
Efficient CCA Timed Commitments in Class Groups
Sri Aravinda Krishnan Thyagarajan

Friedrich Alexander Universität Erlangen-Nürnberg

Nürnberg, Germany

t.srikrishnan@gmail.com

Guilhem Castagnos

Université de Bordeaux, INRIA, CNRS

Talence, France

guilhem.castagnos@math.u-bordeaux.fr

Fabien Laguillaumie

LIRMM, Univ Montpellier, CNRS

Montpellier, France

Fabien.Laguillaumie@lirmm.fr

Giulio Malavolta

Max Planck Institute for Security and Privacy

Bochum, Germany

giulio.malavolta@hotmail.it

ABSTRACT
Timed commitments [Boneh and Naor, CRYPTO 2000] are the

timed analogue of standard commitments, where the commit-

ment can be non-interactively opened after a pre-specified

amount of time passes. Timed commitments have a large spec-

trum of applications, such as sealed bid auctions, fair contract

signing, fair multi-party computation, and cryptocurrency

payments. Unfortunately, all practical constructions rely on

a (private-coin) trusted setup and do not scale well with the

number of participants. These are two severe limiting factors

that have hindered the widespread adoption of this primitive.

In this work, we set out to resolve these two issues and pro-

pose an efficient timed commitment scheme that also satisfies

the strong notion of CCA-security. Specifically, our scheme

has a transparent (i.e. public-coin) one-time setup and the

amount of sequential computation is essentially independent

of the number of participants. As a key technical ingredient,

we propose the first (linearly) homomorphic time-lock puzzle

with a transparent setup, from class groups of imaginary qua-

dratic order. To demonstrate the applicability of our scheme,

we use it to construct a new distributed randomness genera-

tion protocol, where 𝑛 parties jointly sample a random string.

Our protocol is the first to simultaneously achieve (1) high

scalability in the number of participants, (2) transparent one-

time setup, (3) lightning speed in the optimistic case where

all parties are honest, and (4) ensure that the output random

string is unpredictable and unbiased, even when the adversary

corrupts 𝑛 − 1 parties. To substantiate the practicality of our

approach, we implemented our protocol and our experimental

evaluation shows that it is fast enough to be used in practice.

We also evaluated a heuristic version of the protocol that is

at least 3 orders of magnitude more efficient both in terms of

communication size and computation time. This makes the

protocol suitable for supporting hundreds of participants.

KEYWORDS
Timed commitments; Distributed randomness generation

1 INTRODUCTION
Timed commitments [13, 66] allow one to hide a message𝑚

into a commitment 𝑐 , for a pre-specified amount of time T.
Anyone can recover the committed message𝑚 by performing

a long sequential computation, which terminates (approxi-

mately) after time T. The security property of interest is that

no amount of parallel computation can give a significant ad-

vantage in opening the commitment earlier than scheduled.

Specifically, we are interested in the strong notion of chosen
commitment attack (CCA) security [47]: The message𝑚 inside

the commitment 𝑐 must be kept hidden until time T, even if the
adversary has access to an oracle that instantly force-opens

all commitments (except for the challenge commitment 𝑐).

Timed commitments [3, 15, 21, 43, 47, 55] and timed-based

cryptography [11, 38, 62, 74] have seen a recent surge of pop-

ularity in the research community, due to their wide array of

applications. Examples of interest include protocols for dis-

tributed randomness generation [68], contract signing [13],

e-voting [55], multi-signature transactions in cryptocurren-

cies [72], zero-knowledge arguments [42], and non-malleable

commitments [52], among many others.

Yet, there are pertinent questions about this time-based

cryptographic primitive that have remain unanswered, and

consequently affected its large scale adoption. We identify

two such questions that have been the major obstacles for

the usage of timed commitments (and more in general timed

cryptography) in real-life applications.

(1) Scalability of Sequential Computation. The major lim-

iting factor of the timed commitment construction is the com-

putational cost of forcefully opening the commitments. This

mechanism is inherited from solving the underlying time-lock

puzzles [66]. This drawback is significantly amplified in proto-

cols where many users participate, each with their own com-

mitment. In these situations, the computational effort needed

to learn the output and terminate the protocol might also grow

with the total number of commitments. We stress that this is

not only an environmental concern, but also constitutes an

attack vector for denial-of-service: An attacker can prolong

or even prevent the termination of a protocol by flooding the

network with a massive amount of commitments, that all users

need to forcefully open.

This issue has motivated the development of homomorphic

time-lock puzzles [55] and delay encryption [21], which use

additional structural properties to solve this problem: At any

point in time, only one puzzle/ciphertext needs to be solved,

regardless on the number of participants. However, all of these

works consider only a weak notion of security (analogous to

the CPA-security of encryption schemes) and thus are not

sufficient for many applications where the stronger notion of

CCA-security is required (more on this later).

1

(2) Necessity of Trusted Setup. Virtually all efficient timed

commitment schemes rely on the sequentiality of computing

squarings over RSA groups. I.e. they assume that given a group

element 𝐺 , the fastest algorithm to compute

𝐺
Squaring
−−−−−−−→ 𝐺2

T
mod 𝑁

takes (approximately) T steps given only 𝐺 and 𝑁 , where

𝑁 = 𝑝𝑞 is the product of two large primes. However note

that if the factorization of 𝑁 is known, then this assumption is

simply false. Thus many of these schemes [13, 55] are forced to

rely on a trusted party to sample the RSA modulus 𝑁 and not

reveal its trapdoor (i.e. the prime factors 𝑝 and 𝑞) to anyone. In

practice, such trusted party can be substituted by an execution

of a multi-party computation (MPC) protocol where a set of

mutually distrustful jointly generate the RSA modulus. Effi-

cient protocols for this task exist [30, 39], but their adoption

is cumbersome and error prone. Furthermore, one needs to

assume that at least one of the parties involved in this MPC

protocol is behaving honestly.

A more elegant solution is to design schemes where the

setup is transparent (a.k.a. public-coin): The random coins

of the setup algorithm are not required to be kept hidden.

This prevents catastrophic failures of the system, since no one

knows the trapdoor and it is hard to compute a trapdoor even

given the random coins. This is not a concern unique to the

timed commitment settings: A large body of literature on suc-

cinct non-interactive arguments (SNARGs) aims at designing

efficient protocols with the same guarantees [4, 18, 73] and

there has been a strong push especially from the cryptocur-

rency community advocating for the usage of transparent

protocols [76, 77]. Surprisingly, for the case of timed commit-

ments, constructing an efficient scheme with a transparent

setup is a largely unexplored territory, even given their wide

range of applications.

In summary, the large applicability of timed commitment

schemes calls for a scalable solution that satisfies strong secu-
rity definitions under minimal trust assumptions.

1.1 Our Contribution
Our main result is a new efficient construction of CCA timed

commitments with transparent setup, where the amount of

sequential computation does not scale with the number of

users. We then show how this scheme immediately implies

an efficient and scalable distributed randomness generation

protocol. We discuss our contributions in more details below.

Efficient CCA Timed Commitments. We present a con-

cretely efficient construction of CCA timed commitments with

a transparent setup algorithm. The scheme is equipped with

a homomorphic evaluation algorithm that allows us to avoid

the computational blowup in the number of users (the rela-

tion between CCA security and homomorphic evaluation is

discussed in details in Section 1.2). Our construction can be

conceptually broken down into three main steps:

(1) Homomorphic Time-Lock Puzzle: We build a linearly homo-

morphic time-lock puzzle scheme over Z𝑞 , for some prime

𝑞, with transparent (public-coin) setup from class groups

of imaginary quadratic order [16].

(2) Efficient Simulation-Extractable NIZKs: Tomake the scheme

CCA secure, we follow the Naor-Yung paradigm [58] and

equip the time-lock puzzle with a non-interactive zero-

knowledge (NIZK) proof 𝜋 certifying the well-formedness

of the puzzle. We then show how to build this proof 𝜋 that

is concretely efficient, has a transparent setup, and satisfies

the strong notion of straight-line simulation extractability.

(3) Cross-Group DLog Equality: In the process of instantiating

the efficient NIZK scheme we develop new techniques to

efficiently prove the equality of discrete logarithm between

class groups (of unknown order) and standard prime order

groups, which might be of independent interest.

One caveat of relying on class groups, as opposed to RSA

groups, is that the time needed to compute the setup is propor-

tional to the time parameter T (although the size of the public

parameters is independent of T). This seems inevitable since,

as opposed to RSA group, a trapdoor for the scheme is hard to

compute even given the random coins of the setup. This means

that one needs to run a one-time pre-processing phase (that

lasts approximately T steps) to compute the public parameters.

As we will discuss later, this is perfectly acceptable in many

applications of interest.

The security of our time-lock puzzle (and consequently of

our CCA timed commitment) relies on the sequential squaring

problem over class groups. Although somewhat less studied

than the sequential squaring over RSA groups, this problem

has recently received a lot of attention [31, 74] and even im-

plemented for usage in the Chia network [32].

DistributedRandomness Generation.We demonstrate the

utility of our timed commitment construction by presenting a

distributed randomness generation protocol among 𝑛 parties,

where the parties jointly generate a 256-bit random string.

Our protocol is the first to simultaneously satisfying all of the

following desirable properties.

(1) All-but-one Corruption: The output random string is un-

predictable and unbiased even against an attacker that

corrupts any set of 𝑛 − 1 parties. The CCA security of our

timed commitments is crucial to achieve this guarantee.

(2) Optimistic Efficiency: In the optimistic case where all of the

parties behave honestly, the protocol is extremely efficient

and no sequential computation is done at all. In practice,

the sequential computation aspect would function as a

deterrent to misbehave and we expect most of the exe-

cutions to terminate without the need of force-open the

commitments.

(3) Scalability: Even in the case where some party misbehaves,

the amount of sequential computation needed to termi-

nate the protocol is always independent of the number

of parties 𝑛. Thus, increasing the number of parties does

not significantly impact the performance of our protocol,

due to the homomorphic properties of our CCA timed

commitment scheme.

(4) Transparent Setup: The protocol has a one-time transparent

(a.k.a. public-coin) setup and it requires otherwise minimal

interaction among parties.

2

To the best of our knowledge, no prior distributed randomness

generation protocol (even among the less practical ones) satis-

fied all the above properties. We discuss these prior works in

more detail in Section 7.

Implementation and Experiments.We implement each of

the cryptographic techniques used in this work and our results

show that our CCA timed commitments are indeed practical.

Due to the strong security requirements, our NIZK proof in-

volves a large number of exponentiations which results in run-

ning times of several minutes on a single thread. This might

be acceptable in applications where users have a long time to

commit. Moreover these exponentiations can be parallelized

which results in running times that are under a minute. Finally,

we implemented a heuristic approach using a sigma protocol

that we assume is simulation-extractable when transformed

into a NIZK proof. We gain significant efficiency improve-

ments both in terms of bandwidth and running time, suitable

for any application.

1.2 Homomorphism vs CCA Security
An astute reader might wonder why the homomorphic prop-

erty of the commitments is not at odds with the CCA-security

of the primitive. It is well-known that fully-homomorphic en-

cryption cannot be CCA secure since one can simply evaluate

some trivial function (e.g. the identity) homomorphically over

the challenge ciphertext and query the resulting ciphertext

to the decryption oracle. However, for the case of commit-

ments there is a subtle aspect that one needs to consider: Our

CCA timed commitments come with a proof 𝜋 , which guaran-

tees that the commitment is well-formed. On the other hand,

the homomorphic evaluation algorithm operates only on the

commitments

(𝑐1, 𝜋𝑖 , . . . , 𝑐𝑛, 𝜋𝑛)
Eval(𝑓 , ·)
−−−−−−−→ 𝑐

and in particular does not produce a validity proof �̃� for the

evaluated commitment 𝑐 . This immediately counters the attack

outlined above: Due to the missing proof, the open/decryption

oracle will refuse to open the commitment.

This however does not contradict the usefulness of the ho-

momorphic evaluation procedure: Instead of force-opening

all commitments, we can compute the function of interest

homomorphically and then force-open (in time T) the single
resulting commitment 𝑐 that contains the function output. De-

pending on the number 𝑛 of input commitments, the savings

can be substantial. Note that this is a purely efficiency-related

consideration and does not affect security, since all commit-

ments can anyway be force-opened in (parallel) time T.

2 TECHNICAL OVERVIEW
In this section we give a brief outline of the techniques that

we develop in this work. Our technical contributions can be

conceptually split into three main steps:

Step I: We construct a homomorphic time-lock puzzle from

class groups of imaginary quadratic order. The scheme has a

transparent setup and supports homomorphic evaluations of

linear functions over Z𝑞 , for some prime 𝑞.

Step II: We turn our time-lock puzzle into a CCA timed com-

mitment by augmenting it with a simulation-extractable NIZK.

We then propose a new special-purpose efficient NIZK scheme

with a transparent setup.

Step III: We show how our CCA timed commitments give

raise to a distributed randomness generation protocol that is

concretely efficient and satisfies many desirable properties.

2.1 Homomorphic Time-Lock Puzzles from
Class Groups

Known constructions of linearly homomorphic time-lock puz-

zles (HTLP) [55] are very close to construction of linearly

homomorphic encryption schemes [59]. A natural approach

is thus to adapt the linearly homomorphic CL encryption

scheme [27], based on class groups, and more precisely the

so-called faster variant of this scheme. In a nutshell, the CL

cryptosystem uses the relations between two class groups,

one related to a negative number (a discriminant) Δ𝑞 = −𝑝𝑞3,
𝐶𝑙 (Δ𝑞), and the other one related to the square-free (a funda-

mental discriminant) Δ𝐾 = −𝑝𝑞, 𝐶𝑙 (Δ𝐾). This makes it possi-

ble to build a subgroup of order 𝑞 generated by an element 𝐹

where the discrete logarithm problem is easy, a situation simi-

lar to the Paillier cryptosystem [59] which uses Z∗
𝑁 2

and Z∗
𝑁

and a subgroup of order 𝑁 . Then a plaintext𝑚 is encrypted

as in “lifted” Elgamal denoted by (𝐺𝑟 , 𝑝𝑘𝑟 · 𝐹𝑚) defined in a

cyclic subgroup of𝐶𝑙 (Δ𝑞). The faster variant of the CL scheme

works by defining𝐺 and pk in a cyclic subgroup G ⊂ 𝐶𝑙 (Δ𝐾),
and encrypting 𝑚 as (𝐺𝑟 ,𝜓𝑞 (𝑝𝑘𝑟) · 𝐹𝑚) where 𝜓𝑞 lifts the

element to 𝐶𝑙 (Δ𝑞) where 𝐹 is defined. This is more suitable

for our context: all the NIZK proofs that we need will be de-

fined in 𝐶𝑙 (Δ𝐾) resulting in more efficient implementation as

computation in this group is faster. Furthermore, this makes

it possible to use a sequential squaring assumption in 𝐶𝑙 (Δ𝐾)
where Δ𝐾 is fundamental, a setting similar to verifiable de-

lay functions (VDF) [74] based on class groups. However the

security of this fast variant was not really analysed in [27].

We revisit this scheme and show that one can build a HTLP

scheme (with linear homomorphism) from it, by setting the

puzzle

𝑍 := (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚)

where𝐻 := 𝐺2
T
is output by the puzzle setup. The solving pro-

cedure simply computes 𝐻𝑟 via repeated squaring of 𝐺𝑟 and

obtain 𝐹𝑚 , from which it is easy to extract𝑚 since the discrete

logarithm problem is easy in this subgroup. The security of our

HTLP scheme relies on the HSM𝐶𝐿 assumption (introduced

later in [28]), an adaptation of Paillier’s DCR assumption in

class groups, and a decisional variant of the sequential squar-

ing assumption. A technical point is the fact that one can

efficiently compute square roots in 𝐶𝑙 (Δ𝐾). However we ob-
serve that this has only a marginal impact on the parameters.

We also show that our HTLP setup in the CL framework is

compatible with a transparent setup as other cryptographic

schemes based on class group. As a side contribution, we prove

that the CL fast variant is IND-CPA under the HSM𝐶𝐿 assump-

tion, which might be of independent interest.

3

2.2 CCA Timed Commitments
The notion of CCA security for timed commitments is analo-

gous to the one for encryption schemes: The committed mes-

sage𝑚 in 𝑐 is required to be hidden (until time T) even if the

distinguisher has access to an oracle that instantly force-opens

any commitment 𝑐 ′ ≠ 𝑐 . This models the fact that the adver-

sary cannot maul a commitment 𝑐 to produce a valid commit-

ment 𝑐 ′ for a related message. One canonical approach to lift

schemes to CCA secure one is the Naor-Yung paradigm [58].

Rephrased for timed commitments, the idea is to augment a

commitment TCom(𝑚) with
(TCom(𝑚), Enc(pk,𝑚), 𝜋)

where Enc is the encryption algorithm of a standard semanti-

cally secure encryption scheme, pk is a public key placed in

the common public parameters, and 𝜋 is a proof that certifies

that the commitment and the encryption contain the same

message. In the proof, one can simulate the force-opening or-

acle by using the secret key sk to recover𝑚 from Enc(pk,𝑚).
Clearly in the actual scheme, the public key pk must be sam-

pled uniformly and without the knowledge of the sk.
How to Sample 𝑝𝑘? The immediate first attempt to imple-

ment the above paradigm would be to sample the public key

pk := 𝐾 ∈ G as an element of the class group 𝐶𝑙 (Δ𝐾) and use

it to compute and Elgamal encryption of𝑚 as Enc(pk,𝑚) :=
(𝐺𝑠 , 𝐾𝑠 ·𝐺𝑚). Unfortunately this simple attempt runs into an

immediate barrier: There is no known algorithm to obliviously

sample a well-formed public key 𝐾 . In other words, the only

efficient method to sample an element 𝐾 (public key) in the

cyclic subgroup G of the class group uniformly at random is

to first sample an integer 𝑘 (the secret key) and set 𝐾 := 𝐺𝑘

where 𝐺 is the generator of the group. This however requires

a fully trusted (private-coin) setup, which contradicts our goal

of having a transparent (public-coin) setup.

This difficulty seems to be curtailed to the class group set-

tings, as for standard prime-order groups
˜G we know of ef-

ficient algorithms to sample a uniform
˜pk without knowing

the corresponding secret key. With this observation in mind,

we can implement the above paradigm bridging both groups

G and
˜G. However, this needs to be done with care, due to

the structural differences among these (e.g. the groups have

different orders, and the order of G is unknown). Recall that

our time-lock puzzle is of the form

(𝑍1, 𝑍2) = (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚) (1)

where (𝐺, 𝐹) are the generators of the respective subgroups
and 𝐻 := 𝐺2

T
. As discussed above, the common random string

is augmented with a uniformly sampled public key �̃� ∈ ˜G,

where
˜G is a group of prime order 𝑞. Then the commitment is

augmented with a set of ciphertexts{
(𝑐𝑖,0, 𝑐𝑖,1) = (�̃�𝑠𝑖 , �̃�𝑠𝑖 · �̃�𝑟𝑖)

}
𝑖∈[𝛼]

(2)

where 𝛼 := ⌊log𝑞⌋ + 1 is the bit-length of 𝑞, along with a

proof 𝜋 that certifies that (𝑐𝑖,0, 𝑐𝑖,1) is indeed a “lifted” Elgamal

encryption of 𝑟𝑖 (the 𝑖-th bit of 𝑟), under the public key �̃� . Note

that this is in some sense equivalent to giving an encryption

of𝑚: In particular, in the proof, the knowledge of the secret

key DLog
�̃�
(�̃�) = ˜𝑘 , allows the simulator to reconstruct 𝑟

and consequently recover 𝜓𝑞 (𝐻𝑟), which in turn reveals𝑚.

Another subtlety to take into account is that we assumed that

the randomness space of the time-lock puzzles matches exactly

the order 𝑞. For the sake of this overview we are going to

ignore these subtleties and we refer the reader to the technical

sections for a precise choice of the parameters.

Efficient NIZK for Cross-Group Relations. In principle,

this solution works and the security analysis can be carried

out with minor modifications to the argument. However, this

solution requires an efficient NIZK to prove relations across

two groups of different order, one of which is unknown (the

class group). Concrete efficiency for this class of statements

seems to be out of reach of generic NIZK systems, let alone

the ones with a transparent setup. A recent work by Alamati

et al. [1] dealt with NIZK proofs over cross-group relations

(involving RSA groups) in the standard model. On the contrary,

we deal with Class groups and use the random oracle model to

gain practical efficiency. Intuitively, we would like to reduce

the language that we want to prove to a bunch of logical

combination of discrete-logarithm equality proofs within the
same group, for which efficient sigma protocols exist [70].

To do this, we circle back to our original idea, except that

now we let the committer sample the public key 𝐾 in the

class group, instead of placing it in the common reference

string. This way, we can use the trivial algorithm that samples

an integer 𝑘 and sets 𝐾 := 𝐺𝑘 . We also further augment the

commitment with an bit-wise encryption of the randomness 𝑟

(as defined above), except that these ciphertext are computed

in the class group, under the newly sampled key 𝐾 . More

concretely, our timed commitment consists of the puzzle 𝑍

from (1), prime-order group ciphertexts in (2) and

𝐾,
{
(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 , 𝐾𝑠𝑖 ·𝐺𝑟𝑖)

}
𝑖∈[𝛼]

where 𝑟𝑖 is the 𝑖-th bit of 𝑟 . Our NIZK proof must now certify

that the following conditions are met:

1) The public key 𝐾 is correctly sampled from the class group.

2) The class group ciphertexts {𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼] encrypt the bit
decomposition of the randomness 𝑟 used in 𝑍1.

3) Both 𝑖-th ciphertexts (𝑐𝑖,0, 𝑐𝑖,1) and (𝑐𝑖,0, 𝑐𝑖,1) either encrypt
0 or 1.

Statement 1) is a standard proof of knowledge of discrete

logarithm (over the class group), whereas 2) can be reduced

to a proof discrete logarithm equality (again over the class

group) by running the linear reconstruction in the exponent.

Thus the only statement that concerns two different groups is

3). Fortunately, we can split the statement as

(𝑐𝑖,0, 𝑐𝑖,1) AND (𝑐𝑖,0, 𝑐𝑖,1) Encrypt 0
OR

(𝑐𝑖,0, 𝑐𝑖,1) AND (𝑐𝑖,0, 𝑐𝑖,1) Encrypt 1.
where each clause individually can again be reduced to a

standard proof of discrete logarithm equality (over the respec-

tive group). The clauses are then combined via standard OR

and AND composition of sigma protocols. In some sense, the

bridging across the two groups is delegated to the AND com-

position of sigma protocols, which can be implemented very

efficiently (e.g. simply use the same challenge in the sigma

4

protocol). Finally, statements 1), 2), and 3) are again stitched

together via AND composition of sigma protocols.

2.3 Distributed Randomness Generation
We show the applicability of our CCA timed commitment by

constructing a distributed randomness generation protocol:

The protocol is run among𝑛 parties (𝑃1, . . . , 𝑃𝑛), and the objec-
tive is to compute a 256-bit random string 𝑟∗, that is, unbiased,
and unpredictable even in the presence of 𝑛 − 1 corrupted par-

ties, that cooperate to bias the distribution of 𝑟∗. Our protocol
proceeds in three phases.

Commitment Phase: Each party 𝑃𝑖 locally samples a random

integer 𝑥𝑖 ← Z𝑞 (where Z𝑞 is the message space of the timed

commitments) and generates a timed commitment (𝑐𝑖 , 𝜋𝑖) to
such an integer. All the timed commitments are generated

with respect to a fixed time parameter T, which conservatively

bounds the duration of the commitment phase. Parties broad-

cast their timed commitments to other parties which locally

verify the validity of each individual commitment.

(Fast Termination) Opening Phase: Each party 𝑃𝑖 then reveals

𝑥𝑖 along with the random coins used in generating their timed

commitment (𝑐𝑖 , 𝜋𝑖). Parties can locally check if the open-

ing is valid, by recomputing the timed commitments of other

parties themselves. The final random value is computed as

𝑟∗ :=
∑
𝑖∈[𝑛] 𝑥𝑖 by each party. This optimistic case, where ev-

eryone reveals their valid openings does not require force

opening of any of the timed commitments and the final value

𝑟∗ is generated without the need to perform any sequential

computation.

(Slow Termination) Force-Opening Phase: In the event that

one or more parties do not reveal a valid opening for their

commitments, the other parties need to force-open their com-

mitments to compute 𝑟∗. To avoid a computational blowup in

the number of aborting parties, this is done by evaluating the

addition homomorphically over the commitments

(𝑐1, . . . , 𝑐𝑛)
Eval(sum, ·)
−−−−−−−−−→ 𝑐

where 𝑐 contains the output
∑
𝑖∈[𝑛] 𝑥𝑖 = 𝑟

∗
. Thus the output of

the protocol can be obtained by simply force-opening 𝑐 . This

phase can be further optimized by letting a single designated

party (say 𝑃 𝑗) compute the force-opening algorithm along

with succinct proof of correctness [62, 74]. The end result is

that the revealing of commitments is publicly verifiable even
if one or many parties do not reveal their valid openings.

Analysis. The resulting output 𝑟∗ is both unbiased and un-

predictable. In our analysis, we show a stronger statement: for

an adversary running in time at most T, 𝑟∗ is computationally

indistinguishable from a value sampled uniformly from Z𝑞 .
For this analysis to go through, the CCA security of the timed

commitment is crucial: Intuitively, it prevents the adversary

from mauling honestly generated commitments and choosing

its own 𝑥𝑖 as a function of the honestly committed values,

which would ultimately result in a biased distribution.

3 PRELIMINARIES
We denote by 𝜆 ∈ N the security parameter and by 𝑥 ←
A(in; 𝑟) the output of the algorithm A on input in using

𝑟 ← {0, 1}∗ as its randomness. We often omit this randomness

and only mention it explicitly when required. The notation [𝑛]
denotes a set {1, . . . , 𝑛} and [𝑖, 𝑗] denotes the set {𝑖, 𝑖+1, . . . , 𝑗}.
We model non-uniform probabilistic polynomial time (PPT)

adversaries as families of circuits {A𝜆}𝜆∈N of size 𝜆𝑂 (1) with
𝜆𝑂 (1) input and output bits. We also consider the parallel

running time of (PRAM) adversaries that we also model as

circuits. The parallel time is determined by the depth of the

circuit and the total running time is determined by the total

size of the circuit.

Non-Interactive Zero-Knowledge Proofs.Wemake use of

non-interactive zero-knowledge (NIZK) proof [9] for a language
L that allows a prover to convince a verifier about the validity

of a certain statement stmt ∈ L without revealing any other

information. We require a NIZK proof to satisfy the properties

of zero-knowledge, and simulation soundness [67]. We recall

the formal definitions in Appendix A.

Homomorphic Time-Lock Puzzles. Time-lock puzzles [66]

allow one to hide a secret for a certain amount of time T. A
homomorphic time-lock puzzle additionally offers homomor-

phic evaluation of several puzzles to generate a single puzzle.

The notion was proposed by Malavolta and Thyagarajan [55].

It consists of a setup algorithm (PSetup), that takes as input
a time hardness parameter T and outputs public parameters

of the system pp, a puzzle generation algorithm (PGen) that,
on input the public parameter and a message, generates the

corresponding puzzle. One can then evaluate homomorphi-

cally functions over encrypted messages (PEval) and solve the
resulting puzzle in time T (Solve). The security requirement is

that for every PRAM adversary A of running time ≤ T𝜀 (𝜆)
the messages encrypted are computationally hidden. They also

propose efficient constructions for linear and multiplicative

homomorphism based on the sequential squaring assump-

tion in the RSA group. Below we recall the formal definitions

from [55]. We recall the formal definitions in Appendix A.

Class Groups. Given a non square integer Δ < 0, called dis-

criminant, the imaginary quadratic order of discriminant Δ,

denoted OΔ is the ring Z[(Δ +
√
Δ)/2]. The associated class

group 𝐶𝑙 (Δ) is defined as the quotient of the group of (invert-

ible fractionnal) ideals of OΔ quotiented by the subgroup of

principal ideals. This a finite abelian group, with an efficiently

computable group law and a compact representation of ele-

ments. Basically, elements are classes of ideals, with a unique

reduced representative, which can be represented by (𝑎, 𝑏),
where 𝑎, 𝑏 ∈ N are smaller that

√
|Δ|, so using log

2
(|Δ|) bits.

For background on this algebraic object, see [16].

Cryptography based on class groups was introduced by

Buchmann and Williams in [17] using the hardness of the

discrete logarithm problem in 𝐶𝑙 (Δ). Another feature of class
groups is that given Δ, the order of𝐶𝑙 (Δ) (called the class num-
ber) is only known to be computable in sub-exponential time.

Consequently, these groups are good candidates to implement

protocols based on groups of unknown order. This fact has

lead to a revival of class groups based cryptography this last

5

decade. First, class groups have been used for decentralised

protocols without trusted setup (e.g., accumulators [54], Verifi-

able Delay Functions [74], Succinct Non-Interactive Argument

of Knowledge [12, 19, 50]). Furthermore, a linearly homomor-

phic encryption scheme modulo a prime was proposed in [27]

using these groups.

4 HOMOMORPHIC TIME-LOCK PUZZLE
FROM CLASS GROUPS

We first revisit the setup algorithm of the so-called faster

variant of the CL linearly homomorphic encryption scheme

introduced by Castagnos and Laguillaumie in [27]. To start

with, 𝑞 is a 𝜆-bit prime describing the message space Z𝑞 , and
we consider a fundamental discriminant Δ𝐾 = −𝑝𝑞 whose size
𝜂 (𝜆) is chosen such that best algorithm to compute the class

number takes 𝑂 (2𝜆) time. The CL setting considers another

discriminant Δ𝑞 = 𝑞2Δ𝐾 and relies on the relations between

the class group 𝐶𝑙 (Δ𝑞) and the class group 𝐶𝑙 (Δ𝐾).
More precisely, two maps are crucial in the design of our

time-lock puzzle: First the injective map 𝜓𝑞 : 𝐶𝑙 (Δ𝐾) →
𝐶 (Δ𝑞) that maps a class 𝑎 ∈ 𝐶𝑙 (Δ𝐾) to 𝑏𝑞 where 𝑏 ∈ 𝐶𝑙 (Δ𝑞)
is the class of the ideal 𝐼 ∩OΔ𝑞 where 𝐼 is a representative ideal
(prime to 𝑞) of the class 𝑎. The other one is the surjective map

𝜑𝑞 : 𝐶𝑙 (Δ𝑞) → 𝐶 (Δ𝐾) which maps the class 𝑎 ∈ 𝐶𝑙 (Δ𝑞) to the
class of 𝐼OΔ𝐾 where 𝐼 is a representative ideal (prime to 𝑞) of

the class 𝑎. Note the important properties: for all 𝑎 ∈ 𝐶𝑙 (Δ𝐾),
𝜑𝑞 (𝜓𝑞 (𝑎)) = 𝑎𝑞 and for all 𝑎 ∈ 𝐶𝑙 (Δ𝑞), 𝜓𝑞 (𝜑𝑞 (𝑎)) = 𝑎𝑞 . See
[27] for details and algorithms to compute these maps.

The kernel of 𝜑𝑞 is a subgroup of 𝐶𝑙 (Δ𝑞) of order 𝑞 where
the discrete logarithm problem is easy. A canonical genera-

tor of this subgroup is the class 𝐹 ∈ 𝐶𝑙 (Δ𝑞) represented by

(𝑞2, 𝑞). We denote SolveDL the polynomial time algorithm that

computes discrete logarithms in basis 𝐹 (cf. [27, Fig. 2]).

Castagnos and Laguillaumie choose the primes 𝑝 and 𝑞

such that 𝑝𝑞 ≡ −1 mod 4 and 𝑞 is not a square modulo 𝑝 (in

other words, the Legendre symbol (𝑞/𝑝) = −1). This ensures
that the subgroup of squares of 𝐶𝑙 (Δ𝐾) has odd (unknown)

order 𝑠 which is half the class number. An upper bound 𝐵 on

𝑠 can be computed using the class number formula (cf [56]). It

will be needed to sample exponents uniformly. More precisely,

exponents will be sampled in Z�̃� where 𝑞 > 2
𝜆𝐵 is a prime.

The reason why we need to use a prime number will become

clear in our construction of CCA timed commitments.

We will work with a cyclic subgroup G ⊂ 𝐶𝑙 (Δ𝐾), gener-
ated by a random square 𝐺 of 𝐶𝑙 (Δ𝐾) (such an element can

be efficiently generated by generating an ideal of OΔ𝐾 above

a random splitting prime, cf [46, Subsection 3.1]). We denote 𝑠

the (unknown) order of G which is a divisor of 𝑠 . For large 𝑞

we can assume that gcd(𝑠, 𝑞) = 1.

In 𝐶𝑙 (Δ𝑞), we will work with a cyclic subgroup Γ of the

squares of 𝐶𝑙 (Δ𝑞) generated by 𝛾 where 𝛾 := 𝛾𝑞𝐹 with 𝛾𝑞 =

𝜓𝑞 (𝐺). We thus have that Γ is of order 𝑞𝑠 and satisfy Γ ≃
Γ𝑞 × ⟨𝐹 ⟩, where Γ𝑞 = ⟨𝛾𝑞⟩ is the subgroup of 𝑞−th powers,

Γ𝑞 := {𝑎𝑞, 𝑎 ∈ Γ}. The HSM𝐶𝐿 assumption (introduced in

[28], cf Definition B.3) states that given an element 𝛿 of Γ it is

hard to tell if 𝛿 ∈ Γ𝑞 or not. It can be seen as an adaptation of

Paillier’s DCR assumption in the CL setting.

The class group generatorCGGen depicted in Fig. 1 outputs
all these parameters: G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞. Note that this is a public
coin setup: the seeds of the probabilistic prime generators to

compute 𝑝, 𝑞 and 𝐺 are published.

The fast variant of the CL encryption scheme that we con-

sider is described in Appendix C. As a side contribution, we

prove in Theorem C.1 that with a slight modification of the

definition of 𝐺 , the indistinguishability of the scheme holds

under the HSM𝐶𝐿 assumption (the security of this variant was

not really analysed in [27]).

Our new homomorphic time-lock puzzle from class group

is depicted in Figure 2. The setup consists in running CGGen
and computing 𝐻 := 𝐺2

T
. Then the puzzle is

𝑍 := (𝑍1, 𝑍2) := (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚)

Note that𝑍2 ∈ Γ and𝜓𝑞 (𝐻𝑟) is an element of Γ𝑞 . As a result, re-
trieving 𝐹𝑚 from 𝑍2 corresponds to solving the computational

subgroup decomposition problem Γ ≃ Γ𝑞 × ⟨𝐹 ⟩ associated to

the HSM𝐶𝐿 assumption. This is done when solving the puz-

zle, by computing𝜓𝑞 (𝐻𝑟) as𝜓𝑞 ((𝐺𝑟)2
T), and then retrieving

𝑚 from 𝐹𝑚 using the SolveDL algorithm. The homomorphic

property of the scheme follows from the Elgamal structure of

the puzzle and the fact that𝜓𝑞 is an homomorphism.

CGGen(1𝜆, 𝑞): On input the security parameter 1
𝜆
, and

a 𝜆 bits prime 𝑞 do the following:

• Let 𝜇 be the bit size of 𝑞. Pick 𝑝 a 𝜂 (𝜆) − 𝜇 bits prime

such that 𝑝𝑞 ≡ −1 (mod 4) and (𝑞/𝑝) = −1
• Δ𝐾 := −𝑝𝑞, Δ𝑞 := 𝑞2Δ𝐾
• Compute 𝐵 an upper bound on the order of 𝐶𝑙 (Δ𝐾)
• Pick a random prime 𝑞 ∈ [2𝜆𝐵, 2𝜆+1𝐵]
• Generate a random square 𝐺 ∈ 𝐶𝑙 (Δ𝐾)
• Compute 𝛾𝑞 = 𝜓𝑞 (𝐺)
• Set 𝐹 the class (𝑞2, 𝑞) in 𝐶𝑙 (Δ𝑞)
• Set 𝛾 := 𝛾𝑞 · 𝐹 and G = ⟨𝐺⟩
• Output pp := (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞)

Figure 1: Class Group Generator

Analysis. Intuitively, from the structure of 𝑍2, the puzzle

hides 𝑚 under the HSM𝐶𝐿 assumption for adversaries that

cannot distinguish𝜓𝑞 ((𝑍1)2
T) from random. In the following

we thus recall a definition of a strong sequential squaring

assumption, which states that knowing of the group struc-

ture does not help to break the sequentially of the squaring

operation, and analyse it in the context of class groups.

Definition 4.1 (Strong Seqential Sqaring Assump-

tion ([55])). Let 𝜆 ∈ N,𝑞 be a 𝜆-bit prime, and (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞)
the output of CGGen(1𝜆, 𝑞) and T(·) be a polynomial. Then
there exists some 0 < 𝜀 < 1 such that for every polynomial-size
adversary (S1,S2) = {(S1,S2)𝜆}𝜆∈N where the depth of S2 is
bounded from above by T𝜀 (𝜆), there exists a negligible function
negl(·) such that

6

PSetup(1𝜆, 1T, 𝑞): On input the security parameter 1
𝜆
,

the time parameter 1
T
, and a 𝜆 bits prime 𝑞 do the

following:

• Run CGGen(1𝜆, 𝑞) to get (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞)
• Set 𝐻 := 𝐺2

T

• Output pp := (𝐺,𝐻, 𝐹, 𝑞)
PGen(pp,𝑚): On input public parameters

pp = (𝐺,𝐻, 𝐹, 𝑞) and a message𝑚, do the following:

• Sample 𝑟 ← Z�̃�
• Output 𝑍 := (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚)
PEval({𝑍1, . . . , 𝑍𝑛}): On input 𝑍𝑖 = (𝑈𝑖 ,𝑉𝑖) for all 𝑖 , do
the following:

• Compute �̃� :=
∏𝑛
𝑖=1𝑈𝑖 and �̃� =

∏𝑛
𝑖=1𝑉𝑖

• Output 𝑍 ∗ := (�̃� , �̃�)
Solve(𝑍): On input 𝑍 = (𝑈 ,𝑉), do the following:

• Compute 𝜔 := 𝑈 2
T

• Output SolveDL (𝑉 ·𝜓𝑞 (𝜔)−1)

Figure 2: Homomorphic Time-Lock Puzzle from Class
Group

Pr

𝑏 ′ = 𝑏

������������

𝜏 ← S1 (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞,T(𝜆))
𝑥 ← Z�̃� ;𝑋 := 𝐺𝑥

𝐻0 := 𝑋
2
T(𝜆)

𝑦 ← Z�̃� ;𝐻1 := 𝐺
𝑦
;

𝑏 ← {0, 1}
𝑏 ′ ← S2 (𝑋,𝐻𝑏 , 𝜏)

≤ 1

2

+ negl(𝜆)

Computational versions of the sequential squaring assump-

tion have been used within class groups in the context of VDF

[74]. In such a setting, the factorization of the discriminant

Δ𝐾 is usually public. As a consequence one can efficiently

compute square roots in G ⊂ 𝐶𝑙 (Δ𝐾) using an algorithm from

Lagarias [49], while it is not possible in Z/𝑛Z when 𝑛 is an

RSA modulus of unknown factorization. From [34, Prop. 3.11],

there are two elements of order dividing 2 in 𝐶𝑙 (Δ𝐾), one is
the neutral element, and the other one, 𝜖 has order exactly 2

and it is not a square in our setting where the subgroup of

squares has odd order. As the order 𝑠 of G is odd, each element

of G has at least a square root 𝑆 ∈ G. The other one, 𝑆 · 𝜖 is
not a square so is not in G. In other word, each element of G
as a unique square root in G.

For our decisional problem, we can use these facts to imple-

ment a meet in the middle attack. Namely, from a challenge,

𝑋,𝐻𝑏 , we can iteratively compute 𝑋0 := 𝑋,𝑋1 := 𝑋 2, 𝑋2 :=

𝑋 4, . . . , and in parallel 𝑋𝑡 := 𝐻𝑏 , 𝑋𝑡−1 the unique square root
of 𝑋𝑡 in G, and so on. If both ends meet, it means that 𝐻𝑏 is

equal to 𝑋 2
T (𝜆)

. In practice, this is not a huge improvement,

because of the complexity of the square root algorithm, which

involves computations of square roots modulo the prime fac-

tors of the discriminant and a reduction procedure of ternary

quadratic forms due to Gauss. This is far more expensive than

squaring in G, and in practice our implementation using the

setting of Section 8 suggests that we gain only a 5% time

improvement using this strategy, we means that one has to

increase T by 5%.

Recent improvements have been obtained to partially par-

allelize squarings in class groups with dedicated hardware in

[75], which result in a speedup by a factor 2 compared to a

standard CPU. Again, computing square roots in class group

is far more intricate, but similar techniques might apply to a

certain extent.

To conclude, the fact that one can compute square roots

only affects marginally the time parameter of the scheme. We

now state the theorem that ensures the security of our HTLP.

Theorem 4.2. If the strong sequential squaring and HSM𝐶𝐿
assumption hold for the output of the CGGen generator, then
the homomorphic time-lock puzzle from Figure 2 is secure.

Proof. Let’s consider a sequence of hybrid games.

Hyb
0
It is the original game.

Hyb
1
In this hybrid game, the only change is the second com-

ponent of the time-lock puzzle challenge𝑍★ = (𝑍★
1
, 𝑍★

2
) which

is replaced by 𝑍★
2
= 𝜓𝑞 (𝐻★) · 𝐹𝑠𝑏 where𝐻★ = 𝐺𝑦 for 𝑦 picked

uniformly at random in Z�̃� .

Hyb
2
Again, the second component of the time-lock puzzle

challenge 𝑍★ = (𝑍★
1
, 𝑍★

2
) is modified. It is computed as 𝑍★

2
:=

𝛾𝑟 · 𝐹𝑠𝑏 for 𝑟 uniformly at random in Z𝑞�̃� .

We now analyse the transitions:

Hyb
0
≈𝑐 Hyb1 Adistinguisher between the two hybrids breaks

the strong sequential squaring assumption. Indeed, let’s con-

struct (S1,S2) as follows: S1 receives (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞,T(𝜆))
and computes 𝐻 = 𝐺2

T(𝜆)
(which he can do since he is not

bounded by T), feeds A1 with (𝐺,𝐻, 𝐹, 𝑞) and waits for its

output (𝜏, 𝑠0, 𝑠1), which he forwards as his output for his own

challenger. Then S2 receives (𝑋★, 𝐻★, 𝜏). Now S2 runs A2

with 𝑍★ = (𝑋★,𝜓𝑞 (𝐻★) · 𝐹𝑠𝑏) for a random bit 𝑏. When A2

outputs his bit 𝑏 ′, S2 outputs the bit 𝑏 == 𝑏 ′. Let us now
analyse the situation:

• Either 𝐻★
equals to 𝑋★2

T(𝜆)
and in this case the challenge

𝑍★ = (𝐺𝑥 ,𝜓𝑞 (𝐻𝑥) · 𝐹𝑠𝑏) is distributed as in Hyb
0
;

• or 𝐻★
is random in G and in this case, 𝑍★ is distributed as

in Hyb
1
.

It means that any distinguisher between Hyb
0
and Hyb

1
will

translate into an adversary against the strong sequential squar-

ing assumption.

Hyb
1
≈𝑐 Hyb2 Adistinguisher betweenHyb

1
andHyb

2
can be

turned into an attacker against HSM𝐶𝐿 . Let us construct such

an attacker D: he takes as input (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞) and 𝛿 . He
computes𝐻 = 𝐺2

T(𝜆)
and feedsA1 with (𝐺,𝐻, 𝐹, 𝑞) and waits

for its output (𝜏, 𝑠0, 𝑠1). NowD runsA2 with𝑍
★ = (𝐺𝑟 , 𝛿 ·𝐹𝑠𝑏)

for a random bit 𝑏 and a random 𝑟 in Z�̃� . When A2 outputs

his bit 𝑏 ′, S2 outputs the bit 𝑏 == 𝑏 ′. We now have:

• Either 𝛿 = 𝛾𝑥𝑞 with 𝑥 ← Z�̃� . In this case, 𝛿 = 𝜓𝑞 (𝐺𝑥) so 𝑍★
is distributed as in Hyb

1
;

• Or 𝛿 = 𝛾𝑦 with 𝑦 ← Z𝑞�̃� so Z★ is distributed as in Hyb
2
.

7

It means that any distinguisher between Hyb
1
and Hyb

2
will

translate into an attacker against the HSM𝐶𝐿 assumption,

which concludes the proof. □

Expanding Message Space. Our HTLP can be generalized

into a scheme with message space Z𝑞𝑡 using Damgård-Jurik’s

ideas [35] for Paillier’s encryption. This generalization was

shown in [72] to be useful in constructing efficient verifiable
timed signatures which has applications in privacy preserving

timed payments in cryptocurrencies.

Indeed, starting from a discriminant Δ𝑞 = 𝑞2𝛿𝐾 , it is pos-

sible to extend the parameters into a scheme with message

space Z𝑞𝑡 by considering the new discriminant Δ𝑞𝑡 = 𝑞
2
𝑡
Δ𝑘 ,

and 𝐹𝑡 := (𝑞2𝑡 , 𝑞) in 𝐶𝑙 (Δ𝑞𝑡) which is now of order 𝑞𝑡 . The

puzzle becomes 𝑍 := (𝐺𝑟 ,𝜓𝑞𝑡 (𝐻𝑟) · 𝐹𝑡𝑚) (using the appropri-

ate mappings between class groups) and it remains to adapt

the SolveDL à la Pohlig-Hellman as suggested in [27] and anal-

ysed in [36]. In this setting, a message is of size 𝑡 log(𝑞) bits
whereas the ciphertext is of size 2 log(𝑝) + (2𝑡 + 2) log(𝑞) so
that the expansion factor tends to 2 when 𝑡 grows to infinity.

5 CCA TIMED COMMITMENTS
In the following we introduce the notion of CCA timed com-

mitments and we propose a new construction.

5.1 Definitions
We recall the definition of CCA timed commitment, an object

recently introduced by Katz et al. [47]. Our syntax heavily

borrows from their definitional framework.

Definition 5.1 (Timed Commitments). A timed commit-
ment scheme consists of 4 PPT algorithms (TSetup, TCom, TVfy,
TForceOp) that are defined below:
TSetup(1𝜆, 1T): the setup algorithm on input the security param-

eter 1𝜆 and the time parameter 1T returns a common reference
string crs.

TCom(crs,𝑚): the commitment algorithm takes as input a com-
mon reference string crs and a message𝑚 and returns a com-
mitment 𝑐 and a proof 𝜋 .

TVfy(crs, 𝑐, 𝜋): the verification algorithm takes as input a com-
mon reference string crs, a commitment 𝑐 , and a proof 𝜋 , and
returns a bit 𝑏 ∈ {0, 1}.
TForceOp(crs, 𝑐): the force opening algorithm on input a com-
mon reference string crs and a commitment 𝑐 , returns a message
𝑚.

As a note on efficiency, all algorithms should run in time

polynomial in the security parameter and poly-logarithmic

in T, except for the TForceOp and (possibly) the TSetup algo-

rithms. For correctness, we require that for all 𝜆 ∈ N, all time

parameters T ∈ N, and all messages𝑚 it holds that

Pr[TForceOp(crs, 𝑐) =𝑚] = 1 and Pr[TVfy(crs, 𝑐, 𝜋) = 1] = 1

where crs ← TSetup(1𝜆, 1T) and (𝑐, 𝜋) ← TCom(crs,𝑚).
We define the properties perfect binding, verifiability and CCA

security in the following.

Definition 5.2 (Perfect Binding). A timed commitment
(TSetup, TCom, TVfy, TForceOp) is perfectly binding if for all
𝜆 ∈ N, all time parameters T ∈ N, all (𝑚0,𝑚1) such that
𝑚0 ≠𝑚1, and all (𝑟0, 𝑟1) ∈ {0, 1}2𝜆 it holds that

TCom(crs,𝑚0; 𝑟0) ≠ TCom(crs,𝑚1; 𝑟1)
where crs← TSetup(1𝜆, 1T).

Definition 5.3 (Verifiability). A timed commitment
(TSetup, TCom, TVfy, TForceOp) is verifiable if there exists a
negligible function negl(·) such that for all 𝜆 ∈ N, all time
parameters T ∈ N, and all PPT algorithms A, it holds that

Pr

 1 = TVfy(crs, 𝑐, 𝜋)
∧ 𝑐 ∉ TCom(crs,𝑚)

������ crs← TSetup(1𝜆, 1T)
(𝑐, 𝜋) ← A(crs)
𝑚 ← TForceOp(crs, 𝑐)

≤ negl(𝜆)

Definition 5.4 (CCA Security). A timed commitment
(TSetup, TCom, TVfy, TForceOp) is CCA secure with gap 𝜖 <

1 if there exists a negligible function negl(·), a polynomial ˜T
such that for all polynomials T > ˜T and all 𝜆 ∈ N, all PRAM
algorithms A = (A1,A2) where A2’s parallel running time is
bounded by T𝜖 , it holds that

Pr

𝑏 = 𝑏 ′

∧ 𝑐 ∉ Q

����������
crs← TSetup(1𝜆, 1T)
(𝑚0,𝑚1) ← AO

1
(crs)

𝑏 ← {0, 1}
(𝑐, 𝜋) ← TCom(crs,𝑚𝑏)
𝑏 ′ ← AO

2
(𝑐, 𝜋)

≤ 1/2 + negl(𝜆)

whereO is an oracle to which the adversary can query with (𝑐, 𝜋)
and if TVfy(crs, 𝑐, 𝜋) = 1, the oracle uses TForceOp(crs, 𝑐)
and returns the output. Here Q denotes the set of commitments
queried by A to the oracle O.

Homomorphic Evaluation.We define an additional homo-

morphic evaluation algorithm that is going to be useful for

our main scheme.

Definition 5.5 (Homomorphic Evluation). A homomor-
phic evaluation algorithm TEval for a function family F is
defined as follows.
TEval(crs, 𝑓 , (𝑐1, . . . , 𝑐𝑛)): On input a common reference string
crs, a function 𝑓 ∈ F , and a set of commitments (𝑐1, . . . , 𝑐𝑛),
the evaluation algorithm returns a new commitment 𝑐 .

We only require the following notion of correctness. For all

𝜆 ∈ N, all time parameters T ∈ N, all functions 𝑓 ∈ F , and all

messages (𝑚1, . . . ,𝑚𝑛) it holds that
Pr[TForceOp(crs, 𝑐∗) = 𝑓 (𝑚1, . . . ,𝑚𝑛)] = 1

where 𝑐∗ := TEval(crs, 𝑓 , (𝑐1, . . . , 𝑐𝑛)), crs ← TSetup(1𝜆, 1T)
and (𝑐𝑖 , 𝜋𝑖) ← TCom(crs,𝑚𝑖).

5.2 Construction
In the following we present our efficient scheme for CCA

timed commitments. We assume the existence of a homo-

morphic time-lock puzzle (PSetup, PGen, PEval, Solve) over
Z𝑞 from class groups (cf. Section 4) defined over some DDH-

hard group G (cf. Theorem B.2) and a DDH-hard prime-order

group (cf. Theorem B.1) generation algorithm (˜G, �̃�, �̃�) ←
8

GGen(1𝜆, 𝑞) that, on input the security parameter 1
𝜆
and a

uniformly sampled prime 𝑞 (of 𝜆 bits) returns a group descrip-

tion
˜G and two generators (�̃�, �̃�). We let 𝛼 := ⌊log𝑞⌋ + 1.

In addition, we assume the existence of a simulation sound

NIZK (Appendix E) proof system (Setup, Prv,Vfy) for each
of the following languages. For groups of unknown order

where computing square roots is easy, the languages we are

able to prove are slightly different from those in groups of

known order. In particular, we cannot prove the knowledge

of the integer value of an exponent 𝑥 , but we can prove the

knowledge of two integers𝑘 and 𝜌 such that 𝑥 = 𝑘 ·2−𝜌 modulo

the unknown order, which is sufficient for our applications. An

honest prover always sets 𝜌 := 0 when running the proving

algorithm for all of the following languages.

• Language L1 contains all statements (𝐺,𝐾) such that 𝐾 is

generated by 𝐺 , defined as

L1 :=

{
(𝐺,𝐾)

��� ∃ 𝑘, 𝜌, s.t. 𝐾 = 𝐺𝑘 ·2
−𝜌 }

.

• Language L2 contains all the DDH-tuples, defined as

L2 :=

{
(𝐺0,𝐺1, 𝐻0, 𝐻1)

���∃ 𝑠, 𝜌 s.t.𝐻0 = 𝐺
𝑠 ·2−𝜌
0

AND𝐻1 = 𝐺
𝑠 ·2−𝜌
1

}
• Language L3 contains pairs of ciphertexts encrypting the

same bit, defined as

L3 :=

(𝐺,𝐾, �̃�, �̃�)
{𝑐𝑖,0, 𝑐𝑖,1 }𝑖∈[𝛼]
{𝑐𝑖,0, 𝑐𝑖,1 }𝑖∈[𝛼]

���������������

∃ {𝑠𝑖 , 𝑠𝑖 , 𝜌𝑖 }𝑖∈[𝛼] s.t.
(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 ·2

−𝜌𝑖
, 𝐾𝑠𝑖 ·2

−𝜌𝑖)
AND

(𝑐𝑖,0,̃𝑐𝑖,1) = (�̃�𝑠𝑖 , �̃�𝑠𝑖)
OR

(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 ·2
−𝜌𝑖
, 𝐾𝑠𝑖 ·2

−𝜌𝑖 ·𝐺)
AND

(𝑐𝑖,0, 𝑐𝑖,1) = (�̃�𝑠𝑖 , �̃�𝑠𝑖 · �̃�)

Efficiency and Instantiations. The setup algorithm inter-

nally runs the setup of the homomorphic time-lock puzzles,

the setup of the NIZK proof system, and the group generation

algorithm for the DDH-hard prime order group of order 𝑞.

All of the above three algorithms are public coin algorithms

(cf. Section 4 and Appendix E) and therefore our CCA timed

commitment scheme also has a public coin setup. As for the

efficiency, the running time of the setup is proportional to 𝜆

and T (the latter dependency is due to PSetup(1𝜆, 1T)), how-
ever the size of the public parameters is a fixed polynomial in

𝜆 and it is in particular independent of T.
The commitment algorithm runs the puzzle generation of

the homomorphic time-lock puzzle and generates ElGamal-

like ciphertexts (that encrypt single bits) both in the class

group and in the prime order group. In total, we have [𝛼]
(where 𝛼 := ⌊log𝑞⌋ + 1) ciphertexts in both groups. The algo-

rithm also computes a NIZK proof of well-formedness (cf. Ap-

pendix E). The running time of the commitment algorithm

is bounded by a fixed polynomial in 𝜆 and in particular is

independent of T. The verification algorithm simply runs the

verifier routine of the NIZK proof system. The force open al-

gorithm solves the time-lock puzzle that takes T sequential

computational steps and the evaluation algorithm runs the

homomorphic evaluation algorithm of the time-lock puzzle.

Analysis. It is easy to show that the scheme satisfies perfect

correctness and perfect binding. In the below theorem we

formally state the security of our CCA timed commitment

construction, and defer the proof to Appendix D.

Theorem 5.6. Let (PSetup, PGen, PEval, Solve) be a secure
time-lock puzzle over a DDH-hard group G, GGen be a DDH-
hard group generator, and (Setup, Prv,Vfy) be simulation-sound
NIZK proof system. Then the timed commitment construction
from Figure 3 satisfies CCA security and verifiability.

Highly Efficient Heuristic Variant. Provided we assume

the sigma protocol for language L2 is simulation extractable
1

with a straight-line (i.e. non-rewinding) extractor, we can omit

proofs for languages L2 and L3. Note that simulation sound-

ness of the sigma protocol can be proven, but extraction re-

quires rewinding. Our heuristic has a flavor of “knowledge”-

type assumptions which we believe is a reasonable compro-

mise for a significant gain in efficiency. Similar assumptions

about sigma protocols are quite common: For example, several

works in threshold ECDSA signatures [41, 53] propose proto-

cols requiring UC-secure (in particular straight-line simulation

extractable) NIZK. However, favoring efficiency, their actual

implementation uses non-UC-secure sigma protocols.

6 DISTRIBUTED RANDOMNESS
GENERATION

We now show how a CCA timed commitment allows us to

build an efficient distributed randomness generation protocol.

6.1 Definition
We consider a setting where there are 𝑛 parties (𝑃1, . . . , 𝑃𝑛)
want to jointly compute a random string. The definitions that

we present, are tailored to our settings and allow us to model

the following properties of interest:

• Public-Coin Setup: The protocol assumes a one-time (public-

coin) setup that produces a short string (pp) that is made

available to all participants.

• Non-Interactive: The protocol consists of a single round of

interaction among users.

• All-but-one Corruption: The protocol is resilient against the
corruption of all but one participants.

Syntactically, the protocol consists of the following interfaces.

A setup algorithm RSetup is run at the beginning that outputs

the public parameters pp to all the parties in the system. The

parties locally run a randomness generation algorithm RGen
that outputs a randomness commitment 𝑣 , which is then pub-

lished on a bulletin board or broadcast to all parties. Finally,

each participant can locally run the randomness computation

algorithm RComp to generate the final random value. The

formal interfaces are given below.

Definition 6.1 (Distributed Randomness Generation).

A distributed randomness generation protocol ΠDRG consists of
three PPT algorithms (RSetup,RGen,RComp) that are defined
as follows.
pp← RSetup(1𝜆): the setup algorithm takes as input the secu-

rity parameter 1𝜆 and outputs the public parameters pp.
1
A notion where the simulator is able to simulate proofs for an adversary and is

also able to extract the witness from a proof output by the adversary [44].

9

TSetup(1𝜆, 1T): On input the security parameter 1
𝜆
and the time parameter 1

T
, do the following:

• Sample pp← PSetup(1𝜆, 1T, 𝑞) and parse pp = (𝐺,𝐻, 𝐹, 𝑞). Sample crs′ ← Setup(1𝜆) and (˜G, �̃�, �̃�) ← GGen(1𝜆, 𝑞).
• Set crs = (crs′, pp, ˜G, �̃�, �̃�) and output crs.
TCom(crs,𝑚): On input a common reference string crs and a message𝑚, do the following:

• Sample 𝑟 ← Z�̃� , and compute 𝑍 ← PGen(pp,𝑚; 𝑟), where 𝑍 = (𝑍1, 𝑍2) = (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚).
• Sample 𝑘 ← Z�̃� and set 𝐾 := 𝐺𝑘 . Let 𝛼 := ⌊log𝑞⌋ + 1.
• For 𝑖 ∈ [𝛼], sample (𝑠𝑖 , 𝑠𝑖) ← Z�̃� , and let 𝑟𝑖 is the 𝑖-th bit of 𝑟 . Compute

(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 , 𝐾𝑠𝑖 ·𝐺𝑟𝑖) and (𝑐𝑖,0, 𝑐𝑖,1) = (�̃�𝑠𝑖 , �̃�𝑠𝑖 · �̃�𝑟𝑖)
• Compute the NIZK proof 𝜋 for the statement stmt := (𝑍,𝐺, 𝐾, �̃�, �̃�, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]) that certifies that

(𝐺,𝐾) ∈ L1 and

(
𝐺,𝐾,

𝛼∏
𝑖=1

𝑐2
𝑖−1
𝑖,0 ,

𝛼∏
𝑖=1

𝑐2
𝑖−1
𝑖,1 · 𝑍

−1
1

)
∈ L2 and (𝐺,𝐾, �̃�, �̃�, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]) ∈ L3

• Set the commitment 𝑐 = (𝑍, 𝐾, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]) and return (𝑐, 𝜋)
TVfy(crs, 𝑐, 𝜋): On input a common reference string crs, a commitment 𝑐 := (𝑍, 𝐾, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]) (where
𝛼 := ⌊log𝑞⌋ + 1), and a proof 𝜋 , return 1 if and only if Vfy(crs, stmt, 𝜋) = 1.

TForceOp(crs, 𝑐): On input a common reference string crs and a commitment 𝑐 , return Solve(pp, 𝑍).
TEval(crs, 𝑓 , (𝑐1, . . . , 𝑐𝑛)): On input a common reference string crs, a function 𝑓 ∈ F , and a set of commitments (𝑐1, . . . , 𝑐𝑛),
return PEval(pp, 𝑓 , (𝑍1, . . . , 𝑍𝑛)).

Figure 3: Construction of CCA Timed Commitments

𝑣 ← RGen(pp): the randomness generation algorithm takes as
input the public parameters pp, and internally samples random
coins to output a randomness commitment 𝑣 .

𝑟 ← RComp(pp, {𝑣1, . . . , 𝑣𝑛}): the distributed randomness

computation algorithm takes as input the public parameters pp,
a set of values 𝑣1, . . . , 𝑣𝑛 and outputs a beacon value 𝑟 .

In terms of security, we want that the final random value

generated by RComp is indistinguishable from a uniform ran-

dom string. More precisely, we consider a time bound T on

the duration of the randomness generation protocol and we

consider an adversary whose parallel running time is bounded

by T. The adversary corrupts any proper subset of the parties

involved and has access to an oracle that mimics the behaviour

of honest parties: That is, the oracle runs the randomness gen-

eration algorithm RGen by internally sampling random coins

and returning the output to the adversary. The adversary out-

puts the randomness commitment values of all the corrupt

parties. A bit 𝑏 is chosen randomly, and if 𝑏 = 0, the value

𝑟0 is returned to the adversary that is generated by running

RComp on the adversary’s randomness commitments and the

responses of the oracle queries. If 𝑏 = 1, then 𝑟1 is sampled uni-

formly and returned to the adversary. The adversary outputs

a bit 𝑏 ′ as its guess. The distributed randomness generation

protocol is said to be T-Indistinguishable Randomness (IND-

RAN) if the probability that 𝑏 = 𝑏 ′ is negligibly close to 1/2.
The above intuition is captured in the formal definition below.

Definition 6.2 (T-Indistinguishable Randomness (IN-
D-RAN)). A distributed randomness generation protocol ΠDRG
satisfies Indistinguishable randomness with a gap 𝜖 < 1, if
there exists a negligible function negl, a polynomial ˜T such that

for all polynomials T > ˜T and for all 𝜆,T ∈ N, and all PPT ad-
versaries A with parallel running time bounded by T𝜖 , it holds
that

Pr

𝑏 = 𝑏 ′∧
𝑉 ′ ≠ ∅

������������

pp← RSetup(1𝜆)
𝑏 ← {0, 1}
𝑉 ← ARGen(pp) (pp)
𝑟0 ← RComp(pp,𝑉 ∪𝑉 ′)
𝑟1 ← {0, 1}𝜆
𝑏 ′ ← A(pp, 𝑟𝑏)

≤ 1/2 + negl(𝜆)

where𝑉 ′ denotes the set of answers to queries to the RGen oracle.

We discuss how IND-RAN notion captures standard prop-

erties for randomness generation considered in prior works.

Unpredictability. Prior works consider adversarial machines

that cannot predict any non-trivial information about the final

random value with a non-negligible probability. Our IND-RAN

notion models the stronger notion of computational indistin-

guishability with respect to a uniformly sampled string. This

trivially implies unpredictability against any T-bounded (but

possibly parallel) adversary. Note that the T condition is nec-

essary, since after time T the randomness is revealed to all

participants as the output of the protocol.

Bias-Resistance. A scheme for distributed randomness gen-

eration satisfying our IND-RAN notion also satisfies bias-

resistance [68]: This is because if an adversary can bias the

final outcome of the protocol even by a single bit, it can also

distinguish it from a truly random string with the same proba-

bility.

All-but-one corruption. The winning condition in our IND-

RAN notion requires the adversary to query the RGen(pp) at
least once, and its output is included in the computation of the

10

random string. This models the fact that at least one honest

user must be in the system, while the rest can be corrupt.

6.2 Our Protocol
We present a distributed randomness generation protocol

ΠDRG (Figure 4) where 𝑛 parties 𝑃1, . . . , 𝑃𝑛 jointly compute a

random integer in Z𝑞 , for some prime 𝑞. The protocol’s maxi-

mum running time is T and uses our homomorphic CCA timed

commitment (cf. Section 5).

RSetup(1𝜆, 1T): The setup algorithm samples and

returns pp := crs← TSetup(1𝜆, 1T).
RGen(pp): The randomness generation algorithm does

the following:

• Sample 𝑠 ← Z𝑞 .
• Generate a timed commitment

(𝑐, 𝜋) ← TCom(crs, 𝑠).
• Output 𝑣 := (𝑐, 𝜋).
RComp(pp, {𝑣1, . . . , 𝑣𝑛}): The distributed randomness

computation algorithm does the following:

• For 𝑖 ∈ [𝑛]:
– Parse each value 𝑣𝑖 := (𝑐𝑖 , 𝜋𝑖).
– Check if TVfy(crs, 𝑐𝑖 , 𝜋𝑖)

?

= 1, if not discard 𝑣𝑖 .

• Compute 𝑐∗ ← TEval(crs, +, 𝑐1, . . . , 𝑐𝑛), where +
denotes addition over Z𝑞 .
• Force open 𝑟∗ ← TForceOp(crs, 𝑐∗).
• Output 𝑟∗.

Figure 4: Distributed Randomness Generation protocol

The setup algorithm simply runs the setup of the timed

commitment to generate the public parameters. Given that our

timed commitment scheme (cf. Section 5) has a non-interactive

transparent (public-coin) setup, our setup algorithm for ΠDRG
inherits the same. The randomness generation algorithm is

run individually by each party 𝑃𝑖 and internally samples a

random integer in Z𝑞 and generates a timed commitment to

such an integer, along with a proof 𝜋 . Finally, the output of the

protocol is computed by combining all timed commitments

(such that the corresponding proof 𝜋 verifies) and solving the

resulting commitment via the force open algorithm.

Optimistic Efficiency. In the optimistic case where all the

parties are honest, after everyone broadcasts their randomness

commitment, the parties can simply broadcast the openings:

The random integer 𝑠 that they committed to in the timed com-

mitments, and the random coins used in generating the timed

commitment. Parties can verify the openings in a canonical

way, by recomputing the timed commitments canonically and

checking if this is what was received earlier. The parties can

simply add the random integers from the openings in plain,

to compute the final randomness. This way no party needs to

run the force opening algorithm of the timed commitments,

which is the computationally expensive step.

PublicVerifiability.The protocol as described above requires
all parties to run the force opening algorithm (which internally

runs T sequential squarings) to output the final randomness.

We can modify our protocol to add efficient verifiability for

this computation if the party computing the squaring opera-

tion also produces a succinct and efficiently verifiable proof

of correct computation. This is exactly the same class of func-

tions that is computed in verifiable delay functions (VDFs) [11].
Wesolowski [74] gave a construction of VDF for sequential

squaring in the class group setting, where the user performing

the squaring operations can succinctly prove that the compu-

tation was performed correctly. Verifying this proof only takes

logarithmic steps in the number of squarings performed.

Now, even in the pessimistic settings where some party

does not broadcast their opening, only a single party has to

run the (expensive) sequential computation and can convince

all other participants of the correctness of the computation.

Scalability. The homomorphism of the timed commitments

is exploited in the distributed randomness computation algo-

rithm: Instead of force-opening each of the 𝑛 timed commit-

ments, the homomorphic evaluation results in a single timed

commitment to force open. Therefore as 𝑛 increases, the com-

putational cost of computing the final randomness remains

(approximately) the same. This evaluation operation is very

efficient and adds only negligible overhead, as it only requires

2(𝑛 − 1) group operations for evaluating over 𝑛 commitments.

Analysis. Our security guarantee is stated formally in the

following theorem.We defer the formal analysis to Appendix F.

Theorem 6.3. Let (TSetup, TCom, TForceOp) be a perfectly
binding CCA timed commitment. Then the protocol ΠDRG has
indistinguishable randomness.

7 RELATEDWORK
Timed Commitments and Time-Lock Puzzles. Time-lock

puzzles can be constructed in RSA groups assuming the se-

quentiality of the squaring operation [66]. Boneh andNaor [13]

built on the above construction to introduce the notion of

timed commitments. The notion of homomorphic time-lock

puzzles has been recently introduced in [55] where it was

shown how to build linearly and multiplicatively homomor-

phic time-lock puzzles over RSA groups. In a later work, Brak-

erski et al. [15] showed how to construct fully homomorphic

time-lock puzzles, additionally assuming multi-key fully ho-

momorphic encryption. Due to the reliance on RSA groups,

all of these schemes assume a trusted setup to sample the RSA

modulus 𝑁 .
2
The notion of non-malleable time-lock puzzles

has been recently explored in a sequence of works [3, 43, 47].

This notion is intimately related to CCA timed commitments,

although all of the scheme proposed do not support homo-

morphic operations, nor they have been implemented. Finally,

we mention that time-lock puzzles can also be constructed

from supersingular isogenies [21] and succinct randomized

encodings [7], although the constructions are significantly less

efficient than the RSA-based ones.

2
It has been shown [50] that in many cases one can substitute RSA groups with

RSA-UFO group (where the modulus is a large randomly chosen integer), which

have the advantage of having a public-coin setup. It is plausible that a similar

approach would give us homomorphic time-lock puzzles with public-coin setup,

however the scheme would be completely impractical.

11

Randomness Generation. There has been a long line work

studying distributed randomness generation starting from

Blum [8] and Rabin [64] who introduced the notion. Threshold

techniques like threshold publicly-verifiable secret sharing [23,

48, 69, 71] and threshold signature schemes [22, 45] have been

used to generate randomness in a distributed manner. These

proposals require that at least a majority of the parties are

honest. Note that this is inherent, since no protocol in the

standard model (as opposed to approaches that make timing-

like assumptions, such as ours) can yield secure coin tossing

if all-but-one parties are corrupted [33].

Verifiable Random Functions (VRFs) have been used in Al-

gorand [29] and Ouroboros Praos [37] to generate randomness

as a byproduct of their consensus mechanism. However these

protocols fail to achieve strong bias-resistance guarantees as

the adversary could refuse to publish a block if the randomness

outcome is undesirable to him [69]. Bonneau et al. [14] and

Bentov et al. [5] show that we can extract almost uniformly

distributed bits from a sequence of Bitcoin blocks, but the

adversary can bias the result as shown in [61].

Verifiable Delay Functions (VDFs) that have been recently

studied [11, 38, 62, 74] to build bias-resistant and unpredictable

randomness generation as one of the main applications. Ran-

dao [57, 65] is one such proposal where users contribute ran-

domness in plain and the aggregation of these values is hashed

and used as a starting point to compute the VDF. Similar proto-

cols where also considered that use VDFs [20, 51, 68]. However

these proposals require a trusted setup (to generate the RSA

modulus 𝑁) and even when all parties are honest (optimistic

case), one party still has to compute the delay function. In

practice, this means that a specialized hardware that performs

squaring operations is running at all times.

UC secure time-lock puzzles [3] and non-malleable time-

lock puzzles [43] were used to construct coin flipping protocol

that satisfied optimistic efficiency, all-but-one corruption, and

public verifiability. However their protocols do not scale well

with the number of users as their time-lock puzzle construc-

tions do not support homomorphic evaluation. Moreover, we

are not aware of any implementation of their proposals.

8 EXPERIMENTAL EVALUATION
We implement our CCA Timed commitment construction, run

experiments and report the evaluation results here.

Experimental Setup.We have implemented our CCA Timed

Commitments using Sagemath with calls to the PARI native C

Library [60] for the operations in class groups. All benchmarks

were done using a single thread on a standard laptop (Intel

Core i5-6267U @ 2.90GHz). Our experiments have been run

for security levels of 𝜆 = 112 and 128 bits. The fundamental

discriminant Δ𝐾 has therefore respective sizes of 1338 bits

and 1827 bits following estimates from [6]. The prime 𝑞 that

defines the plaintext space Z𝑞 is set to have 256 bits, which is

a classical target in practice for randomness generation.

As the prime 𝑞 equals 𝐵 · 2𝜆 , it has size 𝛼 = 786 bits (resp.

𝛼 = 1042 bits with 𝜆 = 128). The Elgamal encryptions needed

for the NIZK proof of well-formedness are done in a group
˜G of

prime order 𝑞 instantiated as a subgroup of Z∗
𝑃
with 𝑃 − 1 = ℓ𝑞

Table 1: Communication cost of CCA Timed Commit-
ments. (H) denotes our heuristic variant.

𝜆 (bits) crs (kB) 𝑐 (kB) 𝜋 (kB)

112 1.24 667.88 1721.34

128 1.77 1276.94 3213

112 (H) 0.47 0.4 0.48

128 (H) 0.62 0.52 0.64

for a ℓ such that the prime 𝑃 is of size 2048 to have a 112 bit

security against DL computations (resp. size 3072 for 128 bits

security). We used SHA3-256 to implement the random oracles

H1 and H2, and SHAKE256 for H3.

Communication Size Costs. Our time-lock puzzle 𝑍 is com-

posed of an element of 𝐶𝑙 (Δ𝐾) and one of 𝐶𝑙 (Δ𝑞). At the 112
bits (resp. 128 bits) security level, this is 3208 bits (resp. 4166

bits). Notice that using a recent compression technique of [40]

this could be reduced by a factor 3/4. The sizes for our CCA
timed-commitment can be found in Table 1: 𝑐 contains a puzzle

𝑍 together with Elgamal encryptions of the bits of the ran-

domness used to create 𝑍 both in the class group G and the

prime order group
˜G and 𝜋 is the NIZK proof.

One can dramatically improve these sizes using a heuristic

variant. In this variant we replace the complex NIZK proof by

a sigma protocol that prove the well-formedness of the time-

lock puzzle 𝑍 for which we assume straight-line extractability.

More precisely, to prove that (𝑍1, 𝑍2) = (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚)
relatively to 𝐺 and 𝐻 for some 𝑟 and𝑚, we can straightfor-

wardly adapt the proof from [25] that a CL ciphertext is well

formed to our fast variant, which allows a direct extraction

of the message𝑚. This reduce the size of the crs as we do not

need to define
˜G. Moreover, the size of 𝑐 shrinks a lot as we

do not need to re-encrypt bit by bit the randomness 𝑟 . The

proof 𝜋 now only contains this NIZK of well-formedness of a

ciphertext under the vast variant of CL.

Computation Time Costs. We set the parameter T = 2
26

which corresponds to an time-lock opening time of roughly

45 minutes for 𝜆 = 112 (resp. one hour for 𝜆 = 128) in our

local machine. This corresponds to the timing of TForceOp.
The running time of TSetup is dominated by the generation

of the puzzle: the group generators CGGen and GGen only

take a couple of seconds. The running time of TCom and TVfy
does not depend on T and it is dominated by the computation

of a huge number of exponentiations. Note that contrary to

the solving of the puzzle, these phases can be parallelized: the

running times of TCom and TVfy can be reduced by a factor of

𝑁 by working with 𝑁 threads. The corresponding benchmarks

can be found in Table 2. Despite the complexity of our proven

NIZK proof of well-formedness, the timings remain practical,

especially in a context where we can use parallelization for

TCom and TVfy and applications with large time-lock opening

time. We also report running time for the heuristic version

(lines (H)) where we obtain a highly efficient protocol. We also

report in Table 3 timings with T = 2
19

which gives an opening

12

Table 2: Running time of CCA Timed Commitments on
a single thread reported in seconds with T = 2

26. (H)
denotes our heuristic variant.

𝜆 (bits) TSetup TCom TVfy TForceOp

112 2617 244 194 2594

128 3691 600 468 3682

112 (H) 2596 0.194 0.116 2584

128 (H) 3641 0.341 0.203 3635

Table 3: Running time of CCA Timed Commitments on
a single thread reported in seconds with T = 2

17 for our
heuristic variant.

𝜆 (bits) TSetup TCom TVfy TForceOp

112 (H) 7.99 0.2 0.120 5.272

128 (H) 13.474 0.337 0.205 7.259

time around 5 seconds which shows that TCom and TVfy are

independent of T.

Parallelisation.Our implementation uses only a single thread

and is therefore non-optimized. We expect the performance to

substantially improve with optimisations. In particular, inde-

pendent exponentiations during the commitment generation

can be performed using several threads in parallel. For in-

stance, a workstation with 2 Dodeca Core processors, a 112

bits security commitment takes 5 sec using 48 threads. Fur-

thermore, optimisations in the basic arithmetic in class groups

is largely unexplored unlike in finite fields, leaving open a lot

of improvements in this direction.

9 CONCLUSIONS
In this work we constructed a timed commitment scheme

with a transparent setup, homomorphic evaluation properties,

and satisfying CCA security. Along the way, we introduced

new technical tools, such as a homomorphic time-lock puzzle

scheme over class groups and a new simulation-extractable

NIZK proof of well-formedness, that may be of independent

interest. As an application, we proposed a new distributed

randomness generation protocol that satisfies many desirable

efficiency and security properties. As a next step, we plan to

explore further applications of our randomness generation

protocol and its integration in complex scenarios such as cryp-

tocurrencies or blockchain consensus.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their comments in

improving the work. This work was supported by the French

ANR ALAMBIC project (ANR-16-CE39-0006). This work was

also partially supported by the Deutsche Forschungsgemein-

schaft (DFG – German Research Foundation) under under

442893093, and by the state of Bavaria at the Nuremberg Cam-

pus of Technology (NCT).

REFERENCES
[1] Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad

Hajiabadi, and Sihang Pu. 2021. Laconic Private Set Intersection and

Applications. Cryptology ePrint Archive, Report 2021/728. https://ia.cr/

2021/728.

[2] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. 2011. How to Garble

Arithmetic Circuits. In 52nd FOCS, Rafail Ostrovsky (Ed.). IEEE Computer

Society Press, Palm Springs, CA, USA, 120–129. https://doi.org/10.1109/

FOCS.2011.40

[3] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and

Sabine Oechsner. 2020. TARDIS: A Foundation of Time-Lock Puzzles in

UC. Cryptology ePrint Archive, Report 2020/537. https://eprint.iacr.org/

2020/537.

[4] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018.

Scalable, transparent, and post-quantum secure computational integrity.

Cryptology ePrint Archive, Report 2018/046. https://eprint.iacr.org/2018/

046.

[5] Iddo Bentov, Ariel Gabizon, and David Zuckerman. 2016. Bitcoin Beacon.

arXiv:1605.04559 [cs.CR]

[6] Jean-François Biasse, Michael J. Jacobson, and Alan K. Silvester. 2010.

Security Estimates for Quadratic Field Based Cryptosystems. In ACISP
10 (LNCS, Vol. 6168), Ron Steinfeld and Philip Hawkes (Eds.). Springer,

Heidelberg, Germany, Sydney, NSW, Australia, 233–247.

[7] Nir Bitansky, ShafiGoldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-

tanathan, and Brent Waters. 2016. Time-Lock Puzzles from Randomized

Encodings. In ITCS 2016, Madhu Sudan (Ed.). ACM, Cambridge, MA, USA,

345–356. https://doi.org/10.1145/2840728.2840745

[8] Manuel Blum. 1982. Coin Flipping by Telephone. In Proc. IEEE Spring
COMPCOM. 133–137.

[9] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-Interactive

Zero-Knowledge and Its Applications (Extended Abstract). In 20th ACM
STOC. ACM Press, Chicago, IL, USA, 103–112. https://doi.org/10.1145/

62212.62222

[10] Alexandra Boldyreva and Daniele Micciancio (Eds.). 2019. CRYPTO 2019,
Part I. LNCS, Vol. 11692. Springer, Heidelberg, Germany, Santa Barbara,

CA, USA.

[11] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable

Delay Functions. InCRYPTO 2018, Part I (LNCS, Vol. 10991), Hovav Shacham
and Alexandra Boldyreva (Eds.). Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 757–788. https://doi.org/10.1007/978-3-319-96884-1_25

[12] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching Techniques for

Accumulators with Applications to IOPs and Stateless Blockchains, See

[10], 561–586. https://doi.org/10.1007/978-3-030-26948-7_20

[13] Dan Boneh and Moni Naor. 2000. Timed Commitments. In CRYPTO 2000
(LNCS, Vol. 1880), Mihir Bellare (Ed.). Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 236–254. https://doi.org/10.1007/3-540-44598-6_15

[14] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. 2015. On Bitcoin as

a public randomness source. Cryptology ePrint Archive, Report 2015/1015.

https://eprint.iacr.org/2015/1015.

[15] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. 2019.

Leveraging Linear Decryption: Rate-1 Fully-Homomorphic Encryption

and Time-Lock Puzzles. In TCC 2019, Part II (LNCS, Vol. 11892), Dennis
Hofheinz and Alon Rosen (Eds.). Springer, Heidelberg, Germany, Nurem-

berg, Germany, 407–437. https://doi.org/10.1007/978-3-030-36033-7_16

[16] J. Buchmann and U. Vollmer. 2007. Binary Quadratic Forms. An Algorithmic
Approach. Springer.

[17] Johannes Buchmann and Hugh C. Williams. 1988. A Key-Exchange System

Based on Imaginary Quadratic Fields. Journal of Cryptology 1, 2 (June

1988), 107–118. https://doi.org/10.1007/BF02351719

[18] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. 2020. Transparent SNARKs

from DARK Compilers. In Advances in Cryptology – EUROCRYPT 2020,
Anne Canteaut and Yuval Ishai (Eds.). Springer International Publishing,

Cham, 677–706.

[19] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. 2020. Transparent SNARKs

fromDARKCompilers. In EUROCRYPT 2020, Part I (LNCS, Vol. 12105), Anne
Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, Germany, Zagreb,

Croatia, 677–706. https://doi.org/10.1007/978-3-030-45721-1_24

[20] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. 2017. Proofs-of-

delay and randomness beacons in Ethereum.

[21] Jeffrey Burdges and Luca De Feo. 2020. Delay Encryption. Cryptology

ePrint Archive, Report 2020/638. https://eprint.iacr.org/2020/638.

[22] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2000. Random ora-

cles in constantipole: practical asynchronous Byzantine agreement using

cryptography (extended abstract). In 19th ACM PODC, Gil Neiger (Ed.).
ACM, Portland, OR, USA, 123–132. https://doi.org/10.1145/343477.343531

[23] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable Randomness

Attested by Public Entities. InACNS 17 (LNCS, Vol. 10355), Dieter Gollmann,

Atsuko Miyaji, and Hiroaki Kikuchi (Eds.). Springer, Heidelberg, Germany,

Kanazawa, Japan, 537–556. https://doi.org/10.1007/978-3-319-61204-1_27

13

https://ia.cr/2021/728
https://ia.cr/2021/728
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1109/FOCS.2011.40
https://eprint.iacr.org/2020/537
https://eprint.iacr.org/2020/537
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://arxiv.org/abs/1605.04559
https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/3-540-44598-6_15
https://eprint.iacr.org/2015/1015
https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1007/BF02351719
https://doi.org/10.1007/978-3-030-45721-1_24
https://eprint.iacr.org/2020/638
https://doi.org/10.1145/343477.343531
https://doi.org/10.1007/978-3-319-61204-1_27

[24] GuilhemCastagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta,

and Ida Tucker. 2019. Two-Party ECDSA fromHash Proof Systems and Effi-

cient Instantiations. In CRYPTO 2019, Part III (LNCS, Vol. 11694), Alexandra
Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg, Germany,

Santa Barbara, CA, USA, 191–221. https://doi.org/10.1007/978-3-030-

26954-8_7

[25] GuilhemCastagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta,

and Ida Tucker. 2020. Bandwidth-efficient threshold EC-DSA. Cryptology

ePrint Archive, Report 2020/084. https://ia.cr/2020/084.

[26] GuilhemCastagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta,

and Ida Tucker. 2020. Bandwidth-Efficient Threshold EC-DSA. In PKC 2020,
Part II (LNCS, Vol. 12111), Aggelos Kiayias, Markulf Kohlweiss, Petros

Wallden, and Vassilis Zikas (Eds.). Springer, Heidelberg, Germany, Edin-

burgh, UK, 266–296. https://doi.org/10.1007/978-3-030-45388-6_10

[27] GuilhemCastagnos and Fabien Laguillaumie. 2015. Linearly Homomorphic

Encryption from DDH. In CT-RSA 2015 (LNCS, Vol. 9048), Kaisa Nyberg
(Ed.). Springer, Heidelberg, Germany, San Francisco, CA, USA, 487–505.

https://doi.org/10.1007/978-3-319-16715-2_26

[28] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. 2018. Practical

Fully Secure Unrestricted Inner Product Functional Encryption Modulo p.

In ASIACRYPT 2018, Part II (LNCS, Vol. 11273), Thomas Peyrin and Steven

Galbraith (Eds.). Springer, Heidelberg, Germany, Brisbane, Queensland,

Australia, 733–764. https://doi.org/10.1007/978-3-030-03329-3_25

[29] Jing Chen and Silvio Micali. 2017. Algorand. arXiv:1607.01341 [cs.CR]

[30] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee,

Schuyler Rosefield, and Abhi Shelat. 2020. Multiparty Generation of an

RSA Modulus. In Advances in Cryptology – CRYPTO 2020, Daniele Mic-

ciancio and Thomas Ristenpart (Eds.). Springer International Publishing,

Cham, 64–93.

[31] Chia Green Paper 2019. The Chia Network Blockchain. https://www.chia.

net/assets/ChiaGreenPaper.pdf.

[32] Chia VDF Competition Guide 2018. Chia VDF Competition Guide. https:

//medium.com/@chia.net/chia-vdf-competition-guide-5382e1f4bd39.

[33] Richard Cleve. 1986. Limits on the Security of Coin Flips when Half the

Processors Are Faulty (Extended Abstract). In 18th ACM STOC. ACM Press,

Berkeley, CA, USA, 364–369. https://doi.org/10.1145/12130.12168

[34] D. A. Cox. 1999. Primes of the form 𝑥2 + 𝑛𝑦2 . John Wiley & Sons.

[35] Ivan Damgård and Mats Jurik. 2001. A Generalisation, a Simplification

and Some Applications of Paillier’s Probabilistic Public-Key System. In

PKC 2001 (LNCS, Vol. 1992), Kwangjo Kim (Ed.). Springer, Heidelberg, Ger-

many, Cheju Island, South Korea, 119–136. https://doi.org/10.1007/3-540-

44586-2_9

[36] Parthasarathi Das, Michael J. Jacobson Jr., and Renate Scheidler. 2019.

Improved Efficiency of a Linearly Homomorphic Cryptosystem. In Codes,
Cryptology and Information Security. Springer, To appear.

[37] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: AnAdaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. In EUROCRYPT 2018, Part II (LNCS, Vol. 10821), Jesper Buus
Nielsen and Vincent Rijmen (Eds.). Springer, Heidelberg, Germany, Tel

Aviv, Israel, 66–98. https://doi.org/10.1007/978-3-319-78375-8_3

[38] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. 2019.

Verifiable Delay Functions from Supersingular Isogenies and Pairings.

In ASIACRYPT 2019, Part I (LNCS, Vol. 11921), Steven D. Galbraith and

Shiho Moriai (Eds.). Springer, Heidelberg, Germany, Kobe, Japan, 248–277.

https://doi.org/10.1007/978-3-030-34578-5_10

[39] Cyprien Delpech de Saint Guilhem, Eleftheria Makri, Dragos Rotaru, and

Titouan Tanguy. 2021. The return of Eratosthenes: Secure Generation of

RSA Moduli using Distributed Sieving. Cryptology ePrint Archive, Report

2021/565. https://eprint.iacr.org/2021/565.

[40] Samuel Dobson, Steven D. Galbraith, and Benjamin Smith. 2020. Trustless

Groups of Unknown Order with Hyperelliptic Curves. Cryptology ePrint

Archive, Report 2020/196. https://eprint.iacr.org/2020/196.

[41] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. 2019. Threshold

ECDSA from ECDSA Assumptions: The Multiparty Case. In 2019 IEEE
Symposium on Security and Privacy (SP). 1051–1066. https://doi.org/10.

1109/SP.2019.00024

[42] C. Dwork and M. Naor. 2000. Zaps and their applications. In Proceedings
41st Annual Symposium on Foundations of Computer Science. 283–293. https:
//doi.org/10.1109/SFCS.2000.892117

[43] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. 2020.

Non-Malleable Time-Lock Puzzles and Applications. Cryptology ePrint

Archive, Report 2020/779. https://eprint.iacr.org/2020/779.

[44] Jens Groth. 2006. Simulation-Sound NIZK Proofs for a Practical Language

and Constant Size Group Signatures. In ASIACRYPT 2006 (LNCS, Vol. 4284),
Xuejia Lai and Kefei Chen (Eds.). Springer, Heidelberg, Germany, Shanghai,

China, 444–459. https://doi.org/10.1007/11935230_29

[45] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. DFINITY

Technology Overview Series, Consensus System. arXiv:1805.04548 [cs.DC]

[46] Detlef Hühnlein, Michael J. Jacobson Jr., Sachar Paulus, and Tsuyoshi

Takagi. 1998. A Cryptosystem Based onNon-maximal Imaginary Quadratic

Orders with Fast Decryption. In EUROCRYPT’98 (LNCS, Vol. 1403), Kaisa
Nyberg (Ed.). Springer, Heidelberg, Germany, Espoo, Finland, 294–307.

https://doi.org/10.1007/BFb0054134

[47] Jonathan Katz, Julian Loss, and Jiayu Xu. 2020. On the Security of Time-

Lock Puzzles and Timed Commitments. In TCC 2020, Part III (LNCS,
Vol. 12552), Rafael Pass and Krzysztof Pietrzak (Eds.). Springer, Heidel-

berg, Germany, Durham, NC, USA, 390–413. https://doi.org/10.1007/978-

3-030-64381-2_14

[48] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman

Oliynykov. 2017. Ouroboros: A Provably Secure Proof-of-Stake Blockchain

Protocol. In CRYPTO 2017, Part I (LNCS, Vol. 10401), Jonathan Katz and

Hovav Shacham (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA,

USA, 357–388. https://doi.org/10.1007/978-3-319-63688-7_12

[49] J.C Lagarias. 1980. Worst-case complexity bounds for algorithms in the

theory of integral quadratic forms. Journal of Algorithms 1, 2 (1980),

142–186. https://doi.org/10.1016/0196-6774(80)90021-8

[50] Russell W. F. Lai and Giulio Malavolta. 2019. Subvector Commitments

with Application to Succinct Arguments, See [10], 530–560. https://doi.

org/10.1007/978-3-030-26948-7_19

[51] Arjen K. Lenstra and Benjamin Wesolowski. 2015. A random zoo: sloth,

unicorn, and trx. Cryptology ePrint Archive, Report 2015/366. https:

//eprint.iacr.org/2015/366.

[52] Huijia Lin, Rafael Pass, and Pratik Soni. 2017. Two-Round and Non-

Interactive Concurrent Non-Malleable Commitments from Time-Lock

Puzzles. In 58th FOCS, Chris Umans (Ed.). IEEE Computer Society Press,

Berkeley, CA, USA, 576–587. https://doi.org/10.1109/FOCS.2017.59

[53] Yehuda Lindell and Ariel Nof. 2018. Fast Secure Multiparty ECDSA with

Practical Distributed Key Generation and Applications to Cryptocurrency

Custody. In ACM CCS 2018, David Lie, Mohammad Mannan, Michael

Backes, and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada,

1837–1854. https://doi.org/10.1145/3243734.3243788

[54] Helger Lipmaa. 2012. Secure Accumulators from Euclidean Rings without

Trusted Setup. InACNS 12 (LNCS, Vol. 7341), Feng Bao, Pierangela Samarati,

and Jianying Zhou (Eds.). Springer, Heidelberg, Germany, Singapore, 224–

240. https://doi.org/10.1007/978-3-642-31284-7_14

[55] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. 2019. Homo-

morphic Time-Lock Puzzles and Applications, See [10], 620–649. https:

//doi.org/10.1007/978-3-030-26948-7_22

[56] Kevin S. McCurley. 1989. Cryptographic key distribution and computation

in class groups. In Number Theory and Applications (Proc. NATO Advanced
Study Inst. on Number Theory and Applications, Banff, 1988), Richard A.

Molin (Ed.). Kluwer, Boston.

[57] Minimal VDF Randomness Beacon 2018. Minimal VDF Randomness Bea-

con. https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566.

[58] Moni Naor and Moti Yung. 1990. Public-key Cryptosystems Provably

Secure against Chosen Ciphertext Attacks. In 22nd ACM STOC. ACM Press,

Baltimore, MD, USA, 427–437. https://doi.org/10.1145/100216.100273

[59] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite

Degree Residuosity Classes. In EUROCRYPT’99 (LNCS, Vol. 1592), Jacques
Stern (Ed.). Springer, Heidelberg, Germany, Prague, Czech Republic, 223–

238. https://doi.org/10.1007/3-540-48910-X_16

[60] PARI Group 2020. PARI/GP version 2.11.4. PARI Group, Univ. Bordeaux.
available from http://pari.math.u-bordeaux.fr/.

[61] Cecile Pierrot and Benjamin Wesolowski. 2016. Malleability of the

blockchain’s entropy. Cryptology ePrint Archive, Report 2016/370. https:

//eprint.iacr.org/2016/370.

[62] Krzysztof Pietrzak. 2019. Simple Verifiable Delay Functions. In ITCS 2019,
Avrim Blum (Ed.), Vol. 124. LIPIcs, San Diego, CA, USA, 60:1–60:15. https:

//doi.org/10.4230/LIPIcs.ITCS.2019.60

[63] David Pointcheval and Jacques Stern. 1996. Security Proofs for Sig-

nature Schemes. In EUROCRYPT’96 (LNCS, Vol. 1070), Ueli M. Maurer

(Ed.). Springer, Heidelberg, Germany, Saragossa, Spain, 387–398. https:

//doi.org/10.1007/3-540-68339-9_33

[64] Michael O. Rabin. 1983. Randomized Byzantine Generals. In 24th FOCS.
IEEE Computer Society Press, Tucson, Arizona, 403–409. https://doi.org/

10.1109/SFCS.1983.48

[65] Randao++ 2016. Randao++. https://www.reddit.com/comments/4mdkku.

[66] R. L. Rivest, A. Shamir, and D. A. Wagner. 1996. Time-lock Puzzles and
Timed-release Crypto. Technical Report. Cambridge, MA, USA.

[67] Amit Sahai. 1999. Non-Malleable Non-Interactive Zero Knowledge and

Adaptive Chosen-Ciphertext Security. In 40th FOCS. IEEE Computer Soci-

ety Press, New York, NY, USA, 543–553. https://doi.org/10.1109/SFFCS.

1999.814628

[68] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter,

and E. Weippl. 2020. RandRunner: Distributed Randomness from Trapdoor

VDFs with Strong Uniqueness. IACR Cryptol. ePrint Arch. 2020 (2020), 942.

14

https://doi.org/10.1007/978-3-030-26954-8_7
https://doi.org/10.1007/978-3-030-26954-8_7
https://ia.cr/2020/084
https://doi.org/10.1007/978-3-030-45388-6_10
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-030-03329-3_25
https://arxiv.org/abs/1607.01341
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://medium.com/@chia.net/chia-vdf-competition-guide-5382e1f4bd39
https://medium.com/@chia.net/chia-vdf-competition-guide-5382e1f4bd39
https://doi.org/10.1145/12130.12168
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-030-34578-5_10
https://eprint.iacr.org/2021/565
https://eprint.iacr.org/2020/196
https://doi.org/10.1109/SP.2019.00024
https://doi.org/10.1109/SP.2019.00024
https://doi.org/10.1109/SFCS.2000.892117
https://doi.org/10.1109/SFCS.2000.892117
https://eprint.iacr.org/2020/779
https://doi.org/10.1007/11935230_29
https://arxiv.org/abs/1805.04548
https://doi.org/10.1007/BFb0054134
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1016/0196-6774(80)90021-8
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://eprint.iacr.org/2015/366
https://eprint.iacr.org/2015/366
https://doi.org/10.1109/FOCS.2017.59
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1007/978-3-642-31284-7_14
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://doi.org/10.1145/100216.100273
https://doi.org/10.1007/3-540-48910-X_16
http://pari.math.u-bordeaux.fr/
https://eprint.iacr.org/2016/370
https://eprint.iacr.org/2016/370
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1109/SFCS.1983.48
https://doi.org/10.1109/SFCS.1983.48
https://www.reddit.com/comments/4mdkku
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1109/SFFCS.1999.814628

[69] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl. 2020. HydRand:

Efficient Continuous Distributed Randomness. In 2020 IEEE Symposium
on Security and Privacy (SP). 73–89. https://doi.org/10.1109/SP40000.2020.

00003

[70] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for

Smart Cards. In CRYPTO’89 (LNCS, Vol. 435), Gilles Brassard (Ed.). Springer,
Heidelberg, Germany, Santa Barbara, CA, USA, 239–252. https://doi.org/

10.1007/0-387-34805-0_22

[71] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly,

Linus Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. 2017. Scal-

able Bias-Resistant Distributed Randomness. In 2017 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, San Jose, CA, USA,

444–460. https://doi.org/10.1109/SP.2017.45

[72] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico

Döttling, Aniket Kate, and Dominique Schröder. 2020. Verifiable Timed

Signatures Made Practical. In Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security (Virtual Event, USA)

(CCS ’20). Association for Computing Machinery, New York, NY, USA,

1733–1750. https://doi.org/10.1145/3372297.3417263

[73] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael

Walfish. 2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In 2018
IEEE Symposium on Security and Privacy. IEEE Computer Society Press,

San Francisco, CA, USA, 926–943. https://doi.org/10.1109/SP.2018.00060

[74] Benjamin Wesolowski. 2019. Efficient Verifiable Delay Functions. In EU-
ROCRYPT 2019, Part III (LNCS, Vol. 11478), Yuval Ishai and Vincent Rij-

men (Eds.). Springer, Heidelberg, Germany, Darmstadt, Germany, 379–407.

https://doi.org/10.1007/978-3-030-17659-4_13

[75] Danyang Zhu, Yifeng Song, Jing Tian, Zhongfeng Wang, and Haobo Yu.

2020. An Efficient Accelerator of the Squaring for the Verifiable Delay Func-

tion Over a Class Group. In 2020 IEEE Asia Pacific Conference on Circuits
and Systems (APCCAS). 137–140. https://doi.org/10.1109/APCCAS50809.

2020.9301680

[76] zk-SNARKS and zk-STARKS Explained 2021. https://academy.binance.

com/en/articles/zk-snarks-and-zk-starks-explained.

[77] ZK-STARKs - Create Verifiable Trust, even against Quantum Computers

2018. https://tinyurl.com/6c2ydjx2.

A MORE PRELIMINARIES
Time-Lock Puzzles.We recall the definition of standard time-

lock puzzles [7]. For conceptual simplicity we consider only

schemes with binary solutions.

Definition A.1 (Time-Lock Puzzles). A time-lock puzzle
is a tuple of two algorithms (PGen, Solve) defined as follows.
𝑍 ← PGen(T, 𝑠): a probabilistic algorithm that takes as input
a hardness-parameter T and a solution 𝑠 ∈ {0, 1}, and outputs a
puzzle 𝑍 .
𝑠 ← Solve(𝑍): a deterministic algorithm that takes as input a
puzzle 𝑍 and outputs a solution 𝑠 .

The correctness requirement is that for all 𝜆 ∈ N, for all
polynomials T in 𝜆, and for all 𝑠 ∈ {0, 1}, it holds that 𝑠 =

Solve(PGen(T, 𝑠)). The security definition is described below.

Definition A.2 (Security). A scheme (PGen, Solve) is se-
cure with gap 𝜀 < 1 if there exists a polynomial ˜T(·) such that for
all polynomials T(·) ≥ ˜T(·) and every polynomial-size adver-
sary A = {A𝜆}𝜆∈N of depth ≤ T𝜀 (𝜆), there exists a negligible
function negl, such that for all 𝜆 ∈ N it holds that

Pr

[
𝑏 ← A(𝑍)

�� 𝑍 ← PGen(T(𝜆), 𝑏)
]
=

1

2

+ negl(𝜆) .

Homomorphic Time-Lock Puzzles.We formally describe

the notions we require from a homomorphic time-lock puzzle

scheme.

Definition A.3 (Homomorphic Time-Lock Puzzles). Let
C = {C𝜆}𝜆∈N be a class of circuits and let 𝑆 be a finite domain.
A homomorphic time-lock puzzle scheme HTLP with respect to

C and with solution space 𝑆 is tuple of four algorithms (PSetup,
PGen, Solve, PEval) defined as follows.
pp← PSetup(1𝜆,T): a probabilistic algorithm that takes as in-

put a security parameter 1𝜆 and a time hardness parameter T,
and outputs public parameters pp.

𝑍 ← PGen(pp, 𝑠): a probabilistic algorithm that takes as input
public parameters pp, and a solution 𝑠 ∈ 𝑆 , and outputs a puzzle
𝑍 .

𝑠 ← Solve(pp, 𝑍): a deterministic algorithm that takes as input
public parameters pp and a puzzle 𝑍 and outputs a solution 𝑠 .

𝑍 ′ ← PEval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛): a probabilistic algorithm that
takes as input a circuit 𝐶 ∈ C𝜆 , public parameters pp and a set
of 𝑛 puzzles (𝑍1, . . . , 𝑍𝑛) and outputs a puzzle 𝑍 ′.

Security requires that the solution of the puzzles is hidden

for all adversaries that run in (parallel) time less than T. We

additionally require compactness that requires that the size of

the homomorphically evaluated puzzles does not depend on

the function that is evaluated.

Definition A.4 (Security of HTLP [55]). AnHTLP scheme
consisting of (PSetup, PGen, Solve, PEval), is secure with gap
𝜀 < 1 if there exists a polynomial ˜T(·) such that for all polynomi-
als T(·) ≥ ˜T(·) and every polynomial-size adversary (A1,A2)
= {(A1,A2)𝜆}𝜆∈N where the depth of A2 is bounded from
above by T𝜀 (𝜆), there exists a negligible function negl, such that
for all 𝜆 ∈ N it holds that

Pr

𝑏 = 𝑏 ′

����������
pp← PSetup(1𝜆,T(𝜆))
(𝜏, 𝑠0, 𝑠1) ← A1 (1𝜆, pp)
𝑏 ←$ {0, 1}
𝑍★← PGen(pp, 𝑠𝑏)
𝑏 ′ ← A2 (pp, 𝑍★, 𝜏)

≤ 1

2

+ negl(𝜆)

and (𝑠0, 𝑠1) ∈ 𝑆2.

Definition A.5 (Compactness [55]). Let C = {C𝜆}𝜆∈N be
a class of circuits (along with their respective representations). An
HTLP scheme (PSetup, PGen, Solve, PEval) is compact (for the
class C) if for all 𝜆 ∈ N, all polynomials T in 𝜆, all circuits 𝐶 ∈
C𝜆 and respective inputs (𝑠1, . . . , 𝑠𝑛) ∈ 𝑆𝑛 , all pp in the support
of PSetup(1𝜆,T), and all 𝑍𝑖 in the support of PGen(pp, 𝑠𝑖), the
following two conditions are satisfied:

• There exists a fixed polynomial 𝑝 (·) such that |𝑍 | = 𝑝 (𝜆, |𝐶 (𝑠1,
. . . , 𝑠𝑛) |), where 𝑍 ← PEval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛).
• There exists a fixed polynomial 𝑝 (·) such that the runtime of
PEval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛) is bounded by 𝑝 (𝜆, |𝐶 |).

Non-Interactive Zero-Knowledge (NIZK) Proofs.ANIZK

proof [9] allows a prover to convince a verifier about the

validity of a certain statement without revealing anything

beyond that. We recall the syntax in the following.

Definition A.6 (NIZK). Let L be an NP-language with
relationR. A NIZK system forR consists of the following efficient
algorithms.

crs← Setup(1𝜆): On input the security parameter 1𝜆 , the setup
algorithm returns a common reference string crs.

15

https://doi.org/10.1109/SP40000.2020.00003
https://doi.org/10.1109/SP40000.2020.00003
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1145/3372297.3417263
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1109/APCCAS50809.2020.9301680
https://doi.org/10.1109/APCCAS50809.2020.9301680
https://academy.binance.com/en/articles/zk-snarks-and-zk-starks-explained
https://academy.binance.com/en/articles/zk-snarks-and-zk-starks-explained
https://tinyurl.com/6c2ydjx2

𝜋 ← Prv(crs, stmt,wit): On input the common reference string
crs, a statement stmt, and a witness wit, the prover algorithm
returns a proof 𝜋 .
0/1← Vfy(crs, stmt, 𝜋): On input the common reference string
crs, a statement stmt, and a proof 𝜋 , the verifier algorithm re-
turns a bit 𝑏 ∈ {0, 1}.

Correctness requires that for all 𝜆 ∈ N and all pairs (stmt,
wit) ∈ R it holds that

Pr[Vfy(crs, stmt, Prv(crs, stmt,wit)) = 1] = 1

where crs←$ Setup(1𝜆). We recall the definition of zero-

knowledge in the following.

Definition A.7 (Zero-Knowledge). A NIZK system for R
is zero-knowledge if there exists a PPT algorithm (Sim0, Sim1)
such that for all pairs (stmt,wit) ∈ R and for all PPT distin-
guishers the following distributions are computationally indis-
tinguishable(

crs← Setup(1𝜆), 𝜋 ← Prv(crs, stmt,wit)
)
≈(

crs∗, 𝜋 ← Sim1 (crs, stmt, td)
)

where (crs∗, td) ← Sim0 (1𝜆).

We require that the protocol satisfies the strong notion of

simulation soundness [67].

Definition A.8 (Simulation Soundness). A NIZK system
for R is simulation-sound if there exists a negligible function
negl(·) such that for all 𝜆 ∈ N and all PPT algorithmsA it holds
that

Pr

[
1 = Vfy(crs, stmt, 𝜋)
∧ stmt ∉ 𝑄 ∧ stmt ∉ L

���� (crs, td) ← Sim0 (1𝜆)
(𝜋, stmt) ← AO(·) (crs)

]
= negl(𝜆)

where O takes as input a (possibly false) statement stmt and
returns Sim1 (crs, stmt, td) and we denote by𝑄 the list of queries
issued by A.

B ASSUMPTIONS
We give the formal definition of a DDH-hard prime order

group.

Definition B.1 (DDH-hard prime order group). We say
that a group generation algorithm ˜GGen is DDH hard if there
exists a negligible function negl, such that for all 𝜆 ∈ N, all PPT
adversaries A the following holds:

Pr

𝑏 ′ = 𝑏

���������������

(˜G, �̃�, 𝑞) ← ˜GGen(1𝜆)
𝑥,𝑦, 𝑧 ← Z∗

�̃�

�̃�0 := �̃�1 = �̃�
𝑥

�̃�0 := �̃�1 = �̃�
𝑦

𝑍0 := �̃�
𝑥𝑦 and 𝑍1 := �̃�𝑧

𝑏 ← {0, 1}
𝑏 ′ ← A(˜G, 𝑞, �̃�, �̃�𝑏 , �̃�𝑏 , 𝑍𝑏)

≤ 1

2

+ negl(𝜆)

We can extend the above definition to the case of a class

group where the order of the group is not known. In this

case, the values 𝑥,𝑦, 𝑧 are sampled uniformly at random from

a domain exponentially larger than the upper bound on the

group order.

Definition B.2 (DDH-hard unknown order group). We
say that a group generation algorithm CGGen is DDH hard if
there exists a negligible function negl, such that for all 𝜆 ∈ N all
𝜆 bit primes 𝑞, and all PPT adversaries A the following holds:

Pr

𝑏 ′ = 𝑏

��������������

(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞) ← CGGen(1𝜆, 𝑞)
𝑥,𝑦, 𝑧 ← Z∗

�̃�

𝑋0 := 𝑋1 = 𝐺
𝑥

𝑌0 := 𝑌1 = 𝐺
𝑦

𝑍0 := 𝐺
𝑥𝑦 and 𝑍1 := 𝐺𝑧

𝑏 ← {0, 1}
𝑏 ′ ← A(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞, 𝑋𝑏 , 𝑌𝑏 , 𝑍𝑏)

≤ 1

2

+ negl(𝜆)

We also recall the subgroup membership assumption.

Definition B.3 (Hard Subgroup Membership ([28])). We
say that a group generation algorithm CGGen is HSM𝐶𝐿 hard if
there exists a negligible function negl, such that for all 𝜆 ∈ N, all
𝜆 bit primes 𝑞, and all PPT adversaries A, the following holds:

Pr

𝑏 ′ = 𝑏

����������
(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞) ← CGGen(1𝜆, 𝑞)

𝑟0 ← Z𝑞�̃� and 𝑟1 ← Z�̃�
𝛿0 := 𝛾

𝑟0 and 𝛿1 := 𝛾
𝑟1
𝑞

𝑏 ← {0, 1}
𝑏 ′ ← A(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞, 𝛿𝑏 , SolveDL)

≤ 1

2

+ negl(𝜆)

We recall the strong root assumption for class groups.

Definition B.4 (Strong root assumption [26]). We say
that the strong root assumption holds for the class group genera-
tion CGGen if there exists a negligible function negl, such that
for all 𝜆 ∈ N, all PPT adversaries A the following holds:

Pr

𝐺 = 𝑈 ℓ

ℓ ≠ 1, 2𝑘 ,∀𝑘

������(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞) ← CGGen(1𝜆, 𝑞)
𝐻 ← G

(𝑈 , ℓ) ← A(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞, 𝐻)

≤ negl(𝜆)

We recall the 2
𝜆
-low order assumption for class groups.

Definition B.5 (𝛾-Low order assumption [26]). We say
that the 𝛾-low order assumption holds for the class group gener-
ation CGGen for a given 𝛾 if there exists a negligible function
negl, such that for all 𝜆 ∈ N, all PPT adversariesA the following
holds:

Pr

𝑈 ℓ = 1

𝑈 ≠ 1

1 < ℓ < 𝛾

������(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞) ← CGGen(1𝜆, 𝑞)
(𝑈 , ℓ) ← A(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞)

 ≤ negl(𝜆)

C CL FAST VARIANT
We describe here a slightly modifed version of the faster vari-

ant of CL encryption which is sketched in [27], and provide

a clean security proof under the hard subroup membership

assumption, HSM𝐶𝐿 , introduced in [28] (cf. Definition B.3).

16

The main difference with the scheme from [27] is the fact

that instead of choosing 𝜑𝑞 (𝛾) as a generator of G we choose

𝐺 as the 𝑞-th power of this element (so G = 𝜑𝑞 (𝛾)𝑞) in order

for the IND-CPA proof to go through. Thanks to this slight

modification, we are able to prove the security of this scheme

under the HSM𝐶𝐿 assumption (see Theorem C.1), instead of

the “non-standard” assumption stated in [27]. Remark that 𝑠

is the (unknown) order of𝐺 and of 𝛾𝑞 = 𝜓𝑞 (𝐺), since𝜓𝑞 is an

injective homomorphism.

Setup(1𝜆, 𝑞):
• Let 𝜇 be the bit size of 𝑞. Pick 𝑝 a 𝜂 (𝜆) − 𝜇 bits prime

such that 𝑝𝑞 ≡ −1 (mod 4) and (𝑞/𝑝) = −1
• Δ𝐾 := −𝑝𝑞, Δ𝑞 := 𝑞2Δ𝐾
• Compute 𝐵 an upper bound on the order of 𝐶𝑙 (Δ𝐾)
and set 𝑞 = 2

𝜆𝐵

• Generate a random square 𝑅 ∈ 𝐶𝑙 (Δ𝐾)
• Compute 𝛾𝑞 = 𝜓𝑞 (𝑅)
• Set 𝐹 := (𝑞2, 𝑞) in 𝐶𝑙 (Δ𝑞)
• Set 𝛾 := 𝛾𝑞 · 𝐹 and compute 𝐺 = 𝜑𝑞 (𝛾)𝑞
• Set G = ⟨𝐺⟩
• Output pp := (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞)
KeyGen(G,𝐺, 𝐹,𝛾,𝛾𝑞):
• Sample 𝑘 ← Z�̃�
• Compute 𝐻 = 𝐺𝑘

• Return 𝑝𝑘 = 𝐻 and 𝑠𝑘 = 𝑘

Encrypt(𝑝𝑘,𝑚 ∈ Z𝑞):
• Sample 𝑟 ← Z�̃�
• Compute 𝐶1 = 𝐺

𝑟
and 𝐶2 = 𝜓𝑞 (𝐻𝑟) · 𝐹𝑚

• Return 𝐶 = (𝐶1,𝐶2)
Decrypt(𝑠𝑘, (𝐶1,𝐶2)):

• Return SolveDL (𝐶2 ·𝜓𝑞 (𝐶𝑘1)
−1)

Figure 5: Modified fast variant of CL

Theorem C.1. Let CGGen be a HSM𝐶𝐿-hard group genera-
tor, then the above cryptosystem is IND-CPA-secure.

Proof. We describe a sequence of games whose transitions

are then analysed to show that our fast variant of CL is secure

under the HSM𝐶𝐿 assumption. Recall that 𝐺 = 𝜑𝑞 (𝛾)𝑞 so that

𝐺 = 𝜑𝑞 (𝜓𝑞 (𝑅))𝑞 = 𝑅𝑞
2

and 𝑞 is prime to 𝑠 and 𝐹 is in the

kernel of 𝜑𝑞 . The fact that the composition of 𝜑𝑞 and𝜓𝑞 is the

exponentiation to the 𝑞 is crucial in the proof.

Hyb
0
: This is the original IND-CPA game.

Hyb
1
: The public key is computed as follows: first sample

𝑘 ′ ← Z�̃� and set 𝐻 = 𝜑𝑞 (𝛾)𝑘
′
.

Hyb
2
: Let 𝑍★ = 𝛾𝑟

′
𝑞 with 𝑟 ′ ← Z�̃� . The challenge ciphertext is

made up as follows: 𝐶★
1
= 𝜑𝑞 (𝑍★) and 𝐶★

2
= (𝑍★)𝑘′ · 𝐹𝑚𝑏 .

Hyb
3
: We change the definition of 𝑍★: 𝑍★ = 𝛾𝑟

′
with 𝑟 ′ ←

Z𝑞�̃� .

We now argue the indistinguishability of the hybrids.

Hyb
0
≡ Hyb

1
: In Hyb

1
, 𝐻 = 𝜑𝑞 (𝛾)𝑘

′
= 𝜑𝑞 (𝛾)𝑘𝑞 = 𝐺𝑘 for

some 𝑘 ∈ Z𝑠 since gcd(𝑠, 𝑞) = 1. Furthermore, 𝑘 and 𝑘 ′ follow
the same distribution in Z𝑠 . Therefore, the public key has the

right form. Note that the simulator does not know the “correct”

secret key 𝑘 .

Hyb
1
≡ Hyb

2
:

In Hyb
2
, 𝐶★

1
= 𝜑𝑞 (𝛾𝑟

′
𝑞) = 𝜑𝑞 (𝛾)𝑟

′
= 𝜑𝑞 (𝛾)𝑞𝑟 = 𝐺𝑟 for a 𝑟

that satisfies 𝑟 ′ = 𝑞𝑟 mod 𝑠 . Again, it exists since gcd(𝑞, 𝑠) =
1. On the other hand, 𝐶★

2
= 𝛾𝑟

′𝑘′
𝑞 · 𝐹𝑚𝑏 .

But𝜓𝑞 (𝐻𝑟) = 𝜓𝑞 (𝜑𝑞 (𝛾)𝑘
′)𝑟 = 𝜓𝑞 (𝜑𝑞 (𝛾))𝑘

′𝑟
.

Since 𝜓𝑞 (𝜑𝑞 (𝑎)) = 𝑎𝑞 for all 𝑎 ∈ 𝐶𝑙 (Δ𝐾), this is equal to
𝛾𝑘
′𝑟𝑞 = 𝛾

𝑘′𝑟𝑞
𝑞 = 𝛾𝑘

′𝑟 ′
𝑞 . This means that𝐶★ = (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) ·𝐹𝑚𝑏

is a genuine ciphertext of𝑚𝑏 for the public key 𝐻 .

Hyb
2
≈𝑐 Hyb3: The indistinguishability follows from reduc-

tion against the HSM𝐶𝐿 assumption.

We now prove that 𝐶★ perfectly hides 𝑏 in Hyb
3
. From the

challenge ciphertext one gets 𝐶★
1
= 𝜑𝑞 (𝛾)𝑟

′
where 𝑟 ′ ← Z𝑞�̃� .

As 𝜑𝑞 (𝛾) is of order 𝑠 , from an information theoretical point

of view, the only information known from the adversary on

𝑟 ′ is modulo 𝑠 . But 𝑟 ′ is closed to uniform modulo 𝑞𝑠 , and

gcd(𝑞, 𝑠) = 1, so 𝑟 ′ modulo 𝑞 is still uniformly distributed for

the adversary.

Eventually, 𝐶★
2

= (𝛾𝑟 ′)𝑘′ · 𝐹𝑚𝑏 = (𝛾𝑞 · 𝐹)𝑟
′𝑘′ · 𝐹𝑚𝑏 =

𝛾𝑟
′𝑘′
𝑞 · 𝐹𝑚𝑏+𝑟 ′𝑘′ . As 𝑟 ′𝑘 ′ remains uniform modulo 𝑞 it acts

as a one-time pad on𝑚𝑏 (note that 𝑘 ′ ≠ 0 with overwhelming

probability) , which means that the challenge ciphertext does

not reveal any information on𝑚𝑏 .

□

D SECURITY ANALYSIS OF CCA TIMED
COMMITMENT

In this section we present the formal proof for the security of

our CCA Timed commitment construction Figure 3.

Proof of Theorem 5.6. The proof for CCA security pro-

ceeds by defining a series of hybrid distributions and then

arguing about the indistinguishability of the neighbouring

experiments.

Hyb
0
: This is identical to the original CCA experiment, except

that we fix the bit 𝑏 = 0.

Hyb
1
: In this hybrid we compute the NIZK proof for the chal-

lenge commitment using the simulator (Sim0, Sim1).
Hyb

2
: In this hybrid we compute, for all 𝑖 ∈ [𝛼] (where 𝛼 :=

⌊log𝑞⌋ + 1), (𝑐𝑖,0, 𝑐𝑖,1) and (𝑐𝑖,0, 𝑐𝑖,1) as encryptions of 0 in the

challenge commitment. I.e., we fix 𝑟𝑖 = 0, regardless on the

value of 𝑟 .

Hyb
3
: In this hybrid we sample �̃� as a �̃�

˜𝑘
for some uniformly

at random integer
˜𝑘 from Z�̃� .

Hyb
4
: Here we change the way we simulate the oracle O. On

input a valid commitment 𝑐 , instead of using Solve(𝑍) to solve
the puzzle, use

˜𝑘 to decrypt (𝑐𝑖,0, 𝑐𝑖,1) to obtain 𝑟𝑖 , for 𝑖 ∈ [𝛼]
(where 𝛼 := ⌊log𝑞⌋+1). Compute 𝑟 :=

∑𝛼
𝑖=1 2

𝑖 ·𝑟𝑖 . Now recover

𝑚 from (𝑍1, 𝑍2) by computing SolveDL (𝑍2 ·𝜓𝑞 (𝐻𝑟)−1).
17

Hyb
5
: Here we switch 𝑍 in the challenge ciphertext from

PGen(pp,𝑚0) to PGen(pp,𝑚1).
Hyb

6
. . .Hyb

9
: We revert the changes made in hybrids Hyb

4

. . .Hyb
1
.

Observe that Hyb
9
is identical to the CCA experiment, except

with the bit 𝑏 fixed to 𝑏 = 1. To conclude the proof, we now

argue on the indistinguishability of the hybrid executions.

Hyb
0
≈𝑐 Hyb1: The indistinguishability follows from the zero-

knowledge property of the NIZK proofs.

Hyb
1
≈𝑐 Hyb2: The indistinguishability follows from a stan-

dard hybrid argument (over each 𝑖 ∈ [2 · 𝛼], where 𝛼 :=

⌊log𝑞⌋ + 1) and a reduction against the DDH assumption

(cf. Theorem B.1 and Theorem B.2).

Hyb
2
≡ Hyb

3
: The two hybrids define two identical distribu-

tions, so the change here is only syntactical.

Hyb
3
≈𝑐 Hyb4: The only difference between the two hybrids

is in the simulation of the oracle O, therefore the two hybrids

differ only in the case that the output of O differs on some

input query of the adversary. Observe that this can happen

only if the value 𝑟 extracted in Hyb
4
is not the randomness

used in generating (𝑍1, 𝑍2), i.e., 𝐺𝑟 ≠ 𝑍1.
By the simulation-soundness of the NIZK, for 𝛼 := ⌊log𝑞⌋ +

1, we have that(
𝐺,𝐾,

𝛼∏
𝑖=1

𝑐2
𝑖

𝑖,0,

𝛼∏
𝑖=1

𝑐2
𝑖

𝑖,1 · 𝑍
−1
1

)
=

(
𝐺,𝐾,

𝛼∏
𝑖=1

𝐺𝑠𝑖 ·2
−𝜌𝑖 ·2𝑖 ,

𝛼∏
𝑖=1

𝐾𝑠𝑖 ·2
−𝜌𝑖 ·2𝑖 ·𝐺𝑟𝑖 ·2

𝑖

· 𝑍−1
1

)
=

(
𝐺,𝐾,𝐺

∑𝛼
𝑖=1 𝑠𝑖2

−𝜌𝑖 ·2𝑖 , 𝐾
∑𝛼
𝑖=1 𝑠𝑖2

−𝜌𝑖 ·2𝑖 ·𝐺
∑𝛼
𝑖=1 𝑟𝑖 ·2𝑖 · 𝑍−1

1

)
=

(
𝐺,𝐾,𝐺𝑠

′
, 𝐾𝑠

′
·𝐺

∑𝛼
𝑖=1 𝑟𝑖 ·2𝑖 · 𝑍−1

1

)
∈ L2

with 𝑠 ′ =
∑𝛼
𝑖=1 𝑠𝑖2

−𝜌𝑖 · 2𝑖 , which in particular means

𝐺
∑𝛼
𝑖=1 𝑟𝑖 ·2𝑖 = 𝑍1

and therefore (𝑟1, . . . , 𝑟𝛼) is the bit decomposition of the dis-

crete logarithm of 𝑍1 in base 𝐺 . Furthermore, we have that

(𝑐𝑖,0, 𝑐𝑖,1) encrypts the same bit as (𝑐𝑖,0, 𝑐𝑖,1), for all 𝑖 ∈ [𝛼]. It
follows that decrypting (𝑐𝑖,0, 𝑐𝑖,1) yields a valid bit decomposi-

tion of 𝑟 , the discrete logarithm of 𝑍1 in base 𝐺 , except with

negligible probability.

Hyb
4
≈𝑐 Hyb5: The indistinguishability follows from a reduc-

tion to the hiding property of the time-lock puzzle. The only

non-trivial aspect of the reduction is the running time needed

to answer the queries of the adversary to the oracle O. Note
however that the running time of the simulated oracle is inde-

pendent of T, so the running time of the reduction is only a

polynomial (in 𝜆) factor slower than that of the adversary.

Indistinguishability of the hybridsHyb
5
. . .Hyb

9
follows along

the same lines. This concludes the proof for CCA security.

The proof for verifiability follows from the soundness of

the NIZK proof system. Notice that the winning condition

of the verifiability property requires TVfy(crs, 𝑐, 𝜋) = 1 and

𝑐 ∉ TCom(crs,𝑚). The latter condition means that the com-

mitments is not well-formed according to TCom. Therefore,

it must be the case that Vfy(crs, stmt, 𝜋) = 1 and one of the

following holds:

(𝐺,𝐾) ∉ L1

or (
𝐺,𝐾,

𝛼∏
𝑖=1

𝑐2
𝑖

𝑖,0,

𝛼∏
𝑖=1

𝑐2
𝑖

𝑖,1 · 𝑍
−1
1

)
∉ L2

or

(𝐺,𝐾, �̃�, �̃�, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]) ∉ L3

where 𝛼 := ⌊log𝑞⌋ + 1. The above event immediately contra-

dicts the soundness of at least one of the NIZK proof systems

that we use for the languages. We can therefore conclude that

the probability with which the above event occurs is at most

negligible in the security parameter. This concludes the proof

for verifiability. □

E EFFICIENT NIZK PROTOCOLS
Let 𝛼 := ⌊log𝑞⌋ + 1. We consider the statement

stmt = (𝑍1, 𝑍2,𝐺, 𝐾, �̃�, �̃�, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼])
as defined in Section 5. For simplicity we split the statement

that we want to prove in the following languages:

• Language L1 contains all statements stmt1 := (𝐺,𝐾) such
that 𝐾 is generated by 𝐺 , defined as

L1 :=

{
(𝐺,𝐾)

��� ∃ 𝑘, 𝜌 s.t. 𝐾 = 𝐺𝑘 ·2
−𝜌 }

.

• Language L2 contains statements

stmt2 := (𝐺,𝐾,𝐻0, 𝐻1)
defined as

L2 :=

{
(𝐺,𝐾,𝐻0, 𝐻1)

���∃ 𝑠, 𝜌 s.t.𝐻0 = 𝐺
𝑠 ·2−𝜌

AND𝐻1 = 𝐾
𝑠 ·2−𝜌

}
,

where 𝐻0 :=
∏𝛼
𝑖=1 𝑐

2
𝑖−1
𝑖,0

and 𝐻1 :=
∏𝛼
𝑖=1 𝑐

2
𝑖−1
𝑖,1
· 𝑍−1

1
.

• Language L3 contains statements

stmt3 := (𝐺,𝐾, �̃�, �̃�, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]),
defined as

L3 :=

(𝐺,𝐾, �̃�, �̃�)
{𝑐𝑖,0, 𝑐𝑖,1 }𝑖∈[𝛼]
{𝑐𝑖,0, 𝑐𝑖,1 }𝑖∈[𝛼]

���������������

∃ {𝑠𝑖 , 𝑠𝑖 , 𝜌𝑖 }𝑖∈[𝛼] s.t.
(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 ·2

−𝜌𝑖
, 𝐾𝑠𝑖 ·2

−𝜌𝑖)
AND

(𝑐𝑖,0,̃𝑐𝑖,1) = (�̃�𝑠𝑖 , �̃�𝑠𝑖)
OR

(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 ·2
−𝜌𝑖
, 𝐾𝑠𝑖 ·2

−𝜌𝑖 ·𝐺)
AND

(𝑐𝑖,0, 𝑐𝑖,1) = (�̃�𝑠𝑖 , �̃�𝑠𝑖 · �̃�)

While we present individual protocols for each language, our

system will prove the conjunction of such statements. This

can be achieved by standard AND composition of sigma pro-

tocols. The protocols are presented in Figures 6 to 8 and they

assume three hash functions H1,H2 : {0, 1}∗ → Z
2
𝜆 and

H3 : {0, 1}∗ → (Z
2
𝜆)𝛼 modelled as random oracles. These

functions can be obtained by a single random oracle via stan-

dard domain separation techniques, but for simplicity we treat

them as independent oracles. In all protocols, we assume that

the prover checks that the elements of the statements belong to

the correct groups as in standard discrete log based ZK proofs.

For instance, for elements of the class groups, one has to check

that there are squares, which can be done in polynomial time

18

(cf. [49]). The setup algorithm solely consists of the sampling

of the corresponding hash function, and it is therefore omitted.

We recall the following standard lemma, proven e.g. in [2].

Lemma E.1. Let 𝑈 [0,𝑟] be the uniform distribution on the
interval [0, 𝑟] and 𝛽 ∈ Z. Then the statistical distance between
𝑈 [0,𝑟] and𝑈 [0,𝑟] + 𝛽 is 𝛽/𝑟 .

We now proceed with the analysis our protocols. We re-

mark that many of these proofs are already well known in

the literature (e.g. some proofs for the CL encryption scheme

can be found in [24, 26]) and we present them here only for

completeness.

Theorem E.2 (Zero-knowledge). The protocol in Figure 6
satisfies statistical zero-knowledge in the random oracle model.

Proof of Theorem E.2. The simulator on input (crs, stmt),
picks 𝑡 ′

𝐾
← Z𝑄 and 𝑒 ′ ← Z

2
𝜆 . It then computes 𝐾 ′

0
:=

𝐺𝑡
′
𝐾 /𝐾𝑒′ and sets the random oracle H1 (stmt, 𝐾 ′

0
) := 𝑒 ′. It

outputs 𝜋 := (𝐾 ′
0
, 𝑡 ′
𝐾
) as its proof. Notice that for a randomly

sampled 𝑡 in the honest proof the statistical distance between

𝑡 ′
𝐾
and 𝑡 + 𝑒 · 𝑥 is 2

𝜆 · 𝑞/𝑄 (following from Lemma E.1) which

is negligible. Therefore the joint distribution of (𝐾 ′
0
, 𝑡 ′
𝐾
, 𝑒 ′)

computed by the simulator is statistically close to computing

(𝐾0, 𝑡 + 𝑒 · 𝑥, 𝑒) honestly. □

Theorem E.3 (Simulation Soundness). The protocol in Fig-
ure 6 satisfies simulation soundness provided the 2𝜆-low order
assumption and the strong root assumption holds in G, in the
random oracle model.

Proof of Theorem E.3. In the following we assume with-

out loss of generality that the reduction is given ahead of time

the false statement stmt and the more general claim follows

with a polynomial loss (by guessing the right query of the

adversary to the random oracle). The proof consists of a re-

duction against the 2
𝜆
-low order assumption and the strong

root assumption. Consider a reduction R that on input G, gen-
erates crs and gives it to the adversary A. The adversary A
may query statements stmt to the reduction and the reduc-

tion returns simulated proofs. The reduction sets and answers

random oracle queries to H1 via lazy sampling. At some point

in the execution, the adversary makes a query of the form

(stmt, 𝐾0) to the random oracle H1. The reduction forks the

execution of the game by answering with two different inte-

gers (𝑒, 𝑒 ′) ← Z𝑄 such that 𝑒 ′ ≠ 𝑒 . By the forking lemma [63],

with inverse polynomial probability the adversary outputs

two accepting proofs 𝜋 := (𝐾0, 𝑡𝐾 , 𝑒) and 𝜋 ′ := (𝐾0, 𝑡 ′𝐾 , 𝑒
′) on

the statement stmt.
The reduction computes (𝑡𝐾 − 𝑡 ′𝐾), (𝑒 − 𝑒

′) and

𝛾 := gcd(𝑡𝐾 − 𝑡 ′𝐾 , 𝑒 − 𝑒
′) .

We denote

𝜇 := 𝐺

𝑡𝐾 −𝑡′𝐾
𝛾 · 𝐾−

𝑒−𝑒′
𝛾

which is either 1 or different from 1. In the case 𝜇 ≠ 1, we

clearly have 𝜇𝛾 = 1. Given the maximum value of (𝑒 − 𝑒 ′) is
at most 2

𝜆
and 𝛾 divides (𝑒 − 𝑒 ′), the reduction outputs (𝜇,𝛾)

as a solution to 2
𝜆
-low order assumption.

Now suppose that 𝜇 = 1. Let us denote 𝐸 := 𝑒−𝑒′
𝛾 , so that

𝐺

𝑡𝐾 −𝑡′𝐾
𝛾 = 𝐾𝐸 . We have two cases here,

(1) In the first case we suppose that 𝐸 = 2
𝜌
for some integer

𝜌 . In this case we can compute 𝑥 :=
𝑡𝐾−𝑡 ′𝐾
𝛾 such that𝐺𝑥 =

𝐾2
𝜌
or equivalently 𝐺𝑥 ·2

−𝜌
= 𝐾 as 𝐺,𝐾 are checked to

be in the correct groups (in our applications with class

groups, one checks that𝐺 and 𝐾 are squares which means

that they have odd orders). But since stmt ∉ L1, this case

is not possible.

(2) In the second case. We have for some (𝛼, 𝛽) that
𝛼 (𝑡𝐾 − 𝑡 ′𝐾) + 𝛽 (𝑒 − 𝑒

′) = 𝛾
which can be efficiently computed by the extended Eu-

clidean algorithm. Observe that

𝐺𝛾 = 𝐺𝛼 (𝑡𝐾−𝑡
′
𝐾
)+𝛽 (𝑒−𝑒′)

𝐺𝛾 = 𝐺𝛼 (𝑡𝐾−𝑡
′
𝐾
)𝐺𝛽 (𝑒−𝑒

′)

𝐺𝛾 = 𝐾𝛼 (𝑒−𝑒
′)𝐺𝛽 (𝑒−𝑒

′)

𝐺𝛾 = (𝐾𝛼𝐺𝛽) (𝑒−𝑒
′) .

The reduction outputs (𝐾𝛼𝐺𝛽 , 𝐸) as its solution to the

strong root problem since 𝐸 is not a power of 2 or a solution

to the 2
𝜆
-low order assumption as before. Thus we arrive

at a contradiction, which proves the simulation soundness

of the protocol.

□

Theorem E.4 (Zero-knowledge). The protocol in Figure 7
satisfies statistical zero-knowledge in the random oracle model.

Proof of Theorem E.4. The simulator samples 𝑡 ′
𝐺,𝐾

←
Z𝑄 and 𝑒 ′ ← Z

2
𝜆 . It then computes 𝐺 ′

0
:= 𝐺

𝑡 ′
𝐺,𝐾 /(𝐻0)𝑒

′
and

𝐾 ′
0
:= 𝐾

𝑡 ′
𝐺,𝐾 /(𝐻1)𝑒

′
and sets the random oracle

H2 (stmt,𝐺 ′
0
, 𝐾 ′

0
) := 𝑒 ′.

It outputs the proof 𝜋 := (𝐺 ′
0
, 𝐾 ′

0
, 𝑡 ′
𝐺,𝐾

, 𝑒 ′). By Lemma E.1 the

simulated proof is statistically close to the honest one. □

Theorem E.5 (Simulation Soundness). The protocol in Fig-
ure 7 satisfies simulation soundness provided the 2𝜆-low order
assumption and the strong root assumption holds in G, in the
random oracle model.

Proof of Theorem E.5. The proof follows along the lines

of the argument for Theorem E.3 and it boils down to showing

that it is possible to extract a solution to the 2
𝜆
-low order

assumption or the strong root problem given two accepting

transcripts with the same first message 𝜋 := (𝐺0, 𝐾0, 𝑡𝐺,𝐾 , 𝑒)
and 𝜋 ′ := (𝐺0, 𝐾0, 𝑡

′
𝐺,𝐾

, 𝑒 ′).
□

Theorem E.6 (Zero-knowledge). The protocol in Figure 8
is zero-knowledge in the random oracle model.

Proof of Theorem E.6. We describe the simulator for a

single index 𝑖 ∈ [𝛼] and the algorithm can be extended to

the more general case in a natural way. The simulator picks

𝑑𝑖,1, 𝑑𝑖,2 ← Z2𝜆 , 𝑟𝑖,1, 𝑟𝑖,2 ← Z𝑄 and 𝑟𝑖,1, 𝑟𝑖,2 ← Z�̃� . It then sets

19

PrvL1
(crs, stmt,wit): The prover routine does the following:

• Sample 𝑡 ← Z𝑄 , where 𝑄 = 𝑞 · 22𝜆 , compute 𝐾0 := 𝐺
𝑡

• Compute 𝑒 ← H1 (stmt, 𝐾0)
• Compute 𝑡𝐾 := 𝑡 + 𝑒 · 𝑥
• Set the proof 𝜋 := (𝐾0, 𝑡𝐾 , 𝑒)

VfyL1

(crs, stmt, 𝜋): The verifier routine does the following:
• Parse 𝜋 := (𝐾0, 𝑡𝐾 , 𝑒)
• Check if 𝑒

?

= H1 (stmt, 𝐾0), if so continue, otherwise output 0

• Check if 𝐺𝑡𝐾
?

= 𝐾0 · 𝐾𝑒 . If successful, output 1, else output 0.

Figure 6: Prover and Verifier routine for NIZK proof for statements in language L1

PrvL2
(crs, stmt,wit): The prover routine does the following:

• Sample 𝑡 ← Z𝑄 , where 𝑄 = 𝑞 · 22𝜆 , compute 𝐺0 := 𝐺
𝑡
and 𝐾0 := 𝐾

𝑡

• Compute 𝑒 ← H2 (stmt,𝐺0, 𝐾0)
• Compute 𝑡𝐺,𝐾 := 𝑡 + 𝑒 · 𝑠
• Set the proof 𝜋 := (𝐺0, 𝐾0, 𝑡𝐺,𝐾 , 𝑒)

VfyL2

(crs, stmt, 𝜋): The verifier routine does the following:
• Parse 𝜋 := (𝐺0, 𝐾0, 𝑡𝐺,𝐾 , 𝑒)
• Check if 𝑒

?

= H2 (stmt,𝐺0, 𝐾0), if so continue, otherwise output 0

• Check if 𝐺𝑡𝐺,𝐾
?

= 𝐺0 · 𝐻𝑒
0
and 𝐾𝑡𝐺,𝐾

?

= 𝐾0 · 𝐻𝑒
1
. If unsuccessful, output 0.

Figure 7: Prover and Verifier routine for NIZK proof for statements in language L2

• 𝑒𝑖 = (𝑑𝑖,1 + 𝑑𝑖,2) mod 2
𝜆

• 𝐴𝑖,1 := 𝐺𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1
• 𝐵𝑖,1 := 𝐾𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1
• 𝐴𝑖,2 := 𝐺𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2
• 𝐵𝑖,2 := 𝐾𝑟𝑖,2 · (𝑐𝑖,1/𝐺)𝑑𝑖,2
• �̃�𝑖,1 := �̃�𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1
• �̃�𝑖,1 := �̃�𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1
• �̃�𝑖,2 := �̃�𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2
• �̃�𝑖,2 := �̃�𝑟𝑖,2 · (𝑐𝑖,1/�̃�)𝑑𝑖,2 .
It sets the random oracle H3 accordingly at the 𝑖-th point with

𝑒𝑖 . The values (𝐴𝑖,1, 𝐵𝑖,1, 𝐴𝑖,2, 𝐵𝑖,2, �̃�𝑖,1, �̃�𝑖,1, �̃�𝑖,2, �̃�𝑖,2) output
by the simulator are statistically close to that in a honestly

generated proof. This is because𝑤𝑖 if sampled uniformly from

Z𝑄 is distributed statistically close to 𝑟𝑖,1 +𝑠𝑖 ·𝑑𝑖,1 (Lemma E.1).

□

Theorem E.7 (Simulation Soundness). The protocol in Fig-
ure 8 satisfies simulation soundness provided the 2𝜆-low order
assumption and the strong root assumption holds in G, in the
random oracle model.

Proof of Theorem E.7. As before, we assumewithout loss

of generality that the false statement (and the index 𝑖 where

the statement fails) is fixed ahead of time. This assumption can

be lifted with a polynomial loss in the success probability of

the reduction by guessing the correct query to the random or-

acle. In what follows, we assume that the false statement only

pertains to the prime-order group
˜G. For the case of the class

group elements, the argument is similar to the proof of Theo-

rems E.3 and E.5. Our reduction R computes simulated proofs

up until the point where the adversary made the random ora-

cle query on the false statement. Here the reduction forks the

execution and sets the 𝑖-th output of the random oracle to two

different values (𝑒𝑖 ≠ 𝑒 ′
𝑖
). By the forking Lemma [63], with

inverse polynomial probability the adversary outputs two ac-

cepting proofs containing �̃�𝑖,1, �̃�𝑖,2, �̃�𝑖,1, �̃�𝑖,2, 𝑑𝑖,1, 𝑑𝑖,2, 𝑟𝑖,1, 𝑟𝑖,1

and �̃�𝑖,1, �̃�𝑖,2, �̃�𝑖,1, �̃�𝑖,2, 𝑑
′
𝑖,1
, 𝑑 ′
𝑖,2
, 𝑟 ′
𝑖,1
𝑟 ′
𝑖,1

(among other elements

from G).
Since 𝑒𝑖 ≠ 𝑒 ′

𝑖
, it must be the case that either 𝑑𝑖,1 ≠ 𝑑 ′

𝑖,1
or

𝑑𝑖,2 ≠ 𝑑
′
𝑖,2
. If we have 𝑑𝑖,1 ≠ 𝑑

′
𝑖,1
, then the reduction computes

𝑠𝑖 :=

(
𝑟𝑖,1 − 𝑟 ′𝑖,1

)(
𝑑 ′
𝑖,1
− 𝑑𝑖,1

)
from �̃�𝑖,1, such that 𝑐𝑖,0 = �̃�𝑠𝑖 . Similarly from �̃�𝑖,1 we have

𝑐𝑖,1 = �̃�𝑠𝑖 , therefore we have extracted the witness to the

relation. If 𝑑𝑖,2 ≠ 𝑑
′
𝑖,2
, then the reduction computes

𝑠𝑖 :=

(
𝑟𝑖,2 − 𝑟 ′𝑖,2

)(
𝑑 ′
𝑖,2
− 𝑑𝑖,2

)
from �̃�𝑖,2, such that 𝑐𝑖,0 = �̃�𝑠𝑖 . From ˜𝑏𝑖,2 we have that 𝐾

𝑠𝑖 =

(𝑐𝑖,1/�̃�) and therefore 𝑠𝑖 is a valid witness for the relation. It

is not possible for both 𝑑𝑖,1 ≠ 𝑑 ′
𝑖,1

and 𝑑𝑖,2 ≠ 𝑑 ′
𝑖,2
, since this

would mean we have 𝑐𝑖,1 = �̃�𝑠𝑖 = �̃�𝑠𝑖 · 𝐺 . Therefore we are
20

PrvL3
(crs, stmt,wit): The prover routine does the following:

• For 𝑖 ∈ [𝛼], do the following:

– If 𝑟𝑖 = 1, i.e.,

(
(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 , 𝐾𝑠𝑖 ·𝐺)

∧(𝑐𝑖,0, 𝑐𝑖,1) = (�̃�𝑠𝑖 , �̃�𝑠𝑖 · �̃�)) , do the following:

∗ Sample𝑤𝑖 , 𝑟𝑖,1 ← Z𝑄 , �̃�𝑖 , 𝑟𝑖,1 ← Z�̃� and 𝑑𝑖,1 ← Z2𝜆
∗ Set 𝐴𝑖,1 := 𝐺

𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1 , 𝐵𝑖,1 := 𝐾𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1
∗ Set �̃�𝑖,1 := �̃�

𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1 , �̃�𝑖,1 := �̃�𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1
∗ Set 𝐴𝑖,2 := 𝐺

𝑤𝑖
, 𝐵𝑖,2 := 𝐾

𝑤𝑖

∗ Set �̃�𝑖,2 := �̃�
�̃�𝑖
, �̃�𝑖,2 := �̃�

�̃�𝑖

– If 𝑟𝑖 = 0, i.e.,

(
(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 , 𝐾𝑠𝑖)

∧(𝑐𝑖,0,̃𝑐𝑖,1) = (�̃�𝑠𝑖 , �̃�𝑠𝑖)) , do the following:

∗ Sample𝑤𝑖 , 𝑟𝑖,2 ← Z𝑄 , �̃�𝑖 , 𝑟𝑖,2 ← Z�̃� and 𝑑𝑖,2 ← Z2𝜆
∗ Set 𝐴𝑖,1 := 𝐺

𝑤𝑖
, 𝐵𝑖,1 := 𝐾

𝑤𝑖

∗ Set �̃�𝑖,1 := �̃�
�̃�𝑖
, �̃�𝑖,1 := �̃�

�̃�𝑖

∗ Set 𝐴𝑖,2 := 𝐺
𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2 , 𝐵𝑖,2 := 𝐾𝑟𝑖,2 · (𝑐𝑖,1/𝐺)𝑑𝑖,2

∗ Set �̃�𝑖,2 := �̃�
𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2 , �̃�𝑖,2 := �̃�𝑟𝑖,2 · (𝑐𝑖,1/�̃�)𝑑𝑖,2

• Compute (𝑒1, . . . , 𝑒 [𝛼]) ← H3 (stmt, {𝐴𝑖,1, 𝐵𝑖,1, 𝐴𝑖,2, 𝐵𝑖,2, �̃�𝑖,1, �̃�𝑖,1, �̃�𝑖,2, �̃�𝑖,2}𝑖∈[𝛼])
• For 𝑖 ∈ [𝛼], do the following:

– If 𝑟𝑖 = 1, do the following:

∗ Compute 𝑑𝑖,2 := (𝑒𝑖 − 𝑑𝑖,1) mod 2
𝜆

∗ Compute 𝑟𝑖,2 := 𝑤𝑖 − 𝑠𝑖 · 𝑑𝑖,2, 𝑟𝑖,2 := (�̃�𝑖 − 𝑠𝑖 · 𝑑𝑖,2) mod 𝑞

– If 𝑟𝑖 = 0, do the following:

∗ Compute 𝑑𝑖,1 := (𝑒𝑖 − 𝑑𝑖,2) mod 2
𝜆

∗ Compute 𝑟𝑖,1 := 𝑤𝑖 − 𝑠𝑖 · 𝑑𝑖,1, 𝑟𝑖,1 := (�̃�𝑖 − 𝑠𝑖 · 𝑑𝑖,1) mod 𝑞

• Output 𝜋 := {𝑒𝑖 , 𝐴𝑖,1, 𝐵𝑖,1, 𝐴𝑖,2, 𝐵𝑖,2, �̃�𝑖,1, �̃�𝑖,1, �̃�𝑖,2, �̃�𝑖,2, 𝑑𝑖,1, 𝑑𝑖,2, 𝑟𝑖,1, 𝑟𝑖,2, 𝑟𝑖,1, 𝑟𝑖,2}𝑖∈[𝛼]
VfyL3

(crs, stmt, 𝜋): The verifier routine does the following:

• Parse 𝜋 := {𝑒𝑖 , 𝐴𝑖,1, 𝐵𝑖,1, 𝐴𝑖,2, 𝐵𝑖,2, �̃�𝑖,1, �̃�𝑖,1, �̃�𝑖,2, �̃�𝑖,2, 𝑑𝑖,1, 𝑑𝑖,2, 𝑟𝑖,1, 𝑟𝑖,2, 𝑟𝑖,1, 𝑟𝑖,2}𝑖∈[𝛼]
• Check if (𝑒1, . . . , 𝑒𝛼)

?

= H3 (stmt, {𝐴𝑖,1, 𝐵𝑖,1, 𝐴𝑖,2, 𝐵𝑖,2, �̃�𝑖,1, �̃�𝑖,1, �̃�𝑖,2, �̃�𝑖,2}𝑖∈[𝛼])
• For 𝑖 ∈ [𝛼], check if all the following hold, and output 0 otherwise:

– 𝑒𝑖
?

= (𝑑𝑖,1 + 𝑑𝑖,2) mod 2
𝜆

– 𝐴𝑖,1
?

= 𝐺𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1

– 𝐵𝑖,1
?

= 𝐾𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1

– 𝐴𝑖,2
?

= 𝐺𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2

– 𝐵𝑖,2
?

= 𝐾𝑟𝑖,2 · (𝑐𝑖,1 ·𝐺−1)𝑑𝑖,2

– �̃�𝑖,1
?

= �̃�𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1

– �̃�𝑖,1
?

= �̃�𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1

– �̃�𝑖,2
?

= �̃�𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2

– �̃�𝑖,2
?

= �̃�𝑟𝑖,2 · (𝑐𝑖,1 · �̃�−1)𝑑𝑖,2
• If all the above conditions hold, output 1, else output 0.

Figure 8: Prover and Verifier routine for NIZK proof for statements in language L3

able to extract a valid witness in one of the branches, which

contradicts the fact that the statement was false. □

F SECURITY ANALYSIS OF DISTRIBUTED
RANDOMNESS GENERATION
PROTOCOL

Proof of Theorem 6.3. We assume for simplicity that the

adversary corrupts all but one parties and the honest party is

𝑃1. We define the following series of hybrid distributions.

Hyb
0
: Is identical to the IND-RAN experiment with the bit 𝑏

fixed to 𝑏 = 0, i.e. A is given the honestly computed 𝑟0.

Hyb
1
: This is identical to the previous hybrid except that now

each of the commitments output by the adversary are indi-

vidually force-opened using TForceOp. Let (𝑠2, . . . , 𝑠𝑛) be the
resulting integers and let 𝑠1 the integer sampled by the honest

𝑃1 (in the call to the RGen protocol). Then the adversary is

given

𝑟0 =

𝑛∑
𝑖=1

𝑠𝑖 .

21

Hyb
2
: This is identical to the previous hybrid except that we

compute

𝑟0 =

𝑛∑
𝑖=2

𝑠𝑖 + 𝑠

where 𝑠 ← Z𝑞 is sampled uniformly and independently from

𝑠1.

Hyb
3
: Here the adversary is given a uniformly sampled integer.

Note that the latter hybrid is identical to the experiment IND-

RAN with the bit 𝑏 fixed to 𝑏 = 1. We now argue the indistin-

guishability of the hybrids.

Hyb
0
≈𝑐 Hyb1: By the perfect correctness of the commitment

scheme, the hybrids only differ in the case where one of the

commitments output by the adversary is not well-formed.

However, such a commitment is always rejected unless the

adversary computes a proof 𝜋 for a false statement, which

contradicts the verifiability of the CCA timed commitment

scheme.

Hyb
1
≈T𝜖 Hyb

2
: We show this indinstinguishability via a re-

duction to the CCA security of the timed commitment scheme.

Let A be a PPT adversary with depth less than T𝜖 (for some

𝜖 < 1) that distinguishes between the two hybrids. The re-

duction R against the CCA security of the timed commitment

proceeds as follows. The reduction obtains crs of the timed

commitment scheme. When the adversary queries the RGen

oracle, the reduction locally samples (𝑠0, 𝑠1) ← Z𝑞 and sends

(𝑠0, 𝑠1) to its challenger. It receives (𝑐, 𝜋) from its challenger

and sends (𝑐, 𝜋) to the adversary as reply to the oracle query.

The adversary outputs𝑉 := {(𝑐2, 𝜋2), . . . , (𝑐𝑛, 𝜋𝑛)}. The reduc-
tion forwards each of these to its own oracle O. If the oracle
responds with⊥ for any of the pairs (𝑐𝑖 , 𝜋𝑖), the reduction sets

𝑚𝑖 = 0. Otherwise, the reduction receives𝑚𝑖 as a response

and defines a set {𝑚2, . . . ,𝑚𝑛}. The reduction sets

𝑟 =

𝑛∑
𝑖=2

𝑚𝑖 + 𝑠0

and returns 𝑟 to the adversary. The adversary responds with a

bit 𝑏 ′ and the reduction outputs 𝑏 ′ as its own answer to the

challenger. This concludes the description of R.
Notice that the reduction is efficient and it running time is

only a polynomial (in 𝜆) factor slower than A. The reduction

violates the CCA security of the timed commitments with the

same probability as A violates the IND-RAN security. To see

this, observe that we have two cases where (𝑐, 𝜋) embeds 𝑠0 or

𝑠1. If (𝑐, 𝜋) indeed embeds 𝑠0, then 𝑟 is distributed as in hybrid

Hyb
1
, otherwise 𝑟 is distributed uniformly, as in Hyb

2
. This is

a contradiction to the CCA security of the timed commitments.

Hyb
2
≡ Hyb

3
: Since 𝑠 is uniformly chosen and Z𝑞 defines a

field, the two hybrid distributions are identical. □

22

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Homomorphism vs CCA Security

	2 Technical Overview
	2.1 Homomorphic Time-Lock Puzzles from Class Groups
	2.2 CCA Timed Commitments
	2.3 Distributed Randomness Generation

	3 Preliminaries
	4 Homomorphic Time-Lock Puzzle from Class Groups
	5 CCA Timed Commitments
	5.1 Definitions
	5.2 Construction

	6 Distributed Randomness Generation
	6.1 Definition
	6.2 Our Protocol

	7 Related Work
	8 Experimental Evaluation
	9 Conclusions
	References
	A More Preliminaries
	B Assumptions
	C CL fast variant
	D Security Analysis of CCA Timed Commitment
	E Efficient NIZK protocols
	F Security Analysis of Distributed Randomness Generation Protocol

