. At a high level, these
notions stipulate that an opening will always give the correct values (with a proof) and that no
adversary can find an opening for a value you wouldn’t expect (based on the updates). Furthermore,
we require C.VerUpd to ensure that an update to a set of locations does not affect any other locations.

We note that even when viewed as a hash function with local updates (i.e., updates to a single
location rather than a set) our definition generalizes some previous notions. Specifically, this applies
to standard notions of completeness and position binding for vector commitments [CF13], as when
there are no updates (i.e., m = 0), they are equivalent. Our definition also generalized the read and
write security properties of other Merkle tree commitments, such as those in [KP16].

We note that it does not suffice to consider the properties to hold with respect to a single update
(i.e., when m = 1). This is because our hash functions keep state, so it may be the case that
it internally keeps a counter and artificially breaks completeness or soundness after some m > 1
updates have occurred.

5.1 Hash Function Building Blocks

Before giving our concurrently updatable hash function construction, we provide some preliminary
definitions and building blocks.
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Binary trees. When we discuss complete binary trees with n leaves, we refer to each node having
a level, where the leaves are level 0 and the root is level log n. For a node at level i, its children are
the two nodes adjacent to it at level i− 1, and its parent is the node adjacent to it at level i+ 1.

Definition 5.5 (Ancestor nodes). For a complete binary tree and a set of leaves S, we define the
set ancestors(S) to be the set containing all nodes that are ancestors of any node in S, including S.
For a single node `, we simply write ancestors(`) to denote the ancestors of the node `.

Definition 5.6 (Dangling nodes). Let T be a complete binary tree and S be a set of leaves in MT.
The dangling nodes with respect to S, denoted dangling(S), is the set consisting of all siblings of
nodes in ancestors(S) that themselves are not contained in ancestors(S). For a single leaf `, we
simply write dangling(`) to denote the dangling nodes relative to {`}.

We remark that the notion of dangling nodes for a set S is a generalization of an authentication
path for a single location `. Specifically, just like an authentication path gives a proof for opening a
single location in a Merkle tree, the values for nodes in dangling(S) can similarly be used to certify
an opening for the locations in S. Next, we bound the size of a dangling set.

Claim 5.7. Consider a complete binary tree with n leaves and let S ⊆ [n]. If 0 < |S| ≤ p, then
|dangling(S)| ≤ p log(n/p).

Proof. A similar observation and proof were given in [NNL01]. We give the full proof with our
notation here for completeness.

We prove the claim by induction on i where n = 2i for any p ∈ [n]. In the base case, when
i = 0 so n = 20 = 1, |dangling(S)| = 0 ≤ p log(n/p) for all p ∈ [20] = {1} as required. We next
show the claim for n = 2i for i > 0 assuming it for n/2 = 2i−1. Let S ⊆ [n] be a set of leaves for
the complete binary tree with n leaves. Let SL = S ∩ {1, . . . , n/2} and SR = S ∩ {n/2 + 1, . . . , n},
where we consider SL to be a set of leaves in the sub-tree of height i− 1 rooted at the left child of
the root, and similarly SR to be a set of leaves in the sub-tree rooted at the right child of the root.

We first consider the case when |SL|, |SR| > 0. By the inductive hypothesis, there are at
most |SL| log(n/(2|SL|)) nodes in dangling(SL) and similarly at most |SR| log(n/(2|SR|)) nodes in
dangling(SR). This implies that

|dangling(SL)|+ |dangling(SR)|

≤ |SL| log

(
n

2|SL|

)
+ |SR| log

(
n

2|SR|

)
= (|SL|+ |SR|) log n− (|SL| log |SL|+ |SR| log |SR|)− (|SL|+ |SR|) .

Using the fact that a log a+ b log b ≥ (a+ b)(log(a+ b)− 1) for any a, b > 09, this implies that

|dangling(SL)|+ |dangling(SR)| ≤ p log n− p(log p− 1)− p
= p log(n/p).

Furthermore, note that this covers all nodes in dangling(S) as the roots of both ancestors(SL) and
ancestors(SR) (when viewed as sub-trees) are in ancestors(S) (since |SL|, |SR| > 0), and there are
no other siblings that cross between the two sub-trees ancestors(SL) and ancestors(SR).

9This follows by an application of Jensen’s inequality to the function f(x) = 2x log x, which is convex on all x > 0.
Specifically,

a log a+ b log b =
f(a)

2
+
f(b)

2
≥ f

(
a+ b

2

)
= (a+ b) log

(
a+ b

2

)
= (a+ b) (log(a+ b)− 1) .
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Now consider the case where either |SL| = 0 or |SR| = 0. Note that because we assume p > 0,
it cannot be the case that both |SL| and |SR| are 0. Without loss of generality we consider the case
where |SR| = 0. In this case, it must be that |SL| = p ≤ n/2. Then by the inductive hypothesis
there are at most p log(n/(2p)) nodes in dangling(SL). Furthermore, dangling(S) consists of all
nodes in dangling(SL) plus the root of SR. So,

|dangling(S)| ≤ 1 + p log(n/(2p)) = p log(n/p) + (1− p)
≤ p log(n/p),

which holds given that p ≥ 1.

Next, we give the following helpful claim, which follows from the definition of a dangling set,
which will be helpful in our concurrently updatable hash function construction. Recall that a proper
tree is one where every node has either zero children or two children.

Claim 5.8. For any set S of leaves in a complete binary tree with n leaves, ancestors(S)∪dangling(S)
is a proper sub-tree with leaves S ∪ dangling(S).

Proof. Note that if S is empty, the claim holds vacuously, so henceforth we assume S is non-
empty. Let T be the sub-tree consisting of ancestors(S) ∪ dangling(S). Note that T is a tree since
ancestors(S) is a tree, and every node in dangling(S) is a child of a node in ancestors(S). To show
that T is proper and that its leaves are S ∪ dangling(S), we will show that every node in T is either
in S ∪ dangling(S), in which case it is a leaf, or is in ancestors(S) \ S and has both of its children
in T , which suffices for the claim. Consider any node node in T . If node ∈ dangling(S), then its
children are not in T , since neither child is an ancestor of S by definition, and hence neither can
be in dangling(S). It follows that node is a leaf. If node ∈ S, then it is a leaf in the complete
binary tree and is in T , so is a leaf in T . If node ∈ ancestors(S) \ S, then its children are in
ancestors(S) ∪ dangling(S), and so are both in T . �

Merkle trees. Let h : {0, 1}2λ → {0, 1}λ be a compressing hash function. A Merkle tree [Mer89]
for a string D ∈ {0, 1}nλ consists of a complete binary tree of log n + 1 levels labelled 0, . . . , log n
where level i consists of n/2i nodes. Each node is associated with a value in {0, 1}λ. The leaves
at level 0 correspond to D, split into n blocks of length λ. The value of each node at level i > 0
is defined to be the hash (using h) of the concatenation of its children’s values at level i− 1. The
single node at level log n is referred to as the root or digest of the Merkle tree.

An authentication path π = (π0, . . . , πlogn−1) for a leaf i ∈ [n] consists of the values in the tree
corresponding to the siblings of all nodes along the path from the leaf to the root, ordered from
level 0 to log n − 1. An authentication path π = (π0, . . . , πlogn−1) for a leaf i is said to be a valid
opening for v ∈ {0, 1}λ with respect to a digest digest if when hashing the value v at leaf i with
π0, hashing the resulting value with π1, and so on for all values in π, the final value equals digest.
Whenever updating the value of a leaf i with block block, we additionally re-compute the hash
values along the path to the root using its authentication path. The overall size needed to store
the Merkle tree in memory is 2nλ bits. In our construction, rather than using an authentication
path, we will use the notion of a dangling set (5.6) which generalizes an authentication path for
multiple leaves.

Assuming the underlying hash function h is collision resistant, it is well known that a Merkle
tree is binding to a fully defined string that allows for local opening and updates. Moreover, it is
known that a standard Merkle tree satisfies the standard completeness and binding properties of a
commitment.
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In our construction, we will want to use a Merkle tree for values v ∈ {0, 1}λ∪{⊥}. Therefore, we
will use a Merkle tree for 2λ-bit values, so that we can uniquely encode each element of {0, 1}λ∪{⊥}
as a string of length 2λ and each node in the Merkle tree corresponds to two consecutive words in
memory.

Segment Tree. A segment tree is a data structure that provides a way for the prover to efficiently
check if a range of indices in the partial string D = (n, I, A) are ⊥. To this end, we want to represent
the set I (which will be constantly updated) in a way that allows us to check if [i1, i2] ∩ I = ∅ in
O(log n) time and independent of |I| and |i2 − i1|.

To do so, we use a segment tree which mirrors the Merkle tree and consists of a complete binary
tree with n leaves. Each node has an associated bit which is 1 if the corresponding node in the
Merkle tree has been initialized and 0 otherwise. Every time a leaf in the Merkle tree is updated,
we initialize all nodes in the tree along the path to the root, meaning we set the corresponding bits
in the segment tree to 1. Then, if any node in the segment tree has a bit of 0, it guarantees that
all indices corresponding to the leaves that are descendants of this node are ⊥. This implies that
for any range [i1, i2], we can check if [i1, i2] ∩ I = ∅ by checking the bits of O(log n) nodes in the
tree that cover this range of indices. This data structure only requires 2n additional bits to store.

5.2 Construction

Let H = {Hλ}λ∈N be a collision-resistant hash function family ensemble with h : {0, 1}4λ → {0, 1}2λ
for each h ∈ Hλ. We also assume that we have a canonical, deterministic encoding of each value
in {0, 1}λ ∪{⊥} to 2λ-bit strings, denoted by block(v) for v ∈ {0, 1}λ ∪{⊥}, which can efficiently
decoded (for example, we could represent v ∈ {0, 1}λ as v||0λ and ⊥ as 12λ).

We now give our full concurrently updatable hash function construction C = (C.Gen,C.Hash,
C.Open,C.Update,C.VerOpen,C.VerUpd).

• pp← C.Gen(1λ, n): Sample h← Hλ and output pp = (h, n).

• (ptr, digest) = C.Hash(pp, D):

1. Parse pp = (h, n). Allocate 4nλ+ 2n+ 2λ log n bits of memory at a pointer ptr, starting
with a Merkle tree with n leaves at ptr, a corresponding segment tree at pointer segtree,
and log n extra blocks of size 2λ at pointer aux.

We assume that all memory is initialized to 0.

2. Define dummy(0) = block(⊥). Let h = pp, and for j = 1, . . . , log n, compute dummy(j)
= h(dummy(j − 1)||dummy(j − 1)) and write it to the next block of free memory at aux.

3. Recall that D = (n, I, A) specifies a set I of non-⊥ indices with values given in A. Run
the update procedure defined below by C.Update(pp, ptr, I, A).

4. Let digest be the value of the root in ptr, or dummy(log n) if it is uninitialized, and
output (ptr, digest).

• (V, π) = C.Open(pp, ptr, S): Parse pp = (h, n). Let p = |S| and let S = (`(1), . . . , `(p)). Let
segtree be the pointer to the segment tree in memory.

1. Compute the set dangling(S).

2. Let R be an initially empty set, which will store all read values.

3. For each level j = 0, . . . , log n− 1, do the following:
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(a) In parallel for each node ` ∈ S ∪ dangling(S) at level j:

• Read ` in ptr, and let its value be urd
` .

• Read ` in segtree, and let its value be brd
` .

(b) For every ` ∈ S ∪ dangling(S) at level j, if brd
` = 0, let urd

` = dummy(j). Add (`, urd
` )

to R.

To form the output, do the following:

1. For each i ∈ [p], let v(i) ∈ {0, 1}λ ∪{⊥} be the value such that (`(i), block(v(i))) ∈ R.

2. Let π be a list containing all (`, u) in R such that ` ∈ dangling(S).

3. Note that the above values exist in R since it contains an entry for each node in S ∪
dangling(S). Output (V, π) where V = (v(1), . . . , v(p)).

• (digest, τ) = C.Update(pp, ptr, S, V ): Let p = |S|, S = (`(1), . . . , `(p)), and V = (v(1), . . . , v(p)).
Parse pp = (h, n). Let segtree be the pointer to the segment tree in memory.

Preprocessing Steps.

1. Compute the sets of nodes dangling(S) and ancestors(S).

2. Let R,W be sets, initially empty, which will contain the read and written values
(respectively).

3. Add (`(i), block(v(i))) to W for all i ∈ [p].

For each level j = 0, . . . , log(n)− 1:

Access Step. Do the following in parallel:

• For every node ` ∈ ancestors(S) at level j, in parallel:

– Let u be the value with (`, u) ∈ W , and write u to ` in ptr. Let uprev
` be the

value overwritten.

– Write 1 to ` in segtree, and let the value overwritten be bprev
` .

• For every ` ∈ dangling(S) at level j, in parallel:

– Read ` in ptr, and let its value be urd
` .

– Read ` in segtree, and let its value be brd
` .

Compute Steps.

1. In parallel for every ` ∈ ancestors(S) at level j, if bprev
` = 0, set uprev = dummy(j).

Add (`, uprev) to R.

2. In parallel for every ` ∈ dangling(S) at level j, if brd
` = 0, set urd = dummy(j).

Add (`, urd) to R.

3. In parallel for every node ` ∈ ancestors(S) at level j + 1, do the following:

(a) For its left child and right child, let uL and uR, respectively, be the values
given by W if they exist and by R otherwise. If neither, abort and output ⊥.

(b) Compute u as the hash of uL||uR using h, and add (`, u) to W .

Form Output.

1. For each i ∈ [p], let v
(i)
prev ∈ {0, 1}λ∪{⊥} be the value such that (`(i), block(v

(i)
prev)) ∈ R.

2. Let π be a list containing all (`, u) in R such that ` ∈ dangling(S).

3. If any of the above values cannot be found, output ⊥. Otherwise, output (digest, τ)

where digest is the value of the root given by W and τ = (v
(1)
prev, . . . , v

(p)
prev, π).
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• b = C.VerOpen(pp, digest, S, V, π): Parse pp = (h, n) and output 1 if and only if the following
steps are successful:

1. Check that |S| = |V |, each element of S is in [n], each value in V is in {0, 1}λ ∪ {⊥},
and each element of π is a pair (`, u) ∈ [n]× {0, 1}2λ.

2. Compute dangling(S) and check that the set of locations in π is equal to dangling(S).

3. Let R be a set, initialized with all elements π and (`(i), block(v(i))), where `(i) is the ith
location in S and v(i) is the ith value in V .

4. For each level j = 0, . . . , log n− 1, do the following:

(a) For each pair of sibling nodes `L, `R in S∪dangling(S) at level j, let ` be the location
of their parent node.

(b) Compute u as the hash of the values for `L and `R given by R using h.

(c) Add (`, u) to R.

5. Check that the value in R corresponding to the root is equal to digest.

• b = C.VerUpd(pp, digest, S, V, digest′, τ): Parse pp = (h, n) and output 1 if and only if the fol-
lowing hold:

1. τ can be parsed as V ′||π where |V ′| = |S|.
2. Each value of V is in {0, 1}λ.

3. C.VerOpen(pp, digest, S, V ′, π) = 1.

4. C.VerOpen(pp, digest′, S, V, π) = 1.

Theorem 5.9. Assuming the existence of collision-resistant hash function families, there exists a
concurrently updatable hash function.

We prove Theorem 5.9 in Section 5.3, where we show that the construction C satisfies complete-
ness in Lemma 5.10, soundness in Lemma 5.13, and efficiency in Lemma 5.16.

5.3 Proofs

Lemma 5.10 (Completeness). The construction C satisfies completeness.

Proof. Fix any λ, n ∈ N with n ≤ 2λ and pp in the support of C.Gen(1λ, n). To show the com-
pleteness properties, recall that the hash function algorithms keep track of a Merkle tree at ptr
and a segment tree at segtree to keep track of which nodes are initialized. We start by defining a
notion which captures when memory at (ptr, segtree) is consistent with a Merkle tree for a partial
string D. Formally, we say that (ptr, segtree) is consistent with a partial string D = (n, I, A) if the
following hold:

1. For every i ∈ I, leaf i has value 1 in segtree,

2. For every node with value 1 in segtree, the values of its ancestors in segtree are set to 1, and

3. For every node node with value 1 in segtree, its value in ptr is equal to the value of node in
the Merkle tree for block(D1)|| . . . ||block(Dn) using the hash function given by pp.

We start by showing that doing an update preserves consistency.
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Claim 5.11. Suppose that (ptr, segtree) is consistent with a partial string D. For any ordered set
S = (`(1), . . . , `(p)) of locations `(i) ∈ [n] and tuple V = (v(1), . . . , v(p)) of words v(i) ∈ {0, 1}λ, let
(ptr′, segtree′) be pointers to memory after computing C.Update(pp, ptr, S, V ). Then, (ptr′, segtree′)
is consistent with the partial string D′, where D′

`(i)
= v(i) for all i ∈ [p], and D′ agrees with D at

all other locations.

Proof. When C.Update(pp, ptr, S, V ) is computed, the only nodes updated in ptr and segtree are
those in ancestors(S). In segtree, every node in ancestors(S) is set to 1. This immediately gives the
first two properties of consistency. To show the third property, let MT be the Merkle tree for the
string block(D1)|| . . . ||block(Dn) using the hash function given by pp. We need to show that every
node with value 1 in segtree′ has the same value in ptr′ and MT. Since (ptr, segtree) are consistent
with D, and the only changes are to nodes in ancestors(S), it suffices to show that this holds for
every node in ancestors(S). Throughout this proof, we will refer to iteration j of C.Update as the
iteration which updates the jth level of the tree, for j = 0, . . . , log n.

Consider any node node ∈ ancestors(S). We show by induction on the level of node that its
value in ptr′ is equal to its value in MT. For the base case, when node is at level 0 (i.e., it is a
leaf), it follows that node = `(i) for some index i. It is only updated at iteration 0, where it is set
to block(v(i)) = block(D`(i)), which gives the base case.

Next, assume that every node at level j has the same value in ptr′ and MT, and suppose node
is at level j + 1. For convenience, let `L, `R be the locations for the left and right child of node,
respectively. During the update, node is only written to in the (j+ 1)st iteration, where it is set to
the hash of the concatenation of values corresponding to its children, found in sets R,W maintained
by the algorithm. Let uL, uR be the values used for the left and right child, respectively. To show
that the value for node is indeed its value in MT, it therefore suffices to show that uL, uR are the
values for `L, `R in MT. Without loss of generality, we show this for the value uL used for `L.

To prove that uL is indeed the value of `L in MT, we claim the following:

(∗) If `L is initialized before the (j+ 1)st iteration, then uL is the value of `L in ptr′. If
it is not initialized, then uL is set to dummy(j).

We complete the proof assuming (∗), and then show that (∗) holds. The only time that `L is
accessed by C.Update is during the jth iteration. There are two cases to consider:

• Case 1: `L is in ancestors(S). In this case, it is initialized during iteration j, so it follows by
(∗) that uL is its value in ptr′. Since it is at level j, then by the inductive hypothesis, this is
equal to the value in MT.

• Case 2: `L is in dangling(S). In this case, it is not changed by C.Update. If it was already
initialized before the update, then the inductive hypothesis applies as in the previous case. If
not, then uL = dummy(j) by (∗). Moreover, since (ptr, segtree) is consistent with D before
the update, then the fact that `L is uninitialized in segtree implies that D` = ⊥ for every leaf
` that is a descendant of `L. Therefore, the value of `L in MT is dummy(j), so uL is indeed
equal to the value of `L in MT.

Since node is an ancestor of a leaf in S, these are the only two cases. Therefore, assuming (∗), the
value uL agrees with MT. To complete the proof, it remains to show (∗).

To prove that (∗) holds, recall that the algorithm C.Update first checks if `L is in the set W ,
and then checks the set R. Both children are only accessed and modified in R,W in iteration j.
Between the two children, at least one child must be in ancestors(S). In this case, in iteration j it
is initialized and its final value in memory is added to W , which is the value used. If either child is
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not in ancestors(S), then it is in dangling(S) by definition. In this case, it follows that in iteration
j it is added to R (and not W ), where either its value in memory is used, or dummy(j) if it is not
initialized. This completes the proof of (∗), which in turn gives the claim. �

Next, we show that the memory after initially hashing a partial string is consistent with that
partial string.

Claim 5.12. Let Dstart = (n, I, A) be a partial string, and let (ptr, segtree) be the pointers to the
Merkle tree and segment tree in memory after running C.Hash(pp, Dstart). Then, (ptr, segtree) are
consistent with Dstart.

Proof. Running C.Hash(pp, Dstart) results in the same memory as running:

1. (ptr, digest) = C.Hash(pp, D⊥), where D⊥ is the empty partial string.

2. C.Update(pp, ptr, I, A), where we recall that I specifies the set of non-⊥ locations in Dstart

and A is the assignment to those locations.

After C.Hash(pp, D⊥), it is vacuously true that the resulting memory is consistent with D⊥ since
there are no non-⊥ words in D⊥. Therefore, by Claim 5.11, the memory after C.Update(pp, ptr, I, A)
is consistent with Dstart. �

We are now ready to prove completeness. Fix any partial string Dstart = (n, I, A), integer

m ≥ 0, ordered sets S(i) ⊆ [n] and tuples V (i) ∈ ({0, 1}λ)|S(i)| for i ∈ [m]. Compute

1. (ptr, digest0) = C.Hash(pp, Dstart).

2. For i = 1, . . . ,m, compute (digest(i), τ (i)) = C.Update(pp, ptr, S(i), V (i)).

Let D be the partial string formed by writing each word in V (i) to Dstart at the corresponding
location in S(i) for i = 1, . . . ,m, and let MT be the Merkle tree for D. We start by noting that
(ptr, segtree) is consistent with D after all m updates. This following by induction on m: for the
base case, when m = 0, this follows from Claim 5.12. For the inductive step, assuming this holds
for m updates, then Claim 5.11 implies that it holds after the (m+1)st update. Using the fact that
(ptr, segtree) is consistent with D, we proceed to show open completeness and update completeness.

Open Completeness. Fix any p ≥ 0 and ordered set S = (`(1), . . . , `(p)). Compute

(V, π) = C.Open(pp, ptr, S),

and parse V = (v(1), . . . , v(p)). To show open completeness, we first make the following assertions
about the values in MT:

• For all `(i) ∈ S, the value at leaf `(i) in MT is equal to block(v(i)).

• For all ` ∈ dangling(S), the value in MT is equal to the value u such that (`, u) ∈ π.

• The value of the root in MT is equal to digest(m).
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These assertions hold by consistency of (ptr, segtree) with D. Specifically, each of these values is
either given by the node’s value in ptr, or is set to dummy(j) if uninitialized and at level j. Each
initialized node agrees with MT by consistency, and for any uninitialized node, consistency implies
that all of the leaves that are descendants of that node must be uninitialized and thus have the
value ⊥. Therefore, dummy(j) is the value at the corresponding location in MT. Therefore, in
either case, the value given above is equal to the corresponding value in MT.

Using this, we proceed to show open completeness. We need to show (1) that D agrees with V
at the locations in S, and (2) that C.VerOpen(pp, digest(m), S, V, π) accepts. (1) follows immediately
from our observation that V correspond to the values at S in MT.

For (2), recall that C.VerOpen does syntactic checks on V and π, and then iteratively hashes
values down the tree to obtain a digest digest?. It accepts if all syntactic checks pass and digest? =
digest(m). By construction, V consists of a value v(i) for i ∈ [p], and the proof π contains a pair
(`, u) for each ` ∈ dangling(S), so the syntactic checks pass.

To show that digest? = digest(m), we have that digest? is derived from the values in V and π,
which constitute a set of values for S ∪ dangling(S). Specifically, digest? is obtained by iteratively
hashing each pair of siblings at each level until reaching the root. By Claim 5.8, there is a sub-tree
containing ancestors(S) whose leaves are all in S ∪ dangling(S). It follows that having values for
every node in S ∪ dangling(S) suffices to obtain a value for the root. Moreover, since the values
given for S ∪ dangling(S) are equal to the corresponding values in MT, then digest? is equal to
the root of MT. Since digest(m) is also equal to the root of MT, then digest? = digest(m), which
concludes the proof of open completeness.

Update Completeness. Fix any p ≥ 0, ordered set S = (`(1), . . . , `(p)), and tuple V = (v(1), . . . ,
v(p)). Compute

(digest, τ) = C.Update(pp, ptr, S, V ).

To show update completeness, we need to show that C.VerUpd(pp, digest(m), S, V, digest, τ) = 1,
which consists of syntactic checks and two inner verifications. The syntactic checks pass by defini-
tion of C.Update, which in particular state that τ can be parsed as V ′||π where V ′ is a tuple of p
values. For the verifications, we need to show that both of the following hold:

(A) C.VerOpen(pp, digest(m), S, V ′, π) = 1

(B) C.VerOpen(pp, digest, S, V, π) = 1

For (A), we claim that (V ′, π) would be the output of C.Open(pp, ptr, S), had it been run before

the final update. Specifically, for each i ∈ S, V ′ consists of a value v
(i)
prev with block(v

(i)
prev) equal to

the value in memory at each leaf in S before the update, or ⊥ if the leaf is uninitialized, just as
what would be output by C.Open. For π, it consists of the values read for each node in dangling(S),
or the dummy values if uninitialized. Since C.Update never writes to the nodes in dangling(S),
then these values are exactly what would be returned by C.Open. Therefore, (A) holds by open
completeness.

For (B), we claim that (V, π) would be the output of running C.Open(pp, ptr, S) after this final
update. To see this, we observe that V consists of a value v(i) for each `(i) ∈ S where block(v(i)) is
equal to its value in ptr after the update. Moreover, each of these nodes is initialized, and so these
are the values that would be returned by C.Open. For π, the same logic as above holds (namely,
that the nodes in dangling(S) are not changed by C.Update, and so are determined exactly as by
C.Open). Therefore, (B) accepts by open completeness, concluding the proof.

Lemma 5.13 (Soundness). The construction C satisfies soundness.
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Proof. Suppose for contradiction there exists a non-uniform PPT adversary A = {Aλ}λ∈N and a
polynomial q such that for infinitely many λ ∈ N, there exists an integer n ≤ 2λ such that

Pr


C.VerOpen(pp, digest(0), S(0), V (0), π(0)) = 1 ∧
∀i ∈ [m] : C.VerUpd(pp, digest(i−1), S(i), V (i), digest(i), τ (i)) = 1 ∧
C.VerOpen(pp, digest(m), S, V, π) = 1 ∧
∃` ∈ S ∩ S(0) : vprev 6= vfinal

 ≥ 1

q(λ)
, (5.1)

the probability is over pp ← C.Gen(1λ, n) and (m,
{

(digest(i), S(i), V (i), τ (i))
}
i∈[m]

, digest(0), S(0),

V (0), π(0), S, V, π)← Aλ(pp) and vprev and vfinal are defined as follows:

• vprev is the value in V (j) at the position of ` in S(j), where j ∈ {0, . . . ,m} is the largest index
with ` ∈ S(j). “

• vfinal is the words in V at the index of ` in S.

We show that whenever A succeeds, we can construct authentication paths certifying that ` can
be opened to two different values in digest(m), which breaks the binding of standard Merkle trees
assuming collision resistance.

The outline of the proof is as follows. First, in Claim 5.14, we will show that given a valid
opening for many locations, we can efficiently construct a valid with respect to each individual
location, which in fact is just a single Merkle tree authentication path. This claim actually suffices
for the case of no updates, i.e. m = 0. To deal with m > 0, we show in Claim 5.15 how, given
an opening under for ` under digest(i) and a valid update proof to digest(i+1), we can construct an
opening for ` under digest(i+1) (or otherwise break collision resistance). At a high level, applying
Claim 5.14 and then Claim 5.14 m times yields two Merkle tree authentication paths for vprev 6= vfinal

with respect to digest(m), which contradicts collision resistance of H as required.
We next formally state these general claims, then prove the lemma assuming they hold, and

finally prove each of the claims to complete the proof of the lemma.

Claim 5.14. For any λ, n ≤ 2λ, p ∈ N, pp in the support of C.Gen(1λ, n), ordered set S =
(`(1), . . . , `(p)), tuple V = (v(1), . . . , v(p)), digest digest, and proof π, if

C.VerOpen(pp, digest, S, V, π) = 1,

then there exist proofs π(1), . . . , π(p) such that

C.VerOpen(pp, digest, `(i), v(i), π(i)) = 1

for all i ∈ [p]. Moreover, they can be computed from (S, V, π) in polynomial time.

Claim 5.15. There exists a polynomial time algorithm A′ that on input (pp, digest, `, v, π, digest′, S,
V, τ), if

1. C.VerOpen(pp, digest, `, v, π) = 1 and

2. C.VerUpd(pp, digest, S, V, digest′, τ) = 1,

then A′ either outputs a collision in H under h, where h is given by pp, or outputs a proof π? such
that

C.VerOpen(pp, digest′, `, v?, π?) = 1

where v? = v if ` 6∈ S and otherwise v? is the value in V at the index of ` in S.
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Proving the lemma assuming the above claims. We next prove the lemma assuming that
Claims 5.14 and 5.15 hold. We condition on the event thatA succeeds, which occurs with probability
at least 1/p(λ).

First for the case of m = 0, we apply Claim 5.14 for (S(0), V (0), π(0)) and ` ∈ S(0) to efficiently

compute a proof π
(0)
` such that C.VerOpen(pp, digest(0), `, v

(0)
` , π

(0)
` ) = 1 where v

(0)
` is the value in

V (0) corresponding to location ` ∈ S(0). Note that since m = 0, then v
(0)
` = vprev by definition.

Next, we apply the claim for (S, V, π) and ` ∈ S to efficiently compute a proof πfinal
` such that

C.VerOpen(pp, digest(0), `, vfinal, πfinal
` ) = 1. By definition of C.VerOpen, π

(0)
` and πfinal

` both give valid
Merkle tree authentication paths with respect to the same location but different values vprev 6= vfinal.
This contradicts collision resistance ofH as this event occurs with probability 1/p(λ) by assumption.

Next we consider the case when m > 0. Again, we start by applying Claim 5.14 for (S(0), V (0),

π(0)) and ` ∈ S(0) to efficiently compute π
(0)
` such that C.VerOpen(pp, digest(0), `, v

(0)
` , π

(0)
` ) = 1

where v
(0)
` is the value for ` in V (0). Now we apply Claim 5.15 for i = 1, . . . ,m in order to either

find a collision or construct a proof π
(i)
` for the value v

(i)
` specified by the first i updates. Specifically,

for the first case of i = 1, note that (pp, digest(i−1), `, v
(i−1)
` , π

(i−1)
` , digest(i), S(i), V (i), τ (i)) satisfy

the conditions for Claim 5.15. As a result, we either find a collision or compute a proof π
(i)
` for

the value v
(i)
` with respect to digest(i). Assuming we do not find a collision, this implies that

the conditions for the claim also hold for general i > 1 as well. As such, after applying the

claim at most m times, we will either find a collision or have computed a proof π
(m)
` such that

C.VerOpen(pp, digest(m), `, v
(m)
` , π

(m)
` ) = 1. Note that v

(m)
` = vprev by definition. Finally, we apply

Claim 5.14 for (S, V, π) and ` ∈ S to efficiently compute efficiently compute a proof πfinal
` such that

C.VerOpen(pp, digest(m), `, vfinal, πfinal
` ) = 1. Again, by definition of C.VerOpen, π

(m)
` and πfinal

` both
give valid authentication paths for ` but for different values vprev 6= vfinal. Thus, in the case where
applying Claim 5.15 does not directly find a collision with respect to H, we still find a collision by
the binding property of Merkle trees. As this event occurs with probability 1/p(λ) by assumption,
this contradicts the collision resistance of H.

Proving the claims. We now continue to prove Claims 5.14 and 5.15. Towards this, we start by
defining a helpful criteria for when C.VerOpen accepts. This requires defining an algorithm extend
and the notion of an induced value. To define these, fix any λ, n, p ∈ N with p ≤ n ≤ 2λ, pp in
the support of C.Gen(1λ, n), ordered set S = (`(1), . . . , `(p)), tuple V = (v(1), . . . , v(p)), and list π of
values for nodes in dangling(S).

Define extend(pp, S, V, π) to do the following. Parse pp = (h, n) and let T be the proper sub-tree
of the complete binary tree given by Claim 5.8 whose leaves are S ∪ dangling(S). Assign values to
the nodes in T as follows:

• For each leaf `(i) in S, let its value be given by block(v(i)).

• For each node in dangling(S), let its value be given by π.

• For the remaining nodes, iteratively hash each pair of siblings using h at each level to assign
a value to their parent, until reaching the root.

Let MT be the resulting (proper) Merkle tree on T , and define extend(pp, S, V, π) = MT.
Using this algorithm, we define an induced value as follows. For any node ` and value u, we say

that (`, u) is induced by (S, V, π) if the value of ` in MT is u, where MT = extend(S, V, π). Note
that this implies that u is the value of ` in any Merkle tree which agrees with the above values at
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S ∪ dangling(S). Our main observation for this proof is that when S, V, π have the correct syntax,
the following holds:

(?) C.VerOpen(pp, digest, S, V, π) accepts if and only if digest is the value for the root
induced by (S, V, π).

This follows immediately from the definition of C.VerOpen. Specifically, C.VerOpen(pp, digest, S, V,
π) implicitly runs extend(pp, S, V, π), compares the value of the resulting root to digest, and accepts
when they are equal. Using (?), we are now ready to prove the two claims above.

Proof of Claim 5.14. Fix λ, pp, S, V , digest, and π as in the statement of the claim. Let MT =
extend(pp, S, V, π). For each i ∈ [p], let π(i) contain all pairs (`, u) such that ` ∈ dangling(`(i)) and u
is the value of `(i) in MT. Note that these values exist as dangling(`(i)) ⊆ ancestors(S)∪dangling(S),
and MT contains the latter nodes.

For each i ∈ [p], we show first that π(i) is efficiently computable, and then we show that it gives
a valid opening proof. For efficiency, note that extend(pp, S, V, π) runs in time poly(λ, p, log n),
since it requires computing at most |S ∪ dangling(S)| hashes, each taking time polynomial in λ,
and |S ∪ dangling(S)| ∈ poly(p, log n) by Claim 5.7. Moreover, the input to extend has length
polynomial in λ, p, and log n, so it follows that π(i) can be computed in polynomial time based on
S, V, π.

Next, we show that C.VerOpen(pp, digest, `(i), v(i), π(i)) = 1. By (?), this accepts whenever
digest is the value for the root induced by (`(i), v(i), π(i)). Let MT′ = extend(pp, `(i), v(i), π(i)). We
want to show that digest is the value of the root in MT′. Note that the values of `(i) and of
dangling(`(i)) agree between MT and MT′ by definition. It follows that the values for each ancestor
of `(i) agree between the two Merkle trees. Finally, we note that since C.VerOpen(pp, digest, S, V, π)
accepts, then digest is the value of the root of MT, and hence is the value of the root of MT′, which
completes the proof. �

Proof of Claim 5.15. Since C.VerUpd(pp, digest, S, V, digest′, τ) = 1, then τ can be parsed as Vprev||π′
such that C.VerOpen(pp, digest, S, Vprev, π

′) = 1 and C.VerOpen(pp, digest′, S, V, π′) = 1. In the case
that ` ∈ S, then by Claim 5.14, A′ can use (S, V, π′) to compute and output a proof π? in polynomial
time such that C.VerOpen(pp, digest′, `, v?, π?) accepts, where v? is the value of ` given by V . As a
result, we focus on the case that ` 6∈ S, and thus v? = v.

Consider running the verifications C.VerOpen(pp, digest, `, v, π), C.VerOpen(pp, digest, S, Vprev,
π′), and C.VerOpen(pp, digest′, S, V, π′). They all accept by assumption, and from the inputs to each
we can define a Merkle tree with all the induced values. Specifically, let MT = extend(pp, `, v, π),
let MTprev = extend(pp, S, Vprev, π

′), and let MTfinal = extend(pp, S, V, π′). By (?), the root of
MT and MTprev is digest, and the root of MTfinal is digest′. Note that MT contains all nodes in
ancestors(`) ∪ dangling(`), and both MTprev and MTfinal contain ancestors(S) ∪ dangling(S).

To construct a proof π? corresponding to opening location ` to value v? in digest′, we need to
construct values for dangling(`), which are simply the nodes in the authentication path for `. Before
defining π?, we introduce some notation. For j ∈ {0, . . . , log n− 1}, let nodej be the ancestor of `
at level j and let sibj be its sibling. Also, let i ∈ [log n] be the level in a binary tree containing the
closest common ancestor of leaf ` and any leaf in S.

Next, define π? to contain all pairs (sibj , uj) for j ∈ {0, . . . , log n− 1} where uj is defined as
follows:

• If j < i− 1, then uj is the value of sibj in MT (or ⊥ if it does not exist).
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• If j ≥ i− 1, then uj is the value of sibj in MTfinal (or ⊥ if it does not exist).

We claim that either C.VerOpen(digest′, `, v?, π?) = 1, in which case A′ outputs π?, or we can
find a collision in the hash function. Recall that C.VerOpen can be split into syntactic checks, and
checking the value of digest′. We first show that the syntactic checks done by C.VerOpen pass, and
then we show that either A′ outputs a collision, or the rest of the verification succeeds.

For the syntactic checks, it follows that the inputs to C.VerOpen are formatted correctly, so we
only need to show that π? contains a value for all nodes in dangling(`) = (sib1, . . . , siblogn−1). To
show this, we have the following:

• For j < i− 1, sibj ∈ dangling(`) by definition and so is successfully found in MT.

• For j = i − 1, we note that nodei is the closest common ancestor of ` and S, and is not
a leaf since ` 6∈ S. Therefore, the children of nodei, namely sibi−1 or nodei−1, must be in
ancestors(S) ∪ dangling(S). This implies that sibj is found successfully in MTfinal.

We note that this also implies that nodei−1 is in dangling(S), since it cannot be in ancestors(S)
by definition of i, which is will be helpful later on in the proof.

• For j > i − 1, we have that nodej ∈ ancestors(nodei) ∈ ancestors(S), and so its sibling
sibj ∈ ancestors(S) ∪ dangling(S).

This shows that π? contains a value for every node in dangling(`), so the syntactic checks done by
verification pass.

Next, C.VerOpen(digest′, `, v?, π?) checks digest′ by computing the root induced by (`, v?, π?).
Along the way, it computes a value for each node in ancestors(`(i)). Let c1, . . . , clogn be these
values. We will show that either clogn = digest′, and so verification accepts, or we can find a
collision. Towards this, we have the following observations.

1. ci−1 is the value of nodei−1 in MT.

This holds since ci−1 is computed based on leaf values for ` and for sib0, . . . , sibi−2 from MT,
and so it agrees with MT.

2. Either nodei−1 has the same value in MT and MTprev, or we can find a collision.

Both Merkle trees MT and MTprev have digest as the root. They also both contain nodei−1,
since it is in both ancestors(`) by definition and in dangling(S) as shown above. This implies
that they also contain the nodes in its authentication path. If the values for nodei−1 between
the two trees are not the same, then this would give two different openings for nodei−1 relative
to digest, which can be used to find a collision.

3. nodei−1 has the same value in MTprev and MTfinal.

MTprev is induced by (S, Vprev, π
′), while MTfinal is induced by (S, V, π′). Therefore, these trees

agree at all nodes in π′, which consists of all nodes in dangling(S), and in particular contains
nodei−1 as shown above. Therefore, MTprev and MTfinal have the same value for nodei−1.

4. (ci, . . . , clogn) are the values for nodei, . . . , nodelogn, respectively, in MTfinal.

By combining observation 1, 2, and 3, we have that ci−1 is the value of nodei−1 in MTfinal.
Moreover, the values for sibi−1, . . . , siblogn−1 in π? are defined to be the values from MTfinal.
For j = i, . . . , log n, the value cj is computed as the hash of these values for sibj−1 and
nodej−1, so cj is the value of nodej in MTfinal.
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Observation 4 implies that clogn = digest′, so C.VerOpen(pp, digest′, `, v?, π?) = 1, as required.
�

This completes the proof of Lemma 5.13.

Lemma 5.16 (Parallel Efficiency). There exists a polynomial β such that the construction C sat-
isfies β-parallel efficiency.

Proof. We show the three required efficiency properties in the following claims. The lemma then
follows by letting the polynomial β be any polynomial larger than q1, q2, and q3 given in the claims.

For the following claims, let thash(λ) denote the time it takes to hash each pair of 2λ-bit words,
and note that thash(λ) ∈ poly(λ). It will also be helpful to note that for any set S of p locations,
ancestors(S) ∪ dangling(S) contains at most p log n nodes by definition.

Claim 5.17. There exists a polynomial q1 such that for any λ, n ∈ N with n ≤ 2λ and pp in the
support of C.Gen(1λ, n), the algorithms C.Open, C.Update, C.VerOpen, and C.VerUpd, when given
a set S of p locations and public parameters pp, can each be computed in with work p · q1(λ), or
with depth q1(λ) using p · q1(λ) processors.

Proof. We analyze C.Update, and we observe that the analyses for C.Open and C.VerOpen follow
similarly as the algorithms have the same overall structure. Furthermore, C.VerUpd simply calls
C.VerOpen twice. Thus, it suffices to argue the claim for C.Update.

We note that C.Update can be split into (1) preprocessing, (2) access and compute steps at each
level in the tree, and (3) forming the output. Before analyzing the complexity of each of these,
we discuss how to implement each of the relevant sets in order to achieve efficiency. The sets S,
dangling(S), ancestors(S), R, and W each contain at most p · log n ∈ p · poly(λ) nodes, and R,W
additionally contain 2λ-bit values for each node. We would like each set to support concurrent
reads and writes to distinct locations. This is done by allocating 2n · poly(λ) bits in memory for
each set (initialized to zeroes) and using an indicator bit to say if an element is in the set or not
followed by its value (if any).

This can be done as there are 2n nodes in the tree, and each location can be encoded with
log(2n) bits (and so with the above implementation, there are poly(λ) bits in memory for each
node). Specifically, the root is encoded as 0, and for each node with index i, its left and right
children are encoded as 2i+ 1 and 2i+ 2, respectively. The exact encoding is not important for our
application, only that each location requires log(2n) bits and that it gives a way to find a node’s
parent or child in time poly(λ). Note that with this encoding and at most p · poly(λ) processors
for each of the above sets, every location in each set can be accessed concurrently.

Next, we analyze the running time of (1), (2), and (3). For (1), the preprocessing steps require
computing the relevant sets, which can be done in depth poly(λ) using p processors with the
implementation described above. Specifically, computing R and W is straightforward, where for
W , we assume that each block(v(i)) can be encoded (and decoded) in poly(λ) time. For ancestors(S),
we can use p processors as follows. Each of the p processors can start at the leaf nodes (where each
processor know its starting leaf index). Subsequently, they can move down the tree and update the
sets. To make sure only one process is accessing a single location at a time, after each processor
adds node at level i of the tree, it can check if that node’s sibling was also added to ancestors(S).
If so, only the processor accessing the sibling with the larger index can move on to the next level.
Once a node stops (because its corresponds to the smaller of the two nodes), it can stop checking
nodes further down the tree. Thus, at most two processors might be trying to access a node at each
step, and each processor can efficiently check if it should continue. After determining ancestors(S),
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the set dangling(S) can be computed in depth poly(λ) with p processors, where each processor is
initially assigned to a leaf node in S, and adds that node’s sibling to dangling(S) whenever the
sibling is not given by ancestors(S). Each processor can stop making updates exactly as above, so
that each memory location is only accessed by a single process.

For (2), we would like each access step to take a single time slot, as specified by the algorithm.
To do this, at the end of the pre-processing steps, we can compute the locations for each leaf in
S ∪ dangling(S), which only adds an additional poly(λ) depth using p log n processors, and then
spawn p log n processors to access these locations in Merkle tree in the subsequent access step.
Then, during the compute steps, using depth poly(λ) and at most p processors, the locations for
the next access step can be computed as above. Continuing in this fashion ensures that each access
step is indeed a single step, with at most p processors. The compute steps additionally require
updating R and W , as well as computing a hash per each of the p processors. This takes depth
poly(λ) using p ·poly(λ) processors, where poly(λ) extra processors are possibly needed to compute
the hash efficiently. These access and compute steps are repeated log n ≤ λ times for each level in
the tree.

For (3), forming the output requires reading R with at most poly(λ) work per element in the
set which can be distributed as above. Obtaining the value of digest from W requires an additional
O(λ) depth.

Thus, it holds that there is a polynomial q1 such that C.Update, C.Open, C.VerOpen, and
C.VerUpd can be computed with work p·q1(λ), or with depth q1(λ) using at most p·q1(λ) processors.
�

Claim 5.18. There exists a polynomial q2 such that for any λ, n ∈ N with n ≤ 2λ, pp in the
support of C.Gen(1λ, n), and partial string D = (n, I, A) computing C.Hash(pp, D) can be done in
work |I| · q2(λ), or with depth q2(λ) with |I| · q2(λ) processors.

Proof. Recall that computing C.Hash(pp, D) consists of allocating memory initialized to 0 (which we
assume is free), computing log n hashes to compute dummy values, and running C.Update(pp, ptr,
I, A). As shown in the previous claim, running C.Update takes either work |I| · q1(λ), or depth
q1(λ) using |I| · q1(λ) processors, and computing log n ≤ λ hashes requires thash(λ) · log n ∈ poly(λ)
work. Thus, we let q2 be a polynomial such that q2(λ) is at least as large as q1(λ) + thash(λ) · λ to
cover the depth requirement. �

Claim 5.19. There exists a polynomial q3 and an algorithm OpenUpdate such that the following
holds. For any λ, p, n ∈ N with n ≤ 2λ, pp in the support of C.Gen(1λ, n), pointer ptr, ordered set
S ⊆ [n] of p locations, and tuple of words V ∈ ({0, 1}λ)p, define (V ′, π, digest, τ) as follows:

• (V ′, π) = C.Open(pp, ptr, S) and

• (digest, τ) = C.Update(pp, ptr, S, V ).

It holds that OpenUpdate(pp, ptr, S, V ) outputs (V ′, π, digest, τ) and computing k sequential calls to
OpenUpdate, each on at most pmax locations, can be done with k · pmax · q3(λ) work, or with depth
(k − 1) + q3(λ) using at most pmax · q3(λ) processors.

Proof. For the algorithm OpenUpdate, we note that C.Update already computes the values for S
before the update and the values for dangling(S). We therefore define OpenUpdate to run C.Update
to obtain (digest, τ), parse τ = V ′||π where V ′ ∈ ({0, 1}λ ∪ {⊥})p and output (V ′, π, digest, τ).
Since V ′ gives value for each location in S in the Merkle tree before being updated (or ⊥ is
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uninitialized), then V ′ is the tuple of values for S given by C.Open(pp, ptr, `) before the update.
Additionally, because the node values for dangling(S) are unchanged by C.Update, the proof π
output by OpenUpdate will be the same as in C.Open. Therefore, the output of OpenUpdate is
correct.

To perform k sequential updates to the Merkle tree, we observe that it is possible to pipeline
them, as we describe next. Note that each update only needs to share memory corresponding to the
Merkle tree and segment tree. All other memory used by the algorithm specified in Claim 5.17 can
be allocated per updated. Consider a sequence of k sequential calls to OpenUpdate, denoted Updi

for i ∈ {0, . . . , k − 1}, each updating at most pmax locations. Recall that OpenUpdate pre-processes
its input, then iterates over the levels of a binary tree doing a single access step and then compute
steps at each level, and then forms its output. In what follows, it will be helpful to denote the
phases of computation done by Updi as the sequence:

P i, Ai0, C
i
0, A

i
1, C

i
1, . . . , A

i
log(n)−1, C

i
log(n)−1, F

i

where P i denotes the pre-processing steps, Aij is the access step at iteration j, Cij denotes the

compute steps at iteration j, and F i corresponds to the steps for forming the output.
To perform the updates in parallel, we will pipeline them in different processes so that one starts

after the other: specifically, Upd0 will start at time 0, Upd1 will start at time 1, and in general
Updi will start at time i. Each process remembers the node values it sees during the procedure.
The value of the root node, when all operations finish, is the new digest. Additionally, even if
some update is given less than pmax positions, we require that certain phases of the update whose
running time depends on pmax (namely, the preprocessing steps and compute steps) still take time
as if they were given pmax positions. Namely, each of these takes fixed polynomial time in λ and
pmax, so this can be easily implemented by doing dummy operations until the right amount of time
has elapsed. This ensures that for each update P i takes the same amount of time for each update
i, and Cji takes the same amount of time for each i, j.

In terms of correctness, we want to show that for every i ∈ [k], the output of Updi in the
concurrent execution is the identical to its output in a sequential execution where the operations
are run sequentially (using the number of processors specified by the C.Update description). To do
so, we will show that for each block of memory shared between different operations, the memory
accesses to that block occur in the same order in both executions. The shared memory is that in
ptr and segtree. Note that the only steps which access this memory are the access steps Aij .

Consider any memory location in level j of ptr or segtree. This is only accessed by Aij for each i.

Therefore, consider any Aij and Ai
′
j such that such that Aij occurs before Ai

′
j in the sequential

execution. We will show that this is preserved in the concurrent execution.
To show this, let tP be the depth of the preprocessing steps in single call to C.Update and let

tC be the depth of the compute steps in a single C.Update, and note that tP , tC are functions of
λ, pmax. In the concurrent execution, Aij occurs at time t , i + tP + j · (tC + 1). This is because

Updi starts at time i, and before Aij occurs, there are tP steps for the pre-processing P i, j access

steps Ai0, . . . , A
i
j−1, and j groups of tC compute steps Ci0, . . . , C

i
j−1. Let t′ , i′ + tP + j · (tC + 1)

be the time that Ai
′
j occurs. Since Aij occurs first in the sequential execution, then i < i′, which

implies that t < t′. Since this holds for every i 6= i′, it follows that every memory access to level j of
the tree occurs in the same order in both the concurrent and sequential executions, which implies
correctness. Note that this crucially relied on the fact that each access step indeed is a single step.

Lastly, we show efficiency for the pipelined operations. We note that since OpenUpdate requires
running C.Update and then formatting the output, a single invocation to OpenUpdate requires depth
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2 · q1(λ) using at most pmax · q1(λ) processors by Claim 5.17, and can be done with 2pmax · q1(λ)
total work. This implies that the total work to do all k operations is k · pmax · 2q1(λ). To decouple
this into depth and processors, we note that since we pipeline the operations such that in every
step a new OpenUpdate begins, the total depth of this sequence of operations can be bounded by
2 · q1(λ) + (k − 1). Moreover, there can be a total of 2 · q1(λ) operations occurring concurrently,
and so (2 · q1(λ)) · (pmax · q1(λ)) bounds the total number of processors needed at any given time.
Letting q3(λ) = 2 · (q1(λ))2 completes the proof. �

This completes the proof of Lemma 5.16.

6 From Succinct Arguments to SPARKs

In this section, we present our main transformation, which will be instrumental in our construction
of SPARKs. Specifically, we show a generic transformation from any concurrently updatable hash
function and succinct argument of knowledge for NP, to an argument which satisfies the SPARK
completeness and argument of knowledge properties, and where the provers overhead depends ad-
ditively on the multiplicative overhead of the original succinct argument. As we show in Section 8,
when instantiating this transformation with a succinct argument whose prover overhead is suffi-
ciently small (which is indeed satisfied by existing succinct arguments), this transformation yields
a SPARK.

We first give the transformation in the interactive setting. To do so, we start by describing
a helper language in Section 6.1, and then give the interactive protocol in Section 6.2. We then
prove completeness, argument of knowledge, optimal prover depth, and succinctness in Section 6.3.
Finally, we show the transformation in the non-interactive setting in Section 6.4.

6.1 The Update Language

Let (M,x, y, L, t) be any statement in LPRAM
U , where M is a PRAM program with access to a string

D ∈ {0, 1}nλ in memory for n ≤ 2λ. To help with our construction, we define the language Lupd

in Figure 2. This language corresponds to k steps of a PRAM computation where at each step we
additionally update a digest corresponding to the memory of M . Specifically, a statement

(M,x, k, pp, h, digest0, hash0, digestk, hashk)

is in Lupd if there exist a sequence of k consistent updates which start with digest digest0 and end
with digest digestk. Here, each update may correspond to concurrently reading or writing multiple
positions. The ith update (digesti, V

prev
i , V rd

i , πi, τi) specifies the digest digesti after that step, the
values V prev

i at the updated locations in the digest before the update, the values V rd
i read from or

overwritten in D during that step, and proofs πi, τi validating the operations performed at that
step.

The relation of this language is defined relative to a starting PRAM configuration (State0, V
rd
0 )

and the values given by

(Statei,Opi, Si, V
wt
i ) = parallel-step(M, Statei−1, V

rd
i−1)

for i ∈ [k]. For every step i, the relation checks (1) that the update from digesti−1 to digesti is
valid (using proof τi and the values V rd and V wt) and (2) there is a valid opening for digesti−1
at locations in Si (using proof πi and the values V prev

i ). Specifically, this check guarantees that
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Language Lupd:

Statement. (M,x, k, pp, h, digest0, hash0, digestk, hashk)

Witness. (State0, V
rd
0 ) and updates (u1, . . . , uk), where ui = (digesti, V

prev
i , V rd

i , πi, τi)
for all i ∈ [k].

Relation Rupd. For each i ∈ [k]:

– Compute (Statei,Opi, Si, V
wt
i ) = parallel-step(M, Statei−1, V

rd
i−1).

– Let vrd
j , vwt

j , vprev
j , `j , and opj be the jth values in V rd

i , V wt
i , V prev

i , Si, and Opi,
respectively, for each j ∈ [|Si|]. The following hold:

1. C.VerUpd(pp, digesti−1, Si, Vi, digesti, τi) = 1, where Vi is a tuple of |Si| values,

where the jth element of Vi is v
opj
j .

2. C.VerOpen(pp, digesti−1, Si, V
prev
i , πi) = 1.

3. For each j ∈ [|Si|], vprev
j ∈

{
⊥, vrd

j

}
.

4. For each j ∈ [|Si|], if vprev
j = ⊥ and `j < |x|, then vrd

j = x`j .

Lastly, it holds that hash0 = h(State0, V
rd
0 ), hashk = h(Statek, V

rd
k ).

Figure 2: A language for verifying k steps of a RAM computation M on input x from initial state
State0 to final state Statefinal.

the value in V rd
i claimed to have been read for each position either already appeared there under

digesti−1, or that the position was ⊥ before step i and was initialized correctly in step i. Lastly, it
checks that the values before the sequence of updates State0, V

rd
0 and those after the final update

Statek, V
rd
k hash (using h) to the values hash0, hashk, respectively, given by the statement.

We emphasize that for each step i, the values V rd
i , V wt

i , and V prev
i each serve a difference purpose:

for each wt operation in the update, V wt
i contains the value written to D, and V rd

i contains the
value overwritten in D. For each rd operation, V rd

i contains the read value (and V wt
i contains ⊥).

Finally, V prev
i contains the values underlying the digest before the update, at all the positions in

question.
The key properties of this language are (1) the witness scales with the length of the computation

and not the size of the memory, and (2) witnesses for consecutive Lupd computations can be
merged into a single witness for a larger Lupd computation. This allows us to prove that (M,x,
y, L, t) ∈ LPRAM

U with witness w by splitting a proof that M(x,w) = 1 into proofs of many sub-
computations, where the proof of each sub-computation will correspond to a statement in Lupd.

The complexity of Lupd. Note that the language Lupd is a standard NP language. In particular,
verifying that an instance-witness pair corresponding to k ≤ t updates is in the relation for Lupd

can be done by a circuit with depth k · β(λ) · q(λ, |(M,x)| , log t) for a polynomial q using β(λ) · pM
processors, where β is the efficiency of the concurrently updatable hash function, whenever the
number of positions changed in each update is at most pM (this follows from the efficiency of the
concurrently updatable hash function). When using a succinct argument to prove statements in
Lupd, we can either view the relation as a circuit, Turing machine, or PRAM machine that uses
β(λ) · pM processors.
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Compute-and-prove

Input: T, State0, V
rd
0

Prover Input: Witness w, ptr
Hardcoded Values: 1λ,M, x, t, γ, pp, h
Protocol:

1. If T ≥ γ log t + 1, set k = bT/γc, which will be the number of steps to compute,
and otherwise set k = T .

2. P does the following for i = 1, . . . , k:a

(a) Compute (Statei,Opi, Si, V
wt
i ) = parallel-step(M, Statei−1, V

rd
i−1).

(b) Update D by running V rd
i = accessD(Opi, Si, V

wt
i ).

(c) Spawn a parallel process to compute OpenUpdate(pp, ptr, Si, Vi), where Vi is a
tuple of |Si| values where the jth value is given by that of either V rd

i or V wt
i

according to the corresponding operation in Opi. Let (V prev
i , πi, digesti, τi) be

the output.

3. Without waiting for Step 2c to halt, if T ≥ γ log t + 1 then P spawns a process to
run Compute-and-prove with V on input (T − k,Statek, V rd

k ).

4. Without waiting for Step 2c to halt, P computes hashk = h(Statek, V
rd
k ).

5. Once step 2c halts, P sets statement = (M,x, k, pp, h, digest0, hash0, digestk, hashk)
and wit = ((State0, V

rd
0 ), (digest1, V

prev
1 , V rd

1 , π1, τ1), . . . , (digestk, V
prev
k , V rd

k , πk, τk)).
In the statement, digest0, hash0 are the final digest and hash computed in the pre-
vious call to Compute-and-prove, or digeststart, hashstart in the case that this is the
first one.

6. P spawns a process to run an interactive argument of knowledge with V to send
statement to V and prove that statement ∈ Lupd using (PsARK(wit),VsARK).

aThe definitions of parallel-step and access can be found in Section 3.1, and the definition of OpenUpdate
is specified by Definition 5.4.

Figure 3: A parallel algorithm, used in the protocol in Figure 4, that computes and proves T steps
of RAM computation.

6.2 Interactive Protocol

In this section, we give our protocol in Figures 3 and 4. It relies on the following ingredients:

• A succinct argument of knowledge (PsARK,VsARK) for Lupd with (α, ρ)-prover efficiency.

• A concurrently updatable hash function C with β-parallel efficiency.

• A collision-resistant hash function family ensemble H = {Hλ}λ∈N with h : {0, 1}∗ → {0, 1}λ
for each h ∈ Hλ. We note that this is implied by C.

We refer to Section 2 for a high level overview of the construction, and next give the formal details.

Parameters. For ease of readability for the protocol and corresponding proofs, we define the
parameters for the protocol with respect to the relation RPRAM

U , security parameter λ ∈ N, and
statement (M,x, t, L) ∈ {0, 1}∗ as follows. Note that we assume that all functions defined below
are computable in polynomial time in their input length.
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• n ≤ 2λ is the amount of words in memory needed to run M , and pM is the number of parallel
processors used by M .

• β , β(λ) is the “hash efficiency” of our construction. Namely, β upper bounds the parallel
efficiency of C on security parameter λ and the time to compute a hash from Hλ. Specifically,
we will be using the hash function h ∈ Hλ on inputs containing k RAM states and k words,
for k ∈ N, and we require that this takes time β using k · β processors. For example, this can
be achieved by using C for H.

• α and ρ are functions defining the prover efficiency of (PsARK,VsARK). For any security
parameter Λ, machine, input, and output of total length X, and bound on time T to verify a
statement in Lupd using P processors, without loss of generality we assume α(Λ, X, T, P )/T
and ρ(Λ, X, T, P ) are increasing functions in X, T , and P .10 For any statement in Lupd

corresponding to k updates, we note that T can be written as k · f(k) where f is increasing
in k (and also depends on λ, |(M,x)|), and so α(Λ, X, T, P )/k is also increasing as a function
of k.

• `upd, tupd, pupd are functions determining the complexity of an Lupd instance on at most t
updates. Define `upd , `upd(λ, |(M,x)| , t) to be an upper bound on the statement length, and
note that `upd ∈ |(M,x)|+log t+poly(λ) by definition of Lupd. We let tupd , tupd(λ, |(M,x)| ,
t) upper bound the time to verify the instance using pupd , pupd(λ, pM ) processors. Note that
tupd ∈ t · β · |(M,x)| · poly(λ, log t) when pupd = β · pM .

• α? , α(λ, `upd, tupd, pupd)/t is the worst-case multiplicative overhead (with respect to the
depth t) of the depth of running PsARK to prove a statement in Lupd corresponding to at
most t steps of computation, when using ρ? , ρ(λ, `upd, tupd, pupd) processors. Note that this
implies that any valid Lupd statement with k ≤ t steps can be proven in parallel time α? · k
with ρ? processors.

• γ , α? + 1 is such that a 1/γ fraction of remaining computation is done at each recursive
call to Compute-and-prove. We note that γ can be efficiently computed as a function of the
common inputs to the protocol.

We formalize the protocol in Figures 3 and 4. We are now ready to state our main theorem.

Theorem 6.1. [Restatement of Theorem 1.1] Suppose there exists a concurrently updatable hash
function and a succinct argument of knowledge (PsARK,VsARK) with (α, ρ)-prover efficiency for the
NP language Lupd. Then, there exists an interactive protocol (P,V) for RPRAM

U satisfying SPARK
completeness and argument of knowledge for NP, as well as the following efficiency properties.

There exists a polynomial q such that for all λ ∈ N and ((M,x, y, L, t), w) ∈ RPRAM
U where

M has access to n ≤ 2λ words in memory and pM processors, the following hold. Let α? and ρ?

(formally defined above based on α and ρ) be the multiplicative overhead in depth (with respect
to the number of steps) and number of parallel processors used, respectively, by PsARK to prove a
statement in Lupd corresponding to at most t steps of computation. Then:

• The depth of the prover is bounded by t + (α?)2 · |(M,x)| · L · q(λ, log(t · pM )) when using
(pM + α? · ρ?) · q(λ, log(t · pM )) processors.

10For example, if α(Λ, X, T, P )/T were not increasing in T , we could define an upper bound α′(Λ, X, T, P ) =
T ·maxt≤T (α(Λ, X, t, P )/t) which is increasing in T and preserves asymptotic behavior.
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Protocol (P,V) for RPRAM
U between P(w) and V on common input (1λ, (M,x, t, L)):

1. V samples pp ← C.Gen(1λ, n) and h ← Hλ, and then computes (∗, digeststart) =
C.Hash(pp, D⊥), where D⊥ is the empty partial string. V sends (pp, h) to P.

2. Both parties compute γ (as in the parameters paragraph), initialize Statestart as
a tuple containing the initial (empty) state of M , set V rd

start = (⊥), and compute
hashstart = h(Statestart, V

rd
start).

3. P computes (ptr, digeststart) = C.Hash(pp, D⊥). P additionally allocates memory for
M , denoted D, and initialized to zeros (which we assume is free), and copies x to the
start of the D. Whenever P needs to access a location ` in D that would correspond
to the witness (i.e., |x| < ` < |x|+|w|), it instead accesses the corresponding location
in w in its own memory. For simplicity, when we write that P accesses a location
in D, we implicitly assume it translates the location appropriately.

4. P runs the sub-protocol Compute-and-prove with V on input (t,Statestart, V
rd

start).
For i ∈ [m], let Πi be the ith sub-protocol proving statementi := (Mi, xi, ki, ppi, hi,
digesti, hashi, digest

′
i, hash

′
i).

5. P computes (Y, πfinal) = C.Open(pp, ptr, [L′]), where L′ = dL/λe, and sends
(Y, πfinal, Statefinal, V

rd
final) to V where Statefinal, V

rd
final are the final PRAM states and

words read in the last iteration of Compute-and-prove.

6. V lets y be the concatenation of the first outlen bits of Y , where outlen is the output
length specified by Statefinal. Then, V outputs y if the following hold, and outputs
⊥ otherwise:

(a) VsARK accepts in Π1, . . . ,Πm.

(b) For all i ∈ [m], it holds that (Mi, xi, ppi, hi) = (M,x, pp, h).

(c)
∑m

i=1 ki = t.

(d) (digest1, hash1) = (digeststart, hashstart), and hash′m = h(Statefinal, V
rd

final).

(e) (digest′i, hash
′
i) = (digesti+1, hashi+1) for all i ∈ [m− 1].

(f) Statefinal is a halting state, Y consists of L′ = dL/λe words, and C.VerOpen(pp,
digest′m, [L

′], Y, πfinal) accepts.

Figure 4: Protocol (P,V) for RPRAM
U .

• The work of the verifier is bounded by α? · |(M,x)| ·L · q(λ, log(t · pM )), and the length of the
transcript produced in the interaction between P(w) and V is bounded by α? ·L·q(λ, log(t·pM )).

We prove Theorem 6.1 by showing that the protocol in Figure 4 is a SPARK for RPRAM
U with

ρ-succictness for every ρ with ρ(λ, t) ∈ poly(λ, log t). The proof is given in Section 6.3. Specifically,
we show completeness in Lemma 6.2, argument of knowledge in Lemma 6.3, prover efficiency in
Lemma 6.13, and succinctness in Lemmas 6.16 and 6.17. Before giving the proofs, we give the
following remarks about the construction.

Remark 6 (On the size of M and x). We note that when we bound the communication complexity
(Lemma 6.17), we assume without loss of generality that the machine M and input x are a priori
bounded by a fixed polynomial in λ. This enables us to bound the number of sub-protocols, and
hence the communication complexity, independently of |(M,x)|. A similar observation was made
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by [BCCT13] to achieve succinctness. This assumption is without loss of generality since P, when
given a large input (M,x), could instead compute digest = h(M,x) where h is a hash function
and prove the instance (Uh, (h, digest), t

′, L) using witness (M,x,w). Here, Uh is a universal RAM
machine for pM bounded parallelism with the hash function h hardcoded. Uh receives input digest,
witness (M,x,w), and checks that digest = h(M,x) and if so, computes and outputs y = M(x,w).
U has size poly(λ) independent of |(M,x)|, and because it is a RAM machine, it can perform the
hash and simulate M in time t′ = t + |(M,x)| · poly(λ). Additionally, U uses the same amount
of parallelism as M and n + |(M,x)| · poly(λ) memory, where the additional memory is used to
compute the hash (note that if the resulting memory size is larger than 2λ, then P and V can simply
use a polynomially larger security parameter to prove the resulting statement).

To formalize this transformation, both P and V would be changed to compute digest and run the
SPARK protocol with statement (Uh, (h, digest), t

′, L). As such, the running times of the prover and
verifier incur a delay of |(M,x)| · poly(λ), but the remaining complexity would be based on having
a statement of size poly(λ) and a time bound of t′ = t+ |(M,x)| · poly(λ).

Remark 7 (On the dependence on t and pM ). We note that our construction when used for a
PRAM machine M needs to know the time bound t and the bound on number of processors pM ahead
of time. Specifically, the parameter γ, which determines how the prover divides up the computation,
depends on both t and pM . This assumption is standard for universal arguments [BG08], but for
some applications, a bound on time or processors may not be a priori known. Existing techniques for
constructing efficient SNARKs based on incremental verifiable computation (e.g. [Val08, BCCT13])
do not require this assumption, but it is not clear how to extend this approach to the interactive
setting (starting from weaker assumptions). We leave it as an open question to construct a SPARK
where the prover does not know t and pM in advance.

6.3 Proofs

In this section, we prove completeness, argument of knowledge, succinctness, and prover efficiency.

Lemma 6.2 (Completeness). For every λ ∈ N and ((M,x, y, L, t), w) ∈ RPRAM
U where M has access

to n ≤ 2λ words in memory, it holds that

Pr
[
〈P(w),V〉(1λ, (M,x, t, L)) = y

]
= 1,

where the probability is over the random coins of P and V.

Proof. Let Πi be as defined by the protocol for i ∈ [m], with statement

statementi = (Mi, xi, ki, ppi, hi, digesti, hashi, digest
′
i, hash

′
i).

Recall that V accepts and outputs y 6= ⊥ if and only if conditions 6a through 6f from Figure 4
are valid with respect to these statements. Conditions 6b, 6c, 6d, and 6e follow immediately by
definition of P. Therefore, we focus on conditions 6a and 6f.

For conditions 6a and 6f, we first show that the sequence of t updates ui = (digesti, V
prev
i ,

V rd
i , πi, τi) for i ∈ [t] that the prover computes at each step (across all statements) are valid. In

particular, let (Statei,Opi, Si, V
wt
i ) = parallel-step(M,Statei−1, V

rd
i−1) for all i ∈ [t] where we initialize

State0, V
rd
0 as Statestart, V

rd
start, as in the protocol. We show that all conditions specified in Lupd hold

for each update ui according to the computation of M .
To show this, recall that the digest and proofs in each update i of the full computation are

computed as (V prev
i , πi, digesti, τi) = OpenUpdate(pp, ptr, Si, Vi), where Vi is defined from V rd

i , V
wt
i
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as in the protocol. By the efficiency property of Definition 5.4, the values computed are equiva-
lent to computing (V prev

i , πi) = C.Open(pp, ptr, Si) and then (digesti, τi) = C.Update(pp, ptr, Si, Vi)
sequentially at each step. Given this, it holds that before step i of the full computation, the prover
has computed (ptr, digest0) = C.Hash(pp, D⊥), where D⊥ is the empty partial string, and then
computed i − 1 updates. Let D? be the true string resulting from the first i − 1 updates, and let
DC be the partial string underlying the digest. Namely, D? starts as x||w||0nλ−|x|−|w|, DC starts
as D⊥, and we apply the same i − 1 logical updates to both strings. Note that DC = ⊥ for all
positions j that have not yet been accessed, and DC

j = D?
j for all other locations.

Next, we will use D? and DC to show that update ui satisfies conditions 1, 2, 3, and 4 of Lupd.
First, by update completeness, since Vi is defined from V rd

i , V
wt
i exactly as in the definition of Lupd,

and (digesti, τi) = C.Update(pp, ptr, Si, Vi) then it follows that C.VerUpd(pp, digesti−1, Si, Vi, digesti,
τi) accepts as required by condition 1. Next, by open completeness of C, since (V prev

i , πi) =
C.Open(pp, ptr, Si), then C.VerOpen(pp, digesti−1, Si, V

prev
i , πi) accepts. This satisfies condition 2 of

Lupd. Open completeness also implies that V prev
i are the values of Si in DC. This gives condition 3,

since the value of each location in DC is equal to ⊥ if it has not been accessed yet, and otherwise
P sets it to the corresponding value in V rd

i given for that location in D?. Lastly, for each location
`j ∈ Si, when the corresponding value in V prev

i is set to ⊥ and `j ≤ |x|, then DC
`i

= ⊥ and so
location `i has never been accessed. This implies that D?

`i
= x`i , which gives condition 4. Thus, all

conditions specified by Lupd hold for each update ui = (digesti, V
prev
i , V rd

i , πi, τi) as required.
We now show that V accepts condition 6a for the full protocol of Figure 4. Because each update

is valid with respect to Lupd, it follows that the prover PsARK for sub-protocol Πi receives a valid
witness with respect to statementi for i ∈ [m]. Specifically, it receives the ki consecutive updates
corresponding to the ith sub-computation performed by P, where the starting hash corresponds to
the starting states and words read in the witness, and the ending hash corresponds to the final states
and words read resulting from the sequence of updates, both by definition of P. Completeness of
(PsARK,VsARK) implies that VsARK accepts in protocols Πi.

For condition 6f, we have that P honestly steps through the computation of M(x,w). To
see that P reaches the final state, recall that each sub-computation corresponds to ki steps of
the original computation and

∑m
i=1 ki = t (by condition 6c). Therefore, the final state Statem

corresponds to the state of M(x,w) after t steps. Since ((M,x, y, L, t), w) ∈ RPRAM
U , then af-

ter t steps the final state will be the halting state. We showed above that the prover per-
forms all updates correctly and consistent with memory, so it follows by open completeness that
C.VerOpen(pp, digest′m, [dL/λe], Y, πfinal) = 1 and that Y is the right length, and hence that the
output is equal to y.

Lemma 6.3 (Argument of Knowledge). (P,V) satisfies the argument of knowledge for NP property
of Definition 4.1.

Proof. To show that (P,V) is an argument of knowledge for RPRAM
U , consider any non-uniform

polynomial-time prover P? = {P?λ}λ∈N, integer c ∈ N, security parameter λ ∈ N, and statement

(M,x, t, L) where M accesses at most n ≤ 2λ memory and pM processors, with |M,x, t| ≤ λ, L ≤ λ,
and t · pM ≤ |x|c. Let P?λ,z,s denote P?λ with auxiliary input z and hardcoded randomness s for

any z, s ∈ {0, 1}∗. Let Vr denote the verifier V with hardcoded randomness r ∈ {0, 1}l(λ), where
l(λ) is an upper bound on the randomness used by the verifier. Note that l is a function of λ since
by Lemma 6.16, the verifier runs in time polynomial in λ, |(M,x)|L, pM , log t, each of which are
bounded by a fixed polynomial in λ.

Recall that (P,V) consists of m sub-protocols Π1, . . . ,Πm, where each is an instance of the
protocol (PsARK,VsARK). Let EsARK be the extractor for (PsARK,VsARK) with expected running time
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bounded by a polynomial qsARK, which exists by assumption that (PsARK,VsARK) is an argument of
knowledge. As a subroutine to our full extractor, we first construct a probabilistic oracle machine

EP
?
λ,z,s,Vr

inner that uses EsARK to extract witnesses for the statements in each sub-protocol defined by
the interaction (P?λ,z,s,Vr), as follows.

EP
?
λ,z,s,Vr

inner (1λ, (M,x, t, L)):

1. Emulate the interaction between P?λ,z,s and Vr on common input (1λ, (M,x, t, L)), which
uniquely determines the statement statementi used for sub-protocol Πi for all i ∈ [m]. Let Y
be the values in the opening sent in the final message of the protocol.

2. For all i ∈ [m], define the prover P?i and verifier VsARK,ri for the protocol (PsARK,VsARK) on
common input (1λ, statementi) as follows:

• P?i emulates the interaction between P?λ,z,s and Vr on common input (1λ, (M,x, t, L))
until the start of Πi. P?i then interacts with VsARK as part of Πi for statement statementi
while continuing to use P?λ,z,s and Vr to emulate messages for all other sub-protocols.

• VsARK,ri is the verifier Vr on common input (1λ, (M,x, t, L)) restricted to its interaction
in sub-protocol Πi. Namely, VsARK,ri uses fixed randomness ri determined by r for Πi.

Note that P?i and VsARK,ri can be emulated using oracles P?λ,z,s and Vr.

3. For i ∈ [m], let witi ← E
P?i ,VsARK,ri
sARK (1λ, statementi), where all queries made by EsARK to P?i and

VsARK,ri are emulated by Einner using its own oracles P?λ,z,s and Vr.

4. Output (wit1, . . . ,witm, Y ).

In the following claims, we show that (1) Einner runs in expected polynomial time (over r and
its own random coins) and (2) with all but negligible probability (over r and the coins of EsARK),
either P?λ,z,s fails to convinces Vr or for all i ∈ [m] the witness witi extracted by EsARK is valid for
statementi with respect to Lupd.

Claim 6.4. There exists a polynomial qinner such that for every non-uniform probabilistic polynomial
time prover P? = {P?λ}λ∈N, λ, c ∈ N, statement (M,x, t, L) where M has access to n ≤ 2λ words
in memory and pM processors, with |M,x, t| ≤ λ ,L ≤ λ, and t · pM ≤ |x|c, and z, s ∈ {0, 1}∗, the

expected running time (with a single processor) of EP
?
λ,z,s,Vr

inner (1λ, (M,x, t, L)) is at most qinner(λ, t ·
pM ).

Proof. We first analyze the time to emulate a full interaction between P?λ,z,s and Vr, which is used
to determine the statements statementi and to emulate the oracle calls of EsARK to P?i and VsARK,ri .
Since each oracle call takes a single step by assumption, it follows that the emulation time is at
most workV(1λ, (M,x, t, L)) to receive and read each message. By the succinctness of (P,V) (given
by Lemma 6.16) this is bounded by a polynomial qV(λ, |(M,x)| , L, pM , log(t · pM )) independent of
P? and the statement.

Next, we analyze the expected running time of EP
?
i ,VsARK,ri

sARK for each i ∈ [m]. Recall that tupd ·pupd

is an upper bound on the amount of work to verify a statement with at most t updates in Lupd. Since
EsARK is extracting a witness for an Lupd statement, then for each i ∈ [m], the expected running time

of EP
?
i ,VsARK,ri

sARK is at most qsARK(λ, tupd · pupd) for some polynomial qsARK when given oracle access to
P?i and VsARK,ri assuming ri is uniformly distributed. As the random coins for Vr are uniform and

44



V invokes m independent instances of VsARK, this implies that the randomness ri used by VsARK,ri

is uniform. Thus, the expected running time of EP
?
i ,VsARK,ri

sARK is at most qsARK(λ, tupd · pupd).
Putting everything together, we have that Einner first emulates the interaction between P?λ,z,s

and Vr and then runs EsARK to extract a witness m times while emulating the oracle calls of EsARK

(and the resulting oracle calls made to P?λ,z,s and Vr). Thus, the full expected running time is
bounded by

qV(λ, L, pM , log(t · pM )) +m · qV(λ, L, pM , log(t · pM )) · qsARK(λ, tupd · pupd).

We can bound tupd(λ, |(M,x)| , t) ∈ poly(λ, |(M,x)| , t) and pupd(λ, pM ) ∈ poly(λ, pM ), as well
as |(M,x)| ≤ λ, and L ≤ λ. For m, by succinctness (Lemma 6.16) we have that m ≤ α? ·
poly(λ, |(M,x)| , L, log(t · pM )) and α? can be bounded by a polynomial in λ, |(M,x)| , t, pM by
definition. Putting these bounds together, this implies that the expected running time is bounded
by a polynomial qinner(λ, t · pM ). �

Claim 6.5. For every non-uniform probabilistic polynomial-time prover P? = {P?λ}λ∈N and con-
stant c ∈ N, there exists a negligible function neglinner such that for all λ ∈ N, statement (M,x, t, L)
where M has access to n ≤ 2λ and pM processors, and with |M,x, t| ≤ λ, L ≤ λ, and t · pM ≤ |x|c,
and every z, s ∈ {0, 1}∗, it holds that

Pr

 r ← {0, 1}l(λ)
y = 〈P?λ,z,s,Vr〉(1λ, (M,x, t, L))

(wit1, . . . ,witm, Y )← EP
?
λ,z,s,Vr

inner (1λ, (M,x, t, L))

:
y 6= ⊥ ∧
∃i ∈ [m] : (statementi,witi) 6∈ Rupd


≤ neglinner(λ)

where statementi is defined to be the statement of the ith sub-protocol in the interaction (P?λ,z,s,Vr).

Proof. To analyze the above probability, we start by formalizing an algorithm S, which is implicit in
the description of Einner. The algorithm S takes as input r ∈ {0, 1}l(λ), and emulates the interaction
(P?λ,z,s,Vr). It then outputs (y, statement1, . . . , statementm), where statementi is the ith statement
in the interaction and y is the output of the protocol. Note that these statements are the same
as the ones computed by Einner in the first step of its description. We can then write the above
probability as

Pr

 r ← {0, 1}l(λ)
(y, statement1, . . . , statementm) = S(r)

(wit1, . . . ,witm, Y )← EP
?
λ,z,s,Vr

inner (1λ, (M,x, t, L))

:
y 6= ⊥ ∧
∃i ∈ [m] : (statementi,witi) 6∈ Rupd

 .
Next we apply a union bound to upper bound this by

∑
i∈[m]

Pr

 r ← {0, 1}l(λ)
(y, statement1, . . . , statementm) = S(r)

(wit1, . . . ,witm, Y )← EP
?
λ,z,s,Vr

inner (1λ, (M,x, t, L))

:
y 6= ⊥ ∧
(statementi,witi) 6∈ Rupd

 (6.1)

We now upper bound the above probability for any particular i ∈ [m]. We notice that whenever
y 6= ⊥, that implies that V accepts in protocol Πi for statementi.

By definition of EP
?
λ,z,s,Vr

inner , for each i ∈ [m], the witness witi is computed by running EP
?
i ,VsARK,ri

sARK ,
where Einner uses its oracles P?λ,z,s and Vr to emulate all queries that EsARK makes to P?i and VsARK,ri .
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Specifically, emulating P?i requires querying P?λ,z,s for every sub-protocol, and querying Vr for all
protocols other than i.

Let r−i be the randomness of Vr used in all protocols other than i, where it uses ri. Note that
P?i only depends on r−i, since it only uses Vr in protocols other than i. Another way to state this
is to view P?i as an randomized prover which emulates the verifier in all sub-protocols other than
i using its internal randomness, where in the above execution, its internal randomness is r−i. To
make this clear, let P?i,r−i denote the prover P?i (viewing it as a randomized algorithm) that uses
randomness r−i to emulate the verifier in all protocols other than i, and note that P?i,r−i can still
be emulated using the oracles P?λ,z,s and Vr. We can then write the above probability as

Pr

 r ← {0, 1}l(λ)
(y, statement1, . . . , statementm) = S(r)

witi ← E
P?i,r−i ,VsARK,ri

sARK (1λ, statementi)

:
y 6= ⊥ ∧
(statementi,witi) 6∈ Rupd

 .
Whenever y 6= ⊥, it must be the case that V accepts in all sub-protocols, and therefore by definition
of P?i , it follows that VsARK,ri accepts in protocol Πi with P?i,r−i . We can therefore upper bound
the above probability by

Pr

 r ← {0, 1}l(λ)
(y, statement1, . . . , statementm) = S(r)

witi ← E
P ?i,r−i

,VsARK,ri

sARK (1λ, statementi)

:
〈P?i ,VsARK,ri〉(1λ, statementi) = 1
∧ (statementi,witi) 6∈ Rupd

 (6.2)

We can now use the argument of knowledge property of (PsARK,VsARK). Let l′(λ) be the length of
the randomness used by VsARK. For any r = (r−i, ri) ∈ {0, 1}l(λ), using r−i as the randomness for
P?i,r−i , by the argument of knowledge property of (PsARK,VsARK) there exists a negligible function
µi (which depends on the algorithm P?i but is independent of its randomness) such that for every
randomness r−i for P?i , and for the statement statementi (which in this case is determined by r−i)
it holds that

Pr

[
ri ← {0, 1}l′(λ)

witi ← E
P?i,r−i ,VsARK,ri

sARK (1λ, statementi)
:
〈P?i,r−i ,VsARK,ri〉(1λ, statementi) = 1

∧ (statementi,witi) 6∈ Rupd

]
≤ µi(λ).

By using the law of total probability in (6.2) (to sum over each choice of r−i), and by applying
the above inequality, we obtain that (6.2) is bounded above by µi(λ). Finally, by plugging this
back into (6.1), we obtain that the probability in the statement of the claim is upper bounded by∑

i∈[m] µi(λ). As in the analysis of the previous claim, we can boundm by poly(λ, |(M,x)| , L, t, pM ).

As |(M,x)| ≤ λ, L ≤ λ, and t · pM ≤ |x|c, then m ∈ poly(λ), so this is negligible as required. �

Using Einner to extract the witnesses in the sub-protocols, we now define the full extractor E
that outputs a witness w for (M,x, y, L, t) given oracle access to P?λ,z,s and Vr, where y is the value
output by Vr when interacting with P?λ,z,s.

EP?λ,z,s,Vr(1λ, (M,x, t, L)):

1. Run (wit1, . . . ,witm, Y )← EP
?
λ,z,s,Vr

inner (1λ, (M,x, t, L)).

2. Parse each witi as containing an initial set of states and values read (State(i), V rd,(i)) as well
as a sequence of updates, where the updates across all m witnesses together yield an overall
sequence of t updates uj = (digestj , V

prev
j , V rd

j , πj , τj) for j ∈ [t] (abort if this is not the case).
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3. For j = 1, . . . , t, compute (Statej ,Opj , Sj , V
wt
j ) = parallel-step(M,Statej−1, V

rd
j−1) where State0

is the tuple containing the initial RAM state and V rd
0 = (⊥).

4. Let DInit ∈ {0, 1}nλ be the string where for each ` ∈ [n], the `th word is set to its value in
V rd
i , where i is the first iteration with ` ∈ Si, or the `th word in Y if ` is never accessed and
` ≤ dL/λe, or 0λ otherwise.

5. Output w to be the string of length nλ− |x| starting at position |x| in DInit.

We note that while DInit and w above may be as large as n · λ bits, they can be specified while
running M by using at most λ + log n bits for each non-zero value. Furthermore, they can have
at most t+ dL/λe non-zero values since M makes at most t memory accesses, and at most dL/λe
additional positions are accessed in specifying the output. Thus, DInit and w can be computed with
at most poly(λ, L, t, log n) additive overhead in time and space.

Claim 6.6. There exists a polynomial q such that EP?λ,z,s,Vr(1λ, (M,x, t, L)) has expected running
time at most q(λ, t · pM ).

Proof. E first runs Einner, which has expected running time bounded by a polynomial qinner(λ, t ·pM )
by Claim 6.4. We bound the remaining running time of E by a polynomial in λ and t · pM , which
completes the claim.
E parses the output as containing m sets of states and words which together have size m · pM ·

poly(λ), as well as a sequence of t updates, where each update has size at most 2β·pM ·λ ∈ poly(λ) by
the efficiency of the underlying concurrently updatable hash function. As m ∈ poly(λ) as discussed
in the previous claims, together this takes time t · pM · poly(λ). Using these updates to determine
which values to read, E emulates M for t steps, which can be done in time t · pM · poly(λ). Finally
E computes the initial memory DInit to output a witness w, which, as discussed above, requires
specifying at most t + dL/λe positions and therefore takes at most poly(λ, L, t) ∈ poly(λ, t) time.
Altogether, E runs in expected time at most qinner(λ, t·pM )+t·pM ·poly(λ)+t·pM ·poly(λ)+poly(λ, t)
which can be bounded by a polynomial q(λ, t · pM ). �

Claim 6.7. For every non-uniform probabilistic polynomial-time prover P? = {P?λ}λ∈N and con-
stant c ∈ N, there exists a negligible function negl such that for all λ ∈ N, statement (M,x, t, L)
where M has access to n ≤ 2λ and pM processors, and with |(M,x, t)| ≤ λ, L ≤ λ, and t ·pM ≤ |x|c,
and all z, s ∈ {0, 1}∗, it holds that

Pr

 r ← {0, 1}l(λ)
y = 〈P?λ,z,s,Vr〉(1λ, (M,x, t, L))

w ← EP?λ,z,s,Vr(1λ, (M,x, t, L))

:
y 6= ⊥ ∧
((M,x, y, L, t), w) 6∈ RPRAM

U

 ≤ negl(λ).

Proof. In the following, all probabilities are over r ← {0, 1}l(λ) and w ← EP?λ,z,s,Vr(1λ, (M,x, t,
L)), and we let y and statementi for i ∈ [m] be determined by r in each probability, namely
y = 〈P?λ,z,s,Vr〉(1λ, (M,x, t, L)) and statementi is the statement used by P?λ,z,s for the ith sub-
protocol with Vr. Additionally, we let wit1, . . . ,witm, Y be the output of Einner during the execution
of E in each probability.

Suppose by way of contradiction that there exists a polynomial p such that for infinitely many
λ ∈ N,

Pr
[
y 6= ⊥ ∧ ((M,x, y, L, t), w) 6∈ RPRAM

U
]
> 1/p(λ).
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We can rewrite this probability as

Pr

 y 6= ⊥ ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd ∧
((M,x, y, L, t), w) 6∈ RPRAM

U

+ Pr

 y 6= ⊥ ∧
∃i ∈ [m] (statementi,witi) 6∈ Rupd ∧
((M,x, y, L, t), w) 6∈ RPRAM

U


≤Pr

 y 6= ⊥ ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd ∧
((M,x, y, L, t), w) 6∈ RPRAM

U

+ neglinner(λ),

by Claim 6.5 above. As neglinner(λ) < 1/(2p(λ)) for infinitely many λ ∈ N, this implies that for
infinitely many λ ∈ N,

Pr

 y 6= ⊥ ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd ∧
((M,x, y, L, t), w) 6∈ RPRAM

U

 > 1

2p(λ)
.

Furthermore, by a standard averaging argument, it holds that

Pr


y 6= ⊥ ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd ∧
((M,x, y, L, t), w) 6∈ RPRAM

U ∧
E halts after 4 · p(λ) · q(λ, t · pM ) steps

 ≤ 1

4p(λ)
.

Otherwise, the expected work done by E must be greater than q(λ, t · pM ), in contradiction with
Claim 6.4. This implies that for infinitely many λ ∈ N,

Pr


y 6= ⊥ ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd ∧
((M,x, y, L, t), w) 6∈ RPRAM

U ∧
E halts within 4 · p(λ) · q(λ, t · pM ) steps

 > 1

4p(λ)
. (6.3)

Given this, consider the following non-uniform adversary A = {Aλ}λ∈N. At a high level, we
will show that on input pp← C.Gen(1λ, n) and h← Hλ, A will either break the soundness of C or
the collision-resistance of H with at least the probability above. In its non-uniform advice, Aλ will
have hardcoded the code of P?λ,z,s, the statement (M,x, t, L), and the value of p(λ).

Aλ(pp, h):

1. Sample r ← {0, 1}l(λ). Let Vpp,h,r be the verifier that uses (pp, h) as its first message and the
string r for all other random bits needed.

2. Run the interaction y = 〈P?λ,z,s,Vpp,h,r〉(1λ, (M,x, t, L)). If y = ⊥, abort and output ⊥.

Otherwise, let Y, π, Statefinal, V
rd

final be the final message sent by P?λ,z,s.

3. For at most 4 · p(λ) · q(λ, t · pM ) steps, run w ← EP?λ,z,s,Vpp,r(1λ, (M,x, t, L)). If E does not
output within 4 · p(λ) · q(λ, t · pM ) steps, abort and output ⊥. Otherwise, let wit1, . . . ,witm
be the witnesses output by Einner for statements statement1, . . . , statementm.

4. If there exists an j ∈ [m] such that (statementj ,witj) 6∈ Rupd, abort and output ⊥. Otherwise,

parse each witness witj as containing an initial set of states and words read (State(j), V rd,(j)),
as well as a sequence of updates. Let u1, . . . , ut be the sequence of t updates obtained across
all m witnesses. For each update i ∈ [t] we now have the following values and notation:
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• The values Statei,Opi, Si, V
wt
i from each step of E ’s emulation.

• The extracted update ui = (digesti, V
prev
i , V rd

i , πi, τi).

• Let Vi be a tuple of |Si| values, where the jth value is that of V rd
i or V wt

i according to
the corresponding operation given by Opi.

Lastly, we have the following starting values:

• The starting values (State0, V
rd
0 ) defined by E .

• The initial digest computed by V, denoted digest0.

We will be using this notation throughout the proof.

5. Check that E ’s emulation is consistent with the extracted updates. Specifically, let K0 = 0
and let Kj be the number of updates in sub-statements 1 through j for each j ∈ [m]. If

there exists a j ∈ [m] such that (State(j), V rd,(j)) is not equal to (StateKj−1 , V
rd
Kj−1

), let j

be the smallest such index and output ((State(j), V rd,(j)), (StateKj−1 , V
rd
Kj−1

)). Similarly, if

(Statefinal, V
rd

final) 6= (Statet, V
rd
t ), output these four values.

6. Next, Aλ emulates the computation of M(x,w). To avoid confusion with the values in
the extracted update, we will use a superscript “?” to denote the values computed in this
emulation. Let State?0 be a tuple containing the initial RAM state, V rd?

0 = (⊥), and D? = x||w
be the initial memory string for use by M .

For i = 1, . . . , t, do the following:

(a) Compute (State?i ,Op
?
i , S

?
i , V

wt?
i ) = parallel-step(M, State?i−1, V

rd?
i−1).

(b) Read from and write to D? by running V rd?
i = accessD

?
(Op?i , S

?
i , V

wt
i ).

Let Y ? be the tuple containing the first L′ = dL/λe words of D?, and let y? be the con-
catenation of the first outlen bits from Y ?, where outlen is the output length specified by
State?t .

7. If there exists an index i such that V rd
i 6= V rd?

i , let i be the smallest such index. Compute a
digest of the empty partial string (ptr?, digest?0) = C.Hash(pp, D⊥) and then compute (∗, π?) =
C.Open(pp, ptr?, Si). Output

(i− 1,
{

(digestj , Sj , Vj , τj)
}
j∈[i−1] , digest0, Si, (⊥)|Si|, π?, V prev

i , πi).

8. If Y 6= Y ?, compute a digest of the empty partial string (ptr?, digest?0) = C.Hash(pp, D⊥) and
then compute (∗, π?) = C.Open(pp, ptr?, [L′]). Output

(t,
{

(digestj , Sj , Vj , τj)
}
j∈[t] , digest0, [L

′], (⊥)L
′
, π?, Y, πfinal).

9. Otherwise, abort and output ⊥.

To analyze the success of A in breaking the soundness of H and C, in the subsequent subclaims,
we argue that (1) Aλ runs in (strict) polynomial time, (2) if Aλ outputs in step 5 then Aλ finds a
collision in h, (3) if Aλ outputs in steps 7 or 8 then Aλ finds values that breaking the soundness of
C, and (4) if Aλ reaches step 9, it must be the case that ((M,x, y, L, t), w) ∈ RPRAM

U .
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Given these subclaims, we can conclude the proof as follows. First, note that Aλ outputs in
steps 5, 7, 8, or 9 whenever y 6= ⊥, (statementi,witi) ∈ Rupd for all i ∈ [m], and E halts within
4 · p(λ) · q(λ, t · pM ) steps. We can break this event into two cases as

Pr


y 6= ⊥ ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd ∧
E halts within 4 · p(λ) · q(λ, t · pM ) steps ∧
((M,x, y, L, t), w) ∈ RPRAM

U



+ Pr


y 6= ⊥ ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd ∧
E halts within 4 · p(λ) · q(λ, t · pM ) steps ∧
((M,x, y, L, t), w) 6∈ RPRAM

U

 .
By Subclaim 6.12, the first term is greater than the probability that Aλ outputs in step 9. By
Equation 6.3, the second term is greater than 1/(4p(λ)). Putting these together, we get that
the probability that Aλ outputs in step 5, 7 or 8 is greater than 1/(4p(λ)). It then follows from
Subclaims 6.8, 6.9, and 6.11 that for infinitely many λ ∈ N, Aλ runs in polynomial time and
either outputs a collision in H or in C with probability at least 1/(4p(λ)). As A directly implies
an adversary that either gets pp or h as input and simulates the other input for A, this implies
that A can be used to break the soundness of H or of C with probability at least 1/(4p(λ)), in
contradiction.

Subclaim 6.8. There exists a polynomial qA such that for every h ∈ Hλ and pp in the support of
C.Gen(1λ, n), the running time of Aλ(pp, h) is at most qA(λ) for all λ ∈ N.

Proof. The running time of Aλ is bounded by the sum of (1) the time to run 〈P?λ,z,s,Vpp,h,r〉(1λ,
(M,x, t, L)), (2) the total amount of time Aλ spends running E , (3) the time to check that all
(statementi,witi) pairs are in Rupd, (4) the time to check for an output in step 5, (5) the time to
emulate the execution of M , and (6) the time to check for and compute an output in steps 7 and
8. We separately argue that each of these run in at most polynomial time in λ, |(M,x)| , L, pM , t
which are each bounded by a fixed polynomial in λ as |(M,x)| ≤ λ, L ≤ λ, and t · pM ≤ |x|c.

First, (1) is bounded by a polynomial in λ since P?λ,z,s runs in polynomial time for any z, s ∈
{0, 1}∗ and both the communication complexity and running time of Vpp,h,r are bounded by a fixed
polynomial poly(λ, |(M,x)| , L, pM , t) by Lemmas 6.16, 6.17, and by definition of α?. Next, (2) is
bounded by 4 · p(λ) · q(λ, t · pM ) by definition of Aλ, and p, q are polynomials. For (3), it requires
checking the at most t updates are valid where each check requires a polynomial amount of work
in λ, |(M,x)| , pM , log t by definition of Lupd and the efficiency of C. Next, (4) requires comparing
m+ 1 values of containing at most pM states, where each state is a constant number of words, and
pM words of length λ, and so takes time poly(λ, pM ). Next, (5) takes t steps of computation, each of
which takes time bounded by a fixed polynomial in λ, pM by the definition of PRAM computation.
Lastly, (6) requires (t + L) · pM · λ time to check equality of all corresponding values. Computing
the initial digest and opening requires 2β(λ) ·pM ∈ poly(λ) by efficiency of C. Then, the full output
has size at most t · pM · poly(λ) ∈ poly(λ) and takes at most t · pM · poly(λ) ∈ poly(λ) time to
compute.

As |(M,x)| , L, pM , t are bounded fixed polynomials in λ as above, the (strict) running time of
Aλ is bounded by some polynomial qA(λ) for all λ ∈ N. �

Subclaim 6.9. If Aλ(pp, h) outputs in step 5, then Aλ finds values which break the collision-
resistance of H.
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Proof. Let K0 = 0 and let Kj for j ∈ [m] be the number of updates in witnesses 1 through j. Let

hash(j), hash(j)′ be the hashes given in statementj for all j ∈ [m]. Suppose that Aλ outputs in step 5,

meaning that either there exists some j ∈ [m] such that (State(j), V rd,(j)) 6= (StateKj−1 , V
rd
Kj−1

) or

(Statefinal, V
rd

final) 6= (Statet, V
rd
t ). We first discuss the former case, and then the latter.

In the first case, let j be the smallest index with (State(j), V rd,(j)) 6= (StateKj−1 , V
rd
Kj−1

). Since
Aλ reached step 5, then the output y of Vpp,h,r is not equal to ⊥, which in particular implies that

hash(j−1)′ = hash(j), and that all m extracted witnesses are valid. Since witj−1 is a valid witness
for statementj−1 (and StateKj−1 corresponds to the state after the first Kj−1 updates), then by

definition of Lupd it holds that h(StateKj−1 , V
rd
Kj−1

) = hash(j−1)′. Since witj is a valid witness

for statementj , then hash(j) = h(State(j), V rd,(j)). Lastly, since y 6= ⊥, then hash(j−1)′ = hash(j).
Therefore, Aλ successfully finds a collision.

In the second case, y 6= ⊥ implies that hash(m)′ = h(Statefinal, V
rd

final), and the fact that witm is

valid for statementm implies that h(Statet, V
rd
t ) = hash(m)′, so this also results in a collision. �

Next, we show that whenever A reaches step 6, rather than viewing the extracted witnesses as
m separate Lupd instances, they can be viewed as a single instance corresponding to all t updates.
This will show that all t updates are in fact being applied to consecutive digests, which will help us
show the subsequent claims analyzing A’s attack. In the subsequent claims, we say that (State, V rd)
is a PRAM configuration if during any step of a PRAM evaluation, the set of states after that step
are State and the words read in that step are V rd.

Subclaim 6.10. Let hashstart = h(State0, V
rd
0 ) and hashfinal = h(Statefinal, V

rd
final). Define

statementcomb = (M,x, t, pp, h, digest0, hashstart, digestt, hashfinal),

and witcomb = (State0, V
rd
0 , u1, . . . , ut). If Aλ(pp, h) reaches step 6, then (statementcomb,witcomb) ∈

Lupd.

Proof. We start with an independent fact about the Lupd language, which we will then apply to
show that the combined statement in the claim is indeed a valid Lupd statement. Consider any two
Rupd instances

(statement1,wit1) = ((M,x, k1, pp, h, digest0, hash0, digest1, hash1), (State1, V
rd
1 , u11, . . . , u

1
k1)),

(statement2,wit2) = ((M,x, k2, pp, h, digest1, hash1, digest2, hash2), (State2, V
rd
2 , u21, . . . , u

2
k2))

that agree on M,x, pp, h, and such that the final digest and hash (digest1, hash1) in the first state-
ment matches the initial ones in the second statement. Let State1,final be the final state computed
when verifying (statement1,wit1) and let V rd

1,final be the final words read, given by update u1k1 . In

other words, (State1,final, V
rd
1,final) is the final PRAM configuration in the first Rupd instance. We

claim that if (State1,final, V
rd
1,final) is equal to (State2, V

rd
2 ) (that is, the initial configuration of the

second statement), then we can combine the statements together to get a new valid instance with
statement

statement′ = (M,x, k1 + k2, pp, h, digest0, hash0, digest2, hash2)

and witness wit′ = (State1, V
rd
1 , u11, . . . , u

1
k1
, u21, . . . , u

2
k2

).
To show this, we first show that every update i ∈ [k1 + k2] in wit′ satisfies conditions 1, 2, 3,

and 4, of Lupd. These four conditions are defined by starting with (State1, V
rd
1 ) as the starting

PRAM configuration for M and using the updates in the witnesses to iteratively compute k1 + k2
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PRAM steps. Then, for each step i, checks are done which depend on the values of the ith step, the
input x, the initial digest digest1 given by the statement, and the values in the ith update. Since
(statement′,wit′) and (statement1,wit1) have the same machine M and input x, start with the same
initial values digest1,State1, V

rd
1 , and agree at the first k1 updates, this implies that conditions 1,

2, 3, and 4 hold for the first k1 steps. For the remaining k2 steps, we observe that since the final
state PRAM configuration of the first statement matches (State2, V

rd
2 ), then the values computed

for each step of verifying (statement2,wit2) are the same as those computed when verifying the final
k2 steps of the combined statement. It follows that every all k1 + k2 updates satisfy the required
conditions.

It remains to show that the Lupd requirements for hash0, hash2 are satisfied. We have that
hash0 = h(State1, V

rd
1 ) as this is a requirement of the first statement being valid. We have that

hash2 is a hash of the final configuration for the combined statement, because this final configuration
is the same as that of the second statement, as shown above. It follows that (statement′,wit′) is a
valid Lupd instance.

We observe that the above holds for any number of statements by the same logic, which we will
use to show the claim. Suppose that Aλ reaches step 6 and consider any j ∈ [m]. Let

statementj = (M (j), x(j), k(j), pp(j), h(j), digest(j), hash(j), digest(j)′, hash(j)′)

be the jth statement in the interaction between P?λ,z,s and Vpp,h,r. Since Aλ did not output in step 2,

then the output y of the interaction is not equal to ⊥, which implies that (M (j), x(j), pp(j), h) =
(M,x, pp, h). Since Aλ did not output in step 4, then witj is valid for statementj . Since Aλ did
not output in step 5, then the PRAM configuration (StateKj−1 , V

rd
Kj−1

) before the start of the j

sub-statement matches (State(j), V rd,(j)). Therefore, the m witnesses satisfy all conditions above to
“combine” them into a new witness. Based on our claim above, the new statement is

statement′′ = (M,x, t, pp, h, digest(1), hash(1), digest(m)′, hash(m)′)

with witness
wit′′ = (State(1), V (1),rd, u1, . . . , ut),

where the new instance corresponds to t updates since
∑m

j=1 k
(j) = t by the fact that y 6= ⊥.

Recall that our goal is to show that (statementcomb,witcomb) (given in the claim statement) is
in Rupd. The difference between statementcomb and statement′′ is in the digests and hashes.

The initial digest and both hashes in statement′′ are equal to those in statementcomb since these
are included in the checks done by the verifier, and so are implied by y 6= ⊥. For the final digest,
we have that digest(m)′ (given by statementm) is equal to the digest given by update ut, which is
digestt, since the extracted witnesses are valid. It follows that statement′′ = statementcomb.

For the witnesses, the difference between wit′′ and witcomb is that for the initial configuration,
wit′′ has (State(1), V (1),rd), while witcomb has (state0, V

rd
0 ). Since Aλ did not output in step 5, these

are equal, which concludes the claim. �

Subclaim 6.11. If Aλ(pp, h) outputs in step 7 or 8, then Aλ finds values which violate the sound-
ness of C.

Proof. We first show the claim for the case that Aλ outputs in step 7, and at the end discuss how
to modify the proof in the case that Aλ outputs in step 8.
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Suppose Aλ outputs in step 7, meaning that there exists an index i such that V rd
i 6= V rd?

i .
Moreover, let i be the smallest such index. In this case, Aλ outputs

(i− 1,
{

(digestj , Sj , Vj , τj)
}
j∈[i−1] , digest0, Si, (⊥)|Si|, π?, V prev

i , πi).

Informally, the values output by Aλ correspond to i − 1 updates, an opening of locations Si in
digest0, and an opening of location Si in digesti−1 (the digest before the ith update). To show that
this breaks the soundness of C, we need to show that (A) all updates and openings are valid, yet
(B) V prev

i is not equal to set of values at locations Si consistent with the i− 1 updates.
For (A), we first show that the initial opening of digest0 at locations Si to (⊥)|Si| with proof π? is

valid. Note that Aλ computes (ptr?, digest?0) = C.Hash(pp, D⊥) and then π? = C.Open(pp, ptr?, Si).
By completeness of C, it follows that π? is valid for (⊥)|Si| at locations Si with respect to the digest
digest?0 computed by Aλ. Since C.Hash is deterministic, it follows that digest0 = digest?0, so we
conclude that

C.VerOpen(pp, digest0, Si, (⊥)|Si|, π?) = 1.

Next, using the fact that A reaches step 6, by Claim 6.10 the extracted witnesses form a combined
statement (statementcomb,witcomb) in Rupd containing all t extracted updates. This implies that the
sequence of updates from digest0 up until digesti−1 are all valid. Namely,

C.VerUpd(pp, digestj−1, Sj , Vj , digestj , τj) = 1 for all j ∈ [i− 1].

This also implies that the proof πi is a valid opening proof for V prev
i at locations Si with respect to

digesti−1. Namely,
C.VerOpen(pp, digesti−1, Si, V

prev
i , πi) = 1.

Thus, the openings and updates output by Aλ are valid.
For the rest of the proof, it will be helpful to define the following notation. Let ind be an index

where V rd
i and V rd?

i are not equal (which must exist by assumption). Let vrd, vrd?, vprev, and ` be
the corresponding values at index ind of V rd

i , V rd?
i , V prev

i , and Si, respectively. Before showing (B),
we make the following simplifying observations, which make use of the assumption that V rd

i 6= V rd?
i .

1. The first i updates and the first i steps in the emulation correspond to the same values, that
is, (Op?j , S

?
j , V

wt?
j ) = (Opj , Sj , V

wt
j ) for all j ≤ i.

This holds because of the following. The values (Op?j , S
?
j , V

wt?
j ) are computed as a determin-

istic function of the initial configuration (State?0, V
rd?
0 ) and the words read in every step of the

emulation done by A. The values (Opj , Sj , V
wt
j ) are computed as a deterministic function of

the initial configuration (State0, V
rd
0 ) and words read in the emulation done by E . The initial

configurations are equal by definition, that is, (State?0, V
rd?
0 ) = (State0, V

rd
0 ). Since i is the

first iteration where V rd?
i 6= V rd

i , then the words read in both are the same. The observation
follows.

2. There exists an update i′ < i with ` ∈ Si′ .
This means that update i cannot be the first iteration which accesses location `. This holds
because if i was the first such iteration, then vrd would be the value in location ` of x||w by
definition of w, as would vrd?, in contradiction. Note that this relies on observation 1 above
to use the fact that the locations accessed in the extracted updates and the emulation are the
same.
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Now to show (B), we claim that vprev 6= vrd?, yet vrd? is the value consistent with the updates
that we “expect” to open at location ` with respect to digesti−1. To show that vprev 6= vrd?, we note
that because the ith update is valid with respect to Rupd, this implies that vprev is either equal to
⊥ or vrd. However, vrd? is not equal to vrd by assumption. Additionally, vrd? cannot be equal to ⊥
since it starts off as a value in x||w and is never updated to a non-⊥ value.

To formalize the notion that vrd? is the value we expect to open, recall that vrd? is the value in
location ` of D? at step i. We argue that at every step starting from the first time ` is accessed, the
value at location ` in D? is consistent with the i− 1 extracted updates above. This will show that
vrd? is the value we expect to be at `. Consider the first such update i0 < i which accesses location
`, which is guaranteed to exist by observation 2 above. If ` is read during update i0 (as specified
by Opi0), then the corresponding update value is the value at location ` in x||w by definition of w,
which by definition is given by V rd

i0
. Otherwise (when update i0 writes to `), the value written to

D? at location ` is given by V wt?
i0

, and V wt?
i0

= V wt
i0

by observation 1 above. By the way that Aλ
updates D? throughout the emulation, all subsequent reads and writes to ` in D? are consistent
with the extracted updates. This implies that vrd? is the value read from or written to ` during the
last update i′ < i that accessed `, which in turn is the value to which we expect ` to open.

This completes the proof of the claim that if Aλ outputs in step 7, then it finds values that
violate soundness of C. We conclude by discussing the case where Aλ outputs in step 8, which
follows by similar logic. In this case, we are given that Y 6= Y ? (rather than V rd

i 6= V rd?
i as above).

To show that the output in step 8 violates soundness, we need to argue all updates and openings
are valid, yet for some ` ≤ L′, the `th value Y is not the value we expect to open at location i
with respect to digestt. Let Y` be this value, and let Y ?

` be the corresponding value in Y ?. The
initial opening and all t updates (before location ` is opened to its value in Y ) are valid by identical
logic as above. The final opening πfinal is accepting since Vpp,h,r outputs a non-⊥ value. Next, to
argue that Y` is not the value we expect to open, we can show that Y ?

` is the value we expect to
open. If location ` is never accessed, then it would follow that Y` = Y ?

` , since both would be the
corresponding word in x||w, so it follows that there must be some previous access for location `.
Therefore, the same logic used in the above argument holds. �

Subclaim 6.12. If Aλ outputs ⊥ in step 9, then it holds that ((M,x, y, L, t), w) ∈ RPRAM
U .

Proof. When Aλ does not output in step 2, it holds that y 6= ⊥, so the final state Statefinal must
be halting. Since Aλ does not output in step 5, then Statefinal is equal to the final state Statet
computed by E in the extraction. It follows that Statet is a halting state.

When Aλ does not output in step 7, it holds that V rd
i = V rd?

i for all i ∈ [t]. Since State0 = State?0,
V rd
0 = V rd?

0 , and parallel-step is a deterministic function, this implies that State?t computed by Aλ
is equal to Statet, which corresponds to a halting state as argued above. Moreover, the emulation
done by Aλ perfectly emulates the computation of M(x,w), so it is the case that M(x,w) = y?

within t steps, so ((M,x, t, y?), w) ∈ RPRAM
U . To show that y = y?, recall that y? is the first outlen

bits of Y ?, where outlen is the output length specified by State?t = Statet. We have that Y = Y ?

whenever Aλ does not output in step 8. Moreover, y is the concatenation of the first outlen bits of
Y , which follows because A does not abort in step 2. It follows that y = y?. Putting everything
together, if Aλ outputs in step 9, it follows that ((M,x, y, L, t), w) ∈ RPRAM

U , as required. �

This completes the proof of Claim 6.7. �

This completes the proof of Lemma 6.3.
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Lemma 6.13 (Prover efficiency). There exists a polynomial q such that for any λ ∈ N and ((M,
x, y, L, t), w) ∈ RPRAM

U where M uses pM processors and has access to n ≤ 2λ words in memory, it
holds that

depthP(1λ, (M,x, t, L), w) ≤ t+ (α?)2 · |(M,x)| · L · q(λ, log(t · pM ))

using at most 4 · pM · β + ρ? · γ log t ≤ (pM + α? · ρ?) · q(λ, log(t · pM )) processors.

Proof. The work of P can be split into initialization, running Compute-and-prove, and then proving
the output. We first focus on the prover’s complexity for initialization and proving the output,
specified in Steps 2, 3, and 5 in Figure 4.

For Step 2 of initialization, the prover computes the initial state Statestart for M , the set V rd
start =

(⊥), the parameter γ, and the hash hashstart. Both Statestart and V rd
start can be computed in time

O(λ), and since hashstart corresponds to hashing a single state and word, it can also be in time
β ∈ poly(λ) (see parameters paragraph). In order to compute γ, the prover needs to compute
the following parameters. First, the prover can compute the hash efficiency parameter β = β(λ)
given the security parameter λ. Next, we recall the following parameters based on the definition of
Lupd, which can be efficiently computed at the start of the protocol given the security parameter
λ, time bound t, and processors pM used by the machine M . The length of Lupd statements
for at most t updates is at most `upd(λ, |(M,x)| , t) ∈ log t + |(M,x)| + poly(λ), and when using
pupd(λ, pM ) = β · pM processors, the verification procedure takes time at most tupd(λ, |(M,x)| , t) =
t · β · |(M,x)| · poly(λ, log t). Given these parameters, we can compute α? = α(λ, `upd, tupd, pupd)/t
and finally γ = α? + 1, which the rest of the protocol depends on. All of these parameters can be
efficiently computed in polynomial time in the input length on a single processor, so in total this
step requires poly(λ)+polylog(λ, |(M,x)| , pM , t) ∈ poly(λ, log(t·pM )) work with a single processor.

For Step 3 of initialization, the prover needs to compute the initial digest digeststart and allocate
memory to run M . By Definition 5.4, the work to compute digeststart is β. To allocate memory
and copy the input x, this takes at most |x| ∈ poly(λ) time.

In Step 5, the prover needs to open dL/λe locations in the concurrently updatable hash function,
which takes dL/λe·β work by Definition 5.4. The prover additionally sends Statefinal and V rd

final which
have size O(λ) as they correspond to a halting state for the PRAM computation M . As β ∈ poly(λ),
this step takes at most L · poly(λ) time to compute.

Combining the above, everything other than Compute-and-prove requires an additive overhead
in depth (with just a single processor) of at most L · |x| · poly(λ, log(t · pM )).

It remains to analyze Compute-and-prove. Recall that Compute-and-prove starts m sub-protocols
Π1, . . . ,Πm. We start by bounding the number of sub-protocols m by γ log t in Claim 6.14. We
then argue in Claim 6.15 that, starting at Step 4, P completes all sub-protocols in depth at most
t + γ2 · (log t + 1) + β while using a total of 3 · pM · β + m · ρ? processors. As γ = α? + 1, this
implies that the total depth of P is t + (α?)2 · |x| · L · poly(λ, log(t · pM )) when using a total of
3 · pM · β + ρ? · γ log t ≤ (pM + α? · ρ?) · poly(λ, log(t · pM )) processors.

Lastly, we recall Remark 6, which states that we can assume without loss of generality that
|(M,x)| is bounded by an a priori fixed polynomial in λ when proving Lupd statements regarding
M,x, as long as the statements are proven relative to the time bound t′ = t+ |(M,x)| rather than
t. If not, the prover (and verifier) can incur an additive |(M,x)| · poly(λ) delay in depth using a
single processor and prove a related statement where it is the case. Therefore, combining this with
the above, it follows that there exists a polynomial q such that the total depth of P can be bounded
by t+(α?)2 · |(M,x)| ·L ·poly(λ, log(t ·pM )) when using a total of (pM +α? ·ρ?) ·poly(λ, log(t ·pM ))
processors, as required.

Claim 6.14. The number of protocols m started by P is at most γ log t.
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Proof. Recall that ki is the number of steps in the ith sub-protocol. By definition of the protocol,
it holds that k1 = bt/γc. Then at each subsequent call to Compute-and-prove, the number of
steps ki in the ith sub-protocol is equal to 1/γ times the number of remaining steps (rounding
down if necessary), until the number of remaining steps is less than γ. Thus, we can recursively
define ki = b(1/γ) · (t−∑i−1

j=1 kj)c for all i less than the number of sub-protocols m. For notational

convenience, we defineKi =
∑i

j=1 kj to be the number of steps computed in the first i sub-protocols.
In order to bound m, we lower bound the number of steps computed by the first i sub-protocols

before hitting the base case. Namely, we show for any i ∈ [m− 1],

Ki ≥ t ·
(

1−
(

1− 1

γ

)i)
− i.

We prove this lower bound on Ki via induction on i. The base case of i = 1 holds as (1 − (1 −
1/γ)1) − 1 = 1/γ − 1 and K1 = k1 = bt/γc ≥ t/γ − 1. For the inductive step, assume the bound
holds for j = i− 1. Then, the claim follows by the following set of inequalities.

Ki = Ki−1 + ki = Ki−1 +

⌊
1

γ
(t−Ki−1)

⌋
≥ Ki−1

(
1− 1

γ

)
+
t

γ
− 1

≥ t ·
(

1−
(

1− 1

γ

)i−1)(
1− 1

γ

)
+
t

γ
− (i− 1) ·

(
1− 1

γ

)
− 1

≥ t ·
(

1−
(

1− 1

γ

)i)
− i

Note that m is then defined to be the smallest value such that the number of steps remaining
is smaller than γ log t+ 1, so t−Km < γ log t+ 1. Using the above lower bound, we note that for
any arbitrary value m?, it holds that t−Km? ≤ t · (1− 1/γ)m

?
+m?. Therefore, if t · (1− 1/γ)m

?
+

m? ≤ γ log t + 1 for some m?, then t − Km? ≤ γ log t + 1. As m is the smallest value for which
t−Km ≤ γ log t + 1, this would imply that m ≤ m? since we would have hit the base case before
m?.

Plugging in m? = γ log t, we get that t · (1 − 1/γ)m
?

+ m? ≤ γ log t + 1. Thus, it follows that
m ≤ γ log t. �

Claim 6.15. The prover completes all protocols Π1, . . . ,Πm in depth at most t+ γ2 · (log t+ 1) +β
while using at most 3 · pM · β +m · ρ? processors in total.

Proof. For i ∈ [m], let the ith sub-protocol Πi have statement statementi and witness witi as defined
by the protocol. The prover’s depth when considering Πi consists of (1) ki steps of computation
corresponding to running M , (2) computing the witness witi for PsARK, (3) computing the hash
hash′i for the statement statementi, and (4) running PsARK to prove the computation.

In order to compute witi for PsARK, P makes ki pipelined calls to OpenUpdate in parallel to
the computation. It follows that performing the computation in (1) and the ki concurrent calls
to OpenUpdate in (2) can together be computed in depth ki + β using pM + pM · β processors by
Definition 5.4. For (3), we note that this corresponds to hashing at most pM states and words, and
so hashk can be computed in parallel in time β with pM · β processors (see parameters paragraph).
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As the hash is computed in parallel to the final update in (2) (which also takes β steps), it follows
that together (1), (2), and (3) can be done in depth ki + β with 3pM · β processors.

We note that steps (1), (2), and (3) happen consecutively for all m protocols, which all together
consist of t steps of computation while computing the corresponding updates and hash on the side.
Thus, across all protocols, a total of 3 · pM · β processors are used for these three steps and these
steps all finish by time t+ β.

For (4), we claim that any valid Lupd statement corresponding to k ≤ t updates can be proven
in time k · α? using ρ? processors. Let α̂(k) and ρ̂(k) be the function representing the depth and
processors used to prove valid statements corresponding to k updates. It follows that the time to
prove such a statement is (α̂(k)/k) · k ≤ (α̂(t)/t) · k with ρ̂(k) ≤ ρ̂(t) processors, since it holds
without loss of generality that α̂(k)/k is an increasing function in k and that ρ̂ is increasing (see
parameters paragraph for more discussion). However, we defined α? as α̂(t)/t and ρ? = ρ̂(t), which
implies the claim. Furthermore, all of these proofs happen simultaneously, so this adds a factor
of m · ρ? processors to the total computation. It follows that running PsARK requires depth ki · α?
(with one processor) for sub-protocol i.

Putting everything together, at the start of some sub-computation i with T steps remaining,
we compute and prove bT/γc steps of computation for i ≤ m − 1, or T steps when i = m, where
recall that we defined γ , α? + 1. By the above, for each i ≤ m− 1 this requires depth bounded by

bT/γc+ β + α? · bT/γc = bT/γc(α? + 1) + β ≤ T + β.

For i = m, this requires depth bounded by

T + β + α? · T = T · (α? + 1) + β = T · γ + β.

For all sub-protocols Πi, we start recursively computing and proving the remaining t−∑i−1
i=1 kj

steps at depth
∑i−1

i=1 kj . By the above, this implies that protocol Πi for i ≤ m− 1 finishes at depth

i−1∑
i=1

kj + (t−
i−1∑
i=1

kj) + β = t+ β.

For protocol Πm, note that it starts at depth
∑m−1

i=1 ki and takes km · γ + β depth to compute and
prove by the above. Thus, it completes at depth

m−1∑
i=1

ki + km · γ + β = t+ km · (γ − 1) + β ≤ t+ (γ log t+ 1)(γ − 1) + β ≤ t+ γ2 · (log t+ 1) + β

as km ≤ γ log t+ 1. Thus, all protocols finish within depth t+ γ2 · (log t+ 1) + β, as required. �

This completes the proof of Lemma 6.13.

Lemma 6.16 (Verifier efficiency). There exists a polynomial q such that for any λ ∈ N, (M,x, t,
L) ∈ {0, 1}∗ where M has access to n ≤ 2λ words in memory and pM processors, it holds that

workV(1λ, (M,x, t, L)) ≤ α? · |(M,x)| · L · q(λ, log(t · pM )).

Proof. To bound the work of the verifier, we note that a bound on the length of each message is
known to the verifier in advance (as they depend on α?, L, γ, and β which are all known), so we
can assume that the verifier aborts if it receives a message of the wrong length.
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To analyze the verifier’s efficiency, we have that the verifier first samples pp ← C.Gen(1λ, n)
and h ← Hλ, and then computes γ, Statestart, and V rd

start. Sampling pp, h take time poly(λ),
and as discussed in the proof of Lemma 6.13, the rest of the values can be computed in in time
poly(λ, log(t · pM )).

The rest of the verifier’s running time is in running and checking consistency of the m sub-
protocols, checking the starting and ending hashes, and verifying the output. The m sub-protocols
are computed using (PsARK,VsARK), and by succinctness, there exists a polynomial qsARK such that
VsARK runs in time

qsARK(λ, `upd, log(tupd · pupd)) ∈ poly(λ, |(M,x)| , log(t · pM )),

where we recall that `upd(λ, |(M,x)| , t) ∈ poly(λ, |(M,x)| , log t) upper bounds the Lupd statement
length, tupd(λ, |(M,x)| , t) ∈ t · poly(λ, |(M,x)| , log t) upper bounds the depth to verify a Lupd

statement with at most t updates when using pupd(λ, pM ) = pM · β processors.
Next, checking consistency between the sub-protocols is mostly syntactic and can be done in

time m · |(M,x)| · poly(λ, log t). Checking digest0 and hash0 can be done in time poly(λ), as well as
checking hash′m, since it corresponds to hashing a halting state and single word for the end of the
PRAM computation. Similarly, checking that statefinal is a halting state can be done in time O(λ)
as halting states consist of a single PRAM state with a constant number of words. Verifying the
output y can be done in time dL/λe · β ∈ L · poly(λ) by the efficiency of the hash function and the
fact that |y| ≤ L.

Putting everything together, we get that the verifier runs in time m ·L · poly(λ, |(M,x)| , log(t ·
pM )). Since m ≤ γ log t by Claim 6.14 and γ = α? + 1, this is bounded by

α? · L · poly(λ, |(M,x)| , log(t · pM )).

Lastly, by Remark 6, we note that we can assume without loss of generality that the Lupd statements
are relative to a machine M ′ and input x′ with length bounded by a fixed polynomial in λ and
a time bound t′ = t + poly(λ, |(M,x)|), so long as V has an additional |(M,x)| · poly(λ) factor
in its running time to hash (M,x). Therefore, combining this with the above and noting that
log(t′) ∈ poly(λ, log t), the verifier’s total running time is at most α? · |(M,x)| · L · q(λ, log(t · pM ))
for a fixed polynomial q.

Lemma 6.17 (Communication complexity). There exists a polynomial q such that for any λ ∈ N,
(M,x, t, L) ∈ {0, 1}∗ where M has access to n ≤ 2λ words in memory and pM processors, it holds
that the length of the transcript produced between P(w) and V on common input (1λ, (M,x, t, L))
is bounded by

α? · L · q(λ, log(t · pM )).

Proof. The dominating part of the communication comes from the communication in all sub-
protocols defined by Compute-and-prove. The rest of the communication has size at most poly(λ)
to send pp and h, size poly(λ) to send Statefinal, V

rd
final (as they correspond to the final state of the

computation), and at most λ · dL/λe + L · β ∈ L · poly(λ) to send the final proof. Put together,
this is at most L · poly(λ).

The m sub-protocols in Compute-and-prove are computed using (PsARK,VsARK), so they have
communication bounded by some fixed polynomial qsARK in λ and log(tupd ·pupd) by succinctness of
(PsARK,VsARK), where recall tupd upper bounds the tome to verify the ith Lupd statement when using
pupd processors. Since tupd(λ, |(M,x)| , t) ≤ t·poly(λ, |(M,x)| , log t) when pupd(λ, pM ) = pM ·β, then
this implies that the communication across all protocols is at most m · qsARK(λ, log(tupd · pupd)) ∈
m ·poly(λ, log(t ·pM )), where we additionally used the fact that |(M,x)| ≤ n ≤ 2λ. The prover also
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has to send the statement for each sub-protocol, which adds m · `upd ∈ m ·poly(λ, |(M,x)| , log t) to
the communication complexity, where we recall that `upd is the upper bound on the Lupd statement
length. By Claim 6.14, m ≤ γ log t and γ = α? + 1, so all together Compute-and-prove adds

α? · poly(λ, |(M,x)| , log(t · pM ))

to the communication complexity.
Putting everything together, we get a bound of α? ·L · poly(λ, |(M,x)| , log(t · pM )). Finally, by

Remark 6, without loss of generality we can assume that |(M,x)| is bounded by a fixed polynomial
in λ when used in the Lupd statements, as long as the statements are proven relative to a time
bound t′ = t + poly(λ, |(M,x)|) (rather than t) and the prover and verify incur an additional
delay of |(M,x)| · poly(λ) delay (which was taken into account in the proofs of prover and verifier
efficiency). Therefore, this implies that log t′ ∈ poly(λ, log t) (since |(M,x)| ≤ n ≤ 2λ), and so
the number of rounds and total communication is bounded by α? · L · q(λ, log(t · pM )) for a fixed
polynomial q.

6.4 Non-interactive Protocol

In this section, we give the protocol from Section 6 in the non-interactive setting. Specifically, we
show a transformation from any concurrently updatable hash function and succinct non-interactive
argument of knowledge (SNARK) to an argument where the multiplicative overhead of the SNARK
prover translates into only additive overhead for the resulting prover. Our construction is nearly
the same as in the interactive case, though we additionally need to assume that the underlying
succinct argument is a SNARK. We formally define SNARKs in Appendix A.

Let C be a concurrently updatable hash function, let (Gsnark,Psnark,Vsnark) be a SNARK for
Lupd with (α, ρ)-prover efficiency, and let H = {Hλ}λ∈N be a collision-resistant hash function
family ensemble. When we mention the prover and verifier (P,V), we refer to the construction
of Section 6.2. We now give the high level details of our construction (Gni,Pni,Vni) for RPRAM

U ,
emphasizing the key differences from our interactive construction.

• (crs, st)← Gni(1
λ): Let pp ← C.Gen(1λ, n) where n = 2λ, h ← Hλ, and (crssnark, stsnark) ←

Gsnark(1λ). Output (crs, st) where crs = (crssnark, pp, h) and st = (stsnark, pp, h).11

• (y, π)← Pni(crs, (M,x, t, L), w): Let crs = (crssnark, pp, h). Let M ′ be the same as the machine
M , except that it specifies n = 2λ as the amount of words in memory it has access to. Without
sending any messages, run the prover P(w) on common input (M ′, x, t, L) using (pp, h) as the
verifier’s first message and crssnark as the common reference string for all underlying SNARKs.
Let y be the output of the computation and π be all messages that would have been sent in
the protocol. Output (y, π).

• b← Vni(st, (M,x, y, L, t), π): Let st = (stsnark, pp, h). If M uses more than 2λ words in memory,
output b = 0. Otherwise, let M ′ be the same as the machine M , except that it specifies
n = 2λ as the amount of words in memory it has access to. Parse π as all messages from P,
and run the verifier V for statement (M ′, x, t, y, L) using (pp, h) as the verifier’s first message
and stsnark to verify all underlying SNARKs. Let y′ be the value that V would have output.
Output b = 1 if y = y′ and b = 0 otherwise.

We get the following theorem.

11Note that if the underlying SNARK is publicly verifiable, then stsnark = crssnark. Then, crs = st, so the resulting
non-interactive argument is also publicly verifiable.
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Theorem 6.18. Suppose there exists a concurrently updatable hash function and a SNARK (Gsnark,
Psnark,Vsnark) with (α, ρ)-prover efficiency for the NP language Lupd. Then, there exists a tuple (Gni,
Pni,Vni) satisfying niSPARK completeness and argument of knowledge for NP, as well as the same
efficiency properties as Theorem 6.1.

Specifically, there exists a polynomial q such that for all λ ∈ N and ((M,x, y, L, t), w) ∈ RPRAM
U

where M has access to n ≤ 2λ words in memory and pM processors, the following hold. Let α? and
ρ? (formally defined based on α and ρ) be the multiplicative overhead in depth (with respect to the
number of steps) and number of parallel processors used, respectively, by Psnark to prove a statement
in Lupd corresponding to at most t steps of computation. Then:

• The depth of Pni is bounded by t+ (α?)2 · |(M,x)| ·L · q(λ, log(t · pM )) when using (pM + α? ·
ρ?) · q(λ, log(t · pM )) processors.

• The work of Vni is bounded by α? · |(M,x)| ·L ·q(λ, log(t ·pM )), and the length of the transcript
produced in the interaction between P(w) and V is bounded by α? · L · q(λ, log(t · pM )).

To prove Theorem 6.18, we note that completeness, succinctness, and optimal prover depth
follow identically as in the proof of the construction in Section 6. The proof of adaptive argument
of knowledge is conceptually similar yet differs in the technical details as the definition of the
extractor for both the underlying SNARK and niSPARK are different. As such, we give the full
proof of adaptive argument of knowledge in Appendix B.

As we discuss in Remark 10 in Appendix A, the argument of knowledge property of the underly-
ing SNARK may only hold for certain distributions over the auxiliary input of the malicious prover.
In this case, the argument of knowledge property in our construction holds for any distribution Z
over the auxiliary input of the malicious prover so long as the SNARK is secure with auxiliary
input drawn from (Z,C.Gen(1λ),Hλ).

7 Main Results

We first construct a four-round SPARK in Section 7.1 assuming only collision resistance. Addition-
ally assuming the existence of a SNARK, we construct a space-preserving, non-interactive SPARK
in Section 7.2.

7.1 Four-Round SPARKs

We consider general parallel RAM computations consisting of statements (M,x, y, L, t) where M is
a parallel RAM machine using any pM number of processors. If we instantiate our transformation
from Section 6 with a succinct argument where the prover has α? = poly(λ, log(t ·pM )) overhead in
depth while using at most ρ? = pM processors, the transformation of Theorem 6.1 yields a SPARK
for RPRAM

U . To capture the requirements we need, we first formalize and define this notion as a
depth-preserving succinct argument of knowledge.

Definition 7.1 (Depth-Preserving Succinct Argument of Knowledge). We say that a succinct argu-
ment of knowledge (P,V) for a relation R ⊆ RTM

U is depth-preserving if there exists a polynomial q
such that (P,V) satisfies (α, ρ)-prover efficiency for α(λ, |(M,x, y, L)| , t, pM ) = (t+ |(M,x, y, L)|) ·
q(λ, log(t · pM )) and ρ(λ, |(M,x, y, L)| , t, pM ) = pM .

In the following theorem, we show that given any depth-preserving succinct argument of knowl-
edge, this yields a SPARK.
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Theorem 7.2. Suppose there exists a concurrently updatable hash function and a depth-preserving
succinct argument of knowledge for NP. Then, there exists a SPARK for non-deterministic poly-
nomial time PRAM computation.

Proof. Let (PsARK,VsARK) be a depth-preserving succinct argument of knowledge for the language
Lupd where |(M,x)| ∈ poly(λ) by Remark 6. Let α and ρ be the efficiency of (PsARK,VsARK). We
recall that the length of Lupd statements for at most t updates is at most `upd(λ, |(M,x)| , t) ∈
log t + poly(λ), and when using pupd(λ, pM ) ∈ pM · poly(λ) processors, the verification procedure
takes depth at most tupd(λ, |(M,x)| , t) = t ·poly(λ, log t). Since (PsARK,VsARK) is depth-preserving,
this implies that there exists a polynomial q such that

α? = α(λ, `upd, tupd, pupd)/t ≤ q(λ, log(t · pM ))

and ρ? = ρ(λ, `upd, tupd, pupd) = pupd ≤ pM · q(λ, log(t · pM )). Theorem 6.1 implies that there
exists an interactive protocol (P,V) for RPRAM

U that satisfies SPARK completeness and argument
of knowledge for NP. Furthermore, plugging the values for α? = q(λ, log(t · pM )) and ρ? = pM ·
q(λ, log(t · pM )) into the theorem, this implies that there exists a polynomial q′ such that the
following efficiency properties hold:

• The depth of the prover is bounded by t + |(M,x)| · L · q′(λ, log(t · pM )) when using pM ·
q′(λ, log(t · pM )) processors.

• The work of the verifier is bounded by |(M,x)| · L · q′(λ, log(t · pM )) and the length of the
transcript produced in the interaction between P(w) and V is bounded by L ·q′(λ, log(t ·pM )).

This immediately implies the SPARK optimal prover depth and succinctness properties.

Using Kilian’s protocol [Kil92] with the parallelizable PCP construction of [BCGT13], we con-
struct a four-round depth-preserving succinct argument of knowledge from collision resistance alone.
Furthermore, we describe how to instantiate our transformation for this protocol in a way that pre-
serves round complexity. We next recall Kilian’s argument and the PCP we use, and then show
how this yields a four-round SPARK.

PCPs and Kilian’s succinct argument. At a high level, Kilian’s argument gives a way to
compile a probabilistically checkable proof (PCP) into a four-round succinct argument. We start
by defining a depth-preserving PCP of knowledge, which we need for our construction of four-round
SPARKs.

Definition 7.3 (Depth-Preserving PCP of Knowledge). A depth-preserving PCP of knowledge
(PCP) for a NP relation R is a pair (Ppcp,Vpcp) satisfying the following.

• Completeness: For any λ ∈ N, (x,w) ∈ R, and π ← Ppcp(1λ, x, w), it holds that Vπpcp(1λ, x) =
1.

• Proof of Knowledge: There exists a PPT extractor E and a negligible function negl such that
for any λ ∈ N, x ∈ {0, 1}∗, and proof π ∈ {0, 1}∗,

Pr

[
w ← E(x, π) :

Vπpcp(1λ, x) = 1

∧ (x,w) 6∈ R

]
≤ negl(λ).
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• Depth-Preserving Prover Efficiency: Let M be the Turing machine that verifies the re-
lation R using pM processors. There exists a polynomial q such that for any λ ∈ N and
(x,w) ∈ R, the depth of Ppcp(x,w) is bounded by t · q(λ, |x| , log(t · pM )) when using pM
processors, where t is the depth of M(x,w).

• Verifier Efficiency: Let M be the Turing machine that verifies the relation R using pM pro-
cessors. There exists a polynomial q such that for any λ ∈ N, input (x,w) ∈ {0, 1}∗, and
oracle string π ∈ {0, 1}∗, Vπpcp(1λ, x) runs in time q(λ, |x| , log(t · pM )), where t is the running
time of M(x,w).

Ben-sasson et al. [BCGT13] construct a PCP of knowledge which, when viewed as a PCP for a
specific NP language, has the following properties. After computing the tableau of the computation,
a PCP can be computed in depth poly(λ, log(t ·pM )) using t ·pM processors. Such a PCP implies a
depth-preserving PCP of knowledge by restricting the prover to only use pM processors at a time,
which increases its depth by a factor of t and satisfies the above definition.

Given any PCP system (Ppcp,Vpcp) for NP, Kilian’s transformation yields a four-round interac-
tive protocol (P,V) defined as follows. Let L be a language with witness relation RL. The common
input to the protocol is (1λ, x) and P receives private input w such that (x,w) ∈ RL.

1. V samples a function h from a collision-resistant hash function family and sends h to P.

2. P computes π ← Ppcp(1λ, x, w), computes a Merkle tree on π, and sends the root to V.

3. V samples randomness used by Vpcp(1λ, x) and sends it to P.

4. P opens up the locations specified by the randomness sent by V for Vpcp in the Merkle tree
and sends the openings and authentication paths to V.

5. The verifier accepts if and only if Vpcp(1λ, x) would have accepted given the openings and all
authentication paths are valid.

The above protocol is a four-round succinct argument of knowledge if (Ppcp,Vpcp) is a PCP of
knowledge and h is a collision-resistant hash function. We note that the second message where P
computes the PCP proof π with a Merkle tree is the most time consuming step, and is why we need
a PCP with an efficient prover. All other steps can be computed in time poly(λ, |x| , log(t · pM ))
for any PCP.

Next, we sketch why Kilian’s protocol is depth-preserving when using a depth-preserving PCP.
The prover Pkilian consists of computing a PCP π, computing the Merkle tree root of π, and then
opening up locations in the Merkle tree corresponding to the verifier’s queries. By definition of a
depth-preserving PCP, computing the PCP can be done in depth t · poly(λ, |x| , log(t · pM )) with
pM processors. This results in a PCP of length t · pM · poly(λ, |x| , log(t · pM )). The Merkle root
can then be computed in depth t ·poly(λ, |x| , log(t ·pM )) with pM processors. By the bound on the
length of the PCP combined with the PCP verifier’s effiency, the query locations can be opened in
time poly(λ, |x| , log(t · pM )). It follows that instantiating Kilian’s protocol in this way results in a
depth-preserving succinct argument of knowledge.

Constructing a four-round SPARK. We now describe our four-round SPARK construction.
We assume familiarity with the protocol of Section 6.2, which we denote by (Pspark,Vspark) and is
the basis for the construction. For the underlying succinct argument of knowledge in that protocol,
we use Kilian’s succinct argument with a depth-preserving PCP of knowledge as described above,
which we denote by (Pkilian,Vkilian).
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The protocol (P,V) for RPRAM
U is defined as follows. The common input to the protocol is

(1λ, (M,x, t, L)) and P receives private input w such that ((M,x, y, L, t), w) ∈ RPRAM
U where y

is the output of M(x,w) within t steps. When we refer to protocol (Pspark,Vspark), we mean the
protocol with the same inputs.

1. V computes the first message msg1 for Vspark and a hash function h for (Pkilian,Vkilian). V sends
(msg1, h) to P.

2. Using msg1, P runs the Provespark through Compute-and-prove, which determines m sub-
protocols. For each of the sub-protocols, P uses h to compute the second message of
(Pkilian,Vkilian) for the given statements. Recall that this consists of a Merkle tree digest
of the PCP for that part of the computation, which P stores explicitly for all protocols. After
computing all second messages in parallel, P sends them to V at the same time.

3. V responds with the third message of (Pkilian,Vkilian) for the m sub-protocols, consisting of
randomness to specify queries to open in each PCP.

4. P opens all relevant locations with authentication paths in the PCPs, and sends the results
to V along with the final message msgfinal sent by Pspark.

5. V accepts and outputs the value y specified by Vspark if all of the underlying (Pkilian,Vkilian)
protocols accept and all conditions checked by Vspark hold.

As (Pkilian,Vkilian) is a depth-preserving succinct argument of knowledge assuming only the
existence of collision-resistant hash functions, the above construction yields the following theorem.

Theorem 7.4 (Restatement of Theorem 1.3). Suppose there exists a family of collision-resistant
hash functions. Then, there exists four-round SPARK for non-deterministic polynomial-time
PRAM computation.

Proof. We consider the protocol (P,V) defined above based which uses a depth-preserving succinct
argument of knowledge and a collision resistant hash function family.

The proofs of completeness and argument of knowledge for (P,V) follow identically to the
analysis of Theorem 6.1, and the protocol above is defined in four rounds.

Succinctness follows from Theorem 7.2, since the underlying argument is depth-preserving.
We briefly discuss prover efficiency. The prover complexity in (Pkilian,Vkilian), which dominates
the prover complexity in the four round SPARK, comes from the second and fourth messages
of the protocol. All other messages by the prover and the verifier can be computed in time
poly(λ, |(M,x)| , L, log(t · pM )). Without waiting for all messages of the protocol, all sub-protocols
would have finished by depth t + γ2 · (log t + 1) + β by the analysis of Lemma 6.13. Thus, the
second messages of the sub-protocols will finish by this time, so the second message will be sent
by time (t + γ2 · (log t + 1) + β) ∈ t + (α?)2 · |(M,x)| · poly(λ, log(t · pM )). The fourth message
simply consists of opening locations in the Merkle trees with authentication paths. Assuming the
entire PCP is stored, this can be computed in time poly(λ, log(t · pM )) for each of m PCPs in
parallel. Thus, the total time for the protocol to finish is t+ (α?)2 · |(M,x)| ·L ·poly(λ, log(t · pM )).
Again, as the underlying argument is depth-preserving, this implies that α? ∈ poly(λ, log(t · pM ))
and ρ? = pM · poly(λ) as in Theorem 7.2, so the protocol satisfies optimal prover depth. Thus, the
resulting protocol is a valid SPARK for RPRAM

U .
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7.2 Non-interactive SPARKs

If we instantiate our transformation with a SNARK, as in Section 6.4, then the resulting protocol
is non-interactive. Furthermore, if the SNARK is depth-preserving as in Definition 7.1, this implies
a non-interactive SPARK. For completeness, we define a depth-preserving SNARK and formally
state this result below. We note that the proof follows identically to that of Theorem 7.2.

Definition 7.5 (Depth-Preserving SNARK). We say that a SNARK (G,P,V) for a relation R ⊆
RTM
U is depth-preserving if there exists a polynomial q such that (G,P,V) satisfies (α, ρ)-prover

efficiency for
α(λ, |(M,x, y, L)| , t, pM ) = (t+ |(M,x, y, L)|) · q(λ, log(t · pM ))

and ρ(λ, |(M,x, y, L)| , t, pM ) = pM .

Theorem 7.6. Assuming there exists a concurrently updatable hash function and a depth-preserving
SNARK for NP. Then, there exists a non-interactive SPARK for non-deterministic polynomial-
time PRAM computation.

Assuming the existence of collision-resistant hash functions, Bitansky et al. [BCCT13] show
how to transform any (possibly inefficient or preprocessing) SNARK into a complexity-preserving
SNARK using recursive proof composition (following ideas of Valiant [Val08]). We show that, for
parallel RAM machines M using pM processors, their construction gives a depth-preserving SNARK
when allowing the prover to use pM processors as well. The fact that the SNARK is complexity-
preserving means that it also preserves the space complexity of the underlying computation up to
poly(λ, log(t · pM )) factors. We isolate this property and refer to it as space-preserving, defined as
follows.

Definition 7.7 (Space-preserving). We say that a succinct argument (P,V) for a relation R ⊆ RTM
U

is space-preserving if there exists a polynomial q such that for any λ ∈ N, and ((M,x, y, L, t), w) ∈ R
where M(x,w) uses n ≤ 2λ space and pM processors, it holds that the space of P is at most
n · q(λ, log(t · pM )). We analogously define space-preserving for succinct non-interactive arguments
(G,P,V).

At a high level, the transformation of [BCCT13] splits the t-time computation into roughly
t parts of size poly(λ) and constructs proofs for each part separately. Each of these proofs are
treated as independent of each other and can be computed in parallel. At first, this doesn’t provide
any benefit since the verifier would need to check roughly t distinct proofs. However, they show
how to combine multiple proofs by proving the existence of a set of “lower-level” proofs that the
verifier would have accepted. Using this idea, they combine proofs recursively in a tree-like fashion
of constant-depth until the verifier only has to verify a single proof.

We briefly discuss the proof of this transformation and discuss why the resulting SNARK is
depth-preserving. Completeness is straightforward. Proving that this transformation preserves the
argument of knowledge property is more subtle and relies on the fact that the SNARK composition
only has constant depth (without making stronger assumptions about the knowledge extractor for
the underlying SNARK). Succinctness follows as the final proof is simply a single SNARK proof.
To show that the resulting SNARK is depth-preserving and space-preserving, we note that even
if the underlying SNARK has poly(t) overhead in time and space for a t-time computation, each
individual proof will only require poly(λ) overhead since the size of each sub-computation is only
poly(λ). Thus, the “layer one” proofs (corresponding to the proofs of the main computation) only
incur a poly(λ) multiplicative overhead in the underlying depth and space, and at most poly(λ)
proofs will be processed in parallel at any time. Furthermore, the composed proofs at higher levels
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of the tree can be computed as soon as they are ready, and only poly(λ) proofs will be computed
at any time. Once computed, the prover can “forget” the previous parts of the computation, so it
only needs to keep information about poly(λ) proofs around, consisting of the current “frontier” in
this tree. We refer the curious reader to [BCCT13] for more details of this proof.

Using the above SNARK transformation in our non-interactive SPARK construction of Sec-
tion 6.4, we get the following theorem assuming collision-resistance and any SNARK. We emphasize
that if the underlying SNARK is publicly verifiable, then so is the resulting SPARK.

Theorem 7.8. Suppose there exists a family of collision-resistant hash functions and a SNARK.
Then, there exists a space-preserving, non-interactive SPARK for non-deterministic polynomial-
time PRAM computation.

Completeness, argument of knowledge, succinctness, and optimal prover depth all follow directly
from the analysis of Theorems 6.18, 6.1, and 7.2. As a result, we focus on the space complexity
of the prover. The space complexity is dominated by the sub-protocols. The space used by the
computation is defined to be n, and all other parts is bounded by (|M,x| + L) · poly(λ, log(t ·
pM )). If the underlying SNARK is space-preserving, it holds that each subprotocol uses at most
n·poly(λ, log(t·pM )) space. There are at most m ≤ (α?+1) log t sub-protocols, which is bounded by
poly(λ, log(t ·pM )) since the protocol is depth-preserving. Thus, the space used by all sub-protocols
is at most n · poly(λ, L, log(t · pM )) as required.

8 Extensions

In this section, we discuss various extensions of our main result.

8.1 Space-preserving Interactive SPARKs

In Section 7.2, we gave a transformation from SNARKs to non-interactive SPARKs which are also
space-preserving. As discussed in that section, this relies on a transformation from SNARKs to
complexity-preserving SNARKs due to [BCCT13], which only works in the non-interactive setting.
Specifically, if each intermediate argument in that transformation requires interaction, this would
make the round complexity, and hence communication complexity, depend at least linearly on t.
This raises the question, can we construct space-preserving (interactive) SPARKs from weaker
assumptions than space-preserving non-interactive SPARKs? We emphasize that the four-round
SPARK protocol given in Section 7.1 is not space-preserving. In particular, that construction
requires storing an entire PCP for each sub-protocol, so it requires space that depends on the time
bound t of the underlying computation rather than the space bound.

Bitanksy and Chiesa [BC12] posed this question for succinct arguments of knowledge (without
the optimal prover depth requirement). They construct four-round complexity-preserving succinct
arguments of knowledge by adapting Kilian’s four-round argument. Instead of relying on PCPs
in Kilian’s blueprint, they make use of a one-round complexity-preserving multi-prover interactive
proof (MIP) of knowledge. In an MIP, there are many provers, and they are crucially not allowed
to interact with each other (otherwise it would be equivalent to the setting of a single prover).
They show how to compile such an MIP into a succinct argument using function commitments. At
a high level, function commitments allow the prover to commit to a function without evaluating it
at every point, so they use the function commitments to commit to the MIP prover algorithms. In
contrast, in order to commit to a PCP string in Kilian’s protocol, the prover needs to compute the
full PCP string.

65



In [BC12], they show how to construct the required function commitments based only on fully
homomorphic encryption (FHE), and so the resulting complexity-preserving succinct argument of
knowledge is based only on FHE. By instantiating our SPARK construction of Section 6.2 with
their succinct argument, we get the following theorem assuming collision resistance and FHE.

Theorem 8.1. Suppose there exists a collision-resistant hash function family and a secure FHE
scheme. Then, there exists a space-preserving SPARK for non-deterministic polynomial-time (se-
quential) RAM computations.

The space-preserving property follows from the same observations as in the non-interactive
case. However, we note that the round complexity of the resulting SPARK is poly(λ, L, log(t ·pM )).
In short, the trick used in Section 7.1 to construct a four-round SPARK using Kilian’s succinct
argument does not immediately work to collapse rounds as the prover needs to do quasi-linear
work both to commit to the functions of the MIP provers and to homomorphically evaluate their
responses. Additionally, we note that the complexity-preserving succinct argument is private-coin,
so the resulting space-preserving SPARK is also private-coin.

Lastly, we remark that the complexity-preserving succinct argument of [BC12] is only given for
RAM (rather than PRAM computations), so the above theorem is also only stated for sequential
RAM computations. We note that it actually holds for computations with moderate parallelism—
namely, machines computable in time t with poly(λ, log t) parallelism. At a high level, this follows
because SPARKs for sequential RAM computation generically give depth-preserving succinct ar-
guments for computation with moderate parallelism, by ignoring the parallelism of the underlying
computation and treating it as a t ·poly(λ, log t)-time sequential computation. Applying our trans-
formation to this results in a SPARK for moderately parallel computations. We leave the extension
to full PRAM computation as future work.

Open problems. We comment on open problems left by Bitansky and Chiesa [BC12], which if
resolved would immediately give results for space-preserving SPARKs. The first is to construct
complexity-preserving PCPs. Using such a PCP in Kilian’s argument would yield a complexity-
preserving, public-coin, succinct argument. In turn, this can be used to construct a space-preserving,
public-coin, four-round SPARK, by the techniques described in Section 7.1. Next, is it possible to
construct a complexity-preserving, public-coin, succinct argument without going through PCPs and
Kilian’s transformation? Again, this would at least give a space-preserving, public-coin SPARK,
although not necessarily with constant round complexity.

8.2 Proof Composition

We recall that in the transformation from succinct arguments to SPARKs, the prover proves m ≤
(α? + 1) · log t separate sub-protocols, where recall α? is the overhead in depth of the underlying
argument and t is the depth of the computation. This requires that the prover communicate
m proofs, and the verifier needs to check all of them. Even when the underlying argument is
depth-preserving, the number of protocols m ∈ poly(λ, log(t · pM )) may be undesirable.

In the non-interactive setting, the prover can generically compose proofs such that the prover
only has to send—and the verifier only has to verify—a single SNARK proof. Specifically, let
Π1, . . . ,Πm be the m underlying SNARK protocols with statements statementi and witnesses witi
for each i ∈ [m]. The prover will initially compute proofs π1, . . . , πm for each statement, which
takes at most t + poly(λ, log(t · pM )) time. At this point, the prover can send a hash of all
m statements, witnesses, and proofs to the verifier and additionally use the SNARK to prove
that it knows a set of statements, witnesses, and proofs which (1) the original SPARK verifier
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would have accepted and (2) are consistent with the provided hash. This additional work only
incurs an additive poly(λ, log(t · pM )) delay by the prover, so the resulting protocol still satisfies
the optimal prover depth property required by a SPARK. This is a standard proof composition
technique (see [Val08, BCCT13] for more details), and because this only requires one level of
recursive composition, the argument of knowledge property is preserved.

In the interactive setting, proof composition does not generically work as described above to
reduce communication and verifier complexity. However, in the case of Kilian’s protocol and our
construction in Section 7.1, we can do proof composition to reduce communication and verifier
complexity at the cost of two extra messages of communication. At a high level, instead of sending
the roots of the Merkle tree for all m PCPs, the prover hashes all of the statements and roots
together and sends it to the verifier. This takes at most t + poly(λ, log(t · pM )) time to finish the
first prover message. At this point in time, the verifier sends randomness to specify challenge queries
for the m PCPs (which can be compressed using a pseudo-random generator). The prover then uses
a four-round succinct argument of knowledge to prove that it knows a set of openings consistent with
the hash answering all of the PCP queries that the verifier would have accepted. The complexity
of this statement is only poly(λ, log(t · pM )), so it only incurs an additional poly(λ, log(t · pM ))
delay in the protocol as required. The argument of knowledge analysis follows similarly to the
non-interactive setting. Furthermore, at the end of the protocol, the verifier only needs to check a
single succinct argument of knowledge at the cost of an extra round of communication.

8.3 Efficiency Tradeoffs

We note that for some applications, requiring optimal prover depth may not be necessary. There
may be a hard constraint on the time to finish the proof (e.g. compute the proof within 1 hour)
or on the number of processors (e.g. compute the proof as fast as possible using p processors).
We emphasize that the construction in Section 6.2 is flexible to these varying needs depending on
the specific application. Specifically, by choosing γ appropriately (which recall corresponds to the
fraction of the remaining computation to compute and prove at each step), we can handle any
pre-specified prover running time or achieve the best-possible running time given a fixed number
of processors.

9 Applications to Verifiable Hard Functions

We observe that any non-interactive SPARK for deterministic computations gives a way to turn any
function implemented in the parallel RAM model into a verifiable function that can be computed
in roughly the same parallel time. In particular, this implies that any sequential function (one
that can be computed in time T but not much faster) can be made into a verifiable delay function
(VDF). Furthermore, if the underlying sequential function satisfies some hardness property, such as
memory-hardness, this is preserved in the transformation. In the following, we formally define veri-
fiable hard functions and then show how to construct them using publicly-verifiable non-interactive
SPARKs for deterministic computations.

9.1 Defining Verifiable Hard Functions

In the subsequent definitions, we make use of the following algorithms with the specified syntax:

• pp← Gen(1λ): A PPT algorithm that on input a security parameter λ outputs public parame-
ters pp. We assume for simplicity that pp contains 1λ.
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• x← Sample(pp): A PPT algorithm that on input a security parameter λ and public parameters
pp outputs a string x ∈ {0, 1}∗.

• y = Eval(pp, x): A deterministic algorithm that on input a security parameter λ, public param-
eters pp, and an input x ∈ {0, 1}∗, outputs a value y ∈ {0, 1}∗.

• (y, π)← EvalWithProof(pp, x): An algorithm that on input a security parameter λ, public pa-
rameters pp, and an input x ∈ {0, 1}∗, outputs a value y ∈ {0, 1}∗ and a proof π ∈ {0, 1}∗.
The value y can be generated by the deterministic algorithm Eval(pp, x). The second output
π can be generated using randomness, so it may not be unique.

• b← Verify(pp, x, (y, π)): A probabilistic algorithm that on input a security parameter λ, public
parameters pp, an input x ∈ {0, 1}∗, a value y ∈ {0, 1}∗, and a proof π ∈ {0, 1}∗, outputs a
bit b indicating whether to accept or reject.

Using the above syntax, we define a verifiable function in the public parameters model.

Definition 9.1 (Verifiable Function). A verifiable function is a a tuple (Gen,EvalWithProof,Verify)
of algorithms such that the following hold:

• Completeness: For every λ ∈ N, pp ∈ Supp
(
Gen(1λ)

)
, and x ∈ {0, 1}∗, it holds that

Pr [Verify(pp, x,EvalWithProof(pp, x)) = 1] = 1.

• Soundness: For every non-uniform PPT algorithm A = {Aλ}λ∈N, there exists a negligible
function negl such that for every λ ∈ N, it holds that

Pr


pp← Gen(1λ)
(x, y′, π′)← Aλ(pp)
(y, π)← EvalWithProof(pp, x)
b← Verify(pp, x, y′, π′)

:
b = 1
∧ y 6= y′

 ≤ negl(λ).

Before defining a hard function, we define the notion of a class of algorithms. Recall that an
algorithm A = {Aλ}λ∈N is a actually sequence of algorithms for each λ ∈ N. A class C is a set
of algorithms satisfying some predicate as a function of λ. Also, we recall the distinction between
uniform and non-uniform algorithms A = {Aλ}λ∈N. A is uniform if for all λ ∈ N, Aλ can be
computed by a constant-size PPT Turing machine on input 1λ. A non-uniform algorithm may
not have a constant-size description to efficiently generate Aλ for all λ ∈ N. At a high level, a
hard function can be computed by a uniform algorithm in an “honest” class whereas it cannot be
computed even by non-uniform algorithms in an “adversarial” class.

Definition 9.2 (Hard Function). Let CHonest and CAdv be classes of algorithms. A (CHonest, CAdv)-
hard function is a tuple of algorithms (Gen,Sample,Eval) such that the following hold:

• Honest Evaluation: There exists a uniform algorithm A = {Aλ}λ∈N ∈ CHonest such that for
all λ ∈ N, pp ∈ Supp

(
Gen(1λ)

)
, and x ∈ Supp(Sample(pp)),

Aλ(pp, x) = Eval(pp, x).
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• Hardness: For every non-uniform PPT algorithm A0 = {A0,λ}λ∈N,12 there exists a negligible
function negl such that for every λ ∈ N, it holds that

Pr


pp← Gen(1λ)
A1 ← A0,λ(pp)
x← Sample(pp)
y ← A1(x)

:
Eval(pp, x) = y
∧ A1 ∈ CAdv

 ≤ negl(λ).

We say that a hard function has bounded output if for any pp in the support of Gen(1λ) and x in
the support of Sample(1λ), it holds that |Eval(pp, x)| ≤ λ.

In the above definition, we emphasize that for hardness, the non-uniform algorithmA0 is allowed
to do arbitrary polynomial-time pre-processing on the public parameters and then must output a
valid algorithm A1 in the class CAdv that breaks security. In particular, this is stronger than a
definition where the same adversary must work for all public parameters while also coming from
the restricted class CAdv.

Combining the above two notions, we can define a verifiable hard function in the public param-
eters model.

Definition 9.3 (Verifiable Hard Function). Let CHonest and CAdv be classes of algorithms. A ver-
ifiable (CHonest, CAdv)-hard function is a tuple (Gen,Sample,EvalWithProof,Verify) such that (Gen,
Sample,Eval) is a (CHonest, CAdv)-hard function and (Gen,EvalWithProof,Verify) is a verifiable func-
tion.

Comparison with [AT17]. Alwen and Tackmann [AT17] propose a definitional framework for
moderately hard functions, which has been used in subsequent works defining various notions of
memory-hard function (e.g. [ABP18]). The main goal of [AT17] is to come up with a definition
that composes nicely in applications. As such, they assume that both the honest and adversarial
executions of a moderately hard function have bounded access to an idealized oracle. They propose
an indifferentiability-style definition so that when analyzing applications using moderately hard
functions, it suffices to consider only the resource usage in an “ideal world” scenario. In contrast,
our main goal is to show that applying SPARKs to an arbitrary moderately hard function preserves
hardness in a “real world” setting, so we do not want to assume that the function has access to an
idealized oracle. However, when applying SPARKs to a specific hard function in an idealized model,
it would be beneficial to analyze the specific construction within the indifferentiability framework
of [AT17]. We leave this as important and interesting future work when using specific verifable
hard functions in further applications.

9.2 Verifiable Hard Functions from Non-interactive SPARKs

We next give a generic theorem that, at a high level, shows that any hard function that can be
implemented by a parallel RAM algorithm in parallel time T can be bootstrapped into a verifiable
hard function using a publicly-verifiable non-interactive SPARK for deterministic computations
while nearly preserving the parallel running time and number of processors.

To formalize this, we define a class of parallel RAM algorithms that can be computed in roughly
time T with p processors. For any functions T, p, q : N → N, let PT,p,q be the class of algorithms
such that an algorithm A = {Aλ}λ∈N is in PT,p,q if for all λ ∈ N, Aλ is a parallel RAM algorithm

12We note that we could naturally extend this definition to model hardness with respect to a more expensive
preprocessing attack, but we define polynomial-time attackers for simplicity.
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running in parallel time T (λ) + q(λ) with at most p(λ) · q(λ) processors. For any T, p : N→ N, we
define

HonestPT,p =
⋃

q∈poly(λ+log(T (λ)·p(λ)))

PT,p,q.

We assume that for algorithms A = {Aλ}λ∈N in HonestPT,p, the value of q(λ) is given by Aλ.
We note that other definitions (e.g. the definition of a sequential function from [BBBF18]) consider
honest algorithms that run in time exactly T (λ) with exactly p(λ) processors. We allow for additive
poly(λ+ log(T (λ) · p(λ))) terms in the depth (and multiplicative ones in the number of processors)
to capture overheads roughly independent of the length of the computation. In particular, we do
this to make the class robust under application of a SPARK, which we formalize in the following
theorem. One could also separate q into two functions q1 and q2 defining the additional overheads
in the depth and processors, respectively, but for simplicity we treat these as a single function.

Theorem 9.4. Let T, p : N → N be efficiently computable functions and let CAdv be any class of
algorithms. Assuming the existence of publicly-verifiable non-interactive SPARKs for deterministic
parallel computations, if there exists a (HonestPT,p, CAdv)-hard function with bounded output, then
there exists a verifiable (HonestPT,p, CAdv)-hard function.

By combining this with Theorem 7.8, we get the following.

Corollary 9.5. Let T, p : N → N be efficiently computable functions and let CAdv be any class of
algorithms. Assuming the existence of collision-resistant hash function families, publicly-verifiable
SNARKs for NP, and a (HonestPT,p, CAdv)-hard function with bounded output, then there exists a
verifiable (HonestPT,p, CAdv)-hard function.

Proof of Theorem 9.4. Let (Genhard, Samplehard,Evalhard) be a (HonestPT,p, CAdv)-hard function with
bounded output. Let (G,P, V ) be a non-interactive SPARK for deterministic computations. We
construct (Gen,Sample,EvalWithProof,Verify) to be a verifiable (HonestPT,p, CAdv)-hard function,
defined as follows.

• pp← Gen(1λ): Run crsSPARK ← G(1λ) and pphard ← Genhard(1λ). Output pp = (crsSPARK,
pphard).

• x← Sample(pp): Let (crsSPARK, pphard) = pp, and output x← Samplehard(pphard).

• (y, π)← EvalWithProof(pp, x): Let (crsSPARK, pphard) = pp that specifies security parameter λ,
M = {Mλ}λ∈N be the uniform algorithm from the honest evaluation property of (Genhard,
Samplehard,Evalhard), and let q(λ) be the value such that Mλ runs in time T ′(λ) = T (λ)+q(λ+
log(T (λ) ·p(λ))), where q is a polynomial guaranteed to exist by the definition of HonestPT,p.
Output (y, π)← P (crsSPARK, (Mλ, (pphard, x), λ, T ′(λ))). We additionally define Eval(pp, x) as
Mλ(pphard, x).

• b← Verify(pp, x, (y, π)): Let (crsSPARK, pphard) = pp and M = {Mλ}λ∈N be the uniform algo-
rithm from the honest evaluation property of (Genhard,Samplehard,Evalhard). Output b ←
V (crsSPARK, (Mλ, (pphard, x), y, λ, T ′(λ)), π).

We now show that (1) (Gen, Sample,Eval) is a (HonestPT,p, CAdv)-hard function and (2) (Gen,
EvalWithProof,Verify) is a verifiable function, which completes the proof of the lemma.

For (1), note that, by completeness of (G,P, V ), if (y, π) ← P (crsSPARK, (Mλ, (pphard, x), λ,
T ′(λ))), then y = Mλ(pphard, x) = Evalhard(pphard, x) where |y| ≤ λ since Evalhard has bounded
output.
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We first argue honest evaluation. Since M ∈ HonestPT,p, it follows that for all λ ∈ N, Mλ runs
in time T ′(λ) = T (λ) + q(λ+ log(T (λ) · p(λ))) using at most p′(λ) = p(λ) · q(λ+ log(T (λ) · p(λ)))
processors. By efficiency of the non-interactive SPARK, it holds that P runs in time T ′(λ) +
poly(λ, |(Mλ, x)| , log(T ′(λ) · p′(λ))) using at most p′(λ) · poly(λ, log(T ′(λ) · p′(λ))) processors. As
x ∈ Supp(Sample(pp)), it holds that |x| ∈ poly(λ). Furthermore, |Mλ| is a constant that q may
depend on, so we can assume that |Mλ| ∈ poly(λ, log T (λ)). It follows that there exist a polynomial
q′ such that for all λ ∈ N, EvalWithProof runs in time T (λ) + q′(λ+ log(T (λ) · p(λ))) using at most
p(λ) · q′(λ+ log(T (λ) · p(λ))) processors.

For hardness, suppose there exists a non-uniform PPT adversary A0 = {A0,λ}λ∈N and a poly-
nomial pA such that for infinitely many λ ∈ N,

Pr


pp← Gen(1λ)
A1 ← A0,λ(pp)
x← Sample(pp)
y ← A1(x)

:
Eval(pp, x) = y
∧ A1 ∈ CAdv

 > 1/pA(λ).

Since x is sampled from Samplehard(Genhard(1λ)) and y = Evalhard(pp, x), this implies that A0 also
breaks the hardness of (Genhard, Samplehard,Evalhard), in contradiction.

For (2), we note that completeness of (Gen,EvalWithProof,Verify) follows immediately by com-
pleteness of (G,P, V ). Soundness follows since the argument of knowledge property of (G,P, V )
implies soundness. Specifically, suppose there exists a non-uniform PPT algorithm A = {Aλ}λ∈N
and a polynomial p such that for all λ ∈ N,

Pr


pp← Gen(1λ)
(x, y′, π′)← Aλ(pp)
(y, π)← EvalWithProof(pp, x)
b← Verify(pp, x, y′, π′)

:
b = 1
∧ y 6= y′

 > 1/p(λ).

We construct the adversary P ? = {P ?λ }λ∈N for the non-interactive SPARK, which has A hardcoded

as non-uniform advice. For all λ ∈ N, P ?λ (crsSPARK) samples pphard ← Genhard(1λ), computes
(x, y′, π′) ← Aλ((crsSPARK, pphard)), computes Mλ and T ′(λ), and outputs ((Mλ, (pphard, x), y′, λ,
T ′(λ)), π′). Because Aλ is PPT, and Genhard(1λ), Mλ, and T ′(λ) can be computed in polynomial-
time, this implies that P ?λ is PPT. Furthermore, by definition of A, we can rewrite the above
probability statement to conclude that

Pr


crsSPARK ← G(1λ)
((Mλ, (pphard, x), y′, λ, T ′(λ)), π′)← P ?λ (crsSPARK)
(y, π)← P (crsSPARK, (Mλ, (pphard, x), λ, T ′(λ)))
b← V (crsSPARK, (Mλ, (pphard, x), y′, λ, T ′(λ)), π′)

:
b = 1
∧ y 6= y′

 > 1/p(λ).

Because Eval is deterministic, the “witness” w is empty, so the output of the computation is unique.
By completeness, the output is the value y output by P . Therefore, the argument of knowledge
property of (G,P, V ) stipulates that any y′ 6= y cannot be accepted with greater than 1/p(λ)
probability for any polynomial p, in contradiction.

9.3 Applications to VDFs

At a high level, a T -sequential function is a function that can be computed in roughly T time with
“moderate parallelism” but cannot be computed any quicker with much more parallelism.
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To capture this notion, for any T : N→ N, define

HonestPT,polylog =
⋃

p,q∈poly(λ+log T (λ))

PT,p,q.

Note that this is simply HonestPT,p restricted to the case where the number of processors p is
logarithmic in T , and so this class captures the honest execution of a T -sequential function. We
next define an adversarial analog, which is allowed to use many parallel processors,

AdvPT =
⋃

p∈poly(λ+log T (λ)),
q∈poly(λ+T (λ))

PT,p,q.

We now formally define a sequential function.

Definition 9.6 (Sequential Function). For any T : N → N, the tuple (Gen,Sample,Eval) is a T -
sequential function if there exists an ε ∈ (0, 1) such that it is a (HonestPT,polylog,AdvP(1−ε)·T )-hard
function. We say that a sequential function has bounded output if for any pp ∈ Supp

(
Gen(1λ)

)
and x ∈ Supp

(
Sample(1λ)

)
, it holds that |Eval(pp, x)| ≤ λ.

Next, a verifiable delay function is simply a sequential function that is additionally verifiable,
formalized as follows.

Definition 9.7 (Verifiable Delay Function). Let T : N→ N. A T -verifiable delay function (T -VDF)
is tuple (Gen,Sample,EvalWithProof,Verify) such that (Gen,Sample,Eval) is a T -sequential function
and (Gen,EvalWithProof,Verify) is a verifiable function. In the case where each algorithm takes as
input a time bound T , we say the tuple is simply a verifiable delay function if it is a T -verifiable
delay function for any input T .

We note that previous definitions of VDFs are functions that take as input a time bound T and
require that the resulting function is a T -VDF for any valid input T . This models the scenario in
practice where you want to “tune” a function that can be computed in a particular time T but
not faster with more parallelism. We define a T -VDF with respect to a particular time bound T
in order to capture the case where the underlying sequential function may not be able to be tuned
to run in any given time bound.

Corollary 9.8. Let T : N → N. Assuming the existence of publicly-verifiable non-interactive
SPARKs for deterministic computations with moderate parallelism, if there exists a T -sequential
function with bounded output, then there exists a T -verifiable delay function.

Proof. Let ε ∈ (0, 1) be the constant sequentiality gap which is guaranteed to exist for the given T -
sequential function. By the definition of a sequential function, there exists a uniform algorithm A in
HonestPT,polylog which computes the evaluation algorithm of the sequential function. It follows that
there exists a polynomials p, q in poly(λ+log T (λ)) such thatA is in PT,p,q ⊆ HonestPT,q. By setting
CAdv = AdvP(1−ε)·T in Theorem 9.4, we get that there exists a verifiable (HonestPT,p,AdvP(1−ε)·T )-
hard function, which implies a hard function which can be computed by an algorithm in PT,p,q′
for a function q′ in poly(λ + log(T (λ) · p(λ))) ∈ poly(λ + log(T (λ))) as p is in poly(λ + log T (λ)).
Therefore, PT,p,q′ ⊆ HonestPT,polylog, which gives the claim.

For the above corollary, we note that in the case where the sequential function takes as input a
time bound T , the resulting verifiable delay function can also take in a time bound T . We note that
similar to Corollary 9.5, we can instantiate the SPARKs in Corollary 9.8 based on collision-resistant
hash functions and SNARKs for NP.
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Candidate sequential functions. We briefly discuss existing candidate sequential functions
that can be used in Corollary 9.8. We note that in all cases we discuss, it was already known
how to construct VDFs, but we emphasize that our transformation is completely independent of
the specific details of the underlying sequential function.

Any iterated sequential function is also a sequential function. An iterated sequential function
has the additional structure that some small sequential component is repeated T times to obtain
a sequential function with respect to any time bound T . The assumption is that any a priori un-
bounded number of iterations cannot be significantly sped up with parallelism. In other words, it
is not possible to make shortcuts in the computation without computing all intermediate outputs
in order. Boneh et. al [BBBF18] show how to construct VDFs from any iterated sequential func-
tion using any succinct non-interative argument for deterministic computations with quasi-linear
prover overhead. Candidate iterated sequential functions include iterated hashing and repeated
squaring in groups of unknown order [RSW96]. For repeated squaring, more practically efficient
VDF constructions are known that make use of the additional algebraic structure [Wes19, Pie19].

Another approach for constructing sequential functions is using secure hardware. The construc-
tion, on input x, simply waits T steps and then outputs the evaluation y of a PRF on x. When
implemented using secure hardware, the key for the PRF is kept hidden, so the only way to com-
pute y is to use the hardware, which incurs the time T delay. This construction can be securely
realized in software assuming indistinguishability obfuscation and the existence of a sequential de-
cision problem (see e.g. [BGJ+16, Pan19]). Furthermore, this construction can be turned into a
VDF by making the secure function additionally output a signature on the pair (x, y). Soundness
follows since the only way to construct valid signatures is to compute the secure function.

It is an interesting open problem to construct new (non-iterated) sequential functions from
simpler assumptions. Based on Corollary 9.8, any such construction immediately implies a VDF
assuming publicly-verifiable non-interactive SPARKs for deterministic computations with moderate
parallelism.

Remark 8. We emphasize the importance that the underlying SPARK in the transformation can
handle (deterministic) parallel computation that uses poly(λ, log T ) processors. For most iterated
functions, it is the case that each iteration can be sped up with parallelism, for example, by using
ASICs. However, this amount of parallelism scales only polynomially with the input length, λ, and
does not depend more than logarithmically on the total time bound T .

9.4 Applications to Memory-Hard VDFs

We next show how publicly-verifiable non-interactive SPARKs for deterministic computations can
be used to construct memory-hard VDFs. A memory-hard VDF in turn implies a publicly-verifiable,
non-interactive proofs of space [DFKP15]. There are various proposed definitions for memory-
hardness. Alwen and Serbinenko [AS15] define cumulative memory complexity that stipulates that
the average memory usage for a function must be large. Alwen, Blocki, and Pietrzak [ABP18] define
a conceptually stronger notion of sustained memory complexity that stipulates that a function must
use large memory for many steps (rather than only on average).

We start by giving an overview of the definitions for cumulative and sustained memory com-
plexity. For a parallel RAM machine M , an input x, and an index i ∈ N, let Space(M,x, i) be the
number of non-zero words in memory during the ith (parallel) step of the computation of M on
input x. The cumulative memory complexity of M is

CMC(M) = max
x

depthM (x)∑
i=1

Space(M,x, i),
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where recall that depthM (x) is the parallel running time of M on input x. The s-sustained memory
complexity of M is defined as

s-SMC(M) = max
x
|{i ∈ [depthM (x)] : Space(M,x, i) > s}| .

It was observed in [ABP18] that for any function f , there exists a machine M that implements f
with s-SMC ∈ O(T/ log T ) where T is the depth required to compute f .

For any S : N → N, we define CMemS to be the class of algorithms A = {Aλ}λ∈N such that

CMC(Aλ) ≤ S(λ) · depthAλ for all λ ∈ N. Similarly, we define SMemS be the class of algorithms
A = {Aλ}λ∈N such that as a function of λ, S(λ)-SMC(Aλ) ∈ o(depthAλ).

For simplicity of presentation, we define the following memory-hardness notions with respect
to sustained memory complexity using SMem. However, we emphasize that we could analogously
define the notion with respect to cumulative memory complexity using CMem or any other recently
proposed memory-hardness definitions such as static memory-hardness [DLP18]. We intuitively
define an (S, T )-memory-hard sequential function is one that requires T parallel time to compute
and cannot be computed using less than S memory for all but o(T ) steps. We formalize this as
follows.

Definition 9.9 (Memory-Hard Sequential Function). For any S, T : N→ N, the tuple (Gen,Sample,
Eval) is a (S, T )-memory-hard sequential function if there exists an ε ∈ (0, 1) such that it is a
(HonestPT,polylog,AdvP(1−ε)·T ∪ SMemS)-hard function.

A memory-hard VDF is simply a memory-hard sequential function which is also verifiable,
formalized as follows.

Definition 9.10 (Memory-Hard Verifiable Delay Function). Let S, T : N→ N. A (S, T )-memory-
hard verifiable delay function is tuple (Gen,Sample,EvalWithProof,Verify) such that (Gen,Sample,
Eval) is a (S, T )-memory-hard sequential function and (Gen,EvalWithProof,Verify) is a verifiable
function. In the case where S ∈ Ω(T/ log T ) and each algorithm takes as input a time bound T ,
we say the tuple is simply a memory-hard verifiable delay function if it is a (S, T )-memory-hard
verifiable delay function for any input T .

Similar to Corollary 9.8, it holds that memory-hardness is also preserved under the transforma-
tion of Theorem 9.4.

Corollary 9.11. Let S, T : N → N. Assuming the existence of publicly-verifiable non-interactive
SPARKs for deterministic computations with moderate parallelism, if there exists a (S, T )-memory-
hard sequential function, then there exists a (S, T )-memory-hard verifiable delay function.

Proof. Let ε ∈ (0, 1) be the constant guaranteed to exist for the given (S, T )-memory-hard se-
quential function. The corollary follows exactly as in the proof of Corollary 9.8, by setting
CAdv = AdvP(1−ε)·T ∪ SMemS in Theorem 9.4.

We note that by combining the above corollary with Theorem 8.1, we obtain memory-hard veri-
fiable delay functions based on memory-hard sequential functions, collision-resistant hash functions,
and SNARKs for NP.

Candidate memory-hard sequential functions. Most constructions of memory-hard sequen-
tial functions are proven secure in the (parallel) random oracle model and then instantiated with
a sufficient hash function h : {0, 1}∗ → {0, 1}λ, which we will use in the remaining discussion. We
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emphasize that, once instantiated with a concrete hash function, the following candidates are only
heuristically secure based on the random oracle methodology. As a result, our resulting transfor-
mations are secure under the same assumptions.

Percival [Per09] introduced the function Scrypt as a candidate memory-hard function. At a high
level, Scrypt on input x first performs T/2 iterated hashes to generate a “database” D of size T/2,
where D[0] = x and D[i] = h(D[i−1]) for i = 1, . . . , T/2−1. It then continues the hash chain while
additionally indexing into this database. Specifically, D[i] = h(D[i − 1] ⊕ D[D[i − 1] mod T/2])
for i = T/2, . . . , T . The output of the function is defined to be D[T ]. The honest evaluation of
the function stores T words in memory. Intuitively, if an adversary stores much less than T/2
words, then if it encounters an index D[i−1] mod T/2 that is not stored, it will need to recompute
this value from the closest stored position, which will take much more time. Indeed, Alwen et
al. [ACP+17] show that Scrypt requires Ω(T 2) cumulative memory complexity. Furthermore, Scrypt
is also sequential (in the random oracle model) as each subsequent query to h is uniformly random
and hard to predict, so it behaves like an iterated random oracle. Using Scrypt, we can construct a
VDF with high cumulative memory complexity assuming non-interactive SPARKs for deterministic
computations. However, Scrypt does not have high sustained memory complexity since for any S,
it can be computed in time O(T 2/S) using S memory.

A more general class of memory-hard function are based on labellings of directed acyclic graphs
(DAGs). Let Gn be a DAG on n vertices {v1, . . . , vn}. The label of a node vi, denoted `i, is
recursively defined as `i = h(i, `p1 , . . . , `pd) where p1, . . . , pd are the incoming edges to vi. The
function is defined by the graph Gn, the input is a seed to the hash function h, and the output is
the label of the sink of the graph. The hash function is evaluated in the parallel random oracle
model, so algorithms can query multiple points in parallel in one “round.” For honest evaluation, a
parallel RAM algorithm can compute the graph labelling function with time complexity that scales
with the depth of the graph and parallel complexity that scales with the width.13 Memory lower
bounds in this model are proven via pebbling arguments on the underlying graphs (see, e.g. [AS15]
for more information). The depth of the graph also serves as a lower bound for the parallel time to
compute such functions. Thus, non-interactive SPARKs for deterministic computations give a way
to make such graph labelling functions verifiable. We emphasize that this implies that many works
that give graph labelling constructions (e.g. [AS15, ABP18]) that satisfy stricter memory-hardness
requirements also are preserved under our framework. Specifically, Alwen et al. [ABP18] construct
a function which has s-SMC for s ∈ Ω(T/ log T ) where T is the depth required to compute the
function. Using this function, Corollary 9.11 implies a memory-hard VDF assuming non-interactive
SPARKs for deterministic computation.

Finally, as with sequential functions, another approach for constructing memory-hard sequential
functions is via secure hardware. We assume that the secure hardware has some a priori bounded
storage capacity of poly(λ) words, and any further required storage is stored externally to the secure
enclave. As in the case of sequential functions, the secure hardware waits at least T time and then
outputs a PRF evaluation on the input x. Additionally, the secure hardware can externally store a
large randomly generated file and perform a simple “proof of storage” to make sure that it is stored
for the entire duration of the execution. This can be implemented, for example, using a Merkle
tree to verify that random locations of the file are being stored while only keeping the root of the
Merkle tree within the secure enclave for authentication. At a high level, security follows because
the hardware only computes its output if enough time and memory have been used. As the PRF
key is hidden, there is no other way to compute the output without running the secure hardware.

13We additionally need to account for the parallel time to compute the hash function, which increases the time and
parallel complexity by at most a factor of poly(λ).
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As for the sequential function, this can be further made verifiable by outputting a signature on the
PRF input and output.

We believe it is an interesting open question to construct memory-hard sequential functions in
software without random oracles. Based on Corollary 9.11, this immediately gives a memory-hard
VDF assuming publicly-verifiable non-interactive SPARKs for deterministic computations.
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A Succinct Arguments of Knowledge

In this section, we define succinct arguments of knowledge [Kil92, Mic00, BG08]. We define them
for relations R ⊆ RTM

U . We focus on NP languages and relations, where the argument of knowledge
definition is restricted to polynomial-time statements.

Definition A.1 (Succinct Arguments of Knowledge for NP Relations). Let α : N3 → N. A pair of
interactive machines (P,V) is called a succinct argument of knowledge with α-prover efficiency for
a relation R ⊆ RTM

U if the following conditions hold:

• Completeness: For every λ ∈ N and ((M,x, y, L, t), w) ∈ R,

Pr
[
〈P(w),V〉(1λ, (M,x, y, L, t)) = 1

]
= 1,

where the probability is over the random coins of P and V.

• Argument of Knowledge for NP: There exists a probabilistic oracle machine E and a poly-
nomial q such that for every non-uniform probabilistic polynomial-time prover P? = {P?λ}λ∈N
and every constant c ∈ N, there exists a negligible function negl such that for every λ ∈ N,
M,x, t, L, y ∈ {0, 1}∗ with |M,x, t, y| ≤ λ, L ≤ λ, and t ≤ |x|c, and every z, s ∈ {0, 1}∗, the
following hold.

Let P?λ,z,s denote the machine P?λ with auxiliary input z and randomness s fixed, let Vr denote

the verifier V using randomness r ∈ {0, 1}`(λ) where `(λ) is a bound on the number of random
bits used by V(1λ, ·). Then:

1. The expected running time of EP?λ,z,s,Vr(1λ, (M,x, y, L, t)) is bounded by q(λ, t), where the
expectation is over r ← {0, 1}`(λ) and the random coins of E.

2. It holds that

Pr

[
r ← {0, 1}`(λ)
w ← EP?λ,z,s,Vr(1λ, (M,x, y, L, t))

:
〈P?λ,z,s,Vr〉(1λ, (M,x, y, L, t)) = 1

∧ ((M,x, y, L, t), w) 6∈ R

]
≤ negl(λ).

• Succinctness: There exist polynomials q1, q2 such that for any λ ∈ N and (M,x, y, L, t) ∈
{0, 1}∗, it holds that

workV(1λ, (M,x, y, L, t)) ≤ q1(λ, |(M,x, y, L)| , log t)

and the length of the transcript produced in the interaction between P(w) and V on common
input (1λ, (M,x, y, L, t)) is bounded by q2(λ, log t).

• α-Prover Runtime: For all λ ∈ N and ((M,x, y, L, t), w) ∈ R, it holds that

workP(1λ, (M,x, y, L, t), w) ≤ α(λ, |(M,x, y, L)| , t).

If the above holds for R = RTM
U , we say that (P,V) is a succinct argument of knowledge for NP.
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We note that we could naturally relax the above definition so that completeness and efficiency
only hold for statements (M,x, y, L, t) where t ≤ T (|x|) for some slightly super-polynomial function
T , as in [Bar01, CLP13]. In our results, if we assume this weaker notion, our resulting SPARK will
satisfy the same notion.

We also note that the above definition captures succinct arguments of knowledge for any specific
NP language L with relation RL (not necessarily contained in RTM

U ). The relation RL implicitly
determines an NP verification machine ML with time bound T ∈ poly(|x|). Then, we can consider
the relation R = {((ML, x, 1, 1, T (|x|)), w) : ML(x,w) = 1 within T (|x|) steps} ⊆ RTM

U .

Remark 9 (Comparison with previous definitions). In contrast to the definition of universal argu-
ments of knowledge, the argument of knowledge definition above for NP holds only for all malicious
provers P ? and constants c where the statements (M,x, y, L, t) have t ≤ |x|c. We also define the
extractor to run in expected polynomial time q(λ, t) where q is a polynomial independent of P? or
the specific time bound |x|c. This is in spirit of universal arguments [BG08] where they define a
weak extractor that only extracts a single bit of the witness at a time (because they deal with t which
is not necessarily bounded by a polynomial)

We note that for NP, our extractor definition differs from the standard notion, which does not
give the extractor oracle access to Vr, runs in expected time proportional to ε(λ)−κ(λ), and always
extracts a valid witness. Here, ε(λ) is the success probability of P?λ,z,s and κ(λ) is the knowledge
error (see [BG92]). Nevertheless, we show in Section A.1 that our definition for NP is implied
by a definition of witness-extended emulation for NP arguments, which is in turn implied by the
standard argument of knowledge definition for NP with negligible knowledge error [Lin03] (with
minor modifications to fit into our setting).

We emphasize that the above definition is given for relations in RTM
U where the time bound t

represents the total work of the computation. We can readily extend this to relations for parallel
computations where the machine M runs in depth t and uses pM processors, by generically bounding
the total work by t · pM in the above definition. Below, we more precisely quantify the prover
efficiency for parallel computations by decoupling the prover’s depth and parallelism, which may
depend on the parallelism and depth of the underlying computation.

Definition A.2 (Decoupling Prover Efficiency for Succinct Arguments). Let α, ρ : N4 → N. A
succinct argument of knowledge (P,V) for a relation R ⊆ RTM

U satisfies (α, ρ)-prover efficiency if
for all λ ∈ N and ((M,x, y, L, t), w) ∈ R where M uses at most pM processors, it holds that

workP(1λ, (M,x, y, L, t), w) ≤ α(λ, |(M,x, y, L)| , t)

using ρ(λ, |(M,x, y, L)| , t) processors.
We may also consider relations R consisting of parallel machines M that use pM processors, in

which case α and ρ may additionally depend on pM .

We note that a succinct argument of knowledge with α-prover runtime immediately gives
a succinct argument of knowledge satisfying (α′, 1)-prover efficiency where α′(λ, |(M,x, y, L)| ,
t, pM ) = α(λ, |(M,x, y, L)| , t · pM ).

SNARKs. Next, we define succinct non-interactive arguments of knowledge.

Definition A.3 (SNARKs for NP Relations). A Succinct Non-interactive Argument of Knowledge
(SNARK) for a relation R ⊆ RTM

U is a tuple of probabilistic algorithms (G,P,V) with the following
syntax:
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• (crs, st) ← G(1λ): A PPT algorithm that on input a security parameter λ outputs a common
reference string crs and a verification state st.

• π ← P(crs, (M,x, y, L, t), w): A probabilistic algorithm that on input a common reference string
crs, a statement (M,x, y, L, t), and a witness w, outputs a proof π.

• b← V(st, (M,x, y, L, t), π): A PPT algorithm that on input a verification state st, a statement
(M,x, y, L, t), and a proof π, outputs a bit b indicating whether to accept or reject.

We require the following properties:

• Completeness: For every λ ∈ N and ((M,x, y, L, t), w) ∈ R,

Pr

 (crs, st)← G(1λ)
π ← P(crs, (M,x, y, L, t), w)
b← V(st, (M,x, y, L, t), π)

: b = 1

 = 1.

• Adaptive Argument of Knowledge for NP: For any non-uniform polynomial-time prover
P? = {P?λ}λ∈N, there exists a probabilistic machine E and a polynomial q, such that for every
c ∈ N, there exists a negligible function negl such that for every λ ∈ N and z, s ∈ {0, 1}∗, the
following hold.

Let P?λ,z,s denote the machine P?λ with auxiliary input z and randomness s fixed. Then:

1. The running time of E(crs, z, s) is bounded by q(λ, t), where (crs, st) ← G(1λ), and t is
given by the statement output by P?λ,z,s(crs).

2. It holds that

Pr


(crs, st)← G(1λ)
((M,x, y, L, t), π)← P?λ,z,s(crs)
b← V(st, (M,x, y, L, t), π)
w ← E(crs, z, s)

:
b = 1 ∧
((M,x, y, L, t), w) 6∈ R ∧
t ≤ |x|c

 ≤ negl(λ).

• Succinctness: There exist polynomials q1, q2 such that for any λ ∈ N, (crs, st) in the support
of G(1λ), (M,x, y, L, t) ∈ {0, 1}∗ with |y| ≤ L, witness w, and proof π in the support of
P(crs, (M,x, y, L, t), w),14 it holds that

• workV(st, (M,x, y, L, t), π) ≤ q1(λ, |(M,x, y, L)|, log t) and

• |π| ≤ q2(λ, log t).

• α-Prover Runtime: For all λ ∈ N and ((M,x, y, L, t), w) ∈ R, it holds that

depthP(crs, (M,x, y, L, t), w) = α(λ, |(M,x, y, L)|, t).

If the above holds for R = RTM
U , we say that (G,P,V) is a SNARK for NP. When crs = st for

G(1λ), we say that the SNARK is publicly verifiable and write crs← G(1λ).

14Note that we could additionally require a verifier to be efficient for “dishonest” proofs that are not in the support
of an honest prover P. However, given any verifier V that satisfies succinctness for honest proofs with universal
polynomial p, we can construct an efficient verifier V ′ for any proof by running V for at most p(λ, |(M,x, y, L)| , log t)
steps and rejecting otherwise.
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We note that our definition of adaptive argument of knowledge for NP is implied by the definition
of [BCCT13] for NP. As in the interactive setting, we can similarly relax the completeness and
efficiency properties to only hold for statements with t bounded by a slightly super-polynomial
function T (|x|) as in [BCCT13].

Remark 10 (On the distribution over the auxiliary input). With regards to auxiliary input, our
SNARK definition follows the convention of [BCC+17]. However, as they point out, it was shown
by [BCPR16, BP15] that this definition is too strong assuming indistinguishability obfuscation. As
such, the argument of knowledge definition can be relaxed to consider security with respect to a
particular distribution of auxiliary input appropriate for the specific application.

As with interactive arguments, we can also extend the above definition to decouple prover
efficiency into prover depth and parallelism.

Definition A.4 (Decoupling Prover Efficiency for SNARKs). Let α, ρ : N3 → N. A SNARK
(G,P,V) for a relation R ⊆ RTM

U satisfies (α, ρ)-prover efficiency if for all λ ∈ N, (crs, st) in the
support of G(1λ), and ((M,x, y, L, t), w) ∈ R, it holds that

workP(crs, (M,x, y, L, t), w) ≤ α(λ, |(M,x, y, L)| , t)

using ρ(λ, |(M,x, y, L)| , t) processors.
We may also consider relations R consisting of parallel machines M that use pM processors, in

which case α and ρ may additionally depend on pM .

A.1 Witness-Extended Emulation

In this section, we define the notion of witness-extended emulation for succinct arguments, and
show that this implies the argument of knowledge definition of Definition A.1.

Recall that for a non-uniform prover P? = {P?λ}λ∈N, we let P?λ,z,s denote the machine P?λ with
auxiliary input z and randomness s fixed. Additionally, we let

View
P?λ,z,s
V (1λ, (M,x, y, L, t))

denote the distribution representing the view of V when interacting with P?λ,z,s on input 1λ and
(M,x, y, L, t). Additionally, we let AccV(view) be the predicate that outputs 1 if a view view is
accepting for V and 0 otherwise. The definition below is based on the definition of Lindell [Lin03]
and extended to the case of arguments similar to [GI08]. We additionally modify the definition to
capture relations R ⊆ RTM

U similar to [BG08] as discussed above in Appendix A.

Definition A.5 (Witness-Extended Emulation for NP Arguments). Let (P,V) be an interactive
argument for a relation R ⊆ RTM

U . Let WE be a probabilistic machine that is given as input a
security parameter 1λ, a statement (M,x, y, L, t), and oracle access to a machine P?λ,z,s. We let

WE
P?λ,z,s
1 (1λ, (M,x, y, L, t)) and WE

P?λ,z,s
2 (1λ, (M,x, y, L, t)) denote the first and second outputs of

the emulator, respectively.
We say that WE is a witness-extended emulator for (P,V) and R if there exists a polynomial

q such that for every non-uniform probabilistic polynomial-time prover P? = {P?λ}λ∈N and every
constant c, there exists a negligible function negl such that for every λ ∈ N, (M,x, y, L, t) with
|(M,x, t, y)| ≤ λ, L ≤ λ, and t ≤ λc, and every z, s ∈ {0, 1}∗, the following hold:

1. WEP
?
λ,z,s(1λ, (M,x, y, L, t)) runs in expected polynomial time q(λ, t).
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2. The view output by WE1 is identically distributed to the view of V in a real interaction with
P?λ,z,s. That is, the corresponding distributions satisfy

WE
P?λ,z,s
1 (1λ, (M,x, y, L, t)) ≡ View

P?λ,z,s
V (1λ, (M,x, y, L, t)).

3. The probability that WE1 outputs an accepting view for V, and yet WE2 does not output a
correct witness, is negligible. That is,

Pr

 AccV

(
WE
P?λ,z,s
1 (1λ, (M,x, y, L, t))

)
= 1

∧
(

(M,x, y, L, t),WE
P?λ,z,s
2 (1λ, (M,x, y, L, t))

)
6∈ R

 ≤ negl(λ).

We next show that the above definition of witness-extended emulation implies the argument of
knowledge definition in Appendix A for NP relations.

Lemma A.6. Let (P,V) be succinct argument for a relation R ⊆ RTM
U . If there exists a witness-

extended emulator WE for (P,V) and R, then (P,V) satisfies the argument of knowledge for NP
condition in Definition A.1.

Proof. Using WE, we construct a probabilistic oracle machine E as required. Recall that both E and
WE receive as input (1λ, (M,x, y, L, t)) and get oracle access to a prover P ?λ,z,s, while E additionally
gets oracle access to a verifier Vr with uniformly sampled randomness fixed to r. Let `(λ) denote
the length of the randomness r used by V(1λ, ·). We define EP?λ,z,s,Vr as follows.

EP?λ,z,s,Vr(1λ, (M,x, y, L, t)):

1. Emulate the view between P ?λ,z,s and Vr on input (1λ, (M,x, y, L, t)). If Vr rejects in this
view, output ⊥.

2. Sample (view, w) ← WEP
?
λ,z,s(1λ, (M,x, y, L, t)) until AccV(view) = 1 or 22

λ
iterations have

passed.

• If AccV(view) = 1 at any point, output the corresponding witness w.

• Otherwise, for all strings w ∈ {0, 1}t, output the first one such that ((M,x, y, L, t), w) ∈
R or ⊥ if none exist.

It remains to prove that E satisfies the argument of knowledge for NP requirements of Defini-
tion A.1. Specifically, let P? = {P?λ}λ∈N be a non-uniform probabilistic polynomial-time prover
and c be any constant. We need to show that there exists a negligible function negl such that for
every λ ∈ N, (M,x, y, L, t), z, s ∈ {0, 1}∗ with |(M,x, y, t)| ≤ λ, L ≤ λ, and t ≤ |x|c, the following
hold:

• Running time: EP?λ,z,s,Vr(1λ, (M,x, y, L, t)) runs in expected time q(λ, t) for some polynomial
q (independent of P? and c), where the expectation is over a uniformly chosen r ← {0, 1}`(λ)
and the randomness of E .

• Correctness: It holds that

Pr

[
r ← {0, 1}`(λ)
w ← EP?λ,z,s,Vr(1λ, (M,x, y, L, t))

:
〈P?λ,z,s,Vr〉(1λ, (M,x, y, L, t)) = 1

∧ ((M,x, y, L, t), w) 6∈ R

]
≤ negl(λ).

We next focus on each of these conditions.
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Running time. For the running time, we first note that by succinctness of (P,V), there exists a
polynomial q1 such that the number of messages and total communication between P?λ,z,s and Vr
is bounded by q1(λ, log t). This also bounds the running time of emulating the interaction between
P?λ,z,s and Vr given oracle access to each machine. If Vr rejects, we are done.

Otherwise, we define the value

ε = Pr
[
r ← {0, 1}`(λ) : 〈P?λ,z,s,Vr〉(1λ, (M,x, y, L, t)) = 1

]
,

which is greater than 0 in the case that Vr accepts for some choice of r. For the analysis of the
expected running time, we note that we continue with probability ε where Vr accepts.

In this case, we first try running WE until its first output is an accepting view. By definition of
witness-extended emulation, it holds that the first output of WE is identically distributed to the real
interaction between P?λ,z,s and V, so this means we will run WE at most 1/ε times in expectation.
By definition of WE, there exists a polynomial q2 such that each run of WE takes expected q2(λ, t)
time. So, this contributes at most ε · (1/ε) · q2(λ, t) = q2(λ, t) to the expected running time.

We lastly consider the case where 22
λ

independent iterations pass without finding an accepting

view. This event occurs with probability (1 − ε)22
λ

given that Vr initially accepted. In this case,
we run in time 2t · poly(λ, t) to emulate M on all choices of w of size at most t. Let B be this time

to brute-force, which in particular is bounded by 22
λ/2

for sufficiently large λ, since t ≤ |x|c. Thus,

this case contributes a factor of at most ε ·(1−ε)22
λ

·B to the expected running time. We show that
this is in fact bounded by 1, at least for sufficiently large λ. In the case that ε < 1/B, this clearly

holds. When ε ≥ 1/B, we can bound (1− ε)22
λ

≤ (1− 1/B)B·(2
2λ/B) ≤ (1/e)2

2λ/2 ≤ 1/B, using the

fact that B ≤ 22
λ/2

for sufficiently large λ. Thus, for any value of ε, it holds that ε ·(1−ε)22
λ

·B ≤ 1
for sufficiently large λ, so in particular is bounded by some polynomial q3(λ, t) (to account for small
values of λ where this is not necessarily bounded by 1).

Putting it all together, we upper bound the expected running time of E by

q1(λ, log t) + q2(λ, t) + q3(λ, t) = q(λ, t),

for some polynomial q, independent of P?λ,z,s, as required.

Correctness. For correctness, suppose by way of contradiction that there exists a polynomial p
such that for infinitely many λ ∈ N,

Pr

[
r ← {0, 1}`(λ)
w ← EP?λ,z,s,Vr(1λ, (M,x, y, L, t))

:
〈P?λ,z,s,Vr〉(1λ, (M,x, y, L, t)) = 1

∧ ((M,x, y, L, t), w) 6∈ R

]
> 1/p(λ).

We show this contradicts the correctness property for WE. For notational convenience, we first
define the following events:

• We say WE1 accepts when AccV

(
WE
P?λ,z,s
1 (1λ, (M,x, y, L, t))

)
= 1, and WE2 is valid when(

(M,x, y, L, t),WE
P?λ,z,s
2 (1λ, (M,x, y, L, t))

)
∈ R, where the probabilities are over the ran-

domness of WE.

• We say Vr accepts when 〈P?λ,z,s,Vr〉(1λ, (M,x, y, L, t)) = 1, and w is valid when ((M,x, y, L,

t), w) ∈ R, where the probabilities are over a random r ← {0, 1}`(λ) and w ← EP?λ,z,s,Vr(1λ, (M,
x, y, L, t)).
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Towards a contradiction, we consider the event where the witness w output by E is valid given
that Vr accepts. Let BF be the event that WE1 fails to accept for 22

λ
iterations, at which point

E will always output a valid witness w (if one exists). We note that since M is a Turing machine
that runs in time at most t, it can only read the first t bits of its input string. Thus, if any valid
witness exists, there will exist a witness of length at most t which will be found by brute force
search. When BF does not occur, E samples a uniformly random output of WE2 conditioned on
WE1 accepting. In the case where there exists any valid witness w for ((M,x, y, L, t), w) ∈ R, this
implies that

Pr [w is valid | Vr accepts] = Pr [BF] · 1 + (1− Pr [BF]) · Pr [WE2 is valid |WE1 accepts]

≥ Pr [WE2 is valid |WE1 accepts] .

For the case where there does not exist a valid witness, note that this inequality still holds as both
terms are simply zero. Considering the complement events, this implies that

Pr [w is invalid | Vr accepts] ≤ Pr [WE2 is invalid |WE1 accepts] .

Because Pr [WE1 accepts] = Pr [Vr accepts], it follows that

Pr

[
Vr accepts
∧ w is invalid

]
≤ Pr

[
WE1 accepts
∧ WE2 is invalid

]
.

However, this implies that Pr [WE1 accepts ∧WE2 is invalid] > 1/p(λ) for some polynomial p, in
contradiction.

We conclude this section by relating our argument of knowledge definition for NP (Defini-
tion A.1) to the standard definition given by [BG92]. In the standard definition, the extractor E
has oracle access to P?λ,z,s, always extracts a witness, and runs in expected time p(λ)/(ε(λ)− κ(λ))
for a polynomial p, where ε(λ) is the success probability of P?λ,z,s and κ(λ) is the knowledge error
(where these functions may additionally depend on the statement length).

Recall that Lindell showed that the standard definition for proofs of knowledge implies witness-
extended emulation for proofs [Lin03]. The difference between that definition of witness-extended
emulation for proofs and ours for NP arguments (Definition A.5) is that, in addition to being for
arguments rather than proofs, our requirements are for statements (M,x, y, L, t) with |(M,x, t, y)| ≤
λ, L ≤ λ, and t ≤ λc. We also allow the emulator to run in time polynomial in λ, t (similar to
universal arguments), rather than simply in λ.

We observe that upon making these same modifications to the standard argument of knowledge
definition, it follows by [Lin03] that that resulting definition implies witness-extended emulation
for arguments. By combining this with Lemma A.6, we conclude that Definition A.1 is implied by
a more standard definition.

B Proofs from Section 6.4

Lemma B.1 (Adaptive Argument of Knowledge). (Gni,Pni,Vni) is an adaptive argument of knowl-
edge for NP.

Proof. Let C be a concurrently updatable hash function, let H = {Hλ}λ∈N be a collision-resistant
hash function family ensemble, and let (Gsnark,Psnark,Vsnark) be a SNARK for the language Lupd,
given in Figure 2. Consider any non-uniform polynomial-time prover P? = {P?λ}λ∈N and security
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parameter λ ∈ N. Let P?λ,z,s denote P?λ with auxiliary input z and hardcoded randomness s for any
z, s ∈ {0, 1}∗.

Let (crs, st) ← Gni(1
λ). Recall that for a proof in the non-interactive SPARK scheme consists

of m sub-proofs, each corresponding to an instance of Lupd, as well as values certifying the output
of the computation. As a subroutine to our full extractor, we first construct a probabilistic oracle
machine Einner that uses extractors for the SNARK to extract witnesses for each sub-proof.

Einner(crs, z, s):

1. Compute ((M,x, y, L, t), π) = P ?λ,z,s(crs). Let m be the number of Lupd statements specified
by π, and for each i ∈ [m], let (statementi, πi) be ith Lupd statement and proof, and let Y, πfinal

be the opening and proof certifying the output y, all given by π. Let ki be the number of
updates in each Lupd statement for i ∈ [m], and let M have access to n words in memory and
pM processors. Check that

∑m
i=1 ki = t, n ≤ 2λ, and that Y consists of dL/λe words, and

abort and output ⊥ if any of these do not hold.

2. Parse crs = (crssnark, pp, h). For each i ∈ [m], define P?i,z′,s(crssnark) to be a SNARK prover with
auxiliary input z′ = (pp, h, z) and randomness s hardcoded that runs ((M,x, y, L, t), π) ←
P?λ,z,s((crssnark, pp, h)) and outputs (statementi, πi) given by π. Let P?i denote this machine
without its auxiliary input or randomness specified, and let Esnark,i be the SNARK extractor
for P?i .

3. For i ∈ [m], compute witi ← Esnark,i(crssnark, z
′, s). Output (wit1, . . . ,witm, Y, πfinal).

In the following claims, we show that (1) Einner runs in polynomial time (over the randomness
of Gni and its own random coins) and (2) with all but negligible probability (over randomness of
Gni, the coins of Esnark, and randomness for Vni), either P?λ,z,s fails to convinces Vni or for all i ∈ [m]
the witness witi extracted by Esnark,i is valid for statementi with respect to Rupd.

Claim B.2. There exists a polynomial qinner such that for every λ ∈ N and z, s ∈ {0, 1}∗, the
running time of Einner(crs, z, s) is at most qinner(λ, t · pM ), where (crs, st)← Gni(1

λ), t is given by the
statement output by P?λ,z,s(crs) and pM is the number of processors used by the machine M given
in the statement.

Proof. Einner runs P ?λ,z,s, does validity checks on its output, and runs Esnark,i for each i ∈ [m]. The
running time of P?λ,z,s is bounded by a polynomial q?(λ) where q? does not depend on λ, z, s. The
checks on the output of P?λ,z,s take time polynomial in its output length, which is therefore bounded
by poly(λ). Note that if these checks pass, it implies that for each i ∈ [m], the number of updates
ki in the ith sub-statement is at most t and that n ≤ 2λ.

When the checks pass, Einner continues by running the SNARK extractors. For each i ∈ [m],
the running time of Esnark,i(crssnark, z

′, s) is a polynomial qi(λ,wi) independent of λ, z, s, where wi
is the work to verify the ith Lupd statement. As discussed in Section 6.2, this is bounded by
ki · β(λ, log n) · poly(λ, |(M,x)| , pM , log t) ∈ poly(λ, |(M,x)| , pM , t), since ki ≤ t and n ≤ 2λ. As
M,x are part of the output of P?λ,z,s, it follows that |(M,x)| is bounded by q?(λ), and so the work to
verify the ith statement is bounded by a fixed polynomial q′(λ, pM , t). Putting everything together,
Einner runs in time

qinner(λ, t · pM ) ∈ q?(λ) + poly(λ) +
m∑
i=1

qi(λ, q
′(λ, pM , t)).

Since the output length of the prover depends multiplicatively on m, then m is also bounded by
q?(λ), so it follows that qinner(λ, t · pM ) is polynomial in λ and t · pM . �
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Claim B.3. There exists a negligible function neglinner such that for all λ ∈ N and z, s ∈ {0, 1}∗,
it holds that

Pr


(crs, st)← Gni(1

λ)
((M,x, y, L, t), π) = P?λ,z,s(crs)
b← Vni(st, (M,x, y, L, t), π)
(wit1, . . . ,witm, Y, πfinal)← Einner(crs, z, s)

:
b = 1 ∧
∃i ∈ [m] : (statementi,witi) 6∈ Rupd


≤ neglinner(λ)

where statementi is defined to be the statement of the ith sub-proof.

Proof. In all of the following probabilities, m is the number of Lupd statements given in the proof π,
and the statements are denoted statement1, . . . , statementm. We start by applying a union bound
to upper bound the probability in the statement of the claim by

∑
i∈[m]

Pr


(crs, st)← Gni(1

λ)
((M,x, y, L, t), π)← P?λ,z,s(crs)
b← Vni(st, (M,x, y, L, t), π)
(wit1, . . . ,witm, Y, πfinal)← Einner(crs, z, s)

:
b = 1 ∧
(statementi,witi) 6∈ Rupd

 (B.1)

We now upper bound the above for any particular i ∈ [m].
By definition of Einner, whenever the proof π satisfies

∑m
i=1 ki = t, when M uses at most 2λ

words in memory, and when Y has the right length, then Einner runs a SNARK extractor for each
i. Note that these are also requirements for Vni to accept (regardless of the randomness for Vni),
and so in the event that b = 1, Einner attempts to extract a witness for each sub-proof. This implies
that the above is equal to the probability where witi is sampled using the extractor Esnark,i(λ, z

′, s)
for P?i where z′ = (pp, z). Therefore, using the definitions of Gni and Einner, we can write the above
probability as

Pr



(crssnark, stsnark)← Gsnark(1λ)
pp← C.Gen(1λ, n)
h← Hλ
((M,x, y, L, t), π)← P?λ,z,s((crssnark, pp, h))

b← Vni((stsnark, pp, h), (M,x, y, L, t), π)
witi ← Esnark(crssnark, (pp, h, z), s)

:
b = 1 ∧
(statementi,witi) 6∈ Rupd

 .

where n = 2λ. Whenever b = 1, then Vni accepts all sub-proofs, and therefore by definition of P?i ,
it follows that Vsnark accepts sub-proof i. We can therefore upper bound the above probability by

Pr



(crssnark, stsnark)← Gsnark(1λ)
pp← C.Gen(1λ, n)
h← Hλ
(statementi, πi)← P?i,(pp,h,z),s(crssnark)

bi ← Vsnark(stsnark, statementi, πi)
witi ← Esnark(crssnark, (pp, h, z), s)

:
bi = 1 ∧
(statementi,witi) 6∈ Rupd

 (B.2)

Next, for any fixed pp in the support of C.Gen and h ∈ Hλ, the above probability is bounded
by a negligible function negli that does not depend on λ, pp, h, z, s by the argument of knowledge
property of the SNARK. It follows by the law of total probability (to sum over each choice of pp)
that Equation B.2 is bounded by negli.
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Finally, by plugging this back into (B.1), we obtain that the probability in the statement of the
claim is upper bounded by

∑
i∈[m] negli(λ). Since m determines the length of the output of P?λ,z,s,

then m ∈ poly(λ), and so this is negligible as required. �

Using Einner to extract the witnesses in the sub-protocols, we now define the full extractor E
that outputs a witness w for (M,x, y, L, t).

E(crs, z, s):

1. Run (wit1, . . . ,witm, Y, πfinal)← Einner(crs, z, s), and abort and output ⊥ if the output of Einner

is ⊥. Let (M,x, y, L, t) be the statement output by P?λ,z,s when computed by Einner.

2. Parse each witi as a sequence of updates, which together yield an overall sequence of t updates
uj = (digestj , V

prev
j , V rd

j , πj , τj) for j ∈ [t] (abort if this is not the case). Specifically, let

(V rd
1 , . . . , V rd

t ) be the tuples of values read from these updates.

3. For j = 1, . . . , t, compute (Statej ,Opj , Sj , V
wt
j ) = parallel-step(M,Statej−1, V

rd
j−1) where State0

is the tuple containing the initial RAM state and V rd
0 = (⊥).

4. Let DInit ∈ {0, 1}nλ be the string where for each ` ∈ [n], the `th word is set to its value in
V rd
i , where i is the first iteration with ` ∈ Si, or the `th word in Y if ` is never accessed and
` ≤ dL/λe, or 0λ otherwise.

5. Output w to be the string of length nλ− |x| starting at position |x| in DInit.

We note that while DInit and w above may be as large as n · λ bits, they can be specified while
running M by using at most λ + log n bits for each non-zero value. Furthermore, they can have
at most t+ dL/λe non-zero values since M makes at most t memory accesses, and at most dL/λe
additional positions are accessed in specifying the output. Thus, DInit and w can be computed with
at most poly(λ, L, t, log n) additive overhead in time and space.

Claim B.4. There exists a polynomial q such that E(crs, z, s) runs in time at most q(λ, t · pM ).

Proof. E first runs Einner, which has running time bounded by a polynomial qinner(λ, t · pM ) by
Claim B.2. Note that if Einner does not output ⊥, it implies in particular that the number n of
words in memory used by M is at most 2λ. It also implies L is bounded by a fixed polynomial in λ,
since Einner checks that Y , which is part of the proof π, consists of dL/λe words and hence at least
L bits. Using these, we bound the remaining running time of E by a polynomial in λ and t · pM ,
which completes the claim.

After running Einner, E parses its output as a sequence of t updates, where each update has
size at most 2β(λ, log n) · pM · λ ∈ poly(λ) by the efficiency of the underlying hash function,
which takes time t · pM · poly(λ). Using these updates to determine which values to read, E
emulates M for t steps, which can be done in time t · pM · poly(λ, |M |). This can be bounded by
t · pM · poly(λ) since M is part of the output of P?λ,z,s, so |M | is bounded by a fixed polynomial in

λ. Finally E computes the initial memory DInit to output a witness w, which, as discussed above,
requires specifying at most t + dL/λe positions and therefore takes at most poly(λ, L, t, log n)
time. This is bounded by poly(λ, t) as L, log n are in poly(λ). Altogether, E runs in time at most
qinner(λ, t ·pM ) + t ·pM ·poly(λ) + t ·pM ·poly(λ) + poly(λ, t) which can be bounded by a polynomial
q(λ, t · pM ). �
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Claim B.5. For every constant c ∈ N, there exists a negligible function negl such that for all λ ∈ N
and z, s ∈ {0, 1}∗,

Pr


(crs, st)← Gni(1

λ)
((M,x, y, L, t), π)← P?λ,z,s(crs)
b← Vni(st, (M,x, y, L, t), π)
w ← E(crs, z, s)

:
b = 1 ∧
((M,x, y, L, t), w) 6∈ RPRAM

U ∧
t · pM ≤ |x|c

 ≤ negl(λ).

where pM is the number of processors used by M .

Proof. In the following, all probabilities are over (crs, st)← Gni(1
λ), ((M,x, y, L, t), π)← P?λ,z,s(crs),

b ← Vni(st, (M,x, y, L, t), π), and w ← E(crs, z, s). We let statementi, πi for all i ∈ [m] be the
statement and proof given P?λ,z,s for the ith Lupd instance, and we define pM to be the number of
processors used by M . Additionally, we let wit1, . . . ,witm, Y, πfinal be the output of Einner during the
execution of E in each probability.

Suppose by way of contradiction that there exists a polynomial p such that for infinitely many
λ ∈ N,

Pr

 b = 1 ∧
((M,x, y, L, t), w) 6∈ RPRAM

U ∧
t · pM ≤ |x|c

 > 1

p(λ)
.

We can rewrite this probability as

Pr


b = 1 ∧
((M,x, y, L, t), w) 6∈ RPRAM

U ∧
t · pM ≤ |x|c ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd

+ Pr


b = 1 ∧
((M,x, y, L, t), w) 6∈ RPRAM

U ∧
t · pM ≤ |x|c ∧
∃i ∈ [m] (statementi,witi) 6∈ Rupd



≤Pr


b = 1 ∧
((M,x, y, L, t), w) 6∈ RPRAM

U
t ≤ |x|c ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd

+ neglinner(λ),

by Claim B.3 above. As neglinner(λ) < 1/(2p(λ)) for infinitely many λ ∈ N, this implies that for
infinitely many λ ∈ N,

Pr


b = 1 ∧
((M,x, y, L, t), w) 6∈ RPRAM

U ∧
t · pM ≤ |x|c ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd

 > 1

2p(λ)
. (B.3)

Given this, consider the following non-uniform adversary A = {Aλ}λ∈N which can be used to
break the soundness of either C or H, where Aλ has z, s and the description of P?λ hardcoded.

Aλ(pp, h):

1. Sample (crssnark, stsnark)← Gsnark(1λ). Let crs = (crssnark, pp, h) and st = (stsnark, pp, h).

2. Compute ((M,x, y, L, t), π) = P?λ,z,s(crs). Check that t · pM ≤ |x|c, where pM is the number

of processors used by M . If this does not hold, abort and output ⊥. Let (Statefinal, V
rd

final) be
the final states and words in π (corresponding to those sent in the final message).
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3. Run w ← E(crs, z, s). If E outputs ⊥, abort and output ⊥. Otherwise, let wit1, . . . ,witm be
the witnesses output by Einner for statements statement1, . . . , statementm.

4. Sample b← Vni(st, (M,x, y, L, t), π). If b = 0, abort and output ⊥. If b = 1, let statementi, πi
be the statement and proof for the ith Lupd instance given by π for i ∈ [m] and let Y, πfinal

be the opening for the final output given by π.

5. If there exists a j ∈ [m] such that (statementj ,witj) 6∈ Rupd, abort and output ⊥. Otherwise,

parse each witness witj as containing an initial set of states and words read (State(j), V rd,(j)),
as well as a sequence of updates. Let u1, . . . , ut be the sequence of t updates obtained across
all m witnesses where ui = (digesti, V

prev
i , V rd

i , πi, τi) for all i ∈ [t]. Additionally, for each
i ∈ [t], let Vi be a tuple of |Si| values, where the jth value is that of V rd

i or V wt
i according to

the corresponding operation given by Opi.

Recall that E ’s emulation defined the starting values (State0, V
rd
0 ) and values (Statei,Opi, Si,

V wt
i ) for each RAM step. Lastly, let digest0 be the initial digest computed by V.

6. Check that E ’s emulation is consistent with the extracted updates. Specifically, let K0 = 0
and let Kj be the number of updates in sub-statements 1 through j for each j ∈ [m]. If

there exists a j ∈ [m] such that (State(j), V rd,(j)) is not equal to (StateKj−1 , V
rd
Kj−1

), let j

be the smallest such index and output ((State(j), V rd,(j)), (StateKj−1 , V
rd
Kj−1

)). Similarly, if

(Statefinal, V
rd

final) 6= (Statet, V
rd
t ), output these four values.

7. Next, Aλ emulates the computation of M(x,w). To avoid confusion with the values in
the extracted update, we will use a superscript “?” to denote the values computed in this
emulation. Let State?0 be a tuple containing the initial RAM state, V rd?

0 = (⊥), and D? = x||w
be the initial memory string for use by M .

For i = 1, . . . , t, do the following:

(a) Compute (State?i ,Op
?
i , S

?
i , V

wt?
i ) = parallel-step(M, State?i−1, V

rd?
i−1).

(b) Read from and write to D? by running V rd?
i = accessD

?
(Op?i , S

?
i , V

wt
i ).

Let Y ? be the tuple containing the first L′ = dL/λe words of D?, and let y? be the con-
catenation of the first outlen bits from Y ?, where outlen is the output length specified by
State′m.

8. If there exists an index i such that V rd
i 6= V rd?

i , let i be the smallest such index. Compute a
digest of the empty partial string (ptr?, digest?0) = C.Hash(pp, D⊥) and then compute (∗, π?) =
C.Open(pp, ptr?, Si). Output

(i− 1,
{

(digestj , Sj , Vj , τj)
}
j∈[i−1] , digest0, Si, (⊥)|Si|, π?, V prev

i , πi).

9. If Y 6= Y ?, compute a digest of the empty partial string (ptr?, digest?0) = C.Hash(pp, D⊥) and
then compute (∗, π?) = C.Open(pp, ptr?, [L′]). Output

(t,
{

(digestj , Sj , Vj , τj)
}
j∈[t] , digest0, [L

′], (⊥)L
′
, π?, Y, πfinal).

10. Otherwise, abort and output ⊥.
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To analyze the success of A in breaking the soundness of C, below we argue that (1) Aλ runs in
polynomial time, (2) if Aλ outputs in steps 8 or 9 then Aλ finds values that breaking the soundness
of C, and (3) if Aλ reaches step 10, it must be the case that ((M,x, y, L, t), w) ∈ RPRAM

U .
Given these claims, we can conclude the proof as follows. First, note that Aλ outputs in step 6,

8, 9, or 10 whenever b = 1, (statementi,witi) ∈ Rupd for all i ∈ [m], t · pM ≤ |x|c, and E does not
output ⊥. Note that if (statementi,witi) ∈ Rupd, then the output of E is not ⊥. We can therefore
break the event that A outputs in step 6, 8, 9, or 10 into two cases as

Pr


b = 1 ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd ∧
t · pM ≤ |x|c ∧
((M,x, y, L, t), w) ∈ RPRAM

U

+ Pr


b = 1 ∧
∀i ∈ [m] (statementi,witi) ∈ Rupd ∧
t · pM ≤ |x|c ∧
((M,x, y, L, t), w) 6∈ RPRAM

U

 .
We observe that the only difference between Aλ and the adversary given in the proof of Lemma 6.3
for the interactive case is in steps 1, 2, 3, and 4. After step 4, Aλ uses the witnesses it obtained
identically to the adversary in the interactive case. It therefore follows by the same logic as in
Subclaim 6.12 that the first term in the above probability is greater than the probability that Aλ
outputs in step 10. The second term is greater than 1/(2p(λ)) by Equation B.3. Putting these
together, we get that the probability that Aλ outputs in steps 6, 8, or 9 is greater than 1/(2p(λ)).
To obtain a contradiction, we show below that Aλ runs in polynomial time in Subclaim B.6. We
observe that by Subclaim 6.9, if Aλ outputs in step 6, then it finds values which violate the
soundness of H. Similarly, by Subclaim 6.11, if Aλ outputs in step 8 or step 9, then it finds values
which violate the soundness of C. Therefore, Aλ can be used to break the soundness of C or of H
with probability at least 1/(2p(λ)), in contradiction.

Subclaim B.6. There exists a polynomial qA such that for every pp ∈ Supp
(
C.Gen(1λ, 2λ)

)
and

h ∈ Hλ, the running time of Aλ(pp, h) is at most qA(λ) for all λ ∈ N.

Proof. The running time of Aλ is bounded by the sum of (1) the time to run Gsnark, (2) the time
to run P?λ,z,s and check its output, (3) the total amount of time Aλ spends running E , (4) the time
to run Vni, (5) the time to check that all (statementi,witi) pairs are in Rupd, (6) the time to check
for and compute an output in step 6, (7) the time to emulate the execution of M , and (8) the time
to check for and compute an output in steps 8 and steps 9. We separately argue that each of these
run in at most polynomial time in λ.

First, (1) is bounded by a polynomial in λ by the efficiency of Gsnark and C.Gen. (2) is bounded
by a polynomial in λ since P?λ,z,s runs in fixed polynomial time q?(λ) for any z, s ∈ {0, 1}∗. Note
that since M,x are part of the prover’s output, then |(M,x)| is also bounded q?(λ). When Aλ
does not abort after running the prover, this implies that t · pM ≤ |x|c ∈ poly(λ). Next, (3) is
bounded by a polynomial qE(λ, t · pM ) by Claim B.4. This is polynomial in λ by the bounds on
|x| , t above. Note that if Aλ does not abort after running E , then by definition of Einner, this
implies that L ≤ q?(λ) and n ≤ 2λ. For (4), by succinctness, the running time of Vni is bounded by
a fixed polynomial poly(λ, |(M,x)| , L, pM , t) ∈ poly(λ) by the aforementioned bounds. For (5), it
requires checking that at most t updates are valid where each check requires a polynomial amount
of work in λ, |(M,x)| , β(λ, log n), pM , log t by definition of Lupd and the efficiency of C. By the
above bounds, this is in poly(λ). Next, (6) requires checking equality of (m + 1) · poly(λ) · pM
values, which is bounded by a polynomial in λ since pM ≤ |x|c and because m ∈ poly(λ) as the
output length of P?λ,z,s depends on m. Next, (7) takes t steps of computation, each of which takes
time bounded by a fixed polynomial in λ, |M | , pM by the definition of PRAM computation, which
is polynomial in λ by the above. Lastly, (8) requires (t+L+ 1) · pM ·λ time to check equality of all
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corresponding values. Computing the initial hash and opening requires 2β(λ, log n) · pM ∈ poly(λ)
by efficiency of C. Then, the full output has size at most t · pM · poly(λ) ∈ poly(λ) and takes at
most t · pM · poly(λ) ∈ poly(λ) time to compute.

Therefore, the running time of Aλ is bounded by some polynomial qA(λ) for all λ ∈ N. �

This completes the proof of Claim B.5. �

This completes the proof of Lemma B.1.
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