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Abstract Lightweight cryptography has recently gained importance as the
number of Internet of things (IoT) devices connected to Internet grows. Its
main goal is to provide cryptographic algorithms that can be run efficiently in
resource-limited environments such as IoT. To meet the challenge, the National
Institute of Standards and Technology (NIST) announced the Lightweight
Cryptography (LWC) project. One of the finalists of the project is the Tiny-
JAMBU cipher.

This work evaluates the security of the cipher. The tool used for the eval-
uation is the cube attack. We present five distinguishing attacks DA1 – DA5
and two key recovery attacks KRA1 – KRA2. The first two distinguishing
attacks (DA1 and DA2) are launched against the initialisation phase of the
cipher. The best result achieved for the attacks is a distinguisher for a 18-bit
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cube, where the cipher variant consists of the full initialisation phase together
with 438 rounds of the encryption phase. The key recovery attacks (KRA1 and
KRA2) are also launched against the initialisation phase of the cipher. The
best key recovery attack can be applied for a cipher variant that consists of
the full initialisation phase together with 428 rounds of the encryption phase.
The attacks DA3 – DA5 present a collection of distinguishers up to 437 en-
cryption rounds, whose 32-bit cubes are chosen from the plaintext, nonce, or
associated data bits. The results are confirmed experimentally. A conclusion
from the work is that TinyJAMBU has a better security margin against cube
attacks than claimed by the designers.

Keywords Cube attack · Cube tester · TinyJAMBU · Authenticated
encryption · Stream cipher · NIST LWC

Mathematics Subject Classification (2020) 94A60

1 Introduction

In recent years there has been an upwards trend for the usage of Internet-of-
Things (IoT) devices, especially in the healthcare and manufacturing indus-
tries. The trend has led to IoT devices being virtually omnipresent and more
interconnected than ever before. Consequently, there is a need to tighten the
security of IoT devices. Unfortunately, traditional cryptographic algorithms
are designed for resource-rich environments. In contrast, IoT devices are usu-
ally lightweight and they operate in resource-constrained environments. Thus
using traditional cryptographic algorithms for IoT devices causes a signifi-
cant performance degradation [1]. To mitigate the mismatch, a new branch of
cryptography has emerged in recent years. It is called lightweight cryptogra-
phy (LWC). Its main goal is to design cryptographic algorithms that can be
run efficiently in IoT (resource-constrained) environments.

The LWC Standardisation Project [2] is an initiative of the US National
Institute of Standards and Technology (NIST). It was launched in 2013 and
aims to evaluate and select standards for LWC. The project is currently in its
final round [3]. Ten finalists were announced in March 2021. They are: ASCON,
Elephant, GIFT-COFB, Grain-128AEAD, ISAP, PHOTON-Beetle, Romulus,
Sparkle, TinyJAMBU and Xoodyak. There is a need for a third-party analysis
of the LWC finalists. The analysis provides a crucial service to the community
at large as it helps to determine secure and efficient LWC standards. This work
contributes to the analysis and evaluates security of the TinyJAMBU cipher.
In particular, it assesses the strength of TinyJAMBU against cube attacks.

TinyJAMBU [4] is a sponge-based stream cipher that provides authenti-
cated encryption with associated data (AEAD). There are two versions of the
cipher. The first is the original submission to the LWC Project. The second
was released in May 2021 and is called TinyJAMBUv2 [5]. The cube attacks
presented in the paper are applied against the first version of TinyJAMBU.
However, some attacks (DA2 with reduced cube space, KRA2, DA3, DA4, and
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DA5) are still applicable to TinyJAMBUv2 as the tweaks in the second version
do not affect our attacks. For the rest of the paper, unless explicitly specified,
TinyJAMBU refers to the first version of the cipher.

1.1 Cube Attacks against AEAD Stream Ciphers

The cube attack is a generalisation of the higher-order differential attack [6]
and the algebraic IV differential attack (AIDA) [7]. It was proposed by Dinur
and Shamir at EUROCRYPT 2009 [8]. The attack sums output values of
a black box polynomial P over all possible values of a chosen collection of
input variables. It aims to reduce the degree of P. The collection of input
variables is called a cube C. The cube is uniquely determined by a set I of
input variable indices. A polynomial PS(I) obtained after summation over C is
called a superpoly. In 2009 Dinur and Shamir applied the cube attack against
the Trivium stream cipher [8]. Since then, the attack has been used to analyse
many other stream ciphers, see [9–18], for example.

TinyJAMBU is a sponge-based AEAD stream cipher. When considering
an AEAD stream cipher, the cube attack may be applicable to different cipher
phases. A typical stream cipher has the following phases: initialisation, asso-
ciated data processing, encryption, finalisation, decryption and verification.
Application of cube attacks against different cipher phases requires specific
security assumptions. In general, each attack aims to recover some secret in-
formation about the cipher. The following list identifies typical attacks against
AEAD stream ciphers.

• Key recovery attacks (KRA) – they aim to retrieve the superpolies of cubes,
which include variables of a secret key. The attack is typically applied
against the initialisation phase, where the key is input into the internal
states with some public variables. In the case of TinyJAMBU, key recovery
cube attacks can be launched against any phase. This is due to the fact
that the key bits are input to the internal state of the cipher during all
phases.

• State recovery attacks (SRA) – they target superpolies that include internal
state variables. They are applicable when the superpoly depends on both
few internal state and some public variables at a particular time instance
(clock).

• Distinguishing attacks (DA) – they allow to differentiate a stream cipher
from a truly random one. They work if there is a superpoly, which becomes
a constant (zero or one) after summing over all cube values. Such cubes
are also called cube testers [9].

• Known plaintext attacks (KPA) – it is assumed that an adversary is able
to read plaintexts and associated data but is not able to change them. Con-
sequently, cubes chosen by the adversary can include neither plaintext nor
associated data bits. They, however, can include initialisation vector/nonce
bits. In this case, we deal with a chosen initialisation vector attack. For
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TinyJAMBU, its nonces contain 96 bits. Thus, an adversary may select
cubes from the nonce bits.

• Chosen plaintext attacks (CPA) – it is assumed that an adversary can not
only read plaintext and associated data but also it is able to modify them
at will. This means that the adversary can choose cubes that include both
plaintext and associated data bits (apart from initialisation vector bits).

1.2 Our Contributions

Note that attacks presented in the work are against round-reduced versions of
TinyJAMBU. We apply five distinct strategies for cube selection that allow us
to construct appropriate distinguishers. Our five distinguishing attacks (DA1 –
DA5) can be launched against both initialisation and encryption phases of the
cipher. DA1 and DA2 are applied against the cipher initialisation phase. The
other attacks (DA3 – DA5) are implemented against the encryption phase.
Table 1 shows our results. For the DA1 attack, it is possible to design dis-

Table 1 Summary of our results.

Attack Selection of cube
Cube
size

No. of rounds (reduced)

DA1 &
KRA1

First two blocks of nonce:
C ∈ {v0, · · · , v63}

3
2176 (full) initialisation rounds
0 (reduced) encryption rounds

DA2 (full
cube space)

All three blocks of nonce:
C ∈ {v0, · · · , v95}

25
2176 (full) initialisation rounds
416 (reduced) encryption rounds

DA2 (reduced
cube space)

Third block of nonce:
C ∈ {v64, · · · , v95}

18
2176 (full) initialisation rounds
438 (reduced) encryption rounds

KRA2
Third block of nonce:
C ∈ {v64, · · · , v95}

14
2176 (full) initialisation rounds
428 (reduced) encryption rounds

DA3
First block of plaintext:
C ∈ {m0, · · · ,m31}

32 437 (reduced) encryption rounds

DA4
Third block of nonce:
C ∈ {v64, · · · , v95}

32 437 (reduced) encryption rounds

DA5
First block of AD:
C ∈ {d0, · · · , d31}

32 437 (reduced) encryption rounds

tinguishers for cubes, whose sizes range from 3 to 20 bits. They work if an
adversary is able to observe the keystream after the full initialisation phase
(with 2176 rounds). Note that after initialisation, TinyJAMBU employs a set
of permutation rounds before producing the keystream. We extend DA1 by
including additional permutation rounds (reduced) in the encryption phase of
TinyJAMBU. The attack extension is referred to as DA2. For the DA2 attack,
we find random distinguishers from a cube space of 296, which use 15 and 25
bit cubes. They work for the total number of 2592 rounds. We also show a



Cube Attacks on Round-Reduced TinyJAMBU 5

DA2 that selects cube from a reduced cube space of 232. The attack works for
up to 2614 rounds with a 18-bit cube.

The DA3 – DA5 attacks need 32-bit deterministic cubes. Our experimental
results indicate that after 437 rounds, every output bit is affected by the 32-
bit cube tester. In other words, all the output keystream bits are expected to
depend on the 32-bit cube variables after 437 permutation rounds. Therefore,
437 encryption rounds can be considered as the upper bound for the 32-bit
cube tester.

We have also applied two key recovery attacks KRA1 and KRA2. These two
attacks are implemented against the initialisation phase of the cipher. For the
KRA1, it is possible to recover eight bits of the secret key if an adversary is able
to observe the keystream after the full initialisation phase (2176 rounds). The
KRA2 identified several linear superpolies for 2592 – 2604 rounds. Our results
show that KRA2 works up to 2604 rounds when the target is recovering at least
one bit of the secret key. To the best of our knowledge, our results obtained for
TinyJAMBU are the first third-party analysis that produces experimentally
verifiable outcomes.

2 Cube Attack

A cube attack is a relatively recent cryptanalytic technique. To describe it, we
follow the presentation given by Dinur and Shamir at EUROCRYPT 2009 [8].
The idea behind the attack is to represent a keystream output by a polynomial
over secret and public variables. In the cube attack, we assume that an adver-
sary can evaluate the polynomial for public variables. The evaluation allows
the adversary to reduce the degree of the polynomial. For AEAD stream ci-
phers, public variables include bits of the initialisation vector, associated data,
and plaintext. It is assumed that the public variables can be chosen by the
adversary in an arbitrary way. Unlike algebraic attacks, cube attacks treat the
keystream polynomial as a black box.

Suppose that an adversary is able to access a keystream polynomial of
a cipher. The polynomial is defined over the binary field GF (2). It depends
on both secret-key variables K = {k0, · · · , ki−1} and public variables V =
{v0, · · · , vj−1}. Consider a keystream polynomial P of a degree deg over i
secret and j public variables. Define a maxterm tI of the polynomial P as
a term whose all variables are public. The term variables are pointed by a
collection of indices I ⊆ {1, · · · , j}. The variables indexed by I are called a
cube C. The polynomial P can be written as

P(k0, · · · , ki−1, v0, · · · , vj−1) ≡ tI .PS(I) + q(k0, · · · , ki−1, v0, · · · , vj−1), (1)

where each term of q(k0, · · · , ki−1, v0, · · · , vj−1) does not contain at least one
public variable from the maxterm tI . PS(I) is called a superpoly of the index
set I if it does not contain any constant or any term that has a common factor
with the maxterm tI . We denote the cardinality of I by |I| and the size of a
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cube by `c. Observe that |I|= `c. Interestingly enough, if |I|= deg − 1, then
the degree of the superpoly PS(I) is guaranteed to be linear.

Cube attacks work by summing the values of a polynomial P over all
possible 2|I| Boolean values for variables indexed by I (or alternatively over
all values of the cube). If the cube is big enough, i.e., `c = deg − 1, then the
degree of P is reduced to one. This means that the superpoly PS(I) becomes
linear. If we repeat the above procedure many times but for different cubes, we
can generate a system of linear equations involving the secret variables. After
a sufficient number of equations, we can solve a system of linear equations
and discover the secret variables/key. In general, the cube attack is run in two
stages, namely pre-processing and online.

2.1 Pre-processing Stage

This stage is executed under an assumption that a description of a stream ci-
pher is public. Consequently, our adversary has access to both public and secret
variables and can manipulate them. Our goal is to identify cubes that gener-
ate linear superpolies for secret key variables. Since a keystream polynomial
P(K,V ) form is not known, it is necessary to estimate the degree of P(K,V ).
This should give us some idea about cube sizes for which we can expect a
linear superpoly. We can start from random cubes of small sizes. To choose a
random cube C of size `c, we select a collection of indices Ic ⊆ {0, · · · , vlen−1}
at random, where vlen denotes the length of the initialisation vector V and
`c = |Ic|. Consider a keystream polynomial PC(K,V ) =

∑
C P(K,V ) that re-

sults from summing P(K,V ) over all values of the cube C. It is expected that if
we have chosen a “right” cube, then PC(K,V ) = PS(I) is a linear combination
of secret variables {k0, · · · , kklen−1}, where klen is the length of the secret key
K. To identify the right cube, we need a linearity test for PC(K,V ).

We use the BLR test from [19] to check if a polynomial PC(K,V ) is linear.
The test verifies whether the following relation holds:

PC(K0, V ) + PC(K1, V ) + PC(K2, V ) = PC(K1 +K2, V ), (2)

where K0 = {0}klen and K1, K2 are fixed and random bits. If the BLR test
is run n times, then we can conclude that PC(K,V ) is linear with probability
1 − 2−n. By choosing a big enough n (say n = 100), we can guarantee the
polynomial is linear (with probability 1− 2−100).

Once we get a linear PC(K,V ) = PS(I), it can be written in its algebraic
normal form (ANF) as follows

PS(I)(K) = α−1 + α0k0 + α1k1 + · · ·+ αklen−1kklen−1, (3)

where public variables from V \C are set to zero. We know the above represen-
tation but we do not know the binary coefficients αi; i = −1, 0, . . . , klen− 1.
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We can determine the coefficients by running klen+ 1 cube experiments

PS(I)(K = (0, . . . , 0)) = α−1

PS(I)(K = (0, . . . , 1︸︷︷︸
i-th

, 0, . . . , 0)) = α−1 + αi for i = 0, . . . , klen− 1

There is an interesting case when PS(I) stays constant (0 or 1) for all secret
keys. Then the polynomial PS(I) is called a distinguisher that allows to differ-
entiate the cipher from a truly random one. Cubes that generate distinguishers
are called cube testers [9].

2.2 Online Stage

To execute this stage, it is assumed that an adversary has access to an imple-
mentation of the cipher in hand. It can manipulate public variables but cannot
see secret ones. Furthermore, we suppose that it has successfully executed the
pre-processing stage. In other words, the adversary has discovered klen + 1
linearly independent superpolies PS(Ij), where each PS(Ij) corresponds to its
cube Cj . Thus, it can write the following system of equations:

PS(Ij)(K) = α−1,j + α0,jk0 + α1,jk1 + · · ·+ αklen−1,jkklen−1, (4)

where j = 1, . . . , klen+ 1. The values on the left hand side are calculated for
the corresponding cubes. As the coefficients αi,j have been determined at the
pre-processing stage, the adversary can solve the system from Equation (4)
using Gaussian elimination, for example. This concludes the cube attack as
the adversary has been able to calculate the secret key K.

3 Overview of TinyJAMBU

TinyJAMBU [4] is a family of AEAD sponge-based stream ciphers. The family
includes three members: TinyJAMBU-128, TinyJAMBU-192 and TinyJAMBU-
256. As we investigate the resistance of TinyJAMBU-128 against cube attacks,
our description is focused on TinyJAMBU-128 only.

3.1 Specification of TinyJAMBU-128

TinyJAMBU-128 uses a 128-bit key K = {k0, · · · , k127} and a 96-bit nonce
V = {v0, · · · , v95}. In the heart of the cipher, there is a 128-bit nonlinear
feedback shift register (NFSR). An internal state of NFSR at clock t is de-
noted by Bt = {bt0, bt1, · · · , bt127}. The NFSR state is updated by a nonlinear
combination of register bits and a cryptographic key. Unless specified other-
wise, a block refers to a group of 32 bits. In particular, the third 32-bit block
{b64, b65, · · · , b95} of the NFSR is referred to as a keystream. The block is
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XOR-ed with a plaintext block and they produce the respective ciphertext
block. The last 32-bit block {b96, b97, · · · , b127} of the NFSR absorbs via XOR
all the cipher inputs, i.e. a nonce, associated data and plaintext blocks. The ci-
pher also employs 3-bit constants denoted by FrameBits to indicate different
phases of cipher operations.

3.2 TinyJAMBU-128 State Update Function

TinyJAMBU-128 follows a sponge [20] structure with iterations that use a
keyed permutation Pr. The permutation is implemented using NFSR, whose
state update function is described by Algorithm 1. The function takes the five
state bits (b0, b47, b70, b85, b91) and a bit of the key K and produces a feedback
bit that becomes b127. The permutation Pr calls Algorithm 1 r times.

Algorithm 1 TinyJAMBU State Update Function
1: function tinyJambuStateUpdate(B,K, i)
2: feedback = b0 + b47 + (∼ (b70b85)) + b91 + ki mod klen

3: for j = 0 to 126 do
4: bj = bj+1

5: end for
6: b127 = feedback
7: end function

3.3 Operation Phases of TinyJAMBU-128

In order to encrypt plaintext blocks, TinyJAMBU-128 goes through four phases,
namely, initialisation, associated data processing, encryption and finalisation.
For decryption of ciphertext blocks, the cipher proceeds through the same
initialisation and associated data processing phases. The next phases are de-
cryption and tag verification, which match the encryption and finalisation
phases. As the work describes cube attacks against the first three phases, we
briefly discuss them.

3.3.1 Initialisation

Algorithm 2 shows a pseudocode of the initialisation phase. It consists of two
parts, namely, key and nonce setups. At the key setup, a cryptographic key
K is loaded into the NFSR by executing P1024. During the nonce setup, a
nonce is absorbed into NFSR as a 32-bit block. FrameBits are set to “1”. For
each nonce setup call, the NFSR state is updated by running P384 before the
nonce blocks are XOR-ed into the NFSR state. Note that the second version
of TinyJAMBU-128 employs P640 instead of P384 during the nonce setup.
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Algorithm 2 Initialisation Phase of TinyJAMBU
Key Setup

1: (b0, b1, · · · , b127)← (0, 0, · · · , 0)
2: Update B using P1024

Nonce Setup

1: for i = 0 to 2 do
2: B{36···38} ← B{36···38} + FrameBits{0···2}
3: Update B using P384

4: B{96···127} ← B{96···127} + v{32i···32i+31}
5: end for

3.3.2 Associated Data Processing

After the NFSR state is initialised, the associated dataAD = AD{0···adlen−1} =
{d0, · · · , dadlen−1} are processed block by block, where adlen is the length
(number of bits) of the associated data. Algorithm 3 details steps of the as-
sociated data processing. The NFSR state is first updated by running the
permutation P384, which is followed by loading the 32-bit associated data into
B{96···127}. Note that if the length adlen of associated data is not a multiple
of 32, then additional steps are required to process the last partial block of
associated data (refer to the original description of TinyJAMBU for details).
FrameBits in this phase are set to “3”. Similarly to the nonce setup, the sec-
ond version of TinyJAMBU-128 applies P640 instead of P384 for the associate
data processing.

Algorithm 3 Associated Data Processing Phase of TinyJAMBU
Processing Full Blocks of AD

1: for i = 0 to badlen
32
c do

2: B{36···38} ← B{36···38} + FrameBits{0···2}
3: Update B using P384

4: B{96···127} ← B{96···127} +AD{32i···32i+31}
5: end for

3.3.3 Encryption

Algorithm 4 illustrates the encryption phase. Encryption directly follows the
associated data processing phase. FrameBits are set to “5” during the encryp-
tion. Plaintext bits are processed block by block. Let M = {m0, · · · ,mmlen−1}
denote the plaintext of length mlen. Given a plaintext block M{32i···32i+31},
then it is encrypted by XOR-ing it with B{64···95}, which is a keystream block
extracted from the NFSR state. Note that two consecutive plaintext block
encryptions are separated by the NFSR state update. The update is done by
calling P1024. If the length of plaintext mlen is not a multiple of 32, then
the remaining bits of plaintext require further processing (refer to the original
description of TinyJAMBU for details).
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Algorithm 4 Encryption Phase of TinyJAMBU
Encrypting Full Blocks of M

1: for i = 0 to bmlen
32
c do

2: B{36···38} ← B{36···38} + FrameBits{0···2}
3: Update B using P1024

4: B{96···127} ← B{96···127} +M{32i···32i+31}
5: C{32i···32i+31} ←M{32i···32i+31} +B{64···95}
6: end for

4 Cube Attack against TinyJAMBU

Observe that nonce, associated data and plaintext bits are used to constantly
update the NFSR state. Clearly, the authors of the cipher have intended to
increase dependencies among all bits involved in the initialisation, associated
data processing and encryption phases. Besides, the cryptographic key K is
always used for each state update. Consequently, each output bit of the permu-
tation Pr can be seen as a complex function of all input bits. They include bits
of the NFSR state, the key, the nonce, the associated data and the plaintext.

As a significant part of the bits are public, there are many options for
selecting cubes at the pre-processing stage. We implement five distinguishing
attacks DA1 – DA5 and two key recovery attacks KRA1 – KRA2. They cover
the three cipher phases: initialisation, the associated data processing and en-
cryption. We need to pay attention to the third block B{64···95} of the NFSR
state as it plays the role of keystream. We aim to identify bits of a keystream
block that, when used in a cube, produce either linear superpolies or constants.

Algorithm 5 details steps in the pre-processing phase of our generic cube
attack against the cipher. Its goal is to identify cube testers or cubes with linear
superpolies. As we do not have any information about appropriate cube sizes,
we test different cube sizes `c. For each cube size, the resulting superpolies are
tested for linearity. Algorithm 5 also shows the pseudocode for steps performed
at the online stage. Note that our attack implementation is for round-reduced
variants of TinyJAMBU 1. All results have been experimentally verified.

4.1 Description of Attack Process in the Initialisation Phase

Out of five distinguishing attacks investigated and implemented in the work,
our two attacks, DA1 and DA2 are in the initialisation phase of TinyJAMBU-
128. The key recovery attacks KRA1 and KRA2 are also against the initialisa-
tion phase of TinyJAMBU-128. The details of the attacks are shown in Table 2.
We assume that they are applied at clock t = 0 and cubes are chosen from the
nonce bits only. As a 32-bit keystream block depends on key and nonce bits,
we intend to find cubes (defined over nonce bits only) whose superpolies are
linear and depend on some key bits.

1 The source codes and detailed experimental results for all our implementations can be
accessed from: https://github.com/cst1709690/tinyJambuCubeAttack

https://github.com/cst1709690/tinyJambuCubeAttack
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Algorithm 5 Cube Attack against TinyJAMBU-128
PRE-PROCESSING STAGE

Input: Cube Size lc, Maximum number of cubes to be tested cmax, Number of BLR tests
n, Number of reduced state update rounds r

1: for 1 to cmax do
2: Select a random cube C with subset index I of size `c
3: pass← 0
4: for 1 to n do
5: Perform BLR test with cube summation of C using one of the attack models
6: Check condition of BLR test of each index in B{64...95} for C
7: if at least one bit in B{64···95} passes BLR test then
8: pass← pass+ 1
9: else

10: break
11: end if
12: end for
13: if pass equals n then
14: for each output bit in B{64···95} do
15: Construct coefficients in the ANF of PS(I)

16: Check presence of each k in the ANF of PS(I)

17: Record C, α−1, and, if any, the key bits that are present in PS(I)

18: end for
19: end if
20: end for

ONLINE STAGE

1: Generate an arbitrary key K
2: for each cube C with subset index I obtained do
3: for each of the corresponding output bit(s) in B{64···95} of C do
4: Perform cube summation with K and r
5: Store PS(I) +

∑
v∈C P(K,V ) = 0 in the equation system

6: end for
7: end for
8: Solve the system of equations to obtain the value of the key bits

Table 2 Assumptions for DA1, DA2, KRA1, KRA2.

DA1 and KRA1
Reduced-round initialisation phase

DA2 and KRA2
Reduced-round initialisation phase
with additional encryption rounds

Starting state of the attack: B0 Starting state of the attack: B0

Cubes randomly chosen from first 64 bits
of nonce: {v0, · · · , v63}

Cubes chosen randomly from all 96 bits
of nonce (cube space = 296): {v0, · · · , v95},
or chosen randomly from the last block
of nonce (cube space = 232): {v64, · · · , v95}

Steps taken:
1. Cube is XOR-ed into the state.
2. B goes through reduced permutation:

� key setup, Pr1=1024

� nonce setup, Pr2=384

3. Keystream is observed after Pr2 .

Steps taken:
1. Cube is XOR-ed into the state.
2. B goes through reduced permutation:

� key setup, Pr1=1024

� nonce setup, Pr2=384

� additional encryption rounds, Pr3
3. Keystream is observed after Pr3 .
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Consider DA1 and KRA1 from Table 2. We assume that the cipher goes
through initialisation but skips the associated data processing and encryption
phases. In other words, we can observe the keystream immediately after the
permutation round of the initialisation phase. We choose cubes at random
from a 64-bit nonce. Note that due to our assumptions, the NFSR state does
not go through any permutation rounds after the last 32 bits of the nonce
is XOR-ed into the last block of the state. This means that the last 32 bits
of the nonce do not get mixed into the keystream block. Consequently, the
keystream does not contain any variables from the last 32 bits of the nonce.
Trivially, if we include variables from the last 32 bits of the nonce, then we
get a distinguisher as cube summation must give us a constant.

Note that according to the specification of TinyJAMBU-128, the cipher
goes through 1024 rounds of permutation before keystream bits can be ob-
served. Thus, DA1 and KRA1 are extended to DA2 and KRA2, respectively
(see Table 2). These attacks are against a cipher that includes r3 additional
permutation rounds (reduced) at the encryption phase. This means that the
cipher does not absorb any associated data, i.e., processing of associated data
is skipped. This also implies that keystream bits depend on both the key and
nonce bits. So cubes can be selected from all 96 bits of the nonce. For DA2 and
KRA2, the cipher uses the full initialisation phase, i.e, r1 = 1024 and r2 = 384.
However, the number r3 of encryption permutation rounds is reduced.

4.1.1 Experimental Results for DA1 and KRA1

We have implemented DA1 and KRA 1 as described by Algorithm 5. For a
given cube size, we choose cmax = 5000 random cubes. For each cube, we run
50 BLR linearity tests. We have found many cube testers, whose sizes range
from `c = 3 to `c = 20. The total number of permutation rounds employed
in the cipher is 1024 + 384 × 3 = 2176. A sample of cube testers found is
presented in Table 3. We only lists cubes up to size 12 in this table. The table
details: cube size (the first column), a collection of cube indices (the second
column), a collection of keystream bits corresponding to the cube tester (the
third column) and the number of superpolies for the given cube (the fourth
column). Some additional statistics are presented in Table 4. Note that the
complexity of the DA1 very much depends on the size of a cube. This is to say
that it ranges from Θ(23) to Θ(220).

We also found a small set of cubes that resulted in non-constant super-
polies. These superpolies are used to implement the KRA1. These are listed
in Table 5. The cubes for KRA1 range from lc = 3 to lc = 12 and can be used
to recover eight bits of the secret key after 2176 rounds of the initialisation
phase. The complexity of solving these equations is negligible.

The experiments demonstrate that the initialisation phase of the cipher
provides a relatively low diffusion. This is due to the fact that the cipher
iterates 384 times the permutation P after loading the second block of the
nonce. This number is definitely too low. Note that the authors of the cipher
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Table 3 Examples of cube testers found using DA1.

Cube
Size,
lc

Cube (Nonce)
Indices, I

Keystream
Indices

No. of
Affected
Indices

3 51, 52, 63 70 1

4 37, 52, 57, 62 64 1

5 18, 48, 55, 60, 61 67, 73 2

6 24, 39, 52, 53, 58, 63 65, 70 2

7 32, 33, 41, 48, 52, 54, 59 66, 72 2

8 1, 14, 40, 47, 53, 54, 59, 60 66, 71, 72 3

9 0, 27, 30, 46, 52, 58, 60, 61, 63 64, 65, 70 3

10 19, 32, 45, 47, 49, 50, 56, 57, 61, 63 64, 66, 68, 75 4

11 10, 11, 21, 22, 41, 50, 55, 56, 57, 62, 63 69, 74, 75, 81 4

12 13, 16, 17, 45, 48, 49, 53, 56, 57, 60, 61, 62 64, 65, 67, 68, 74 5

Table 4 Summary of the results of cube testers found using DA1.

Cube Size
lc

Maximum Count of
Indices of the resultant
Keystream

Number of
Cube Testers

Percentage
(% per 5000 cubes)

4 1 16 0.32
5 2 56 1.12
6 2 121 2.42
7 2 155 3.1
8 3 289 5.78
9 3 409 8.18
10 4 606 12.12
11 4 793 15.86
12 5 1092 21.84
13 7 1343 26.86
14 9 1587 31.74
15 10 2064 41.28
16 11 2325 46.5
17 12 2739 54.78
18 16 3106 62.12
19 15 3471 69.42
20 18 3753 75.06

have now increased this number to 640, which improves diffusion during the
initialisation phase.

4.1.2 Experimental Results for DA2 and KRA2

We have also conducted experiments for the DA2 and KRA2 attacks. In this
case, we assume that the cipher includes the full initialisation phase together
with a reduced number of permutation rounds Pr3 at the encryption phase.
Note that after initialisation, the NFSR state goes through the permutation
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Table 5 Examples of superpolies found using KRA1.

Cube (Nonce)
Indices, I

Keystream
Indices

Superpoly

40, 53, 54 66 k15 + k35 + k37 + k77 + k84 + k94

39, 52, 53, 58 65 k45 + k77

32, 47, 51, 52 64 k9 + k20 + k34 + k35 + k61 + k76 + k106

1, 44, 60, 61 73 k4 + k8 + k13 + k33 + k60 + k69 + k104 + k121

32, 51, 52, 58, 59, 60 71 k30

40, 47, 52, 60, 62, 63 65 k85 + k125

13, 20, 22, 23, 33, 34,
40, 44, 45, 55, 56, 60

73 k8 + k99

11, 15, 17, 20, 28, 31,
35, 40, 41, 55, 58, 61, 62

74 k3 + k38 + k110

Pr3 . It means that the last 32 bits of the nonce bits get mixed with other bits
before keystream bits become observable. This implies that in the attack, we
can choose cubes from all 96 bits of the nonce.

The attack follows the steps given by Algorithm 5. For a given cube size, we
choose cmax = 5000 random cubes. Given a cube, we determine its superpoly
and check its linearity by running 50 BLR tests. We begin with r3 = 384
rounds and then, we keep increasing the number r3 by a multiple of 32, i.e.
r3 = 384, 416, 448, . . .. We refer to this as DA2 with random cubes selected over
the full cube space. During our experiments, we are able to find many cube
testers of size 15 for the permutation P384 and one cube tester of size 25 for the
permutation P416. We have also conducted experiments for the permutation
P448 with cube sizes up to `c = 40. However, we have failed to find any.

A sample of cube testers of size 15 and the only cube tester of size 25 are
given in Table 6. Cube testers of size 15 are able to distinguish the cipher
from a truly random one if the cipher uses no more than 2560 rounds of the
permutation P . The best result we got for DA2 with random cube selection
from the full cube space is the cube tester of size 25 that works for the cipher
with 2592 rounds of the permutation P .

Next, we have tried to find cubes for an arbitrary number r3, not necessarily
a multiple of 32. As the last block of the nonce is the last to be XOR-ed into
the NFSR state, one can argue that the block bits are not as thoroughly mixed
with other bits. So it is reasonable to choose cubes taking as many as possible
bits from the last block. This approach should eliminate the maxterms of
the corresponding superpoly that are not mixed well with the last block of the
nonce. This approach has been verified experimentally. We refer to this as DA2
with reduced cube space. We find that the 32-bit cube {v64, · · · , v95} works up
to r3 = 437 rounds of the permutation P and results in a distinguisher. As a
result, with this method, we have got cube testers that allow to distinguish
the cipher with 2613 rounds of P from a truly random cipher.
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Table 6 Examples of cube testers found using DA2 with full cube space V{0···95}.

Cube
Size
lc

Cube (Nonce) Indices, I
Additional
Encryption
Rounds, r3

Indices of the
Keystream

No. of
Affected
Indices

15
15, 21, 22, 32, 43, 68, 71, 72,
81, 85, 88, 90, 93, 94, 95

384 64, 65, 68, 74, 79, 80 6

15
2, 7, 10, 18, 21, 25, 26, 27,
28, 39, 40, 42, 86, 87, 93

384 73 1

15
0, 10, 12, 21, 29, 49, 58, 60,
78, 79, 80, 81, 82, 86, 90

384 65, 66 2

15
3, 8, 21, 28, 36, 37, 53, 60,
63, 65, 72, 82, 84, 88, 93

384 68 1

15
2, 3, 19, 32, 35, 38, 55, 68,
75, 78, 81, 82, 87, 89, 90

384 67 1

25

8, 23, 25, 31, 35, 36, 39, 40,
54, 56, 57, 65, 68, 71, 72, 73,
74, 76, 78, 83, 84, 87, 90, 93,
94

416 69 1

DA2 with smaller cube sizes and extension to a key recovery attack The 32-
bit cube for 437 rounds DA2 is a distinguisher. This means the cube size is
too large. We use two techniques for extending the experiments to identify
DA2 with smaller cube sizes and possible extensions to a key recovery attack
(KRA2). For these experiments, we select the cube bits from a reduced set of
nonce bits (last block of the nonce). Other nonce blocks are only included in
the cube space when the cube size is larger then 32 bits. In other words,

• for cubes of size `c ≤ 32, the cube bits are selected from the last block bits
V{64···95} only; whereas,

• for cubes of size `c > 32, the last block bits V{64···95} are always present
in the cube. The remaining cube bits are chosen randomly from the bits
V{0···63}.

Technique 1 We conducted experiments by gradually reducing the size of the
32-bit cube. The degree of a superpoly is expected to increase (roughly by
1) when the size of the corresponding cube is reduced by 1. For each cube
size, depending on the cube space, we tested cmax = 5000 to cmax = 100000
superpolies generated from random cubes of the given size. The superpolies are
tested for at least 200 linearity tests. This process enabled us to find additional
distinguishers for DA2 with much smaller cube sizes. We also found a small
number of non-constant superpolies with these experiments. Overall, with this
process, we found cubes of sizes in between lc = 13 to lc = 21. These cubes
work for encryption round in between r3 = 416 to r3 = 437.

Technique 2 Cubes obtained using technique 1 above are of relatively smaller
sizes (≤ 21). For any such cube sizes, the search space is relatively small and the
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search time is fast due to the smaller cube sizes. It is possible to exhaustively
test the entire cube space for such cases. We conducted a set of experiments by
reducing the cube sizes further and then enumerating through the entire cube
spaces of the reduced cube sizes. Algorithm 6 details the steps of this process.
Using steps in Algorithm 6, we have obtained additional distinguishers and
non-constant superpolies.

Algorithm 6 Finding smaller cubes for a given round
Input: Number of BLR tests n, Cubes Ct1 obtained using Technique 1, Cube Sizes lct1 of

the original cubes from Technique 1, Number of reduced state update rounds r3 used in
Technique 1

Output: New cubes Ct2 and corresponding cube sizes lct2
1: for each Ct1 do
2: New cube size lct2 = lct1 − 1

3: Test all the superpolies for
(lct1
lct2

)
cubes chosen from Ct1

4: if new successful cubes are obtained for lct2 then
5: Update cube size: lct2 = lct2 − 1
6: Go back to Step 3 and repeat
7: else
8: break
9: end if

10: end for

A sample of the cube testers and non-constant superpolies that are ob-
tained using the above two techniques are listed in Tables 7 and 8, respectively.
Recall that the register bits that are used for kesytream, i.e., {bt64, · · · , bt95}, are
updated by shifting the contents of the register bits {bt−165 , · · · , bt−196 }. Therefore,
any successful cube for a kesytream bit bti will also work for the keystream bit
bt+1
i−1. With technique 1, surprisingly we found some DA2 cubes of sizes lc ≤ 31

that are successful for the keystream bit b43765 (see Table 7). This means the
same cube will also be successful for the keystream bit b43864 , i.e., will work up
to r3 = 438 rounds. Experimental results confirm this observation. The best
distinguisher for DA2 works until r3 = 438 rounds with a cube size of 18. As
a result, with this method, we have obtained a cube tester that allows us to
distinguish the cipher with 2614 rounds of P from a truly random cipher. We
think that the smaller cube size that works for r3 = 438 rounds is due to the
structure of the corresponding output polynomial. To illustrate an example
where a superpoly may pass for a smaller cube but fails for a larger cube, let
us consider a hypothetical output function Ph(K,V ) = v0v1k0k1 + v0v2k0k1.
The cube summation

∑
v0
Ph over the cube v0 will pass the linearity test.

However, a larger cube v0v1 or v0v2 of size 2 will fail the linearity test in this
case. To check for such cases for r3 ≥ 438, we further tested cubes with sizes
lc < 32. However, we did not find any such cubes for r3 rounds beyond 438.

For KRA2, we obtained several non-constant superpolies for r3 = 416 to
r3 = 428 rounds. However, some superpolies are repeated for different cubes,
i.e., some equations are the same. The cube sizes for these superpolies ranges
between 9 to 16. Notice for Table 8 that most of these superpolies contains
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Table 7 Examples of cube testers for DA2 with reduced cube space (V{64,···,95}).

Cube
Size,
lc

Cube (Nonce)
Indices, I

Additional
Encryption
Rounds, r3

Keyst.
Indices

8 69, 70, 71, 76, 81, 86, 91, 92 416 67

9 64, 69, 70, 71, 76, 81, 86, 91, 92 416 67

13 66, 67, 68, 69, 71, 73, 83, 87, 88, 90, 91, 94, 95 416 64

14 67, 68, 69, 72, 73, 74, 80, 81, 84, 85, 88, 90, 91, 94 416 64

15
65, 66, 69, 70, 71, 73, 74, 77, 82, 83, 85, 88, 89, 90,
92

416 65

15
64, 66, 70, 72, 73, 75, 78, 79, 82, 83, 86, 87, 89, 92,
93

420 65

11 65, 72, 78, 79, 83, 84, 86, 90, 92, 93, 95 425 66

15
64, 65, 70, 72, 73, 77, 78, 79, 83, 84, 86, 90, 92, 93,
95

425 66

21
64, 65, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 81, 83,
84, 85, 86, 88, 90, 91, 94

430 68

14 64, 65, 70, 72, 76, 77, 78, 81, 85, 86, 87, 88, 92, 95 430 69

18
67, 68, 69, 70, 72, 73, 75, 79, 80, 81, 83, 84, 85, 88,
89, 90, 91, 95

437 65

18
66, 67, 68, 72, 73, 75, 77, 79, 81, 82, 83, 84, 87, 88,
89, 90, 93, 94

437 64

21
64, 67, 68, 69, 71, 73, 74, 75, 76, 79, 80, 81, 83, 84,
88, 89, 90, 91, 92, 94, 95

437 65

21
64, 66, 67, 68, 72, 73, 75, 77, 79, 81, 82, 83, 84, 87,
88, 89, 90, 91, 92, 93, 94

437 64

only a single variable. Therefore, during the online phase, the cube summation
results itself will output the values of most of these superpolies. Overall, the
best cube for KRA2 works up to r3 = 428 rounds when the target is at least
a single bit recovery of the key.

4.1.3 Overall comments on the results of DA2 and KRA2

It is worth noticing that the original TinyJAMBU-128 takes 3200 rounds of the
permutation P . We count the number of rounds executed during initialisation
and encryption of the first plaintext block. It appears that the cipher (its first
version) leaves a relatively small security margin, which is 3200− 2614 = 586
rounds.

The computational complexity of the DA2 attack varies from Θ(28) to
Θ(232). Compared to the complexity of DA1, the computation overhead for
DA2 is significantly higher. This difference is the result of a bigger number of
rounds in the attacked cipher that includes the initialisation and encryption
phases. Our experiments confirm the necessity to separate processing of two
consecutive 32-bit input blocks by a sufficiently big number of rounds of P .
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Table 8 A list of superpolies found using KRA2 with reduced cube space V{64,···,95}.

lc I r3 zi PS(I)

9 64, 70, 71, 76, 77, 82, 87, 92, 93 416 68 k15

9 69, 70, 75, 76, 81, 86, 91, 92, 94 416 67 k90

9 65, 71, 72, 77, 85, 86, 92, 93, 95 416 68 k15

10 69, 70, 74, 75, 81, 84, 86, 90, 91, 93 416 66 k90

10 64, 70, 71, 72, 77, 86, 87, 92, 93, 95 416 68 k15

10 65, 72, 76, 77, 78, 85, 86, 88, 92, 93 416 68 k15

10 65, 72, 76, 77, 80, 85, 86, 88, 92, 93 416 68 k15

10 71, 72, 77, 78, 82, 87, 88, 89, 93, 94 416 69 k105

11 64, 70, 71, 73, 75, 76, 82, 84, 85, 91, 92 416 67 k3

11 66, 67, 69, 72, 73, 80, 82, 83, 84, 88, 89 416 64 k78

11 66, 73, 74, 78, 81, 83, 86, 87, 88, 93, 94 416 69 k31

11 69, 74, 75, 79, 80, 81, 88, 89, 91, 92, 95 416 71 k36

12 65, 72, 73, 74, 79, 80, 84, 87, 88, 89, 92, 94 416 70 k101

12 69, 71, 74, 75, 79, 80, 81, 88, 89, 91, 92, 95 416 71 k36

12 69, 74, 75, 79, 80, 81, 88, 89, 91, 92, 93, 95 416 71 k36

12 73, 74, 76, 79, 80, 81, 84, 88, 89, 90, 91, 95 423 64 k43

13 69, 71, 74, 75, 79, 80, 81, 88, 89, 91, 92, 93, 95 416 71 k36

14 64, 65, 70, 71, 72, 75, 77, 79, 81, 85, 86, 91, 92, 93 416 68 k15

14 68, 71, 72, 73, 74, 79, 82, 83, 84, 85, 89, 90, 92, 94 416 65 k35

14 65, 66, 67, 72, 73, 74, 78, 85, 86, 87, 89, 92, 93, 94 416 69 k8 + k28

14 66, 67, 69, 72, 73, 79, 80, 82, 83, 84, 86, 88, 89, 92 416 64 k57 + k59 + k89

15
65, 72, 73, 74, 77, 82, 83, 84, 85, 86, 87, 88, 93, 94,
95

416 69 k112

15
72, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 94,
95

428 64 k0

15
71, 72, 74, 78, 79, 80, 81, 84, 85, 86, 88, 90, 91, 94,
95

428 64 k26

16
71, 72, 74, 75, 78, 79, 80, 81, 84, 85, 86, 88, 90, 91,
94, 95

428 64 k26

16
72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 88, 90, 91,
94, 95

428 64 k39

16
65, 66, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 88, 90,
94, 95

428 64 k11

* zi is referring to the keystream indices

The increment of the number r2 of P rounds from 384 (for TinyJAMBUv1) to
640 (for TinyJAMBUv2) strengthens the cipher as it increases both diffusion
of bits and algebraic degree of keystream functions. The margin for DA2 with
random cubes from full cube space (296) against TinyJAMBUv2 is expected to
be higher than the first version of the cipher. For TinyJAMBUv2, the security
margin against DA2 with the reduced cube space is expected to be the same
as the first version (3968 − 3382 = 586 rounds). The security margin against
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KRA2 (at least a single bit key recovery) for TinyJAMBUv1 is 596 rounds.
The same margin for KRA2 is expected against TinyJAMBUv2.

4.2 Description of Attack Process in Encryption Phase

The remaining three attacks DA3 – DA5 are applied against a round-reduced
cipher. Table 9 specifies the assumptions about round-reduced versions of the
cipher. As the key bits are absorbed into the NFSR state during each permu-
tation round, a goal of our attacks is not only to find cube testers but also to
recover some bits of the key. As an independent research challenge, we aim to
verify the designer’s claim asserting that all bits of the keystream depend on
all input bits after 598 rounds of the permutation P [4]. For the second version
of the cipher (TinyJAMBUv2), the claim has been updated and it says that
the full dependence is achieved after 512 rounds [5].

Table 9 Assumptions for DA3, DA4 and DA5.

DA3: Reduced Rounds
Encryption Phase Using
Plaintext Bits

DA4: Reduced Rounds
Encryption Phase Using
Nonce Bits

DA5: Reduced Rounds
Encryption Phase Using
Associated Data Bits

Assumptions:
� No associated data
� Starting state: B3200

� Cube, C ∈ {m0, · · · ,m31}

Assumptions:
� No associated data
� Starting state: B2176

� Cube, C ∈ {v64, · · · , v95}

Assumptions:
� Includes associated data
� Starting state: B2560

� Cube, C ∈ {d0, · · · , d31}

Steps taken:
1. Cube, C is XOR-ed into last 32-bits of state B, i.e., B{96···127}.
2. State B goes through reduced permutation rounds Pr3 in the encryption phase.
3. Keystream, B{64···B95}, is observed and cube summation is computed after Pr3 .

For the DA3 attack, we assume that the cipher runs through the full ini-
tialisation phase and the permutation P1024 when processing the first 32-bit
plaintext block. Note that the associated data processing phase is skipped.
Thus the attack starting state becomes B3200. The length mlen of plaintext
is set to 64 bits. A cube is chosen to include the first 32 bits of the plaintext,
i.e., {m0, · · · ,m31} and the remaining 32 bits of the plaintext are set to zero.

For the DA4 attack, the cipher executes the initialisation phase, where
the NFSR state goes through the full 1024 + 384 × 3 = 2176 permutation
rounds. It means that the starting state is B2176. Note that the associated
data processing phase is again skipped. Table 9 shows details of the attack. In
particular, cubes are chosen from the last 32 bits {v64, · · · , v95} of the nonce
V . In the encryption phase, the FrameBits are XOR-ed into the state and
the state is updated by running Pr3 .

The DA5 attack is similar to DA4. We assume that the cipher executes
the initialisation phase (with 2176 permutation rounds) and processes the
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first 32 bits of associated data (with 384 permutation rounds). Thus, the at-
tack starting state becomes B2560. Similarly to DA4, in the encryption phase,
FrameBits are XOR-ed and the state is updated by the permutation Pr3

with a reduced number r3. Cubes are selected from the first block of associ-
ated data, i.e., {d0, · · · , d31}. Table 9 compares our three attacks. The main
difference among them is the selection of cubes.

4.2.1 Experimental Results for DA3, DA4 and DA5

We have implemented the three attacks. Cubes are chosen according to the
attack specification (see Table 9). Given a cube, we check the resulting su-
perpoly for linearity using 50 BLR tests. At the same time, the number of
permutation rounds of Pr3 is gradually increased. Consider DA3. We have
found a few single bits of the keystream outputs that produce constant super-
polies for r3 = 416, 417, 437. Similar results are obtained for DA4. For the DA5
attack, we get linear superpolies for r3 = 416, 437. Table 10 summarises our
experiments with the three attacks. Note that we did not test all the values
for r3 between 416 to 437. However, we are confident that cube testers exist
for any r3 in the interval (416, 437). For all attacks, the largest number of

Table 10 Experimental results of 32-bit cube for DA3, DA4 and DA5.

Attack
Reduced
round, r3

Output Indices
Total
indices

DA3

416
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85

22

417
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84

21

437 64 1

DA4

416
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85

22

417
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84

21

418
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83

20

437 64 1

DA5
416

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85

22

437 64 1

rounds in the encryption phase is r3 = 437. We have also tried bigger values
(i.e. r3 ≥ 438). Unfortunately, we could not find any cube and the matching
superpoly that passes the BLR test. Note that the 32-bit cube testers allow
to tell apart the cipher from a random one only. Although the attacks do not
allow to recover any of the key bits, they give an insight into cipher security.

As all cube testers, in the three attacks, require 32-bit cubes, the complexity
of the attacks is Θ(232). Note that the attacks apply a similar approach. It



Cube Attacks on Round-Reduced TinyJAMBU 21

should not be a surprise that the results are also similar. From the result
given in Table 10 we see that our cube testers work up to 437 rounds in the
encryption phase. This leads us to a conclusion that the cipher has a better
security margin than the one claimed by the designers.

The cubes for DA2 and KRA2 can also be applied against DA3 to DA5 by
using same or corresponding indices for plaintext in DA3, nonce bits in DA4
and associated data in DA5. Experimental results verifies this observation. So,
it is also possible to find cube sizes of 18 (compute corresponding indices from
Table 7) for DA3 to DA5 that works for 438 rounds of encryption phase.

5 Conclusion

We have investigated the resistance of the TinyJAMBU cipher against cube
attacks. The cipher is a finalist of the NIST LWC Project. We have applied
five variants of the distinguishing attack: DA1 – DA5, and two variants of
the key recovery attack: KRA1 – KRA2. They all target the first version of
the cipher called TinyJAMBU-128. The changes in the second version of the
cipher only increase the number of rounds during the nonce-setup, associated
data processing, and finalisation; no other changes are made in this version.
The first two attacks DA1 and KRA1 are launched against the initialisation
phase (that includes 2176 rounds) of the cipher. For DA1, we have been able
to find cube testers (distinguishers) with cube sizes ranging from 3 to 20.
For KRA1, we have identified non-constant superpolies that can be used to
recover eight bits of the secret key. The attack DA2 is an extension of DA1.
It is applied against a cipher variant that includes the initialisation phase
and 438 encryption rounds. We have found 18-bit cube testers. The KRA2 is
applied against a cipher variant that includes the initialisation phase and 428
encryption rounds. Note that the results of DA1 and some results in DA2 (for
random cubes from full cube space) are only applicable to TinyJAMBUv1.
However, the results from the DA2 with reduced cube space and KRA2 are
applicable to both TinyJAMBUv1 and TinyJAMBUv2.

The other three attacks (DA3 – DA5) are against cipher variants with the
encryption phase. Bits of cubes are chosen from either plaintext, nonce or
associated data. We note that for DA3 to DA5, there are some smaller cubes
of sizes less than 32 that work up to 438 rounds; however, the superpoly of
the 32-bit cube tester do not pass beyond 437 rounds. As a result, we have
identified 437 rounds as the upper bound on the number of rounds, for which
the attacks work and allow to find 32-bit cube testers. Note that the designers
of TinyJAMBUv2 claim that after 512 rounds, all output bits in keystream
are affected by all input bits. Based on our results, we expect that the full
dependency is achieved after 437 rounds.

We emphasize that the results reported in this paper do not threaten the
security of TinyJAMBU. We hope that the cubes identified in the work con-
tribute to a better understanding of security strengths and limitations of the
cipher.
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