
Updatable Trapdoor SPHFs: Modular Construction of
Updatable Zero-Knowledge Arguments and More?

Behzad Abdolmaleki1 and Daniel Slamanig2

1 Max Planck Institute for Security and Privacy, Bochum, Germany
behzad.abdolmaleki@csp.mpg.de

2 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

Abstract. Recently, motivated by its increased use in real-world applications,
there has been a growing interest on the reduction of trust in the generation of
the common reference string (CRS) for zero-knowledge (ZK) proofs. This line
of research was initiated by the introduction of subversion non-interactive ZK
(NIZK) proofs by Bellare et al. (ASIACRYPT’16). Here, the zero-knowledge
property needs to hold even in case of a malicious generation of the CRS. Groth
et al. (CRYPTO’18) then introduced the notion of updatable zk-SNARKS, later
adopted by Lipmaa (SCN’20) to updatable quasi-adaptive NIZK (QA-NIZK)
proofs. In contrast to the subversion setting, in the updatable setting one can
achieve stronger soundness guarantees at the cost of reintroducing some trust,
resulting in a model in between the fully trusted CRS generation and the subver-
sion setting. It is a promising concept, but all previous updatable constructions are
ad-hoc and tailored to particular instances of proof systems. Consequently, it is
an interesting question whether it is possible to construct updatable ZK primitives
in a more modular way from simpler building blocks.
In this work we revisit the notion of trapdoor smooth projective hash functions
(TSPHFs) in the light of an updatable CRS. TSPHFs have been introduced by
Benhamouda et al. (CRYPTO’13) and can be seen as a special type of a 2-round
ZK proof system. In doing so, we first present a framework called lighter TSPHFs
(L-TSPHFs). Building upon it, we introduce updatable L-TSPHFs as well as in-
stantiations in bilinear groups. We then show how one can generically construct
updatable quasi-adaptive zero-knowledge arguments from updatable L-TSPHFs.
Our instantiations are generic and more efficient than existing ones. Finally, we
discuss applications of (updatable) L-TSPHFs to efficient (updatable) 2-round ZK
arguments as well as updatable password-authenticated key-exchange (uPAKE).

1 Introduction

Zero-knowledge (ZK) proofs were introduced by Goldwasser, Micali and Rackoff
[GMR89] and play a central role in both the theory and practice of cryptogra-
phy. A long line of research [Kil92, GOS06, GS08, Gro10, Lip12, GGPR13, JR13,

? This is the full version of a paper which appears in the proceedings of the 26th Australasian
Conference on Information Security and Privacy - ACISP 2021, LNCS, Springer.

JR14, KW15, Gro16] has led to efficient pairing-based zero-knowledge Succint Non-
interactive ARguments of Knowledge (zk-SNARKs) and succinct Quasi-Adaptive Non-
Interactive Zero-Knowledge arguments (QA-NIZKs) in the common reference string
(CRS) model. QA-NIZKs are a relaxation of NIZK proofs where the CRS is al-
lowed to depend on the specific language for which proofs have to be generated
[JR13, LPJY14, JR14, KW15, LPJY15, AJOR18]. In general, SNARKs (QA-NIZKs)
are succinct, in fact, they allow to prove that circuits of arbitrary size (for linear lan-
guages) are satisfied with a constant-size proof. They are also concretely very efficient,
3 group elements is the best SNARK construction for arithmetic circuits [Gro16] and
1 group element is the best QA-NIZK construction for linear languages [KW15]. Re-
cently, Campanelli et al. [CFQ19] proposed LegoSNARK, a toolbox for commit-and-
prove zk-SNARKs (CP-SNARKs), where they use succinct QA-NIZKs as efficient zk-
SNARKs for linear subspace languages.

Trust in the CRS. For the practical application of zero-knowledge primitives, an im-
portant question is the generation of the CRS. While in theory it is simply assumed
that some trusted party will perform the CRS generation, such a party is hard to find in
the real-world. Recently, there has been an increasing interest to reduce the trust in the
generator of the CRS. Existing approaches are (1) the use of multi-party computation
to generate the CRS in a distributed way [BSCG+15, BGG17, ABL+19] or (2) the use
of CRS checking algorithms in subversion NIZKs [BFS16], zk-SNARKS [ABLZ17,
Fuc18] and QA-NIZKs [ALSZ20]. Here, although the prover does not need to trust the
CRS, the zero-knowledge property (so called subversion ZK) is still preserved. How-
ever, the verifier still needs to trust the CRS generator. Abdolmaleki et al. [ALSZ20]
later studied the Kiltz-Wee QA-NIZKs [KW15] in a variant of the bare public-key
(BPK) model, where some part of the CRS (the language parameter) is generated by
a trusted party, but the rest of the CRS can be generated maliciously by some untrusted
party (from the prover’s perspective). Finally, (3) there is the recent approach of a so
called updatable CRS [GKM+18, MBKM19, DRZ20, CHM+20, Lip20, ARS20]. Here,
everyone can update a CRS such that the updates can be verified and ZK holds in front
of a malicious CRS generator and the verifier can trust the CRS (soundness holds) as
long as one operation, either the CRS creation or one of its updates, have been per-
formed honestly. So a verifier can do a CRS update on its own and then send the up-
dated CRS to the prover. Note that this updating inherently requires communication of
the prover and the verifier in such an updatable SNARK/QA-NIZK setting, a fact that
will be useful for us.

QA-ZK. In the following, we focus on ZK in the quasi-adaptive setting. QA-NIZK were
introduced by Jutla and Roy in [JR13] and further improved in e.g., [JR14, KW15].
Jutla and Roy have shown that for linear languages (linear subspaces of vector spaces
over bilinear groups), one can obtain more efficient computationally-sound NIZK
proofs (so called arguments) when compared to Groth-Sahai proofs [GS08]. They
are in a slightly different quasi-adaptive setting, which however suffices for many
cryptographic applications and can be particularly useful in generic toolboxes such
as LegoSNARK [CFQ19]. In the quasi-adaptive setting, a class of parametrized lan-
guages {lpar} is considered and the CRS generator is allowed to generate the CRS
based on the language parameter lpar. As already mentioned, recently, Abdolmaleki

2

et al. [ALSZ20] made the Kiltz-Wee QA-NIZK [KW15] subversion resistant and also
showed that this construction is equivalent to 2-round ZK arguments or more gen-
eral it is a QA-NIZK in a variant of the bare public-key (BPK) model. Then Lipmaa
[Lip20] proposed an updatable version of the QA-NIZK construction of [ALSZ20].
However, all these constructions are ad-hoc based on and for specific proof systems
and not generic.

(QA)-ZK and SPHFs. Smooth Projective Hash Functions (SPHFs) [CS02] (cf. Sec-
tion 2) can be viewed as honest-verifier zero-knowledge (HVZK) arguments for the
membership in specific languages [ACP09]. HVZK is a weakened variant of ZK, which
only needs to hold for honest verifiers. Roughly speaking, to prove membership of
x ∈ L, the verifier generates the secret hashing key hk, and for any word x she can
compute the hash value H without knowledge of the witness w by using the hashing key
hk. In addition, the verifier can derive a projection key hp from the hashing key hk and
send it to the prover. By knowing a witness w for membership of x ∈ L and having the
projection key hp, the prover is able to efficiently compute the projective hash pH for the
word x such that it equals the hash H computed by the verifier. The smoothness property
implies that if x 6∈ L, one cannot guess the hash value H by knowing hp, or in other
words, the hash value H looks completely random. Benhamouda et al. [BBC+13, BP13]
showed how one can construct ZK instead of HVZK arguments in the CRS model by in-
troducing so called Trapdoor SPHFs (TSPHFs). Recently, Abdolmaleki et al. [AKL21]
defined a variant of TSPHF with an untrusted setup, so called smooth zero-knowledge
hash functions, and show how to construct 2-round ZK arguments in the plain (or sub-
version ZK arguments in the CRS) model under a non-falsifiable assumption. Also Ab-
dalla et al. in [ABP15] proposed a framework for QA-(NI)ZK based on the disjunction
of two languages and SPHFs and provided an alternative view of the Kiltz-Wee QA-
NIZK construction. Compared with the ZK arguments (or QA-NIZK in the BPK model)
in [ALSZ20], the QA-ZK arguments based on TSPHFs in [BBC+13, BP13] are less ef-
ficient regarding proof size, computation and communication complexity. Moreover, it
does not yield a modular construction for updatable QA-ZK, a gap that we close.

Our Contribution and Technical Overview. This work is motivated by the lack of
modular and simple building blocks to construct updatable ZK primitives. We address
this in this works as follows:
Lighter TSPHFs. We first revisit the notion of TSPHFs proposed by Benhamouda et
al. [BBC+13, BP13], which represents an extension of a classical SPHF, and requires
that the setup algorithm Pgen(1λ) outputs an additional CRS crs′ and a trapdoor τ ′

specific to crs′. This trapdoor can be used by thash (trapdoor hashing) to compute the
hash value of words x knowing only hp. This is useful to allow simulation in the con-
struction of ZK protocols. We present a new approach which we call lighter TSPHFs (L-
TSPHFs), allowing instantiations in bilinear groups that are more efficient than known
TSPHFs, as all three hashing algorithms hash, projhash, and thash yield hash values
in G1 instead of GT . Our L-TSPHF framework that forms the basis for our TSPHF
framework with an updatable CRS (denoted uL-TSPHF), is parametrized by a SPHF Σ
and additionally relies on a new knowledge assumption LTSPHF-KE (which we will

3

prove based on Hash-Algebraic Knowledge (HAK) assumptions [Lip19])3. We stress
that our main motivation for L-TSPHFs is the construction of uL-TSPHF and updatable
QA-ZK proofs. As from [GKM+18, Lip20] it is known that in order to have updatabil-
ity, knowledge assumptions are crucial for extracting the new trapdoor from an updated
CRS, as it might have been updated by a dishonest party, this does not represent a limi-
tation.
Updatable Lighter TSPHFs and QA-ZK. We present a framework for updatable L-
TSPHFs (uL-TSPHFs) which is inspired by updatable SNARKs [GKM+18, MBKM19,
CHM+20, ARS20] and updatable QA-NIZKs [Lip20]. In short, we add algorithms
crsVer for checking the well-formedness of the CRS, Upd for performing CRS
updates (outputting a proof of correct update) and UpdVer for checking the cor-
rectness of an update by means of update proofs and define the security require-
ments for uL-TSPHFs. In contrast to the ad-hoc constructions of updatable SNARKs
[GKM+18, MBKM19, CHM+20] and updatable QA-NIZKs [Lip20], our updatable
L-TSPHF framework is a generic building block which can be used to modularly de-
sign updatable primitives. Our instantiation of an uL-TSPHF is directly based on an
L-TSPHF together with a suitable additive updating procedure of the trapdoor in the
CRS and extraction based on the BDH-knowledge assumption [ABLZ17], representing
a simple variant of the PKE assumption [DFGK14].We then show as the main applica-
tion of uL-TSPHFs the construction of updatable QA-ZK arguments. When compared
with the only existing construction of updatable QA-ZK proofs in [Lip20] (which is
ad-hoc), we can significantly reduce the proof as well as the communication size and in
particular obtain succinct proofs.
Applications. Besides updatable QA-ZK, we provide an application of the L-TSPHF
framework for constructing QA-ZK arguments4 in a modular way. Using our instanti-
ations under the LTSPHF-KE assumption in bilinear groups, we show that L-TSPHFs
yield a framework for constructing efficient 2-round ZK arguments with a pairing-free
verifier. The resulting ZK arguments are more efficient than previous QA-ZK construc-
tions in [BP13, ALSZ20]. We also present a concrete instance for proving the correct
encryption of a valid Waters signature. Finally, as another interesting application, we
show how to construct an updatable two-round Password-Authenticated Key-Exchange
(uPAKE) protocol from uL-TSPHFs, which allows to reduce trust in the setup of the
PAKE.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security parame-
ter. All adversaries will be stateful. For an algorithm A, RND(A) is the random tape
of A (for a fixed choice of λ), and ω←$RND(A) denotes the random choice of ω

3 HAK is essentially a concrete Algebraic Group Model (AGM) [FKL18] version of the generic
group model with hashing that models the ability of an adversary to create elliptic-curve group
elements by using elliptic-curve hashing without knowing their discrete logarithm.

4 We note that all ZK arguments we consider in this paper are in the quasi-adaptive setting and
we might sometimes omit to make this explicit.

4

from RND(A). By x←$D we denote that x is sampled according to distribution D
or uniformly randomly if D is a set. A bilinear group generator BG.Pgen(1λ) returns
(p,G1,G2,GT , ē), where G1 and G2 are additive cyclic groups of prime order p, and
ē : G1×G2 → GT is a non-degenerate efficiently computable bilinear pairing. We use
the implicit bracket notation of [EHK+13], that is, we write [a]ι to denote agι where gι
is a fixed generator of Gι. We denote ē([a]1, [b]2) as [a]1 · [b]2. Thus, [a]1 · [b]2 = [ab]T
(also [a]2 · [b]1 = [ab]T). We denote s[a]ι = [sa]ι for s ∈ Zp and S · [a]ι = [Sa]T
for S ∈ Gι and ι ∈ {1, 2, T}. We freely use the bracket notation together with matrix
notation, for example, if AB = C then [A]1 · [B]2 = [C]T .

Smooth Projective Hash Functions. Smooth projective hash functions
(SPHF) [CS02] are families of pairs of functions (hash, projhash) defined on a
language L. They are indexed by a pair of associated keys (hk, hp), where the
hashing key hk may be viewed as the private key and the projection key hp as the
public key. On a word x ∈ L, both functions need to yield the same result, that
is, hash(hk,L, x) = projhash(hp,L, x, w), where the latter evaluation additionally
requires a witness w that x ∈ L. Thus, they can be seen as a tool for implicit
designated-verifier proofs of membership [ACP09]. Formally SPHFs are defined as
follows (cf. [BBC+13]).

Definition 1 (SPHF). A SPHF for a language L is a tuple of PPT algorithms
(Pgen, hashkg, projkg, hash, projhash), which are defined as follows:

Pgen(1λ,L). Takes the security parameter λ and the language L, and generates the
language parameters lpar.

hashkg(L): Takes a language L and outputs a hashing key hk for L.
projkg(hk, lpar, x): Takes a hashing key hk, a language parameter lpar, and a word

x and outputs a projection key hp, possibly depending on x.
hash(hk, lpar, x): Takes a hashing key hk, a language parameter lpar, and a word x

and outputs a hash H.
projhash(hp, lpar, x, w): Takes a projection key hp, a language parameter lpar, a

word x, and a witness w for x ∈ L and outputs a hash pH.

A SPFH needs to satisfy the following properties:

Correctness. It is required that hash(hk, lpar, x) = projhash(hp, lpar, x, w) for all
x ∈ L and their corresponding witnesses w.

Smoothness. It is required that if x 6∈ L, the following distributions are statistically
indistinguishable:{

(L, x, hp,H) :
lpar← Pgen(1λ,L), hk← hashkg(L),

hp← projkg(hk, lpar, x),H← hash(hk, lpar, x)

}
,

{
(L, x, hp,H) :

pars← Pgen(1λ), hk← hashkg(L),

hp← projkg(hk, lpar, x),H←$Π

}
,

where the range Π is the set of hash values.

5

Depending on the definition of smoothness, there are three types of SPHFs
(cf. [BBC+13]):

GL-SPHF. The projection key hp can depend on word x and so the smoothness is
correctly defined only if x is chosen before having seen hp.

KV-SPHF. hp does not depend on word x and the smoothness holds even if x is chosen
after having seen hp.

CS-SPHF. hp does not depend on word x but the smoothness holds only if x is chosen
before having seen hp.

Language Representation. Similar to [BBC+13], for a language L, we assume there
exist two positive integers k and n, a function Γ : S → Gk×n, and a family of functions
Θ : S → G1×n, such that for any word x ∈ S, (x ∈ L) iff ∃λ ∈ Z1×k

p such that
Θ(x) = λΓ(x). In other words, we assume that x ∈ L, if and only if, Θ(x) is a linear
combination of (the exponents in) the rows of some matrix Γ(x). For a KV-SPHF,
Γ is supposed to be a constant function (independent of the word x), otherwise one
obtains a GL-SPHF. We furthermore require that, when knowing a witness w of the
membership x ∈ L, one can efficiently compute the above linear combination λ. This
may seem a quite strong requirement, but this is satisfied by very expressive languages
over ciphertexts such as ElGamal, Cramer-Shoup (CS) and variants.

Trapdoor Smooth Projective Hash Functions. Benhamouda et al. proposed an exten-
sion of a classical SPHF, called TSPHF [BBC+13]. Their framework has an additional
algorithm Pgen(1λ) outputs an additional CRS crs′ and a trapdoor τ ′ specific to crs′,
which can be used to compute the hash value of words x knowing only hp.

TSPHFs enable to construct efficient PAKE protocols in the UC model and also
efficient ZK proofs (2-round ZK). For the latter, the trapdoor is used to enable the
simulator to simulate a prover playing against a dishonest verifier.

Definition 2 (TSPHF [BBC+13]). A TSPHF for a language L is defined by seven
algorithms:

- Pgen(1λ,L). Takes as input the security parameter λ and the language L and gener-
ates the language parameter lpar, the CRS crs′, together with a trapdoor τ ′.

- hashkg, projkg, hash, and projhash, are the same as for a classical SPHF.
- verhp(hp, lpar, crs′, x). Takes a language hp, lpar, crs′, and the word x and out-

puts 1 if hp is a valid projection key, and 0 otherwise.
- thash(hp, lpar, crs′, x, τ ′): Takes a hashing key lpar, crs′, the word x, and the

trapdoor τ ′, and outputs the hash value of x from the projection key hp and the
trapdoor τ ′.

There is an additional property on the language L that it has to be witness sampleable.
By witness sampleable, we mean that there exists a trapdoor tclpar for the language pa-
rameters lpar, such that tclpar enables to efficiently compute the discrete logarithms
of the entries of lpar. A TSPHF must satisfy the following properties:

Correctness. For any word x ∈ L with witness w, for any hk ← hashkg(L) and for

6

Expsmooth−b(A, λ)

– (lpar, crs′, τ ′)← Pgen(1λ,L), hk← hashkg(L, lpar), hp← projkg(hk,L, lpar)
– x← A(lpar)
– If b = 0 or x ∈ L, then H← hash(hk, lpar,L, x), else H←$Π .
– returnA(lparx, hp,H).

Fig. 1. Experiments Expsmooth−b for computational smoothness

hp ← projkg(hk,L, x) it should satisfy the two properties: hash correctness, and trap-
door correctness. The fist property corresponds to correctness for classical SPHFs, and
the second one states that verhp(hp, lpar, crs′, x) = 1 and hash(hk, lpar, crs′, x) =
thash(hp, lpar, crs′, x), with overwhelming probability.

(t, ε)-soundness property. Given lpar, its trapdoor, and L and crs′, no adversary run-
ning in time at most t can produce a projection key hp, a value aux, a word x and valid
witness w such that verhp(hp, lpar, crs′, x) = 1 but projhash(w, lpar, crs′, x) 6=
thash(hp, lpar, crs′, x) with probability at least ε.

Smoothness. Is the same as for SPHFs, except that, Pgen outputs extra elements τ ′

and crs′, but while the trapdoor τ ′ of the crs′ is dropped, crs′ is forwarded to the
adversary (together with the language parameter lpar).

Notice that since hp now needs to contain enough information to compute the
hash value of any word x, the smoothness property of TSPHFs is no longer statisti-
cal but computational. The computational smoothness is defined by the experiments
Expsmooth−b and depicted in Fig. 1.

Quasi-Adaptive Zero-Knowledge Arguments. A tuple of PPT algorithms Π =
(Pgen,Kcrs,P,V,Sim) is a QA-ZK argument system in the CRS model for a set of
witness-relations Rpars = {Rlpar}lpar∈Supp(Dpars) with lpar sampled from a distribu-
tion Dpars over associated parameter language Lpars, if the properties (i-iii) hold. Here,
Pgen are the public parameter pars and Kcrs the crs generation algorithms, P is the
prover, V is the verifier, and Sim is the simulator.
(i) Perfect Completeness. For any λ, pars ∈ Pgen(1λ), lpar ∈ Dpars, and (x, w) ∈
Rlpar,

Pr [(crs, τ)← Kcrs(lpar); 〈P(w),V〉crs(x) = 1] = 1 .

(ii) Zero-Knowledge. For any λ, pars ∈ Pgen(1λ), lpar ∈ Dpars, for any computa-
tionally unbounded adversary A, 2 · |εzk − 1/2| ≈λ 0, where εzk :=

Pr
[
(crs, τ)← Kcrs(lpar); (x, w)← A(crs); b←$ {0, 1} : 〈Pb,A〉crs(x) = 1

]
.

Where Pb terminates with ⊥ if (x, w) /∈ Rlpar. If b = 0, Pb represents P(w) and if
b = 1, Pb represents Sim(τ).
(iii) Computational Quasi-Adaptive Soundness. For any PPT A and for all x s.t.
¬(∃w : Rlpar(x, w)),

Pr
[
(pars, lpar)← Pgen(1λ); (crs, τ)← Kcrs(lpar) : 〈A,V〉crs(x) = 1

]
≈λ 0 .

7

BDH Assumption. We require the following knowledge assumption:

Assumption 1 (BDH-Knowledge Assumption [ABLZ17]) We say that Pgen is BDH-
KE secure forR if for any λ, (R, auxR) ∈ range(R(1λ)), and PPT adversary A there
exists a PPT extractor ExtBDH

A , such that

Pr

r ←r RND(A);

([α1]1, [α2]2||a)← (A||ExtBDH
A)(R, auxR;ωA) :

[α1]1[1]2 = [1]1[α2]2 ∧ a 6= α1

 ≈λ 0 .

Note that the BDH assumption can be considered as a simple case of the PKE as-
sumptionof [DFGK14] (where A is given as an input the tuple {([xi]1, [xi]2)}ni=0 for
some n ≥ 0, and assumed that ifA outputs ([α]1, [α]2) then she knows (a0, a1, . . . , an),
such that α =

∑n
i=0 aix

i.) as used in the case of asymmetric pairings in [DFGK14].
Thus, BDH can be seen as an asymmetric-pairing version of the original KoE assump-
tion [Dam92].

3 A New Framework for TSPHFs

In this section, we present our revisited TSPHF framework. Conceptually, we start from
the GL-TSPHFs construction in [BBC+15] and show how we can modify the frame-
work such that all three hashing algorithms hash, projhash, and thash yield hash values
in G1 instead of GT . This yields a more efficient and “lighter” version of TSPHFs
which we call lighter TSPHF (L-TSPHF). Our framework is parametrized by a SPHF
Σ which is required to be pairing-free, but it is then instantiated in source group Gι,
ι ∈ {1, 2}, of a bilinear group (p,G1,G2,GT , ē).

In general, let us define the language for the SPHFΣ that fits the generic framework
in [BBC+13] as follows:

L′ =
{
x ∈ G1×n

ι : ∃w ∈ Z1×k
p ; x = w[Γ]ι

}
,

where Γ ∈ Zk×np is the language parameter and a full rank matrix (n > k). As with
the TSPHF framework in [BBC+13], our framework provides the algorithms verhp and
thash and we recall that the verhp algorithm checks well-formedness of the projection
key hp and thash computes the hash value tH, without knowing neither the witness w
nor the hashing key hk. We recall that the hashing key of Σ is a vector hk = α←$Znp ,
while the projection key is, for a word x = [θ]1, hp = [Γ(x)]ια ∈ Gkι (it represents hp1
in the L-TSPHF) and note that L-TSPHFs in our framework are GL-style irrespective
whether the underlying SPHF Σ is GL- or KV-style.

Now, we briefly outline our construction idea. The Pgen algorithm outputs an addi-
tional CRS crs′ = ([b]3−ι, [bΓ]ι) and its trapdoor τ = bΓ where b←$Zn×kp . Here,
Γ is the language parameter which we mask in the trapdoor τ with a vector b. This is
to guarantee that thash does not know Γ but only τ = bΓ.5 Now the idea is that for a

5 We note that in the SPHF/TSPHF and their applications in zero-knowledge proofs, one wants
to simulate a proof without knowing the trapdoor Γ of the base elements of the statement to
be proven.

8

Pgen(1λ,L)

- Generate Γ ∈ Zk×np ;

- Generate b←$Zn×kp ;

- lpar := [Γ]ι; crs
′
:= ([b]3−ι, [τ]ι);

- τ := bΓ; crs := (lpar, crs
′
);

- return (τ, crs).

hashkg(L)

- return hk ∈ Znp ← Σ.hashkg(L).
projkg(hk, crs, x)

- hp1 ← Σ.projkg(hk,L);
- hp2 := [τα]ι ∈ Gnι ;
- return hp := (hp1, hp2) ∈ Gk+nι .

hash(hk, crs, x)

- return H← Σ.hash(hk, lpar, x).

projhash(hp, crs, x, w)

- pH← Σ.projhash(hp, lpar, x, w);
- return pH.

verhp(hp, crs, x)

- if [b]3−ι · hp1 = [1]3−ι · hp2 return 1.

- else return 0.

thash(ω, τ, hp, crs, x)

- hk← ExtZ(crs, hp;ω);
- return tH← x · hk.

Fig. 2. Full construction of L-TSPHF[Σ].

hashing key hk := α←$Znp our projection key, besides the projection key of the SPHF
Σ, contains a second component hp2 = [τα]ι ∈ Gnι which is a representation of hk
and crs′ in Gι (this is similar to TSPHFs). Then, by using the knowldege assumption
LTSPHF-KE, we know that there exists an extractor ExtA knowing the random coins of
A (or the random coins of projhash) which returns a hashing key α that could have been
used to compute hp. Finally, the thash algorithm can use this information to generate
the trapdoor hash tH (cf. Lemma 1 for details and the precise use of the LTSPHF-KE
assumption).

3.1 Lighter-TSPHF (L-TSPHF)

Now we present our L-TSPHF framework, which relies on the knowledge assumption
LTSPHF-KE (cf. Assumption 2) and require that for any efficient malicious projection
key creator Z, there exists an efficient extractor ExtZ, s.t. if Z, by using the random
coins ω as an input, generates a projection key hp then ExtZ, given the same input and
ω, outputs the hashing key hk corresponding to hp.

Definition 3. A L-TSPHF[Σ] for language L based upon SPHF Σ is defined by the
following algorithms:

-Pgen(1λ,L): Takes a security parameter λ and language L. Choose the trapdoor
of language parameter (Γ←$Zk×np). Chooses the trapdoor b←$Zn×kp such that
τ := bΓ is a diagonal matrix of size n × n. Sets lpar = ([Γ]ι) and crs′ =
([b]3−ι, [τ]ι). It outputs (τ, crs := (lpar, crs′)).

-hashkg(L): Takes a language L and outputs a hashing key hk := α←$Znp of Σ for
the language L, i.e., return hk← Σ.hashkg(L).

-projkg(hk, crs, x): Takes a hashing key hk, a CRS crs, and a word x and computes a
projection key hp := (hp1, hp2) ∈ Gk+1

ι , where hp1 = [Γα]ι ∈ Gk1 is the projec-
tion key of Σ, i.e., hp1 ← Σ.projkg(hk,L), hp2 = [τα]ι ∈ Gnι is a representation
of hashing key hk and crs′ in Gι.

-hash(hk, x): Takes a hashing key hk, and a word x and outputs a hash H = x ·α ∈ Gι,
being the hash of Σ, i.e., H← Σ.hash(hk, x).

9

Expzk-b(A,L, λ)

(τ, crs)← Pgen(1λ,L);
ω ←$RND(Z);
(x, w, hp, st)← Z(crs;ω);
hk← ExtZ(crs;ω);
b←$ {0, 1};
b
′ ← AOb(·,·)(crs, x, w, hp, st);

return verhp(crs, hp, x)

∧ b′ = b.

O0(x, w)

if (x, w) 6∈ RL ∨ verhp(crs, hp, x) = 0

return⊥.
else pH← projhash(hp, crs, x, w)

return pH.

O1(x, w)

if (x, w) 6∈ RL ∨ verhp(crs, hp, x) = 0

return⊥.
else tH← thash(ω, τ, hp, crs, x)

return tH,

Fig. 3. Experiment Expzk-b(A,L, λ).

-projhash(hp, x, w): Takes a projection key hp = (hp1, hp2), a word x, and a witness w
for x ∈ L and outputs a hash pH = w · hp1 ∈ Gι, being the projective hash of Σ,
i.e., pH← Σ.projhash(hp1, x, w).

- verhp(hp, crs). Takes projection key hp and CRS crs, and outputs 1 if hp is a valid
projection key, and 0 otherwise.

-thash(ω, τ, hp, crs, x): Takes random coins ω of projhash, trapdoor τ and a projec-
tion key hp, the CRS crs and word x, and by using an Ext (underling a knowledge
assumption) extracts hk = α and outputs tH = x · α ∈ Gι.

We present the L-TSPHF[Σ] construction in Fig. 2. L-TSPHFs must satisfy the
properties correctness, zero-knowledge and computational smoothness. We note that the
zero-knowledge property is called soundness in the context of TSPHFs in [BBC+13]
and was later called zero-knowledge in [Ben16]. We use the more intuitive term zero-
knowledge, since in a typical application of (T)SPHFs, it guarantees that a malicious
hp generator does not learn anything from seeing a projective hash pH (which depends
on the witness) compared to when she seeing a (trapdoor) hash value H (which does not
depend on the witness).
Perfect correctness. For any (τ, crs = (lpar, crs′)) ← Pgen(1λ,L) and any word
x ∈ L with witness w, for any hk ← hashkg(L), any ω←$RND(projkg) and for
hp ← projkg(hk, crs, x;ω), we have: verhp(hp, crs) = 1, and hash(hk, crs, x) =
thash(ω, τ, hp, crs, x).
Zero-Knowledge. There exist deterministic algorithms thash, verhp, s.t. the following
holds. For any PPT algorithm Z, there exists a PPT extractor ExtZ, s.t. for all λ, and
unbounded A, AdvzkZ,A(λ) ≈λ 0, where

AdvzkZ,A(λ) = |Pr[Expzk-0(A,L, λ) = 1]− Pr[Expzk-1(A,L, λ) = 1]|,

and the zero-knowledge experiment is defined in Fig. 3.
Computational Smoothness. Is based on that of TSPHFs and note that the trapdoors
with exception of the one to crsL = lpar are dropped and the full crs is given to the
adversary. For a language L and adversary A, the advantage is defined as follows:

Advcsmooth
L,A (λ) = |Pr[Expcsmooth−0(A, λ) = 1]− Pr[Expcsmooth−1(A, λ) = 1]|.

The computational smoothness experiment is also defined in Fig. 4.

10

Expcsmooth-b(A, λ)

– (τ, crs)← Pgen(1λ,L), hk← Σ.hashkg(L);
– (x, st)← A(crs);
– hp← Σ.projkg(hk, crs, x);
– b←$ {0, 1};
– if b = 0, then H← Σ.hash(hk, crs, x), else H←$Ω;
– returnA(crs, x, hp,H, st).

Fig. 4. Experiment Expcsmooth-b for computational smoothness.

New knowledge assumption. Let L-TSPHF[Σ] be the L-TSPHF. To prove the ZK prop-
erty of our construction, we need to rely on a new assumption we call LTSPHF-KE.
Inspired by the knowledge assumption of [AKL21], we first define a new assumption
and then prove its security under the HAK assumptions in Lemma 1. The knowledge as-
sumption is to postulate that given a valid hp, one can efficiently extract hk = α. More
precisely, the LTSPHF-KE assumption is the core of the ZK proof of the L-TSPHF[Σ]
construction in Theorem 1. There, we assume that if an adversary A outputs a hp ac-
cepted by verhp, then there exists an extractor ExtA that by knowing the secret coins of
A, returns hk = α where hk was used to compute hp.

Assumption 2 (LTSPHF-KE) Fix n > k ≥ 1. Let L-TSPHF[Σ] be the Lighter-
TSPHF. The LTSPHF-KE assumption holds relative to Pgen for any PPT adversary
A, there exists a PPT extractor ExtA, such that AdvhakA (λ) :=

Pr

[
crs← Pgen(1λ,L);ω←$RND(A); hp← A(crs, ω);

hk← ExtA(crs, ω) : hp = (hp1, hp2) ∧ verhp(hp, crs) = 1 ∧ hp1 6= Γα.

]
≈λ 0.

We now show that LTSPHF-KE is secure under a hash-algebraic knowledge (HAK)
assumption from [Lip19].

Lemma 1 (Security of LTSPHF-KE). Fix n > k ≥ 1. Then LTSPHF-KE holds rela-
tive to Pgen under the ε-HAK assumption.

Due to the lack of space the proof of Lemma 1 is deferred to Appendix A.

Theorem 1. The L-TSPHF[Σ] in Fig. 2 is complete, if the LTSPHF-KE assumption
holds, then it is zero-knowledge and if DDH holds in Gι, ι ∈ {1, 2} then L-TSPHF[Σ]
has computational smoothness.

Proof. (i: Completeness) This is straightforward from the construction.

(ii: Zero-knowledge) Let Z be a subverter that computes hp so as to break the zero-
knowledge property. The subverter Z gets as an input the language parameter crs and a
random tape ω, and outputs hp∗ and some auxiliary state st. LetA be the adversary from
Lemma 1. Note that RND(A) = RND(Z). Under the LTSPHF-KE assumption, there
exists an extractor ExtA, such that if verhp(crs, hp∗, x) = 1 then ExtA(crs, hp∗;ω)
outputs hk.

11

Fix crs, ω ∈ RND(Z), hp∗ and run ExtZ(crs, hp∗;ω) to obtain hk. It clearly suf-
fices to show that if verhp(crs, hp∗, x) = 1 and (x, w) 6∈ R then

O0(x, w) =projhash(hp∗, crs, x, w) = pH ,

O1(x, w) =thash(ω, τ, hp∗, crs) = tH

have the same distribution, where O0 and O1 work as in Fig. 3. This holds since from
verhp(crs, hp, x) = 1 it follows O0(x, w) = pH = tH = O1(x, w). Hence, O0 and O1

have the same distribution.

(iii: Smoothness) The proof of smoothness is given in Appendix B. ut

3.2 Comparison of the TSPHF Frameworks

In Table 1 we compare the efficiency of L-TSPHF with the GL-/KV-TSPHF construc-
tions of [BBC+13] where n > k. Note that having G1 instead of GT gives a factor
≥ 12 of bandwidth savings and also elements in G2 are typically twice the size of G1

for current type-III bilinear groups.

Table 1. Comparison between GL-/KV-TSPHF and L-TSPHF.

Scheme |H| |hp|

KV-TSPHF[BBC+13] GT k ×G1 + n×G2

GL-TSPHF[BBC+13] GT k ×G1 + n×G2

L-TSPHF[Σ] G1 (k + n)×G1

4 Updatable L-TSPHF

In this section, we propose an updatable version of L-TSPHFs (called uL-TSPHFs). The
goal of updatability is to protect smoothness (analogous to soundness for zk-SNARKs
in [GKM+18]) in the case the crs may be subverted, by requiring that at least one
among the creator and all parties performing an update of crs is honest.

We define uL-TSPHFs by roughly following the definitional guidelines of
[GKM+18] for updatable zk-SNARKs and [Lip20] for updatable QA-NIZKs. But in
contrast to these ad-hoc constructions for particular instances of proof systems, our up-
datable L-TSPHF framework is generic and can be considered as a new cryptography
tool with updatable ZK (cf. Section 5) being one application. Similar to QA-NIZKs,
since the CRS of uL-TSPHFs depends on a language parameter Γ, its security defini-
tions are different when compared to zk-SNARKs. We redefine updatable versions of
completeness, zero-knowledge and smoothness correspondingly. In order to satisfy the
hiding property of the CRS updating procedure (following [Lip20] we call the CRS
henceforth key), we add the requirement that an updated key and a fresh key are indis-
tinguishable. Additionally we add key-updating and update-verification algorithms with
the corresponding security requirements: key-update completeness, key-update hiding,

12

Expu-zk-b(A,L, λ)

(τ, tc, crs = (lpar, crs
′
))← Pgen(1λ,L);

ω ←$RND(Z);

(hp, crs′upd, crs
′
int, st)← Z(crs;ω);

hk← ExtZ(crs;ω);
b←$ {0, 1};
b
′ ← AOb(·,·)(crs, crs

′
upd, hp, st);

return UpdVer(crs, crs′upd, crsint) = 1 ∧
verhp(lpar, crs′upd, hp, x) = 1 ∧ b′ = b.

O0(x, w)

if (x, w) 6∈ RL∨
verhp(lpar, crs′upd, hp, x) = 0

return⊥.
else

pH← projhash(hp, lpar, crs′upd, x, w);

return pH.

O1(x, w)

if (x, w) 6∈ RL∨
verhp(lpar, crs′upd, hp, x) = 0

return⊥.
else

tH← thash(ω, τ, hp, lpar, crs′upd, x);

return tH.

Fig. 5. Experiment Expu-zk-b(A,L, λ).

strong key-update hiding, key-update smoothness, and key-update zero-knowledge.

uL-TSPHF. An updatable L-TSPHF (uL-TSPHF) has the following PPT algorithms in
addition to (Pgen, hashkg, projkg, projhash, hash, verhp, thash).

-crsVer(lpar, crs′). Is a deterministic CRS verification algorithm which, given both
lpar and crs′, checks if they are well-formed.

-Upd(lpar, crs′). Is a randomized key updater algorithm, given lpar, crs′, gener-
ates a new updated crs′ (crs′upd), and returns (crs′upd, crsint, tcupd) where tcupd
is some trapdoor of the updated CRS crs′upd. crsint contains elements which intu-
itively can bee seen as a proof that updating is done correctly.

-UpdVer(lpar, crs′, crs′upd, crsint). Is a deterministic key updated verification algo-
rithm which, given crs′ and crs′upd, and crsint checks correctness of the updating
procedure.

Security Requirements. We note that all security notions are given for a single update,
but they can be generalized for many updates by using standard hybrid arguments (cf.
[GKM+18]).
Updatable key correctness. For any (τ, tc, crs = (lpar, crs′)) ← Pgen(1λ,
L), (crs′upd, crsint, tcupd) ← Upd(lpar, crs′), it holds that UpdVer(lpar,
crs′, crs′upd, crsint) = 1. In addition, if UpdVer(lpar, crs′, crs′upd, crsint) = 1,
then crsVer(lpar, crs′) = 1 iff crsVer(lpar, crs′upd) = 1.

Updatable key hiding. For any (τ, tc, crs = (lpar, crs′)) ← Pgen(1λ,L),
(crs′upd, crsint, tcupd) ← Upd(lpar, crs′), then we have: (crs′, tc) ≈λ
(crs′upd, tcupd).
Updatable strong key hiding. The key-update hiding holds if one of the following
holds:

– the original crs was honestly generated and the key-update verifies: (τ, tc, crs =
(lpar, crs′))← Pgen(1λ,L), and UpdVer(lpar, crs′, crs′upd, crsint) = 1.

13

ExpF-ucsmooth-b(A, λ)

(τ, tc, lpar, crs
′
)← Pgen(1λ,L);

hk← Σ.hashkg(L);
(x, crs

′
upd, crsint, st)← A(crs);

if UpdVer(lpar, crs′, crs′upd, crsint) 6= 1

return⊥.
hp← Σ.projkg(hk, lpar, crs′upd, x);

b←$ {0, 1};
if b = 0

H← Σ.hash(hk, lpar, crs′upd, x),
else H←$Ω;

returnA(crs, crs
′
upd, x, hp,H, st).

ExpB-ucsmooth-b(A, λ)

(τ, lpar)← Pgen(1λ,L);
hk← Σ.hashkg(L);
(crs

′
, st)← A(lpar);

if crsVer(lpar, crs′) 6= 1

return⊥.
(crs

′
upd, crsint, tcupd)← Upd(lpar, crs′);

(x, st)← A(lpar, crs
′
upd, st);

hp← Σ.projkg(hk, lpar, crs′upd, x);

b←$ {0, 1};
if b = 0

H← Σ.hash(hk, lpar, crs′upd, x);
else H←$Ω;

returnA(crs, crs
′
upd, x, hp,H, st).

Fig. 6. Experiments Expx-ucsmooth-b with x ∈ {F,B} for updatable computational smoothness.

– the original crs verifies and the key-update was honest: crsVer(lpar, crs′) = 1,
and (crs′upd, crsint, tcupd)← Upd(lpar, crs′).

Updatable Completeness. For any (τ, tc, crs = (lpar, crs′)) ← Pgen(1λ,L), any
(crs′upd, crsint, tcupd) ← Upd(lpar, crs′) and any word x ∈ L with witness w,
for any hk ← hashkg(L), any ω←$RND(projkg) and hp ← projkg(hk, crs, x;ω),
we have: verhp(hp, crs, x) = 1, crsVer(lpar, crs′upd) = 1, and hash(hk, crs, x) =
thash(ω, τ, hp, lpar, crs′upd, x).
Updatable zero-knowledge. There exist deterministic algorithms thash, verhp, s.t. the
following holds. For any PPT subverter Z, there exists a PPT extractor ExtZ, s.t. for all
λ, and unbounded A, Advu-zk

Z,A(λ) ≈λ 0, where

Advu-zk
Z,A(λ) = |Pr[Expu-zk-0(A,L, λ) = 1]− Pr[Expu-zk-1(A,L, λ) = 1]|.

and the updatable zero-knowledge experiment is defined in Fig. 5.
Updatable computational smoothness. It holds iff both, the updatable forward compu-
tational smoothness, and the updatable backward computational smoothness as shown
in Fig. 6 hold. For a language L and adversary A, the advantage is defined as follows:

Advucsmooth
L,A (λ) = |Pr[Expucsmooth-0(A, λ) = 1]− Pr[Expucsmooth-1(A, λ) = 1]|.

Subsequently, we show that updatable smoothness and updatable zero-knowledge fol-
low from simpler security requirements. This means that it will suffice to prove com-
putational smoothness, zero-knowledge, completeness, updatable key correctness and
updatable strong key hiding. The dependencies between the security properties are sum-
marized as follows:
Updatable completeness. It suffices to prove updatable key correctness and complete-
ness.
Updatable zero-knowledge. It suffices to prove updatable key correctness and the ex-
tractability of tcupd, and zero-knowledge.
Updatable computational smoothness. It suffices to prove updatable key correctness,

14

computational smoothness, and updatable strong key hiding. We prove the above state-
ments in the following Lemmas 2 to 4.

Lemma 2. Assume uL-TSPHF[Σ] is updatable key correct and complete. Then uL-
TSPHF[Σ] has updatable completeness.

Lemma 3. Assume uL-TSPHF[Σ] is updatable key correct, the trapdoor tcupd ex-
tractable and zero-knowledge. Then uL-TSPHF[Σ,] is updatable zero-knowledge.

Lemma 4. Assume uL-TSPHF[Σ] is computational smooth and updatable strongly key
hiding. Then (i) uL-TSPHF[Σ] is updatable forward computational smooth. (ii) If uL-
TSPHF[Σ] is additionally updatable key correct, then uL-TSPHF[Σ] is updatable back-
ward computational smooth.

The proofs of these lemmas are straightforward and provided in Appendix C.1, Ap-
pendix C.2 and Appendix C.3.

Lemma 5. The uL-TSPHF[Σ] in Fig. 7 is (i) updatable key correct. Then assuming
b←$DB , where the distribution DB satisfies the condition that for independent ran-
dom variables βi←$DB , for i ∈ {1, 2}, we have β1+β2←$DB; Then the construction
in Fig. 7 is (ii) updatable key hiding, (iii) updatable strong key hiding.

Due to the lack of space we defer the proof to Appendix C.4.

Theorem 2. The uL-TSPHF[Σ] in Fig. 7 has updatable completeness, if the
LTSPHF-KE and BDH assumptions hold, it is statistically updatable zero-knowledge,
and if DDH holds in Gι, ι ∈ {1, 2} then it has updatable forward computational
smoothness. Assuming that the preconditions of Lemma 5 are satisfied, then the it has
updatable backward computational smoothness.

Proof.

(i: Statistically updatable completeness.) The proof follows from Lemma 5 (uL-
TSPHF[Σ] is updatable key correct), Theorem 1 (uL-TSPHF[Σ] is complete), and
Lemma 2 (updatable completeness follows from updatable key correctness and com-
pleteness).

(i: Statistically updatable zero-knowledge.) The proof follows from Lemma 5 (uL-
TSPHF[Σ] is updatable key correct), Theorem 1 (L-TSPHF[Σ] is zero-knowledge),
tcupd extractability (if UpdVer(.) = 1, more precisely [b∗]1[1]2 = [1]1[b∗]2, then un-
der BDH assumption, there exists an extractor ExtBDH

Z , given random coin ωZ, outputs
tcupd = b∗), and Lemma 3 (updatable zero-knowledge follows from updatable key
correctness, the tcupd extractability and zero-knowledge).

(iii: Updatable computational smoothness.) This follows from Theorem 1 (uL-
TSPHF[Σ] is computationally smooth under the DDH assumption), and Lemma 5 (any
uL-TSPHF[Σ] is updatable strongly key hiding), and Lemma 4 (any computational
smooth and updatable strongly key hiding uL-TSPHF[Σ] is also updatable computa-
tional smooth). ut

15

Pgen(1λ,L)

- Generate Γ ∈ Zk×np ;

- Generate b←$Zn×kp ; such that τ := bΓ e a diagonal matrix of size n× n.

- lpar := ([Γ]ι); crs
′
:= ([b]3−ι, [τ]ι);

- return (τ, tc =: b, crs = (lpar, crs
′
)).

Upd(lpar, crs′)

- crsVer(lpar, crs′) : if [τ]ι · [1]3−ι 6= [b]3−ι · [Γ]ι return 0; else return 1.

- Upd(lpar, crs′) : b
∗ ←$Zn×kp , crsint := (τ∗ := [b∗Γ]ι, [b

∗]1, [b
∗]2);

- return crs
′
upd := ([τupd := τ + τ

∗
]ι, [bupd := b + b

∗
]3−ι), crsint, tcupd := b

∗
.

UpdVer(lpar, crs′, crsint, crs
′
upd)

- crsVer(lpar, crs′upd) : [τ
∗
]ι · [1]3−ι

?
= [b

∗
]3−ι · [Γ]ι

- UpdVer(lpar, crs′, crsint, crs
′
upd) : [bupd]3−ι

?
= [b]3−ι + [b

∗
]3−ι ∧ [b

∗
]1 · [1]2 = [1]1 · [b∗]2

∧ [τupd]ι
?
= [τ]ι + [τ

∗
]ι ∧ [τupd]ι · [1]3−ι

?
= [b]3−ι · [Γ]ι + [b

∗
]3−ι · [Γ]ι;

- if crsVer(.) = 1 ∧ UpdVer(.) = 1 return 1; else return 0.

hashkg(L)

- hk ∈ Znp ← Σ.hashkg(L);

projkg(hk, lpar, crs′upd, x)

- hp1 ← Σ.projkg(hk,L); hp2 := [τupdα]ι ∈ Gnι ;
- return hp := (hp1, hp2) ∈ Gk+nι .

hash(hk, x)

- return H← Σ.hash(hk, x).

projhash(hp, x, w)

- return pH← Σ.projhash(hp, x, w).

verhp(hp, lpar, crs′upd)

- verhp(hp, crs) : if [bupd]3−ι · [Γα]ι = [τupdα]ι[1]3−ι return 1; else return 0.

thash(ω, τ, hp, lpar, crs′upd)

- tcupd = b
∗ ← ExtBDH

Z (lpar, crs
′
;ωZ);

- By using ExtLTSPHF-KE, extract hk = α and then computes tH := x · hk.

Fig. 7. Full construction of updatable L-TSPHF (uL-TSPHF).

Concrete Construction of Updatable L-TSPHF. Finally, in Fig. 7 we present the full
construction of uL-TSPHFs. Intuitively, since crs′ consists of (bracketed) matrices, we
can construct an updating process where all crs′ elements are updated additively. We
remark that the subverter Z could be the updater andA could be the malicious projection
key generator and note that we can have crs′upd = crs′.

5 Applications of (Updatable) L-TSPHFs

In this section we discuss the application uL-TSPHFs to updatable ZK arguments.
Due to the lack of space we defer applications of L-TSPHFs to ZK arguments to Ap-
pendix D.1 (and an efficient ZK argument for correct encryption of a valid Waters signa-
ture [Wat05] to Appendix D.2). In Appendix F we discuss the applications to updatable
Password-Authenticated Key-Exchange (uPAKE).

Updatable Zero-Knowledge Arguments. We now construct a generic framework for
updatable QA-ZK Arguments from updatable L-TSPHFs. The generic framework is
depicted in Fig. 8. Before we analyze the security of the updatable ZK argument, we

16

CRS Generation

- Run Pgen(1λ,L) algorithm of uL-TSPHF and return (τ := bΓ, tc := b, crs := (lpar, crs
′
)).

CRS Update Upd(lpar, crs′)

- Run Upd algorithm of uL-TSPHF and return (crs
′
upd, crsint, tcupd);

Verify Update UpdVer(lpar, crs′, crsint, crs
′
upd)

- Run UpdVer algorithm of uL-TSPHF and if crsVer(.) = 1 ∧ UpdVer(.) = 1 return 1; else return 0.

Verifier(lpar, crs′upd,L, x)

- hk = α ∈ Znp ← Σ.hashkg(L); H ∈ Gι ← Σ.hash(α, lpar, x);

- hp = (hp1, hp2)← Σ.projkg(α, lpar, crs′upd, x);

Send hp to prover.
Prover(hp, lpar, crs′, crs′upd,L, x, w)

- pH ∈ Gι ← Σ.projhash(hp1, lpar, crs
′
upd, x, w);

- if crsVer(lpar, crs′upd) = 1 ∧ verhp(hp1, hp2, lpar, crs
′
upd) = 1 return π := pH; else return⊥.

Verification(H, π, x)

- if H = π return accept; else return reject.

Simulator(ω, τ, hp, lpar, crs′, crs′upd,L, x)

- tH← thash(ω, τ, hp, lpar, crs′upd);

- if crsVer(lpar, crs′upd) = 1 ∧ verhp(hp1, hp2, lpar, crs
′
upd) = 1 return π := tH; else return⊥.

Fig. 8. Updatable ZK Argument from L-TSPHF.

present the new definitions for updatable forward and backward soundness.
Updatable forward soundness. for any lpar ∈ im(Pgen(1λ)), PPT A and for all x
s.t. ¬(∃w : Rlpar(x, w)),

Pr

[
(crs, tc)← Kcrs(lpar); (crsupd, crsint)← A(lpar, crs) :

UpdVer(lpar, crs, crsupd, crsint) = 1 ∧ 〈A,V〉crs(x) = 1

]
≈λ 0 .

Updatable backward soundness. for any lpar ∈ im(Pgen(1λ)), PPT A and for all x
s.t. ¬(∃w : Rlpar(x, w)),

Pr

[
crs← A(lpar); (crsupd, crsint, tcupd)← Upd(lpar, crs) :

UpdVer(lpar, crs, crsupd, crsint) = 1 ∧ 〈A,V〉crs(x) = 1

]
≈λ 0 .

Updatable soundness. It holds iff both, the updatable forward soundness, and the up-
datable backward soundness hold.

Theorem 3. Let the uL-TSPHF be updatable key correct, updatable key hiding, updat-
able strong key hiding, statistically updatable zero-knowledge, and updatable computa-
tionally smooth. Then the updatable ZK argument in Fig. 8 is (i) updatable key correct,
(ii) updatable key hiding, (iii) updatable strong key hiding, (iv) updatable complete, (v)
updatable zero-knowledge, and (vi) updatable sound.

The proof is straightforward and can be found in Appendix E.

17

Acknowledgements. This work received funding from European Union’s Horizon
2020 ECSEL Joint Undertaking project under grant agreement n◦ 783119 (SECREDAS),
from the European Union’s Horizon 2020 research and innovation programme under
grant agreement n◦871473 (KRAKEN) and by the Austrian Science Fund (FWF) and
netidee SCIENCE under grant agreement P31621-N38 (PROFET).

References
ABL+19. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, Janno Siim, and Michal Za-

jac. UC-secure CRS generation for SNARKs. In Johannes Buchmann, Abderrah-
mane Nitaj, and Tajje eddine Rachidi, editors, AFRICACRYPT 19, volume 11627 of
LNCS, pages 99–117. Springer, Heidelberg, July 2019.

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A
subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33. Springer, Heidelberg,
December 2017.

ABP15. Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions for hash
proof systems: New constructions and applications. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 69–100.
Springer, Heidelberg, April 2015.

ACP09. Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projec-
tive hashing for conditionally extractable commitments. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 671–689. Springer, Heidelberg, Au-
gust 2009.

AJOR18. Masayuki Abe, Charanjit S. Jutla, Miyako Ohkubo, and Arnab Roy. Improved
(almost) tightly-secure simulation-sound QA-NIZK with applications. In Thomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part I, volume 11272 of
LNCS, pages 627–656. Springer, Heidelberg, December 2018.

AKL21. Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa. Smooth zero-
knowledge hash functions. Cryptology ePrint Archive, Report 2021/653, 2021.
https://eprint.iacr.org/2021/653.

ALSZ20. Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michal Zajac. On QA-NIZK
in the BPK model. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 590–620.
Springer, Heidelberg, May 2020.

ARS20. Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. Lift-and-shift:
Obtaining simulation extractable subversion and updatable SNARKs generically. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 20,
pages 1987–2005. ACM Press, November 2020.

ASW98. N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital
signatures (extended abstract). In Kaisa Nyberg, editor, EUROCRYPT’98, volume
1403 of LNCS, pages 591–606. Springer, Heidelberg, May / June 1998.

BBC+13. Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and
Damien Vergnaud. New techniques for SPHFs and efficient one-round PAKE proto-
cols. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 449–475. Springer, Heidelberg, August 2013.

BBC+15. Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and
Damien Vergnaud. New techniques for SPHFs and efficient one-round PAKE pro-
tocols. Cryptology ePrint Archive, Report 2015/188, 2015. http://eprint.
iacr.org/2015/188.

18

https://eprint.iacr.org/2021/653
http://eprint.iacr.org/2015/188
http://eprint.iacr.org/2015/188

Ben16. Fabrice Ben Hamouda--Guichoux. Diverse modules and zero-knowledge. PhD the-
sis, École Normale Supérieure, Paris, France, 2016.

BFPV11. Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signa-
tures on randomizable ciphertexts. In Dario Catalano, Nelly Fazio, Rosario Gennaro,
and Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 403–422.
Springer, Heidelberg, March 2011.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted
CRS: Security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804.
Springer, Heidelberg, December 2016.

BGG17. Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for
constructing the public parameters of the pinocchio zk-snark. Cryptology ePrint
Archive, Report 2017/602, 2017. https://eprint.iacr.org/2017/602.

BMP00. Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-
authenticated key exchange using Diffie-Hellman. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 156–171. Springer, Heidelberg, May
2000.

Boy09. Xavier Boyen. HPAKE: Password authentication secure against cross-site user im-
personation. In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors, CANS 09,
volume 5888 of LNCS, pages 279–298. Springer, Heidelberg, December 2009.

BP13. Fabrice Benhamouda and David Pointcheval. Trapdoor smooth projective hash func-
tions. Cryptology ePrint Archive, Report 2013/341, 2013. http://eprint.
iacr.org/2013/341.

BPR00. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange
secure against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, vol-
ume 1807 of LNCS, pages 139–155. Springer, Heidelberg, May 2000.

BPV12. Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal privacy-
preserving protocols with smooth projective hash functions. In Ronald Cramer, ed-
itor, TCC 2012, volume 7194 of LNCS, pages 94–111. Springer, Heidelberg, March
2012.

BSCG+15. Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars
Virza. Secure sampling of public parameters for succinct zero knowledge proofs.
In 2015 IEEE Symposium on Security and Privacy, pages 287–304. IEEE, 2015.

CFQ19. Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modular design
and composition of succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2075–
2092. ACM Press, November 2019.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable
SRS. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, Heidelberg,
April / May 2002.

Dam92. Ivan Damgård. Towards practical public key systems secure against chosen cipher-
text attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
445–456. Springer, Heidelberg, August 1992.

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span
programs with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu

19

https://eprint.iacr.org/2017/602
http://eprint.iacr.org/2013/341
http://eprint.iacr.org/2013/341

Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550.
Springer, Heidelberg, December 2014.

DRZ20. Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis. Updateable inner product
argument with logarithmic verifier and applications. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume
12110 of LNCS, pages 527–557. Springer, Heidelberg, May 2020.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An alge-
braic framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer,
Heidelberg, August 2013.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its
applications. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla and
Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 315–347.
Springer, Heidelberg, March 2018.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–
645. Springer, Heidelberg, May 2013.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers.
Updatable and universal common reference strings with applications to zk-snarks.
In Annual International Cryptology Conference, pages 698–728. Springer, 2018.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for NP. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 339–358. Springer, Heidelberg, May / June 2006.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Heidelberg, December 2010.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666
of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages
415–432. Springer, Heidelberg, April 2008.

Had10. Satoshi Hada. Secure obfuscation for encrypted signatures. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 92–112. Springer, Heidelberg,
May / June 2010.

HK98. Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols.
In Li Gong and Michael K. Reiter, editors, ACM CCS 98, pages 122–131. ACM
Press, November 1998.

JR12. Charanjit S. Jutla and Arnab Roy. Relatively-sound NIZKs and password-based
key-exchange. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors,
PKC 2012, volume 7293 of LNCS, pages 485–503. Springer, Heidelberg, May 2012.

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear
subspaces. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I,
volume 8269 of LNCS, pages 1–20. Springer, Heidelberg, December 2013.

20

JR14. Charanjit S. Jutla and Arnab Roy. Switching lemma for bilinear tests and constant-
size NIZK proofs for linear subspaces. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 295–312. Springer,
Heidelberg, August 2014.

JR15. Charanjit S. Jutla and Arnab Roy. Dual-system simulation-soundness with appli-
cations to UC-PAKE and more. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part I, volume 9452 of LNCS, pages 630–655. Springer, Heidelberg,
November / December 2015.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In 24th ACM STOC, pages 723–732. ACM Press, May 1992.

Kle14. Achim Klenke. Probability Theory: A Comprehensive Course. Springer, 2014.
KV11. Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenti-

cated key exchange. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
293–310. Springer, Heidelberg, March 2011.

KW15. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear subspaces revisited.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 101–128. Springer, Heidelberg, April 2015.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive
zero-knowledge arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of
LNCS, pages 169–189. Springer, Heidelberg, March 2012.

Lip19. Helger Lipmaa. Simulation-extractable snarks revisited. Cryptology ePrint Archive,
Report 2019/612, 2019. https://eprint.iacr.org/2019/612.

Lip20. Helger Lipmaa. Key-and-argument-updatable QA-NIZKs. In Clemente Galdi and
Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 645–669.
Springer, Heidelberg, September 2020.

LPJY14. Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. Non-malleability from
malleability: Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure en-
cryption from homomorphic signatures. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 514–532. Springer, Hei-
delberg, May 2014.

LPJY15. Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. Compactly hiding linear
spans - tightly secure constant-size simulation-sound QA-NIZK proofs and applica-
tions. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume
9452 of LNCS, pages 681–707. Springer, Heidelberg, November / December 2015.

Mac01. Philip D. MacKenzie. More efficient password-authenticated key exchange. In
David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS, pages 361–377.
Springer, Heidelberg, April 2001.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 2111–2128. ACM Press, November 2019.

Wat05. Brent R. Waters. Efficient identity-based encryption without random oracles. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127.
Springer, Heidelberg, May 2005.

21

https://eprint.iacr.org/2019/612

Appendix

A Proof of Lemma 1

The proof is inspired by that of the KWKE assumption in [ALSZ20]. Let A is a
LTSPHF-KE adversary that, given the CRS crs = ([Γ]1, crs

′) and randomness
ω←$RND(A) as input, outputs and hp, s.t. with probability εA, verhp(hp, crs) = 1.
Denote ∆ := τα> ∈ Zn×1p where τ = bΓ. Let verhp(hp, crs) = 1, i.e., [b]2[hp1]1 =

[1]2[∆]1 ∈ Gn×1T . Let ExthakA be the extractor, existence of which is guaranteed by the
ε-HAK assumption. Fig. 9 depicts the extractor ExtA, where [qi]1 for i > 0 are group
elements created by A (for which she does not know the discrete logarithm) in G1, and
q0 = 1. Due to the HAK assumption, ExthakA can extract N and [q]1, such that[

vect(∆)
hp1

]
1

=N
[
1
q

]
1
∈ Gn+k1 .

Here, vect(B) denotes the vectorization of a matrix B. Thus, e.g., τij =∑|q2|+1
t≥0 Nk(i−1)+j,tqt. Given N, one can efficiently compute matrices hp1[i] and ∆[i],

s.t. the polynomials

hp1(Q) :=
∑
j≥0 hp1[j]Qj ∈ Z1×k

p [Q] ,∆(Q) :=
∑
i≥0 ∆[i]Qi ∈ Zn×1p [Q] .

satisfy [hp1]1 = [hp1(q)]1, and [∆]1 = [∆(q)]1.

ExtA(crs, ω)

hp← A(crs, ω);
if verhp(hp, crs) = 0 then return ⊥;fi ;

(N, [q]1)← ExthakA (crs, ω); Abort if this fails;
Let τ , ∆[i] be such that ∆ =

∑
i≥0 ∆[i]qi;

return α← τ−1∆[i];

Fig. 9. Extractors ExtA(crs, ω) in the proof of Lemma 1

Assume thatA(crs;ω) was successful. We execute ExtA(crs;ω) and obtain either
α or ⊥. From the fact that [b]2[hp1]1 = [1]2[∆]1 ∈ Gn×1T , the verification polynomial

W (Q) := b
(∑

i≥0 hp1[i]Qi
)
∈ Zn×1

p −
(∑

i≥0 ∆[i]Qi
)
∈ Zn×1

p

satisfies W (q) = 0. Following the blueprint of security proofs in the HAK frame-
work [Lip19], we consider the following two cases, W (Q) = 0 as a polynomial and
W (Q) 6= 0 but W (q) = 0.

Case 1: vect(W (Q)) = 01×nk as a polynomial. Since Qj is indeterminate for all
i > 0, the coefficients Wi of Qi of vect(W (Q)) =

∑
i≥0WiQi must be equal to

01×nk for all i ≥ 0. In particular,

b · hp1[i] = ∆[i] ∈ Zn×1p , i ≥ 0 . (1)

ExpintB (1λ,L)

[Γ]1 ← Pgen(1λ,L);
b←$Z1×k

p ;

Fix [x]1 ∈ Gn1 ;
b←$ {0, 1};
b
′ ← BOb(·,·)([Γ]1, [x]1,b);

return b = b
′
.

O0([Γ]1, [x]1)

α←$Znp ;
For i ∈ [1, k], j ∈ [1, n] :

return ([Γijαj]1; [xjαj]1).

O1([Γ]1, [x]1)

α←$Znp ;ui ←$Zp
For i ∈ [1, k], j ∈ [1, n] :

return ([Γijαj]1; [uj]1).

Fig. 10. Experiment ExpintB (1λ,L) for the proof of smoothness in Theorem 1

Since τ is invertible (as it is honestly chosen). Define α(Q) := τ−1∆Q =
τ−1

∑
i≥0 ∆[i]Qi ∈ Zn×1p [Q]. Let α := α(y). Since τ(y) is invertible then from

∆[i] =
∑
i τyiα[i] = b

∑
i Γα[i] = bhp1. Finally, define α := τ−1∆[i0] ∈ Znp . Note

that so defined α can be extracted since we know the coefficients of τ(Q) and ∆(Q).
Clearly, α is a valid hk since Γα = τ−1[i0]∆[i0]Γ =

∑
hp[i]Qi = hp(Q).

Case 2: vect(W (Q)) 6= 0 but vect(W (q)) = 0. Next, following [Lip19], we
consider separately the “non-hashing” case (A creates no random elements [qιi]ι) and
the “hashing” caseA creates at least one random element that has high min-entropy). In
the non-hashing case, the verification polynomial is equal to the integer matrix W :=
b[0] · hp1[0] − ∆[0] ∈ Zn×1p . Recall that vect(W (Q)) 6= 0 but vect(W (q)) = 0.
Since there are no created group elements, this is clearly impossible (the polynomial
vect(W) is constant, and we need vect(W) = 0 and vect(W) 6= 0 at the same time).
Thus, A cannot succeed in the non-hashing case.

Consider now the “hashing” case when A has created at least one high min-
entropy group element qk (say, in G1). Clearly, vect(W (Q)) is a degree-1 polyno-
mial in any indeterminate Qi. Thus, by the high min-entropy version of the Schwartz-
Zippel lemma, since H∞([qs]1) = ω(log λ), then the probability 2−

∑
sH∞([qs]1) that

vect(W (q)) = 0 is negligible. Hence, the probability that A, who created at least one
(high min-entropy) group element [qk]1, can make the verifier accept is negligible. ut

B Proof of Smoothness of Theorem 1

The proof is similar to the smoothness proof of [BBC+13] but with some modifications.
We first reduce the smoothness to the following computational assumption: for all λ
and PPT adversary B, |ExpintB (1λ,L) − 1/2| ≈λ 0, where ExpintB (1λ,L) is depicted in
Fig. 10. Let adversary B be allowed to make only one query to the oracle Ob to obtain
a tuple ([Γijαj]1, [zj]1) where zj = xαj or zj = uj .

Let A be the adversary against computational smoothness. We now construct the
following adversary B against the intermediate assumption.

The adversary B works as follows:

– [Γ]1 ← Pgen(1λ,L); b←$Z1×k
p ; crs = ([Γ,bΓ]1, [b]2);

– x← A(crs);
– ([Γijαj]1, [zj]1) ← Ob([Γ]1, x), where if b = 1, zj = xjαj for i = {1, . . . , k},
j = {1, . . . , n}. Otherwise zj ←$Zp;

23

– hp1 ← (
∑n
j=1 Γ1jαj , . . . ,

∑n
j=1 Γkjαj) = [Γα]1; hp2 ← b[Γα]1;

– H←
∑j=n
j=1 [zj]1;

– bA ← A(crs, x, (hp1, hp2),H);
– return b′ ← bA.

Thus,A is successful in breaking the soundness game iff B is successful in breaking
the intermediate assumption.

We now show that the intermediate assumption can be reduced to the DDH problem,
i.e., it is hard to distinguish the two distributions, {[1, a, b, ab]1} and {[1, u, b, ab]1}
where a, b, u←$Zp. Let D be the adversary against this problem, such that given T =
{[1, c, b, ab]1}, it outputs 1 if c = a and 0 otherwise.

Given the tuple T , D uses B as a subroutine. In particular, given a DDH tuple, D
generates kn DDH tuples [ui, vi, wi]1, for i ∈ [1 .. n], by random self-reducibility of
DDH and sets [u]1 = ([u1]1, . . . , [un]1) ∈ Gn, [v]1 = ([vij]1)i∈[k],j∈[n] ∈ Gk×n, and
[w]1 = ([w1]1, . . . , [wn]1) ∈ Gn. Then she feeds B with [u]1. Also D plays the role of
the challenger for in the experiment ExpintB (1λ,L) in Fig. 10 and when B([u]1) calls the
oracle Ob, the adversary D, first chooses α←$Znp and answers with ([vijwj]1, [cj]1)
where cj = xjwj or zj = uj . Then D returns B’s output. Thus, D is successful in
breaking the DDH problem iff B is successful in breaking the intermediate assumption.

ut

C Omitted Proofs of Updatable L-TSPHF

C.1 Proof of Lemma 2

From updatable key correctness, we have UpdVer(lpar, crs′, crs′upd, crsint) =
1. Then, by the completeness property, verhp(lpar, crs′, hp, x) = 1 and
hash(hk, crs, x) = thash(ω, τ, hp, crs, x). ut

C.2 Proof of Lemma 3

Due to updatable key correctness, we have UpdVer(lpar, crs′, crs′upd, crsint) =
1 and crsVer(lpar, crs′upd) = 1. Then, by tcupd extractable property (if
UpdVer(lpar, crs′, crs′upd, crsint) = 1, there exist an extractor ExtZ that ex-
tracts tcup), and the zero-knowledge property, verhp(lpar, crs′, hp, x) = 1 and
there exist an extractor ExtZ that extracts hk such that thash(τ, hp, lpar, crs′upd) =
projhash(hp, lpar, crs′upd, x, w). ut

C.3 Proof of Lemma 4

(i: Updatable forward computational smoothness) By updatable strong key hiding,
crs′upd comes from the correct distribution. Thus, by computational smoothness, it is
computationally hard to distinguish the valid hash H with randomly chosen H.

(ii: Updatable backward computational smoothness) From updatable key cor-
rectness it follows that in the definition of forward updatable computational smoothness,

24

we can replace the condition UpdVer(lpar, crs′, crs′upd, crsint) = 1 with the condi-
tion crsVer(lpar, crs′upd) = 1. Because of the updatable strong key hiding, crs′upd is
indistinguishable from an honestly generated crs′upd. From computational smoothness,
we now obtain updatable backward computational smoothness. ut

C.4 Proof of Lemma 5

Before we present the proof, we recall a definition from [Kle14].

Definition 4 (14.46 in [Kle14]). Let I ∈ (0, 1) be a semigroup. A family u = {ut : t ∈
I} of probability distributions onRd is called a convolution semigroup if ul+t = ul∗ut
holds for all l, t ∈ I .

Proof. (i: Updatable key correctness.) It is straightforward from the verifying updat-
ing phase in Fig. 7.

(ii: Updatable key hiding.) Let if βi←$DB for i ∈ {1, 2}, then β1 + β2←$DB .
Then, D∗2B = DB , where D∗l is the l-th convolution power of D. That is, DB is a stable
distribution. Note that one can generalize that requirement when one allows scaling
factors. For example, when we define bupd ← b + b∗, one can consider distributions
of DB of matrices where each matrix entry is either uniformly random or a constant.
For the proof of key-update hiding, we need a convolution semigroup (cf. Definition 4)
consisting of a single element. However, if we apply scaling factors, we can use more
general convolution semigroups. Thus, since crs′ is honestly created, tau, b and so,
crs′upd contains τ + τ∗ = (b + b∗)Γ = τupd. Due to the assumption on DB , crs′ and
crs′upd come from the same distribution.

(iii: Updatable strong key hiding.) We need to prove updatable key hiding for two
different cases: (1) when crs was created honestly, and (2) when crsupd was honestly
updated. For the case (1), since crs is honestly created, it contains ([Γ, τ]ι, [b]3−ι).
Since UpdVer(.) = 1, bupd = b+b∗, thus by the assumption onDB , bupd comes from
the correct distribution, and τupd = bupdΓ = τ + τ∗. This holds under the assumption
that DB is an ideal of a convolution semigroup. For the case (2), since crs verifies,
thus by crsVer(.) = 1, we have [τ]ι[1]3−ι = [b]3−ι[Γ]ι. Since crsupd was honestly
updated: for correctly distributed b∗, bupd = b + b∗, and τupd = τ + τ∗, and thus
[τupd]ι[1]3−ι = [bupd]3−ι[Γ]ι. Because b∗ has the correct distribution, also bupdΓ has
the correct distribution. ut

D Zero-Knowledge Arguments from L-TSPHFs

In this section we construct a generic framework for 2-round ZK arguments (ZKAs)
from L-TSPHF. In Supplementary Material D.2, we show as a concrete application
how to construct an efficient ZK argument to prove the correct encryption of a valid
Waters signature [Wat05].

25

D.1 ZK Arguments from L-TSPHF

In this section we construct a generic framework for quasi-adaptive zero-knowledge
arguments from L-TSPHF for any linear language. The generic framework is depicted
in Fig. 11.

Theorem 4. Let L-TSPHF[Σ] be complete, zero-knowledge, and computational
smooth. Then the ZK argument in Fig. 11 is (i) complete, (ii) zero-knowledge, and (iii)
sound.

CRS Generation

- Run Pgen(1λ,L) algorithm of L-TSPHF[Σ] and return (τ, crs = (lpar, crs
′
)).

Verifier(crs,L, x)

projkg(hk, crs, x) :

- hk := α ∈ Znp ← Σ.hashkg(L); H← Σ.hash(α, lpar, x);

- hp← Σ.projkg(α, lpar, crs′, x);
Send hp to prover.

Prover(hp, crs,L, x, w)

- if verhp(hp, crs) = 0 return⊥;
- pH ∈ Gι ← Σ.projhash(hp, lpar, x, w);
- if verhp(.) = 1 then return π := pH; else return⊥.

Simulator(ω, τ, hp, crs,L, x)

- if verhp(hp, crs) = 0 return⊥;
- tH← thash(ω, τ, hp, crs, x);
- if verhp(.) = 1 then return π := tH; else return⊥.

Verification(H, π)

- if H = π then return accept; else return reject.

Fig. 11. Generic framework for 2-round ZK arguments from L-TSPHF[Σ].

Proof.

(i: Completeness) It follows directly from completeness of L-TSPHF[Σ] construction
in Theorem 1.

(ii: Zero-knowledge) It follows from Theorem 1 (L-TSPHF[Σ] is zero-knowledge),
but the simulator first runs an additional algorithm verhp as it shown in Fig. 11.

(iii: Soundness) The proof for soundness follows from Theorem 1 (L-TSPHF[Σ] is
computationally smooth). ut

On Removing Interaction. We note that similar to the QA-NIZK construction in
[ALSZ20], we can define our ZK arguments in Fig. 11 in a variant of the bare public-key
(BPK) model , which is significantly weaker than the CRS model and arguably being
the weakest public key or parameter based trust model. We use the variant of the BPK
model in [ALSZ20], where only the verifier needs to have a public key (hp) and the
key authority executes the functionality of an immutable bulletin board by storing the

26

received public keys, But the CRS corresponding to the language parameter (the public
key of the prover) is computed by a trusted party. Thus, one obtains designated-verifier
QA-NIZK (DV-QA-NIZK) in the aforementioned variant of the BPK model from our
ZK arguments in Fig. 11.

Efficiency Comparison. In Table 2, we compare the efficiency of ZK arguments based
on L-TSPHF with the ZK arguments of [ALSZ20] where n > k. Let m be a security
parameter in [KW15, ALSZ20] where m = 1 represents the optimized construction. In
order to be consistent with [KW15, ALSZ20], we assume ι = 1 which means that the
proof π is in G1. We note that in [ALSZ20] we have crs = lpar which only contains

Table 2. Comparison between the ZKAs of [ALSZ20] and ZKAs based on L-TSPHF.

Scheme |crs| |comm| |proof|

ZK argument [ALSZ20] kn×G1 km×G1 + (m2 + nm)×G2 m×G1

ZKL−TSPHF (k + 1)n×G1 + k ×G2 (k + 1)×G1 G1

the language parameter. In our ZK construction from L-TSPHF the crs has (n + k)
additional elements, but we have significantly reduced communication overhead.

D.2 Verifiable Encryption of Waters Signatures

Now we demonstrate a concrete instantiation of our construction of ZK arguments from
L-TSPHF in Fig. 11 for the language of ciphertexts of valid Waters signatures [Wat05]
in an asymmetric bilinear group. These constructions can be used, for example, in
optimistic fair exchanges of signatures [ASW98], obfuscation [Had10] or oblivious
signature-based envelopes [BPV12]. We first describe linear encryption of Waters sig-
natures and the corresponding language, and then show how we can obtain ZK argu-
ments from L-TSPHF construction. The Waters signature scheme for asymmetric bilin-
ear groups has been proposed and proven secure in [BFPV11] and it is defined below.

Waters Signatures. The Waters signature scheme for asymmetric bilinear group, has
been proposed and proved in [BFPV11]. Briefly it is defined with the Four algorithms
(Setup,KGen,Sign,Versign) and works as follows,

-Setup(1λ): Chooses a random vector [u]1←$Gk+1
1 which uses in the Waters hash

function [F(M)]1 = [u0]1 +
∑k
i=1mi[ui]1 for m ∈ {0, 1}k. Choose an extra

generator [v]1←$G1 and sets pars = ([u]1, [v]1);
-KGen(pars): Chooses z←$Zp and computes the public verification key vk =

([z]1, [z]2) and its secret key sk = z[v]1.
-Sign(sk,m, s) : For a random s←$Zp returns σ = ([σ1]1, [σ2]1), where [σ1]1 =

sk + s[F(M)]1 and [σ2]2 = ([s]1, [s]2);
Versign(vk,m, σ): First checks whether [σ21]1[1]2 = [1]1[σ22]2, then verifies

[σ1]1[1]2 = [v]1[z]2 + [F(M)]1[σ22]2.

27

The ungforgeability of this scheme is base on a variant of CDH assumption, given a set
([1]1, [1]2, [a]1, [a]2, [b]1) for random a, b←$Zp, computing [ab]1 is hard.

Linear Encryption of Waters signatures. Let [v]1←$G1 and [u]1←$Gk+1
1 which de-

fines the Waters hash of a message m ∈ {0, 1}k as [F(M)]1 = [u0]1 +
∑k
i=1mi[ui]1.

The verification key is vk = ([z]1, [z]2) and the associated signing key is sk = z[v]1
where z←$Zp. The signature on a message m is σ = ([σ1]1, [σ2]1), where [σ1]1 =
sk + s[F(M)]1 and [σ2]2 = ([s]1, [s]2) for some random s←$Zp. It can be veri-
fied by the following checking [σ21]1[1]2 = [1]1[σ22]2, and [σ1]1[1]2 = [v]1[z]2 +
[F(M)]1[σ22]2. The linear encryption public key is pk = ([t1]1, [t2]1) and the secret
key is sk = (y1, y2)←$Z2

p. The ciphertext of a Waters signature σ = ([σ1]1, [σ2]1) is
cσ = (r1[t1]1, r2[t2]1, [r1 + r2]1 + [σ1]1, [σ21]1, vk1) where r1, r2←$Z2

p. Let us now
formally show the resulting language Lσ is,{

cσ ∈ G5
1 : ∃(r1, r2, s, z) ∈ Z4

p; c1 = r1[t1]1, c2 = r2[t2]1,
c3 = [r1 + r2 + σ1]1, c4 = [s]1, c5 = [z]1

}
.

For any cσ = (c1, c2, c3.c4, c5) we have [Γ]1 =


[t1]1 1 [1]1 1 1

1 [t2]1 [1]1 1 1
1 1 [F(M)]1 [1]1 1
1 1 [v]1 1 [1]1

,

and the witness w = (r1, r2, s, z) such that cσ = w[Γ]1. Therefore, we can use the ZK
arguments in Fig. 11.

E Proof of Theorem 3

(i,ii,iii: Updatable key correctness, hiding, strong hiding.) It follows directly from
Lemma 5 (updatable L-TSPHF[Σ] is updatable key correct, updatable key hiding, up-
datable strong key hiding.

(iv,v: Updatable completeness, updatable zero-knowledge.) It follows from The-
orem 2 (updatable L-TSPHF[Σ] is updatable complete and updatable zero-knowledge.

(vi: Updatable soundness.) The proof for updatable forward and backward sound-
ness follow from Theorem 2 (updatable L-TSPHF[Σ] is updatable forward and back-
ward smooth. ut

F Updatable PAKE from Updatable L-TSPHFs

Now we show how the new primitive updatable L-TSPHF (uL-TSPHF) in Fig. 7 enables
us to construct updatable two-round Password-Authenticated Key-Exchange (uPAKE),
which allows us to reduce the trust in the setup. More precisely, we use our uL-TSPHF
in Benhamouda et al.’s TSPHF-based PAKE framework [BBC+13] and construct an
updatable version of it. We recall that in Benhamouda et al.’s construction, the users
need to trust a trusted third party to generate the CRS. Now, in our updatable PAKE the
need of such trust is removed by using uL-TSPHF instead of TSPHF [BBC+13].

Briefly in a PAKE protocol, each user U owns a word x1 in a certain language
L1 and expects the other user to own a word x2 in a language L2. If everything is

28

compatible (i.e., the languages are the expected languages and the words are indeed
in the respective languages), the users compute a common high-entropy secret key,
otherwise they learn nothing about the other user’s values. In addition, we assume the
two users have initially agreed on a common public language parameter lpar for the
languages, but then they secretly parametrize the languages with the private parts w:
Llpar,w is the language they want to use. In addition, each user owns a word x in his
language. We thus have to use uL-TSPHF on ciphertexts on x and w, with a common
value lpar.

We note that Benhamouda et al.’s PAKE construction is secure in the Universal
Composability (UC) framework, but due to the use of knowledge assumptions (non-
falsifiable assumptions) in the prove of the zero-knowledge property of uL-TSPHF,
achieving UC security for our updatable PAKE is unclear.

Basically most of the current non-UC PAKE protocols are in random oracle model
and need at least two rounds [HK98, BPR00, BMP00, Mac01, Boy09]. In context of
UC-secure protocols, there has been a sequence of papers [KV11, JR12, BBC+13,
JR15] constructing one-round UC-secure PAKE protocol in the CRS model (using bi-
linear pairings). Benhamouda et.al [BBC+13] proposed the first CRS based UC-secure
one-round PAKE protocol, but in a game-based model built on the BPR model [BPR00].

Following the security definitions of (non UC-secure) PAKE [BMP00], in general
PAKE protocols must satisfy: (i) completeness meaning that for any real world adver-
sary that faithfully passes messages between two user instances with complimentary
roles and identities, both user instances accept, and (ii) simulatability meaning that
for every efficient real world adversary A, there exists an simulator Sim such that Re-
alWorld(A) and IdealWorld(Sim) are computationally indistinguishable, where Real-
World(A) and IdealWorld(Sim) denote the transcript of A’s and Sim’s operations re-
spectively.

Theorem 5. Let uL-TSPHF in Fig. 7 be a updatable L-TSPHF, then the updatable
PAKE protocol in Fig. 12 is complete and simulatable.

Proof. (i: Completeness) This is straightforward from the construction and follows the
directly from Lemma 5 (updatable L-TSPHF[Σ] is updatable key correct).

(ii: Simulatability) It follows directly from Lemma 5 (updatable L-TSPHF[Σ] is up-
datable key correct, updatable key hiding, updatable strong key hiding) and Theorem 2
(updatable L-TSPHF[Σ] is updatable complete and updatable zero-knowledge). ut

29

U1(w, lpar := pk) U2(w, lpar := pk)

tc1,up := bu1 ←$Zn×kp tc2,up := bu2 ←$Zn×kp

crs
′
u1
← Pgen(1λ,L) crs

′
u2
← Pgen(1λ,L)

crs
′
u1

crs
′
u2

if 1← crsVer(pk, crs′u2) : if 1← crsVer(pk, crs′u1) :

(crs
′
1,upd, crs1,int, tc1,up)← Upd(pk, crs′u2) (crs

′
2,upd, crs2,int, tc2,up)← Upd(pk, crs′u1)

hku1 ← Σ.hashkg(L) hku2 ← Σ.hashkg(L)

hpu1 ← Σ.projkg(hku1 , pk, crs
′
1,upd,⊥) hpu2 ← Σ.projkg(hku2 , pk, crs

′
2,upd,⊥)

xu1 ← Encpk(w, r1) xu2 ← Encpk(w, r2)

(xu1 , hpu1 , crs
′
1,upd, crs1,int)

(xu2 , hpu2 , crs
′
2,upd, crs2,int)

if 1← crsVer(pk, crs′2,upd) if 1← crsVer(pk, crs′1,upd)

∧ 1← UpdVer(pk, crs′u1 , crs2,int, crs
′
2,upd) ∧ 1← UpdVer(pk, crs′u2 , crs1,int, crs

′
1,upd)

∧ 1← verhp(hpu2 , pk, crs
′
2,upd) : ∧1← verhp(hpu1 , pk, crs

′
1,upd) :

pHu1 ← Σ.projhash(hpu1 , pk, crs
′
2,upd, xu1 , r1, w) pHu2 ← Σ.projhash(hpu2 , pk, crs

′
1,upd, xu2 , r2, w)

Hu2 ← Σ.hash(hku1 , pk, xu2) Hu1 ← Σ.hash(hku2 , pk, xu1)

sku1 ← pHu1 · Hu2 sku2 ← pHu2 · Hu1

Fig. 12. Generic Updatable Two-Round PAKE from uL-TSPHF

30

	Updatable Trapdoor SPHFs: Modular Construction of Updatable Zero-Knowledge Arguments and More

