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ABSTRACT
We propose a new hash function Reinforced Concrete, which is

the first generic purpose hash that is fast both for a zero-knowledge

prover and in native x86 computations. It is suitable for a various

range of zero-knowledge proofs and protocols, from set member-

ship to generic purpose verifiable computation. Being up to 15x

faster than its predecessor Poseidon hash, Reinforced Concrete
inherits security from traditional time-tested schemes such as AES,

whereas taking the zero-knowledge performance from a novel and

efficient decomposition of a prime field into compact buckets.

The new hash function is suitable for a wide range of applications

like privacy-preserving cryptocurrencies, verifiable encryption, pro-

tocols with state membership proofs, or verifiable computation. It

may serve as a drop-in replacement for various prime-field hashes

such as variants of MiMC, Poseidon, Pedersen hash, and others.

KEYWORDS
Hash functions, verifiable computation, zksnarks, finite fields

1 INTRODUCTION
SNARKs and hash functions. The recent years have been marked

as a thrive of distributed verifiable computation, where the out-

come of some algorithm A is accompanied with a succinct proof of
correctness, widely known as a SNARK [47, 58, 62]. Performance

of those protocols, however, remains a major bottleneck for appli-

cations. The reasons are manyfold, but one crucial point is that

SNARKs are constructed for statements formulated over prime fields
whereas regular computer programs are written for and executed

over bitstrings. The necessary translation of code into finite field

arithmetic carries a significant overhead. A notable example is the

cost of computing 70 SHA-256 hash function calls, which were

needed to transfer Zcash [3] cryptocurrency privately back in 2017,
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and which took over 40 seconds to create such a SNARK, compared

to 10 microseconds of native computation on a PC. Thus, the de-

sign of various cryptographic primitives tailored for operating over

finite fields is an active research area [6, 7, 41].

In this paper we remove one of such bottlenecks by offering a

hash function that is fast both for SNARKs and native computation.

There already exist functions that excel in either of those areas,

but not in both. The motivation for such a swissarmy tool is the

following. To scale, parallelize, and aggregate proofs we employ

what is called a recursive proof protocol [21, 25–27], where a party

can prove their share of computation together with a verification

of proof coming from the predecessor. This also enables wrapping

multiple proofs into a single succinct check. Notably, however, many

such recursive protocols require both hashing the input of a party

with Merkle tree and proving some openings of the tree in zero-

knowledge (ZK). Thus, whatever hash function is selected for the

tree, it must be fast in both scenarios. To make a concrete example,

one of the most ZK-efficient hash functions to date, Poseidon [41],

when plugged into the Fractal recursive protocol, makes the prover

100 times more expensive just because it is slow in the native x86

computation [27, Section 13.2].

Summary of use cases. In more details, our new hash function

will address, among others, the following use cases:

• Fast and efficient setmembership proofs based onMerkle

tree accumulators. Immensely popular in cryptocurrency

protocols [2, 3, 61], this case requires a hash function for

the tree. Parties 𝑃1, 𝑃2, . . . , 𝑃𝑛 add entries 𝑉1,𝑉2, . . . ,𝑉𝑘 to

some public accumulator 𝔄. Then at any point any party

𝑃 𝑗 can prove that 𝑉𝑖 ∈ 𝔄. For instance, in Zcash [3] 𝑉𝑖 are

unspent transactions and 𝔄 is a Merkle tree over them, so

that in order to spend transaction 𝑉 an owner is required to

provide a proof of knowledge that 𝑉 ∈ 𝔄 as well as a proof

of knowledge of some secret committed within 𝑉 . Its ZK

circuit should minimize the proof creation time.

• Verifiable computation based on recursive proofs. Here

the entire computation is a chain of functions 𝐹1, 𝐹2, . . . , 𝐹𝑘
applied consecutively to some state. Starting with𝑋 , for each

𝑖 Party 𝑃𝑖 computes 𝐹𝑖 and carries an intermediate result and

a proof of correctness to the next 𝑃𝑖+1 so that the last 𝑃𝑘 pro-

vides 𝑌 and attests 𝑋
𝐹𝑘◦𝐹𝑘−1◦···◦𝐹1−−−−−−−−−−−−−→ 𝑌 being actually aware
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only of their own computation and the proof of correctness

𝜋𝑘−1 from 𝑃𝑘−1. Verifiable computation frameworks such

as Halo Infinite [21] or Fractal [27] instruct that the proof

𝜋𝑘 asserts the correctness of 𝐹𝑘 and that the code 𝐶𝑘 that

verifies 𝜋𝑘−1 outputs a success. If the inner commitment

scheme is Merkle-tree-based (such as FRI [12]), then 𝜋𝑘−1
consists of several Merkle tree openings, so that 𝐶𝑘 makes

a number of calls to the hash function that comprises the

tree. Here we minimize both native computation time and

the prover time.

Both use cases require a cryptographically secure hash function,

i.e., it should resist preimage and collision attacks.

Summary of requirements. We summarize the requirements stem-

ming from the use cases as follows.

• Minimal prover time. For many ZK proof systems it is a

(super)linear function of the gate count, where each gate is

usually a basic field arithmetic operation or, in some systems,

a table lookup [13, 34, 35, 47, 62]. Though the actual perfor-

mance depends significantly on the proof system chosen

and an application, the mere number of standard gates is a

good approximation. It is known that custom gates (lookup

high-degree polynomials) may increase the performance up

to the factor of 10, but those are function-specific and can’t

be reasonably compared across distinct proof systems. In

Table 1 we provide a count in R1CS constraints (roughly,

the number of field multiplications), in standard Plookup

gates (each gate contains either a single multiplication and

an arity-4 addition, or a table lookup), and in area-degree

product (each custom gate contributes to the cost additively

with the product of input size and the degree of the poly-

nomial that describes the gate constraint). Unfortunately,

we can’t provide a sound prover time benchmark since at

the moment of submission no production-ready proof sys-

tem that supports lookups is available though specifications

exist [63].

• Native performance. A hash function is supposed to run

as fast as possible on typical hardware where proofs are

created, which are regular laptops and desktops nowadays.

The Fractal use case [27] implies that it should be at least

10x faster than Poseidon.

• Security. The common approach [6, 41] is to provide evidence

that the existing attacks fail. However, as algebraic attacks [4,

40] are the most natural for finite-field-based designs, it

becomes increasingly difficult to estimate the security as the

performance of those attacks is highly volatile [11, 64]. It is

thus desirable to base the security of a new hash function

on a more traditional [60] rather than algebraic security

analysis.

State of the art. There already exist several hash functions crafted
for the first use-case with the number of circuit gates (or equiva-

lently low-degree polynomial constraints) being the primary metric.

Examples include prime-field (Feistel) MiMC versions [5, 6], Friday

[8], Poseidon [41], Rescue [7] (and its updated version Rescue-

Prime [7]), Griffin [39], Grendel [65], and Neptune [43]. Many of

these hash functions share some common features, as the fact that

the non-linear layer is instantiated via a simple power map. Focus-

ing on Poseidon, it is based on the Hades design strategy [42],

which makes use of an uneven distribution of the S-boxes, namely,

full S-box layers in the external rounds and partial S-box layers

in the middle ones, in order to minimize the multiplicative com-

plexity. The external rounds provide security against statistical

attacks, while the internal rounds have the goal of increasing the

degree of the permutation. A rather recent addition to this set is Sin-

semilla [3, Sec. 5.4.1.9], an instance of the Pedersen hash function[3,

Sec. 5.4.1.7] optimized for table lookups in custom gates.

While most of them have withstood public scrutiny [4, 11, 16, 33,

46, 51], the plain performance is not satisfactory (see last column

of Table 1), since each round of such schemes requires a finite

field multiplication, which is relatively expensive (hundreds of

CPU cycles) compared to bit operations utilized in traditional hash

functions.

Our design: Reinforced Concrete. We present a new sponge hash

function Reinforced Concrete, in short RC, over F𝑝 exploiting

all the advantages of lookup-equipped proof systems and suitable

for both membership proofs and verifiable computation use cases.

The permutation that instantiates RC is composed of two types of

components:

(1) outer ones for preventing statistical attacks;

(2) an inner one for preventing algebraic attacks.

The inner part strengthens the whole construction like steel bars

strengthen concrete, hence the name of the function and its com-

ponents.

For the inner component, instead of using simple power maps

as in Poseidon and Rescue, we use a single building block with

a complex algebraic structure, which we call Bars. A Bars layer

can be seen as a non-linear layer composed of independent high-

degree and dense S-boxes. The Bars function combines a layer of

S-boxes (such as in AES) with a field element decomposition in

just a handful of small operations (or table gates in the circuit),

and it admits a very simple representation when using look-up

tables, as e.g. in the case of AES [32] and AES-like ciphers. As a

result, the security argument we propose for preventing algebraic

attacks including interpolation [50] and Grobner basis attacks [30]

resembles the one well known and accepted in the literature for

AES and more generally AES-like ciphers, for which the algebraic

attacks can attack only a tiny fraction of the rounds compared to

the statistical attacks [28, 29].

Even if it prevents algebraic attacks, it can be broken by more

traditional statistical attacks such as rebound attacks [55, 60]. As

those are much better studied, we instantiated the external rounds

with other layers which are known to protect against statistical

attacks, including affine layers called Concrete that provides full
diffusion and low-degree non-linear layer called Bricks, which
both provides (non-linear) diffusion and ensure security against

statistical attacks.

Our approach to performance. We tackle the performance issue

by making the Bars layer fast in the native computation. For this

we managed to avoid field multiplications altogether in this layer

and do only a bunch modular reductions by small moduli instead,

followed by compact S-boxes. The performance of our design varies
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for different fieldswe operate on, but is in the range of 2-9x overhead

over the popular SHA-256.

Our approach to compactness. We tackle the prover time issue

by providing an efficient lookup-based implementation of highly-

nonlinear Bars, which is therefore one of main contributions of
this submission. Concretely, it is the first primitive that is highly

nonlinear, compact, and fast at the same time. For S-boxes of size

2
9.5

, we make only 126 lookups to process 510 bits of data, which

is not far from the optimal 510/9.5 ≈ 53.

Comparison to other designs. When compared to the hash func-

tions tailored to the same use cases, we are on par in the gate metric

and are much faster in the native performance.

The performance can be improved in certain fields, and we show

how to craft a prime to increase performance further. Even over

generic prime fields (such as the scalar fields of the BLS12-381

or BN254 elliptic curves) RC is faster by a factor of 5 compared

to Poseidon and by a factor of 140 compared to Rescue and 120

compared to Rescue-Prime. Using specially crafted fields increases

these factors to 16, 357, and 289 respectively. RC is, thereby, only

by a factor of 5 slower than Blake2, the fastest traditional hash

algorithm we benchmarked, but requires 7 times less gates when

encoded into a circuit.

Compared to Pedersen hash/Sinsemilla we provide pre-image

resistance in addition to collision resistance. Also we rely on the

public scrutiny rather than on (pre-quantum) hardness assump-

tions.

From the design perspective, one can view the collision resistant

but slower Sinsemilla as an alternative to the Bars layer, as both
are not preimage resistant in isolation. Whether it is possible to

take the best from both designs, remains the subject of future work.

Regarding security analysis, the new design offers reasonably

big security margin against statistical attacks, but at the same time

much bigger margin against algebraic attacks. Since the latter are

less explored, we conclude that RC is more robust against possi-

ble breakthroughs in algebraic analysis. On the other hand, the

most recent algebraic cryptanalysis of weakened Poseidon and

Rescue-Prime [11] has proven to be memory-intensive and thus

less practical than can be expected.

Supported proof systems. Whereas some ZK proof systems ex-

plicitly work with arithmetic gates (i.e. field additions and multipli-

cations) only [47, 62], a number of protocols also support lookup ta-

bles. Those includeArya [22], Plookup [34, 63], Halo2 [3], Cairo [37].

As lookup gates also speed up traditional hash functions like SHA-2,

we expect such protocols to become widespread in the near future.

Restrictions and Future Work. Whereas RC clearly brings high

native and ZK performance, it also has its own restrictions. First

of all, a proof system should support lookup gates, as otherwise

the RC circuit would be quite big (we estimate it to be around 5000

constraints). Secondly the Bars component is specific for each field,

which implies a bit of work when carrying it to a proof system with

a new curve. Devising a more generic Bars is the subject of the

future work. Another interesting direction is non-sponge instances

of RC.

𝐼𝑉

𝑚1 ∈ F2𝑝

|
2

|
1

P

𝑚2 ∈ F2𝑝

P

𝑚3 ∈ F2𝑝

· · ·

· · ·

P

ℎ0 ∈ F2𝑝

P

ℎ1 ∈ F2𝑝

Figure 1: A sponge hash function with a fixed-size output. In
our case 𝐼𝑉 is a 3-tuple of zero F𝑝 elements,𝑚𝑖 are message
chunks to be hashed (2 F𝑝 elements each), ⊕ is the element-
wise addition in the field, ℎ𝑖 are hash outputs.

Summary of the paper. We describe RC on a high level in Section 2.
Then we give formal security definitions and claims regarding the

security of RC in Section 3. A more detailed rationale and specifica-

tion follows in Section 4. We proceed with a summary of our own

cryptanalysis in Section 5 (which is detailed in Appendix). Then we

present a constraint system (needed to build a circuit for ZK proofs)

for RC and prove its correctness and soundness (Section 6). We

conclude the main body of the paper with the benchmarks. Details

of RC instances for different fields and details of cryptanalysis are

presented in Appendix.

2 RC IN A NUTSHELL
The RC hash function operates in the sponge framework (Fig. 1).

The sponge converts a fixed length bijective function (called RC
permutation) to a variable-length hash function, which is collision-

and preimage-resistant as long as the underlying permutation does

not exhibit any ‘non-random‘ properties up to the bound defined

by the security level 2
𝜆
(in our case 𝜆 is universally set to 128).

The RC permutation illustrated in Fig. 2, can be considered as a

modified 7-round SP network, where input, output and intermediate

state elements are from F3𝑝 for a prime number 𝑝 . More formally,

RC := Concrete(8) ◦ Bricks ◦ Concrete(7)

◦ Bricks ◦ Concrete(6) ◦ Bricks

◦ Concrete(5) ◦ Bars ◦ Concrete(4)

◦ Bricks ◦ Concrete(3) ◦ Bricks

◦ Concrete(2) ◦ Bricks ◦ Concrete(1)

In the following, we refer to Concrete ◦ Bricks as "round".
We define RC for different 𝑝 , with two (-BN and -BLS) being

scalar fields of the curves BN254 [69] and BLS12-381
1
and another

one (-ST) crafted for a specially chosen field in order to deliver

the highest performance. We elaborate how to craft an instance in

Section 4.

We reserve 1 field element for the capacity in sponge, thus aiming

for the 128-bit security against collision and preimage attacks for all

instances. A single call to RC thus suffices for a 2-to-1 compression

function.

Design. The RC design depicted in Figure 2 is a modification of a

traditional word-oriented SP-network (SPN) for constructing (keyed

1
https://electriccoin.co/blog/new-snark-curve/

https://electriccoin.co/blog/new-snark-curve/
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Performance

Zero knowledge Native

R1CS Plookup Area-degree

eq-s reg. gates product (𝜇s)

Poseidon 243 633 9495 19

Rescue 288 480 7200 480

Rescue-Prime 252 420 6300 415

Feistel-MiMC 1326 1326 19890 38

Griffin 96 186 2790 115

Neptune 228 1137 17055 20

SHA-256 27534 3000 60000 0.32

Blake2s 21006 2000 40000 0.21

Pedersen hash 869 13035 54

Sinsemilla 510 1530 137

Reinforced Concrete-BN/BLS - 378 5670 3.4
Reinforced Concrete-ST - 360 5400 1.09

Table 1: Performance of various hash functions in the zero knowledge (preimage proof) and native (hashing 512 bits of data)
settings. All native benchmarks are ours (Section 8.2). Poseidon, Rescue, Rescue-Prime, Feistel-MIMC, Neptune, and Griffin
gate counts are ours (Section 8.1.2). SHA-256 and Blake2s R1CS gate counts are from Hopwood’s notes [49], and their Plookup
costs as well as the area-degree product is taken from the report by Williamson [68]. Pedersen hash gate count is taken from
the Zcash protocol [3], and the area-degree product is calculated using the same factor of 15 as for Poseidon. The Sinsemilla
regular gate count by us is Section 8.1.2, whereas the area-degree optimized version is from [24].

or keyless) cryptographic permutations. The RC design differs from

a traditional SPN in two aspects:

• the middle layer of the SP network is replaced by a special

component called Bars. This special component effectively

reinforces the permutation against cryptanalytic approaches

that would cover many more rounds without Bars. It does
not admit a low-degree polynomial description but can be

implemented as a circuit with reasonable costs in ZK.

• instead of applying independent non-linear transformations

on single words, RC uses (low-degree) non-linear layers,

called Bricks, that additionally mix different words. Bricks
used the same construction as Horst [39]. It provides resis-
tance against statistical cryptanalysis and is cheap in the

zero knowledge, i.e. via gate counting.

The third component, Concrete, is an analog of the traditional

affine layer but over F. It ensures diffusion to make statistical or

algebraic properties expand to the entire state, and is also cheap in

ZK.

Layout. The Bricks and Concrete layers interleave exactly as

in traditional SPN designs [32]. As RC is used in a sponge frame-

work, the Bricks components at either end would bring no secu-

rity against collision or preimage attacks, so we start and end with

Concrete. The middle call to Bricks is replaced with Bars. The
rationale behind putting all Bar into a single layer is that start-from-

the-middle attacks are somewhat easier to find and thus we plan to

detect them all in the design phase.

3 SECURITY REQUIREMENTS AND CLAIMS
Our high-level security claims, which determine the parameter

selection for RC, are the following.

• For the sponge hash function with RC, we aim for a collision

and preimage resistance up to 2
128

field operations for 256-

bit fields. We want to be able to instantiate a random oracle

in protocols up to 2
128

calls.

• For the authenticated encryption scheme using RC, we aim
for confidentiality and integrity up to 2

128
encrypted mes-

sages for 256-bit fields.

• When using the RC in other future schemes, we aim for a 1-

element CICO security [48] up to 2
128

field operations. More

concretely, it should be infeasible to find such 𝑥1, 𝑥2, 𝑦1, 𝑦2
such that

RC(0, 𝑥1, 𝑥2) = (0, 𝑦1, 𝑦2)

4 SPECIFICATION AND RATIONALE
The story behind the design of RC, which has determined its inner

components is as follows:

• We wanted to design a hash function which has a high de-

gree as a polynomial and would not allow a treatment with

algebraic methods such as Grobner basis.

• We were aware how table lookups can be used to implement

hash functions that are highly non-linear and resistant to

algebraic attacks – such as Blake2 and SHA-256. We seek

to have similar functionality but applied to finite field ele-

ments rather than 32/64/128/256-bit words. For this we had

to design an efficient way to decompose a field element into

smaller chunks, apply some nonlinear transformation, and

then wrap it back (composition). This was to become Bars.
• It turned out that in order to avoid overflows at composition,

the nonlinear transformation within Bars should have a

certain number of fixed points, and there must not be many

of them for security. This yielded an heuristic method for

finding a decomposition.
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Figure 2: The RC permutation. The middle Br-C-B-C-Br part
is secure against algebraic attacks whereas C-Br-C-Br-C-Br-
C-Br-C-Br-C is secure against rebounds (more generally, sta-
tistical) attacks.

• In order to protect against non-algebraic attacks, we had to

wrap Bars with additional confusion and diffusion layers.

The number of those was derived from traditional attacks

on SPN-based designs such as rebound [60].

4.1 The Bricks function
The function Bricks : F3𝑝 → F3𝑝 is a non-linear permutation of

degree 𝑑 = 5 (with the requirement gcd(𝑝 − 1, 𝑑) = 1). Following

[39], we define Bricks as

Bricks(𝑥1, 𝑥2, 𝑥3)

= (𝑥𝑑
1
, 𝑥2 (𝑥21 + 𝛼1𝑥1 + 𝛽1), 𝑥3 (𝑥22 + 𝛼2𝑥2 + 𝛽2)),

where 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ F𝑝 such that 𝛼2
𝑖
− 4𝛽𝑖 is not a quadratic

residue modulo 𝑝 . We refer to [39, Section 3] for a proof regarding

its invertibility, which relies on the fact that 𝑧2 + 𝛼𝑧 + 𝛽 ≠ 0 for

each 𝑧 ∈ F𝑝 .

4.2 The Concrete function
The function Concrete( 𝑗 ) : F3𝑝 → F3𝑝 denotes the multiplication of

the state by a 3 × 3 MDS matrix𝑀 = circ(2, 1, 1) with subsequent

addition of the 𝑗-th round constant vector 𝑐 ( 𝑗 ) ∈ F3𝑝 , that is

Concrete( 𝑗 ) (𝑥) := ©­«
2 1 1

1 2 1

1 1 2

ª®¬ × ©­«
𝑥1
𝑥2
𝑥3

ª®¬ + 𝑐 ( 𝑗 ) .
Note that 𝑀 is invertible and MDS for each 𝑝 ≥ 3. The elements

𝑐
( 𝑗 )
1

, 𝑐
( 𝑗 )
2

, 𝑐
( 𝑗 )
3

are certain pseudo-random constants, generated us-

ing e.g. Shake-128 with rejection sampling.

4.3 The Bars Function
The function Bars : F3𝑝 → F3𝑝 is defined as

Bars(𝑥1, 𝑥2, 𝑥3) = (Bar(𝑥1), Bar(𝑥2), Bar(𝑥3)) .

The function Bar : F𝑝 → F𝑝 is designed to be a permutation of

F𝑝 coming from 𝑛 smaller permutations acting independently on 𝑛

smaller domains Z𝑠1 , . . . ,Z𝑠𝑛 , where 𝑠1, . . . , 𝑠𝑛 are defined for each

prime 𝑝 separately, see Section 7. The independence requirement is

crucial for the performance of Bar. For this we decompose a field

element 𝑥 ∈ F𝑝 into 𝑛 smaller digits 𝑥1, . . . , 𝑥𝑛 with 𝑥𝑖 ∈ Z𝑠𝑖 with
the function Comp, and then compose it back with Decomp. Overall,
Bar : F𝑝 → F𝑝 is defined as

Bar = Comp ◦ SBox ◦ Decomp. (1)

In the following, we define all these components. The invertibility

of Bar is proved in Appendix A.2.

4.3.1 Decomposition and Composition. We choose the standard

representation F𝑝 = {0, 1, . . . , 𝑝 − 1} for F𝑝 , thus identifying an

element 𝑥 ∈ F𝑝 with an integer 0 ≤ 𝑥 ≤ 𝑝 − 1. Our decomposition

Decomp : F𝑝 → Z𝑠1 × . . . × Z𝑠𝑛 expands 𝑥 ∈ F𝑝 as

𝑥 = 𝑥1 · 𝑠2𝑠3 · · · 𝑠𝑛 + 𝑥2 · 𝑠3𝑠4 · · · 𝑠𝑛 + · · ·

+ 𝑥𝑛−1 · 𝑠𝑛 + 𝑥𝑛 =

𝑛∑︁
𝑖=1

𝑥𝑖

∏
𝑗>𝑖

𝑠 𝑗 .

with 0 ≤ 𝑥𝑖 < 𝑠𝑖 and where the 𝑠𝑖 are chosen such that

∏𝑛
𝑖=1 𝑠𝑖 > 𝑝 .

The digits 𝑥𝑖 ∈ Z𝑠𝑖 are determined similarly to ordinary base-𝑏

expansion:

𝑥𝑛 := 𝑥 mod 𝑠𝑛,

𝑥𝑖 :=
𝑥 − ∑

𝑗>𝑖 𝑥 𝑗
∏

𝑘> 𝑗 𝑠𝑘∏
𝑗>𝑖 𝑠 𝑗

mod 𝑠𝑖 .
(2)

It follows directly from the definition in Eq. (2) that the digits 𝑥𝑖
are unique. Because of the strong analogy with ordinary base-𝑏

expansion and for ease of notation in the following part, we define

for 1 ≤ 𝑖 ≤ 𝑛 the elements

𝑏𝑖 :=
∏
𝑗>𝑖

𝑠 𝑗 = 𝑠𝑖+1𝑠𝑖+2 . . . 𝑠𝑛,

where 𝑏𝑛 is defined by the empty product and thus 𝑏𝑛 := 1. The

inverse process, the composition Comp : Z𝑠1 × · · · × Z𝑠𝑛 → F𝑝 is

computed as

Comp(𝑦1, . . . , 𝑦𝑛) :=
𝑛∑︁
𝑖=1

𝑦𝑖𝑏𝑖 mod 𝑝. (3)
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4.3.2 SBox. Let (𝑣1, 𝑣2, . . . , 𝑣𝑛) = Decomp(𝑝 − 1) and let 𝑝′ ≤
min1≤𝑖≤𝑛 𝑣𝑖 . Then 𝑥𝑖 is converted as follows:

𝑦𝑖 := 𝑆 (𝑥𝑖 ) =
{
𝑓 (𝑥𝑖 ) if 𝑥𝑖 < 𝑝′,

𝑥𝑖 if 𝑥𝑖 ≥ 𝑝′,
(4)

where 𝑓 denotes a permutation of Z𝑝′ . In Lemma 3 we prove that

Bar is indeed a permutation of F𝑝 . The value 𝑝
′
is selected for each

𝑝 separately.

The 𝑓 function is derived from theMiMC cipher (which implicitly

requires 𝑝′ being prime). Reference values of 𝑝′ for various 𝑝 and

tables for 𝑓 are given in full in the Appendix.

4.4 Sponge framework parameters
We suggest the bijective transformation RC being used in the sponge
framework [14] similarly to Poseidon [41] and Rescue [7]. The

parameters are as follows:

• Rate is two F𝑝 elements, capacity is one F𝑝 element.

• Claimed preimage and collision security level of 128 bits.

• The padding rule is simply to add the 0 element to any input

of odd length. The very first capacity value is initialized by

the length-depending constant, e.g. just length 𝑙 . This does

not violate the sponge security proof as long as only short

lengths (say up to 2
32
) are allowed.

5 SECURITY ANALYSIS
In this section we summarize our own analysis of RC security and

connect it with the requirements outlined in Section 3.

For the latter, we customarily reduce the security of RC hash to

its resistance against known cryptanalytic attacks. In particular, we

focus on the following two classes of attacks, respectively statistical

and algebraic attacks. As already mentioned in the introduction,

we make use of the Hades/Poseidon design strategy in order to

provide security:

• Statistical attacks (including differential, linear, rebound,

truncated, impossible,MiTM, boomerang) cannot bemounted

on RC even with the middle component Bricks-Concrete-
Bars-Concrete-Bricks replaced with a single Bricks layer
up 2

128
field operations.

• The middle component Bricks-Concrete-Bars-Concrete-
Bricks resists invariant subspace and algebraic (e.g., Gröb-

ner basis) attacks up to 2
128

field operations. Due to the high

degree and because we are working over prime fields, we

also expect ample resistance against higher-order differential

attacks (e.g., zero-sum distinguishers or cube attacks).

We give a detailed overview of statistical attack approaches in

Appendix B.1, and we focus on algebraic attacks in Appendix B.4.

The short summary is the following:

• Differential and linear attacks do not work as long as the

Bricks layer is involved.
• We cannot mount rebound attacks for 5 or more rounds thus

having at least 2 rounds of security margin.

• No invariant subspace attacks have been found.

• Groebner basis cryptanalysis fails at greatly weakened ver-

sions (10-bit fields) already.

0 1 2

Figure 3: Finite-state automaton A representing all valid
sequences 𝑐1, 𝑐2, . . . , 𝑐𝑛 .

6 LOOKUP TABLES AND SYSTEM OF
CONSTRAINTS FOR BAR

In this section we create tables and a set of constraints such that for

𝑥,𝑦 ∈ F𝑝 it holds 𝑦 = Bar(𝑥) if and only if this set of constraints is

satisfied. We face two challenges:

(1) The S-box 𝑆𝑖 acts on a domain of size 𝑠𝑖 , which makes each

S-box potentially unique. If we specify the behavior of each

S-box separately, the table would have

∑
𝑖 𝑠𝑖 entries, which

renders it inefficient.

(2) Since

∏
𝑖 𝑠𝑖 > 𝑝 , there exist distinct elements (𝑥1, . . . , 𝑥𝑛) ≠

(𝑥 ′
1
, . . . , 𝑥 ′𝑛) in Z𝑠1 × . . . Z𝑠𝑛 that produce the same 𝑥 ∈ F𝑝 ,

i.e., for which it holds

𝑥 = Comp(𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁
𝑖=1

𝑥𝑖𝑏𝑖 mod 𝑝 =

=

𝑛∑︁
𝑖=1

𝑥 ′𝑖𝑏𝑖 mod 𝑝 = Comp(𝑥 ′
1
, . . . , 𝑥 ′𝑛).

We have to ensure that our table and set of constraints pre-

vents this collision from happening.

We address these challenges with two additional sets of variables

(𝑧1, . . . , 𝑧𝑛) and (𝑐1, . . . , 𝑐𝑛), respectively. The variable 𝑧𝑖 encodes if
𝑥𝑖 < 𝑝′ (𝑆𝑖 is non-linear function) or 𝑥𝑖 ≥ 𝑝′ (𝑆𝑖 is identity function)
and is defined as

𝑧𝑖 :=

{
0, if 𝑥𝑖 < 𝑝′;

1, if 𝑥𝑖 ≥ 𝑝′ .
(5)

The purpose of variables (𝑐1, . . . , 𝑐𝑛) is to indicate if a tuple (𝑥1, . . . , 𝑥𝑛) ∈
Z𝑠1 × . . .×Z𝑠𝑛 has the property

∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 ≥ 𝑝 , or not. If

∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 ≥

𝑝 , the tuple (𝑥1, . . . , 𝑥𝑛) “overflows” 𝑝 and thus it is a potential can-

didate for a collision since by definition composition is unique for

all (𝑥1, . . . , 𝑥𝑛) with
∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 < 𝑝 . With our set of constraints we

need to exclude all those tuples “overflowing” 𝑝 . For (𝑣1, . . . , 𝑣𝑛) =
Decomp(𝑝 − 1), we therefore define

𝑐𝑖 :=


0, if 𝑥 𝑗 = 𝑣 𝑗 for all 1 ≤ 𝑗 ≤ 𝑖;

1, if 𝑥𝑖 < 𝑣𝑖 ;

2, if 𝑥𝑖 ≥ 𝑣𝑖 and 𝑥 𝑗 ≠ 𝑣 𝑗 for some 1 ≤ 𝑗 ≤ 𝑖;

(6)

By definition of 𝑐𝑖 , only sequences 𝑐1, 𝑐2, . . . , 𝑐𝑛 of length 𝑛 out-

put by the finite-state automaton A in Fig. 3 are allowed; they

characterize all tuples (𝑥1, . . . , 𝑥𝑛) ∈ N𝑛 with

∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 < 𝑝 .

We create the following 4-ary tables for our set of constraints:

• Table 𝑇2 contains all binary sequences of length 4 (Fig. 4)

thus providing a means to encode all possible sequences

(𝑧1, . . . , 𝑧𝑛) by concatenating as many 4-ary sequences as

needed;
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𝑇2 =



0 0 0 0

0 0 0 1

0 0 1 0

· · ·
1 1 1 0

1 1 1 1


,

Figure 4: Lookup Table 𝑇2.

𝑇1 =



0 0 𝑓 (0) 1

1 0 𝑓 (1) 1

· · ·
𝑝′ − 1 0 𝑓 (𝑝′ − 1) 1

𝑝′ 1 𝑝′ 1

𝑝′ + 1 1 𝑝′ + 1 1

· · ·
𝑣1 − 1 1 𝑣1 − 1 1

𝑣1 1 𝑣1 0

𝑝′ 2 𝑝′ 1

· · ·
𝑣2 − 1 2 𝑣2 − 1 1

𝑣2 2 𝑣2 0

𝑣2 2 𝑣2 2

𝑣2 + 1 2 𝑣2 + 1 2

· · ·
𝑠2 − 1 2 𝑠2 − 1 2

· · ·
𝑝′ 𝑛 𝑝′ 1

· · ·
𝑣𝑛 − 1 𝑛 𝑣𝑛 − 1 1

𝑣𝑛 𝑛 𝑣𝑛 0

𝑣𝑛 𝑛 𝑣𝑛 2

𝑣𝑛 + 1 𝑛 𝑣𝑛 + 1 2

· · ·
𝑠𝑛 − 1 𝑛 𝑠𝑛 − 1 2



, 𝑇3 =



0 0 0 0

0 0 0 1

0 0 1 1

0 0 1 2

0 1 1 1

0 1 1 2

0 1 2 1

0 1 2 2

1 1 1 1

1 1 1 2

1 1 2 1

1 1 2 2

1 2 1 1

1 2 1 2

1 2 2 1

1 2 2 2

2 1 1 1

2 1 1 2

2 1 2 1

2 1 2 2

2 2 1 1

2 2 1 2

2 2 2 1

2 2 2 2


Figure 5: Lookup Tables 𝑇1 and 𝑇3.

• Table 𝑇3 contains all outputs of length 4 of the finite-state

automaton A in Fig. 3. They are chained together with the

last element of one 4-ary sequencematching the first element

of the next 4-ary sequence to encode all possible outputs of

A of length 𝑛, see constraints (8),(9);

• Table 𝑇1 encodes the output of the S-Boxes 𝑆1, . . . , 𝑆𝑛 and

indicates whether for an input to S-Box 𝑆𝑖 the non-linear

function 𝑓 or the identity function is applied (Fig. 5).

We claim that 𝑦 = Bar(𝑥) holds if and only if for 𝑥,𝑦 ∈ F𝑝
and (𝑥1, . . . , 𝑥𝑛), (𝑦1, . . . , 𝑦𝑛) ∈ N𝑛 the following constraints are

satisfied:

∀𝑛 ≥ 𝑖 ≥ 1 : (𝑥𝑖 , 𝑖 · 𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 ) ∈ 𝑇1, (7)

∀⌈(𝑛 − 1)/3⌉ − 1 ≥ 𝑖 ≥ 1 :

(𝑐3𝑖−2, 𝑐3𝑖−1, 𝑐3𝑖 , 𝑐3𝑖+1) ∈ 𝑇3, (8)

(𝑐𝑛−3, 𝑐𝑛−2, 𝑐𝑛−1, 𝑐𝑛) ∈ 𝑇3, (9)

∀⌈𝑛/4⌉ − 1 ≥ 𝑖 ≥ 1 :

(𝑧4𝑖−3, 𝑧4𝑖−2, 𝑧4𝑖−1, 𝑧4𝑖 ) ∈ 𝑇2, (10)

(𝑧𝑛−3, 𝑧𝑛−2, 𝑧𝑛−1, 𝑧𝑛) ∈ 𝑇2, (11)

𝑥 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑏𝑖 mod 𝑝, (12)

𝑦 =

𝑛∑︁
𝑖=1

𝑦𝑖𝑏𝑖 mod 𝑝. (13)

In particular, we claim for 𝑥 ∈ F𝑝 there doesn’t exist any collision

in Z𝑠1 × . . . Z𝑠𝑛 . I.e., there is exactly one element (𝑥1, . . . , 𝑥𝑛) in
Z𝑠1 × . . . Z𝑠𝑛 with Comp(𝑥1, . . . , 𝑥𝑛) = 𝑥 . We prove these assertions

in Lemma 1 and Lemma 2. As a result, the total number of lookup

constraints is

𝑛 + ⌈(𝑛 − 1)/3⌉ + ⌈𝑛/4⌉ ≈ 𝑛 + 𝑛/3 + 𝑛/4 ≈ 1.59𝑛

table lookups with tables of total size 𝑝′ +∑
𝑖 (𝑠𝑖 − 𝑝′ + 1) + 16 + 23.

6.1 Soundness and Completeness
Lemma 1. The set of constraints (7) – (13) is complete, i.e., for any

𝑥,𝑦 ∈ F𝑝 with 𝑦 = Bar(𝑥) it is possible to construct {𝑥𝑖 , 𝑦𝑖 , 𝑐𝑖 , 𝑧𝑖 :

1 ≤ 𝑖 ≤ 𝑛} that satisfy them.

Proof. We work with the standard representation of F𝑝 , that is,
F𝑝 = {0, 1, . . . , 𝑝 − 1}. Suppose for 𝑥,𝑦 ∈ F𝑝 it holds 𝑦 = Bar(𝑥).
Our proof works as follows:

1. We construct 𝑥𝑖 , 𝑦𝑖 and show that constraints (12) and (13)

are satisfied;

2. we define 𝑧𝑖 that satisfy constraints (10) and (11) regarding

Table 𝑇2;

3. we define 𝑐𝑖 that satisfy constraints (8) and (9) regarding

Table 𝑇3;

4. we show that (𝑥𝑖 , 𝑖 · 𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 ) satisfy the constraints (7) re-

garding Table 𝑇1.

1st Step.We define (𝑥1, . . . , 𝑥𝑛) := Decomp(𝑥) and (𝑦1, . . . , 𝑦𝑛) :=
SBox(𝑥1, . . . , 𝑥𝑛) = (SBox ◦ Decomp) (𝑥); then constraint (12) holds

by definition of Decomp and constraint (13) by definition of Bar, i.e.,

𝑦 = (Comp ◦ SBox ◦ Decomp) (𝑥)
= Comp (SBox ◦ Decomp(𝑥))

= Comp(𝑦1, . . . , 𝑦𝑛) =
𝑛∑︁
𝑖=1

𝑦𝑖𝑏𝑖 mod 𝑝.

2nd Step. Let 𝑝′ be according to the definition of the Bar function,
i.e., 𝑝′ is the largest prime smaller than or equal to 𝑣 = min1≤𝑖≤𝑛 𝑣𝑖 ,
where (𝑣1, . . . , 𝑣𝑛) = Decomp(𝑝 − 1). For 1 ≤ 𝑖 ≤ 𝑛 we define

𝑧𝑖 :=

{
0, if 𝑥𝑖 < 𝑝′;

1, if 𝑥𝑖 ≥ 𝑝′;



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Lorenzo Grassi et al.

that indicate if 𝑥𝑖 < 𝑝′ or 𝑥𝑖 ≥ 𝑝′. The sequence (𝑧1, . . . , 𝑧𝑛) is a
binary sequence of length 𝑛, where all 2𝑛 combinations are possible:

every digit 𝑥𝑖 can be strictly smaller or greater than 𝑝′. Since𝑇2 con-
tains all binary sequences of length 4, we have that the constraints

(10) and (11) regarding 𝑇2 are satisfied .

3rd Step. If 𝑥 = 𝑝 − 1, or equivalently, if 𝑥𝑖 = 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑛,

we define 𝑐𝑖 := 0, for all 1 ≤ 𝑖 ≤ 𝑛. Thus (𝑐1, . . . , 𝑐𝑛) = (0, . . . , 0) and
the corresponding constraints (8) and (9) in Table 𝑇3 are satisfied.

If 𝑥 < 𝑝 − 1, there exists at least one index 1 ≤ 𝑖 ≤ 𝑛 with 𝑥𝑖 < 𝑣𝑖 .

Let 𝑗 be the minimal index with that property. We set

𝑐𝑖 :=


0, if 𝑖 < 𝑗 ;

1, if 𝑖 ≥ 𝑗 and 𝑥𝑖 < 𝑣𝑖 ;

2, if 𝑖 > 𝑗 and 𝑥𝑖 ≥ 𝑣𝑖 .

Note that the case 𝑖 = 𝑗 and 𝑥𝑖 ≥ 𝑣𝑖 cannot happen, since this would

on the one hand mean 𝑥 𝑗 ≥ 𝑣 𝑗 and on the other hand 𝑥 𝑗 < 𝑣 𝑗 (by

definition of 𝑗 ), a contradiction. Thus, the above three cases cover

all possible situations regarding 𝑖 . Next, we list all subsequences of

𝑐1, . . . , 𝑐𝑛 that are not possible:

(a) (2, . . .); since 𝑐1 = 2 this would mean 1 ≤ 𝑗 < 𝑖 = 1, a

contradiction.

(b) (. . . , 0, 2, . . .); this would imply 𝑖 < 𝑗 (𝑐𝑖 = 0) and 𝑖 + 1 > 𝑗

(𝑐𝑖+1 = 2), a contradiction.
(c) (. . . , 1, 0, . . .); a contradiction, since 𝑖 ≥ 𝑗 (𝑐𝑖 = 1) and 𝑖+1 < 𝑗

(𝑐𝑖+1 = 0).
(d) (. . . , 2, 0, . . .); a contradiction, since 𝑖 > 𝑗 (𝑐𝑖 = 2) and 𝑖+1 < 𝑗

(𝑐𝑖+1 = 0).

We explicitly note, all other subsequences are valid. In a next step,

we model a finite-state automaton B whose outputs of length 𝑛

characterize all possible sequences (𝑐1, . . . , 𝑐𝑛). Clearly, B has the

states 0, 1, 2 with only 0, 1 being accepting states: due to (a) no

sequence can start with 2. According to (b), (c) and (d), all possible

transitions are given by

{(0, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2)}.

But this means, that automaton B is identical to automaton A de-

picted in Fig. 3. Hencewe conclude, all possible sequences (𝑐1, . . . , 𝑐𝑛)
of elements as defined above are precisely the outputs of length 𝑛 of

the finite-state automatonA. If we divide the sequence (𝑐1, . . . , 𝑐𝑛)
into chunks of 4 elements such that the last element of one chunk

matches the first element of the next chunk, we see that constraints

(8) and (9) regarding 𝑇3 are satisfied.

4th Step. Constraints (7) regarding 𝑇1 are satisfied as well: by

definition of 𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 we have 0 ≤ 𝑥𝑖 ≤ 𝑠𝑖 − 1, 𝑧𝑖 ∈ {0, 1},
𝑦𝑖 = 𝑆𝑖 (𝑥𝑖 ) and 𝑐𝑖 ∈ {0, 1, 2}, respectively. This means, the domains

of 𝑥𝑖 , 𝑖 · 𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 agree with the general conditions in 𝑇1. Not all

combinations are allowed, however. The following arguments show

that indeed all possible 4-ary chunks (𝑥𝑖 , 𝑖 · 𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 ) satisfy the

constraints in 𝑇1. As in the 3rd Step, for 𝑥 = 𝑝 − 1 we define 𝑐𝑖 := 0

and thus have (𝑥𝑖 , 𝑖 ·𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 ) = (𝑣𝑖 , 𝑖, 𝑣𝑖 , 0) for 1 ≤ 𝑖 ≤ 𝑛. Hence, for

𝑥 = 𝑝 − 1 the corresponding constraints (7) in Table𝑇1 are satisfied.

Therefore let 𝑥 < 𝑝 − 1 and let again 𝑗 be the minimal index with

𝑥𝑖 < 𝑣𝑖 .

• For 0 ≤ 𝑥𝑖 < 𝑝′, we have 𝑧𝑖 = 0, 𝑖 ·𝑧𝑖 = 0, 𝑦𝑖 = 𝑆 (𝑥𝑖 ) = 𝑓 (𝑥𝑖 )
and 𝑐𝑖 = 1 (since 𝑥𝑖 < 𝑝′ ≤ 𝑣𝑖 ) by construction of 𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖

and 𝑐𝑖 , respectively. Thus the first 𝑝
′
constraints in 𝑇1 are

satisfied.

• For 𝑝′ ≤ 𝑥𝑖 = 𝑣𝑖 two cases can happen: if 𝑖 < 𝑗 , then 𝑐𝑖 = 0;

if 𝑖 > 𝑗 , then 𝑐𝑖 = 2. In both cases the corresponding 4-ary

chunk 𝑥𝑖 , 𝑖 · 𝑧𝑖 = 𝑖, 𝑦𝑖 = 𝑥𝑖 , 𝑐𝑖 ∈ {0, 2} is contained in 𝑇1. We

note, the case 𝑥𝑖 = 𝑣𝑖 and 𝑖 = 𝑗 cannot happen due to the

definition of 𝑗 .

• For 𝑝′ ≤ 𝑥𝑖 < 𝑣𝑖 , we have 𝑧𝑖 = 1, 𝑖 · 𝑧𝑖 = 𝑖 , 𝑦𝑖 = 𝑆 (𝑥𝑖 ) = 𝑥𝑖
and 𝑐𝑖 = 1 (since 𝑥𝑖 < 𝑣𝑖 ). Thus the corresponding 𝑣𝑖 − 𝑝′

constraints in 𝑇1 are satisfied.

• For 𝑣𝑖 +1 ≤ 𝑥𝑖 ≤ 𝑠𝑖 −1 it holds 𝑧𝑖 = 1, 𝑖 ·𝑧𝑖 = 𝑖 ,𝑦𝑖 = 𝑆 (𝑥) = 𝑥𝑖
and 𝑐𝑖 = 2, which shows that the corresponding 𝑠𝑖 − 𝑣𝑖 − 1

constraints in 𝑇1 are fulfilled.

Specifically, for 𝑖 = 1 there is no entry (𝑥1, 𝑖 ·𝑧1, 𝑦1, 2) in𝑇1, therefore
we have to argue that this case cannot happen; this is clear, however,

since we have already shown that automaton B, which represents

all valid sequences (𝑐1, . . . , 𝑐𝑛), guarantees 𝑐1 ∈ {0, 1}.

Lemma 2. The set of constraints (7)–(13) is sound, i.e., for any
𝑥,𝑦 ∈ F𝑝 and any {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑐𝑖 ∈ N : 1 ≤ 𝑖 ≤ 𝑛} that satisfy them
all it holds 𝑦 = Bar(𝑥).

Proof. We work with the standard representation of F𝑝 . For
R := Z𝑠1 × . . . × Z𝑠𝑛 let

R<𝑝 := {(𝑧1, . . . , 𝑧𝑛) ∈ R :

𝑛∑︁
𝑖=1

𝑧𝑖𝑏𝑖 < 𝑝}.

Our proof consists of the following parts:

(1) Show that (𝑥1, . . . , 𝑥𝑛) is a valid decomposition of 𝑥 , i.e.,

(𝑥1, . . . , 𝑥𝑛) = Decomp(𝑥).
(2) Show that for all 1 ≤ 𝑖 ≤ 𝑛 we have 𝑦𝑖 = 𝑆𝑖 (𝑥𝑖 ) according to

(4) and deduce (𝑦1, . . . , 𝑦𝑛) = (SBox ◦ Decomp) (𝑥).
(3) Use the above two facts and deduce 𝑦 = Bar(𝑥).
1st Step. Let (𝑥 ′

1
, . . . , 𝑥 ′𝑛) := Decomp(𝑥) and 𝑥 :=

∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 . Sup-

pose 𝑥 < 𝑝 , or in other words (𝑥1, . . . , 𝑥𝑛) ∈ R<𝑝 . Then by (12) we

have 𝑥 = 𝑥 mod 𝑝 =
∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 mod 𝑝 = 𝑥 < 𝑝, and thus

Decomp(𝑥) = Decomp

(
𝑛∑︁
𝑖=1

𝑥𝑖𝑏𝑖 mod 𝑝

)
= (Decomp ◦ Comp) (𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑛).

The last equality uses the fact, that Decomp and Comp are inverse

to each other on R<𝑝 and F𝑝 ; we proved this in more detail in

Lemma 3.

We show that the case 𝑥 ≥ 𝑝 leads to a contradiction. For this,

suppose 𝑥 ≥ 𝑝 . This implies that there exists 1 ≤ 𝑘 ≤ 𝑛 with

𝑥𝑖 = 𝑣𝑖 for all 1 ≤ 𝑖 < 𝑘 and 𝑥𝑘 > 𝑣𝑘 .

Note that 𝑘 > 1 as 𝑥1 ≤ 𝑣1 by Table 𝑇1 (constraint (7)). Also, by

constraint (7) it holds 𝑐𝑖 ∈ {0, 2} for all 1 ≤ 𝑖 < 𝑘 and in particular

𝑐1 = 0. Therefore, constraints (8) and (9) regarding Table 𝑇3 ensure

that actually all 𝑐𝑖 = 0 for 1 ≤ 𝑖 < 𝑘 since there is no sequence

with (. . . , 0, 2, . . .) in 𝑇3. Therefore, again by constraints (8) and (9),

we have that 𝑐𝑘 ∈ {0, 1}. By constraint (7) this is only possible if

𝑥𝑘 ≤ 𝑣𝑘 . A contradiction.

2nd Step. Let 1 ≤ 𝑖 ≤ 𝑛. We show 𝑦𝑖 = 𝑆 (𝑥𝑖 ). By constraints (10)

and (11) it holds 𝑧𝑖 ∈ {0, 1}. If 𝑧𝑖 = 0 then 𝑖 ·𝑧𝑖 = 0 and by constraint

(7) we have 𝑥𝑖 < 𝑝′ and 𝑦𝑖 = 𝑓 (𝑥𝑖 ). If 𝑧𝑖 = 1, we have 𝑖 · 𝑧𝑖 = 𝑖 > 1,
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and again by constraint (7) it holds 𝑥𝑖 ≥ 𝑝′ and 𝑦𝑖 = 𝑥𝑖 . Altogether

we get that 𝑦𝑖 = 𝑆𝑖 (𝑥𝑖 ) and thus

(𝑦1, . . . , 𝑦𝑛) = SBox(𝑥1, . . . , 𝑥𝑛)
Part1

= SBox(Decomp(𝑥)) = (SBox ◦ Decomp) (𝑥) .
(14)

3rd Step. For the last part we use the definition of Bar, Part 2,
the definition of Comp and constraint (13), which yields

Bar(𝑥) (1)

= (Comp ◦ SBox ◦ Decomp) (𝑥)
= Comp(SBox ◦ Decomp(𝑥))
Part 2

= Comp(𝑦1, . . . , 𝑦𝑛)

(3)

=

𝑛∑︁
𝑖=1

𝑦𝑖𝑏𝑖 mod 𝑝
(13)

= 𝑦.

7 CONCRETE INSTANCES
The values of 𝛼1, 𝛼2, 𝛽1, 𝛽2 are given by

• 𝑝 = 𝑝BLS381: (1,3,2,4).

• 𝑝 = 𝑝BN254: (1,3,2,4)

• 𝑝 = 𝑝𝑆𝑇 : (1,2,3,4).

For the Bar function we choose a decomposition into 𝑛 = 27

small S-boxes for 𝑝 being the order of BLS12-381 or BN254 curves.

BLS12-381. The prime 𝑝 is given by

𝑝BLS381 = 0x73eda753299d7d483339d80809a1d80

553bda402fffe5bfeffffffff00000001.

The bucket sizes

𝑠27, 𝑠26, . . . , 𝑠19,

𝑠18, 𝑠17, . . . , 𝑠10,

𝑠9, 𝑠8, . . . , 𝑠1,

for the Bar layer are given by

693, 696, 694, 668, 679, 695, 691, 693, 700,

688, 700, 694, 701, 694, 699, 701, 701, 701,

695, 698, 697, 703, 702, 691, 688, 703, 679.

If (𝑣1, . . . , 𝑣27) denotes the decomposition of 𝑝−1, the largest prime

𝑝′ smaller than or equal to 𝑣 = min1≤𝑖≤27 𝑣𝑖 is 𝑝′ = 659. The values

𝑠𝑖 were found by a variant of branch-and-bound process where we

recursively determine from 𝑠27 to 𝑠1 under the constraint that 𝑠𝑖 −𝑣𝑖
is not too large for any 𝑖 .

BN254. The prime 𝑝 is given by

𝑝BN254 = 0x30644e72e131a029b85045b68181585

d2833e84879b9709143e1f593f0000001.

The bucket sizes for the Bar layer are given by

651, 658, 656, 666, 663, 654, 668, 677, 681,

683, 669, 681, 680, 677, 675, 668, 675, 683,

681, 683, 683, 655, 680, 683, 667, 678, 673.

If (𝑣1, . . . , 𝑣27) denotes the decomposition of 𝑝 − 1, the largest

prime 𝑝′ smaller than or equal to 𝑣 = min1≤𝑖≤27 𝑣𝑖 is 𝑝′ = 641.

Decomposition was found in the same way.

Special prime. We have crafted a special prime for the proof

systems that are not elliptic curve based, so that the decomposition

and modular reduction are extremely fast. Concretely, we found

out that a 250-bit prime

𝑝𝑆𝑇 = 0x3𝑓 𝑎000 . . . 001

admits the following representation:

𝑝𝑆𝑇 = 2
250 − 3 · 2241 + 1 =

24∑︁
𝑖=0

(210 − 6)210𝑖 + 1,

i.e.,

𝑠2 = 𝑠3 = · · · = 𝑠24 = 1024, (15)

𝑠25 = 1023, 𝑣1 = 𝑣2 = · · · = 𝑣25 = 1018. (16)

For this decomposition we first selected 𝑠𝑖 to be almost all powers of

two, prepared constraints that (𝑝−1) is divisible by 230 for Discrete
Fourier Transform, and then tried a few values for 𝑣𝑖 until we find

a prime.

8 PERFORMANCE
In this section we consider performance of plain and zero knowl-

edge (circuit) implementations of RC. As the application, we con-
sider a single call to permutation RC, which corresponds to hashing

of two F elements, or computing one node of a Merkle tree.

8.1 Proof System Performance
8.1.1 Circuit metrics. So far many circuit implementations of hash

functions are tailored to the proof system implementation they will

be used, so it is extremely difficult to compare apples to apples by

just measuring prover time. This is more complicated for proof

systems that support lookups as only reference implementations

are available
2
.

Thuswe turned to differentmetrics. First one just count gates and

assumes that there are two types of gates: an arithmetic gate and a

lookup gate, with the former implementing a quadratic constraint

of form

𝑎1𝑥1𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 = 𝑎6

with 𝑥𝑖 being witness variables and 𝑎𝑖 being values of selector

polynomials. It can handle a 2-ary addition. A lookup gate has form

(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑇

where 𝑇 is the lookup table. These two gates are the ones defined

in the Plonk and Plookup papers [34, 35] and thus we call it regular
gates metric.

The second metric applies to custom gates, which implement

arbitrary polynomial lookup constraints, and attempts to estimate

the prover cost by assuming it is approximated as

𝐶𝑝𝑟𝑜𝑣𝑒𝑟 ∼ (number of gates) ×
(max degree of a gate constraint) × (gate arity)

We call it area-degree product. The maximum degree of a regular

gate constraint is 3, the arity is 5, so each gate contributes with cost

15.

8.1.2 Measuring hash functions.

2
E.g. Plonkup https://github.com/dusk-network/plonkup

https://github.com/dusk-network/plonkup
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RC.. The regular gates count for the BLS/BN primes.

• Bricks: 8 gates per round (7 for 𝑝𝑆𝑇 with 𝑑 = 3);

• Concrete: 2 gates per element, 6 per round.

• Bars: 94 gates per element, 282 per round

– decomposition: 26 gates

– composition: 26 gates

– table: 42 gates.

Total: 8 · 6 + 6 · 8 + 282 = 378 gates to process two F𝑝 elements of

data. The 𝑝𝑆𝑇 case uses only 25 𝑠𝑖 so the total number of gates is

360.

The area-degree product is thus 378 · 15 = 5670.

Poseidon. Poseidon-128 [41] with 2 inputs, which needs 633 gates
for the same setting: each full round needs 9 quadratic gates and 6

addition gates, whereas each partial round needs 3 quadratic and 6

addition gates. Total count is 15 · 8 + 57 · 9 = 633.

Rescue. Rescue with 2 inputs requires 16 full founds, which

together utilize 288 quadratic gates. In addition, each (out of 16)

round carries two matrix multiplications, i.e. 2 · 6 addition gates

per round. The total regular gate count is then 480. Rescue-Prime,

a new variant of Rescue, requires only 14 rounds and, thus, is 12%

cheaper.

Sinsemilla. Sinsemilla is parameterized by 𝑘 that determines

the lookup table length 2
𝑘
and the same number of EC generators

𝑃0, 𝑃1, . . . , 𝑃2𝑘−1. A hash of 𝑡𝑘-bit𝑀 = (𝑀1, 𝑀2, . . . , 𝑀𝑡 ), 𝑡 < 254 is

defined as

𝐻 (𝑀) = (𝑄 +
∑︁
𝑖≤𝑡

[2𝑡−𝑖 ]𝑃𝑀𝑖
)𝑥 ,

where 𝑄 is some EC point, + is EC addition, [𝑎] is the EC scalar

multiplication by 𝑎, ()𝑥 is the 𝑥-coordinate of the curve.

To make a regular gate measurement, we take their system [24]

of 5𝑡 quadratic equations and a single 𝑡-ary addition of message de-

composition. Measuring in regular gates, we obtain that Sinsemilla

needs 9𝑡 arithmetic gates, and 𝑡 lookup gates. For 𝑘 = 10 and 𝑡 = 51

we obtain 510-bit message input, for which the total gate count is

about 510 regular gates.

The authors also provide an optimized version with 51 custom

gates of degree 6 and arity 5. This yields the area-degree product

of 51 · 6 · 5 = 1530.

8.2 Plain Implementation Performance
We implemented RC in pure Rust using the ff_ce library

3
for field

operations. Further, we re-implemented Poseidon, Rescue, and

Griffin with a statesize of 3 words, Neptune using a statesize of 4

words, and Feistel-MiMC using ff_ce to compare them to RC in a fair
setting. We further compare RC to pure Rust implementations of

traditional hash algorithms
4
, and compare it to Sinsemilla using an

implementation found in the Zcash/Orchard repository on Github
5
,

and to a Pedersen Hash implementation from librustzcash
6
. We

benchmark input sizes of at least 512-bit (i.e., two field elements in

RC). We, thus, benchmark one permutation call for all symmetric

hash functions, except for Feistel-MiMC for which we require two.

3
https://docs.rs/ff_ce/0.13.1/ff_ce/

4
https://github.com/RustCrypto/hashes

5
https://github.com/zcash/orchard, uses lookup tables to speed up performance.

6
https://github.com/zcash/librustzcash

All benchmarks were obtained on a Linux Desktop PC with an Intel

i7-4790 CPU (3.6GHz) and 16GB RAM using stable Rust version

1.58 and the target-cpu=native flag. The resulting benchmarks

can be found in Table 2, code to reproduce them is publicly available

at [1].

Table 2: Plain performance comparison in nano-seconds (ns)
of different hash functions over prime fields with primes
𝑝BN254, 𝑝BLS381, 𝑝ST. Implemented in Rust.

Hashing algorithm BN BLS ST

𝑛𝑠 𝑛𝑠 𝑛𝑠 𝑛𝑠

RC - 3 419 3 538 1 087

Concrete Layer - 39.1 39.5 34.2

Bricks Layer - 172.4 188.0 101.67

Bars Layer - 2 063 2 062 204.9

Poseidon - 19 944 20.423 18 185

Rescue - 470 030 498 210 388 430

Rescue-Prime - 408 780 431 130 314 660

Feistel-MiMC - 37 980 39 883 31 894

Griffin - 113 670 120 450 90 455

Neptune - 20 265 20 453 18 825

Sinsemilla 137 600 - - -

Pedersen Hash 54 027 - - -

SHA-256 319.1 - - -

Blake2b 189.6 - - -

Blake2s 213.3 - - -

SHA3-256 419.2 - - -

As Table 2 shows, the plain performance of RC highly depends

on the choice of the prime field, more specifically, how elements can

be decomposed. The Bars-layer for 𝑝𝑆𝑇 can be evaluated by using

only one big-integer division
7
, whereas a generic decomposition,

i.e., for 𝑝𝐵𝑁 254 and 𝑝𝐵𝐿𝑆12, requires significantly more. The result

is a runtime difference by a factor of 3 for the total hashing time.

Compared to the previous state-of-the-art one can observe that RC is
significantly faster. More concretely, RC is faster than the previously
fastest hash function over finite fields (i.e., Poseidon) by a factor

of 5 for 𝑝𝐵𝑁 254 and 𝑝𝐵𝐿𝑆12, and by a factor 16 for the 𝑝𝑆𝑇 prime

field. The Sinsemilla hash algorithm, which also leverages lookup

tables for a faster plain evaluation, is thereby slower than RC by

a factor of up to 125, while the traditional Pedersen Hash is only

slower by a factor of 49. Compared to fast binary hash function, RC
is only slower by a factor of 5 than Blake2, the fastest benchmarked

hashing algorithm. Blake2 in turn however requires 7 times more

Plookup gates than RC.
To further highlight the requirement for fast plain performance

of ZK-friendly hash functions, we compare the runtime to accumu-

late a Merkle tree with 2
20

elements in Table 3. One can observer,

that using traditional hash function, accumulating the Merkle tree

already requires 3 𝑠 , the runtime is significantly worse when using

ZK-friendly hash functions, such as Poseidon and Rescue. RC with

7
We implemented divisions using precomputed reciprocals for all prime fields.

https://docs.rs/ff_ce/0.13.1/ff_ce/
https://github.com/RustCrypto/hashes
https://github.com/zcash/orchard
https://github.com/zcash/librustzcash
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Table 3: Performance comparison in seconds (s) of dif-
ferent hash functions over prime fields with primes
𝑝BN254, 𝑝BLS381, 𝑝ST for computing a Merkle tree with 2

20 ele-
ments. Implemented in Rust.

Hashing algorithm BN BLS ST

𝑠 𝑠 𝑠 𝑠

RC - 3.91 3.97 1.36

Poseidon - 22.6 23.8 22.3

Rescue - 497.2 520.6 396.8

Rescue-Prime - 436.3 458.4 324.3

Feistel-MiMC - 42.2 44.3 34.1

Griffin - 122.7 129.6 95.0

Neptune - 24.4 26.1 24.1

Sinsemilla 144.9 - - -

Pedersen Hash 60.1 - - -

SHA-256 0.624 - - -

Blake2b 0.225 - - -

Blake2s 0.222 - - -

SHA3-256 0.439 - - -

its fast plain performance, however, is only insignificantly slower

then traditional hash functions, making it the optimal choice for use

case which require fast plain performance, as well as fast ZK-proof

generation.
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A BIJECTIVITY OF RC COMPONENTS
A.1 Bijectivity of Bricks
Given 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ F𝑝 such that

𝛼2𝑖 − 4 · 𝛽𝑖 is a non-quadratic residue mod 𝑝,

for each 𝑖 ∈ {1, 2}, the generalized Bricks function is defined as

follows:

Bricks(𝑥1, 𝑥2, 𝑥3)

= (𝑥𝑑
1
, 𝑥2 (𝑥21 + 𝛼1𝑥1 + 𝛽1), 𝑥3 (𝑥22 + 𝛼2𝑥2 + 𝛽2)) .

This function is invertible. Indeed, given Bricks(𝑥1, 𝑥2, 𝑥3) = (𝑦1, 𝑦2, 𝑦3),
we have

𝑥1 = 𝑦
1/𝑑
1

, 𝑥2 =
𝑦2

(𝑥2
1
+ 𝛼1 · 𝑥1 + 𝛽1)

,

𝑥3 =
𝑦3

(𝑥2
2
+ 𝛼2 · 𝑥2 + 𝛽2)

,

where

(1) 𝑥 ↦→ 𝑥𝑑 is invertible due to the assumption on 𝑑 ,

(2) 𝑧2 + 𝛼𝑖 · 𝑧 + 𝛽𝑖 ≠ 0 for each 𝑧 ∈ F𝑝 due to the definition

of 𝛼𝑖 , 𝛽𝑖 . In particular, the only possible solutions of this

equation would be

𝑧± =

(
−𝛼𝑖 ±

√︃
𝛼2
𝑖
− 4 · 𝛽𝑖

)
/2,

which do not exist due to the fact that 𝛼2
𝑖
− 4 · 𝛽𝑖 is not a

square.

A.2 Bijectivity of Bar
Lemma 3. The function Bar permutes F𝑝 .

Proof. We work with the standard representations of F𝑝 and

Z𝑠1 , . . . ,Z𝑠𝑛 . For R := Z𝑠1 × . . . × Z𝑠𝑛 let

R<𝑝 := {(𝑧1, . . . , 𝑧𝑛) ∈ R :

𝑛∑︁
𝑖=1

𝑧𝑖𝑏𝑖 < 𝑝}.

The idea of the proof reads as follows: we show that

(1) Decomp is injective and Decomp(F𝑝 ) ⊆ R<𝑝 ;

(2) SBox(R<𝑝 ) ⊆ R<𝑝 and deduce that SBox permutes R<𝑝 ;

(3) Comp is injective on R<𝑝 .

With these statements, it follows at once that the function Bar :

F𝑝 → F𝑝 given by

Bar = Comp ◦ SBox ◦ Decomp
is injective and hence surjective as well. In particular, we see that

Decomp and Comp are indeed inverse functions over R<𝑝 and F𝑝 .
Ad (1), (3): the statement Decomp(F𝑝 ) ⊆ R<𝑝 is a direct conse-

quence of the definition of Decomp. For the injectivity of Decompwe

https://ia.cr/2022/403
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show that it has a left inverse function on R<𝑝 which is precisely

given by Comp restricted to R<𝑝 . Indeed, for 𝑥 ∈ F𝑝 it holds

(Comp ◦ Decomp) (𝑥) = Comp(𝑥1, . . . , 𝑥𝑛)

=

𝑛∑︁
𝑖=1

𝑥𝑖𝑏𝑖 mod 𝑝 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑏𝑖 = 𝑥 .

The second equality is just the definition of Comp, the third equality
uses the fact that Decomp(F𝑝 ) ⊆ R<𝑝 , and the fourth equality is true

by definition of Decomp. Similarly, we obtain for (𝑧1, . . . , 𝑧𝑛) ∈ R<𝑝

(Decomp ◦ Comp) (𝑧1, . . . , 𝑧𝑛)

= Decomp(
𝑛∑︁
𝑖=1

𝑧𝑖𝑏𝑖 mod 𝑝)

= Decomp(
𝑛∑︁
𝑖=1

𝑧𝑖𝑏𝑖 ) = (𝑧1, . . . , 𝑧𝑛)

and hence that Comp restricted to R<𝑝 has the left inverse Decomp.
Ad (2): Since SBox is the parallel application of 𝑛 smaller bijec-

tions it is clearly injective. The only assertion to prove is hence

the inclusion SBox(R<𝑝 ) ⊆ R<𝑝 . Let (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R<𝑝 and

let (𝑦1, . . . , 𝑦𝑛) = (𝑆 (𝑥1), . . . , 𝑆 (𝑥𝑛)) denote the image under SBox.
Now recall that 𝑣 = min𝑖 𝑣𝑖 where (𝑣1, 𝑣2, . . . , 𝑣𝑛) = Decomp(𝑝 − 1),
and let 𝑚 be the smallest index such that 𝑥𝑚 < 𝑣 . If there is

no such 𝑚, then all S-boxes 𝑆 are identity functions and the as-

sertion holds. If such an 𝑚 exists, then for all 𝑖 < 𝑚 we have

𝑦𝑖 = 𝑆 (𝑥𝑖 ) = 𝑥𝑖 by the definition of the 𝑆𝑖 . Moreover, for 𝑖 = 𝑚

we have 𝑦𝑚 = 𝑆 (𝑥𝑚) < 𝑣 ≤ 𝑣𝑚 . For the remaining part we high-

light the following property of our decomposition (which has an

analogous counterpart in ordinary base-𝑏 expansion): for every

1 ≤ 𝑘 ≤ 𝑛 it holds

𝑛∑︁
𝑖=𝑘+1

(𝑠𝑖 − 1)𝑏𝑖 =
𝑛∑︁

𝑖=𝑘+1
(𝑠𝑖 − 1)

∏
𝑙>𝑖

𝑠𝑙

=

𝑛∑︁
𝑖=𝑘+1

( ∏
𝑙>𝑖−1

𝑠𝑙 −
∏
𝑙>𝑖

𝑠𝑙

)
=

∏
𝑙>𝑘

𝑠𝑙 − 1 = 𝑏𝑘 − 1.

Informally speaking, this translates to the statement “the sum of

the maximal values of the first 𝑙 = 𝑛 − 𝑘 least significant positions
equals the value of the next greater significant position minus 1”.

We use this fact and deduce

𝑛∑︁
𝑖=1

𝑦𝑖𝑏𝑖 =

𝑚−1∑︁
𝑖=1

𝑦𝑖𝑏𝑖 + 𝑦𝑚𝑏𝑚 +
𝑛∑︁

𝑖=𝑚+1
𝑦𝑖𝑏𝑖︸      ︷︷      ︸

<𝑏𝑚

<

𝑚−1∑︁
𝑖=1

𝑥𝑖𝑏𝑖 + (𝑦𝑚 + 1)𝑏𝑚 ≤
𝑚−1∑︁
𝑖=1

𝑥𝑖𝑏𝑖 + 𝑣𝑚𝑏𝑚

≤
𝑚−1∑︁
𝑖=1

𝑣𝑖𝑏𝑖 + 𝑣𝑚𝑏𝑚 ≤ 𝑝 − 1.

Hence, SBox(𝑥1, . . . , 𝑥𝑛) ∈ R<𝑝 which implies that SBox permutes

R<𝑝 . The second last inequality uses the property that for 𝑢 ∈ F𝑝
with 𝑢 ≤ 𝑝 − 1, the decompositions (𝑢1, . . . , 𝑢𝑛) and (𝑣1, . . . , 𝑣𝑛) =

Decomp(𝑝 − 1) ∈ R satisfy for any 1 ≤ 𝑘 ≤ 𝑛 the inequality

𝑘∑︁
𝑖=1

𝑢𝑖𝑏𝑖 ≤
𝑘∑︁
𝑖=1

𝑣𝑖𝑏𝑖 .

In other words, “if 𝑢 is smaller than or equal to 𝑣 , the sum of the

values of any first 𝑘 most significant digits of 𝑢 is smaller than or

equal to the corresponding sum for 𝑣 .” For 𝑢 = 𝑣 , the statement

is obvious. For 𝑢 ≠ 𝑣 , there is at least one index 1 ≤ 𝑖 ≤ 𝑛 with

𝑢𝑖 < 𝑣𝑖 ; let 𝑡 denote the minimal index with this property. If 𝑘 < 𝑡 ,

then

∑𝑘
𝑖=1 𝑢𝑖𝑏𝑖 =

∑𝑘
𝑖=1 𝑣𝑖𝑏𝑖 by definition of 𝑡 . If 𝑘 ≥ 𝑡 then

𝑘∑︁
𝑖=1

𝑢𝑖𝑏𝑖 =

𝑡−1∑︁
𝑖=1

𝑢𝑖𝑏𝑖 + 𝑢𝑡𝑏𝑡 +
𝑘∑︁

𝑖=𝑡+1
𝑢𝑖𝑏𝑖

<

𝑡−1∑︁
𝑖=1

𝑢𝑖𝑏𝑖 + (𝑢𝑡 + 1)𝑏𝑡 ≤
𝑡−1∑︁
𝑖=1

𝑣𝑖𝑏𝑖 + 𝑣𝑡𝑏𝑡

≤
𝑘∑︁
𝑖=1

𝑣𝑖𝑏𝑖 .

A.3 The SBox function
In Eq. (4), 𝑓 : F𝑝′ → F𝑝′ denotes the non-identity part of each

S-box 𝑆𝑖 . Since 𝑆𝑖 shall be a permutation of Z𝑠𝑖 , we also need 𝑓 to

be a permutation of F𝑝′ . In particular, when 𝑓 is represented as a

univariate polynomial over F𝑝′ it needs to have a high degree and

a dense polynomial description (i.e., many non-zero coefficients).

Other properties (e.g., high nonlinearity) are not needed in this con-

text, because security against the corresponding attacks is already

achieved using the Bricks layer (through large-word operations).

We apply the following technique to choose the function 𝑓 .

(1) We choose the smallest 𝑑 ∈ N such that 𝑑 is prime, 𝑑 = 2
𝑛 −1

for some 𝑛 ∈ N, and gcd(𝑑, 𝑝′ − 1) = 1. The last require-

ment ensures that the resulting polynomial is a permutation

polynomial over F𝑝′ .

(2) we compute the 𝑟 -fold composition

𝑓 (𝑋 ) := (𝑓𝑟 ◦ 𝑓𝑟−1 ◦ · · · ◦ 𝑓1) (𝑋 ) ∈ F𝑝′ [𝑋 ] ,

where 𝑓𝑖 (𝑋 ) := (𝑋 + 𝑐𝑖 )𝑑 for random 𝑐𝑖 ∈ F𝑝′ .

In the second step, we set 𝑟 = 2

⌈
log𝑑 (𝑝′)

⌉
, and we want to reach

a degree of 𝑝′ − 2 and 𝑝′ − 1 non-zero coefficients. If either of

these conditions is not fulfilled, we sample a new set of 𝑟 constants

𝑐1, 𝑐2, . . . , 𝑐𝑟 and apply the above function 𝑓 again until the resulting

polynomial is dense and of maximum degree. In our experiments,

both conditions are fulfilled after only a small number of trials. We

note that the final representation of 𝑓 is similar to the polynomial

representation of the MiMC permutation [6], where the key is set

to a known constant.

We practically evaluated the algebraic properties of the result-

ing S-box 𝑆𝑖 when embedded in F𝑛
′

2
, where 𝑛′ :=

⌈
log

2
(𝑝′)

⌉
. As

expected, in our experiments we observed that the algebraic degree

of 𝑆𝑖 is 𝑛
′
(note that 𝑆𝑖 embedded in F𝑛

′
2

is not a permutation).
8

For the sake of completeness, the full S-box definition is given

in auxiliary files.

8
The algebraic degree refers to the maximum degree of all component functions.



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Lorenzo Grassi et al.

B SECURITY ANALYSIS
In this section, we analyze the security of our design against known

attacks on bijective transformations relevant in the hash function

and encryption settings.

B.1 Statistical Attacks
Firstly, we show that our design is secure against statistical attacks,

including the differential one and its variants, the linear attack and

the rebound attack. In order to achieve this goal, we make use of the

same strategy originally proposed for HadesMiMC and Poseidon.

That is, we make use only of the Bricks and of the Concrete
components in order to guarantee security against statistical attack.

In particular, here we consider a variant of the RC permutation

denoted by RC′ in which the middle component Bricks-Concrete-
Bars-Concrete-Bricks is replaced with a single Bricks, i.e.,

RC′ := Concrete(8) ◦ Bricks ◦ Concrete(7)

◦ Bricks ◦ Concrete(6) ◦ Bricks ◦ Concrete(3)

◦ Bricks ◦ Concrete(2) ◦ Bricks ◦ Concrete(1) .
We claim that if a sponge hash function instantiated with RC′ is
secure against the statistical attacks proposed in this section, then

it is also secure if it is instantiated with the full RC permutation RC
instead. This is a reasonable assumption, since RC exhibits the same

structure, but increases the number of nonlinear components.

B.1.1 Differential Cryptanalysis. Differential cryptanalysis [18, 19]
and its variations are the most widely used techniques to analyze

symmetric-key primitives. Given pairs of inputs with some fixed

input differences, differential cryptanalysis considers the probabil-

ity distribution of the corresponding output differences produced

by the cryptographic primitive. Let 𝛿𝐼 , 𝛿𝑂 ∈ F𝑡𝑝 be respectively the

input and the output differences through a function 𝐹 over F𝑡𝑝 . The

differential probability (DP) of having a certain output difference

𝛿𝑂 given a particular input difference 𝛿𝐼 is equal to

Prob(𝛿𝐼 → 𝛿𝑂 ) =
|{𝑥 ∈ F𝑡𝑝 | 𝐹 (𝑥 + 𝛿𝐼 ) − 𝐹 (𝑥) = 𝛿𝑂 }|

𝑝𝑡
.

As our design is an iterated scheme, a cryptanalyst searches for

ordered sequences of differences over any number of rounds that are

called differential characteristics/trails. Assuming the independence

of the rounds, the DP of a differential trail is the product of the

DPs of its one-round differences. We claim that the security against

differential attacks is achieved if every differential characteristic

has a probability smaller than 𝑝−2. This is due to the fact that many

characteristics can be used together in order to set up the attack,

which means that a probability of 𝑝−1 may not be sufficient to

provide security.

To show that our scheme is secure against this attack, we start

by considering the maximum differential probability (DPmax) of

each component of the Bar. As it is well known,

DPmax (𝑥 ↦→ 𝑥𝑑 ) = (𝑑 − 1)/𝑝.
In the Bricks layer, themaximumdifferential probability of 𝐹 (𝑥,𝑦) =
𝑥 (𝑦2+𝛼𝑦+𝛽) for an input difference 𝛿𝐼 = (𝛿𝐼 ,𝑥 , 𝛿𝐼 ,𝑦) ∈ F2𝑝 \ {(0, 0)}
and an output difference 𝛿𝑂 ∈ F𝑝 (where 𝛼, 𝛽 ∈ F𝑝 \ {0} s.t. 𝛼2−4𝛽

is not a square modulo 𝑝) is

Prob(𝛿𝐼 → 𝛿𝑂 ) ≤
{

2

𝑝 if 𝛿𝐼 ,𝑦 = 0 or 𝛿𝐼 ,𝑥 = 𝛿𝑂 = 0,
𝑝−1
𝑝2

< 1

𝑝 otherwise.

In particular, 𝛿𝐼 ,𝑦 = 0 =⇒ 𝛿𝑂 ≠ 0. We refer to [39, Lemma 4] for

this result. Here we show that the best differential characteristic

over two rounds has probability at most

4(𝑑 − 1)2
𝑝4

≪ 𝑝−3 .

Roughly speaking, this is due to the facts that

• at least four words are active (due to the branch number of

the matrix that defines the linear layer),

• each active word affects the overall probability by a factor

proportional to 𝑝−1.

Examples of differential characteristics that achieve a probability

of ≈ 𝑝−4 are the following.

(1) The third word at the input of the first round is active, while

all words at the input of the second round are active, i.e.,©­«
0

0

𝛿1

ª®¬
Br.( ·)
−−−−−→ ©­«

0

0

𝛿2

ª®¬
Conc.( ·)
−−−−−−−→ ©­«

𝛿2
𝛿2
2𝛿2

ª®¬
Br.( ·)
−−−−−→ ©­«

𝛿3
𝛿4
𝛿5

ª®¬ for fixed differences

𝛿1, . . . , 𝛿5 ∈ F𝑝 . Note that if 𝛿2 is not fixed, then the proba-

bility increases by a factor 𝑝 (but it is still much smaller than

𝑝−2);
(2) At the input of both rounds, the second and the third words

are active, i.e.,
©­«
0

𝛿1
𝛿2

ª®¬
Br.( ·)
−−−−−→ ©­«

0

𝛿3
𝛿4

ª®¬
Conc.( ·)
−−−−−−−→ ©­«

𝛿3 + 𝛿4
2𝛿3 + 𝛿4
𝛿3 + 2𝛿4

ª®¬
Br.( ·)
−−−−−→ ©­«

𝛿5
𝛿6
𝛿7

ª®¬ for
fixed differences 𝛿1, . . . , 𝛿7 ∈ F𝑝 such that 𝛿3 + 𝛿4 = 𝛿5 = 0.

Note that if 𝛿3 is not fixed, then the probability increases by

a factor 𝑝 (but it is still much smaller than 𝑝−2);
(3) The first word at the input of the first round is active, while

the second and third word at the input of the second round

are active, i.e.,
©­«
𝛿1
0

0

ª®¬
Br.( ·)
−−−−−→ ©­«

𝛿2
𝛿3
0

ª®¬
Conc.( ·)
−−−−−−−→ ©­«

2𝛿2 + 𝛿3
𝛿2 + 2𝛿3
𝛿2 + 𝛿3

ª®¬
Br.( ·)
−−−−−→ ©­«

𝛿4
𝛿5
𝛿6

ª®¬ for
fixed differences 𝛿1, . . . , 𝛿6 ∈ F𝑝 such that 2 ·𝛿2 +𝛿3 = 𝛿4 = 0.

Note that if 𝛿2 is not fixed, then the probability increases by

a factor 𝑝 (but it is still much smaller than 𝑝−2).

Note that this last case is consistent with the branch number of the

matrix. Indeed, note that if the first word is active at the input of

Bricks, then the two first words in output are active. This means

that the number of active input and output words of the matrix is

four.

If the difference in the first words is non-zero in both rounds,

then the probability of the differential characteristic is much smaller

than 𝑝−4, since at least other three words (for a total of five active
words) are active at the input of the Bricks layer (in order to satisfy
the branch number of the matrix, and due to the definition of the

Bricks layer).

As a result, two (consecutive) rounds are sufficient to provide

security against differential attacks.

B.1.2 Truncated and Impossible Differential Attacks. Truncated
differential cryptanalysis [52] is a variant of classical differential

cryptanalysis, in which the attacker can specify only part of the dif-

ference between pairs of texts. Impossible differential cryptanalysis

was introduced by Biham et al. [17] and Knudsen [53]. It exploits

differentials that occur with probability zero.
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Working over a single round, we have that

©­«
0

0

Δ1

ª®¬
Bricks( ·)
−−−−−−→ ©­«

0

0

Δ2

ª®¬
Concrete( ·)
−−−−−−−−→ ©­«

Δ2

Δ2

2 · Δ2

ª®¬
and ©­«

Δ1

0

0

ª®¬
Bricks( ·)
−−−−−−→ ©­«

Δ2

Δ3

0

ª®¬
Concrete( ·)
−−−−−−−−→ ©­«

2 · Δ2 + Δ3

Δ2 + 2 · Δ3

Δ2 + Δ3

ª®¬
with probability 1 for (unknown) differences Δ1,Δ2,Δ3 ∈ F𝑝 (the

case in which the middle word is active is analogous). In a similar

way, if we activate the second and the third words in input, we have

©­«
0

Δ1

Δ2

ª®¬
Bricks( ·)
−−−−−−→ ©­«

0

Δ3

Δ4

ª®¬
Concrete( ·)
−−−−−−−−→ ©­«

Δ3 + Δ4

2 · Δ3 + Δ4

Δ3 + 2 · Δ4

ª®¬
with probability 1 for (unknown) differences Δ1, . . . ,Δ4 ∈ F𝑝 . If the
two active words are in a different position in the input, then no

truncated differential with probability 1 exists.

Note that in both these cases, we we have a linear relation among

the output differences. Such linear relation is then broken/lost after

the next Bricks layer. The only way to extend them is that one

output word is equal to zero. However, this happens with with

probability 1/𝑝 , exactly as in the case in which the outputs are

generated by a pseudo-random permutation (besides the fact that

𝑝 is our security level). Due to this fact and since the Concrete
layer is defined via the multiplication with a MDS matrix, it is not

possible to extend the truncated differentials just given over more

rounds (even when working with a nonzero probability ∈ (1/𝑝, 1)).
See also the analysis given in the previous section for the case of

differential cryptanalysis in which the middle differences are not

fixed.

At the same time, it is possible to set up an impossible differential

over two rounds, since
©­«
0

0

Δ1

ª®¬
Conc.◦Br.( ·)
−−−−−−−−−−−→ ©­«

Δ2

Δ2

2Δ2

ª®¬ ≠
©­«
0

0

Δ3

ª®¬
Conc.◦Br.( ·)
−−−−−−−−−−−→ ©­«

Δ4

Δ4

2Δ4

ª®¬
holds with probability 0 for (unknown) differences Δ1, . . . ,Δ4 ∈ F𝑝 .
It follows that three rounds are sufficient to provide security against

truncated and impossibledifferential attacks.

B.1.3 Meet-in-the-Middle and Boomerang Attacks. Meet-in-the-

Middle and boomerang [67] distinguishers (and their variants) rely

on chaining two good differential/linear trails. Due to the differ-

ential/linear analysis just proposed, we claim that our analyzed

scheme RC′ with six rounds (composed of Bricks layers) is secure

against these attacks.

B.1.4 Rebound Attacks. Rebound attacks were first presented in

[55, 60]. The goal of this attack is to find two (input, output) pairs

such that the two inputs satisfy a certain (truncated) input differ-

ence and the corresponding outputs satisfy a certain (truncated)

output difference. The rebound attack consists of two phases, called

inbound and outbound phase. According to these phases, the inter-

nal permutation of the hash function is split into three subparts. Let

𝑃 : F𝑡𝑝 → F𝑡𝑝 be the target permutation, then 𝑃 = 𝑃𝑓 𝑤 ◦ 𝑃𝑖𝑛 ◦ 𝑃𝑏𝑤 .
The inbound phase is in the middle of the permutation and the

two outbound phases are next to the inbound part. In this inbound

part, the attacker tries to cover a middle part in the construction

separately, which would otherwise be expensive in a classical dif-

ferential attack. Having found input and output differences such

that this part is covered in the inbound phase, the attacker now

extends the trail in both directions in the outbound phase.

Here we show that RC′ (namely, the 6-round variant of the RC
permutation in which the middle component is replaced with a

single Bricks layer) is secure against the rebound attack.

Inbound Phase. From Appendix B.1.2 we know that there exist

truncated differentials with a probability of 1 over a single round.

However, these cannot be extended over more rounds, not even

when considering probabilities between 1/𝑝 and 1. Hence, using

an inside-out approach, the attacker can cover two rounds in the

inbound phase.

In order to apply the outbound phase and due to the truncated

differential trails that we found, it is desirable that the difference in

at least one word of the trail found by the inbound phase is equal

to zero. Again, this cannot be achieved with a probability larger

than 1/𝑝 . Hence, we claim that the attacker cannot cover three (or

more) rounds in the inbound phase.

Outbound Phase. In order to extend the trails found in the in-

bound phase, we make use of the results regarding the truncated

differentials presented before. Since one round can always be cov-

ered with a truncated differential characteristic of probability 1, the

attacker can skip two rounds (one in each direction).

Conclusion. Due to the analysis just proposed, we claim that RC′

instantiated with six rounds is secure against the rebound attack

as we can’t find an attack on five rounds or more. Since the hash

sponge function instantiatedwith this weaker permutation is secure

with respect to this attack, the same result holds when considering

the original permutation RC.

B.1.5 Linear and Zero-Correlation Cryptanalysis. In the case of

Boolean functions, linear cryptanalysis [59] searches for a linear

combination of input, output and (if present) key bits that is un-

balanced, i.e., biased towards 0 or towards 1. In the F𝑝 case, linear

cryptanalysis [9] consists in the search of a linear combination of in-

put, output, and (if present) key words that is unbalanced, i.e., biased

towards an element of F𝑝 with probability higher than 1/|F𝑝 | = 1/𝑝 .
Linear attacks pose no threat to our design instantiated with the

same number of rounds previously defined for classical differential

cryptanalysis.

Similar to impossible differential attack, zero-correlation attacks

are a variant of linear attacks that exploit linear hulls with a zero

correlation [20]. In general, those linear hulls are found by a miss-

in-the-middle approach. E.g., the approach is to combine two trails

that propagate some deterministic properties in order to ensure

that the property cannot be fulfilled. Due to our security analysis

against linear and differential cryptanalysis and since our analyzed

scheme RC′ has four Bricks layers, we claim that finding impossible

differentials or zero-correlation linear hulls is infeasible.

B.1.6 Square/Integral &Mixture Differential Attacks. Integral crypt-
analysis is an attack first applied on SQUARE [31] and is particu-

larly efficient against block ciphers based on strong-aligned SPN

schemes [15], as AES and AES-like schemes. It is based on the

analysis the propagation of sums of values. In the case of our



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Lorenzo Grassi et al.

scheme, only one round can be covered with such an attack, e.g.
9

©­«
𝐶

𝐶

𝐴

ª®¬
Bricks( ·)
−−−−−−−−→ ©­«

𝐶

𝐶

𝐴

ª®¬
Concrete( ·)
−−−−−−−−−−→ ©­«

𝐴

𝐴

𝐴

ª®¬
Bricks( ·)
−−−−−−−−→ ©­«

?

?

?

ª®¬ , since both Bricks and

Concrete mix the components of the state.

Other distinguishers that are particular efficient against strong-

aligned schemes are the “multiple-of-𝑛” one [45] and the mixture

differential cryptanalysis [38]. By appropriate choices of a number

of input pairs (related by particular linear/differential relations), it

is possible to make sure that the number of times that the difference

of the resulting output pairs lie in a particular subspace is always a

multiple of𝑛. Since both Bricks and Concretemix the components

of the state, we claim that these attacks pose no threat to our design.

B.2 Invariant Subspace Attack and Fixed Points
B.2.1 Invariant Subspaces. Following [44], we say that a subspace

S ⊆ F𝑡𝑝 is invariant for a function 𝐹 over F𝑡𝑝 if and only if for each

𝑎 ∈ F𝑡𝑝 there exists 𝑏 ∈ F𝑡𝑝 such that

𝐹 (S + 𝑎) = S + 𝑏.
For completeness, we mention that this definition is a slightly dif-

ferent from the one proposed in [56, 57], which is based on the

existence of weak keys.

Here we analyze the security of our scheme against this attack,

since recent proposals have shown vulnerabilities [16, 46]. We start

with the Bars layer. Since Bars operates independently on each

input word, we have the following:

• All subspaces in which only a single word is active (e.g.,

S = ⟨(0, 1, 0)⟩ are invariant through it. In other words, if the

difference in one word is equal to zero, it remains equal to

zero after Bars.
• The subspaces of the form ⟨(1, 1, 0)⟩, or ⟨(1, 0, 1)⟩, or ⟨(0, 1, 1)⟩,
or ⟨(1, 1, 1)⟩ are invariant since the same function 𝑓 defined

in Eq. (4) is applied on each word.

At the same time, note that the subspaces of the form e.g. ⟨(1, 𝑎, 0)⟩
for fixed 𝑎 ∈ F𝑝 \ {0, 1} cannot be invariant due to the fact that the

initial linear relation is destroyed by the function SBox.
We point out that there are invariant affine subspaces even if

no word is fully active. In particular, remember that Bars = Comp ◦
SBox ◦ Decomp, where both Comp : Z𝑠1 × . . . × Z𝑠𝑛 → F𝑝 and

Decomp : F𝑝 → Z𝑠1 × . . . × Z𝑠𝑛 are linear operations that work at

word level, where Comp(𝑥) = (𝑥1, . . . , 𝑥𝑛) ∈ Z𝑠1 × . . . × Z𝑠𝑛 and

where

∑𝑛
𝑖=1 𝑥𝑖 · 𝑏𝑖 = 𝑥 for given 𝑏𝑖 . Furthermore, SBox operates

independently on each 𝑥𝑖 . Hence, the affine subspace I defined as

I :=

{∑︁
𝑖

𝑥𝑖 · 𝑏𝑖 ∈ F𝑝 : 𝑥1 ∈ Z𝑠1 and 𝑥2, . . . , 𝑥𝑛 fixed

}
is an invariant affine subspace through Bars (note that the values
of 𝑥𝑖 for 𝑖 ≥ 2 change, but this would only change the coset and

not the subspace itself). Other invariant affine subspaces can be

defined similarly.

Due to the analysis just proposed, there is no invariant sub-

space for Bricks. This means that our scheme is secure against the

invariant subspace attack.

9
We use the standard notation 𝐴,𝐶, 𝐵, ? to denote respectively an active word, a

constant one, a balanced one, and an unknown one. We recall that an active word is

also balanced.

B.2.2 Fixed Points. For completeness, we also discuss the case of

fixed points. We say that a function 𝐹 over F𝑡𝑝 has a fixed point

𝑥 ∈ F𝑡𝑝 if 𝐹 (𝑥) = 𝑥 .

The only fixed points for Bricks are (0, 0, 0), (±1, 0, 0) and (±
√
−1, 0, 0).

Indeed:

• the only fixed points for 𝑥 ↦→ 𝑥5 are the ones that satisfy

𝑥 · (𝑥4 − 1) = 0, that is {0,±1,±
√
−1}. Note that −1 is a

quadratic residue modulo 𝑝 if and only if 𝑝 = 1 mod 4,

which is exactly the case of 𝑝BLS381 and 𝑝BN254.

• the only fixed points for 𝑥 ↦→ 𝑥 · (𝑦2 + 𝛼 · 𝑦 + 𝛽) for a given
fixed 𝑦 ∈ F3𝑝 are (1) {(0, 𝑦) ∈ F2𝑝 | ∀𝑦 ∈ F𝑝 } and (2) {(𝑥,𝑦) ∈
F2𝑝 | ∀𝑥 ∈ F𝑝 and 𝑦 ∈ F𝑝 s.t. (𝑦2 + 𝛼 · 𝑦 + 𝛽) = 1}. Since this
second condition is never satisfied for 𝑦 ∈ {0,±1,±

√
−1}

(that is, the fixed points of the first component), it follows

that the only fixed points are the ones given before.

In the case of Bar, there are several fixed points for each S-box

𝑆𝑖 as defined in Eq. (4). In particular, the input 𝑥 of 𝑆𝑖 remains

unchanged if 𝑥 ≥ 𝑝′. Since there are 𝑛 independent S-boxes 𝑆𝑖 for

each one of the three words, it follows that the number of fixed

points for Bar are (
𝑛∏
𝑖=1

(𝑠𝑖 − 𝑝′)
)
3

,

over 𝑝3. As a concrete example, when using 𝑝BLS381 ≈ 2
256

, the

probability for a random point to be a fixed point is(
2
134.54

2
256

)
3

≈ 2
−364.4 .

Recall that the Bars layer plays no role in our security arguments

for RC regarding statistical attacks. When considering algebraic

attacks on the middle layer, we have not found a way to exploit

these fixed points in attacks on the middle part of RC. Since the
fixed point property is not described by a low-degree equation, we

expect that, for instance, finding a solution to the CICO problem

with Bar inputs being fixed points is much higher than without

these restrictions.

B.3 Gröbner Basis Cryptanalysis
Gröbner Basis Cryptanalysis usually proceeds in two stages: first,

one models the (cryptographic) permutation as a system of equa-

tions with unknown parameters as variables. Subsequently, a Gröb-

ner basis for the (zero-dimensional) ideal defined by the polynomials

describing the equation system is computed. In practice, the second

step is divided into a triad of computations, namely

(1) Compute a Gröbner basis for the (zero-dimensional) ideal

with respect to a fast term ordering, usually degrevlex;
(2) convert the degrevlex-Gröbner basis into a lex-Gröbner basis

using the FGLM algorithm;

(3) factor the univariate polynomial in the lex-Gröbner basis and
determine the solutions for the corresponding variable. Back-

substitute those solutions, if needed, to determine solutions

for other variables.

Each of the above three steps comes with its own complexity

estimate. Under the assumption of a semi-regular input system

𝑓1, . . . , 𝑓𝑘 in 𝑙 variables with degrees 𝑑1, . . . , 𝑑𝑚 , it is well-known
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𝑝 41 61 79 97 107 113 127

𝑙, 𝑛 18,20 18,20 18,20 18,20 18,20 18,20 18,20

𝑣 5 5 7 7 7 7 7

𝑠1, 𝑠2 7,7 8,9 9,10 10,11 11,12 12,13 13,13

𝑑reg 28 35 40 45 50 55 58

𝑑mag 13 15 15 17 19 21 23

𝑑reg : 𝑑mag 2.2 2.3 2.6 2.6 2.6 2.6 2.5

𝑇 (s) 17 23 60 344 462 1020 1625

𝐶
bit

: 2 28 30 30 32 34 36 38

Table 4: Results ofGröbner basis computations on small-scale
instances of Concrete◦Bars◦Concrete in the CICO-setting for
various primes 𝑝 and decompositions into 𝑛 = 2 buckets. The
degree of regularity 𝑑reg is computed under the assumption
that the input system is semi-regular, the timings of the
Gröbner basis computations 𝑇 are given in seconds, and the
estimated bit complexity 𝐶bit := log

2
(𝐶𝐺𝐵) is divided by 2 (to

reflect practical runtimes).

that the Hilbert series of the ideal corresponding to the input sys-

tem is related to its Gröbner basis, see [10]. The first index with

non-positive coefficient of the expression

𝑆𝑘,𝑙 (𝑧) =
∏𝑘

𝑖=1 (1 − 𝑧𝑑𝑖 )
(1 − 𝑧)𝑙

is the degree of regularity 𝑑reg and it is an upper bound for the

highest degree element in a Gröbner basis with respect to a graded

ordering. Thus, 𝑑reg helps to establish the following upper bound

for the complexity𝐶 (counting finite field operations) of computing

a Gröbner basis of a semi-regular input system:

𝐶𝐺𝐵 (𝑙, 𝑑𝑟𝑒𝑔) ∈ O
((
𝑙 + 𝑑reg

𝑙

)𝜔 )
, (17)

where 𝜔 denotes the linear algebra constant. The terms hidden by

O(·) are relatively small, that’s why for our analysis we drop the

O(·) and use the expression directly. Our security analysis consists

of following steps:

(1) We present a system of algebraic equations for the Bar func-

tion.

(2) We give an algebraicmodel for the three-layer version Concrete◦
Bars ◦ Concrete in the CICO-setting.

(3) We run a series of Gröbner basis attacks on the three-layer

version Concrete◦Bars◦Concrete instantiated with much

smaller primes 𝑝 and argue that already for this small-scale

versions the attack complexity is at least (𝐶𝐺𝐵 (𝑙, 𝑑𝑟𝑒𝑔/3))1/2.

Algebraic Representation of Bar. For an algebraic model of Bar,
we “embed” Z𝑠𝑖 in F𝑝 for all 1 ≤ 𝑖 ≤ 𝑛. This embedding is not an em-

bedding in the strict mathematical sense of a structure preserving in-

jective map. Instead, given the respective standard representations

of Z𝑠𝑖 and F𝑝 , we treat the elements 0, 1, . . . , 𝑠𝑖 −1 ∈ Z𝑠𝑖 as elements

in F𝑝 . As a result, we suggest the following system of 2𝑛 + 2 equa-

tions over F𝑝 in the 2𝑛 + 2 variables 𝑥,𝑦, 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ F𝑝
to model the Bar function:

𝑥 = 𝑥1𝑏1 + 𝑥2𝑏2 + · · · + 𝑥𝑛𝑏𝑛

0 = 𝑝𝑠𝑖 (𝑥𝑖 ), 1 ≤ 𝑖 ≤ 𝑛

𝑦𝑖 = 𝐿𝑖 (𝑥𝑖 ), 1 ≤ 𝑖 ≤ 𝑛

𝑦 = 𝑦1𝑏1 + 𝑦2𝑏2 + · · · + 𝑦𝑛𝑏𝑛

,

where

• 𝑝𝑠𝑖 (𝑥𝑖 ) :=
∏𝑠𝑖−1

𝑘=0
(𝑥𝑖 − 𝑘) is a polynomial of degree 𝑠𝑖 that

vanishes at {0, 1, . . . , 𝑠𝑖 − 1}; 𝑝𝑠𝑖 ensures that 𝑥𝑖 ∈ Z𝑠𝑖 ;
• 𝐿𝑖 (𝑥𝑖 ) is the interpolation polynomial of degree 𝑠𝑖 − 1 for

S-box 𝑆𝑖 (“embedded” in F𝑝 ), i.e.

𝐿𝑖 (𝑥𝑖 ) :=
∑︁

0≤𝑘≤𝑠𝑖−1
𝑆𝑖 (𝑘)

∏
0≤ 𝑗≤𝑠𝑖−1

𝑗≠𝑘

𝑥𝑖 − 𝑗

𝑘 − 𝑗
.

Under regularity assumptions, the entire system has an expected

degree of regularity

𝑑Bar
reg

= 1 +
𝑛∑︁
𝑖=1

(𝑠𝑖 − 1) +
𝑛∑︁
𝑖=1

(𝑠𝑖 − 2)

= 1 − 𝑛 + 2

𝑛∑︁
𝑖=1

(𝑠𝑖 − 1) ≈ 2𝑛 𝑛
√
𝑝.

Algebraic Representation of Concrete ◦ Bars ◦ Concrete. In this

part we argue that already the computational cost of the first step
(i.e., computing a degrevlex-Gröbner basis) of Concrete ◦ Bars ◦
Concrete in the CICO-setting far exceeds the 128-bit security re-

quirement. Our arguments are based on empirical observations on

small-scale instances of this truncated version.

We model the composition Concrete ◦ Bars ◦ Concrete in the

CICO-setting
10

and suggest the following system of 6𝑛+8 equations
in 6𝑛 + 6 variables as algebraic model:

CBC𝑐𝑖𝑐𝑜 =



𝑦1 = Bar(𝑥1)
𝑦2 = Bar(𝑥2)
𝑦3 = Bar(𝑥3)
0 = Concrete−1 (𝑥1, 𝑥2, 𝑥3) [1]
0 = Concrete(𝑦1, 𝑦2, 𝑦3) [1]

,

Here, Concrete( · , · , ·) [𝑖] denotes the 𝑖-th word of the state (for

1 ≤ 𝑖 ≤ 3) and 𝑛 describes the number of buckets Z𝑠1 , . . . ,Z𝑠𝑛 in

the decomposition Decomp. The variables 𝑥1, 𝑥2, 𝑥3 and 𝑦1, 𝑦2, 𝑦3,

respectively, denote the input and output to Bars.

Discussion of Practical Results. In our practical experiments we

computed Gröbner bases of small-scale instances of CBC𝑐𝑖𝑐𝑜 for

various primes 𝑝 and decompositions into 𝑛 = 2 buckets.
11

Table 4

we present the results of our experiments. Instead of taking 𝑑reg for

establishing the complexity estimates, we computed Gröbner basis

of several small-scale instances and observed the maximum degree

𝑑mag reached during these computations using the CAS Magma.

Subsituting𝑑reg with𝑑mag in (17), results in our complexity estimate

𝐶 . We use 𝜔 = 2 and, furthermore, we take the bit-complexity

𝐶
bit

:= log
2
(𝐶) to write down the complexity estimates in Table 4.

Our practical findings can be summarized as follows: (i) the ratio
of the theoretical estimate for the maximum degree 𝑑reg and the

maximum degree 𝑑mag reached by Magma during the Gröbner basis

computations is approximately (and conservatively estimated) 3;

(ii) using the empirical values 𝑑mag for establishing complexity

estimates, we observed that our practical experiments run about as

10
See Appendix B.6.1 for further details.

11
We conducted our experiments on a machine with Intel® Xeon® E5-2630 v3 @

2.40GHz (32 cores) and 378GB RAM under Debian 11 using Magma V2.26-2.
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fast as the square root of the complexity estimates. This yields the

following estimate for attacking a full-scale instance of CBC𝑐𝑖𝑐𝑜

with 𝑝 = 𝑝𝐵𝑁 254 or 𝑝 = 𝑝𝐵𝑆𝑇 381 and 𝑛 = 27 via a Groebner basis

approach: (
𝐶𝐺𝐵 (𝑙 = 170, 𝑑𝑟𝑒𝑔/3)

)
1/2

> 2
1360,

far exceeding the generic CICO security level of 2
256

function calls

(which amounts to ≈ 2
267

finite field operations for Concrete ◦
Bars ◦ Concrete) and the security level of 2

128
function calls for

collision and preimage resistance. In our experiments we observed

that hybrid approaches (guessing certain variables and computing

the Gröbner basis for a reduced polynomial system) reduced the

above mentioned complexities but never had a complexity close to

the generic CICO security level of 2
log

2
𝑝
function calls.

B.4 Other Algebraic Attacks
Finally we claim that our design is secure against other algebraic

attacks, including interpolation as well as higher-order differential

distinguishers (we highlight that we do not claim security against

zero-sum partitions).

To achieve this goal, we argue that all mentionedmethods cannot

penetrate Middle. In particular, this implies that the full permuta-

tion provides security with respect to above mentioned cryptana-

lytical methods.

To rule out algebraic attacks, we introduce the following param-

eters:

• 𝑑𝐵 is the degree of the Bar transformation as an operation

over F𝑝 .
• 𝑑𝑆 is the maximum degree of the component functions of

the Bricks layer as an operation over F𝑝 .

B.4.1 Interpolation Analysis. In its basic form, interpolation analy-

sis aims at constructing the polynomial representation of a given

(cryptographic) function [50]. To provide resistance against inter-

polation, a function must exhibit maximal degree (or a degree close

to its maximum) and a dense polynomial representation (i.e., a

description with many non-zero coefficients).

The total degree of one word of the permutation RC over F𝑝 is

𝑑𝐵 · 𝑑6
𝑆
. It is enough to require 𝑑𝐵 > 2

127
for 128-bit security.

A heuristic argument that 𝑑𝐵 > 2
127

is that the we define Bars
on at least 𝑝′27 points in a nonlinear way. This accounts to at least

2
251

points, so the degree should exceed 2
251

.

We also computed the degree 𝑑𝐵 for small-scale instances of

Bar with 𝑓 (𝑥) = 𝑥−1 as internal function 𝑓 for the small S-Boxes

𝑆1, . . . , 𝑆𝑛 and 𝑛 = 2, 3. For every instance we tested, the degree of

Bar was maximal, i.e. 𝑝 − 2, with almost all coefficients of the

polynomial being non-zero. Extrapolating this trend and since

log
2
(𝑝) ≈ 256 for the full-scale permutation RC, we conclude that

above requirement is far exceeded.

B.4.2 Higher-Order Differential Attack and Zero-Sum Distinguish-
ers. Given a vectorial Boolean function F over F𝑛

2
of degree 𝑑 , the

higher-order differential attack [52, 54] exploits the fact that∑︁
𝑥∈V+𝑣

𝑥 =
∑︁

𝑥∈V+𝑣
𝐹 (𝑥) = 0

for each affine subspace V + 𝑣 ⊆ F𝑛
2
of dimension strictly bigger

than 𝑑 (that is, dim(V) ≥ 𝑑 + 1). The corresponding attack in the

case of a prime field F𝑝 has been recently proposed by Beyne et

al. [16]. Since this result is related to the degree of the polynomial

that describes the permutation, we claim that the security against

the interpolation attack implies security against this attack as well.

A possible variant of higher-order sum in the case of permuta-

tions is the zero-sum partition distinguisher [23]. Here we explicitly

state that we do not make claims about the security of our scheme
against zero-sum partitions. This choice is motivated by the gap

present in the literature between the number of rounds of the inter-

nal permutation that can be covered by a zero-sum partition and by

the number of rounds in the corresponding sponge hash function

that can be broken e.g. via a preimage or a collision attack.

B.5 Side-channel attacks
Whereas it is clear that ZK protocols might fall apart in the presence

of a side-channel adversary, the available literature is scarce ([66]

being an exception). Most primitives are not strengthened against

side-channels. The reason probably being that performance is criti-

cal, and a side-channel protection would slow down and make the

protocol less practical. In addition, constant-time implementations

of prime arithmetic are hard and not available in many frameworks

used by deployed ZK protocols. Naturally, many protocols are com-

petitors and are afraid to lose a market share.

For the RC design, its native execution can be run without table
lookups as the table is computed as a polynomial. If the prime field

operations were implemented in constant-time, our function would

be leakage-free. We also note that ZK-friendly hash functions, in

contrast to AES, are much less exposed to an attacker as the input

messages are rather short.

B.6 Every Building Block is Necessary
B.6.1 The Necessity of Bars. We first focus on a design which

excludes the Bars layer, and we show that a much higher num-

ber of rounds is needed to provide security. In order to do this,

we use a Gröbner basis approach. Further, as our permutation is

used in a Sponge setting, we consider the CICO (constrained input,

constrained output) problem. More specifically, our goal is to find

𝑡 − 𝑘 variables such that the first 𝑘 words of both the input and the

output of RC are zero. For a good hash transformation, we expect

this to take a workload of 𝑝𝑘 operations when working over F𝑝 .
In more detail, we want that

𝑥 = 0∥ · · · ∥0∥𝑥𝑘+1∥ · · · ∥𝑥𝑡
is the input of the function (where ·∥· denotes the concatenation)
and

𝑦 = RC(𝑥) = 0∥ · · · ∥0∥𝑦𝑘+1∥ · · · ∥𝑦𝑡
is the output, and our goal is to find 𝑥𝑘+1, · · · , 𝑥𝑡 .

Focusing on our function with 𝑡 = 3 and using a single element

of approximately 256 bits for the capacity (for a 128-bit security

level), let us consider 𝑘 = 1. We then have 2 variables and only one

equation. This system is underdetermined, but we can arbitrarily

fix one of the variables. In the end, we arrive at a single equation

in a single variable.
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Full-Round Equations. Using this straight-forward approach, we

note that our Bricks layer has a degree of 3. Without further con-

sidering the density of the resulting polynomials, our final goal is

to find the roots of a univariate equation of degree 3
𝑟
, where 𝑟 is

the number of rounds. Since this cost is approximately an element

in O(𝑑3) [36], we want that
3
3𝑟 ≥ 𝑝 =⇒ 𝑟 ≥ log

27
(𝑝) .

For example, if 𝑝 ≈ 2
256

, this results in 𝑟 ≥ 54, which is much larger

than what our current proposal needs.

Intermediate Variables and Equations. Another possible approach
is to keep the degrees low by introducing additional variables. In

order to do this, we introduce 3 new variables in each round and

we arrive at a system of degree-3 equations.

Let us again assume that we use 𝑟 rounds. Then, we introduce

3(𝑟 − 1) new variables and equations. In the end, we arrive at

𝑛𝑒 = 3(𝑟 − 1) + 1 degree-3 equations and the same number of

variables 𝑛𝑣 (one additional equation for the final zero element,

and the original variable 𝑥𝑡 at the beginning). Generically, the

complexity of solving such a system is then in

O
((
𝐷reg + 𝑛𝑣

𝑛𝑣

)𝜔 )
,

where we set 𝜔 = 2 and where

𝐷reg = 1 +
𝑛𝑒∑︁
𝑖=1

2 = 1 + 2 · (3(𝑟 − 1) + 1) .

In this case, we want that(
1 + 6(𝑟 − 1) + 2 + 3(𝑟 − 1) + 1

3(𝑟 − 1) + 1

)
2

=

(
9𝑟 − 5

3𝑟 − 2

)
2

≥ 𝑝,

which results in 𝑟 ≥ 33 for 𝑝 ≈ 2
256

. Note that we are not exploit-

ing the density and general structure of the polynomials. Indeed,

when using equations which cover single rounds, we can assume

that they do not exhibit strong pseudo-random properties, which

means that the above estimation is actually a pessimistic one (from

the attacker’s perspective). However, this is sufficient to show the

efficiency of our current proposal, since any faster attack would

only further increase the number of rounds needed for security in

the design without the Bars layer.

B.6.2 The Necessity of Concrete. Without the Concrete layer,

we would have a weaker diffusion over the 3 words. In particular,

note that the Bricks layer does not provide any mixing in the first

word. Hence, when omitting the Concrete layer, the subspaces

⟨(0, 1, 0), (0, 0, 1)⟩ and ⟨(0, 0, 1)⟩ are invariant through the whole

permutation, independent of the number of rounds.

B.6.3 The Necessity of Bricks. Without the Bricks layer, an at-

tacker could work with a system of equations over the smaller fields

of the Bars layer. Moreover, the in-word diffusion (i.e., the diffusion

in a single word) would only happen in the Bars layer, which is

weak. Further, we need the Bricks layer for statistical arguments,

since e.g. in a rebound attack both outbound phases would be linear

otherwise (when considering the Bars layer in the inbound phase).
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