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Abstract—Fully homomorphic encryption enables computation
on encrypted data, and hence it has a great potential in privacy-
preserving outsourcing of computations. In this paper, we present
a complete instruction-set processor architecture ‘Medha’ for
accelerating the cloud-side operations of an RNS variant of
the HEAAN homomorphic encryption scheme. Medha has been
designed following a modular hardware design approach to
attain a fast computation time for computationally expensive
homomorphic operations on encrypted data. At every level of
the implementation hierarchy, we explore possibilities for parallel
processing. Starting from hardware-friendly parallel algorithms
for the basic building blocks, we gradually build heavily parallel
RNS polynomial arithmetic units. Next, many of these parallel
units are interconnected elegantly so that their interconnections
require the minimum number of nets, therefore making the
overall architecture placement-friendly on the implementation
platform. As homomorphic encryption is computation- as well
as data-centric, the speed of homomorphic evaluations depends
greatly on the way the data variables are handled. For Medha,
we take a memory-conservative design approach and get rid of
any off-chip memory access during homomorphic evaluations.

Our instruction-set accelerator Medha is programmable and
it supports all homomorphic evaluation routines of the leveled
fully RNS-HEAAN scheme. For a reasonably large parameter
with the polynomial ring dimension 214 and ciphertext coefficient
modulus 438-bit (corresponding to 128-bit security), we imple-
mented Medha in a Xilinx Alveo U250 card. Medha achieves the
fastest computation latency to date and is almost 2.4× faster in
latency and also somewhat smaller in area than a state-of-the-art
reconfigurable hardware accelerator for the same parameter.

I. INTRODUCTION

Cloud computing services are very popular and provide
high-performance computational resources to the users [2].
Despite its advantages, conventional cloud computing has se-
curity and privacy risks as the data of the user, becomes visible
(as plaintext) during any computation in the cloud. Isolation
techniques are followed with certain trust assumptions. Yet, in
recent years several data leaks have been reported.

Fully Homomorphic Encryption (FHE) [27] enables logical
and arithmetic operations on encrypted data without requiring
any decryption of the data. Therefore FHE has a great potential
in privacy-preserving outsourcing of computation to the cloud
without needing to trust the cloud or a third party. In 2009,
Gentry constructed the first FHE scheme [17]. FHE quickly
gained interest from both academia and industry. During the
last 10 years better and better FHE schemes started appearing
with orders of magnitude improvements in performances.

There are several FHE or leveled FHE schemes in the
literature. The difference between an FHE and a leveled-FHE
is that the latter one could perform computations correctly

only up to a certain complexity level whereas the first one
could do arbitrary computations. It is possible to transform
a leveled-FHE into an FHE by introducing a special proce-
dure ‘bootstrapping’. In the remaining part of the paper we
will use the terminology FHE to represent both classes. For
evaluating arithmetic operations homomorphically, BFV [15]
and BGV [9] are popular. THFE [12] is efficient for evaluating
Boolean gates. For performing computations on encrypted real
numbers, HEAAN [11] and its Residue Number System (RNS)
variant RNS-HEAAN [10] are efficient. In fact, RNS-HEAAN
is the fastest scheme for performing approximate computations
on the encrypted real data, thus making it popular for privacy-
preserving machine learning applications.

Although a decade of research in algorithmic and mathemat-
ical optimizations have made FHE schemes orders of magni-
tude faster than their first generation counterparts, homomor-
phic evaluations in software are five to six orders of magnitude
slower than equivalent computations on plaintext. Therefore,
hardware acceleration of FHE is crucial in reducing this per-
formance gap. In the literature there are many works [16], [24],
[25], [28], [33], [38] that implement selected building blocks
of FHE or present simulation-based performance results. Often
partial or simulation-based works produce overly optimistic
performance results due to various assumptions. Therefore,
real hardware accelerators are essential to accelerate FHE
in practice and at the same time identify potential research
directions for performance improvements. Surprisingly, there
are only a few works that report real FHE accelerators [26],
[29], [32], [34]. The accelerator [29] of 2018 could not make
FHE faster than a typical software implementation. In 2019
the accelerator [32] achieved one order speed up with respect
to the software. In the next year, ‘HEAX’ [26] obtained more
than two order throughput with respect to the software. While
the speedup is impressive, a limitation of HEAX is that it
is not programmable and its block-pipelined architecture was
designed specifically for the key-switching of RNS-HEAAN.
In contrary to HEAX, the programmable accelerator [32]
uses the same computational resources again and again as
‘instructions’ to execute a homomorphic encryption routine.
While programmability is a desired feature in accelerators,
the one order speedup of HEAX [26] over the programmable
processor [32] may give us an impression that block-pipelined
and specifically optimized accelerators are significantly supe-
rior to flexible accelerators for FHE. In this paper, we present
a new programmable accelerator ‘Medha’ that reaches 2.4×
faster latency compared to HEAX and by doing so we bring



a new direction in the design space of accelerators for FHE.
Contributions: The main contributions of our paper reside at
the high-levels of the implementation-hierarchy where differ-
ent compute and memory elements are organized. To compute
arithmetic of residue polynomials, we design a novel Residue
Polynomial Arithmetic Unit (RPAU) pragmatically. Our RPAU
contains a multi-core unified NTT unit for polynomial mul-
tiplication, two parallel sets of dyadic arithmetic units, and a
customized on-chip memory for storing operand and resultant
residue polynomials.

The designed RPAU is an instruction-set architecture. We
can execute dyadic arithmetic and NTT instructions in parallel.
This parallelism is very useful in minimizing the cycle count
of key-switching operation, which is the costliest subroutine
in FHE. We observe around 40% reduction in the latency at
the cost of around 20% increase in the area.

A memory conservative design approach is followed to
save on-chip memory elements for useful computations. A
customized on-chip memory is designed to store residue
polynomials inside the RPAU. Even for a large polynomial size
with 214 coefficients, the on-chip memory is able to store all
the residue polynomials during a homomorphic multiplication
and key-switching, therefore eliminating the need for any off-
chip data exchange during a computation (which is very slow).
We are the first to report fully on-chip computation of the two
FHE subroutines for such large-degree polynomials.

At the next level of the implementation hierarchy, multiple
RPAUs are instantiated and interconnected. RPAU-to-RPAU
data exchanges happen during key-switching and rescaling
subroutines of FHE. Finding an optimal way of interconnect-
ing the RPAUs is critical due to two reasons. Firstly, because
each RPAU consumes a large area and has thousands of bits
of input/output ports, their placement on the design-platform
becomes a challenging engineering problem. Several works,
e.g., [28], [29] bypassed that engineering problem by assuming
data exchanges happen via a shared off-chip memory. Sec-
ondly, a slow data exchange will have a drastic impact on the
performances of the key-switching and rescaling subroutines.
We studied different ways of interconnecting the RPAUs and
found that a ‘Ring’ interconnection is the most optimal in
reducing the number of RPAU-to-RPAU wires. During the
key-switching and rescaling, data exchanges between RPAUs
happen through the ring without any hazard. The proposed
ring is crucial in overcoming SLR-to-SLR wire limitations in
large Xilinx FPGAs and making placement feasible.

Besides the above-mentioned main contributions, we make
optimizations at the lower levels of the implementation hi-
erarchy where polynomial and coefficient operations are per-
formed. We implement a unified and multicore NTT-multiplier
with optimal scheduling for memory reads and writes. We use
hardware-friendly parameters (e.g., word-size, primes, etc.)
and parallel algorithms to perform fast modular arithmetic.

The paper is organized as follows. Sec. II presents a brief
mathematical background that will be useful to understand the
paper. Next, the accelerator architecture is realized hierarchi-
cally starting from low-level polynomial arithmetic units in

Sec. III and then organizing different compute and memory
elements in Sec. IV. Our main contributions are in Sec. IV.
Detailed experimental results and comparisons are provided in
Sec. V. The final section draws the conclusions.

II. BACKGROUND

In a typical homomorphic encryption protocol, there are
two parties: a client and a cloud server. The cloud contains
data encrypted (i.e., ciphertext) by the client, and the client
performs computations on its encrypted data directly in the
cloud. At the end of this protocol, the client receives the
encrypted results from the cloud and performs decryptions to
recover the plaintext results.

An ideal lattice-based homomorphic encryption scheme
works as follows. Let, a client’s secret-key be sk = (1, s) ∈
R2

Q and the corresponding public-key be pk = (b, a) ∈ R2
Q.

Each key is a pair of polynomials in the polynomial ring
RQ where Q is the coefficient-modulus. Client encrypts a
message m using pk and obtains the ciphertext ct ← (c0 =
r · b + e0 + m, c1 = r · a + e1) ∈ R2

Q where ei is a
Gaussian distributed error-polynomial. Let, a cloud contains
two ciphertexts ct = (c0, c1) and ct′ = (c′0, c

′
1) ∈ R2

Q of the
client as encryptions of messages m and m′ respectively. The
cloud can compute a valid encryption of m + m′ simply by
adding the two ciphertexts as ctadd ← (c0+c′0, c1+c′1) ∈ R2

Q.
Computing an encryption of m ·m′ is relatively complex and
involves several steps. First, the two ciphertexts are multiplied
to obtain ctmult = (c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1) ∈ R3

Q.
This intermediate result has three polynomial components and
could be decrypted using (1, s, s2) but not using sk = (1, s).
Next, a special operation known as the ‘Key-Switching’,
is used to transform the three-component ciphertext ctmult
(which is decryptable under (1, s, s2)) into a two-component
ciphertext ctrelin decryptable under (1, s). In this context, the
key-switching is called re-linearization as it obtains a linear
ciphertext from a quadratic one.

The above-mentioned general framework is used in sev-
eral lattice-based FHE schemes, e.g., BGV [9], BFV [15],
and HEAAN [10]. Our instruction-set accelerator Medha has
been designed keeping in mind the above-mentioned general
framework, and as a case study, Medha has been optimized
and implemented for an RNS variant of the HEAAN scheme
which is popularly known as the ‘RNS-HEAAN’ scheme [10].
In RNS-HEAAN, the ciphertext modulus Q =

∏L−1
i=0 qi is

a product of small primes qi. These primes form the RNS
basis of the implementation. With the application of RNS, a
polynomial a ∈ RQ is represented as a vector of L residue
polynomials (hence small coefficients) in the RNS basis. The
biggest advantage is that these small-coefficient residue poly-
nomials can be processed efficiently and in parallel. Hence,
RNS-HEAAN is more efficient and implementation-friendly
than the original HEAAN scheme [11].

Due to the page limit, we briefly describe the RNS-HEAAN
scheme. To get a detailed description of RNS-HEAAN, the
readers may follow the original publication [10]. To use RNS-
HEAAN in an application, the first step will be to set up
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Fig. 1. Implementation hierarchy of homomorphic encryption. Key genera-
tion, encryption, and decryption are performed on the user side. These user-
side operations also include encoding, decoding, and Gaussian sampling at
the lowest level. Homomorphic evaluations on ciphertexts using HE. Add,
subtract, multiply, key-switching, etc., are performed at the cloud side. Our
hardware accelerator is designed for accelerating cloud-side operations which
are significantly more expensive than user-side operations.

the scheme parameters such as polynomial-degree, modulus
size, RNS-basis, etc., depending on the multiplicative depth
required by the application. After that, a client generates its
private-key sk = (1, s) ∈ R2

Q, public-key pk = (b, a) ∈ R2
Q

and a special key KSK = (KSK0, KSK1) for performing the
key-switching operation after a ciphertext multiplication. Each
of KSK0 and KSK1 is a vector L of polynomials where each
polynomial resides in RpQ and p is a special prime modulus.
After generating the keys, the client sends its public and key-
switching keys to the cloud. Due to efficiency reasons, the
cloud keeps these keys in the RNS representation and the NTT
domain. The Number Theoretic Transform or NTT enables fast
polynomial multiplications (we will see it later). Note that in
the RNS representation, a polynomial in RQ (or RpQ) is a
vector of L (or L + 1) residue polynomials. Hence, each of
KSK0 and KSK1 has L·(L+1) residue polynomials. The Client-
side operations are relatively a lot simpler than the Cloud-side
operations. Our Medha accelerates the Cloud-side operations.
RNS-HEAAN subroutines used in the Cloud: In the follow-
ing part, we use the notation Ql to represent the ciphertext-
modulus at level l and Ql =

∏l−1
i=0 qi with l ≤ L. It implicitly

performs all arithmetic operations on the residue polynomials.

• HE.Add(ct, ct′): It adds the respective polynomials of the
two ciphertexts and outputs the result.

• HE.Mult(ct, ct′): It multiplies two input ciphertexts ct =
(c0, c1) ∈ R2

Ql
and ct′ = (c′0, c

′
1) ∈ R2

Ql
, and computes

d0 = c0 · c′0 ∈ RQl
, d1 = c0 · c′1 + c1 · c′0 ∈ RQl

,
and d2 = c1 · c′1 ∈ RQl

. The output is the non-linear
ciphertext d = (d0, d1, d2) ∈ R3

Ql
.

• HE.Relin(d, KSK): It re-linearizes the result of previous
step and produces a ciphertext that is decryptable under
the secret key. Let d2,i = d2 (mod qi) for 0 ≤ i < l.
Now compute ct′′ = (c′′0 , c

′′
1) where c′′0 =

∑l−1
i=0 d2,i ·

KSK0[i] ∈ RpQl
and c′′1 =

∑l−1
i=0 d2,i · KSK1[i] ∈

RpQl
. Finally, output the re-linearized ciphertext ctrelin =

(d0, d1) + ⌊p−1 · ct′′⌉ (mod Ql).

Fig. 1 shows the hierarchy of different operations that are
used in a homomorphic application. At the highest level of this

TABLE I
PARAMETER SETS

Param. Set (N, log2 Q) L+ 1 Mul. Depth Sec. Level1

Set-1 (214, 384) 7 6 151-bit
Set-2 (214, 438) 8 7 130-bit
Set-3 (214, 492) 9 8 115-bit

1: Results are obtained using lwe security estimator [1].

hierarchy, there are homomorphic procedures for performing
computations (e.g., addition, multiplication, key-switching,
etc.) on the ciphertexts. These high-level operations trans-
late into the arithmetic of polynomials: polynomial addition,
polynomial subtraction, polynomial multiplication, coefficient-
wise multiplication, coefficient-wise modular reduction, and
coefficient-wise scalar multiplication. Finally, the lowest level
of this hierarchy is composed of modular arithmetic.
Parameter set for our implementation: To implement
residue number system (RNS)-based FHE, we use 60 and 54-
bit prime moduli similar to SEAL [31] and HEAX [26]. By
increasing or decreasing the number of moduli in the RNS,
the multiplicative depth can be adjusted. We implement three
different versions of the accelerator with three-parameter sets,
which we refer to as Set-1, Set-2, and Set-3. They have the
coefficient modulus sizes 384, 438, and 492, respectively, with
the same polynomial degree (N = 214) as shown in Table I.

With these parameter sets, Medha could be used to ac-
celerate the cloud side homomorphic evaluations of various
approximate computations such as machine learning, and
neural network models, e.g., training a 2-layer CNN, logistic
and exponential computation up to depth 4 [21], etc.

In the next several sections, we describe how to implement
the levels of the pyramid of Fig. 1 starting from the lowest
level and then moving up gradually.

III. IMPLEMENTATION OF LOW-LEVEL ARITHMETIC

The lowest level of the implementation hierarchy (Fig. 1)
contains modular arithmetic, namely addition, subtraction and
multiplication. They are the most frequently used modules.
We use bit-parallel multipliers made of DSPs available in
FPGAs. To bypass the expensive modular reduction circuits
from [26], [32], we use pseudo-Mersenne primes in the RNS
base and perform very cheap modular reductions. Similar
reduction circuits are popular in lattice-based post-quantum
cryptography.

The next level of Fig. 1, performs the arithmetic of large-
degree polynomials. Polynomial multiplication is the most
expensive operation and they are computed in O(n log n) time
complexity using the Number Theoretic Transform (NTT)
method. Our NTT-based multiplier uses the decimation-in-
time (DiT) approach for the forward NTT and decimation-in-
frequency (DiF) approach for the inverse NTT (INTT) [30].

A. Parallel NTT architecture

For fast polynomial multiplications, we implement a multi-
core parallel NTT unit borrowing the best practices from [26],
[29], [32] including the routing and BRAM access optimiza-
tions from [29]. In addition, we apply an ‘address delaying’
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Fig. 2. Organization of memory and compute cores for efficient implemen-
tation of parallel NTT

technique that results in a significant reduction in the regis-
ter consumption without causing any performance overhead.
Fig. 2 shows a high-level organization of the memory elements
(for storing the polynomial-parts) and the butterfly cores (for
processing the coefficients) inside the NTT unit. The bus
matrix rearranges the processed coefficients before writing
them to the memory elements. We put multiple layers of
pipeline registers (shown in green in Fig. 2) to increase the
clock frequency. The number of parallel compute cores is
a design parameter that depends on area and performance
budgets. Our NTT unit uses c = 16 butterfly cores and
computes one NTT in around 7,168 cycles for polynomials
of N = 214 coefficients.

B. Unified butterfly core for DiT NTT and DiF INTT

We design a single NTT unit for the DiT NTT and DiF
INTT. We propose an ‘address delaying’ optimization that
causes significant reduction in the register consumption of the
pipelined butterfly cores. In DiT a new coefficient-pair (u′, t′)
is computed from (u, t) as follows: (u′, t′)← (u+ t · ω, u−
t · ω). Whereas in DiF a new coefficient-pair is computed as
(u′′, t′′) ← (u + t, (u − t) · ω). Our unified butterfly core
uses one modular multiplier, one modular adder, two modular
subtractors and a few two-to-one multiplexers. The modular
multiplier is heavily pipelined (around 20 stages) to keep the
clock frequency over 300 MHz.

Now we describe the address delaying optimization. Let
us consider the processing of coefficient pairs during DiT
NTT. After reading the coefficient t, computation of the
intermediate data ω · t progresses through a long chain of
pipeline registers present inside the modular multiplier. For
the correct computation of (u′, t′) ← (u + t · ω, u − t · ω),
u and ω · t must reach the inputs of the adder and subtractor
synchronously in the same cycle. In [29] both u and t are read
together from the memory and then u is passed through a long

Fig. 3. The timing diagram for our DiT method of NTT. Due to pipelined
datapath, the reading of the u coefficients is delayed so that we can add or
subtract them when the corresponding modular multiplication results t ·ω are
ready. The results of butterfly operations are written synchronously. For the
DiF method, the read-write happen oppositely: we read the u and t coefficients
synchronously but write them asynchronously. The notations &R and &W

are for reading and writing addresses respectively.

chain of redundant registers just to make sure that both u and
ω · t arrive together at the adder and subtracter.

Our pipeline strategy avoids the above-mentioned bloated
register consumption and saves 153K registers by simply
delaying the read of coefficient u from the memory. We keep
u and t in separate memory elements in Fig. 2 so that they
can be read separately just-in-time. The timing diagram in
Fig. 3 shows how the {u, t} coefficients are read during a DiT
NTT. Reading of the t-coefficients for the consecutive butterfly
operations is initiated several cycles (equal to the number of
pipeline stages in the modular multiplier) ahead of reading the
u-coefficients. As a consequence, each modular multiplication
result and the respective u appear synchronously at the inputs
of the adder and subtractor circuits for correct computation.

We extend the above-mentioned pipeline strategy to the DiF
method of INTT. The difference is that both u and t are read
simultaneously but the result coefficients are written separately
into the memory.

C. Twiddle factors during NTT

Optimized software implementations (e.g., SEAL [31]) and
also the hardware implementations [26], [32] save cycle count
of NTT by keeping all twiddle constants in large tables. As
previous hardware implementations [26], [32] indicated that
FHE is memory-bound, we follow a memory-conservative
design approach and compute the twiddle constants on the fly
and in parallel to the butterfly operations, therefore avoiding
large BRAM consumption.

A twiddle factor generation unit mainly consists of a
modular multiplier and one memory for keeping a few initial
constants. The multiplier is not an additional cost as it is reused
to parallelize coefficient-wise multiplication and modular re-
duction during dyadic operations.

IV. ARCHITECTURE OF THE HOMOMORPHIC PROCESSOR

We take the optimized polynomial arithmetic units from
the previous section and organize them to compute homomor-
phic subroutines, namely homomorphic addition/subtraction,
multiplication, key-switching, and relinearization. Medha is an
instruction-set architecture (ISA) and therefore programmable
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Fig. 4. Architecture of the Residue Polynomial Arithmetic Unit (RPAU).

to run the homomorphic subroutines flexibly by reusing
the same polynomial arithmetic units many times. Previous
works [29], [32] presented ISAs for accelerating homomor-
phic encryption, but their performance advantages remained
limited, e.g., only one order speedup [32] compared to SW
implementations. On the contrary, HEAX [26] organized its
polynomial arithmetic elements in a specific block-pipelined
manner to realize a key-switching unit that gives over two
order higher throughput compared to SW. The one order
speedup of HEAX over [32] demonstrated that block-pipelined
and specific FHE accelerators are much superior to pro-
grammable accelerators that reuse compute elements. We
organize compute and memory elements pragmatically and
realize a programmable accelerator that achieves more than
2× faster latency compared to HEAX. Our work shows that
FHE accelerators do not have to sacrifice programmability to
achieve high speed. The following subsections describe how
we organize compute and memory elements.

A. Design of Residue Polynomial Arithmetic Unit (RPAU)

In any RNS-based FHE, an arithmetic operator is applied
to a ‘vector’ of residue polynomials. The idea has some
similarities with the Single Instruction Multiple Data (SIMD)
processors. To benefit from such arithmetic parallelism [28],
Medha instantiates multiple high-level units for processing the
residue polynomials in parallel. These units are called the
Residue Polynomial Arithmetic Unit (RPAU) and they are
ISA. Any high-level instruction for Medha essentially gets
translated into instructions for the RPAUs.

Fig. 4 shows the organization of polynomial arithmetic
cores and memory elements inside our proposed RPAU. We
observe that the inner loop of key-switching or re-linearization
(see Sec. II) executes one NTT and several coefficient-wise
polynomial operations. Therefore, we keep two groups of
compute cores, namely RPAU.All and RPAU.Dyadic in
the RPAU. The RPAU.All group is capable of performing all
kinds of polynomial arithmetic operations fast using 16 cores.
The RPAU.Dyadic group can only perform coefficient-wise
(i.e., dyadic) operations using only 4 cores. The two compute
groups are executed in parallel during key-switching (or re-
linearization) and re-scaling (or mod-down) operations.

Fig. 5. Computation steps that are performed in the j-th RPAU during a
homomorphic multiplication followed by a key-switching operation. The tilde
is used to indicate that a data variable is in the NTT domain. Coefficient-wise
multiplication of two polynomials is denoted using ⋆.

Fig. 6. Parallel processing of Fig. 5 using two threads inside an RPAU.

Parallel execution of RPAU.All and RPAU.Dyadic: Our
RPAU can execute two instructions, one using RPAU.All
and the other using RPAU.dyadic, concurrently in parallel
and save around 40% cycles. The rationale behind this novel
design decision is explained as follows.

Fig. 5 shows data dependencies between the steps during
homomorphic multiplication and key-switching. We see that
some of the steps, e.g., d0,j , d1,j , and d2,j in the first block
can be performed in parallel. Inside the loop of the key-
switching, the steps are sequential due to data dependencies.
As the loop iterates several times, we can unrolling it and then
‘block-pipeline’ the loop-internals. We have different options
for applying parallel processing.

• Option 1: Running more than one NTTs in parallel inside
the RPAU will be useful if we unroll the key-switching
loop in Fig. 5. E.g., unrolling by a factor 4 will require 4
NTT units, therefore almost increasing the logic count of
RPAU by 4 times. Hence, this approach is not attractive.

• Option 2: Using only one NTT unit with more compute
cores. Compared to the previous option, this option will
be simpler as well as more effective in reducing the
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latency irrespective of data dependencies. E.g., instead of
using 16 cores in the NTT, if we use 32 or 64 cores then
we can reduce the cycle count of an NTT by a factor of 2
or 4 respectively. A potential problem is that we may not
see a similar reduction in the overall computation time
due to a slow-down in the clock frequency of the much
larger architecture. Another problem is that the number
of cores in NTT increases by powers of two, leaving no
room for a middle solution.

• Option 3: Use only one NTT unit in the RPAU and
reduce or completely hide the latency of the coefficient-
wise operations by executing NTT and coefficient-wise
polynomial operations in parallel. Using a few extra
modular adder and multipliers, we can compute these
cheap coefficient-wise operations in parallel to NTTs.
For example, using only four extra modular arithmetic
cores, we can compute two dyadic polynomial arithmetic
instructions (taking 2× 4, 096 cycles) concurrently to an
NTT (taking around 7,200 cycles) and effectively reduce
the latency of steps 6-8 in Fig. 5 to the latency of one
NTT only.

We apply Option 3 as it is computationally fast and at
the same time requires a minor increase in the logic area.
The RPAU.Dyadic group in Fig. 4 executes coefficient-wise
instructions in parallel to NTT instructions in the RPAU.All
group. We observe 40% reduction in the latency at the price of
only 20% increase in the logic resources. Fig. 6 gives a timing
diagram and shows how we can speedup the computation of
Fig. 5 using the two parallel compute groups.

B. Organization of on-chip memory inside RPAU

The polynomials operands in FHE are large (one ciphertext
is 1.7 MB for Set-2). All previous FPGA implementations
required expensive off-chip data exchanges. We are the first to
report fully on-chip memory based execution of homomorphic
multiplication, key-switching and re-scaling. The amount of
accessible on-chip memory in our FPGA is limited. Therefore,
we followed memory-conservative design approach for the
low-level polynomial operations, e.g., on-the fly generation
of twiddle constants (Sec. III-C) instead of large tables and
in-place NTT. In the end, we found that we have sufficient
BRAMs and URAMs in U250 FPGA to keep all the operand
ciphertexts and large key-switching keys on-chip. On the
contrary, HEAX [26] used large tables and split-BRAMs
for its NTTs, and dedicated BRAMs for each stage of its
block-pipelined architecture. As a consequence, for Set-2 with
N = 214, HEAX needs to perform off-chip data transfer
during key-switching. In the following part, we describe how
we combine available BRAMs and URAMs to realize RPAU’s
on-chip memory unit.
Peak memory requirement: Optimizing the steps of homo-
morphic multiplication + key-switching, we observe that the
peak memory per RPAU is equal to storing seven residue
polynomials (ciphertext-dependent data), and additional 2L
residue polynomials for the key-switching-key. E.g., for Set-2
we have L = 7 and therefore we need to store 21 residue

Fig. 7. Organization of memory elements inside the memory bank. One
memory bank is connected to a one core of the NTT unit. There are 16 such
memory banks inside each RPAU. Any residue polynomial is split into 16
fragments, and one fragment is stored in one RPM-i of a memory module.

polynomials on-chip to eliminate off-chip memory access
during key-switching. Neither BRAMs nor URAMs alone in
U250 could such a big data, but their combination can.
Memory unit: Quantitatively, one residue polynomial needs
32 BRAM36k or 4 URAM slices. If a polynomial is stored
using 4 URAMs, then due to URAM’s i/o port limitation we
cannot use all 16 cores of the NTT unit. Hence, designing the
memory unit of the RPAU requires careful considerations of
the computation and architectural constraints.

We make the memory organization modular inside the
RPAU. To provide fast data access during NTT, we assign
one ‘memory-bank’ exclusively to each butterfly core. One
‘memory bank’ is a heterogeneous collection of BRAMs and
URAMs as shown in Fig. 7. The memory-bank of the i-
th core of NTT keeps only the i-th fragments of all the 21
residue polynomials. In Fig. 7 the abbreviation ‘RPM’ stands
for the residue polynomial memory. There are seven RPMs
as there are seven ciphertext-dependent residue polynomials.
Each RPM stores 1/16-th of the consecutive coefficients, i.e.,
1,024 coefficients for N = 214.

In the figure, we use the peach and light green colors to rep-
resent RPMs that are based on BRAMs and URAMs respec-
tively. RPM-4, 5, and 6 are composed of BRAM36k slices and
are physically separated. Hence, they can be read/written in
parallel. Whereas, RPM-0-to-3 are implemented using a single
pair of URAMs and are logically separated. Hence, only one
of them can be read and only one of them can be written every
cycle. Programmer decides which polynomial goes to which
RPM taking care of data dependencies and access patterns of
the FHE subroutine. The ‘Memory access controller’ block is
responsible for handling memory accesses of the two parallel
computing groups RPAU.All and RPAU.Dyadic.

C. Interconnecting multiple RPAUs

The designed RPAU from the previous section is a fun-
damental compute element in our programmable architecture.
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Just using one RPAU in a time-shared manner we can process
an FHE subroutine. For fast computation time, we instantiate
several RPAUs in parallel. As key-switching and re-scaling
operations require exchanging the residue polynomials for
different moduli, the RPAUs must perform data exchanges
between them. If performed via a shared memory, such data
exchanges will slow down the FHE operations. On the other
hand, connecting the RPAUs in the form of a star network
will bring placement hurdles or may even make an actual HW
implementation impossible on FPGAs. We present a novel way
of connecting the RPAUs and optimally solve the problem.

First, we introduce the challenges in interconnecting the
RPAUs and then describe our solution. Like other large-
scale Xilinx FPGAs [36], our Alveo U250 platform uses SSI
technology and consists of four ‘semi-separated’ SLR regions.
Two neighbouring SLRs are connected using a limited number
of wires. We observe that one SLR could fit up to three RPAUs
and hence at least three SLRs are needed to implement Medha.
Interconnecting the RPAUS must take SLR-SLR connection
constraint into account to make implementation feasible.

Additionally, the communication unit between of the FPGA
resides in SLR1. An input ciphertext should be sent efficiently
and stored in the memory blocks of the RPAUs that reside in
the other SLRs. Similarly, output polynomials should be read
from different SLRs to SLR1.

The naive solution would be connect the RPAUs in a ‘Star’
network keeping separate paths for each connection. We found
that such an interconnection complicates the routing, bolts the
number of nets crossing the SLRs, and ultimately reduces the
clock frequency to around 50 MHz or less.

We propose a ’Ring’ interconnection of the RPAUs to
reduce the routing: only two neighbouring RPAUs are con-
nected. In many general-purpose applications, a ring net-
work is considered slow due to its serial communication.
Interestingly, after analyzing the computation steps of key-
switching and re-scaling, we find that the exchange of residue
polynomials between the RPAUs could be transformed into
a broadcasting protocol where only one RPAU broadcasts a
polynomial at a time and all the remaining RPAUs receive.
Such a transformation does not add any computation overhead.

Therefore, in Medha we connect neighbouring RPAUs only
and the arrangement of all the RPAUs looks like a ring. Each
RPAU sends its data to any other RPAU through a chain of
RPAUs. In Fig. 8 we show placement of RPAUs on the floor
of the FPGA. The ring is marked with a red line.

For external communication signals, we followed the ’ring’
connection for sending data signals from SLR1 to other SLRs
as shown in Fig. 8.

D. Program Execution Unit

Our Medha is an instruction set architecture with its own
program execution unit. An RPAU receives its instructions
from a program execution unit. Using dedicated program
controllers for each RPAU we can run asynchronously when
there are no data dependencies between the RPAUs. However,
the key-switching operation requires periodic data exchanges

Fig. 8. The proposed ’ring’ structured floorplan to minimize routing cost for
the implementation with 7 RPAU units.

Fig. 9. CPU-FPGA interface and software stack

between RPAUs. Hence, we do not allocate dedicated program
controllers for any RPAUs. By analyzing the computation
steps in the homomorphic subroutines, we observe that most
of the time the RPAUs could execute the same instruction
in a SIMD manner. Only during the rescaling operation, the
program execution flow splits into two parallel branches: a
subset of the RPAUs follow the first branch and the remaining
RPAUs follow the second branch. Hence, Medha uses only
two program controllers inside its program execution unit. We
would also like to mention that by reducing the number of
program controllers to two from ‘one for each RPAU’ we
greatly simplify the programming model of Medha.

E. Hardware-Software Interfacing of the Overall System

We implemented a proof-of-concept software stack (Fig. 9)
consisting of a SEAL library, User-Mode Driver (UMD),
and Kernel Mode Driver (KMD). The UMD provides an
interface layer for SEAL, and KMD supports the scheduling
of jobs. When a SEAL command (supported by Medha) is
executed, the corresponding UMD-API is called to submit
the command with the required parameters to KMD’s job
queue as a job. Next, KMD’s job scheduler sends the job
to Medha. When Medha completes its task, the result is
read through the PCIe interface. All data communications are
performed using XDMA [37] for fast transfers. We use the
MicroBlaze (Xilinx’s microprocessor) unit for controlling the
communication between the host CPU and the RPAUs, and
also for monitoring the entire FPGA system.

F. Implementations on other platforms

Although we implemented Medha in Alveo U250, the
architecture is not tied to the specific FPGA. Large Xilinx
FPGAs use the SSI technology [36] to combine multiple Super
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Logic Regions (SLR). Therefore, the proposed ring of RPAUs
(Sec. IV-C) will be essential to implement multi-RPAU FHE
architecture on large Xilinx FPGAs.

Multi-FPGA implementation of Medha will enhance its
performance further and enable implementations for larger
parameter sets. Each FPGA will host a set of RPAUs. Boot-
strapping will definitely need a stack of large FPGAs due to
its sheer complexity. As FPGA-FPGA communication faces
wiring constraints similar to SLR-SLR communication, the
proposed ring interconnection of RPAUs can be extended to
the multi-FPGA setting by connecting the FPGAs in a ring. We
consider developing a multi-FPGA implementation of Medha
as a future work as we anticipate such work will also take a
long design time, a year or more.

Medha can be ported to ASIC technologies. Medha has been
described using Verilog RTL. Only the BRAMs/URAMs and
DSP multipliers are Xilinx IPs. In ASIC, BRAMs and URAMs
will be replaced by dual-port SRAMs with the same functional
and timing behavior. Similarly, the DSP multipliers will be
replaced by normal multipliers. Interesting, the proposed ring
interconnection of RPAUs will be ideal for an ASIC imple-
mentation. In the ring, neighboring RPAUs will be placed side
by side on the layout of the chip. We anticipate that Medha’s
clock frequency will improve by three to five times depending
on the ASIC technology.

V. RESULTS

We described Medha in Verilog HDL and implemented
in Xilinx Alveo U250 card. We used Vivado 2019.1 tool
with a performance-optimized implementation strategy. The
implementations with the Set-1, Set-2, and Set-3 from Table I
employ 7, 8, and 9 RPAUs respectively.

A. Timing results

The proposed implementation with Set-1 runs at 250MHz,
and the implementations with Set-2 and Set-3 run at 200MHz.
In Table II, we present the cycle count, latency (in µ sec)
and throughput results for each low-level instruction and
high-level operations for all three designs. The cycle counts
were collected using a hardware-based counter. Since each
design employs RPAUs as the number of ciphertext coeffi-
cient modulus (i.e. the design with Set-1 has 7 RPAUs), the
low-level instructions have the same clock cycles for each
implementation. The low-level instructions for synchronizing
main/dyadic cores, synchronizing the program controllers, and
ending the program do not consume any clock cycles, thus
they are not included in Table II. Since we use only on-
chip memory (i.e. registers and BRAMs/URAMs) during the
computations, the proposed architectures do not have any DDR
data transfer overhead.
Speed of homomorphic multiplication and relinearization:
As Table II reports only the total cycle counts obtained
from the HW counter, we give an explanation of the count
values. The HE.Mult operation is performed using coefficient-
wise multiplication and addition instructions. HE.Relin which
is a key-switching operation, is used to linearize the result

TABLE II
PERFORMANCE OF EACH INSTRUCTION/OPERATION

Instruction/Operation Clock Lat. Throug.
Cycles (µ sec) (per sec)

In
st

ru
ct

io
ns

N -pt NTT ≈ 7,200 36 27,777
N -pt INTT ≈ 7,200 36 27,777
RPAU-to-RPAU broadcast ≈ 512 2.56 390,625
Scale by q−1

i (mod qj) ≈ 512 2.56 390,625
C.wise Add/Sub/Mult (main) ≈ 512 2.56 390,625
C.wise Add/Sub/Mult/MAC (dyd) ≈ 4,096 20.48 48,828

Se
t-

1 Hom. Add 1 1,134 4.54 220,264
Hom. Mult. + Relin. 1 88,411 353.64 2,827

Se
t-

2 Hom. Add 1,134 5.67 176,366
Hom. Mult. + Relin. 96,740 483.70 2,067

Se
t-

3 Hom. Add 1,134 5.67 176,366
Hom. Mult. + Relin. 105,069 525.35 1,903

1: The implementation with 250MHz.
All cycle counts are reported using a hardware-based counter.

of HE.Mult. As shown in Fig. 5, HE.Relin requires each
d̃2,j polynomial in modulo qj to be reduced by the other
moduli. Hence, all d̃2,j polynomials are transformed to the
time-domain first using one INTT instruction in the parallel
RPAUs. Then, the j-th RPAU boradcasts the polynomial
d2,j to the other RPAUs through the ring. Received d2,j
are modulo-reduced by the other moduli and then converted
back to the NTT domain. This procedure is repeated for
j = 0, 1, . . . , L − 1 as shown in Fig. 5. Note that, the
coefficient-wise multiplications and accumulations in the key-
switching loop are performed in parallel to the NTTs using
RPAU.Dyadic. Due to such parallel processing, the overall
cycle count of HE.Relin is primarily determined by the
latency of computing 1 INTT followed by L NTTs. Therefore,
using the cycle counts of NTT and INTT from Table II, we
can estimate that HE.Relin will take a couple of thousands
more than 51K cycles for Set-1 (L = 6), 58K cycles for
Set-2 (L = 7), and 65K cycles for Set-3 (L = 8). The
accurate cycle counts in Table II are larger as they include
ciphertext multiplication, HE.Rescale, and some additional
dyadic operations that do not occur in parallel to the NTTs.
The cost of HE.Rescale is explained next.

Speed of homomorphic rescaling: HE.Rescale is used to
rescale a ciphertext. It takes the two residue polynomials of
the extra RNS modulus, e.g., the special modulus p, and then
converts them to the time domain by applying two INTTs.
Then, the two polynomials are broadcast by its RPAU through
the ring. The remaining RPAUs reduce the two polynomials
and then convert them back to the NTT domain executing
two NTT instructions. Then coefficient-wise scaling takes
place, and finally the resultant polynomials are added to the
ciphertext polynomials of the remaining moduli. Therefore,
we see that the latency of HE.Rescale is primarily the cost
of executing 2 INTTs and 2 NTTs.

But we do better than that by overlapping the second INTT
of the extra residue polynomial with the first NTT in the
remaining RPAUs. Due to that optimization, a total of ≈26,208
clock cycles are required for the HE.Rescale operation.
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TABLE III
RESOURCE UTILIZATION OF ARITHMETIC MODULES FOR SET-1

Modules LUTs REGs BRAMs URAMs DSPs
Processor 670,720 537,162 1,080.5 673 2,527
⌊Platform 128,177 132,102 296.5 1 7
⌊Core 542,124 404,333 784 672 2,520
RPAU Unit 64,090 47,627 112 96 360
⌊Memory Core 13,754 999 96 96 –
⌊Dyadic Core 12,243 3,566 – – 40
⌊Main Core 37,981 40,986 16 – 320
Butterfly Unit 1,545 1,592 – – 10
⌊Modular Mult. 535 749 – – 10
TF Gen. Unit 755 929 1 – 10

TABLE IV
RESOURCE UTILIZATION RESULTS ON ALVEO U250 CARD

(N, log2 Q)
LUTs REGs BRAMs URAMs DSPs

(% utilization)

(214, 384) 670,720 537,162 1,080.5 673 2,527
(39%) (16%) (40%) (53%) (20%)

(214, 438) 746,730 581,731 1,192.5 769 2,887
(43%) (17%) (44%) (60%) (23%)

(214, 492) 824,865 637,381 1,304.5 865 3,247
(48%) (19%) (48%) (67%) (26%)

B. Resource Utilization results

Table III shows the resource requirements for the complete
processor architecture (with Set-1), one RPAU, one butterfly
core, and one twiddle factor generation core. The area figures
for the complete processor include the ‘Platform’ unit that is
responsible for the communication between the FPGA and the
host CPU.

Table IV shows the resource requirements for all three
designs (Set-1, 2, and 3). Excluding the URAM utilization,
we use approximately half of the available resources in Alveo
U250. We followed a conservative design approach to ensure
that at the completion of the project the entire processor fits
in the FPGA with a high probability. If more design effort is
added, it might be possible to reduce the cycle count further
by instantiating more compute cores, e.g., 32 butterfly cores.
However, there can be a reduction in the clock frequency due
to the increased complexity.
Power consumption: Alveo U250 FPGA card can have a
215W maximum power consumption level [35] with a typ-
ical consumption level of around 100W. For Medha, Vivado
reported on-chip power consumption of 55.3W, 50.6W and
55.2W for Set-1, 2 and 3 respectively. Although the imple-
mentation with Set-1 has fewer RPAUs, it runs at a higher
clock frequency (250 MHz unlike 200 MHz) and therefore
reports a higher power consumption compared to Set-2 and 3.

C. Benchmarking of homomorphic applications

Transforming plaintext applications into optimized homo-
morphic applications is generally not straightforward [14]. In
this work, we focused on the processor architecture design and
considered FHE application development and benchmarking as
future works. Similar to HEAX [26] and F1 [16], we provide
estimates of application benchmarking.

Our parameter sets are sufficient for evaluating logarithmic
and exponential functions which are used for approximate

computations [20]. PrivFT implementation [4] proposed for
text classification using homomorphic encryption runs a shal-
low network consisting of an embedding (hidden) layer and an
output fully connected layer. For the parameter N = 214 and
log2 Q = 360 (i.e., L = 5), PrivFT inference takes a ciphertext
and performs three multiplications with scalars, 61+14=75
additions, and 14 rotations. Medha with Set-1 can perform
the same operation in 0.36 seconds and achieve 1.8× speedup
over the GPU implementation of PrivFT [4].

In [8], the privacy-preserving forecasting application in
the smart grid scenario uses a GMDH network having three
hidden layers. It is evaluated for a smaller parameter (namely
N = 212 and log2 Q = 186) with L = 3). Medha’s Set-
1 parameter is overly larger than theirs, yet Medha performs
this evaluation 150× faster. Every half an hour, Medha can
evaluate the energy price forecast for 60, 000 apartments,
which is sufficient for a small city, thus making Medha useful
in the real-world scenario.

D. Comparison with related works

Comparisons with SEAL: There are various highly-
optimized software implementations of the HEAAN scheme
based on homomorphic encryption libraries such as Microsoft
SEAL [31] and Palisade [23]. We compare the performance
of Medha with the single-threaded software implementation
of the RNS-HEAAN on highly-optimized homomorphic en-
cryption library Microsoft SEAL v3.6 [31]. To present a fair
comparison, we modified the SEAL accordingly to work with
the parameter sets defined in Table I. The latency of high-level
homomorphic operations in SEAL [31] and its comparison to
Medha for Set-1, Set-2 and Set-3 are presented in Table V.
The timing results of SEAL are obtained on an Intel i5-6200U
CPU @ 2.30GHz × 4 with 16 GB RAM using gcc version
9.3 in Ubuntu 20.04.2 LTS. The proposed architectures
with Set-1, Set-2, and Set-3 showed up to 79.1×, 73.7×,
and 82.7× performance improvements, respectively, for high-
level homomorphic operations compared to the SEAL-based
implementation. The effectiveness of our approach increases
with the larger parameter sets. In Table V, we also provide
the performance results of SEAL from a single-threaded Intel
Xeon(R) Silver 4108 running at 1.80 GHz, which was used
in the HEAX paper [26]. Compared to this result, Medha
shows 137.8× speed-up for homomorphic multiplication and
relinearization operations.

Intel HEXL [7] uses AVX-512 intrinsics and gains around
1.8× speedup over SEAL. For Set-2, on an Intel i9-7900X
CPU running at 3.3 GHz, results show that Medha provides
28.5× speed-up for homomorphic multiplication and relin-
earization. While FPGA prototyping is the first step, an ASIC
implementation of Medha will increase (anticipated 3 to 5×
or more depending on technology) the operating frequency of
Medha and thereby increase the ratio of hardware acceleration.

Comparisons with HEAX: The fairest comparison is with
the HEAX processor [26]. It is the only prior art for actual
FPGA-based implementation of RNS-HEAAN and also with
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TABLE V
LATENCY COMPARISON WITH THE SEAL [31] AND HEAX [26]

Work Hom. Add Hom. Mult. + Relin.
Se

t-
1 Medha 1 4.54 µs 353.64 µs

SEAL [31] 359 µs 24,629 µs
(79.1×) (69.6×)

Se
t-

2

Medha 5.67 µs 483.70 µs

SEAL [31] 418 µs 33,844 µs
(73.7×) (70.0×)

SEAL [26] – 66,666 µs
– (137.8×)

HEAX [26] – 1,182.27 µs
– (2.4 ×)

Se
t-

3 Medha 5.67 µs 525.35 µs

SEAL [31] 469 µs 39,143 µs
(82.7×) (74.5×)

1: The implementation with 250MHz.

the same parameter set (Set-2). HEAX and Medha follow
significantly different design methodologies. Unlike Medha,
HEAX unrolls the key-switching of RNS-HEAAN into steps
and then instantiates one dedicated block per step to attain
high throughput. These blocks are cascaded to realize a block-
pipeline architecture. There are a total of six block-pipeline
stages in the implementation of the key-switching operation.
During a key switching, all the residue polynomials are pro-
cessed one-by-one through the pipeline stages. Thanks to such
unrolled and block-pipelined architecture, HEAX achieves
a very high asymptotic throughput of 2,616 homomorphic
multiplication including key-switching operations per second
at 300MHz on a Stratix10 FPGA for the Set-2 parameter.

In comparison, Medha is an instruction-set architecture with
programmability, and it reuses the RPAUs again and again for
computing different steps of various homomorphic routines.
Naturally, Medha is a low latency-oriented architecture. It still
achieves a competitive throughput (i.e., time/latency of one
operation) of 2,067 homomorphic multiplications including
key-switching operations per second while running at a lower
clock frequency of 200MHz.

Latency-wise, Medha is more than 2× faster than HEAX
as shown in Table V. As the latency figures of HEAX are not
specified in [26], we estimate them based on the computation
flow diagram from Table 5 and Figure 6 of [26] as follows.
There are six stages of block-pipeline processing during a key-
switching (the last row or Set-C of Table-5 in [26]) and the
stages have been designed to have similar cycle counts. The
first stage uses an 8-core inverse-NTT with at least 14,336
cycles latency. Thus, each stage has roughly 14,336 cycles of
latency. As there are seven RNS-moduli and 18 pipeline stages
including a one-core INTT stage with 114,688 cycles latency
(see Figure 6 of [26]), computing a full key-switching will
take at least 358,400 cycles. In comparison, our Medha has a
latency of 96,740 cycles only for computing one homomorphic
multiplication plus a key-switching.

From an architect’s perspective, Medha has four main
advantages over HEAX: (i) Medha shows better latency per-
formance with a competitive throughput, (ii) Medha uses only
on-chip memory during the computations while HEAX needs
off-chip memory communication during the key switching op-

eration for Set-2, (iii) HEAX uses a fixed-pipelined architec-
ture tailored for HEAAN scheme while Medha’s instruction-
based architecture allows flexibility, and (iv) HEAX uses
separate arithmetic units to perform homomorphic multipli-
cation and relinearization, and it does not perform rescaling,
homomorphic addition and subtraction operations in hardware
(see Fig. 7 in [26]). We should also note that the design
principles of Medha were not selected to outperform HEAX.
Our main goal was to gain fast computation time while keep-
ing programmability. Our results show that our instruction-
set architecture can outperform a block-pipelined and specific
architecture in terms of latency. Our results bring a new
direction to the design space, otherwise HEAX’s one order
superiority over the previous programmable processors [29],
[32] would have indicated that specific and block-pipelined
processors are the way to accelerate FHE in HW.

We will discuss a bit more on the latency-vs-throughput
figures. Thanks to the significantly lower latency, Medha
would be advantageous for practical homomorphic applica-
tions compared to HEAX. The asymptotic throughput of
HEAX is achievable only if we assume that in the application
there are plenty of data-independent homomorphic operations
most of the time and that there is no overhead at the host
side (e.g., a SW system) concerning managing the input-output
ciphertexts. Note that, already due to the batching of messages,
a homomorphic operation implicitly performs the operation on
N/2 = 8, 192 slots in parallel. In real-life applications, there
will be data dependencies and additionally, a SW host (which
is running the application and using the HW as a service) will
introduce some overhead in the processing of operand and
result. Hence, the overall processing time of an application will
greatly be determined by the latency instead of throughput.

There is one more advantage of using a low-latency
system from a full-stack implementation point of view.
Different homomorphic compilers have been designed to
translate plaintext applications into homomorphic applications
automatically. These compilers try to reduce execution time
by reducing the number of homomorphic multiplications and
depth of multiplication chains. If the latency is used as a
‘cost’-metric, then the optimization task for a homomorphic
compiler becomes simpler. On the other hand, if the
accelerator is throughput-oriented, then the tasks for a
homomorphic compiler become more challenging as it has
to identify different ways of parallelization and also make
necessary arrangements for handling the parallel ciphertexts
(which are large in size).

Comparisons with F1: Concurrent to our work, [16] proposed
an instruction-based wide-vector processor architecture ‘F1’
and presented RTL simulation-based performance estimates.
In 14nm/12nm process, RTL synthesis of F1 reported an esti-
mated chip area of 151 mm2 and 1 GHz operating frequency.
F1 achieves a very high throughput thanks to its fully unrolled
and pipelined arithmetic units. They report a throughput of
500,000 homomorphic multiplication and relinearization per
second at 1 GHz for Set-2 parameter. However, latency figures
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for homomorphic operations are not presented in F1.
In this paragraph, we present a normalized performance

comparison between F1 and Medha. F1 has 16 high-level
clusters, each having one ‘unrolled’ NTT and many dyadic
units. The unrolled NTT uses a condensed 2D array of butterfly
circuits. The number of multipliers in one cluster of F1 is
roughly 50% of the total multipliers available in one Alveo
U250 board. If we assume that the FPGA keeps one cluster
of F1 and runs at 200 MHz, then the performance of F1
will drop by 80 times (16 times due to the use of only
one cluster and another 5 times due to slower frequency),
excluding the overhead of off-chip access. In this scenario, F1
and Medha will have almost the same speed. If the overhead
of off-chip access is considered, then F1 will be slower than
Medha. In reality, F1 may not be implementable in present-
day FPGAs. Unrolled NTT was first proposed in [18] and
was found to be impractical in FPGAs. As the multipliers are
distributed homogeneously on the FPGA floor, and SLR-to-
SLR connections are limited in number, it is likely that F1’s
unrolled NTT may not fit in FPGAs. The authors of F1 did
not report any FPGA-based results.

There are several additional limitations of the F1 architec-
ture. Firstly, F1 uses 32-bit moduli whereas Medha uses 60
and 54-bit moduli similar to SEAL. Thus F1 supports lower-
precision arithmetic of encrypted real numbers than Medha
and SEAL. With 32-bit moduli, Medha could accommodate
around 16 RPAUs and therefore support around 15 multiplica-
tive levels. Secondly, unlike Medha’s efficient ring structure,
F1 uses a crossbar network for realizing cluster-to-cluster
communication. The proposed crossbar network uses a 10
mm2 chip area with 19.6W design power. The Medha’s ring
structure limits the direct communication of an RPAU to only
its two neighboring RPAUs, hence it reduces the number of
interconnects significantly.

The biggest limitation of F1 is that there is no real ASIC im-
plementation of it. Its simulation-based performance estimates
will be impressive only if a real F1 chip is built. Authors of
F1 consider chip-simulation as future work. Bypassing FPGA-
based prototyping, fabricating a silicon chip from the RTL of
F1 will involve major engineering.
Comparisons with other HW implementations: The works
in [29], [32], [34] present the FPGA implementations for the
high-level operations of the BFV scheme. In [29], the authors
proposed an implementation targeting vert large parameter
set (namely N = 215 and log2 Q = 1228) and their im-
plementation suffers from off-chip memory communication
requirements. The works in [32] and [34] use smaller pa-
rameters (namely N = 212 and log2 Q = 180) and shows
performance improvements for homomorphic multiplication
operation compared to the FV-NFLlib. Our design shows better
performance and supports significantly larger parameter set.

There are simulation works targeting acceleration of the
BFV scheme using ‘compute-in-memory’ approach, where
computations are performed using arithmetic units very close
to the memory elements [25], [33]. As these works use a
significantly different platform, presenting a fair comparison

between these works and Medha is not feasible.

Comparisons with GPU implementations: To the best of
our knowledge, there are only two GPU implementations for
the RNS-HEAAN scheme in the literature [4], [19]. For the
parameter set N = 214 and log2 Q = 360, [4] performs
homomorphic addition and homomorphic multiplication plus
relinearization in 0.04 ms and 0.74 ms, respectively. For a
similar parameter set (Set-1), our architecture shows 8.8× and
2.1× better performance compared to their system running on
an NVIDIA DGX-1 multi-GPU system with 8 V100 GPUs for
homomorphic addition and homomorphic multiplication plus
relinearization, respectively. Also, their multi-GPU platform
NVIDIA DGX-1 has a reported maximum power consumption
level of 3,500W which is 16× higher compared to the Alveo
U250 board. The NVIDIA DGX-1 platform costs $49,000
which is 6.3× higher than the Alveo U250 board (at peak
power). Therefore, Medha running on an Alveo U250 board
would be a more power-efficient and cheaper accelerator
solution for homomorphic applications.

The work in [19] supports bootstrapping and focuses on
memory-centric optimizations for an NVIDIA Tesla V100
GPU. Their work targets very large parameter set, namely
N = {216, 217} and log2 Q ≈ 2300. Therefore, it is not
easy to perform a fair comparison between their work and
our architecture. There are also other GPU-based accelerator
implementations in the literature targeting other HE schemes
(i.e., BFV) [3], [5], [6], [13] or partial operations such as
NTT [22], [39].

VI. CONCLUSIONS

Despite being theoretically sound, FHE suffers from perfor-
mance issues due to its massive computational costs. Medha
is a programmable accelerator architecture that has been
designed pragmatically to overcome the speed limitations
of previous FHE accelerators. Medha gains efficiency from
its highly optimized polynomial arithmetic blocks, parallel
processing of instructions inside RPAU, parallel processing
of residue polynomials using many RPAUs, highly efficient
ring-based interconnection of RPAUs for data exchange, and
customized on-chip memory unit. The memory-conservative
design approach used to build Medha made it possible for
the first time to compute key-switching without requiring any
off-chip communication even for a large FHE parameter.

Medha was implemented in the Xilinx Alveo U250 card
and accurate performance results were obtained. Compared to
the highly-optimized SEAL [31] library, our Medha achieved
137× speedup on an Intel Xeon server. Medha achieved almost
2.4× latency improvement compared to the block-pipelined
and specific hardware accelerator HEAX [26]. The speed
improvement shows that hardware accelerators for FHE can
attain high performance without losing programmability or
flexibility. Performance benchmark results for two inference
applications on encrypted data showed that Medha makes FHE
practical for several privacy-preserving applications, at least
for inference calculations.
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