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Abstract. The problem of securely outsourcing the computation of a bilinear pairing has been
widely investigated in the literature. Designing an efficient protocol with the desired functionality
has, however, been an open challenge for a long time. Recently, Di Crescenzo et al. (CARDIS’20)
proposed the first suite of protocols for securely and efficiently delegating pairings with online
inputs under the presence of a malicious server. We progress along this path with the aim of
LOVE (Lowering the cost of Outsourcing and Verifying Efficiently) a pairing. Our contributions
are threefold. First, we propose a protocol (LOVE) that improves the efficiency of Di Crescenzo
et al.’s proposal for securely delegating pairings with online, public inputs. Second, we provide the
first implementation of efficient protocols in this setting. Finally, we evaluate the performance of
our LOVE protocol in different application scenarios by benchmarking an implementation using
BN, BLS12 and BLS24 pairing-friendly curves. Interestingly, compared to Di Crescenzo et al.’s
protocol, LOVE is up to 29.7% faster for the client, up to 24.9% for the server and requires 23-
24% less communication cost depending on the choice of parameters. Furthermore, we note that
our LOVE protocol is especially suited for subgroup-secure groups: checking the correctness of
the delegated pairing requires up to 56.2% less computations than evaluating the pairing locally
(no delegation). This makes LOVE the most efficient protocol to date for securely outsourcing the
computation of a pairing with online public inputs, even when the server is malicious.

1 Introduction

Cryptographic bilinear pairings (a.k.a. pairings, in short) have proven to be an extremely versatile build-
ing block to realize novel and advanced cryptographic tools including identity-based encryption [I3],
short signatures [15], aggregate signatures [14], and zero knowledge-Succinet Non-interactive ARgument
of Knowledge (zk-SNARK) [28]. Very recently, pairings found applications in isogeny-based cryptography,
to compress public keys in key exchange [46] and to construct verifiable delay functions [22].

Pairing-based protocols critically rely on an efficient implementation of the pairing, which has com-
putational cost far more expensive than any other of the protocol’s building blocks. Several clever algo-
rithmic breakthroughs [9/42], capitalized on efficient software and hardware implementations (see [1],[37,
Chapter 11] for a comprehensive overview), producing an impressive reduction of the latency associated
to a pairing. Nonetheless, as of 2015, the timing cost for the execution of a single pairing on the BN
curve at the 128-bit security level, was five to six times higher than the one of a scalar multiplication
(over Gy), [47), Table II]. The considerably higher cost of evaluating a pairing motivated a line of research
on how to outsource this computation in a secure and efficient way.

Secure and efficient pairing delegation. For many years, researchers and developers have addressed the
problem of how a resource-constrained device (Client), can safely delegate the computation of a pairing to
a much more powerful computational entity (Server). This setting is particularly relevant in the Internet
of the Things (IoT): if secure and efficient pairing delegation is possible, IoT devices (acting as clients) can
manage advanced pairing-based protocols without having to pay the cost of locally evaluating pairings.
Intuitively, a protocol for secure and efficient pairing delegation should provide mechanisms allowing the
client to verify the correctness of the output returned by the server. With respect to efficiency, we want
the client’s computational costs associated to such delegation be strictly less expensive than the action
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of computing the pairing solely on the client’s device. However, the verification normally involves the
computation of costly exponentiations (over Gr), membership tests (in Gr), and at times, additional
lighter operations such as scalar multiplications (on G; and Gg). Progressive efficiency improvements
on pairing evaluation rapidly closed the gap between the cost of verifying the delegated pairing and
actually computing the pairing locally. As a result, many of the pairing delegation protocols with the
verifiability property proposed to date [32J26|T8I[17], fail to meet the efficiency requirement stated above.
This situation has called to question the whole idea of delegating a pairing in the first place.

In 2020, Di Crescenzo, Khodjaeva, Kahrobaei and Shpilrain put forth a promising solution to realize
efficient pairing delegation in the offline/online setting [21]. In a nutshell, this means that the protocol
splits into two subsequent phases: an offline phase (run by the client only), followed by an online phase
when the inputs to the pairing are disclosed and the client interacts with the server. The key idea is that
the offline phase is independent of the pairing inputs, can be run at any point in time, and collects the
bulk of the computation required from the client. In contrast, the online phase should be as lightweight
as possible for the client, so that verifying the outsourced pairing computation is less expensive than
evaluating the pairing locally on the client device. In this paper, we carefully investigate about the
efficiency claims of [21] in the context of the new parameter recommendations for pairings at the 128-
and 192-bit security level. We additionally introduce minor changes to the original protocol to further
optimize its efficiency and test our implementation on a simulated client-server interaction.

Our contributions. This paper provides the first implementation of a secure and efficient protocol
for pairing delegation in the offline/online setting. We focus only on the case of public inputs, because
our experimental results indicate that delegating a pairing with private inputs remains inefficient and
more expensive than performing the local computation. Concretely, we take the most efficient protocols
proposed in [2I] and make slight but clever modifications with the aim of LOVE (Lowering the cost
of Outsourcing and Verifying Efficiently) a pairing. As a result, we obtain the most efficient protocols
to date for securely outsourcing the computation of a pairing with online public inputs, even in cases
where we cannot trust the server. We formally prove the security for our ‘adjusted’ protocol LOVE.
Finally, we experimentally evaluate LOVE with several choices of curves at different security levels. As
a byproduct (and a result of independent interest), we provide updated costs for scalar multiplication
and exponentiation in pairing groups using optimized implementations. Interestingly, in lieu of the new
optimizations, the performance improvement of delegating a pairing is lower than the reported in previous
work, when state of the art implementations are used and the cost of membership checks in G is
considered. Furthermore, our results reinforce the observation stated in [7] that even at the cost of
a small performance penalty for its individual building blocks, choosing subgroup-secure parameters
provides an overall better performance when the whole protocol is analyzed.

Applications. Delegating the computation of a pairing on public inputs may seem a task with little use,
yet, we will argue next that it has interesting implications in the realm of efficient verification.

First of all, such a scheme can be deployed to realize server-aided signature verification for schemes
that involve pairings in the verification process. This setting has been studied, e.g., in [38], and becomes
of particular interest for verifications that involve several pairing computations, e.g., [4]. We note that, if
one assumes a trusted set up (for instance, a set up that outputs v = e(Py, P»)), verifiers could leverage
the pairing v provided by the set up in their offline phase, and thus run the signature verification without
needing to ever compute a pairing locally. This simple observation is of particular interest for IoT devices,
where one may wish to minimize the code loaded on a constrained device without compromising too much
its limited computing resources.

Another venue of application for delegating the computation of a pairing on public inputs is the
recent isogeny-based Verifiable Delay Function (VDF) construction presented in [22]. VDFs [12], have
important applications for Blockchain proof of space and stake, design of trustworthy randomness beacons
and benchmarking of high-end servers, among others. In a VDF setting, given an input challenge x
and public parameters pp, the Prover must compute a function Eval(pp,x) — (y,m), where y is the
output of the function Fval and 7 is its proof. A second entity, known as the Verifier, must compute a
decision function Verify(pp, x,y, ) — {True, False}, which determines whether the Prover satisfactorily
completed its task or not. By design running FEwal shall take time comparable with a prescribed delay
T; more formally, it should be computationally intractable, regardless of the amount of parallelization
employed by the Prover, to calculate Eval in time less than T'. Moreover, once y along with its proof 7 are



produced, the output y should be easily verifiable by anyone in a much shorter Polylog(T") time. Recently,
De Feo, Masson, Petit and Sanso proposed in [22] an isogeny-based VDF construction that uses a pairing
for its verification algorithm. In this protocol, the verifier sets up the scheme, and checks the correctness
of the evaluation’s output by computing two pairings (and by performing other, less expensive checks).
Notably, the pairings’ inputs are public values, so it seems natural to apply our technique: include the
pairing delegation setup in the VDF set up, and enjoy a more efficient verification procedure. This change
clearly increases the computational demands on the Prover (running Fwval) and thus its delay, which is a
desirable feature in the VDF setting, and at the same time it speeds up the verification. At the moment,
the improvement we described above only works for one of the pairings (the right hand side one, on line
2. of Verify in Figure 1 and 2 of [22]) and assuming that the verifier knows the point @ at set up time.

1.1 Related Work

The seminal work on secure pairing delegation protocols is due to Girault and Lefranc [26] who formalized
this notion as Server-Aided Verification. The aim of [26] was to improve the efficiency of signature
verification by relying on a server to carry out the expensive pairing computation. This approach sparked
a long line of research, which includes more expressive models for server-aided verification [44/T9I38],
security notions for pairing delegation (in the framework of verifiable computation) [I§], and several
constructions aiming at concrete efficiency and/or better security [32/45/4317I31)21]. Paradoxically, the
state of the art in this matter seems to suggest that delegating a pairing computation in a secure and
verifiable way inherently requires more computations than evaluating the pairing locally. To overcome
this problem, Di Crescenzo et al. [21] adopted a new strategy. Instead of relying on the standard server-
aided verification syntax (two-message protocol), they considered an offline phase (traditionally called key
generation, which runs independently of the computational input), and an online phase where the pairing
arguments are disclosed and the verifier (acting as a client) interacts with the server. The offline/online
approach seems a winning concept: it allows the verifier to run the bulk of computations during the offline
phase, which may happen at any point in time before the actual pairing computation is needed. Once
the pairing arguments are disclosed, the verifier enjoys more efficient procedures that rely on the output
of the expensive offline phase. While this setting is promising, [2I] provides no concrete implementation
of the suggested protocols and the efficiency estimates are extrapolated from a hypothetical text-book
implementation using the well-known, but by now outdated, performance figures from [16].

Interestingly, the problem of pairing delegation appears to be easier in the batch setting, where the
client wants to compute several pairings e(A;, B;) for A; € G; and B; € Go. The first solution came out
in 2007, when Tsang, Chow and Smith [41I] proposed the first batch pairing delegation protocols and
related security notions. They classified the possible pairing arguments in 16 types (all combinations of
public/secret, variable/constant inputs) and proposed protocols tailored to 4 of these settings. Unfortu-
nately, their main protocol was limited to pairings sharing the same secret first argument and involved
costly exponentiation in the target group. Later, Mefenza and Vergnaud [35] proposed new efficient batch
pairing delegation protocols in the same settings by adopting the endomorphism idea from Guillevic and
Vergnaud [31] and reducing the size of exponents. Performance improvements ranged from 40% to 74%
at the 128-bit security level in comparison with previous work.

2 Preliminaries

Notation We denote by A (resp. o) the computational (resp. statistical) security parameter of a scheme.
We use choosing at random or randomly choosing to refer to sampling from the given set according
to the uniform distribution, and denote this by = «¥ X. We denote by poly(\) a generic polynomial
function in the variable A, and by negl a negligible function, that is negl(\) < 1/poly(}), for any poly
and large enough values of \. We denote by cost(+) a function that, given as input an algorithm returns
its computational cost (in some desired computational model). Unless otherwise specified, all groups we
work with have order ¢, which is a 2A-bit prime; and P; denotes a generator of the group cyclic group
G;. We denote by Bool(-) the boolean function that returns 1 if the statement given in input is true /
satisfied, and 0 otherwise.

The parameters p, ¢, ¢ (p) and k, denote the base field prime, the pairing group order and the k-th
cyclotomic polynomial evaluated at p and the embedding degree, respectively. These parameters are
formally defined next.



2.1 Pairings

Let E be an elliptic curve defined over the finite field F,,, where p is a large prime. Denote by E(F),) the
set of points (z,y) € F,, that satisfy the elliptic curve equation along with the point at infinity denoted
by O. It is known that E(F,) forms an additive Abelian group with respect to the elliptic point addition
operation. Let #E denote the cardinality of E(F,), and let ¢ be a large prime that divides #FE with
ged(g,p) = 1. Then, the embedding degree of a curve is defined as the smallest integer k, such that ¢
divides p* — 1. Let F,x be an extension field of F), of degree k, and let F;k be the field composed by
the non-zero elements of F,x. We say that G1, Gz and Gz are an order-q subgroup of E(F,), an order-q
subgroup of E(F,x), and the order-¢g subgroup of F;k, respectively. Groups G1, Go are typically written
additively, while group Gr is always written multiplicatively.

The standard procedure for computing a pairing is based on an iterative algorithm, proposed by Victor
Miller in 1986 [36]. Let R € E(F,«) and let s be a non-negative integer. A Miller function fs r of length s is
a function in Fx (E) with divisor (fs z) = s(R)—(sR)—(s—1)(c0), where co denotes the point at infinity.
Miller’s algorithm calculates a value f that is only unique up to a multiplicative power of ¢q. The reduced
Tate pairing computes a final ezponentiation step, where the value f is raised to the power (p* — 1)/q.
This exponentiation is known as the final exponentiation, and maps the result into the desired subgroup
of g-th roots of unity. For even embedding degree k and k-th cyclotomic polynomial y(-), the final
exponentiation is split in the easy and hard parts as (p*—1)/q = [(p¥/2 — 1) - (p*/% +1)/d1(p)]-[01 () /).
This way one gets a bilinear pairing, whose main properties are summarized below.

A pairing is an efficiently-computable map e : G; x Go — G defined over groups of prime order g,
that enjoys the following properties:

Bilinearity e(aPy,bP;) = e(Py, P2)®, Va,b 8 Zq, P € Gy and P» € Gy
Non-degeneracy if P; and P, are generators of G; and Go respectively, then gr = e(Py, P) is a
generator for Gr.

The pairing e is of Type 1 (symmetric) if G; = Gq. This implies that the curve is equipped with a
distortion map to produce a linearly independent second argument for non-degeneracy. The pairing e is
of Type 3 (asymmetric) if G; # Gy and there are no homomorphisms between the two groups. In the
latter case a twist is typically used to compress group elements in Gs.

The state of the art in pairing-based cryptography employs the optimal Ate pairing [42] operating
on a family of curves of small embedding degree, called pairing-friendly [23]. Pairing-friendly curves are
specified by means of associated parameterized polynomial formulae for the prime modulus p and the
prime order subgroup ¢. For the sake of efficiency, these formulae are instantiated using seeds with low
Hamming weight (cf. Table . Known pairing-friendly families offer different trade-offs between the field
sizes (for security in Gr), and curve orders (for security in Gy and Gg). With the aim of achieving a
better performance, we normally choose larger embedding degrees when targeting higher security levels.
This design decision allows us to work with moderate sizes of the base field and the curve order.

Selecting a suitable pairing-friendly curve and its associated finite fields and pairing parameters
requires trying many seeds with low Hamming weight, until a curve with the right performance properties
and security requirements is found, inside the chosen family. Design aspects to be considered include the
existence of endomorphisms to accelerate scalar multiplication and exponentiation in the pairing groups,
the degree of the twist, an optimized towering to represent IF «, efficient ways to test for membership or to
hash bit strings to group elements, among others. Security requirements include the hardness of solving
the discrete logarithm problem in all groups, and the necessity of verifying that group elements have
the right order and were not maliciously selected. The latter is alleviated by choosing curves providing
subgroup security [7], which mandates that E(F,) and E(F,+) do not contain subgroups significantly
smaller than the subgroups G; and Go, both of prime order q. The related Gp-strength security notion
applies this idea to Gp only [39]. Checking the order of group elements is called subgroup membership
testing.

After the TNFS algorithm was proposed to solve the discrete logarithm in parameterized composite-
degree extension fields [33], prime-order Barreto-Naehrig curves [I0] lost the top performance spot at
128-bit security. Currently, the families that offer better performance are Barreto-Lynn-Scott curves
(BLS) [8] with embedding degree 12 at the 128-bit security level, and 24 at the 192-bit security level [6].
The corresponding curve with embedding degree 48 has been considered for the 256-bit security level [34].



3 Delegating Pairings with Online Public Inputs

In this section, we recall part of Di Crescenzo et al.’s work [21] both for completeness and for providing
more intuitive notations, descriptions, as well as a more rigorous formalism. Concretely, we begin by
presenting a formal framework for offline/online pairing delegation, and a suitable security model. Our
goal here is to spell out the details of the intuitions provided in [21], by having rigorous definitions, which
simplify the well-established VC model of [25] to the case of pairing delegation. We then describe the
original protocol for online public inputs provided in [2I], with an improved notation, and along with
correctness, security and efficiency considerations.

3.1 Modeling Offline/Online Pairing Delegation Protocols

We describe a formal model for offline/online pairing delegation. In a nutshell, this model makes use
of correctness and (output) security as introduced for verifiable computation (VC) by Gennaro, Gentry
and Parno [25]. These notions are, however, adapted (and simplified) to the special setting of our work.
We prefer to re-name the standard VC algorithms (KeyGen, ProbGen, Compute, and Verify) to something
with a more explicit meaning for our setting, namely (offSetup, onSetup, Compute, and onVerify).

Definition 1 (Offline/Online Pairing Delegation). An offline/online protocol for pairing delegation
consists of the five algorithms (GlobalSetup, offSetup, onSetup, Compute, onVerify) :

GlobalSetup(A) — bilin.group this is a randomized algorithm that takes as input a value A\ (the
computational security parameter) and returns the description of a bilinear group bilin.group =
(q,Gq, P1,Ga, Py, Gr,€e), where q is a 2X\-bit prime, and e is a pairing. We assume bilin.group is
implicitly available to all subsequent algorithms. (This is a one-time set up).

offSetup(c) — off.pp this is a randomized algorithm that takes as input a value o (the statistical security
parameter). It returns some values off.pp. (This algorithm is run in by the client during the offline
phase).

onSetup(off.pp, (A, B)) — (pub, sec) this is a randomized algorithm that takes as input off.pp, and
a pairing argument (A, B) € Gy X Ga. It returns a public value pub, and a secret value sec. (This
algorithm is run by the client, and is the first algorithm of the online phase. At this point off.pp and
sec are only known to the client, while pub will be sent to the server).

Compute(pub) — out this is a deterministic algorithm that takes as input the public value pub; and
returns a public output out. (This algorithm is run by the server, and is the second algorithm of the
online phase).

Verify(sec,out) — value this is a deterministic algorithm that takes as input the secret value sec
(generated by the online setup) and the server’s output out. It returns a value value € {Gp U L}.
Intuitively, value = L rejects the outcome of the delegation, while if value € Gp we expect that
value = e(A, B). (This algorithm is run by the client, and is the last algorithm of the online phase.
It is designed to verify the correctness of the computation carried out by the server).

Figure [I] displays a graphical summary of the syntax introduced in Definition

client server
‘ offSetup() — off.pp ‘ // OFFLINE PHASE
l off.pp
‘ onSetup(off.pp, (A, B)) — (pub, sec) ‘ // BEGIN ONLINE PHASE (A, B)
pub

‘ Compute(pub) — out ‘

out

‘ onVerify(sec, out) — value // END ONLINE PHASE

Fig. 1. Diagram visualizing the model for offline/online pairing delegation. Notably, the pairing arguments (A, B)
are revealed only at the start of the online phase. The one-time GlobalSetup is omitted from the picture.
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A protocol for offline/online delegation of a pairing computation is correct if for all possible input
arguments (A4, B) € G; x Ga, (and for any possible randomness used by offSetup and onSetup) the
protocol execution returns value = e(A, B), assuming all algorithms are run honestly. This is formalized
by the following definition (which is closely similar to the correctness for VC in [25], but tailored to our
case of interest).

Definition 2 (Correctness). A protocol for offline/online pairing delegation is correct if for any value
of A and o, and for all of possible input arguments (A, B) € Gy x Gy it holds that:

bilin.group  GlobalSetup(\)
off.pp + offSetup(o)
Prob |value = e(A, B) | (pub, sec) < onSetup(off.pp, (4, B)) | = 1.
out + Compute(pub)
value « onVerify(sec, out)

A protocol for offline/online delegation of a pairing computation is secure if no adversary (in the
shoes of a malicious server) is able to produce a value out* that is not rejected by the verifier and that
results in a incorrect output value* # e(A, B). This is formalized in the following security definition and
the experiment Exp®;°. Notably, Exp%° is a simplification of the security experiment for VC in [25]: we
reduce the number of adversarial queries to a single one, since in the setting of [2I], every new input
(A, B) requires a new run of offSetup. Our adversary is a pair of algorithms A = (A;, As) that share an

internal state st.

Security Experiment Exp%°(}, o)

1: bilin.group « GlobalSetup())
off.pp « offSetup(o)

((A, B), st) < Ai(\, 0,bilin.group)
(pub, sec) < onSetup(off.pp, (A4, B))
out™ + Az (st,pub, (4, B))

value” < onVerify(sec, out™)

= W N

ot

if value® = 1 return 0
if value® = e(A,B) return 0

return 1

© o N O

We remark that, in order to reach the winning condition in Exp%®, the adversary needs to produce an

output out* that is not rejected by the verification (i.e., value* # 1) and that yields an incorrect value
value® # e(A, B). Such an output would indeed fool the client into accepting an incorrect value as the
result of the outsourced pairing computation. A protocol is secure if any adversary has only negligible

probability of winning the security experiment Exp%“.

Definition 3 (Security). A protocol for offline/online pairing delegation is said to be secure if for any
probabilistic, polynomial time algorithm A = (Aj,.As) it holds that:

Prob [Exp%©(\,0) = 1] <277 + negl()\).

Regarding efficiency, we cannot use the amortized efficiency framework of VC, where the compu-
tational cost of running KeyGen —our offSetup— can be amortized over several executions of the core
delegation protocol. In our case, for security reasons, the output of offSetup can be used only for a single
pairing delegation. As we discussed already in the introduction, it is hopeless to expect a pairing delega-
tion protocol be efficient in the strictest sense; the best we can hope to achieve is efficiency in the online
verification. This is formalized in the following definition.

Definition 4 (Efficient Online Verification). A protocol for offline/online pairing delegation is said
to have efficient online verification if (cost(onSetup) + cost(onVerify)) < cost(e(-,-)), i.e., the cost of
running the online phase on the client-side is less than the cost of computing the pairing on the client’s
device.



3.2 Di Crescenzo et al.’s Protocol

In [21], Di Crescenzo et al. propose five different protocols for securely delegating the computation of
e(A, B), given the points A € G1, B € G2. The most efficient protocol (described in Section 3 of [2I], and
here in Figure [2) works in the setting where (A, B) are public. In the protocol description, the value ¢
(which determines the size of the field from which r is sampled), depends on the security parameter A (that
sets up the bilinear group). The value o, instead, represents the parameter for statistical security that
delivers the information theoretic security guarantee of the protocol. Finally, we recall that the handle
bilin.group = (¢, Gy, P1, Ga, P2, G, e) generated by GlobalSetup()), is available to all algorithms.

off.
offSetup(o) — off.pp = onSetup(off.pp, (4, B)) — (pub, sec)
1: Uz & G1,Us & Go 1: parse
2: ¢, 2% r ST off.pp = (¢, 7, U1, Uz, V2,7)
3: Vg%(rflmodqug 2: Vier-(A-U)
4 7%6(U1,U2) 3: Wa+c-B+Us
5: off.pp:= (¢,7,U1, Uz, Va,7) 4 pubi= (A, B, V1,12, W)
5: sec:=c¢
lpub
onVerify(sec, out) — value ‘s | Compute(pub) — out
1: parsesec=-c 1: parse pub = (A, B, Vi, V2, W)
2: if Bool(yo ¢ Gr) return L 2: vy < e(A,B)
3: if Bool(y: ¢ Gr) return L 3: 41 < e(A,Wa)
4: if Bool(y1 # 52 7) 4: v+ e(WV1,V2)
return L 5: out:= (Y0,71,72)
5: value:=17o

Fig. 2. Di Crescenzo et al.’s protocol for secure pairing delegation with online public inputs (see Section 3 in
[21]). This description uses a different, more intuitive notation. The GlobalSetup is not included explicitely as it
is trivial.

Correctness The correctness is trivial by inspection. By line [2| in Compute and line [5| in onVerify it
follows that value = vy = e¢(A4, B), since for correctness all parties are required not to deviate from the
algorithms descriptions, and all communication happens via a perfect, noise-free channel.

Security The security essentially relies on the fact that an adversary (playing the role of a malicious
server) cannot guess the challenge value ¢, except with probability 277 (which is small by construction).
We refer the reader to [21] for a detailed security proof.

Efficiency Regarding efficient online verification, we would need to estimate the client’s computational
cost in the online phase, i.e., cost(onSetup) + cost(onVerify) and compare it to the cost of computing
the pairing cost(e(-,-)). This is already done by [2]] in an abstract way through a theoretical complexity
analysis based on cost estimates extracted from Bos et al.’s work [16]. Interestingly, this efficiency analysis
disregards the cost of membership testing in Gr which can be quite significant for some parameters [7].
In contrast, we aim to provide concrete efficiency analysis of complete algorithm executions (see Section
). To this end, we implement the protocol in Figure |2 collect actual computational complexity and
timings, and compare its performance against our LOVE variant (that we introduce in the next section,
Figure [3).



4 Owur Protocol for LOVE a Pairing

We first present our LOVE protocol in Figure then we prove its security in the offline/online framework
described in Section and finally argue its online verification efficiency (deeper details on the latter in
Section . Our LOVE protocol is obtained from few simple but clever twists on the original proposal of
[21] presented in Figure Concretely, LOVE’s GlobalSetup, offSetup and onSetup are the same as in the
previous proposal; the only changes are in Compute and onVerify, and we highlight them with a frame
box in Figure

onVerify(sec, out) — value | <oz | Compute(pub) — out

1: parse sec =c 1: parse pub = (A, B, Vi, V2, Wa)
2: if Bool(yo ¢ Gr) 2: v < e(A,B)
return | 3: 1+ e(A, W)
4:  y2 <+ e(Vh,Vh)

3: if Bool(|y #16-7v)
return L 5

41 value:=17 6: out:= (’YOv)

Fig. 3. LOVE: Lowering the cost of Outsourcing and Verifying Efficiently a pairing. The algorithms GlobalSetup,
offSetup and onSetup are exactly as in Figure[2] For clarity, we frame the points in which LOVE differs from the
previous proposal.

Correctness The correctness of our LOVE protocol (depicted in Figure [3|) is evident by inspection:
value := 7o (line 4] in onVerify ) and 7o < e(4, B) (line |2/ in Compute).

Security The security proof for LOVE follows from the same arguments as the one for original protocol
given in [21I]. For completeness, we present below the full proof for our LOVE variant using the formalism
of the offline/online framework introduced in Section

In the security experiment Exp%©(A,0), A chooses the pairing argument (A4, B) € Gy x Gy, and
receives the string pub = (A, B, Vi, Vo, W1). The adversary wins the game if she can forge an output
out* = (73,7"") on which onVerify returns value ¢ {1,e(4, B)}, i.e., the verification does not reject the
forgery and returns a value different from the correct one.

Since we work with cyclic groups, each element has a unique representation as a multiple of a gener-
ator. For convenience let us describe the elements in pub in terms of their respective discrete logarithms
(convention: lower case Latin letters denote the dlog of the corresponding capital case group element):
A= a-Pl, B= b‘PQ, U1 = Ul ‘Pl, Vl = 1)1‘P1, U2 = ’LLQ‘PQ, V2 = UQ'PQ, W2 = ’U}Q‘PQ. By construction
we have:

V1 =Tra—rup
vg = r~tuy (1)
we = cb + us

where u1, up are uniform random variables (u.r.v.) on Zg, 7 is a u.r.v. on Zy, and cisa w.r.v.on [1,...,27].
We make no assumptions on the distributions of a and b since these may be chosen by the adversary.

Our first step is to prove that pub leaks no information about ¢. We do so by showing that the distri-
bution of (vy, v, ws), seen as the Cartesian product of the random variables obtained as the combination
of (a,b,c,r,ur,uz) defined in System , is independent of the distribution of (a, b, ¢). Formally,

Probl{(v1,ve,w2)}{(a,b,c)}] = Prob[{(v1,ve,w2)}] + negl(\).
Proposition 1. Prob[{(vi,vs, w2)}] is negligibly close to ¢~ (u.r.v. on Z3).

This is immediate since adding a u.r.v. defined on Z, to any r.v. on any subset of Z, yields a u.r.v. on
Z, (this is the argument for v; and ws); and any r.v. on any subset of Z, multiplied by a u.r.v. on Z,
yields a u.r.v. with overwhelming probability, i.e., except when either variable takes the value 0 (this is
the argument for v;). The latter event has probability ¢~ which is negligible in the security parameter
A (r # 0 since it is invertible).



Our next goal is to show that the same statement holds even when conditioning the probability to a
given event {(a,b,¢)} € Zy x Zy x [1,...,27].
Proposition 2. Prob[{(vi,vs,w2)}|{(a,b,c)}] is negligibly close to q=3.
This is immediate for the same reasoning as Proposition |1} In detail, we = ¢b+wus is uniformly distributed
over Z, since so is ug, even conditioned to (b, c). Whenever ug # 0, vy = r~luy is uniformly distributed
since so is 7, and this holds independently of b, ¢ and ws. In detail, since we are in a prime order group,
ug # 0 implies that uy admits an inverse uy ! mod ¢. Therefore it is possible to write r as the prod-

uct r = 7' (uy ! mod q) for some 1’ € Zy. Since r is uniformly random, so is r’, and as a consequence

also vy = rug = (r’(u;l mod ¢))uz mod ¢ = 7’. Finally, vy1 = ra — ru; is uniformly distributed since

sois uy (and r # 0 since it is invertible by construction), and this holds independently of a, b, ¢ and va, wo.

Once established that pub leaks no information about ¢ to A (except with a negligible probability in
A), we can move on to consider A’s forgery attempts.

Proposition 3. Given v = e(U1,Us) € Gy, for any eligible forgery, i.e., for any (v3,7'") € G2 with
e # e(A, B), there exists a unique value ¢, for which it holds that ' = 43¢ - ~.

Because Gr is a multiplicative group, we can re-write the probabilistic verification check as v;¢ = 4"y~ 1.
Since Gr is cyclic and of prime order, any element of Gr is a generator (except for its unit). Thus,
¢ = DLogy: (v;¢) = DLogy: (" - v~') is unique, modulus ¢ (the group order).

Proposition 4. For any out* = (70*,7") € G% such that vo* # e(4, B), Exp% (A, 0) outputs 1 with
probability at most 277 4 negl(\).

By Propositions |1f and [2] the string pub does not leak any information about c. This implies that, for a
malicious server, all values in [1, ..., 27] are still equally likely for ¢, even when conditioning over the A’s
view pub. By Proposition [3] the probability that any two values (73,7"") € Gr satisfy the probabilistic
test is one divided by the number of possible values ¢ can take. Since to A all values of ¢ are still equally
likely, we get: Prob[Exp% (), o) = 1] < 277 + negl()), which corresponds to A randomly guessing the
value 7/" that passes the verification equation (there are only 27 such values, given that v0*,v € Gy and

ce[l,...29)), or A’s view leaking some information about c. O

Efficiency To show the efficient online verification of LOVE, we need to estimate the client’s computa-
tional cost in the online phase, i.e., cost(onSetup)+cost(onVerify) and compare it to the cost of computing
the pairing cost(e(+,-)). The next section collects the actual computational complexity, timings and per-
formance comparison against the original proposal of [2I]. Here we provide only high-level arguments
by counting the main operations of both protocols. Compared to the original protocol in Figure 2] the
onVerify algorithm of LOVE saves one membership test for a G group element, and one multiplication in
Gr. Regarding communication, LOVE beats the original protocol by transmitting one less Gp-element.
Moreover, from the server side, LOVE’s optimization also allows to compute 7’ as a product of pairings
and share the final exponentiation, which brings potential additional efficiency gains.

5 Implementation Results

We implemented LOVE and Di Crescenzo et al.’s protocol [2I] using four different sets of parameters with
the help of the RELIC cryptographic library [2]. The first choice is the legacy BN-254 curve previously
used to set speed records [3] at the 128-bit security level, whose security guarantees have been degraded
to a security level lying somewhere between 100 and 110 bits. The second choice is the curve BN-382,
adjusted for new security levels. The third choice is BLS12-381 with embedding degree k = 12 and 255-bit
prime-order subgroup popularized by the ZCash cryptocurrency [II]. The fourth choice is BLS12-383,
a Gr-strong curve generated by Scott [3940] for applications where subgroup membership checking is



performance—criticalﬂ The last choice is the BLS24-509 curve originally proposed by Costello [20] and
recently suggested by Guillevic as promising at the 192-bit security [29]. RELIC provides dedicated
Assembly acceleration for Intel 64-bit platforms for all these curves using a shared codebase, which
means that finite field arithmetic is implemented using essentially the same techniques, which permits
fair comparisons across different curves and protocols Given that our choices of A range from 100 to
192, in order to improve protocol performance we selected a much lower statistical security level of o = 50
bits in comparison to 128 used in [21].

BN curves: k = 12 BLS12 curves: k = 12 BLS12 curves: k = 12
p(2)|362% +362% +2422 4 624+1 (2 —1)%(z* =22 4+1)/3+2 |z - 12 -2 +1)/3+ 2
q(2)|362% +362% +1822 4+ 62+ 1 |2* — 22 41 22—zt
t(z) [622 +1 z+1 z4+1
h(z)|1 (2 —1)2/3 (2 —1)%/3

E b 20 [log, p]|[log, q]|[log, 7]
BN-254 |2 —(252 4-2% 1) 254 254 1
BN-382  [2| —(2%* +278 4267 1264 1 28 1 1) | 382 382 1
BLS12-381 |4 — (203 4 252 4- 260 4 257 4 248 4 916)| 381 255 126
BLS12-383 |4 204 1 951 4 924 | 912 4 99 383 256 126
BLS24-509|1 —281 _ 9% 4 oll 509 408 100

Table 1. Parametrization and concrete parameters for the BN, BLLS12 and BLS24 pairing-friendly curves used in
our implementation. For the specified seed choice zg, the curve BN-254 provides around 100 bits of security; and
the curves BN-382, BLL.S12-381 and BLS12-383 provide a conjectured 128-bit security level. The curve BLS24-509
yields a conjectured security level of 192-bits.

Table|l| summarizes the main parameters corresponding to the BN [10], BLS12 and BLS24 [8] families
of elliptic curves. Note that all of these curves are parameterized by an integer z, and they are defined by
an equation of the form Y2 = X3 4 b, and have a twist of degree d = 6. Table [1] also reports the salient
parameters of the BN, BLS12 and BLS24 curve instantiations using a concrete choice of seed zg, suitable
for implementing pairing-based protocols at the 128- and 192-bit security level (this last security level is
only achieved by the curve BLS24-509). The requirements for these security levels are in good agreement
with the recommendations recently given in [29130].

Membership Testing in Gp. The traditional way of performing a subgroup membership test for a group
element g, i.e., to explicitly verify whether or not g € G, is to exponentiate g by the group order ¢
to check whether g9 is equal to the identity. An alternative way is first checking if g belongs to the
cyclotomic subgroup of order ¢p(p). Thanks to the Frobenius endomorphism, this is an inexpensive
operation (see below). If this test is passed, the second check consists of raising g to a power given by
the cofactor ¢ (p)/q, such that the final result lies in the right subgroup. For Gr, the first strategy is
usually more efficient because the cofactor ¢x(p)/q is typically considerably large, having, for the curve
families considered in this paper, a bitlength at least three times larger than that of q.

For the specific case of prime-order BN curves, we know that ¢ = p+ 1 —t, so testing for membership
can be done by checking that g¢ = gPt!—? z 1p, or g z gﬁzz7 which costs an efficient Frobenius map and
an exponentiation by the short exponent 622 [39]. The exponentiation can be performed after checking

that ¢ is in the cyclotomic subgroup of order p* — p? + 1 through the equation g - gp4 z g”2, which
only requires a few applications of powers of the Frobenius and one multiplication. In the cyclotomic
subgroup, faster [27] and compressed squarings [3] are available and are favored due to the low Hamming
weight of the exponent.

4 Following the definition given in [39], a curve is said to be Gr-strong, if ¢x(p)/q does not have small factors,
where ¢ (-) denotes the k-th cyclotomic polynomial, p is the base field prime and ¢ is the order of the group
Gr, respectively.

5 The resulting code is available in the library repository for reproducibility.
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The case for BLS12 curves is split into the two options, but we start by checking for cyclotomic
subgroup membership in both. The BLS12-383 curve is Gp-strong, so further checks can be omitted.
For BLS12-381, the situation is more complicated, as the cofactor is known to be composite but hard

to factor. A conservative way involves exploiting ¢? = gT1-/h z 17 to check g¢P z g7 and ¢g" # 17,
as implemented in the MIRACL 1ibrary|ﬂ A faster way consists of following the recommendation in [7]
to perform the exponentiation by the group order with the 4-GLS method using the Frobenius as an
efficient endomorphism in Gr [24]. The 4-dimensional decomposition is fixed and sparse for the group
order, such that the exponentiation requires only an exponentiation by sparse z, two multiplications and
two applications of the Frobenius.

For the BLS24-509 curve, we first check for membership in the cyclotomic subgroup of order p® —p*+1
and then proceed with the same conservative and fast strategies as in the BLS12 curve, namely, exploiting
the group order equation or optimizing the 8-GLS exponentiation. The latter approach only involves an
exponentiation by z followed by four multiplications and four Frobenius.

5.1 Timings for Operations in Pairing Groups

We implemented the conservative and fast membership testing in G as described in the previous sec-
tion, and benchmarked the other pairings group operations on a high-end Intel Core i7-6700K Skylake
processor running at 4.0GHz, with HyperThreading (HT) and TurboBoost (TB) turned off to reduce
measurement noise. RELIC was built for each curve using the available configuration presets with GCC
11.0.1 on a Fedora 34 operating system.

The target platform is obviously not representative of an embedded system, but to keep comparisons
fair we do not make usage of any memory-heavy operation that would benefit either the pairing compu-
tation or the additional protocol operations in one platform or another. In particular, the protocols we
implemented do not require fixed-base scalar multiplications or exponentiations that could benefit from
large precomputed tables in any of the groups.

Timings can be found in Table [2] for scalar multiplication in the unknown point case for G; and Go
using endomorphisms and a left-to-right w-NAF algorithm with w = 4. Exponentiation of a variable base
in G does not rely on precomputation and uses cyclotomic squarings and GLS endomorphisms with
a simple NAF algorithm, since inversion in a cyclotomic subgroup is just conjugation. We also include
timings for operations with short scalar/exponents using a simple NAF approach to show savings for
shorter 50-bit challenges. We hope these results can update the figures from [16] with current parameters,
and note that the rate at which the cost of performing operations increases from Gy to Gs, and to G is
lower than [I6], indicating that we employ a more efficient implementation of extension field arithmetic.

Operation \ Curve BN-254 BN-382 BLS12-381 BLS12-383 BLS24-509
[r]P in G 214 587 402 404 969
[c]P in Gy, short ¢ 72 133 134 134 210
[r]Q in G2 381 1268 836 879 5231
[]@Q in Ga, short ¢ 139 305 322 322 1631
g" in Gr 601 1952 1317 1318 8323
g¢ in Gr, short ¢ 282 633 634 634 2487
Cons. Test in Gr 262 895 683 - 2483
Fast test in Gr - - 382 - 1660
e(P,Q) 1086 3664 3255 3187 16730
Miller Loop 641 2183 1469 1446 5924
Final Exp 445 1481 1786 1741 10806

Table 2. Timings of pairing group operations implemented in RELIC reported in 10% cycles in a Skylake proces-
sor, averaged over 10% executions (HT and TB disabled). The operations are scalar multiplication or exponenti-
ation by a random integer r <% Zy or a short 50-bit scalar ¢, and membership testing in Gr (both conservative
and fast variants). The pairing computation is split between Miller loop and Final exponentiation.

5 https://github.com/miracl/MIRACL/
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5.2 Timings for Delegated Pairing Computation

We implemented the original protocol due to Di Crescenzo et al. and our LOVE variant in the same
benchmarking machine, and collected the timings in Table |3l We implemented both the public and the
private input versions for completeness, and adopted the fast membership check for a best-case scenario.
The protocol operations include preco (corresponding to the client’s offSetup), the server-side portion
of the computation server (Compute) and client-side online algorithms client (onSetup and onVerify). We
first note that the offline setup of both protocols is the same, so no significant performance difference is
observed in that step. Compared to [2I], LOVE has significant improvements for the client in all curves,
except for BLS12-383 because the main savings come from skipping one subgroup membership checking.
In the public inputs case, the LOVE’s improvements range from 18.0% to 29.7%; while in the private
inputs case, they decrease to around 10.3% and 14.9%. From the server’s point of view, the savings are
between 20.2% and 24.9% for public inputs; and 15.1% to 18.7% for private inputs. These extra savings
come from interleaving products of pairings inside Compute for the LOVE protocol. We do not take
the communication latency in consideration for our performance estimates, but a simple analysis of how
many bytes are transmitted points out that LOVE saves 23-24% communication cost depending on the
choice of parameters by reducing by one the number of Gy elements transmitted.

Now considering the cost of computing a pairing, we observe performance improvements of LOVE in
comparison with local computation ranging from 15.7% to 56.2%. The speedup is higher for the curves
BLS12-383 and BLS24-509 because of the Gp-strong property. LOVE provides speedups even in the
BN-254 and BN-382 curves, where [21] underperforms. Neither protocol is efficient in the private inputs
case. The significantly lower performance of Di Crescenzo et al.’s protocol, even in the favourable setting
when ¢ = 50 reduces the impact of G exponentiations, directly contradicts the estimates given in [21].
We attribute this effect to the lack of membership checks in the performance estimates and an inaccurate
extrapolation from [16] to new security levels.

Protocol \ Curve | BN-2s4 | BN-382 | BLsi12-381 | BLS12-383 | BLS24-509
cost(e(P, Q)) | 1086 | 3664 | 3255 | 3187 | 16730
[21] (preco) 2055 6520 5207 5225 27659
[21] (client) 1183 3459 (5.6%) 2167 (33.4%) 1472 (53.8%) 8928 (46.6%)
[21] (server) 3284 11070 9889 9710 50363
LOVE (preco) 2050 6516 5199 5217 27657
LOVE (client) 916 (15.7%) |2433 (33.6%)| 1768 (45.7%) 1397 (56.1%) 7322 (56.2%)
LOVE (server) 2595 8829 7600 7442 37800
Priv-[2I] (preco) 4892 15607 12100 12219 65852
Priv-[21] (client) 2452 7071 4406 3358 18459
Priv-[21] (server) 4404 14800 13237 12991 67179
Priv-LOVE (preco) 4892 15619 12090 12219 65845
Priv-LOVE (client) 2130 6017 3953 3304 16298 (2.6%)
Priv-LOVE (server) 3704 12560 10887 10701 54591

Table 3. Timings from running the pairing delegation protocols implemented in RELIC reported in 10® cycles in
a Skylake processor, averaged over 10* executions (HT and TB disabled). For all protocols the statistical security
parameter is set to o = 50. The label preco refers to the offline precomputation (offSetup), client to the client-side
online computation (onSetup and onVerify), and server to server-side online computation (Compute). We mark
in bold the combination of parameter and setting that provides a performance improvement over computing
the pairing locally. In these cases, we display between parenthesis the corresponding efficiency gain computed as
(1 — cost(client) /cost(e(P, Q)). Higher percentage values imply larger efficiency gains.

6 Conclusions
In this paper, we introduced LOVE: the most efficient protocol to date for secure offline/online delegation

of a pairing computation. While developing and analyzing LOVE we identified interesting questions that
stem out of our research.
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For instance, is there a secure way to leverage the first pairing delegation to efficiency advantage of
delegating one-more pairing? In other words, can ‘batch delegation’ of n pairings be secure and more
efficient than just repeating LOVE n times? An orthogonal direction would be to investigate if one can
securely delegate other building blocks of the verification, such as hash-to-point or membership tests.

Also, protocol-tailored solutions might be interesting. For instance, in the context of Groth’s zk-
SNARK [28], the verifier needs to compute ! scalar multiplications in G, 3 executions of the Miller’s
loop and 1 computation of the final exponentiation (here [ is a parameter of the zk-SNARK protocol).
In this setting, can we design a secure and efficient delegation protocol for the computation of the three
Miller loops and the final exponentiation? These are all components needed for the computation of a
pairing, but we are not aware of works that outsource these components, instead of the whole pairing.

Finally, we identified the need for efficient and reliable Gp-membership testing. Since the BLS12-381
curve is being considered for standardizatiorﬂ we suggest starting a computational effort to find out the
integer factorization of the G cofactor of this curve or bounds on its prime factors to better understand
its subgroup security.
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