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Abstract

In this work, we study what minimal sets of assumptions suffice for constructing indistin-
guishability obfuscation (iO). We prove:

Theorem(Informal): Assume sub-exponential security of the following assumptions:

• the Learning Parity with Noise (LPN) assumption over general prime fields Fp with polynomially
many LPN samples and error rate 1/kδ , where k is the dimension of the LPN secret, and δ > 0 is
any constant;

• the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch n1+τ , where n
is the length of the PRG seed, and τ > 0 is any constant;

• the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order.

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits exists.
Further, assuming only polynomial security of the aforementioned assumptions, there exists collusion
resistant public-key functional encryption for all polynomial-size circuits.

This removes the reliance on the Learning With Errors (LWE) assumption from the recent
work of [Jain, Lin, Sahai STOC’21]. As a consequence, we obtain the first fully homomorphic
encryption scheme that does not rely on any lattice-based hardness assumption.

Our techniques feature a new notion of randomized encoding called Preprocessing Ran-
domized Encoding (PRE) that, essentially, can be computed in the exponent of pairing groups.
When combined with other new techniques, PRE gives a much more streamlined construction
of iO while still maintaining reliance only on well-studied assumptions.
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1 Introduction

Indistinguishability obfuscation (iO) for general programs computable in polynomial time [BGI+01]
enables us to hide all implementation-specific details about any program while preserving its
functionality. iO is a fundamental and powerful primitive, with a plenthra of applications in
cryptography and beyond. It is hence extremely important to investigate how to build iO, based
on as minimal assumptions as possible, and via as simple constructions as possible. Advances on un-
derstanding what assumptions imply iO and simplification of iO constructions have immediate
implications on the rest of cryptography through the many applications of iO. So far, through the
accumulation of extensive research by a large community since the first mathematical candidate
iO proposal by [GGH+13] (see the survey in [GJLS21] and references therein), we recently saw
the first construction of iO [JLS21] based on four well-studied assumptions: Learning With Errors
(LWE) [Reg05], Decisional Linear assumption (DLIN) [BGdMM05] over bilinear groups, Learning
Parity with Noise over Fp [IPS09], and Pseudo-Random Generators in NC0 [Gol00].

While the work of Jain, Lin and Sahai [JLS21] settles the feasibility of iO on solid assumptions,
much still awaits be answered, even on the front of feasibility. A fundamental question to study
next is:

“What minimal sets of well-studied assumptions suffice to construct iO?”

From a complexity theoretic perspective, studying the minimal sets of sufficient assumptions
helps deepen our understanding of the nature and structure of iO, as well as understanding the
power of these sufficient assumptions (via the many applications of iO). It also serves as a test-bed
for new ideas and techniques, and may lead to new ways of constructing iO and other primitives.

As we embark upon this question, it is important to keep an open mind. The answers may not
be unique – there may be different minimal combinations of assumptions that are sufficient for iO,
and we do not know what the future may bring. Perhaps LWE alone is enough, or perhaps not.
The answers may not be what we expect. Unexpected answers may teach us just as much as (if not
more than) the answers that confirm our expectation. Our work here presents one such answer
that challenges expectations, and at the same time, simplifies the overall architecture needed to
construct iO from well-studied assumptions.

Our Result. We improve upon the iO construction of [JLS21] by removing their reliance on LWE.
We thus obtain iO based on the following three assumptions, which generates interesting conse-
quences that we discuss below.

Theorem 1.1 (Informal). Assume sub-exponential security of the following assumptions:

• the Learning Parity with Noise (LPN) assumption over general prime fields Fp with polyno-
mially many LPN samples and error rate 1/kδ, where k is the dimension of the LPN secret,
and δ > 0 is any constant;

• the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch n1+τ , where
n is the length of the PRG seed, and τ > 0 is any constant;

• the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order.

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits
exists. Assuming only polynomial security of the assumptions above yields polynomially secure
functional encryption for all polynomial-size circuits.
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It is interesting to note that of the three assumptions above, only one of them is known to
imply public-key encryption or key agreement on its own – the DLIN assumption. Even assuming
the other two assumptions simultaneously, it is not known how to build key agreement or any
other “public key” primitive. (Recall that known constructions of public-key encryption from
LPN require relatively sparse errors, that is, δ ≥ 1

2 in our language above [Ale03, AB15].) Thus,
this work removes one, namely LWE, of the two public-key assumptions in [JLS21], making a first
step towards understanding the minimal set of assumptions underlying iO.

Lattice v.s. (pairing + LPN over Fp + PRG in NC0). An immediate consequence of our theorem
is that the combination of bilinear pairing, LPN over Fp, and constant-locality PRG is sufficient
for building all the primitives that are implied by iO or Functional Encryption (FE) (and other
assumptions that are implied by one of the three assumptions). This, somewhat surprisingly, in-
cludes Fully Homomorphic Encryption (FHE) that support homomorphic evaluation of (unbounded)
polynomial-size circuits, through the construction by [CLTV15] that shows FHE can be built from
subexponentially secure iO and rerandomizable encryption, which is implied by the DLIN as-
sumption. It also includes Attribute Based Encryption (ABE) that support policies represented by
(unbounded) polynomial-size circuits, which is a special case of functional encryption. To this day,
the only known constructions of FHE and ABE for circuits are based on the hardness of lattice-
type problems – either directly from problems like LWE or Ring LWE, or slightly indirectly via
problems such as the approximate GCD problem [vDGHV10]. Our work hence yields the first
alternative pathways towards these remarkable primitives.

Corollary 1.1 (Informal). Assume the same assumptions as in the Theorem 1.1. Then, fully homo-
morphic encryption and attribute-based encryption for all polynomial-sized circuits exist.

Beyond FHE and ABE, lattice problems and techniques have been at the heart of nearly every
work over the past decade attempting to achieve advanced cryptographic feasibility goals. Our
theorem shows that, through iO, the combination of pairing, LPN over Fp, and constant-locality
PRG is just as powerful as (and potentially more powerful than) lattice techniques for achieving
feasibility goals.

We emphasize that our result complements instead of replaces lattice-based constructions. It
also gives rise to several exciting open directions for future work, such as, can we obtain direct
constructions of FHE or ABE (not via iO or FE) from the trio of assumptions? and is there any
formal relationship between these assumptions and lattice assumptions (e.g, BDD, SVP etc.)?

Streamlining iO Construction. In our minds, an equally important contribution of our work is
streamlining of the construction of iO from well-studied assumptions. Current surviving iO pro-
posals are all highly complex. They usually start with building a minimal tool and then transform
it to iO through a number of sophisticated transformations in the literature. Take the recent con-
struction of iO in [JLS21] as an example. It starts with 1) building a 1-key secret-key FE scheme for
NC0 with sublinearly compact ciphertext, that is only weakly (1−1/ poly(λ))-secure, then 2) lift the
function class to handle circuits via transformations in [AJS15b, LV16, Lin16], 3) amplify security
via [GJLS21], 4) turn secret-ley FE to public-key FE via [BNPW16], 5) transform FE with sublinear-
size ciphertext to FE with sublinear-time encryption [LPST16, GKP+13], and finally 6) construct
iO from public-key FE for circuits with sublinear-time encryption [AJ15, BV15]. While there exist
alternative transformations for each of the steps, and other constructions of iO may omit some of
the steps, it is a widely recognized problem that existing iO constructions are complex.
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Our new construction of iO, while removing the reliance of LWE, also removes the reliance on
most transformations used in previous constructions. Starting from a known and simple partially
hiding functional encryption scheme based on DLIN by [Wee20], we directly construct a public-key
FE for circuits1 with sublinear-time encryption, which implies iO via [AJ15, BV15].

To enable our results, we propose and achieve the new notion of Preprocessed Randomized En-
codings (PRE). Roughly speaking, PRE allows for preprocessing the input x and random coins
r into preprocessed input (PI, SI) where PI is public and SI is private, so that, later a randomized
encoding of (f,x) can be computed by polynomials with only degree 2 in SI, and constant degree
in PI, over general prime field Fp. PRE guarantees that the preprocessed input (PI,SI) can be com-
puted in time sublinear in the size of the circuit f and the randomized encoding together with PI
hides the actual input x.

We now proceed to an overview of our techniques.

2 Technical Overview

FE Bootstrapping. A common thread in many recent iO constructions [AJS15b, Lin16, AS17,
Lin17, LT17, AJS18, LM18, AJL+19, JLMS19, JLS19, GJLS21, JLS21] is FE bootstrapping – transfor-
mations that lift FE for computing simple functions in NC0 to full fledged functional encryption
for polynomial-sized circuits. Such an FE scheme in turn implies iO by the works of [AJ15, BV15].

More specifically, functional encryption is an advanced form of public key encryption, which
allows generating functional secret keys associated with a specific function f : {0, 1}n → {0, 1}m,
denoted as SKf , such that, decrypting a ciphertext CT(x) using this secret key reveals only the
output f(x), and nothing else about the encrypted input x. To imply iO, it suffices to have FE
with the following properties:

• It supports publishing a single functional decryption key SKC , for a circuit C : {0, 1}n →
{0, 1}m where every output bit is computable by a circuit of fixed size poly(λ) in the security
parameter2. The overall size of C is poly(λ) ·m.

• It is crucial that FE has encryption that runs in time sublinear in the size of the circuit C:
TEnc = poly(λ) ·m1−ε – we refer to this property as sublinear time-succinctness.

In contrast, FE with encryption that takes time polynomial in the circuit size is just equivalent to
vanilla public key encryption [SS10, GVW12]. An intermediate level of efficiency known as sub-
linear size-succinctness only requires the ciphertext size to be sublinear |CT(x)| = poly(λ) ·m1−ε,
without restricting the encryption time. It has been shown that FE with sublinear size-succinctness
in fact implies FE with sublinear time-succinctness, but additionally assuming LWE [LPST16,
GKP+13]. In this work, one of our technical contributions is presenting a direct way of construct-
ing FE with sublinear time-succinctness without LWE.

To reach the above powerful FE via bootstrapping, we start with FE schemes supporting
the most expressive class of functions that we know how to build from standard assumptions.
Partially-hiding functional encryption generalizes the syntax of functional encryption to allow a
public input PI that does not need to be hidden in addition to the secret input SI. Furthermore,
decryption reveals only h(PI,SI), where h is the function for which the functional decryption key

1albeit with the constraint that every output bit is computed by a λ-size circuit. This is without loss of generality
via Yao’s Garbled Circuits.

2Our construction of FE do not place the restriction on C to have logarithmic-depth, though FE with such a restric-
tion is also sufficient for iO.

3



is generated. So far, from standard assumptions over bilinear maps of order p (e.g. DLIN), prior
works [JLS19, GJLS21, Wee20] constructed PHFE for polynomials h over Zp that have constant
degree in the public input PI and only degree-2 in the private input SI. We say such a polynomial
h has degree-(O(1), 2).

h(PI, SI) =
∑
j,k

gj,k(PI) · xj · xk mod p, where gj,k has constant degree

Furthermore, known PHFE schemes enjoy strong simulation security and their encryption runs
in time linear in the length of the input: TEnc = (|PI| + |SI|) poly(λ). Both these properties will be
instrumental later.

Perhaps the most straightforward way of bootstrapping FE for simple functions to FE for com-
plex functions is using the former to compute a Randomized Encoding (RE) π of the complex
function C(x), from which the output can be derived. It seems, then, that all we need is an RE
that can be securely evaluated using degree-(O(1), 2) PHFE. Unfortunately, this idea immediately
hits a key barrier: Known RE encoding algorithms EncodeC(x; r) have at least locality 4 and hence
degree 4 (over Zp) in x and r, both of which must be kept private. Making the degree smaller
has been a long-standing open question. To circumvent this issue, we formalize a new notion of
degree-(O(1), 2) randomized encoding that crucially relies on input preprocessing.

Preprocessed Randomized Encoding. The key properties of a preprocessed Randomized En-
coding (PRE) scheme are: (i) encodings can be generated using degree-(O(1), 2) polynomials h on
pre-processed inputs (PI, SI); and (ii) the input preprocessing has sublinear time succinctness. More
precisely, the syntax of PRE is described below.

Preprocessed Randomized Encoding

• PRE.PreProc(p,x) → (PI,SI). The preprocessing algorithm converts an input x ∈ {0, 1}n and
random tape r into a preprocessed input (PI,SI) over Zp. It is important that preprocessing does
not depend on the circuit to be encoded later (but only an upper bound on its size). It must
satisfy sublinear time-succinctness in the sense that preprocessing time is sublinear in the size
of the computation, TPreProc = m1−ε poly(λ).

• PRE.Encode(C,PI,SI) = π. The encoding algorithm takes a circuit C of size m poly(λ) and a
preprocessed input (PI,SI), and produces a binary randomized encoding π. PRE.EncodeC can
be computed by a polynomial mapping over Zp with constant degree in PI and degree 2 in SI.

• PRE.Decode(π) = y. The decoding algorithm decodes the output y = C(x) from π.

Indistinguishability security: PRE guarantees that (PI,π) generated from (C,x0) or (C,x1) are indis-
tinguishable as long as C(x0) = C(x1).

If we had such PRE, we can easily construct the desired powerful FE as follows:

FE.SK : PHFE.SKh , where h(PI,SI) = PRE.EncodeC(PI, SI) = π

FE.CT : PHFE.CT(PI, SI) , where (PI, SI)← PRE.PreProc(p,x)

The simulation security of the underlying PHFE guarantees that the only information revealed
is PI,π. Hence by the indistinguishability security of pRE, FE ciphertexts of inputs x0, x1 that
produce the same outputs are indistinguishable. For time succinctness, since the preprocessing
takes sublinear time m1−ε poly(λ) and PHFE encryption takes time proportional to the length of
the preprocessed inputs, which is also sublinear, we have that FE encryption has sublinear time
succinctness.
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2.1 Challenges to Constructing Preprocessed Randomized Encoding

The main challenges in constructing PRE is making sure that: (i) encoding is only degree 2 in the
private preprocessed input SI; and (ii) preprocessing has sublinear time-succinctness. Towards
this, our starting point is to consider a known randomized encoding scheme that has constant
locality and sublinear randomness (explained next), and somehow modify it so that it can enjoy
degree-(O(1), 2) encoding. Such a constant-degree RE scheme can be obtained by combining
a constant-locality RE, such as [Yao86], with a PRG in NC0. The encoding algorithm works as
π = Encode′C(x; r′ = PRG(r)), where the random tape has sublinear length |r| = m1−τ poly(λ)
if the Encode′ algorithm uses a linear number of random coins |r′| = O(m) poly(λ) and PRG has
appropriate polynomial stretch. We call this property sublinear randomness; it is needed because
the PRE encoding algorithm is deterministic and hence the sublinearly short preprocessed input
(PI, SI) must encode all the randomness needed for producing the encoding. Observe that Encode′

has constant locality (and hence degree) in (x, r), but the locality is much higher than 2.

High-level approach for PRE: So how can we use preprocessing to reduce the encoding degree
to just 2 in private proprocessed inputs? We start by adapting several ideas from [JLS21] that were
used to construct objects called structured-seed PRGs, to constructing our desired PRE. Here is
the high-level approach:

• Since the public input PI is supposed to hide x′ = x, r, we will set PI as an encryption
HEEnc(x′) of x′ using a special-purpose homomorphic encryption scheme.

• We set SI to contain the secret key of this homomorphic encryption and some other “pre-
processed information” about the encryption. Crucially, we need to ensure that PI, SI can be
computed by a circuit of size sublinear in size of C.

• Given PI, SI, the encode algorithm Encode first takes PI and homomorphically evaluate Encode′

to obtain an output encryption HEEnc(π). Then, it takes SI and decrypts HEEnc(π) to obtain
π. We will ensure that homomorphic evaluation of a locality-d function Encode′ is a degree
d operation on PI, and crucially decryption is a degree 2 operation in SI (and has at most
constant degree in HEEnc(π)). Because of this, Encode will have degree-(O(1), 2).

Instantiation via LPN over Fp. An example of such a homomorphic encryption scheme is based
on LPN over Fp.

PI = HEEnc(x′) = (A, b = sA + e+ x′ mod p)

where the dimension dim is polynomially related with λ, but relatively small as we describe below.
We sample A ← Zdim×|x′|

p , s ← Z1×dim
p , and the errors e is chosen so that each coordinate is non-

zero with probability dim−δ for any constant δ > 0 associated with the LPN over Fp assumption.
To come up with SI for decryption. We observe that for every locality-d polynomial h the

following equation holds:

h(b−As) = h(x′ + e)

The LHS of the equation tells us that if we include in SI all degree-d monomials of s, namely, SI =
(1||s)⊗d, then the above quantity can be computed by a polynomial that is degree d in PI = (A, b)
and in fact linear in SI. By choosing dim to be polynomially smaller than |x|, the above SI will still
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be sufficiently succinct for our purposes. The RHS of the equation tells us that the error e is sparse,
and h depends only on a constant number d variables, and thus with probability 1−O(dim−δ), we
have h(x′+e) = h(x′). This almost matches what we want, except that decryption has a noticable
error probability O(dim−δ).

To correct the decryption errors, the key observation is that for a polynomial mapping Encode′C
with long outputs, the error vector Corr = Encode′C(x′+e)−Encode′C(x′) is sparse: only aO(dim−δ)
fraction of elements in Corr are non-zero. Prior work [JLS21] developed a technique for “compress-
ing” such sparse vector Corr into (U, V ) of sublinear length |U, V | = m1−ε poly(λ). From U, V , Corr
can be expanded out using only degree 2. Therefore, by adding (U, V ) to SI, we can decrypt and
then correct errors in the output with just degree-2 computation in U, V .

SI = (1||s)⊗d, U, V

However, the compression mechanism of [JLS21] only guarantees that U, V are size-succinct, but
are not time-succinct, and in fact, constructing them takes time linear in the circuit size m.

Barriers to time-succinctness: Unfortunately, the above approach cannot achieve time-succinctness
for the following reasons: The preprocessing algorithm needs to compute the errors Corr = Encode′C(x′+
e)−Encode′C(x′) in the decryption output. Though the error vector is sparse, every element could
be wrong with Ω(dim−δ) probability, depending on the LPN noises e used to encrypt x′ and the
input-output dependency graph of the function Encode′C computed. Therefore, the circuit imple-
menting the preprocessing must have Encode′C stored. This creates two problems: (i) the propro-
cessing time (in the circuit model) is at least |C|, and more subtly, (ii) the proprocessing depends
on C.

In the previous work of [JLS21], they deal with the first issue by invoking the transformation
from size-succinct FE to time-succinct FE [LPST16, GKP+13] assuming LWE. The second issue
is not a problem, since they construct structured-seed PRG and only apply the aforementioned
technique to a fixed PRG in NC0. However, structured-seed PRG alone is not enough for FE boot-
strapping, and they need to additionally rely on FHE based on LWE, and security amplification
techniques which again rely on LWE.

In this work, to streamline the construction of iO, and to weaken the underlying assumptions,
we want to construct PRE that directly achieves time-succinctness. Next, we discuss how to ad-
dress the first issue above using the idea of amortization.

Key idea: Amortization. To get around the hurdle that preprocessing a single input x seems to
inherently take time proprotional to |C|, we ask a simpler question: can we “batch-preprocess”
in sublinear time? To make it precise, say we have k input vectors x1, . . . ,xk each of dimension
n, and we are interested in learning h(x1), . . . , h(xk) w.r.t. a polynomial mapping h : {0, 1}n →
{0, 1}m′ with constant locality. Can we batch-process {x1, . . . ,xk} into a public and a secret input
(PI, SI) in time sublinear in m′ · k, such that each h(xi) can be computed with constant degree in
PI and degree 2 in SI. Our answer is Yes!

Furthermore, in order to get around the subtler problem that preprocessing depends on Encode′C ,
we will consider a version of amortized preprocessing for computing polynomials h that have a
fixed set of monomials Q = {Q1, . . . , Qm′}. We say that h(x1, · · · ,xk) has monomial pattern Q if
it has form:

h(x1, · · · ,xk) =
∑
i,j

ηi,jQj(xi) mod p , where ηi,j are integer coefficients (1)
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The preprocessing is then allowed to depend on the monomialsQ, but not the polynomials h to be
computed later. We formalize this tool called Preprocessed Polynomial Encoding (PPE) below.

Preprocessed Polynomial Encoding

• PPE.PreProc(p,Q,x1, · · · ,xk) → (PI,SI). Given a collection of constant degree-d monomials,
Q = {Q1, . . . , Qm′}, the preprocessing algorithm converts a batch of k inputs {xi ∈ {0, 1}n}i∈[k]

into a preprocessed input (PI,SI) over Zp. It satisfies sublinear time-succinctness in the sense
that preprocessing time is sublinear in m′ · k.

• PPE.Decode(p,Q, h,PI,SI) = y. The decoding algorithm decodes the output

y = h(x1, · · · ,xk) =
∑
i,j

ηi,jQj(xi) mod p .

Indistinguishability security: PPE guarantees that PI for any two different inputs x1, · · · ,xk and
x′1, · · · ,x′k are indistinguishable.

Next we need to answer two questions: (i) Can we construct PPE?; and (2) Is this amortization
useful to construct PRE? Below, we answer the second question first.

Constructing PRE using (amortized) PPE. In order to construct PRE scheme, we need a random-
ized encoding scheme (with sublinear randomness) with an encoding algorithm Encode′C that is
exactly the kind of polynomials that PPE can handle (Equation 1). Then, we can simply use the
PPE preprocessing as the PRE preprocessing. More precisely, there should exist a universal set of
monomials Q, such that, for every complex circuit C,

Encode′C(x, r) = h(x1, · · · ,xk) =
∑
i,j

ηi,jQj(xi) mod p , where ηi,j ’s depends on C, but not Qj ’s.

We construct such an RE, denoted as ARE, using Yao’s garbling scheme [Yao86] and a PRG in NC0.
Recall that we consider circuits C : {0, 1}n → {0, 1}m=m′k where every output bit is computable
by a circuit of fixed size λ. We can divide such a circuit C into k chunks C1, . . . , Ck where circuit
Ci computes the ith chunk of outputs of C and has size m′λ, and then we can garble each of the
chunks separately.

ARE.Encode(C,x, r1, . . . , rk) = Yao.Gb(C1,x; PRG(r1)), . . . ,Yao.Gb(Ck′ ,x; PRG(rk)),

The idea is viewing {xi = (x, ri)} as the k inputs to be batch processed. But, do the functions
{Yao.Gb(Ci, ?, ?)} share a universal set of monomials? Unfortunately, this is not the case since the
computation of each garbled table depends on the gates in Ci. To solve this problem, we modify
our approach to garble the universal circuit and treat Ci’s as part of input to be garbled. More
precisely,

ARE.Encode(C,x, r1, . . . , rk) = Yao.Gb(U, (C1,x),PRG(r1)), . . . ,Yao.Gb(U, (Ck,x),PRG(rk)),

where U is a universal circuit that takes as input Ci,x and outputs Ci(x). Now the computation
of the garbled tables no longer depend on Ci, neither does the input garbling of x. The only part
that depends on Ci is the input garbling of Ci, which looks like (1−Cij)l0 +Cijl1, for every bit of
description of Ci. Examining more closely, we see that the monomials for computing the labels are
in fact universal, and Ci only affects the coefficients that combine these monomials. This is exactly
the type of polynomials that PPE can handle. More details are provided in Section 5, where we
also show that the size of the garbling is linear in |C| = mλ and the total input length |x′ = (x, r)|
is sublinear in m.
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2.2 Constructing Proprocessed Polynomial Encoding

We now construct our key technical tool PPE. For simplicity, in this overview, we will focus on
computing just the a collection of degree d monomials Q = {Qi(xj)}i∈[m′],j∈[k], as it illustrates
the idea behind our preprocessing procedure, and polynomials with monomial pattern Q can be
computed in the same degree as the monomials. Similar to before, the public preprocessed input
PI contains a LPN encryption of each xj , that is,

PI = {HEEnc(xj) = (Aj , bj = sAj + ej + xj)}j∈[k],

where Aj ← Zn×kp , s ← Z1×k
p , and ej ∈ Zkp where each coordinate is zero with probability k−δ.

Here we set the LPN dimension to k, which is set to be polynomially related to but polynomi-
ally smaller than n. Given PI, we can homomorphically evaluate all monomials in Q to obtain
encryption of the outputs {HEEnc(Qi(xj))}i,j .

Next, we construct SI so that these ciphertexts can be decypted and errors can be corrected.
For decryption, SI includes all degree d monomials in the secret key s, SI0 = (1||s)⊗d, so that one
can obtain the erroneous outputs {Qi(xj + ej)}i,j . Next, think of the errors Corr as arranged in a
m′ × k matrix, where Corr[i, j] = Qi(xj + ej)−Qi(xj). We do not compress the entire matrix Corr
in one shot, nor compressing it column by column, the new idea is compressing it row by row.
Each row, denoted by Corri, has dimension k and contains the errors related to computing a single
monomial Qi on all inputs {xj}j ,

Corri = {Qi(xj + ej)−Qi(xj)}j∈[k] .

If we can compress each Corri into SIi in (amortized) sublinear time (k1−Ω(1)) poly(λ), then the
overall time for computing SI = (SI0,SI1, · · · ,SI′m) is (k1−Ω(1) ·mk ) poly(λ), sublinear inm′ ·k. Given
such SI, we can indeed correct all errors in degree 2 and obtain the desired outputs {Qi(xj)}i,j .

The compressed version SIi. So what is special about compressing each row Corri? The key is
that elements in one row {Corr[i, j]}j are all independent, because the value Corr[i, j] depends on
ej ,xj , which is independent for different j’s. In comparison, note that this is not the case for
elements in one column {Corr[i, j]i}. This is because two different monomials Qi and Qi′ may
depend on the same input variable, say the k’th, and hence Corr[i, j] and Corr[i′, j] both depend on
the same noise ej,k used for hiding xj,k. The independence and the fact that each element Corr[i, j]
is non-zero with probabilityO(k−δ) imply that each row Corri hasO(k1−δ) non-zero elements with
overwhelming probability.

We rely on both the sparsity of and independence of elements in Corri to compress it. Let’s first
see how the compressed version SIi looks like. We assign elements in Corri into T = k1−δ square
matrices {Mi,γ}γ∈[T ], each of size (t = kδ/2) × (t = kδ/2). The assignment can be arbitrary as
long as every element Corr[i, j] is assigned to a unique location in one of the matrices Mi,j1 [j2, j3].
We denote by φ this assignement, φ(j) = (j1, j2, j3). Observe that on average, each matrix Mi,γ

contains less than 1 non-zero entries. By the independence of elements in Corri again, every matrix
Mi,γ has at most λ non-zero entries, with overwhelming probability in λ. Thus, every matrix Mi,γ

has rank less than λ and can be decomposed into Ui,γ ,Vi,γ ∈ Zt×λp such thatMi,γ = Ui,γ ·V>i,γ . The
compressed version SIi = {Ui,γ ,Vi,γ}γ∈[t1] contains exactly these U,V matrices, and the value of
Qi(xj) can be computed in degree (O(1), 2) from PI, SI0 and SIi as follows:

Qi(xj) = Qi(bj − sAj)−
(
Corr[i, j] = Mi,j1 [j2, j3]

)
= Qi(bj − sAj)−

(
Ui,j1 ·V>i,j1

)
[j2, j3]

The size of SIi = O(T × t× λ) = O(k1−δ × kδ/2 × λ) = O(k1−δ/2λ) is sublinear in k as desired.
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Computing of SIi in sublinear time. We now show that beyond being size-succinct, each SIi can
also be computed in time sublinear in k in an amortized fashion. More precisely, we show that the
collection of SI1, . . . ,SIm′ can be computed by a circuit of size (nk2 + m′k1−δ/2) poly(λ), which is
sublinear in m′ · k when k is set appropriately. We break down the task of computing SI1, . . . ,SIm′

in two steps.

1. Clearly, to compute each SIi in amortized sublinear time in k, we cannot afford to compute
the entire row Corri which has dimension k. Instead, we compute the list NZCorri of non-zero
entries in Corri only, which has sizeO(k1−δ). More precisely, NZCorri consists of tuples of the
form

NZCorri = {(j, φ(j) = (j1, j2, j3), Corr[i, j]) | j ∈ [k], Corri[j] 6= 0} .

That is, it contains the index j of the non-zero entries in Corri, the matrix location they are
assigned to Mi,j1 [j2, j2], and the value of the error Corr[i, j]. Moreover, the list is sorted in
ascending order with respect to coordinate j1, so that tuples with the same value j1 appear
contiguously.

2. In the second step, we use these special lists {NZCorri} to compute SIi.

Let’s see how to do each step in amortized sublinear time, starting with the easier second step.

The second step: Given NZCorri, we can compute SIi in time poly(λ)(k1−δ/2). This is done by mak-
ing a single pass on NZCorri and generating rows and columns of {Ui,γ ,Vi,γ}γ∈[T “on the fly”.
We can start by initializing these matrices with zero entries. Then for the `’th tuple (j,φ(j) =
(j1, j2, j3),Corr[i, j]) in NZCorri, we set Ui,j1 [j2, `] = Corr[i, j] and Vi,j1 [j3, `] = 1. Since each matrix
Mi,γ gets assigned at most λ non-zero entries, the index ` ranges from 1 up to λ, fitting the dimen-
sion of U’s, and V’s. Hence, this way of generating Ui,γ and Vi,γ guarantees that Mi,γ = Ui,γV

>
i,γ .

The first step: Next, we first illustrate how to generate all lists {NZCorri}i∈[m′] in sublinear time
in m′k, in the Random Access Memory (RAM) model. The first sub-step is collecting information
related to all the non-zero elements in the LPN errors {ej}j∈[k] used to encrypt the inputs {xj}j∈[k].
More precisely, for every coordinate l ∈ [n] in an input, form the list

NZInpl = {(j, xj,l, ej,l) | ej,l 6= 0}j∈[k] .

That is, NZInpl contains the index j of each input xj , such that, the l’th element xj,l is blinded by
a non-zero error ej,l 6= 0, as well as the values xj,l, ej,l of the input and error elements. Tuples in
this list are sorted in ascending order with respect to coordinate j. Note that these lists can be
computed in time O(nk).

Now, think of a database that contains all {NZInpl}l and inputs {xj}j , which can be randomly
accessed. The second sub-step makes a pass over all monomials Q1, . . . Qm′ . Each monomial Qi
depends on at most d variables (out of n variables), say Qi depends on variables at coordinates
{l1, . . . , ld}. For every monomial Qi, with random access to the database, make a single pass
on lists NZInpl1 , . . . ,NZInpld and generate NZCorri on the fly. The fact that every list NZInpl is
sorted according to j ensures that the time spent for each Qi is O(k1−δ). Thus, in the RAM model
{NZCorri}i can be constructed in sublinear time O(m′k1−δ). All we need to do now is coming up
with a circuit to do the same.
Circuit Conversion. To obtain such a circuit, we examine each and every step inside the above RAM
program and then replace them by suitable (sub)circuits, while preserving the overall running-
time. Since the conversion is very technical, we refer the reader to Section 4.2.2 for details, and
only highlight some of the tools used in the conversion. We make extensive use of sorting circuits
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of almost linear size [AKS83] and Turing machine to circuit conversions. For example, at some
point we have to replace RAM memory lookups by circuits. To do so, we prove the following
simple lemma about RAM look up programs. A RAM lookup program P lookup

q,N indexed with a
number N ∈ N and a number q ∈ N is a program with the following structure: It takes as input q
indices {i1, . . . , iq} and a database DB ∈ {0, 1}N and it outputs {DB[i1], . . . ,DB[iq]}. We show that
this can be implemented efficiently by a circuit:

Lemma 2.1. Let q,N ∈ N. A RAM lookup program PRAM
q,N (that looks up q indices from a database of size

N ) can be implemented by an efficiently uniformly generatable boolean circuit of sizeO((q+N) poly(log2(q·
N))) for some polynomial poly.

Please see Section 4.2.2 for how we use the above lemma and other technical details.

2.2.1 Outline

This completes are technical overview. In the rest of the paper, we formally define and construct
Functional Encryption in Section 7. In Section 7.2 we define the notion of a Partially Hiding Func-
tional Encryption scheme. In Section 6, we define and construct the notion of our PRE scheme.
Finally in Section 7 we show how to construct a sublinear functional encryption and iO from these
two primitives. PRE relies on two building blocks ARE and PPE in itself. They are defined and
constructed in Section 5 and Section 4 respectively. The outline is summarized in Figure 1.

3 Preliminaries

We now set up some notations that will be used throughout the paper. Throughout, we will
denote the security parameter by λ. For any distribution X , we denote by x ← X the process of
sampling a value x from the distribution X . Similarly, for a set X we denote by x← X the process
of sampling x from the uniform distribution over X . For an integer n ∈ N we denote by [n] the
set {1, .., n}. Throughout, when we refer to polynomials in security parameter, we mean constant
degree polynomials that take positive value on non-negative inputs. We denote by poly(λ) an
arbitrary polynomial in λ satisfying the above requirements of non-negativity.

We use standard Landau notations. We will also use Õ, where for any function a(n, λ), b(n, λ),
we say that a = Õ(b) if a(n, λ) = O(b(n, λ) poly(λ, log2 n)) for some polynomial poly. A function
negl : N → R is negligible if negl(λ) = λ−ω(1). Further, the negl is subexponentially small if
negl(λ) = 2−λ

Ω(1)
.

We denote vectors by bold-faced letters such as b and u. Matrices will be denoted by cap-
italized bold-faced letters for such as A and M . For any k ∈ N, we denote by the notation
v⊗k = v ⊗ · · · ⊗ v︸ ︷︷ ︸

k

the standard tensor product. This contains all the monomials in the variables

inside v of degree exactly k.

Multilinear Representation of Polynomials and Representation over Zp. A straightforward
fact from analysis of boolean functions is that every NC0 function F : {0, 1}n → {0, 1} can be rep-
resented by a unique constant degree multilinear polynomial f ∈ Z[x = (x1, . . . , xn)], mapping
{0, 1}n to {0, 1}. At times, we consider a mapping of such polynomial f ∈ Z[x] into a polynomial
g over Zp[x] for some prime p. This is simply obtained by reducing the coefficients of f mod-
ulo p and then evaluating the polynomial over Zp. Observe that g(x) = f(x) mod p for every
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Figure 1: Flowchart depicting the technical outline.
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x ∈ {0, 1}n as f(x) ∈ {0, 1} for every such x. Furthermore, given any NC0 function F , finding
these representations take polynomial time.

Computational Indistinguishability. We now describe how computational indistinguishability
is formalized.

Definition 3.1 (ε-indistinguishability). We say that two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are ε-indistinguishable where ε : N → [0, 1] if for every probabilistic polynomial time adversary A it holds
that: For every sufficiently large λ ∈ N,∣∣∣∣ Pr

x←Xλ
[A(1λ, x) = 1]− Pr

y←Yλ
[A(1λ, y) = 1]

∣∣∣∣ ≤ ε(λ).

We say that two ensembles are computationally indistinguishable if they are ε-indistinguishable for ε(λ) =
negl(λ) for some negligible negl, and that two ensembles are sub-exponentially indistinguishable if they are
ε-indistinguishable for ε(λ) = 2−λ

c for some positive real number c.

Assumptions We make use of three assumptions. We state the two assumptions LPN and PRG
below, which are used to build the components which are new to this paper. Please see [JLS21] for
a formal definition of DLIN.

Definition 3.2 (δ-LPN Assumption, [BFKL94, IPS08, AAB15, BCGI18]). Let δ ∈ (0, 1). We say that
the δ-LPN Assumption is true if the following holds: For any constant ηp > 0, any function p : N → N
s.t., for every ` ∈ N, p(`) is a prime of `ηp bits, any constant ηn > 0, we set p = p(`), n = n(`) = `ηn , and
r = r(`) = `−δ, and we require that the following two distributions are computationally indistinguishable:{

(A, b = s ·A+ e) |A← Z`×np , s← Z1×`
p , e← D1×n

r (p)
}
`∈N{

(A,u) |A← Z`×np , u← Z1×n
p

}
`∈N

In addition, we say that subexponential δ-LPN holds if the two distributions above are are subexponentially
indistinguishable.

The second assumption we use is of that of an existence of Boolean PRG in NC0 with polyno-
mial stretch.

Definition 3.3. (Pseudorandom Generator.) A stretch-m(·) pseudorandom generator is a Boolean function
PRG : {0, 1}∗ → {0, 1}∗ mapping n-bit inputs to m(n)-bit outputs (also known as the stretch) that is
computable by a uniform p.p.t. machine, and for any non-uniform p.p.t adversaryA there exist a negligible
function negl such that, for all n ∈ N∣∣∣∣ Pr

r←{0,1}n
[A(PRG(r)) = 1]− Pr

z←{0,1}m
[A(z) = 1]

∣∣∣∣ < negl(n).

Further, a PRG is said to be in NC0 if PRG is implementable by a uniformly efficiently generatable NC0 cir-
cuit. PRG is said to have polynomial stretch ifm(n) = n1+Ω(1). Finally, PRG is said to be subexponentially
secure if negl(n) = O(exp(−nΩ(1))).

Remark 3.1. In the candidate constructions, typically there is a sampling algorithm that samples
the description of PRG, and this property of computational indistinguishability is expected to
hold with probability 1 − o(1) over the choice of PRG. Such a PRG will give us an existential
result. Constructively, this issue can be addressed by constructing our FE scheme with multiple
instantiations of PRG so that with overwhelming probability, at least one of the FE schemes we
build is secure, and then using an FE combiner [ABJ+19, JMS20].
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4 Preprocessed Polynomial Encoding

In this section, we formally define a PPE scheme. Before we formally define the notion we intro-
duce the function class FPPE. We first define the notion of a degree d monomial pattern Q over n
variables which is just a collection of monomials of degree at most d.

Definition 4.1 (d-monomial pattern and monomials). For an integer d > 0, and an integer n > d ∈ N,
we sayQ is a d-monomial pattern over n variables, ifQ = {Q1, . . . , Qm}, where for every i ∈ [m], we have
that 0 < |Qi| ≤ d, and each Qi is a distinct subset of [n]. For any input x ∈ {0, 1}n and a set Q ⊆ [n],
define MonQ(x) =

∏
i∈Q xi to be the monomial in x corresponding to the set Q. Thus, for any input x, a

d-monomial pattern Q = {Q1, . . . , Qm} over n variables defines m monomials of degree at most d.

We denote by Γd,n the set of all d-monomial patterns over n variables.

Definition 4.2 (Polynomial Class FPPE). For a constant d ∈ N, the family of classes of polynomials
FPPE,d = {FPPE,d,nPPE,Q,kPPE}d≤nPPE∈N,Q∈Γd,nPPE ,kPPE∈[N] consists of polynomials f ∈ FPPE,d,nPPE,Q,kPPE

of the following kind: f is defined by a sequence of integers (ζ
(j)
i )j∈[kPPE],i∈[mPPE]. It takes as input x

consisting of kPPE blocks x = (x(1), . . . ,x(kPPE)) each of nPPE variables, and has form:

f(x) :=
∑

j∈[kPPE], Qi∈Q

ζ
(j)
i MonQi(x

(j)),

where Q is a d-monomial pattern with |Q| = mPPE.

In a nutshell, FPPE consists of polynomials that take as input a kPPE blocks of inputs of size
nPPE, and computes all polynomials that are linear combination of some fixed constant degree
d monomials on those inputs governed by a set Q. Looking ahead, for the PPE scheme we will
require that the size of the circuit computing (PI, SI) will be sublinear in |Q| · kPPE.

Definition 4.3 (Syntax of PPE). For any constant d > 0, a PPE scheme for function class FPPE,d consists
of the following p.p.t. algorithms:

• (PI, SI)← PreProc(1nPPE , 1kPPE , p, Q,x ∈ ZnPPE·kPPE
p ) : The randomized Pre-processing algorithm

takes as input the block length parameter nPPE, the number of blocks parameter kPPE, a prime p, a
d-monomial pattern on nPPE variables Q of size mPPE, and an input x ∈ ZnPPE·kPPE

p . It processes it
to output two strings, a public string PI and a private string SI. Both these strings are vectors over
Zp. We denote by `PPE = `PPE(nPPE,mPPE, kPPE) the combined dimension of (PI,SI) over Zp.

• y ← Eval(f ∈ FPPE,d,nPPE,Q,kPPE , (PI, SI)) : The deterministic evaluation algorithm takes as input
the description of a function f ∈ Fd,nPPE,Q,kPPE and a pre-processed input (PI,SI). It outputs y ∈ Zp.

The correctness requirement is completely straightforward namely y should be equal to f(x)
with high probability.

Definition 4.4 ((Statistical) Correctness of PPE). Let d > 0 be a constant integer, a PPE scheme for the
function class Fd,PPE satisfies correctness if: For every kPPE ∈ N, nPPE = kΘ(1), and Q ∈ Γd,nPPE

with
mPPE ≥ 1 sets, any function f ∈ Fd,PPE,nPPE,Q,kPPE , any prime p and any input x ∈ ZnPPE·kPPE

p :

Pr
[

Eval(f, (PI,SI)) = f(x) mod p (PI,SI)← PreProc(1nPPE , 1kPPE , p,Q,x)]
]
≥ 1−O(exp(−kPPEΩ(1)))
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Note that we require correctness to hold when kPPE is large enough, we will also require the
security to hold for large values of kPPE. The next definition we discuss is that of security. The se-
curity definition roughly requires that for any input x ∈ ZnPPE·kPPE

p , the public part of the computed
pre-processed input while pre-processingx is computationally indistinguishable to the public part
of the pre-processed input when the pre-procssing is done for the input 0nPPE·kPPE .

Definition 4.5 (Security of PPE). Let d > 0 be an integer constant. A PPE scheme is secure, if the
following holds: Let β > 0 be any constant and p : N → N be any function that on input an integer
r, outputs an rβ bit prime. Let nPPE = kPPE

Θ(1) be any polynomial in kPPE. Let p = p(kPPE) and
{xkPPE}kPPE∈N be any ensemble of inputs where each xkPPE ∈ ZnPPE·kPPE

p and {QkPPE}kPPE∈N be ensemble of
monomial patterns with QkPPE ∈ Γd,nPPE

with size mPPE ≥ 1. Then for kPPE ∈ N, it holds that for any
probabilistic polynomial time adversary, following distributions are computationally indistinguishable with
the advantage bounded by negl(kPPE).{

PI | (PI, SI)← PreProc(1nPPE , 1kPPE , p, QkPPE , xkPPE)
}
kPPE{

PI | (PI, SI)← PreProc(1nPPE , 1kPPE , p, QkPPE , 0
nPPE·kPPE)

}
kPPE

Further, the scheme is said to be subexponentially secure if negl(kPPE) = exp(−kPPEΩ(1)).

Definition 4.6 (Sublinear Pre-processing Efficiency). Let d > 0 be a constant integer. We say that PPE
scheme for FPPE,d satisfies sublinear efficiency if there exists a polynomial poly and constants c1, c2, c3 > 0
such that for nPPE, kPPE ∈ N,Q ∈ Γd,nPPE

with sizemPPE ≥ 1 and a prime p the size of the circuit comput-
ing PreProc(1nPPE , 1kPPE , p, Q, ·) is tPPE = O((nPPE ·kPPEc1 +mPPE ·kPPE1−c2 +kPPE

c3) poly(log2 p)).

The reason we call this requirement as sublinear pre-processing efficiency is that if mPPE =

nPPE
1+Ω(1), then, one can find a small enough kPPE = nPPE

Ω(1) such that tPPE = Õ((mPPEkPPE)1−Ω(1))

where Õ hides polynomial factors in log2 p. Finally we present the requirement that the evaluation
for any function f , can be done by a constant degree polynomial gf that is just degree two in SI.

Definition 4.7 (Complexity of Evaluation). Let d ∈ N be any constant. We require that PPE scheme
for FPPE,d satisfies the following. We require that for every kPPE ∈ N, nPPE = kPPE

Θ(1), and Γ ∈
Γd,nPPE

of size mPPE ≥ 1, any prime p, any input x ∈ ZnPPE·kPPE
p , any pre-processed input (PI, SI) ←

PreProc(1nPPE , 1kPPE , p, Γ, x), and any f ∈ Fd,nPPE,Q,kPPE , the following relation is satisfied:

Eval(f, (PI,SI)) = gf,Q(PI,SI) mod p

where gf,Q(·, ·) is an efficiently computable (multivariate) polynomial over Zp of degree O(d) in PI and
degree 2 in SI.

4.1 PPE Construction Details

In this section, we present our construction of PPE scheme. Before delving into the construction,
we describe the list of notations that will be useful:

• Parameters t1 = dk1−δe and T = dkδ/2e. Observe that 2 · kPPE ≥ t1 · T 2 ≥ kPPE.

• t2 is the slack parameter. It is set as kPPE
δ
10 ,
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• Map φ: We define an injective map φ which canonically maps kPPE elements into t1 buckets
(equivalently called as a matrices in the text below), each having a size of T × T . For every
j ∈ [kPPE], φ(j) = (j1, (j2, j3)) where j1 ∈ [t1], (j2, j3) ∈ [T ] × [T ]. Such a map can be
computed in time polynomial in log2 kPPE and can be computed by first dividing j ∈ [kPPE]
by t1 and setting its remainder as j1. Then the quotient of this division is further divided by
T . The quotient and the remainder of this division are set as (j2, j3).

Construction of PPE

(PI,SI)← PreProc(1nPPE , 1kPPE , p,Q = (Q1, . . . , QmPPE
),x): Below we describe the pseudo-code.

We show how to construct a circuit for the same when we talk about preprocessing effi-
ciency property of the scheme. Perform the following steps:

• Parse x = (x1, . . . ,xkPPE) where each xj ∈ ZnPPE
p . Parse xj = (xj,1, . . . , xj,nPPE

).

• The overall outline is the following: We first show how to sample components
PI′ = (PI1, . . . ,PIkPPE), and then how to sample SI along with a boolean variable
flag. PI will be set as (flag,PI′).

• Sampling PI′ = (PI1, . . . ,PIkPPE): Sample s ← ZkPPEp . For every i ∈ [nPPE], and
j ∈ [kPPE]:

1. Sample aj,i ← ZkPPEp .

2. Sample ej,i ← Ber(kPPE
−δ) · Zp. Denote ej = (ej,1, . . . , ej,nPPE

).
3. Compute bj,i = 〈aj,i, s〉+ ej,i + xj,i mod p.

For j ∈ [kPPE], set PIj = {aj,i, bj,i}i∈[nPPE].

• Sampling SI: SI has mPPE + 1 components. That is, SI = (SI0, . . . ,SImPPE
). Set

SI0 = (1, s)⊗d
d
2
e. We now show how to compute SIr for r ∈ [mPPE].

1. For j ∈ [kPPE], compute Corrr,j = MonQr(xj)−MonQr(xj + ej).
2. Initialize for every γ ∈ [t1], matricesMr,γ in ZT×Tp with zero entries.
3. For j ∈ [kPPE], compute φ(j) = (j1, (j2, j3)) and setMr,j1 [j2, j3] = Corrr,j . If any

matrix Mr,γ for γ ∈ [t1], has more than t non-zero entries, then set flagr = 0.
Otherwise, set flagr = 1.

4. If flagr = 1, then, for γ ∈ [t1], compute matrices Ur,γ ,V >r,γ ∈ ZT×tp such that
Mr,γ = Ur,γ · Vr,γ . Otherwise for every γ ∈ [t1], set Ur,γ ,Vr,γ to be matrices
with zero-entries.

5. Set SIr = {Ur,γ ,Vr,γ}γ∈[t1].

• Sampling flag: For every i ∈ [nPPE], let Seti = {j ∈ [kPPE]|ej,i 6= 0}. If any of
these sets have size outside the range [kPPE

1−δ − tkPPE
1−δ

2 , kPPE
1−δ + tkPPE

1−δ
2 ], set

flag = 0. Otherwise, set flag = min{flagr}r∈[m].

y ← Eval(f, (PI, SI)) : Parse PI = (flag,PI1, . . . ,PIkPPE) where PIj = {aj,i, bj,i}i∈[nPPE]. Similarly,

parse SI = (SI0, . . . ,SImPPE
). Here SI0 = (1, s)⊗d

d
2
e and SIr = {Ur,γ ,Vr,γ}γ∈[t1] for r ∈

[mPPE]. Parse x = (x1, . . . ,xkPPE) and f(x) =
∑

r∈[mPPE],j∈[kPPE] µr,jMonQr(xj) for µr,j ∈
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Z. Output:

gf,Q(PI, SI) =
∑

r∈[mPPE],j∈[kPPE]

µr,jwr,j(PI,SI),

where the polynomial wr,j(PI,SI) is the following:

wr,j(PI, SI) = flag · (MonQr(bj,1 − 〈aj,1, s〉, . . . , bj,nPPE
− 〈aj,nPPE

, s〉) +Ur,j1 · Vr,j1 [j2, j3]) ,

where φ(j) = (j1, (j2, j3)). We remark that the polynomial above is written as a func-
tion of s and not SI0, however, since we always mean SI0 = (1, s)⊗d

d
2
e, we treat this

polynomial as some degree-2 polynomial in SI0.

Remark 4.1. The only difference to the scheme described in the overview is that the scheme also
uses a boolean variable flag. flag will be 1 with overwhelming probability, and is set to 0 when
“certain” low probability events happen. As described earlier, the size of the input (PI,SI) is
already sublinear. Later, we describe how even the time to compute it is sublinear.

We now argue various properties involved.
Complexity of Evaluation: Observe that Eval(f, (PI,SI)) is already in the required form, in that,
it is computed by a polynomial gf,Q over Zp. The only thing that needs to be proved is that
the polynomial gf,Q is degree 2 in SI, and O(d) in PI. Since gf,Q is a linear combination of
{wr,j}j∈[kPPE],r∈[mPPE], it suffices to make the claim for the polynomials wr,j . The polynomial wr,j
has two terms. We analyse both the two terms separately.

• Observe that the second term is degree 2 in SI as it is degree 2 in matrices {Ur,γ ,Vr,γ}γ∈[t1].
The degree of the second term in PI is one, as it is degree one in flag.

• The first term is at most degree d + 1 in PI as it is degree one in flag and at most degree d in
aj,i and bj,i variables. It is also at most degree d in s, however we interpret SI0 = (1, s)⊗d

d
2
e.

Therefore, when written as a polynomial in SI0, its degree is 2.

This proves that the polynomial is at most degree d + 1 in PI and degree 2 in SI. We now prove a
lemma that will be helpful in arguing the properties below:

Lemma 4.1. Let d > 0 be a constant integer, kPPE ∈ N, nPPE = kPPE
O(1), Q be a d-monomial pat-

tern over nPPE variables, p be any prime, then for any x ∈ ZnPPE·kPPE
p , when computing (PI, SI) ←

PreProc(1nPPE , 1kPPE , p,Q,x):

Pr[flag = 1] ≥ 1− exp(−kPPEΩ(1)).

Proof. First, we bound the probability flagr = 0 for r ∈ [mPPE], which is done in the third step in
the part where one samples SI.

Claim 4.1. For every r ∈ [mPPE], Pr[flagr = 0] = O(exp(−kPPEΩ(1))).

Proof. Note that flagr = 0, when, Mr,γ for some γ ∈ [t1] has more than t non zero entries. The
number of entries in Mr,γ is bounded by T 2. The probability that any given entry is non-zero is
upper bounded by d

kPPE
δ . Since the values Corrr,j for different values of j ∈ [kPPE] are independent,
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the probability thatMr,γ for any given γ ∈ [t1] has more than t non-zero entries is at most:

=

(
T 2

t

)
dt

kPPE
δ·t (Selecting t out of T 2 locations)

≤ (d · e)t · T 2t

(kPPE
δt)t

(by Sterling’s approximation)

≤ O(exp(−kPPEΩ(1))) ( t = kPPE
δ/10 and δ > 0 is a constant) .

Taking a union bound for γ ∈ [t1], we get Pr[flagr = 0] = O(exp(−kPPEΩ(1))).

Another, condition that affects the setting of the flag is when the size of Seti is not within
[kPPE

1−δ − t · kPPE
1−δ

2 , kPPE
1−δ + t · kPPE

1−δ
2 ].

Claim 4.2. For any i ∈ [nPPE], Pr
[
|Seti| /∈ [kPPE

1−δ − t · kPPE
1−δ

2 , kPPE
1−δ + t · kPPE

1−δ
2 ]
]

= O(exp(−kPPEΩ(1))).

Proof. This is a straigtforward application of the Chernoff bound. We now recall the Chernoff
bound which says the following. Let {Xi}i∈N ∈ {0, 1} be iid random variables. Let N ∈ N,
X =

∑
i∈[N ]Xi, η = E[X]. Then for any ρ ∈ (0, 1):

Pr[|X − η| > ρη] ≤ 2 exp

(
−ρ

2 · η
3

)
.

We can compute the required probability as follows. For j ∈ [kPPE], define Xj to be 1 with proba-
bility kPPE−δ. Here Xj denotes the event that j ∈ Seti. Thus µ = kPPE

1−δ. Setting ρ = t

kPPE
1−δ

2

and

plugging into the bound gives us the required probability. This comes up to 2 exp(− t2

2 ), which is
O(exp(−kPPEΩ(1))).

Since mPPE and nPPE are polynomials in kPPE doing a union bound over these probabilities,
we get that Pr[flag = 0] = O(exp(−kPPEΩ(1))).

Security: We now argue security.

Lemma 4.2. If δ-LPN holds, then, the PPE scheme described above is secure as per Definition 4.3. If the
assumption is subexponentially secure then the scheme is also subexponentially secure.

Proof. We first recall the distribution of the public part of the preprocessed input PI. Then, we
show indistinguishable hybrids and argue indistinguishability between them. The first hybrid
corresponds to the case when PI is generated by preprocessing x ∈ ZnPPE·kPPE

p , and the last hybrid
is independent of x. Recall,

PI = (flag ∈ {0, 1},PI1, . . . ,PIkPPE) where for every j ∈ [kPPE],
PIj = {aj,i, bj,i = 〈aj,i, s〉+ ej,i + xj,i mod p}i∈[nPPE].

Hybrid0 : This hybrid consists of PI above, where it is generated honestly while preprocessing
input x.

Hybrid1 : This hybrid is the same as above except that instead of sampling flag honestly, it is
always set to 1.
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Hybrid2 : This hybrid is the same as above except that for j ∈ [kPPE] and i ∈ [nPPE], bj,i is
sampled uniformly from Zp.
Due to Lemma 4.1, Hybrid0 and Hybrid1 are statistically close with statistical distance bounded
by O(exp(−kΩ(1))).
Then, observe that the only difference between Hybrid1 and Hybrid2 is how {aj,i, bj,i}j∈[kPPE],i∈[nPPE]

is generated. In Hybrid1, aj,i is generated as a random vector sampled from ZkPPEp . {bj,i =
〈aj,i, s〉 + ej,i + xj,i mod p}j∈[kPPE],i∈[nPPE], where s is also a random vector and ej,i are chosen
according to the LPN distribution (with error-rate kPPE−δ). In Hybrid2, bj,i is replaced with ran-
domly chosen element. The number of samples released is nPPE · kPPE which is a polynomial in
kPPE. Thus, Hybrid1 and Hybrid2 are indistinguishable due to δ-LPN.

Correctness: We now argue correctness:

Lemma 4.3. Let d > 0 be an interger constant, kPPE ∈ N and nPPE = kPPE
Θ(1), p be any prime,

x ∈ ZnPPE·kPPE
p . Let (PI, SI)← PreProc(1nPPE , 1kPPE , p,Q,x), then, for any f ∈ FPPE,d,nPPE,Q,kPPE :

Pr[Eval(f, (PI,SI)) 6= f(x)] = O(exp(−kPPEΩ(1))).

Proof. Let f(x) =
∑

Qr∈Q,j∈[kPPE] µr,j ·MonQr(xj) wherex = (x1, . . . ,xkPPE). Note that Eval(f, (PI,SI)) =
gf,Q(PI, SI). Now observe that:

gf,Q(PI,SI) =
∑

Qr∈Q,j∈[kPPE]

µr,jwr,j(PI,SI).

We will now argue that with probability 1 − O(exp(−kPPEΩ(1))), for any r ∈ [mPPE], j ∈ [kPPE],
wr,j(PI, SI) = MonQr(xj) which will complete the proof. Recall that:

wr,j(PI, SI) = flag · (MonQr(bj,1 − 〈aj,1, s〉, . . . , bj,nPPE
− 〈aj,nPPE

, s〉) +Ur,j1 · Vr,j1 [j2, j3]) ,

where φ(j) = (j1, (j2, j3). As shown in Lemma 4.1, flag = 1 with probability 1−O(exp(−kPPEΩ(1))).
Thus, with this probability,

wr,j(PI,SI) = MonQr(bj,1 − 〈aj,1, s〉, . . . , bj,nPPE
− 〈aj,nPPE

, s〉) +Ur,j1 · Vr,j1 [j2, j3].

Also observe that:

MonQr(bj,1 − 〈aj,1, s〉, . . . , bj,nPPE
− 〈aj,nPPE

, s〉) = MonQr(xj + ej),

by construction. Finally, observe that when flag = 1, flagr = 1, and therefore:

Ur,j1 · Vr,j1 = Mr,j1 ,

as in the point 4 in the procedure to sample SI. Finally, Mr,j1 [j2, j3] = Corrr,j = MonQr(xj) −
MonQr(xj + ej) as in the point 3 in the procedure to sample SI. Thus, if flag = 1 then,

wr,j(PI,SI) = MonQr(xj + ej) + Corrr,j ,

= MonQr(xj).

This completes the proof.
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4.2 Sublinear Time Preprocessing

In the previous section, we argued all the properties except the sublinear efficiency property of the
PreProc algorithm. We discuss this here. Before we proceed, we prove some lemmas about circuit
implementability of some programs that will be useful for us in the rest of the section.

4.2.1 Useful Lemmas about Circuit Implementability

In this section we recall and prove some results about circuit implementability of certain kinds of
programs that will be useful for the rest of the paper. We first recall a result about sorting programs
[AKS83]:

Lemma 4.4 (Sorting Lemma). Consider a program P sort
N,B,φ that takes as input N ∈ N strings of size

B ∈ N bits. It is indexed with a comparator circuit φ computing a total ordering defined on two inputs
of B bits, that has size Tφ. The program outputs the sorted version of the input consisting of N , B bit
strings, sorted with respect to φ. There exists a family of circuits {CsortN,B,φ}N,B,φ, where CsortN,B,φ is efficiently
uniformly generatable and has O(N ·B · Tφ poly(log(N ·B · Tφ))) gates for some polynomial poly.

We now recall a result from [PF79] which proves that a constant-tape turing machine can be
efficiently simulated by a boolean circuit with only poly-logarithmic multiplicative overhead.

Lemma 4.5. For any turing machine M with O(1) tapes running in time T (n) where n is the length of its
input, there exists an efficiently computable boolean circuit family {Cn}n∈N where Cn takes n bits of input,
produces the same output, and has O(T (n) poly(log2 T (n))) gates for some polynomial poly.

We now prove a theorem about programs that makes random access lookup to a database. In
order to do so, we first define the notion of a RAM lookup program.

Definition 4.8 (RAM lookup program). A RAM lookup program P lookup
q,N indexed with a numberN ∈ N

and a number q ∈ N is a program with the following structure: It takes as input q indices {i1, . . . , iq} and
a database DB ∈ {0, 1}N and it outputs {DB[i1], . . . ,DB[iq]}.

We observe the following a really natural statement about such lookup programs, which says
that the size of the circuit implementing such a program is almost linear (upto multiplicative
polynomial overhead in log2(q ·N)) in q and N .

Lemma 4.6. Let q,N ∈ N. A RAM lookup program PRAM
q,N can be implemented by an efficiently uniformly

generatable boolean circuit of size O((q +N) poly(log2(q ·N))) for some polynomial poly.

Proof. We prove this by dividing the task into various (sequential) steps below and then arguing
that the steps can be implemented within the required bound.

Step 1: On input DB ∈ {0, 1}N and locations y = (y1, . . . , yq) ∈ [N ]q, compute the following
set z1 = {(1, y1), . . . , (q, yq)} that contains q tuples. Namely, append each query with its order.

Step 2: Compute z2 which is obtained by sorting the tuples inside z1 in the ascending order
according to the second component of the tuples (indices yi ∈ [N ]). This will produce a permuta-
tion of tuples in z1 where the tuples are arranged in increasing order of the query locations in [N ].

Step 3: Using z2 and DB, compute z3 where for each tuple (i, yi) in z2, replace it by (i,DB[yi]) ∈
[q]× {0, 1}. Call this as z3.
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Step 4: In this step, we sort z3 according to the first component of the tuples in the increas-
ing order. Remember z3 had tuples of the form (i,DB[yi]). Sorting will produce the output
z4 = {(1,DB[y1]), . . . , (q,DB[yq])}.

Step 5: Finally, process z4 and remove the first component of the tuple to produce the output
z5 = (DB[y1], . . . ,DB[yq]). This is the required output.

In the description above, it is immediate by inspection that the program produces the right
output. We argue about the size of the circuits implementing each step.
The first and the fifth step can be implemented by a two tape turing machine, making a single pass
on the inputs y and z4 respectively. Thus from Lemma 4.5 they can be implemented by a boolean
circuit with size O(q · poly(log(N · q))) for some fixed polynomial poly.
The second and the fourth step, can be implemented by a sorting network. Therefore by Lemma
4.4, it can be done by a boolean circuit of size O(q poly(log q ·N)) for some polynomial poly.
Finally, the third step can also be implemented by a four tape turing machine making a single pass
on the input DB and z2.

We load on the first tape DB and on the second tape, z2. The third tape will be used to write
the output z3. On the fourth tape, we maintain the counter in [N ] of the location where the head
on the first tape is currently on. The machine makes a forward pass on the first two tapes while
writing on the third tape and updating the counter on the third. It read tuples from z2, and if
the tuple is of the form (i, yi), it advances its head to the location yi on the DB tape, and writes
(i,DB[y]i) on the third tape. The counter tape can be used to navigate to any location on the
first tape. Since the input z2 is sorted with respect to locations, the heads on the first two tape
only move in the forward direction. Due to arithmetic operations, it will also have additional
multiplicative polynomial overhead in log2(Nq) to assist with the navigation. Thus, this turing
machine computes the result in O((q + N) · poly(log(q ·N))) time for some polynomial poly. Due
to Lemma 4.5, this can be converted to a boolean circuit with size O((q +N) · poly(log(q ·N))) for
another polynomial poly. Thus, combining all these observations, we prove the lemma.

4.2.2 Sublinear Preprocessing Efficiency

Pre-processing Efficiency: We now bound the size of the circuit implementing the PreProc algo-
rithm.

Theorem 4.1. Let d > 0 be an integer constant. nPPE, kPPE ∈ N be a parameters, Q be an d-monomial
pattern on nPPE variables with mPPE monomials, and p be any prime. The size of the circuit computing
PreProc(1nPPE , 1kPPE , p,Q, ·) is Õ(kPPE

d d
2
e+nPPE ·kPPE2+mPPE ·kPPE1− 2δ

5 ) where Õ hides multiplicative
polynomial factors in log2(p · nPPE · kPPE ·mPPE).

Proof. We will present an explicit circuit implementing the PreProc algorithm satisfying the claim.
In the analysis below we assume that basic field operations mod p can be implemented by some
fixed polynomial in log2 p. On input x = (x1, . . . ,xkPPE) ∈ ZnPPE·kPPE

p , PreProc(1nPPE , 1kPPE , p,Q, ·)
produces the following components:

• PI = (flag,PI1, . . . ,PIkPPE).

• SI = (SI0,SI1, . . . ,SImPPE
).

The circuit computing the preprocessing is a randomized circuit. It computes the following:
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1. Random vectors {aj,i}j∈[kPPE],i∈[nPPE] and the secret s from ZkPPEp ,

2. Errors {ej,i}j∈[kPPE],i∈[nPPE] from Ber(kPPE
−δ)Zp, and,

3. φ(j) for all j ∈ [kPPE].

The circuit computing all these can be implemented in size size0 = O(nPPE · kPPE2 poly(log2(p ·
kPPE))) for some polynomial poly.

All these computations are fed as input in parallel into three circuits. The first circuit computes
(PI1, . . . ,PIkPPE), the second one computes SI0, and the third one computes (flag,SI1, . . . ,SImPPE

).
Below we analyze the size of these three circuits: size1, size2, size3.
The total size of the circuit computing the preprocessing is therefore: size0 + size1 + size2 + size3.

SIZE OF THE CIRCUIT COMPUTING (PI1, . . . ,PIkPPE): Observe that PIj is simply {aj,i, 〈aj,i, s〉+ej,i+
xj,i mod p}i∈[nPPE]. This can be done by a circuit of size O(nPPE · kPPE · poly(log2(p · kPPE)). Thus,
size1 = O(nPPE · kPPE2 poly(log2(p · kPPE))) for some polynomial poly.

SIZE OF THE CIRCUIT COMPUTING SI0: Note that SI0 consists simply of (1, s)⊗d
d
2
e. This can be com-

puted by a circuit of size size2 = O(kPPE
d d

2
e poly(log2(p · kPPE))) steps.

The analysis of the third circuit (of size size3) is somewhat involved and we discuss that next.

SIZE OF THE CIRCUIT COMPUTING (flag,SI1, . . . ,SImPPE
): In Figure 2 we lay down the basic circuit

template for the third circuit. We go over each individual circuit, their inputs, outputs and also
bound their sizes. The circuit has 4 layers, and each layer has a specific purpose:

Circuit G1:

• The inputα0 to this circuit consists of tuples {(i, j, φ(j) = (j1, (j2, j3)), ej,i, xj,i)}i∈[nPPE],j∈[kPPE].

• The circuit sorts the input according to the following ordering in the ascending order. To de-
fine the comparison, let the tuples be z = (i, j, (j1, (j2, j3)), ej,i, xj,i) and z′ = (i′, j′, (j′1, (j

′
2, j
′
3)), ej′,i′ , xj′,i′).

1. If ej,i = 0 and ej′,i′ 6= 0, output z > z′.

2. If the first rule does not produce a result, check if i > i′. If so output z > z′.

3. If both the above criteria does not produce a result, then compare j1 with j′1. If j1 > j′1
output z > z′ if j1 > j′1.

• As a result of this we get α1 which is a sorted list, where all the tuples z with non zero ej,i
come first, and they are sorted in ascending order with respect to index i ∈ [nPPE]. Even
within those with same value of i they are sorted with respect to j1.

SIZE OF G1: Due to Lemma 4.4, the circuit can be implemented in size sizeG1 = O(nPPE·kPPE poly(log2(p·
nPPE · kPPE))) for some fixed polynomial poly.
Moving onto the next circuit:

Circuit G2: The circuit G2 does two things:

1. First it sets flagG2
= 0 if for any given i ∈ [nPPE], the number of non-zero ej,i is not within

the range [kPPE
1−δ − t · kPPE

1−δ
2 , kPPE

1−δ + t · kPPE
1−δ

2 ]. Otherwise it is set as 1.
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Figure 2: Circuit template for the third circuit.

2. The output α2 consists of flagG2
along with nPPE components, α2,` for ` ∈ [nPPE]. α2,`

consists of at most kPPE1−δ + t · kPPE
1−δ

2 tuples. These are all tuples that occur in α1, and
are of the form z = (i, j, φ(j) = (j1, (j2, j3)), ej,i, xj,i) where i = ` and ej,i 6= 0. Further, they
are sorted with respect to the component j1. When flagG2

6= 0, this can always be done. We
don’t care for its output in the condition when the flag is set to be 0.

SIZE OF G2: Note that both these steps above can be performed by a two tape Turing machine that
keeps α1 on the first tape. It makes a single pass on the input to compute flagG2

, writes it on the
second tape, and then makes another pass to compute tuples {α2,`}`∈[nPPE]. Since α1 already con-
sists of tuples that are sorted, each {α2,`} can be written sequentially on the second tape one after
the other for ` ∈ [nPPE] while the machine makes a pass over the sorted input α1. Thus the turing
machine takes O(nPPE · kPPE · poly(log(nPPE · kPPE · p)))) time for some polynomial poly, and there-
fore by Lemma 4.5, it can be converted to a circuit of size O(nPPE · kPPE · poly(log(nPPE · kPPE · p))))
for some polynomial poly.

For every r ∈ [mPPE], we now describe:
Circuit G3,r: The output of the circuit G3,r consists of (α3,r, flagr ∈ {0, 1}). The circuit G3,r is de-
scribed as follows. Let Qr be the rth at most degree d monomial in Q. The input taken by G3,r is
{α2,`}`∈[Qr]. Then the circuit does the following:

1. Combine the tuples {α2,`}`∈Qr and let their union be Ar. Let the tuples be of the form
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(i, j, (j1, (j2, j3))), ej,i, xj,i) where ej,i 6= 0 and i ∈ [Qr]. The tuples are sorted in the ascending
order with respect to the component j1, and then with respect to j2, and then with respect to
j3, and finally with respect to i. Let this rearranged set of tuples be Br

2. After the step above, we get Br where the tuples are arranged with respect to j1 ∈ [t1] first,
and even with fixed j1 they are sorted with respect to (j2, j3) ∈ [T ] × [T ] and even within
those fixed, with respect to i ∈ Qr. Then, make a pass over the tuples in Br. Set flagr = 0 if
upon doing a pass on the tuples, we encounter some j1, for which the number of (j2, j3) for
which there are tuples in Br exceed t. Otherwise set flagr = 1.

3. Compute α3,r which consists of a preprocessing of Br, done as follows. If flagr = 0, set
α3,r = ⊥, otherwise, take a pass over the tuples in Br, and in doing so, if we encounter upto
d tuples with same value of j (and hence same value of j1, (j2, j3), but potentially different
values of i, xj,i and ej,i) replace them with a single tuple (Qr, j, (j1, (j2, j3))). Further these
tuples are sorted with respect to j1 and within the ones with same j1, they are sorted with
respect to j2 and j3.

At the end of this step, it outputs (flagr,α3,r). If flagr = 0, α3,r = ⊥. Otherwise if flagr = 1 (which
happens with overwhelming probability), then α3,r consists of upto a O(kPPE

1−δ) sized list of the
form (Qr, j, (j1, (j2, j3))). These corresponds to the corrections that need to be done for the mono-
mial Qr. In the next step, we will show how to use this information to compute (SI1, . . . ,SImPPE

)
along with flag. We now argue the run time of this circuit.

Size of G3,r: Note that the first step can be done by a sorting network and hence by Lemma 4.4

it can be implemented by a circuit in size O((kPPE
1−δ + tkPPE

1−δ
2 ) · poly(log2(kPPE · nPPE · p))) =

O(kPPE
1−δ poly(log2(nPPEkPPEp))).

The second step can be done by a multi-tape turing machine with a constant number of tapes
which keeps the input Br on one of the tapes and makes a single pass on that input. It uses the
other tape for computing the flagr. Since the tuples are sorted, only a single pass suffices. This can
therefore be computed by a circuit by Lemma 4.5 with size O(kPPE

1−δ poly(log2(nPPE · kPPE · p))).
Finally, the third step can also be done a multi-tape turing machine with a constant number of
tapes that keeps Br on one of its tape, and then makes a pass over that input. It pre-processes the
tuples and write it on the other tape in the format described above, while making sure that the
written tuple is not duplicated. Since Br is always sorted, a single pass on the input suffices. This
can therefore be computed by a circuit by Lemma 4.5 with sizeO(kPPE

1−δ poly(log2(nPPE·kPPE·p))).

Circuit G4: This circuit takes as input the following:

• {flagr}r∈[mPPE] along with flagG2
.

• {ej,i, xj,i}j∈[kPPE],i∈[nPPE].

• {α3,r}r∈[mPPE].

It proceeds by doing the following steps:

• Compute flag = flagG2

∏
r∈[mPPE] flagr. This is one of the outputs.

• Make a pass on the combined input {α3,r}r∈[mPPE]. For every tuple (Qr, j, (j1, (j2, j3))) re-
place it with (Qr, j, (j1, (j2, j3)), {ej,i, xj,i}i∈Qr). This can be done using a RAM lookup pro-
gram with input database {ej,i, xj,i}j∈[kPPE],i∈[nPPE]. Let the updated output containing these
tuples be {βr}r∈[mPPE].
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• This is the output generating step. For r ∈ [mPPE], one by one, read flagr in parallel with βr.

1. If flagr = 0, output SIr = {Ur,γ ,V >r,γ}γ∈[t1] where Ur,γ = V >r,γ = 0T×t.

2. If flagr = 1, do the following. First let βr = {βr,γ}γ∈[t1] where βr,γ consists of all tuples
in βr where j1 = γ (i.e. of the form (Qr, j, j1 = γ, (j2, j3), {ej,i, xj,i}i∈Qr)). Further, the
circuit G3,r ensures that these tuples are sorted with respect to (j2, j3). Let Dr,γ denote
the number of tuples in βr,γ . Note that Dr,γ ≤ t (as ensured by setting flagr = 1). For
every γ ∈ [t1]:

(a) For l ∈ [t], set vectors ur,γ,l = vr,γ,l = 0T .
(b) For l ∈ Dr,γ , parse lth tuple inβr,γ as (Qr, j, γ, (j2, j3), {ej,i, xj,i}i∈Qr). Setur,γ,l[j2] =

Πi∈Qrxj,i −Πi∈Qr(xj,i + ej,i) (which is equal to Corrr,j) and vr,γ,l[j3] = 1.
(c) SetUr,γ as concatenation of vectors {ur,γ,l}l∈[t] andV >r,γ as concatenation of {vr,γ,l}l∈[t].

Output SIr = {Ur,γ ,V >r,γ}γ∈[t1].

We first argue about the size of the circuit implementing G4 and then argue its correctness.

SIZE OF G4:The step of computing flag can be implemented by circuit that has a size of O(mPPE)
gates. The second circuit makes a pass on the input consisting of {α3,r}r∈[mPPE], each consisting of
atmost O(kPPE

1−δ) tuples. Then it makes at most q = O(mPPE · kPPE1−δ) lookups of field elements
from the database consisting of nPPE · kPPE field elements. This can be implemented by a circuit
that runs in size (nPPE · kPPE +mPPE · kPPE1−δ) poly(log2(p ·nPPE · kPPE)) for some polynomial poly
due to Lemma 4.6. The third step can be simulated by a multi-tape turing machine with a constant
number of tapes in O(mPPE · t1 ·T · t poly(log2 nPPE · p ·kPPE)) steps. And thus, by Lemma 4.5 it can
be implemented by a circuit of size O(mPPE · t1 ·T · t poly(log2 nPPE ·kPPE · p)) for some polynomial
poly. Let us elucidate: For every r ∈ [mPPE], the Turing machine keeps βr on one of its tape. It
keeps flagr on another tape. The heads on both these tapes move in forward direction“processing”
sequentially.

• For any r ∈ [mPPE], if flagr = 0 it writes 2 · t1 · t · T field elements (which consists SIr which
consists of all 0 matrices) on a third output tape, which takesO(t1·t·T poly(log2 nPPE·kPPE·p))
steps.

• In the condition where flagr = 1, the circuit parses the tuples in βr sequentially. There are
at most O(kPPE

1−δ) = O(t1) tuples in all that are divided into {βr,γ}γ∈t1 . These corresponds
to tuples with j1 = γ and they are stored in a sorted fashion with respect to j1. Thus, the
machine makes a pass for every γ ∈ [t1] and process an output Ur,γ ,Vr,γ . This is done by
sequentially processing tuples in βr,γ . For every tuple encountered (and say it is the lth tuple
where l ≤ Dr,γ ≤ t) of the form (Qr, j, γ, (j2, j3), {ej,i, xj,i}i∈Qr), it writes two vector ur,γ,l
and vr,γ,l ∈ ZTp where ur,γ,l[j2] = MonQr(xj) −MonQr(xj + ej) and 0 otherwise. Likewise,
vr,γ,l[j3] = 1 and 0 otherwise. If the number of tuples is less than t, it prints t−Dr,γ additional
zero vectors {ur,γ,l,vr,γ,l}l∈[t]\[Dr,γ ]. This can be done by making a single forward pass onβr,γ
and doing O(T ) arithmetic/comparision operations on it per tuple. Thus, it takes at most
O(t ·T poly(log2(nPPE · kPPE · p))) steps to output {Ur,γ ,V >r,γ}. Thus the total time complexity
to output SIr is O(t1 · t · T poly(log2(p · kPPE · nPPE))) for some polynomial poly. Thus, the
complexity to output (SI1, . . . ,SImPPE

) is O(mPPE · t1 · t ·T poly(log2(nPPE · kPPE · p))) for some
polynomial poly.

We now argue the correctness of the circuit G4. G3,r outputs an indicator flagr which is 1 (with
overwhelming probability). If this flag is set to one, G3,r outputs α3,r which consists of all the
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indices j ∈ [kPPE] for which MonQr(xj) 6= MonQr(xj + ej). This is the list of indices which need
correction for monomial Qr. Then, for every tuple that α3,r contains, we load up all the inputs
and the errors that it needs to do this correction. This updated input is βr. With overwhelming
probability (that is when flagr = 1) the size of βr,γ for every γ ∈ [t1] is less than or equal to t.
Then, all these corrections are embedded inside the matrices {Ur,γ ,V >r,γ}where every correction is
embedded in one of the t distinct T dimensional columns ofUr,γ and V >r,γ . Further, point b) above
ensures that for every j ∈ [kPPE] with φ(j) = (j1, (j2, j3)) if the monomial MonQr(xj) was the l∗th
monomial for the set Qr corrected in the j1th bucket then,

Corrr,j =ur,j1,l∗ · v>r,j1,l∗ [j2, j3] ,

=
∑
l∈[t]

ur,j1,l · v>r,j1,l[j2, j3] (single monomial corrected in each |Dr,j1 | ≤ t iterations),

=Ur,j1 · Vr,j1 [j2, j3] .

Because of this G4 produces the right output.

OVERALL CIRCUIT-SIZE CALCULATION: Hiding the polynomial in logarithmic multiplicative fac-
tors in nPPE, p, kPPE withing Õ(·) we get the following:

• size1 = Õ(nPPE · kPPE2),

• size2 = Õ(kPPE
d d

2
e),

• sizeG1 = Õ(nPPE · kPPE)

• sizeG2 = Õ(nPPE · kPPE)

• sizeG3 = Õ(mPPE · kPPE1−δ) (adding the size of all mPPE sub-circuits)

• sizeG4 = Õ(mPPE · kPPE1− 2δ
5 ).

Combining these observations, we get our result.

Summing up: From the above theorems, we have the following result:

Theorem 4.2. Assuming δ-LPN assumption (Definition 3.2) holds for any constant δ > 0, then there
exists a PPE scheme satisfying Definition 4.3. Further, if the assumption is subexponentially secure, then
so is the resulting PPE scheme.

5 Amortized Randomized Encoding

We now formally define the notion of an amortized RE scheme (which we will denote by ARE).
The notion is designed to be exactly compatible with a PPE scheme. The function class FARE is
identical to the class for the PRE schemeFPRE. Namely,FARE = {FARE,nARE,mARE,kARE,λ}nARE,kARE,mARE,λ∈N
consists of all circuits C : {0, 1}nARE → {0, 1}mARE·kARE where every bit of the output is computed
by a circuit of size λ. Such an ARE scheme has the following syntax:

Definition 5.1 (Syntax of ARE). An ARE scheme consists of the following p.p.t. algorithms:
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• Encode(C ∈ FARE,nARE,mARE,kARE,λ,x ∈ {0, 1}nARE) → y. The encoding algorithm is a randomized
algorithm that takes as input a circuit C ∈ FARE,nARE,mARE,kARE,λ along with an input x ∈ {0, 1}nARE .
It outputs a string y ∈ {0, 1}∗.

• Decode(1λ, 1nARE , 1mARE , 1kARE ,y)→ z : The deterministic decode algorithm takes as input a string
y. It outputs z ∈ ⊥ ∪ {0, 1}mARE·kARE .

An ARE scheme satisfies the following properties.

Definition 5.2 ((Perfect) Correctness of ARE). A ARE scheme for the function class FARE satisfies cor-
rectness if: For every polynomials nARE(·),mARE(·), kARE(·), every λ ∈ N, let nARE = nARE(λ),mARE =
mARE(λ), kARE = kARE(λ). Then, for every x ∈ {0, 1}nARE , C ∈ FARE,nARE,mARE,kARE,λ:

Pr
[

Decode(1λ, 1nARE , 1mARE , 1kARE ,y) = C(x) y ← Encode(C,x)
]

= 1

Definition 5.3 (Indistinguishability Security). We say that ARE scheme is secure if the following holds:
Let λ ∈ N be the security parameter, and nARE,mARE, kARE = Θ(λΘ(1)) be polynomials in λ. For every
sequence {C,x0,x1}λ where x0,x1 ∈ {0, 1}nARE and C ∈ FARE,nARE,mARE,kARE,λ with C(x0) = C(x1), it
holds that for λ ∈ N the following distributions are computationally indistinguishable

{y | y ← ARE.Encode(C,x0)}
{y | y ← ARE.Encode(C,x1)}

Further, we say that ARE is subexponentially secure the above distributions are subexponentially indistin-
guishable.

Efficiency Properties. We require that such an ARE scheme is compatible with a PPE scheme.
Namely, the encoding operation Encode(C, ·) uses a constant degree d-monomial pattern Q of
small size m′ARE = O((nARE + mARE) poly(λ)) over n′ARE = O((nARE + m

1−Ω(1)
ARE ) poly(λ)) variables

such that every bit is computable using those monomials. Namely:

Definition 5.4 (Efficiency). We require that there exists constants d ∈ N, c1, c2 > 0, such that the
following holds. For any λ ∈ N and any nARE, kARE,mARE = λΩ(1), there exists an efficiently sam-
plable degree d-monomial pattern Q of size m′ARE = O((nARE + mARE)λc1) such that for any circuit
C ∈ FARE,nARE,mARE,kARE,λ and input x ∈ {0, 1}nARE , Encode(C,x; r) → y ∈ {0, 1}T satisfies the follow-
ing requirements:

• Parse r = (r1, . . . , rkARE) where each component is of equal size. Let ai = (x, ri). Then the length
of ai ∈ {0, 1}n

′
ARE is n′ARE = O((nARE +m1−c2

ARE )λc1).

• For i ∈ [T ], each yi =
∑

Q∈Q,j∈[kARE] µi,Q,j ·MonQ(aj) for efficiently samplable µi,Q,j ∈ Z.

The first property is to ensure that ai for i ∈ [kARE] will be the kARE blocks that will be prepro-
cessed by the PPE scheme in our construction of PRE. The monomial pattern used by the PRE will
be Q, and it will be used to compute y.

5.1 Construction Details

In Figure 3, we now give the formal construction of the ARE scheme. We establish some useful
notations and recall the tools we need.
Notation: λ ∈ N is the security parameter, nARE,mARE, kARE are parameters associated with the
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function class FARE,nARE,mARE,kARE . We set n′ARE = (nARE +m1−ε
ARE) poly(λ). Let U = UmAREλ,nARE,mARE

:
{0, 1}mARE·λ × {0, 1}nARE → {0, 1}mARE be the universal circuit for evaluating circuits with nARE-bit
inputs, mARE-bit outputs, and size mARE · λ. In particular, U(Ci,x) = Ci(x) for circuits Ci and
input xi satisfying the requirements.
Tool: A PRG in NC0 (denoted by G) that stretches t1−ε bits to t bits. We will set t = n′ARE − nARE.
A PRG in NC0 (denoted by H) that stretches λ bits to 2 · λ+ 2 bits. Denote by H0 the function that
computes first half of the output of H and by H1 the function that computes the other half.

The ARE scheme

Encode Encode(C,x, r): Parse C = (C1, . . . , CkARE) such that Ci : {0, 1}nARE → {0, 1}mARE is the circuit
computing the ith chunk of output of C of size mARE. The size of circuit Ci is mAREλ. Parse r =

(r1, . . . , rkARE) where ri ∈ {0, 1}n
′
ARE−nARE . Set ai = (x, ri) ∈ {0, 1}n

′
ARE for i ∈ [kARE]. For every κ ∈

[kARE], compute Πκ as follows:

• Using G expand rκ into (σ, b) of length (nARE + mARE) poly(λ). Here σ will be used as labels to
produce garbling of U(Cκ,x) and bwill be used as permutation bits for every wire in the circuit
U . Precisely, for every wire w in U , we let σw,0, σw,1 ∈ {0, 1}λ be the two labels for the wire, and
bw ∈ {0, 1} the permutation bit for the wire.

• (Input wire labels for Cκ and x) Generate input labels of (Cκ,x). That is for every input wire
wckt,i for i ∈ [mARE · λ] and winp,j for j ∈ [nARE].

LabCκ,i = σwckt,i,0(1− Cκ,i) + σwckt,i,1(Cκ,i),

Labj = σwinp,j ,0(1− xj) + σwinp,j ,1(xj)

Above Cκ,i is ith bit of the circuit description.

• Compute garbled tables for U . That is, for every gate gate in U with input wires w1, w2 and
output wire w3, output the following garbled table.

Tgate =


H0(σw1,bw1

)⊕ H0(σw2,bw2
)⊕

(
σw3,g(bw1 ,bw2 )||g(bw1

, bw2
)⊕ bw3

)
H1(σw1,bw1

)⊕ H0(σw2,b̄w2
)⊕

(
σw3,g(bw1

,b̄w2
)||g(bw1

, b̄w2
)⊕ bw3

)
H0(σw1,b̄w1

)⊕ H1(σw2,bw2
)⊕

(
σw3,g(b̄w1

,bw2
)||g(b̄w1

, bw2
)⊕ bw3

)
H1(σw1,b̄w1

)⊕ H1(σw2,b̄w2
)⊕

(
σw3,g(b̄w1

,b̄w2
)||g(b̄w1

, b̄w2
)⊕ bw3

)

 (2)

• Letwout,γ for γ ∈ [mARE] denote the wires for output. Generate output translation table OutTab =
{(0, σwout,γ ,0), (1, σwout,γ ,1)}γ∈[mARE].

• Set Πκ = {LabCκ,i , Labj , Tgate,OutTab}i∈[mARE·λ], j∈[nARE], gate∈gate(U).

The output of the encode operation is Π = {Πκ}κ∈[kARE].
Decode Decode(Π = (Π1, . . . ,ΠkARE)): Compute yκ = YaoDecode(Πκ) for κ ∈ [kARE], where YaoDecode
is the evaluation of the garbled circuit. Output y = (y1, . . . ,ykARE).

Figure 3: ARE Scheme Description

We now briefly discuss why all the properties are satisfied:

Indistinguishability Security: The security holds readily due to the security of the PRG in NC0,
and security of Yao’s garbling scheme [Yao86, BMR90]. Consider two challenge messages x0,x1

with C(x0) = C(x1). If PRG security holds, then Π computed by encoding xβ for a random β ∈
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{0, 1} is computationally indistinguishable to an honest garbling of the computation (U(C1,xβ), . . . , U(CkARE ,xβ))
using truly generated randomness. But due to the security of Yao’s garbling scheme, this is indis-
tingusihable to garbling of (U(C1,x0), . . . , U(CkARE ,x0)) which is independent of β.

Efficiency: The efficiency properties have already been argued in the overview. The size of ran-
domness ri is n′ARE−nARE = O((nARE+m1−ε

ARE) poly(λ)). The computation of Encode(·,a1, . . . ,akARE)
is can be computed by polynomials using a d- monomial patternQ of sizeO((nARE+mARE) poly(λ))
over n′ARE variables for some constant d > 0. This is because each Πκ is computed by an NC0 cir-
cuit on input aκ of length n′ARE, and has a length of O((nARE +mARE) poly(λ)). All components of
this output are independent of the circuit Cκ, except one i.e. the labels corresponding to the circuit
input Cκ. Here too, the labels can be computed as:

LabCκ,i = σwckt,i,0(1− Cκ,i) + σwckt,i,1(Cκ,i)

which only require the monomials needed to compute σwckt,i,0, σwckt,i,1 which is independent of
Cκ. Thus, we have the following theorem:

Theorem 5.1. Assuming the existence of a boolean PRG in NC0 with a stretch n1+ε for some constant
ε > 0 where n is the input length to the PRG (see Definition 3.3), then there exists an ARE scheme satisfying
Definition 5.1. Further, if the PRG is subexponentially secure, then so is ARE.

6 Preprocessed Randomized Encoding

In this section, we define a Preprocessed Randomized Encoding scheme. We define and build it
for the following function class:

Function Class: The function classFPRE = {FPRE,nPRE,mPRE,kPRE,λ}nPRE,mPRE,kPRE∈Poly,λ∈N is indexed
with three polynomials nPRE,mPRE, kPRE : N→ N and a parameter λ ∈ N. We define this function
class to be exactlyFFE,nPRE,mPRE·kPRE,λ, consisting of all circuits with nPRE(λ) input bits andmPRE(λ)·
kPRE(λ) output bits where every output bit is computed by a circuit of size λ.

Definition 6.1 (Syntax of Preprocessed Randomized Encoding). A preprocessed randomized encoding
scheme PRE for the function class FPRE contains the following polynomial time algorithms:

• PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x ∈ {0, 1}nPRE) → (PI,SI). The preprocessing algorithm
takes as inputs the security parameter λ, input length 1nPRE , output block length 1mPRE , number of
output blocks parameter 1kPRE a prime p and an input x ∈ {0, 1}n. It outputs preprocessed input
(PI, SI) ∈ Z`PREp , where PI is the public part and SI is the private part of the input.

• PRE.Encode(C, (PI,SI)) = y. The encoding algorithm takes inputs a circuitC ∈ FPRE,nPRE,mPRE,kPRE,λ,
and preprocessed input (PI, SI). It outputs a binary encoding y.

• PRE.Decode(y) = out. The decoding algorithm takes as input an encoding y and outputs a binary
output out.

Remark 6.1. Note that we could have defined the primitive without a parameter kPRE by consid-
ering circuits with output length mPRE as described in the high-level overview earlier. This is only
done because this notation will align well with rest of the primitives that we use and build in this
paper. Instead of requiring the size of the circuit computing the preprocessing to be proportional
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to mPRE
1−ε for some constant ε > 0, we will require it to be proportional to mPRE · kPRE1−ε. By set-

ting kPRE to be sufficiently large function ofmPRE, this will ensure the size of the circuit computing
the preprocessing is sublinear in mPRE · kPRE

In this paper, we care about constructions where for the function class above, nPRE,mPRE and
kPRE are all polynomially related with λ, that is, of magnitude λΘ(1). Further, the output block
length is super-linear in the input length, that is, mPRE = nPRE

1+ε for some constant ε > 0.

Correctness and Security Requirements

Definition 6.2 (Correctness). We say that PRE is correct if the following holds: For every λ ∈ N,
nPRE,mPRE, kPRE = Θ(λΘ(1)), p a prime, x ∈ {0, 1}nPRE , and C ∈ FPRE,nPRE,mPRE,kPRE,λ.

Pr[Decode(Encode(C,PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x))) = C(x)] ≥ 1− exp(−λΩ(1)).

Definition 6.3 (Indistinguishability Security). We say that PRE scheme is secure if the following holds:
Let β, c1, c2, c3 > 0 be arbitrary constants, and p : N→ N be any function that takes as input any integer
r and outputs a rβ bit prime and nPRE(r) = rc1 , mPRE(r) = rc2 and kPRE = rc3 be three polynomials.
Let {C,x0,x1}λ∈N be any ensemble where x0,x1 ∈ {0, 1}nPRE(λ) and C ∈ FPRE,nPRE(λ),mPRE(λ),kPRE(λ),λ

with y = C(x0) = C(x1). Then it holds that for any λ ∈ N, and letting p = p(λ), nPRE = nPRE(λ),
mPRE = mPRE(λ) and kPRE = kPRE(λ) it holds that the following distributions are computationally
indistinguishable{

(PI,y) | (PI, SI)← PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x0), y ← PRE.Encode(C,PI,SI)
}

{
(PI,y) | (PI, SI)← PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x1), y ← PRE.Encode(C,PI,SI)

}
Further, we say that PRE is subexponentially secure the above distributions are subexponentially indistin-
guishable.

The Efficiency and Complexity Requirements

Definition 6.4 (Sublinear Efficiency of PRE). We require that there exists a polynomial poly and con-
stants c1, c2, c3 > 0 such that for every polynomials nPRE,mPRE and kPRE and every security parameter
λ ∈ N, every prime p, the (randomized) circuitD(·) that on inputx ∈ {0, 1}nPRE computes PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x)
has size bounded by ((nPRE +mPRE

1−c1)kPRE
c2 +mPREkPRE

1−c3) poly(λ, log p).
In particular, this implies that when mPRE = mPRE(λ) = Θ(λΘ(1)), nPRE = O(mPRE

1−ε) for some
constant ε ∈ (0, 1), then, there exists some constant c > 0, γ(c1, c2, c3, c) > 0 such that when kPRE =
nPRE

c, then the size of D is bounded by (mPRE · kPRE)1−γ · poly(λ, log p)).

Definition 6.5 (Complexity of Encoding). We require that for every polynomials nPRE,mPRE, kPRE, ev-
ery security parameter λ ∈ N, everyC ∈ FPRE,nPRE,mPRE,kPRE,λ, and every prime p, there exists a polynomial
mapping f satisfying the following:

• For every input x ∈ {0, 1}nPRE , and every (PI,SI)← PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p, x),

f(PI,SI) mod p = PRE.Encode(C, (PI,SI)) .

• There is a universal constant d ∈ N independent of all parameters, s.t., f has degree d in PI and
degree 2 in SI.

• f can be uniformly and efficiently generated from λ, nPRE,mPRE, kPRE, p, C.
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6.1 Construction of Preprocessed Randomized Encoding

The construction of a PRE scheme is really straightforward. We simply compose PPE with ARE.
Let’s take a look at it formally. Let the function class we are interested in is FPRE,nPRE,mPRE,kPRE,λ

where λ is the security parameter and nPRE,mPRE, kPRE are polynomials in the security parameter.
Let p denote the prime to be used for the PRE scheme.

Ingredients: We make use of two ingredients:

1. A ARE scheme. Let d > 0 be the constant degree which is the degree of evaluation of the
PRE scheme. We set:

• nARE = nPRE,

• mARE = mPRE,

• kARE = kPRE,

• m′ARE = (nPRE +mPRE) · λc1 ,

• n′ARE = (nPRE + mPRE
1−c2)λc1 , where c1, c2 > 0 are constants associated with the ef-

ficiency requirements of ARE. Let QARE be the d-monomial pattern of size m′ARE over
n′ARE variables associated with the encoding operation.

2. A PPE scheme, where we set:

• The prime to be used as p,

• nPPE = n′ARE,

• mPPE = m′ARE,

• Set the monomial pattern QPPE = QARE = Q. The degree of the monomial pattern is d,

• Let d′ = O(d) be the constant degree of the polynomial gf (·) = PPE.Eval(f, ·) mod p
used to evaluate any polynomial f ∈ Fd,PPE,nPPE,Q,kPPE .

We now describe our construction in Figure 4:
We now argue various properties associated with the scheme.

Correctness: Correctness follows from the correctness of the ARE and PPE scheme. The PreProc
operation simply runs PPE.PreProc to preprocess a = (a1, . . . ,akARE) where ai = (x, ri) to com-
pute PI, SI. Then, when one runs PRE.Encode(C, (PI, SI)), with overwhelming probability the
output consists of yi = fi(a) for i ∈ [T ], due to correctness of PPE scheme. This is same as
ARE.Encode(C,x, r1, . . . , rkARE) by the correctness of the ARE scheme. Finally PRE.Decode(y) =
ARE.Decode(y) which is equal to C(x).

We now argue security,

Security The security of the PRE scheme follows almost immediately from the security of the
ARE scheme. We show this by providing four hybrids and arguing indistinguishability between
them. The first hybrid corresponds to the case when xb is preprocessed for a random bit b, where
as the last hybrid is independent of b. Let C be a circuit in FPPE and x0,x1 be inputs such that
C(x0) = C(x1).
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The PRE scheme

Preprocessing PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x ∈ {0, 1}nPRE): Run the following steps:

• Sample uniformly randomness r1, . . . , rkARE ∈ {0, 1}n′
ARE−nARE used for running

ARE.Encode(·,x, r). Set ai = (x, ri) for i ∈ [kARE]. Here ai ∈ {0, 1}n
′
ARE=nPPE .

• Compute (PI,SI)← PPE.PreProc(1nPPE , 1kPPE , p,Q,a). Output PI = PI and SI = SI.

Encoding PRE.Encode(C, (PI,SI)): Run the following steps:

• By the efficiency property of ARE, for any circuit C ∈ FARE,nARE,mARE,kARE,λ, for i ∈ [T ]
where T is the output length of ARE.Encode(C, ·), the ith output bit of ARE.Encode(C, ·) is
computable by an efficiently generatable polynomial fi ∈ FPPE,d,nPPE,Q,kPPE . Let gfi be the
degree (d′, 2)-polynomial evaluating PPE.Eval(fi, ·). Compute yi = PPE.Eval(fi,PI,SI) =
gfi(PI,SI). Output y = (y1, . . . , yT ).

Decode PRE.Decode(y): Run and output ARE.Decode(y) = z.

Figure 4: The Description of the PRE scheme.

Hybrid0 : In this hybrid, we compute (PI, SI) by preprocessing a = (a1, . . . ,akPRE). Here each
ai = (xb, ri) where b← {0, 1}.

Let y be the output of PRE.Encode operation on input C,PI,SI. Output of the hybrid is (PI,y).

Hybrid1 : In this hybrid, we compute (PI, SI) by preprocessing a generated as in the previous
hybrid. Let y be the output of ARE.Encode(C,x, r), where ai = (xb, ri). Output of the hybrid is
(PI,y).
Note that Hybrid0 is statistically close to Hybrid1 due to the correctness of PPE scheme. In one
case y is actually an output of PPE.Eval function performed over (PI,SI) using function fi, in the
other case, it is generated by computing yi = fi(a). The claim thus follows, due to the correctness
of PPE scheme.

Hybrid2 : In this hybrid, we compute (PI,SI) by preprocessing the all 0 string. y is computed
as in the previous hybrid. Output of the hybrid is (PI,y).
The above two hybrids are indistinguishable due to the security of the PPE scheme. In one case PI
is generated by preprocessing a, in the other case it is generated by preprocessing the all 0 string.

Hybrid3 : In this hybrid, we compute PI as in the previous hybrid. The only change is that y
is computed as ARE.Encode(C,x0, r). Output of the hybrid is (PI,y).
The above two hybrids are indistinguishable due to the security of the ARE scheme. In both
the hybrids, PI is generated by encoding 0 string. In one case y is generated by running y =
ARE.Encode(C,xb; r), and in the other, y = ARE.Encode(C,x0; r). These are indistinguishable due
to the security of the ARE scheme. Since the last hybrid is independent of b, the security holds.

Sublinear Efficiency. Let us now find out the time to run PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x).
This algorithm runs in two steps.

1. In the first step it arranges x and a random vector r into a,

2. In the second step, it runs PPE.PreProc(1nPPE , 1kPPE , p,Q,a).
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The first step can be implemented by a circuit of size O(|a|) = O(nPRE · kPRE) = O(n′ARE · kPRE) =
O(nPRE · kPRE · λc1 +mPRE

1−c2 · kPRE · λc1). Due to the sublinear efficiency of the PPE scheme, the
second step takes:

tPPE = O((nPPE · kPPEε1 +mPPE · kPPE1−ε2 + kPPE
ε3) poly(log2 p)).

for some constants ε1, ε2, ε3 > 0 and some polynomial poly. Substituting nPPE = n′ARE = O(nPRE ·
λc1 +mPRE

1−c2 · λc1), mPPE = m′ARE = O((nPRE +mPRE)λc1) and kPRE = kARE, we get that:

tPPE = O((nPREkPRE
max{ε1,1−ε2} +mPRE

1−c2kPRE
ε1 +mPRE · kPRE1−ε2 + kPRE

ε3) poly(log2 p)λ
c1).

Thus adding the two times, we get the total time tPRE = O(tPPE). Thus, PPE satisfies sublinear
efficiency.

Complexity Requirement. Observe that PRE.Encode(C, (PI,SI)) computes y = (gf1(PI,SI), . . . ,
gfT (PI,SI)) where fi(a) computes the ith bit of ARE.Encode(C,x, r). Note that due to the efficiency
property of ARE fi is of the form:

fi(a) =
∑

j∈[kPRE],Q∈Q

µi,Q,jMonQ(aj),

where µi,Q,j ∈ Z. Thus, fi ∈ FPPE,d,nPPE,Q,kPPE . Due to the complexity requirement of PPE, gfi is
degree (d′, 2)-polynomial over (PI, SI). This proves the claim.

Summing up. We sum up with the following theorem:

Theorem 6.1. Assuming the existence of a PPE scheme (Definition 4.3) and an ARE scheme (Definition
5.1), then the scheme above is a PRE scheme satisfying Definition 6.1. Further, if both the underlying
primitives are subexponentially secure, then so is the resulting PRE scheme.

In Theorem 4.2 it is shown that an ARE scheme satisfying Definition 5.1 can be constructed as-
suming PRG in NC0 with polynomial stretch (Definition 3.3). It is shown in Theorem 4.2 that a PPE
scheme satisfying Definition 4.3 can be constructed assuming the δ-LPN assumption (Definition
3.2) for any constant δ > 0. Combining these two theorems we have:

Theorem 6.2. Assume that there exists two constant δ, ε > 0 such that:

• δ-LPN assumption (Definition 3.2) holds,

• There exists a PRG in NC0 with a stretch n1+ε where n is the length of the input (Definition 3.3),

Then, there exists a PRE scheme (Definition 6.1). Further, assuming the underlying assumptions are subex-
ponentially secure, then so is the resulting PRE scheme.

7 Functional Encryption: Definition and Construction

We denote by FFE = {FFE,nFE,mFE,λ}nFE∈poly,mFE∈poly,λ∈N an abstract function class, which is param-
eterized by security parameter λ ∈ N and polynomials nFE(·), mFE(·). This class consists of all
boolean circuits with nFE = nFE(λ) input bits, mFE = mFE(λ) output bits, and where every output
bit can be computed by a circuit of size λ. This is the class of circuit for which we will construct a
functional encryption.

We now define the syntax of the functional encryption scheme.
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Definition 7.1. (Syntax of a FE Scheme.) A functional encryption scheme FE for the function class
FFE,nFE,mFE,λ consists of the following PPT algorithms:

• Setup(1λ, 1nFE , 1mFE): On input the security parameter λ, parameters nFE(λ) andmFE(λ), it outputs
a public key and a master secret key pair (PK,MSK).

• Enc(PK,x): Given as input the public key PK and a message x ∈ {0, 1}nFE(λ), it outputs a ciphertext
CT.

• KeyGen(MSK, f): Given as input the master secret key MSK and a function f ∈ FFE,λ,nFE,mFE
, it

outputs a functional decryption key SKf .

• Dec(SKf ,CT): Given a functional decryption key SKf and a ciphertext CT, it deterministically
outputs a value y in {0, 1}mFE(λ), or ⊥ if it fails.

Remark 7.1 (On secret-key schemes). One can also consider a secret key functional encryption
scheme, where the encryption algorithm must use MSK to encrypt a message. Such FE schemes
also imply iO [BNPW16, KNT18]. However since we directly build a public key encryption
scheme, we do not discuss about secret-key schemes in this paper.

We now define the correctness of decryption property.

Definition 7.2. (Correctness.) An FE scheme FE for the functionality FFE,λ,nFE,mFE
is correct if for any

polynomials nFE,mFE : N → N any security parameter λ ∈ N, any x ∈ {0, 1}nFE(λ), and every function
f ∈ FFE,nFE,mFE,λ we have:

Pr


(PK,MSK)← Setup(1λ, 1nFE(λ), 1mFE(λ))

CT← Enc(PK,x)
SKf ← KeyGen(SK, f)
Dec(SKf ,CT)) = f(x)

 = 1.

We now give the security definition for such a functional encryption scheme.

Definition 7.3 (IND security). We say an FE scheme FE for functionalityFFE,λ,nFE(·),mFE(·) is IND secure
if for all stateful PPT adversaries A, there exists a negligible function negl such that , we have:

AdvINDFE,A(λ) := 2 · |1/2− Pr[1← INDFE
A (1λ)]| < negl(λ),

where the experiment INDFE
A (1λ) is defined below.

INDFE
A (1λ):

(1nFE , 1mFE)← A(1λ)
{xi ∈ {0, 1}nFE}i∈{0,1} , {fj ∈ FFE,λ,nFE,mFE

}j∈QSK
← A

(PK,MSK)← Setup(1λ, 1nFE , 1mFE), b← {0, 1}
CT← FE.Enc(PK,xb), ∀j ∈ [QSK] : SKj ← KeyGen(MSK, fj)
b′ ← A(PK,CT, {SKj}j∈QSK

)
Return 1 if b = b′ and ∀ j ∈ [QSK], fj(x0) = fj(x1), 0 otherwise.

Further, we say that FE satisfies subexponential security if negl(λ) = 2−λ
Ω(1) .
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Remark 7.2 (On number of key queries). For this work we concern with the case when the number
of function key queries QSK = 1. This is because, as shown in [AJ15, BV15], such an FE scheme,
additionally satisfying sublinear encryption time implies iO under subexponential security loss.
Under polynomial security loss, such an FE scheme also implies an FE scheme where QSK is arbi-
trary polynomial. This was shown in the works of [GS16, LM16].

We finally describe the property of sublinear encryption time. This property will be referred
to as “sublinearity”.

Definition 7.4 (Sublinearity). Let FE be an FE scheme for the functionality FFE,λ,nFE,mFE
. We say that

FE satisfies sublinear encryption time property (or simply sublinearity), if there exists a constant ε ∈ (0, 1)
and a polynomial poly such that for any polynomials nFE,mFE and any security parameter λ, all PK
in the support of Setup(1λ, nFE(λ),mFE) the size of the circuit computing FE.Enc(PK, ·) is O((nFE +
m1−ε

FE ) poly(λ)).

Remark 7.3 (Sublinear Functional Encryption for Polynomial Sized Circuits). We could have de-
fined the above notion for a circuit class FP,λ,nFE,mFE

consisting of all circuits with input length
nFE(λ) and size mFE(λ) (as opposed to the number of outputs) without having any restriction
about the size of the circuit computing each output bit. A functional encryption scheme for this
class will be referred to as a functional encryption scheme for all circuits. The notion of sublin-
earity is then defined by requiring the size of the encryption circuit to be O((nFE +m1−ε

FE ) poly(λ))
for some ε > 0. It was shown in [AJS15a] that using a straightforward application of decom-
posable Randomized Encoding (such as Yao’s garbled circuits [Yao86]), any sublinear functional
encryption scheme for FFE,λ,nFE,mFE

can be converted to a sublinear functional encryption for all
circuits. We choose to work with the class FFE,λ,nFE,mFE

because this class is better compatible with
the notion of PRE.

7.1 Bootstrapping Theorems for Functional Encryption to iO

In this section, we briefly survey theorems from the literature that prove that a sublinear functional
encryption implies iO. We rely on these results for a construction of an iO scheme. The first result
in this line showed:

Theorem 7.1 ([AJ15, BV15]). If there exists a subexponentially secure public key sublinear functional
encryption for all polynomial size circuits, then there exists an indistinguishability obfuscation scheme.

Further, the result above is constructive and gives an actual construction of iO starting from
such a functional encryption scheme. Building upon these works, there have been several other
results (such as [BNPW16, KNT18]) studying equivalence from various other kinds of functional
encryption such as secret key functional encryption to iO. We construct a public key sublinear
functional encryption scheme for FFE,nFE(λ),mFE(λ),λ, where nFE andmFE are arbitrary polynomials,
which consists of all circuits with nFE(λ) input bits and mFE(λ) output bits where every output bit
is computed by a circuit of size λ. It was shown in [AJS15a] that, a sublinear functional encryption
for this class implies sublinear functional encryption for circuits. Namely:

Theorem 7.2 ([AJS15a]). Assuming there exists a public key sublinear functional encryption for {FFE,nFE,n
1+ε
FE ,λ}nFE∈poly,λ∈N

for some constant ε > 0, there exists a public key sublinear functional encryption scheme for all circuits.

Thus, from the results above we get:

Theorem 7.3 ([AJ15, BV15, AJS15a]). If there exists a constant ε > 0 such that there exists a subexponen-
tially secure public key sublinear functional encryption for FFE = {FFE,λ,nFE,mFE=n1+ε

FE
}, then there exists

an indistinguishability obfuscation scheme for all circuits.
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7.2 Ingredient: Partially Hiding Functional Encryption

We now give the formal definition of a PHFE scheme. In a nutshell, syntactically, it is a general-
ization of a functional encryption. As the name suggests a PHFE scheme has the ability to hide
the input “partially”. The input has two components. A public input PI and a secret input SI.
Any decryptor that has a function key for a function f , can learn PI along with the value f(PI,SI).
Therefore a PHFE scheme for general circuits also implies a functional encryption scheme for cir-
cuits by simply setting PI to ⊥. We consider PHFE for the following function class:

Function class FPHFE: The function class FPHFE = {FPHFE,d,p,nPHFE
}d∈N, p∈PRIMES,nPHFE∈N is in-

dexed by a degree d ∈ N, a modulus p which is a prime, and a parameter nPHFE ∈ N. The class
consists of all polynomials f that takes as input two vectors PI,SI ∈ ZnPHFE

p and has the following
form:

f(PI, SI) =
∑
j,k

fj,k(PI) · SIj · SIk mod p,

where every fj,k(PI) is at most degree d polynomial over Zp.

Definition 7.5. (Syntax of a PHFE Scheme.) A public key partially hiding functional encryption scheme,
PHFE, for the functionality FPHFE consists of the following polynomial time algorithms:

• PPGen(1λ) : The public parameter generation algorithm is a randomized algorithm that takes as
input a security parameter λ and outputs a string PP = (crs, p) which consists of a modulus p.

• Setup(d, 1nPHFE ,PP): The setup algorithm is a randomized algorithm that takes as input a degree
d ∈ N, length parameter nPHFE, and the public parameter PP = (crs, p). These parameters define the
function class for PHFE, FPHFE,d,p,nPHFE

. It outputs a public key PK and a master secret key MSK.

• Enc(PK, (PI,SI) ∈ ZnPHFE
p ×ZnPHFE

p ): The encryption algorithm is a randomized algorithm that takes
in the public key PK and a message (PI,SI) and returns the ciphertext CT. PI is considered as the
public input and SI as the secret input. CT is implicitly assumed to have PI in the clear.

• KeyGen(MSK, f ∈ FPHFE,d,p,nPHFE
): The key generation algorithm is a randomized algorithms that

takes as input a degree (d, 2)-polynomial f ∈ FPHFE,d,p,nPHFE
over Zp and returns SKf , a decryption

key for f .

• Dec(SKf ,CT): The decryption algorithm is a deterministic algorithm that returns a value out, which
is either ⊥ or an integer.

Definition 7.6. (Correctness.) A PHFE scheme PHFE for the functionality FPHFE is correct if for any
d ∈ N, and polynomial nPHFE, any security parameter λ ∈ N, any (crs, p) ← PPGen(1λ), any (PI,SI) ∈
ZnPHFE
p × ZnPHFE

p , and every function f ∈ FPHFE,d,p,nPHFE
such that f(PI,SI) ∈ {0, 1} we have:

Pr


(PK,MSK)← Setup(d, 1nPHFE ,PP)

CT← Enc(PK, (PI, SI))
SKf ← KeyGen(SK, f)

Dec(SKf ,CT)) = f(PI,SI)

 = 1.

Observe that the correctness of decryption is only guaranteed to hold if the value f(PI,SI) is in
{0, 1}.
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Definition 7.7 (Linear Efficiency). We say that PHFE satisfies linear efficiency if the following holds. Let
d > 0 be any constant integer. Then, there exists a polynomial poly such that: For any polynomial nPHFE(·)
and any parameter λ ∈ N, for any PPGen(1λ) → (crs,PP) and Setup(d, 1nPHFE(λ),PP) → (PK,MSK),
the size of the circuit Enc(PK, (·, ·)) is O(nPHFE(λ) · poly(λ)).

We now discuss the security requirement. Very roughly we want that the ciphertext should
reveal only the public input PI along with the outputs fj(PI,SI) for every queried function fj . This
is accomplished by requiring that an encryption of (PI,SI) and keys for functions {fj}j∈QSK

can be
simulated knowing only PI along with fj(PI, SI) for all j ∈ QSK.

Definition 7.8 (Simulation security). A public-key partially hiding functional encryption scheme PHFE
for functionality FPHFE is (selective) SIM secure, if for every constant integer d > 0 and every polynomial
nPHFE : N → N and QSK : N → N, with probability 1 − negl(λ) over the choice of PPGen(1λ) →
PP = (crs, p), any message (PI, SI) ∈ ZnPHFE(λ)

p × ZnPHFE(λ)
p and any choices of functions {fj}j∈QSK

in
FPHFE,d,p,nPHFE

, the following distributions are computationally indistinguishable by any ppt algorithm
with an advantage bounded by negl2 for some negligible.(PP, PK, CT, {SKj}j∈[QSK]

) ∣∣∣∣∣
(PK,MSK)← Setup(d, 1nPHFE ,PP)
CT← Enc(PK, (PI,SI))
∀j ∈ [QSK], SKj ← KeyGen(MSK, fj)


(

PP, P̃K, C̃T, {S̃Kj}j∈[QSK]

) ∣∣∣∣∣
(P̃K, M̃SK)← S̃etup(d, 1nPHFE ,PP)

C̃T← Ẽnc(M̃SK,PI)

∀j ∈ [QSK], S̃Kj ← K̃eyGen(M̃SK, fj , fj(PI,SI))


Where S̃etup, Ẽnc, K̃eyGen are additional polynomial time algorithms provided by the scheme. Further the
scheme is said to be subexponentially SIM secure if negl1 and negl2 are O(exp(−λΩ(1))).

7.3 Bootstrapping to Functional Encryption

In this section, we show how construct a public-key IND-secure sublinear functional encryption
scheme FE for the function classFFE,nFE,mFE,λ wheremFE = n1+ε

FE for some constant ε > 0 (described
later) and nFE = λΩ(1) is an arbitrary polynomial in the security parameter. This class consists of
all circuits with nFE input bits, mFE output bits, where each output bit is computed by a circuit of
size λ.

Ingredients: We make use of two ingredients:

1. A PRE scheme. Let d > 0 be the constant degree associated with the scheme. Let ε′ > 0 be
an arbitrary constant. We set:

• nPRE = nFE,

• mPRE = nPRE
1+ε′ ,

• kPRE = nPRE
c = ncFE where c, γ > 0 are constants such that the size of the encoding

circuit is bounded by (mPREkPRE)1−γ poly(λ, log2 p). Set mFE = mPRE · kPRE = n1+ε′+c
FE .

Thus, ε = ε′ + c,

2. A PHFE scheme:

• That supports degree (d, 2)-polynomials,
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• Set nPHFE = `PRE where `PRE is the length of PRE encoding. Observe that due to sub-
linear efficiency of PRE, `PRE = O((mPRE · kPRE)1−γ poly(λ, log2 p)) .

We now describe our construction in Figure 5:

The FE scheme

Parameter Generation FE.Setup(1λ, 1nFE , 1mFE): Run the following steps:

• PHFE.PPGen(1λ)→ PHFE.PP = (crs, p),

• Run PHFE.Setup(d, 1nPHFE ,PP)→ (PHFE.PK,PHFE.MSK),

• Output PK = (PHFE.PK, crs, p) and MSK = PHFE.MSK.

Encrypt FE.Enc(PK,x ∈ {0, 1}nFE): Run the following steps:

• Parse PK = (PHFE.PK, crs, p).

• Preprocess x using the PRE scheme, PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x)→ (PI,SI).

• Encrypt PHFE.Enc(PHFE.PK, (PI,SI))→ CT. Output CT.

Keygen FE.KeyGen(MSK, C): Run the following steps:

• Let f1, . . . , fT be degree (d, 2) polynomials that compute PRE.Encode(C, (·, ·)).

• Compute PHFE.KeyGen(PHFE.MSK, fi)→ SKi for i ∈ [T ].

• Output SKC = (SK1, . . . ,SKT ).

Decrypt FE.Dec(SKC ,CT): Run the following steps:

• Parse SKC = (SK1, . . . ,SKT ). For every i ∈ [T ], compute PHFE.Dec(SKi,CT) = yi.

• Let y = (y1, . . . , yT ) and output PRE.Dec(y).

Figure 5: Description of the FE scheme

We now argue various properties associated with the scheme.

Parameters. Observe how the parameters for PHFE and PRE schemes are chosen. The prime p
is sampled by PHFE.PPGen on input the security parameter 1λ. It is a poly(λ) bit prime modulus.
We set PRE parameters so that it can evaluate circuits in FFE,nFE,mFE,λ where mFE = n1+ε

FE while
ensuring that the circuit running the preprocessing algorithm is sublinear in mFE. This means
that nPRE = nFE and mFE = mPRE · kPRE. The degree of the PHFE scheme is set to be d where
PRE.Encode is computable by degree (d, 2)-polynomials. The parameter nPHFE is set to be equal to
`PRE, which is the length of the preprocessing computed by PRE.

Correctness. Correctness follows from the correctness of PHFE and PRE scheme. The encryption
algorithm encrypting x produces PHFE.Enc(PHFE.PK, (PI,SI)) where (PI, SI) is a preprocessing of
input x using the PRE scheme. The key for a circuit C, SKC consists of {SKi}i∈[T ], where each SKi

is a PHFE key for the degree (d, 2)-polynomial fi that computes the ith bit yi of Encode(C, (PI,SI)).
Therefore, during the decryption one produces y = Encode(C, (PI, SI)). Finally, the decryption
outputs PRE.Decode(y), which is equal to C(x) if the PRE scheme is correct.
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Sublinearity. We now bound the size of the circuit computing the encryption of an input x ∈
{0, 1}nFE . The size of the circuit is:

sizePRE + sizePHFE,

where sizePRE is the size of the circuit computing (PI,SI), and sizePHFE is the size of the circuit
encrypting (PI, SI). Observe that due to sublinear efficiency of PRE:

sizePRE ≤ (mPRE · kPRE)1−γ poly1(λ, log2 p)

= O((mPRE · kPRE)1−γ poly2(λ))

for some other polynomial poly2 since the bit length of p is a polynomial in λ. Also observe that
due to linear efficiency of PHFE:

sizePHFE ≤ `PRE · poly3(λ, log2 p)

= O(`PRE · poly4(λ))

for some other polynomial poly4 since the bit length of p is a polynomial in λ. Since `PRE =
O(sizePRE) it holds that:

sizePRE + sizePHFE = O((mPRE · kPRE)1−γ · poly5(λ)).

Finally, since mFE = mPRE · kPRE, we have:

sizePRE + sizePHFE = O(m1−γ
FE · poly5(λ)).

This concludes the proof.

Security. We now prove security. Infuitively the security holds due to the security of the un-
derlying PHFE scheme and the security of the PRE scheme. The simulation security of the PHFE
ensures that the adversary only learns the encoding y along with the public input PI. Finally, the
security of the PRE scheme ensures that (PI, y) is indistinguishable in the case when x0 is en-
crypted versus the case when x1 is encrypted where C(x0) = C(x1). To prove this formally, we
list three hybrids, where the first hybrid is an encryption of xb for a random bit b← {0, 1} and the
final hybrid is independent of b. Then, we argue indistinguishability between them. If PRE and
PHFE are both subexponentially secure then so is the constructed FE.

Hybrid0: Let C be the circuit query and x0,x1 ∈ {0, 1}nFE be the two challenge messages such
that C(x0) = C(x1). Generate (PI,SI) using PRE.PreProc algorithm, while preprocessing xb
for a randomly chosen bit b ← {0, 1}. Generate CT = PHFE.Enc(PHFE.PK, (PI,SI)). For the
keys, compute {SKi ← PHFE.KeyGen(PHFE.MSK, fi)}i∈[T ]. Give to the adversary (PK, SKC =
(SK1, . . . ,SKT ),CT).

Hybrid1: In this hybrid, invoke the simulator of the PHFE scheme. Simulate the public key,
the secret keys and the ciphertext. Note that this can be done by knowing PI (generated as in the
previous hybrid) along with y = PRE.Encode(C, (PI,SI)).

Observe that Hybrid0 is indistinguishable to Hybrid1 due to the security of the PHFE scheme.
The only difference between the two hybrids is how (PHFE.PK,CT,SK1, . . . ,SKT ) is generated.
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In Hybrid0 they are generated using the honest algorithms, where as in Hybrid1, they are simu-
lated using

{
PI, {fi, yi = fi(PI, SI)}i∈[T ]

}
.

Hybrid2: In this hybrid, generate (PI,y) by first computing (PI,SI) to preprocess x0, and then
computing y = PRE.Encode(C, (PI,SI)). This hybrid is independent of b. Hybrid1 is indistin-
guishable to Hybrid2 due to the security of the PRE scheme. The only difference between these
hybrids is how (PI,y) are generated. In Hybrid1, they are generated by using xb, where as in
Hybrid2 they are generated using x0. Note that C(xb) = C(x0), and thus the indistinguishability
follows from the security of the PRE scheme.

This proves the following result:

Lemma 7.1. Assuming the existence of a PHFE scheme as in Definition 7.5 and a PRE scheme as in Defi-
nition 6.1, there exists a sublinear FE scheme for FFE,λ,nFE,n

1+ε
FE

for some constant ε > 0. If the underlying
primitives are subexponentially secure then so is the resulting FE scheme.

Using Thereom 7.3 and the lemma above we have the following Lemma:

Lemma 7.2. Assuming the existence of a PHFE scheme as in Definition 7.5 and a PRE scheme as in Defi-
nition 6.1, there exists a sublinear FE scheme for FFE,λ,nFE,n

1+ε
FE

for some constant ε > 0. If the underlying
primitives are subexponentially secure then there exists a secure indistinguishability obfuscation for all
circuits.

In [JLMS19, Wee20, GJLS21], it is shown that PHFE can be constructed using DLIN assumption
over prime order symmetric bilinear groups. In Theorem 6.2, it is shown that a PRE scheme can be
constructed assuming PRG in NC0 (Definition 3.3) and δ-LPN assumption for any constant δ > 0
(Definition 3.2). As a consequence, we have the following Theorem:

Theorem 7.4. If there exists constants δ, τ > 0 such that:

• δ-LPN assumption holds (Definition 3.2),

• There exists a PRG in NC0 with a stretch of n1+τ where n is length of the input (Definition 3.3),

• The DLIN assumption over prime order symmetric bilinear groups holds.

Then, there exists a sublinear functional encryption scheme for FFE,λ,nFE,n
1+ε
FE

for some constant ε > 0.
Further if the underlying assumptions are subexponentially secure, then there exists a secure indistin-
guishability obfuscation for all circuits.
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ACM STOC, pages 1–9. ACM Press, April 1983.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th FOCS,
pages 298–307. IEEE Computer Society Press, October 2003.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In EUROCRYPT, 2017.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018, pages 896–912. ACM Press, October 2018.

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic prim-
itives based on hard learning problems. In Douglas R. Stinson, editor, CRYPTO’93, volume
773 of LNCS, pages 278–291. Springer, Heidelberg, August 1994.

[BGdMM05] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-
resistant storage via keyword-searchable encryption. Cryptology ePrint Archive, Report
2005/417, 2005. http://eprint.iacr.org/2005/417.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vad-
han, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, August 2001.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

40

http://eprint.iacr.org/2005/417


[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania to
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