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Abstract. A ring signature allows a party to sign messages anony-
mously on behalf of a group, which is called ring. Traceable ring sig-
natures are a variant of ring signatures that limits the anonymity guar-
antees, enforcing that a member can sign anonymously at most one mes-
sage per tag. Namely, if a party signs two different messages for the same
tag, it will be de-anomymized. This property is very useful in decentral-
ized platforms to allow members to anonymously endorse statements in
a controlled manner.

In this work we introduce one-time traceable ring signatures, where a
member can sign anonymously only one message. This natural variant
suffices in many applications for which traceable ring signatures are use-
ful, and enables us to design a scheme that only requires a few hash
evaluations and outperforms existing (non one-time) schemes.

Our one-time traceable ring signature scheme presents many advantages:
it is fast, with a signing time of less than 1 second for a ring of 2'° sign-
ers (and much less for smaller rings); it is post-quantum resistant, as
it only requires hash evaluations; it is extremely simple, as it requires
only a black-box access to a generic hash function (modeled as a random
oracle) and no other cryptographic operation is involved. From a theoret-
ical standpoint our scheme is also the first anonymous signature scheme
based on a black-box access to a symmetric-key primitive. All existing
anonymous signatures are either based on specific hardness assumptions
(e.g., LWE, SIS, etc.) or use the underlying symmetric-key primitive in
a non-black-box way, i.e., they leverage the circuit representation of the
primitive.

1 Introduction

Ring signatures, introduced by Kalai, Rivest and Shamir in [33], allow a party
to anonymously sign a message on behalf of a group chosen in a spontaneous
manner among a set of public keys. The crucial property of ring signatures
that set them apart from group signatures [13] is that there is no manager who
creates the keys, managing the group and de-anonymizing if necessary. In ring
signatures, a party can generate its own pair of keys and the ring is simply the set
of published public keys. Furthermore, at signing time, a signer can choose any
subset of the published keys as a ring for its own signature, and no other party
is able to de-anonymize it. Ring signatures are therefore particularly suitable
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for decentralized systems and have received renewed attention lately with the
development of blockchains [30,29]. For instance, ring signatures could be used
as a building block for a decentralized governance of a blockchain. In [37] for
example, the goal is to provide a mechanism to vote on projects that should
be funded with the blockchain treasury. In such an application, ring signatures
could be used as a preliminary step to anonymously endorse projects that should
be later considered for voting.

However, the lack of a manager in ring signatures enable members to abuse of
their anonymity. In the example above, a member who wants to push a certain
project, could anonymously compute multiple signatures endorsing the same
project. Due to the anonymity guarantees, the other members cannot distinguish
whether this project is endorsed by a single member or by multiple members'.

Traceable Ring Signatures To overcome the unrestricted anonymity provided
by ring signatures, Fujisaki and Suzuki in [19] introduced traceable ring signa-
tures, where each message is associated to a ‘tag’ (a tag can be thought as a
topic of discussion) and a party can anonymously sign only one message per
tag. Specifically, traceable ring signatures provide an algorithm, called Trace,
such that if Alice prepares two signatures o,c’ for messages m and m’ w.r.t
the same tag,Trace will output the public key of Alice. Note, however, that if
Alice computes two signatures o, o’ for the same message m (signatures can be
randomized) w.r.t. the same tag, the two signatures will be linked but Alice’s
identity will not be revealed. This property is called tag-linkability.

A downside of tag-linkability so defined is that a malicious party who just
wants to disrupt the system, can mount a simple denial-of-service attack by
continuously sending multiple signatures of the same message. While these sig-
natures will be linked and then discarded, the identity of the attacker will not be
revealed. Hence, the bad actor can keep the parties busy verifying and discarding
signatures.

Traceable ring signatures have been constructed from the DDH assumption
by Fujisaki and Suzuki [19,18] and from bilinear maps by Ho Au et al. in [2].
Such hardness assumptions however are not post-quantum resistant [35]. Only
very recently, Branco and Mateus [10] provided the first? post-quantum resistant
traceable ring signatures. Their construction is based on the syndrome decoding
problem, a classical problem in coding theory that is conjectured to be post-
quantum resistant. This scheme relies on the Fiat-Shamir heuristic and is proved
secure in the classic random oracle model [5]. However, their construction is quite
inefficient, with signature size of 240KB- N, where N is the size of the ring, which
would translate in 24 MB with a ring of just 100 people. Signing time estimations
are not provided in [10], but they are expected to be high.

L A similar problem motivated the concept of threshold ring signatures [11], where a
signature can be computed only if a least ¢ members agree. This is very specific to
applications where a quorum is required, and is not suitable in more general applica-
tions where we just want to enable members to express their opinion anonymously.

2 Post-quantum linkable ring signatures existed in the literature before — and we dis-
cuss them in Section 2. However, they do not provide traceability.
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Hence, the state-of-the-art of traceable ring signature offers only one scheme
that is post-quantum resistant, but such scheme is currently impractical.

In this work we mitigate this situation by constructing a practical post-
quantum resistant traceable ring signature scheme that only requires hash-
function evaluations. Our key insight is to enforce a one-time flavor that gives
us traceability almost for free, at the expenses of reusability. As we discuss be-
low, this might not be a limitation and is an acceptable compromise in some
applications where traceable ring signatures can be used. We elaborate on our
contribution next.

1.1 Owur Contribution

We introduce one-time traceable ring signatures and we construct them from a
random oracle only. One-time means that the security properties — unforgeability,
anonymity, non-frameability — are guaranteed only as long as a signer uses the
secret key at most once. This allows us to provide a stronger public traceability
guarantee that prevents denial-of-service attacks. Concretely, differently from
the previous tag-linkability property achieved in [19,10], our public traceability
property guarantees that if Alice signs twice, her identity will be revealed even
if she signed the same message.

The one-time flavor can be a feature rather than a limitation in settings where
signatures are used to endorse statements. Furthermore, our one-time traceable
signature can be extended to many-time assuming a common public immutable
state (e.g., the blockchain), using standard techniques that we discuss later in
this section.

Our one-time traceable ring signature scheme advances the state of the art
both from a practical and a theoretical perspective. From a practical standpoint
the signing algorithm is extremely fast, requiring less than a second even for a
ring of 1024 signers (see Table 1), and could be practical for applications such
as the blockchain treasury decision discussed above (we stress however that we
don’t expect it to be suitable for applications such as anonymous payments).

Ring Size|Signature Size|Signing Time (sec)
26 131 KB 0.034
27 262 KB 0.068
28 524 KB 0.135
29 1 MB 0.273
210 |12 MB 0.760

Table 1. Signature size and running times of our one-time traceable ring signature
scheme Yors (described in Fig. 1) when H and G are instantiated with SHA3, and
security parameter A = 128.

The signature size of our scheme is N - A\? bits (where N is the ring size
and A is the security parameter) and outperforms the size of the post-quantum
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secure traceable signature of [10] (which size is N-240KB). For instance, for a
ring of size 100, our scheme produces a signature of 204 KB versus the 24,000
KB required by the scheme of [10]. In Table 3 we compare the running time
and size with various existing anonymous signatures that are linkable but not
traceable (see Section 1.3 for details).

Finally, our signature scheme is extremely simple, and can be easily under-
stood by anyone who understands the security properties of an hash-function
modeled as a random oracle. We see this as an important advantage of our
scheme since it makes it less prone to implementation errors and more agile
(since we use the hash function as an oracle, it is easy to swap between imple-
mentations).

From a theoretical standpoint, our signature scheme is the first (one-time)
ring signature that uses a hash function in a black-box way. Existing ring signa-
tures rely on hardness assumptions that have a trapdoor flavor and hence re-
quire structure, e.g., trapdoor one-way permutation [33] or Cameleon Hash Plus
3 [27] functions. Others rely on specific hardness assumptions such as RSA [15],
DDH [25,19] or Ring-LWE, NTRU, SIS/ISIS [4,36,27], syndrome, LWE [10,8].
The only ring signatures based on generic symmetric-key type of assumption,
such as pseudo-random functions (PRF), rely on zero-knowledge proofs (e.g.,
[21]) and use the underlying primitive in a non-black-box manner. See Remark 1
for further discussions on non-black-box usage of cryptographic primitives.

Finally, our signature scheme reduces the gap between what we can achieve
from black-box access to symmetric-key primitives in the non-anonymous setting
and the anonymous setting. Indeed, it is well known that in the regular, non-
anonymous, setting we can construct one-time signature schemes given only
black-box access to a hash function [22,28] %. In contrast, in the anonymous
setting, even for one-time security, no construction was known. (But we stress
again that it is known from non-black-box use of symmetric-key primitives).

Remark 1. Black-box vs Non-black-box Usage of a Cryptographic Primitive. Ring
signatures can be constructed generically using zero-knowledge proofs as fol-
low. To sign a message on for a ring of N public keys, simply compute a non-
interactive zero-knowledge proof of knowledge of the secret key associated to
one of the N public keys. While this approach allows one to use any one-way
function, note that the size of the resulting zero-knowledge proof depends on the
specific one-way function that one chooses. Hence, different one-way functions
lead to different performances in both size and running time. As a consequence,
to improve performances, existing works (e.g., [21]) use less standard one-way
functions, such as lowMC [1], that yield shorter zero-knowledge proofs. In con-
trast, when a primitive is used only as an oracle, that is, in a black-box manner,
the signature size is independent of the complexity of the particular choice of the

3 Chameleon Hash Plus were introduced in [27], it is a special hash function equipped
with a trapdoor such that given any value y, a party P can produce z’ s.t.
H(pkp,z') =y.

4 Precisely, one-way functions are sufficient for one-time signatures, hash functions are
used for succinctness and reusability.
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primitive, but it depends only on the security parameter and how it relates with
the output size of the function. The concrete running times will vary of course
with the actual implementation of the oracle, but not the size. Even more, if
the oracle is implemented via hardware (e.g., GPU), the running time is dra-
matically reduced. Finally, note that hardware implementation of the primitive
cannot be leveraged when the primitive is used in a non-black-box manner.

On the one-time flavor We observe that, when an immutable shared state is
available — as it is the case in a blockchain system — the one-time flavor is not a
strong limitation since the common state can be leveraged to bootstrap the one-
time use to many-time use, following standard techniques. For instance, consider
the scenario where members associated with the governance of a blockchain are
identified with a permanent public key. Whenever there is a topic of discussion on
which the members are asked to give opinions, members can create a one-time,
per-topic key and sign this key using their permanent key. Once all interested
members have published their per-topic key (or a certain time has elapsed), the
ring has formed. Each party can now sign their message anonymously on behalf
of the ring for the specific topic, and no party can express more than one opin-
ion/vote on the topic without being caught. This process can be bootstrapped
so that when anonymously signing a message for topic 1, the party also signs
the next one-time public key for topic 2, that will be added to the next ring.

1.2 Our Technique

The idea behind our traceable one-time ring signature scheme is simple. It lever-
ages the equivocability of Naor’s bit commitment scheme [31].

To start, let us recall Naor’s commitment scheme. This scheme consists of
two rounds. The first round is a random string R of 3A bits, chosen by the
receiver of the commitment, where A is the security parameter. The second
round is the commitment ¢ computed as follows: ¢ := G(s) ® (b- R), where G is
a Pseudorandom Generator (PRG) with expansion from A to 3A bits, and (b- R)
means the multiplication of each bit of R with the bit b, where b is the bit the
sender wants to commit to. To open a commitment ¢ (computed over the string
R), the sender simply sends the PRG seed s (that was used to computed c).
From the seed s, the receiver can then infer if the bit committed in ¢ was 0 or
1 by simply trying to recompute ¢ as either G(s) (b =0) or G(s) ® R (b = 1).
Naor’s bit commitment scheme is statistically binding. However, if the string
R instead of being chosen at random, were computed in an “equivocal mode”,
that is, as R = G(so) ® G(s1), for two random seeds sg, s1, the commitment can
be computed in such a way that can be equivocated, that is, opened as 0 or 1.
This is done as follows: to commit, one always sends ¢ = G(sp). Then in the
decommitment phase, one sends s if it wishes to open to bit 0 and s; otherwise.
The seeds sg, s1 are therefore trapdoors that can allow the sender to open the
same commitment ¢ adaptively to either 0 or 1. Naor’s bit commitment can
be straightforwardly extended to string commitment. To commit a A-bit string
equivocally, one simply needs A strings (Ry,...,R)) computed in “equivocal
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mode”. As we will see shortly, these strings will be the public key in our traceable
ring signature.

Given this equivocation property of Naor’s commitment, we can immediately
create a one-time traceable ring signature as follows.

Public Key of a Member. When a member ; wants to join the system, it
will compute strings (Ry,...,Ry) in equivocal mode and set them to be their
public key. More precisely, to generate its own pair of public and private signing
key, a ring member U; proceeds as follows. It chooses A pairs of random seeds
sy ; and s} ;, for j € [A] (each seed is A bits) and computes the j-th component of
its public key as pk; ; := G(s?’j) & G(sllj) The final public key that U; publishes
is pk; = (pk; 1, -, pk; »), and it has size A(3\). The values s{ ; and s} ; are the
secret trapdoors that U; will use as a secret key to sign a message.

Ring. A ring R of NV public keys therefore corresponds to the vector of keys
(pky,...,pky), where each pk;, = (pk;; , ..., pk; ), is the vector of A first
rounds of Naor’s commitment chosen by member U; and computed in equivocal
mode.

Signature. To sign a message m, on behalf of the ring R of size |R| = N, a
user U; will proceed as follows. It will choose N random strings z1,...,xy, one
on behalf of each member of the chosen ring R, while it sets x; = 0. Then, it
will commit to each string x, using the public key of member ¢/,. Indeed, recall
that the public key of pk, is nothing but the first round of Naor’s scheme that
can be used by anyone to compute a commitment to a string. Hence, the signer
U; will compute N commitments cq,...,cy, using the N public keys in R, and
the i-th commitment is computed in equivocal mode. Once the commitments
are fixed, the signer evaluates the random oracle H on input the message m to
be signed, the ring R, and the commitments cq,...,cy just computed. It then
obtains the value z = H(m, R, ¢1,...,cy) which is called the target. Note, the
target z is a completely random string (due to the properties of the random
oracle H), that is sampled independently of the strings z1, ..., 2y committed in
Ci,...,Cy. After the target z is learnt, in order for the signature to be accepted,
the signer must somehow show that the xor of the openings of all commitments
1 @ - @ xy is equal to z. Since z1 B --- ® xxy were committed before the
random oracle evaluation, this relation does not hold (with all but negligible
probability). Hence, in order for the signer to satisfy the xor relation, it needs
to equivocate at least one commitment. Since the signer U; knows the trapdoors
associated to the public key pk;, it can indeed equivocate the i-th commitment
c; so that it opens to a new string x; that satisfies the xoring relation above.

The actual signature will consist only of openings, i.e., the PRG seeds, of the
N string commitments. Note that among these PRG seeds, which are computed
on-the-fly at random, there are the secret PRG seeds (i.e., s ; or s} ;) that U;
had chosen when computing its public key, and that are used specifically to
equivocate the commitment. Looking ahead this means that upon a signature
U; is exposing a share of the secret key. If the same U; tries to sign twice, it will
end up using the other share and hence it will be traced. Our scheme is formally

described in Figure 1.
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Note that the idea of using some form of “trapdoor primitive”, in combination
with a target value z computed via the random oracle, is not new at all. In fact it
is the pillar of most ring signatures. Trapdoors, however, are typically connected
to cryptographic objects that have some structure and all previous works that
follow this design did require specific structured assumptions (e.g., Discrete Log,
Syndrome Decoding, Lattices, etc). The new insight of our paper is simply that,
in the settings where traceability is required, one-time trapdoors can suffice, and
we show that they can be derived very cheaply from an unstructured object such
as the random oracle.

Security of Our Scheme. Next, we provide the intuition behind the security
guarantees that our scheme provides. First, we discuss the security definition we
adopt. We use the standard definition of traceable ring signature of [19], and
adapt it to the one-time setting. Informally, a traceable one-time ring signature
must satisfy the following properties: (1) anonymity, as long a party signs up
to one message no-one can distinguish her identity, (2) traceability: there exists
an algorithm Trace that given two signatures 07,09 over a ring R, it outputs
an identity pk € R if both 01,02 were computed with the secret associated
to pk; (3) exculpability (also knows as non-frameability): no malicious party
should be able to “frame” an honest party pk who signed only once; (4) one-
time unforgeability: no malicious party can sign on behalf of a party who signed
only once (this property is implied by exculpability and traceability).
We briefly argue why our scheme satisfy the above security properties.

Anonymity is guaranteed by the random oracle properties. Indeed, the only
difference between a signature computed by member U; and one computed by
member U{; is in the position where the equivocation seeds are placed. If a sig-
nature is coming from U;, in position i we observe the equivocation seeds (either
s ; or s; ;) used to computed the public key pk;, while for any other position
q # i we observe random PRG seeds that have no connection with how the
public keys pk, was computed. If the signature was computed by U; we will
observe the same but in position j. Now, first observe that the equivocation
seeds (s? ; and sz1 ;) were chosen uniformly at random when the public key was
computed. Then observe that in the one-time setting, the adversary see at most
one signature from each party. Hence it will only observe at most one equivoca-
tion seed (and never both). Computationally, an equivocation seed picked when
computing the public key pk; is distributed as a random PRG seed computed
on the fly for the commitment on behalf pk,. Hence, given any signature, it is
computationally infeasible to tell where the secret keys are placed (the formal
argument is provided in Lemma 1).

Traceability follows directly from the fact that to successfully sign, a member
U; must use, and hence reveal, one of its equivocation seeds. If f; computes two
distinct signatures (even on the same message) o, o', it must hold that they
had two different targets z, z’. Due to the random oracle properties, these target
must be different in many positions. Now, recall that, in order to sign, a member
U; must equivocate the bit commitments c; to hit a bit string x} that satisfy
the xor relation with the target. Now, if there are two targets z, z’ that differ in
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many positions, this means that there is at least on bit, say j, of 2} such that
the j-th bit of ] should be equal to 0 to accommodate for target z for o while it
should be 1 to accommodate for target 2z’ for /. This will require to use seed s?’ j
in signature ¢ and seed 311 ; signature o’. Using o, 0’ it is therefore possible to
recompute the j-th component of I;’s public key and hence de-anonymize these
signatures.

Exculpability holds because in order to successfully frame a signer with public
key pk;, the adversary needs to find two seeds s, s’ such that pk, ; = G(s") ®G(s)
for some index j. This is computationally infeasible (due to the one-way property
of the random oracle), even if the adversary has observed one signature from
pk; — and therefore she has seen one of the seeds — and even if the adversary
can create public keys maliciously and adaptively on honest public keys and
signatures.

On Post-quantum Security. Our proof of security is carried in the classic ran-
dom oracle model (ROM). Namely it assumes that a post-quantum adversary
only has classical access to the Random Oracle (i.e., cannot make queries in
superposition). This is consistent with all previous (traceable) ring signatures
(e.g., [27,8,10]) that aimed at post-quantum security. The Quantum ROM [9],
introduced by Boneh at al., considers an adversary that has quantum access
to the Random Oracle and can make queries in superposition. In this setting,
the practice of programming the Random Oracle, which is standard in the clas-
sic ROM, cannot be always applied and must be performed and analyzed very
carefully. Exciting recent work [16,26] show techniques that facilitate the use
programming in the QROM, paving the way to closing the gap between proofs
in the classic ROM and QROM. We leave it as a future work to provide a security
analysis of our scheme in the QROM model.

1.3 Performance Comparison

We compare our scheme with most recent traceable and linkable ring signatures
that are post-quantum resistant (in the classic random oracle model). Specifi-
cally, we compare with the traceable ring signatures of Branco and Mateus [10]
based on syndrome decoding, the linkable ring signatures Calamari and Falafl
of Beullens et al. [8] that are based on isogeny and LWE, and the linkable ring
signature Raptor [27] by Lum Ho Au and Zhang, based on NTRU and SIS. We
compare w.r.t. hardness assumptions (Table 2) and performances. The latter are
measured in terms of signature size and signing time (Table 3). We stress that
this is not an apple to apple comparison, firstly, because our scheme provides
only one-time security while the others provide many-time unforgeability and
non-frameability, and secondly, because [8] and [27] are not traceable. In terms
of assumptions, thanks to the one-time setting, our scheme uses the minimum
assumption — only a random oracle —, while all other schemes require specific
hardness assumption in addition to a random oracle. We also stress that, like
ours, all such works only consider the classic random oracle, and leave it as a
future work to analyze the scheme in the quantum random oracle model. For
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the running times, since our scheme only requires hash function evaluations, it
is the fastest °. For the signature size, our scheme outperforms the traceable sig-
nature of [10] and it is asymptotically better than the linkable ring signatures
of [27]. Calamari and Felafl [8] however have much better signature size than
ours (but they are not traceable). For our implementation we used an Intel(R)
Core(TM) i7-5600U CPU @ 2.60GHz, using only a single core and 1GB of RAM.
We instantiated the random oracle with SHA3 implemented in GO ©.

Public key and Signature Size. We recall that the public key is 3)\? bits
(as explained in Section 1.1). Hence, for A = 128, the public key of each party
is fixed to be 6KB. Computing a public key only consists in choosing 2\ seeds,
computing 2\ PRG evaluations and xoring. The signature size depends on the
size N of the ring, and is computed as N - A\2.

Hardness Assumptions|Random Oracle
Branco at al. [10]| Syndrome Decoding YES
Calamari [8] Isogeny CSIDH-512 YES
Falafl [8] Lattices MSIS MLWE YES
Raptor [27] Lattices NTRU YES
lThis work [ none [ YES

Table 2. Hardness Assumptions used in most recent post-quantum secure link-
able/traceable ring signatures. Our work provides one-time security.

(Ring Size) N
93 96 910
Branco at al. [3]|1920KB - 1536KB - 245MB -
Calamari [8] 54KB  79sec | 83KB 16 min | 10KB 2.7 hrs
Falafl (8] 30KB < 1lsec |32KB 1lsec |33KB 9sec
Raptor [27] 11KB 0.017 sec| 82KB > 0.06 sec|1.3MB -
[This work [ 16KB 0.004sec[131KB 0.03 sec [ IMB 0.7 sec]

Table 3. This table shows how the signature size and running time varies with the
size of the ring N, when the security parameter is 128 bits. (Note that for Raptor [27],
the reported values are for only 100 bits of security), with 64 bits of quantum security.

® Note that this is true even if we add to the signature time, the time to computed
the public key.
5 https://godoc.org/golang.org/x/crypto/sha3#ShakeSum128
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2 Related Work

In this section we review the literature on ring signatures. Most of the existing
work are not traceable, hence they are not directly relevant to our result.

Ring Signatures. Ring signatures were introduced by Rivest, Shamir and Tauman
in [34]. Their construction is based on any trapdoor permutation (or trapdoor
function) and is proved in the ROM [5]. Bender, Katz and Morselli in [6] for-
malized ring signatures more carefully and showed a scheme based on general
assumptions and ZAPs (i.e., two-round witness indistinguishable proofs) treating
the underlying cryptographic primitives in a non-black-box manner. Libert et
al. in [23] construct the first ring signature with size logarithmic in the ring from
a lattice-based accumulator. Groth and Kohlweiss [20] show how to construct
logarithmic ring signatures from 1-out-/N commit-and-prove scheme from DDH
assumption, this scheme was improved by Libert, Peters and Qian in [24]. Chan-
dran, Groth, and Sahai [12] show a ring signature scheme with signature size
O(\/N ) based on the on composite order groups with a bilinear maps. Dodis
et al [15] provides a constant-size ring signature scheme based on RSA accu-
mulators and the strong RSA assumption, and Nguyen [32] extends it with a
pairing-based accumulator. Derler, Ramacher and Slamanig [14] show the first
ring sub-linear ring signature scheme based only on symmetric primitives. Their
construction is in the random oracle model, it is non-black-box and non-linkable.
Katz, Kolesnikov and Wang [21] later provided optimized zero-knowlege proofs
that can be used to build shorter and faster ring signature for a pseudo-random
function only, used in a non-black-box manner. Lattice-based ring signatures
have been shown in [27] by Lu, Ho Au and Zhang from the SIS and NTRU
assumption. Beullens in [7] shows more efficient Sigma protocols for the MQ,
PKP and SIS problems, that yield to the construction of more efficient ring sig-
natures based on the same problem. Beullens, Katsumata and Pintore in [8] and
Esgin et al. [17] construct efficient ring signatures from the isogenies and lattices
problem. The scheme shown in [8] scale very well with the number of signers,
by using the Merkle Tree in a very elegant way and avoiding using the circuit
of the hash function. Unfortunately, signing (and verification) time is very high,
with 79s for a ring as small as 8 people for the isogeny-based signature. This
is due to the fact that the construction requires the parties to perform expen-
sive group “actions”. For the lattice-based implementation the bottleneck is not
the lattice arithmetic, but rather the use of symmetric primitives (i.e. hashing,
commitments and expanding seeds).

Linkable Ring Signatures Linkable Ring Signatures were introduced by Liu, Wei
and Wong in [25]. They differ from traceable ring signatures in that they only
allow to detect that two signatures are linked — i.e., computed by the same signer
— but the identity of the signer is never revealed. Post-quantum resistant linkable
ring signatures have been provided in [36,27,4], which have large signatures and
withstand a somewhat weaker adversary who cannot maliciously craft its keys.
Very recently, the Calamari and Falafl shown by Beullens et al. [8] yield much
shorter linkable ring signatures, though the running times are not practical in
some cases (see Section 1.3). These schemes are not traceable.
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Traceable ring signatures. Traceable ring signatures were introduced by Fujisaki
and Suzuki in [19], who constructed them based on the DDH assumption and the
Fiat-Shamir heuristic, in the ROM. Fujisaki [18] presents a sub-linear scheme
(where the size of the signature is O(v/N) if N is the size of the ring), which
trades the RO assumption with the assumption that there exists a trusted com-
mon reference string (CRS). Ho Au et al. in [2] propose a construction based on
bilinear maps. All such constructions are based on variants of the hardness of
the discrete logarithm problem, and are not post-quantum resistant.

3 Definitions

Notation. We use notation [n] to denote the set {1,...,n}. We use y < F(z) to
indicate y is the output of a randomized algorithm F on input z and y := F(x) if
F is a deterministic algorithm. PPT stands for “probabilistic polynomial time”.
A function negl is negligible if for every positive polynomial p there is an integer
ng such that for all integers n > ng it holds that negl(n) < ﬁ.

3.1 One-time Traceable Ring Signatures

One-time Traceable Ring Signatures. A ring signature is a signature computed
on behalf of a group of N public keys pkq,...,pky, called the ring. To com-
pute a ring signature, a signer must know one of the corresponding secret keys,
e.g., sk;. Ring signatures provide two properties: unforgeability and anonymity.
Unforgeability means that only members of the ring can produce valid signa-
tures. Anonymity means that given a ring signature o on behalf of the ring
R C {pkq,pk,,...} it is infeasible to distinguish which secret key was actually
used to compute the signature. For simplicity of exposition we will always assume
that the ring is the set of all N public keys. A traceable ring signature [19] poses
restrictions on the number of times a signer can anonymously sign a certain mes-
sage. Namely, if a signer signs a message two times, then the two messages will
be linked. We introduce one-time traceable ring signatures where all security
properties hold assuming that a secret key is used at most once. We adapt the
definition of traceable ring signatures of [19] to the one-time setting, and we
provide a stronger traceability guarantee.

Definition 1. A one-time traceable ring signature scheme is a tuple of PPT
algorithms (GenKey, RSign, RVer, Trace) where:

— Key Generation: (pk;, sk;) < GenKey(1*) A randomized algorithm run by
a user U;. It takes in input the security parameter A and outputs a verification
key pk; and a secret key sk;.

— Signing Algorithm: (R, o, m) + RSign(R, m, sk;) On input a ring R C {
pky, ..., pkx}, a message m and a secret key sky, it outputs a signature o.
We assume that |R| > 2 and each public key in the ring is distinct.

— Verification Algorithm: b <+ RVer(R,m, o) it verifies a signature o for
message m and w.r.t ring R. It outputs 1 if the signature verifies, 0 otherwise.



12 Alessandra Scafuro and Bihan Zhang

— Trace: Trace(R,my,01,ma,02) on input two distinct signatures o1 and oo
on messages mi, my it outputs either “indep” or pk € R.

Completeness. A one-time traceable ring signature scheme is complete if: for
all (pk;,sk;) + GenKey (1), for all R C { pky, ..., pky}, for all & + RSign( R,
m, sk;) s.t. I € [N]: Pr[RVer(R,m,o0) = 1] =1
One-time Anonymity. This property guarantees that if an honest signer com-
putes a single signature w.r.t an arbitrary ring R, the secret key used by the
signer is anonymous w.r.t the honest public keys present in the ring R. To cap-
ture this, and following the definition of anonymity provided in [19], in the
one-time anonymity game Exp?{"}}ﬂm'EA"On all keys are maliciously computed by
the adversary A, except for two keys (pko, pk1) which are honestly generated by
the challenger. In the challenge phase, the adversary chooses a ring R, contain-
ing the keys pk, and pk,, and a message m to sign. The challenger returns a
signature ¢* which is computed with one of the secret keys skj, where b is chosen
at random. The adversary wins if it guesses the bit correctly. To capture the
one-time setting, our adversary cannot observe any previous signature from pk,
or pk;. Concerning the other public keys besides pk,, pk;, note that the adver-
sary “chooses” the ring R, hence it is assumed that the adversary controls those
public keys and can obtain any signature computed by these other public keys
(again, this follows the definition of [19]) 7. Also notes that the adversary gets
at most one signature. This capture the fact that anonymity is guaranteed if the
honest party only signs at most once in an absolute sense. If the party uses the
same secret keys with different rings, no anonymity is guaranteed.

Experiment Exp?‘{:gimeAm" (1™

— Generate keys. Run (pk,, sko) < GenKey(1*) and (pk,, sk1) < GenKey(1*) and
send (pky, pk,) to A.

— Challenge phase. Upon receiving a message m and a ring R of public keys from
the adversary proceed as follows. If pk,, pk, are in R, pick bit b < {0,1} and
output o* < Sign(R, m, sks).

— (Decision). When A outputs b’, output 1 iff b =b'.

Definition 2 (One-time Anonymity). A one-time traceable ring signature
scheme II is anonymous if for all PPT adversaries A, there exists a negligible

function negl such that: Pr Expa'jleYTimeA"""(lk) = 1} < 1+ negl(})

Public Traceability. Traceability is a security property that protects the sys-
tem against malicious users. To capture this, in the security game we assume that
all keys are computed by the adversary, and we want that, given N adversarially-
crafted keys, it should be infeasible for the adversary to produce N 41 signatures

" A stronger anonymity definition introduced in [6] demands that an adversary cannot
break anonymity of a honest ring signature even if it knows the secret keys all
honest parties. As remarked in [19] (Remark 2.3), this property cannot be achieved
in combination with public traceability.
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on N + 1 distinct messages without being traced. We note that our definition is
stronger than the traceability definition of [19]. Indeed, in the latter, traceability
is considered a correctness property and not a security concern. Thus, [19] only
guarantees that two messages signed with the same secret key are linkable, but
the identity of the malicious signer is not necessarily revealed. Instead, in our
definition, we guarantee that if the same secret key is used twice, to compute
two distinct signatures, the corresponding public key is detected and revealed
by the Trace algorithm. The security game Exp ' is formally defined below.

Experiment Exp°;(1%)
1. A on input the security parameter 1* outputs a ring R of N public keys, and a
list of N + 1 distinct signatures for the same ring R:
{(m1,01),.... (mn41,0n41) )
2. Return 1 if:
(a) RVer(R,m;,0;) =1 foralli € [N + 1] and
(b) Trace(R,mi, o5, mj,05) ¢ R for all 4,5 € [N + 1], where ¢ # j

Definition 3 (Traceability). A one-time ring signature scheme II is traceable
if for all PPT adversaries A, there exists a negligible function negl such that:

Pr [Expﬂfﬁe(lk) =1| < negl(})

One-time Exculpability (Non-frameability) This property guarantees that
if an honest ring member signed at most once, it cannot be framed. To capture
this, we consider a target public key pk that is honestly generated, while all
other keys are maliciously generated by the adversary. The goal of the adversary
is to generate rings R, R’ and two signatures o, o’ such that algorithm Trace will
output the target key pk. The adversary can ask for one signature computed by
pk on an arbitrary ring and message. More formally, the experiment is described
below:

Experiment Expl?fF(1%)

1. Generate target key. Run (pk, sk) < GenKey(1?) and send pk to A.

2. Signature request. Upon receiving m, S, pk from the adversary, where S is a set
of arbitrary public keys and m is the message the adversary wants to see signed.
If pk € S then output o < Sign(S, m, sk).

3. Output. Upon receiving (R, m, o) and (R, m’, ") from the adversary. Output 1 if
Trace(R,m,o,m’,0’) = pk.

Definition 4 (One-time Exculpability (Non-frameability)). 4 one-time
traceable ring signature scheme I is exculpable (non-frameable) if for all PPT
adversaries A, there exists a negligible function negl such that:

PriExpfne(1*) = 1] < negl(\)
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Remark. One can also consider a more general experiment where there are

several target honest keys. In this case the adversary could ask for signatures for
each target party and then attempt to frame one of them. As remarked in [19] a
construction satisfying the simpler experiment with one target key would satisfy
also the more general one.
One-time Unforgeability. As noted in [19] (see Theorem 2.6, Pag. 8 ) if a
signature scheme is traceable and exculpable, then it is also unforgeable. The
intuition on why this is true is that, if it was not the case, namely, if the scheme
is exculpable but not forgeable, then the adversary producing the forgery can
be used to break exculpability and frame an honest user. On the other hand, if
the forgery could not be used to frame the honest user, then this means that
the scheme is not traceable. Thus, in this paper we will not explicitly prove
unforgeability.

4  One-Time Traceable Ring Signature Scheme

The high-level idea of our one-time traceable ring signature scheme has been
provided in Section 1.1. In this section we describe the scheme formally and
provide the formal security proof.

Notation. For a bit string « we use notation z[j] to denote the j-th bit of
x. We use the subscript notation pk; ; to denote the j-th element of vector pk;.
Namely, pk;= (pk; 1, - .., pk; ). Let H : {0,1}* — {0,1}* and G : {0,1}* —
{0,1}3* be two random oracles. The one-time traceable signature scheme YXots =
(GenKey, RSign, RVer, Trace) is described in Figure 1.

Theorem 1. If H : {0,1}* — {0,1}* and G : {0,1}* — {0,1}** are random
oracles, then scheme Yots = (GenKey, RSign, RVer, Trace) in Figure 1 is a one-
time traceable ring signature.

One-time Anonymity If a signature is computed by signer pk;, this means that
the [-th set of commitments is equivocal, while the others are not. Recall that
being equivocal means that each seed 7 ; provided as part of the signatures has
the property that pk; ; = G(r ;) ® G(71;) for some 7 ;. For any other I # [
instead no such 7 ; is known. Hence, in order to break anonymity, an adversary
should be able to distinguish whether the seeds present/do not present such
property. We prove that it is infeasible for any PPT adversary to distinguish
if this is the case through a sequence of hybrid games. We do so by consider-
ing a mental experiment where the signature is computed by programming the
random oracle rather than using the equivocation property of Naor’s commit-
ment. In such experiment, no secret key is used, all commitments are opened
without a trapdoor, hence, a signature carries no information about the signer.
The formal proof consists of a sequence of hybrid games, from the real exper-
iments ExpaT}ETr:eA"O”(lA) where signatures are computed using the secret keys
and equivocating the commitment, to the final experiment, where all signatures
are computed by programming the random oracle and no commitment is equiv-
ocated.
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One-Time Traceable Ring Signature Scheme: Yots

Key Generation GenKey(1*): A member U; joins the system as follows:
1. Pick 2X seeds: ) ; « {0,1}*, si; « {0,1}* for j € [A].

2%

2. Set pk; ; = G(s?,j) ® G(s}’j), and sk;; = (s?’j,sz{j).
3. Output public key pk; = (pk; ||...|Ipk; ) and secret key sk; =

(Sk‘i’l, ey Ski’)\).
Signature RSign(R,sk;,m). A member U, signs a message as follows.
1. Parse R = (pky,...,pky). Parse the secret key sk; =
(S?,h 511,17 AR 5?,)\3 Sll,k)'
2. For all i #1
(a) Commit to a random string z; € {0,1}* using the i-th public key pk;.
i. For j € [A], commit to the j-th bit of x;: (1) pick a seed r;; <+
(0,11 (2) compute s = G(ri)) & (wilj] - D, ,):
ii. Set C; = [Cz‘,l, ey Ci,/\].
For i =1, set ¢; := [G(s]1),--.,G(s2)]-
Compute target z := H(R,m,c1,...,cn).
5. Compute adjustment string z; := €, x; ® z. (Recall, z; were defined in Step
2a)
6. Equivocate the [-th commitments c; so that they open to zj. Namely: set
seed 15 as ry,; = szljm for each j € [A].
7. Signatures o:= (z:[j], 7 7)ic(n],jen- Output (R, o, m).
Verification RVer(R, o, m).
1. Parse R = (pk;,...,pky), where the i-th key is: pk; = (pk, ;,...,pk; ). If
keys are not all distinct (or are not of the correct size) abort.
2. Parse o = (7i,5, %i[j])ie[n],jelr]-
3. Compute commitments: if z;[j] = 0 set ¢;; = G(rs,;), else set ¢;; =
G(T@j) @pki,j' Set ¢; = (01‘717 ey Ciy,\).
4. Compute 2’ := H(R,m,ci,...,cn). If 2" = @,y i accept the signature,
else reject.

Ll

Trace Trace(R,m1,01,m2,02).
1. Parse o1 = (ai,j,ai,j)ie[N]yje[)\].
2. Parse o2 = (bi,j’ﬁi,j)ie[N],je[/\]-
3. If there exist a public key pk; € R and a j such that G(a; ;) ®G(8:,5) = pk, ;
then output (1, pk;). Else output 0.

Fig. 1. One-time Traceable Ring Signature Scheme Yors.

Lemma 1 (One-time Anonymity). If H : {0,1}* — {0,1}* is a random
oracle and G : {0,1}* — {0,1}** is a PRG, then scheme Yots achieves one-
time anonymity according to Definition 2.

Proof. Towards a contradiction, assume that there exists a PPT adversary A
that wins game Expai'eET;Tr:eA"O" (1*) with non-negligible probability p(\). We show
an adversary that distinguishes the output of G with the same probability. The
proof goes by hybrid arguments, and leverage the programmability of the random
oracle H.
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Hybrid 0. Real World Experiment. Hybrid Hj corresponds to experiment

OneTimeAnon

ExpA"Some (1?) instantiated with Yots. By contradicting hypothesis we as-

sume that there is a PPT adversary A that wins game Expa?egoi:eAm"(l)‘) with
probability 1/2 + p(A).

Hybrid 1. Programming H and Avoiding Equivocation. In this experi-
ment we slightly modify the computation of the signature in the following way.
The value z is not computed as z := H(S,m,cy,...,cy). Instead, in this exper-
iment the challenger fixes values (z1,...,zy) and computes z = € z;. Later,
the challenger programs the output of the RO so that when queried with input
qg=(R,m,cq,...,cy) it outputs z. The commitments ¢; associated to public key
pk; however are still computed as equivocal and the secret key is used to open
them, however, the value z; that must be opened to is defined in advance. Note
that in this experiment the challenger can abort if two events happen: Event
1: the adversary queried a value ¢ = (R,m,cq,...,cn) before seeing the signa-
ture. Event 2: the value z chosen by the challenger was already used to answer
previous random oracle queries.

Analysis. The difference between experiment Hy and H; is only in the way the
output of H is computed. Hy and H; are distinguishable only if Event 1 or Event
2 happens, which happen with negligible probability as we show in Lemma 2 and
Lemma 3.

Lemma 2. If H is modeled as a programmable random oracle, Pr[Event 1] <
2]\,%, where t is the number of queries to H.

Proof. Event 1 happens when adversary A queries the RO with input ¢ =
(R,m,cq,...,cn) and later exactly the same commitments (cq,...,cy) are gen-
erated by the challenger. Since each c; is a Naor’s commitment and is the output
of the RO on a randomly chosen seed, the probability that A queried values
cy,...,Cn prior to see the signature corresponds to guessing such values, which
happens with probability less than ﬁ

Lemma 3. If H is modeled as a programmable random oracle, Pr[Event 2] <
2%, where t is the number of queries to H.

Proof. Event 2 happens when the output z chosen by the oracle challenger was
already provided as the output of H from previous queries. Since each output of
H is simulated by sampling a string uniformly at random in {0, 1}*, this events
happen with probability 2% where ¢ is the (polynomial) number of queries.

Hybrid 2. Replacing honest public keys with truly random strings.
In Hybrid Hy the honest keys are truly random strings instead of the xor of
two pseudorandom values. Note that since the random oracle is programmed,
there is no need for trapdoors in this experiment. An adversary distinguishing
Hy from H;p can be reduced to a PRG distinguisher. Since no secret key exist
in the system, no identity can be leaked in this experiment. This concludes the
proof of one-time anonymity. O
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Traceability. This property guarantees that if two signatures were computed by
the same signer, they will be linked and the identity of the signer detected. To
win the traceability game Exp '™, an adversary must provide a ring R of N keys
and N + 1 distinct signatures o1,...,0ny4+1 on N + 1 messages my,...,My41,
such that for any pair (mg,04), (Mms, 0p), Trace(R, mq, 04, My, 0p) outputs 0, i.e.,
no pairs of signatures is linkable. Intuitively, this is not possible since, in order
to compute N + 1 distinct signatures the adversary needs to compute at least
N + 1 equivocal commitments and thus use the trapdoor twice, hence revealing
which key was used.

We now argue this claim more formally. First, recall that according to the
Trace procedure two distinct signatures o,, 0, for messages mg,my; are linked
when the following condition is satisfied: There exists a tuple a, b, 4, j, such that:
G(Tﬁj) D G(’I",IZ’J) = Ki,j-

Now, assume that an adversary is able to provide N + 1 distinct signatures
w.r.t the same ring R = (K71,..., Ky) of adversarially chosen keys. Namely, the
adversary provides:

op = mhz! (@i 5> 7i j)ieNjelN

N+l N N+1  N+1
+17Z + (miJL 7ri7j+ )iG[N],jG[)\]

Recall that to verify a signature o5 the verifier computes for each i, 7, cf’ i=
G(rf’j) @ 20[j] - Ki; and then checks that: 20 = H(m5,cf)j)iE[N]7je[)\]. Now,
since the signatures are distinct, each must have a different target z. Since H is
modelled as a RO, the following observations hold:

ON = m

1. For each pair a,b, values 2%, 2" differ in at least v > \/2 positions w.h.p.
because they are the output of H.

2. For any §, adversary learns 2z’ only after being committed to the values :v‘f[j]

3. Due to (1) and (2) the adversary needs to equivocate at least one bit com-
mitment to guarantee that P, ; z0[j] = 2°.

4. To equivocate one commitment ¢ ; which is either G(r{ ;) or G(r{ ;) ® K ;,

one needs to provide another seed r}; such that K;; = G(ry;) @ G(r} ;).

The above observations simply tell us that in each signature there is at least
one equivocal opening, that is, a real seed rf)j such that K; ; = G(rf’j) & G(r').
If the adversary provided only N signatures, this means that for each signature
one seed (trapdoor) has been provided. Now if the adversary provided N + 1
signatures then, for at least one of the keys the other seed must have been
provided. In which case, that public key is linked. To complete the proof, we need
to discard the possibility that an adversary is able to find multiple pairs of seeds
that yield to the same public key K ;. Namely, the adversary could find two pairs
sy T such that K j = G(rl;) @ G(r?;) and K, j = G(r} ;) ® Gra .
Since G is modeled as a Random Oracle, then the probability of finding such
tuple is negligible.

Ezxculpability (Non-frameability). In the exculpability game the adversary par-
ticipates at the same experiment as the anonymity experiment Exp©neTmeAnen
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but without the challenge phase. The goal of the adversary here is to output
two signatures (R, m, o) and (R,m’,¢’) with m # m’ such that there exists a
honest public key pk; € H such that: (1) pk; € RN R'; (2) SigVfy(R,m,0) =
SigVfy(R',m’,c’') = 1; (3) Trace(R,m,o,m’,c’) = pk;, 1.

Recall the algorithm Trace shown in Figure 1. The condition for linking a key
pk; ; is that for two seeds ; ; and §; ; it holds that: G(a; ;) ® G(Bi ;) = pk; ;-
Note that in Exp©®mTmeA™" the adversary is able to observe at most one signature
computed under secret key pk,, and thus he is able to learn at most one seed
5?7 ; for each j € [A]. From this view the adversary can win the exculpability in
two ways: (1) Finding the preimage of pk, ; ® G(s? ), (2) Finding two seeds o
and 8 such that G(a) @ G(B) = pk; ;. In both cases the adversary is breaking
the security of the PRG. The formal proof follows the same hybrid arguments
shown for one-time anonymity (Lemma 1). The idea is to replace each honest
public key pk; ; with a truly random string, and equivocating by programming
the output H. In this hybrid world, the adversary wins exculpability only by
finding two seeds that satisfying the linkability equation, which corresponds to
break the statically binding property of Naor’s commitment.

One-Time Unforgeability. This property is implied by one-time exculpability and
one-time traceability (see [19], Theorem 2.6 of).
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