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Abstract. Anonymous attribute-based credentials (ABCs) are a powerful tool allowing users to
authenticate while maintaining privacy. When instantiated from structure-preserving signatures
on equivalence classes (SPS-EQ) we obtain a controlled form of malleability, and hence increased
functionality and privacy for the user.
Existing constructions consider equivalence classes on the message space, allowing the joint
randomization of credentials and the corresponding signatures on them. In this work, we ad-
ditionally consider equivalence classes on the signing-key space. In this regard, we obtain a
signer-hiding notion, where the issuing organization is not revealed when a user shows a creden-
tial. To achieve this, we instantiate the ABC framework of Fuchsbauer, Hanser, and Slamanig
(FHS19, Journal of Cryptology ’19) with a recent SPS-EQ scheme (ASIACRYPT ’19) modified
to support a fully adaptive NIZK from the framework of Couteau and Hartmann (CRYPTO
’20). We also show how to obtain mercurial signatures (CT-RSA ’19), extending the application
of our construction to anonymous delegatable credentials.
To further increase functionality and efficiency, we augment the set-commitment scheme of
FHS19 to support openings on attribute sets disjoint from those possessed by the user, while
integrating a proof of exponentiation to allow for a more efficient verifier. Instantiating in the
CRS model, we obtain an efficient credential system, anonymous under malicious organization
keys, with increased expressiveness and privacy, proven secure in the standard model.

Keywords: Anonymous credentials · Mercurial signatures · SPS-EQ

Erratum: After publication, it was observed that our signature construction provides signer-hiding
under honestly generted keys in the honest parameter model with respect to the key space (and not
under maliciously generated keys as originally claimed). We thank Colin Putman for this observation.

1 Introduction

Considering access to online services, designing protocols to manage the information users can be
requested to present is of utmost importance to protect the user. A first step in the literature devel-
oped the concept of attribute-based credentials (ABC), to model how users could show a credential,
containing a set of attributes, to access different services.

Subsequently, the development of anonymous attribute-based credentials made it possible pro-
tect the holders identity when showing a credential. Users could present a credential disclosing no
information other than that revealed by the attributes they choose to show (anonymity), while also
ensuring that the provided information is authentic (unforgeability). Proposed alternatives consider
a third property unlinkability which ensures that multiple showings of the same credential cannot be
linked. Credential systems that support an arbitrary number of unlinkable showings are said to be
multi-show. In contrast, those that only allow a single use of an issued credential in an unlinkable
fashion are called one-show.

Initial progress was made with respect to one-show constructions. Here, blind signatures are is-
sued on commitments to attributes so that users can later show the signature and disclose some of
⋆ This is the full version of [CLPK22]. In case of citing our work, please cite the proceedings version.
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the attributes, while proving knowledge of those left unrevealed. Examples include [Bra00, BL13],
and [FHKS16].

In the multi-show setting, pioneering constructions (based on Camenisch and Lysyanskaya’s (CL)
signatures [CL02, CL04]) such as the one underlying the Idemix credential system [Zur13] rely on
randomizing the signature to then prove in zero-knowledge the correspondence between the set of
attributes (disclosed and undisclosed), and the signature. A major drawback from such an approach
is that the zero-knowledge proof used during showings is of variable-length and may require multiple
sub-proofs On the other hand, more recent constructions (e.g., [CL11, CDHK15, San20, HP20, TG20,
DHS15a, FHS19]) apply other techniques based on different lines of work to adapt the signature and
the message without using Zero-Knowledge Proofs of Knowledge (ZKPoK), providing constant-size
showings.

The concept of ABC has been recently extended to consider multi-authority credentials (e.g.,
[HP20, SABB+19]), where users obtain a single credential for a set of attributes not necessarily
issued by a single authority. In this work we consider the classical setting (single authority issuance).

1.1 Limitations of state-of-the-art ABCs

Constructions in the classical setting differentiate from each other by the expressiveness they provide,
their efficiency, on whether or not they provide non-interactive features, on their security model, and
on how and if they manage revocation features. Achieving all these properties simultaneously has
been challenging and tends to rely on complex or non-standard assumptions.

When considering state-of-the-art credential systems, there are five lines of work with respect to
the underlying signature scheme that is used to build them; (1) CL signatures [CL04]: Idemix [Zur13]
and [TG20]. (2) Aggregatable signatures: [CL11] and [HP20]. (3) Sanitizable signatures: [CL13]. (4)
Redactable signatures: [CDHK15] and [San20]. (5) Structure-Preserving Signatures on Equivalence
Classes (SPS-EQ): [FHS19].
Proof settings. All previous work with the exception of [TG20] rely on security proofs in the
Generic Group Model (GGM) [Sho97]. Our first motivation is to provide an alternative to [TG20],
building on [FHS19] without relying on the GGM.
Signer-hiding properties. Showing protocols of previous constructions (including [TG20]), verify
signatures with a key that belongs to the authority that issued the credential. This restricts the use
of ABC in scenarios where one would like to verify a valid credential without linking it to a particular
authority.
Concrete efficiency. Most alternatives provide similar efficiency at the asymptotic level. Yet,
an up-to-date fine-grained analysis on their concrete efficiency lacks in the literature.

1.2 Summary of contributions

We follow the ABC and SPS-EQ line of work from Fuchsbauer, Hanser and Slamanig [FHS19],
improving over prior work in the following ways:

1. We extend the set-commitment scheme from [FHS19] to build a more expressive credential system
allowing the generation of witnesses for disjoint sets ([FHS19] allows only selective disclosure of
attributes).

2. We instantiate the ABC from [FHS19], with a new SPS-EQ scheme based on the one from [KSD19]
also using a CRS, a tight reduction, and under weaker assumptions. Thus, we move away from a
security proof in the GGM when compared to the work from [FHS19], and obtain a more efficient
ABC than the one resulting from instantiating [FHS19] with [KSD19] (see Table 1).

3. We incorporate a proof of exponentiation to outsource part of computational cost from the verifier
to the prover, which can be useful in some settings.

4. We adapt the signature scheme to build an SPS-EQ where one not only can randomize the message
together with the signature, but also the corresponding public key used to verify the signature
using a proof of well-formedness. Thus, users can hide the identity of the signer during showings.

By doing so, the verifier can check a signature using a randomized public key, knowing that it comes
from a valid authority but not which one. Unlike solutions using ring signatures where it is the signer
(credential issuer) who chooses the ring size, we let users do it independently (relying on SPS-EQ
and an efficient proof of correct randomization alone). Hence, once users get a credential from a valid
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Scheme |σ| |pk| Sign Verify ChgRep Assumptions
[KSD19] 8|G1|+ 9|G2| (2 + ℓ)|G2| 29E 11P 19P+38E SXDH
Section 5 9|G1|+ 4|G2| (2 + ℓ)|G2| 10E 11P 19P+21E extKerMDH, SXDH
Table 1: Signatures comparison including pairings and exponentiations.

SPS [GHKP18]

OR-Proof [CH20]

OR-Proof
[KSD19]

OR-Proof
[Ràf15]

OR-Proof
[KPW15]
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PoE [Tha19]

DS [GOP+16]
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Our work

OR-Proof [CH20] Signer-Hiding

Fig. 1: Summary of building blocks used in this work. Dashed boxes represent replaced building blocks
while grey boxes are used to highlight our contributions. When applicable, references inside each box
indicate the related previous work.
authority they can decide on the anonymity set themselves whenever they use their credential. This
approach is better aligned with the concept of self sovereign identity and related applications that
seek to empower users giving them full control on their identity.

Along the way, we also describe how to build mercurial signatures [CL19] with security proofs in
the standard model (assuming a CRS). All the previous ones [CL19, CL21] have security proofs in
the GGM. Consequently, our signature construction can also be used to build delegatable anonymous
credentials [CL06, BCC+09] as well.

1.3 Roadmap

We begin by presenting related work with a focus on the development of SPS-EQ and set-commitment
schemes (Section 2) followed by the required cryptographic background in Section 3. Our first con-
tribution, extending the set-commitment scheme (SC) in [FHS19] to support non-membership proofs
for disjoint sets (DS), is presented in Section 4. We also define here the proof of exponentiation
(PoE), which can be seen as an optional plug-in to gain efficiency in this new set-commitment scheme
(SCDS).

In Section 5 we present our SPS-EQ scheme. It uses a new malleable NIZK argument based on a
recent work from Couteau and Hartmann [CH20], which we use to replace the one underlying [KSD19].

In [FHS19] the authors discuss a concurrently secure variant of their ABC based on a trapdoor
commitment scheme to implement ZKPoK, assuming the existence of one-way functions and a CRS.
Since our SPS-EQ makes use of a CRS, we instantiate the previous variant with it, incorporate
a Pedersen commitment scheme to compute the relevant ZKPoK, and adapt the rest to our set-
commitment scheme and the proof of exponentiation (second and third contributions). Thus, we
dedicate Section 6 to present the resulting ABC.

Subsequently, we extend the previous construction to support another NIZK argument that allows
to hide the identity of the signer during showings. This allows us to build another ABC as our
fourth contribution. Furthermore, we also outline in this section how to perform revocation and build
mercurial signatures.

In Figure 1 we summarize the dependencies between the different building blocks used in the
previously mentioned sections highlighting our contributions.

Finally, a detailed comparison on the concrete efficiency of our constructions when compared to
other state-of-the-art alternatives is provided in Section 8, while the conclusions of this work are
presented in Section 9.
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2 Background and Related Work

2.1 Structure-Preserving Signatures on Equivalence Classes

In [HS14], Hanser and Slamanig introduced a novel structure preserving signature (SPS) scheme
that allowed joint randomization of messages and their corresponding signatures, coining Structure-
Preserving Signatures on Equivalence Classes (SPS-EQ). They observed that if one considers a prime-
order group G and defines the projective vector space (G∗)ℓ, there is a partition into equivalence
classes given by the following relation R: m ∈ (G∗)ℓ ∼R m∗ ∈ (G∗)ℓ ⇐⇒ ∃ µ ∈ Z∗

p : m∗ = µm.
If the discrete logarithm problem is hard in G and one restricts the vector components to be non-
zero, given two vectors m and m∗, it is difficult to distinguish whether they were randomly sampled
or if they belong to the same equivalence class. Hence, Hanser and Slamanig defined SPS-EQ as
SPS that produce signatures on an equivalence class instead of messages alone. Given a message
and its corresponding signature, SPS-EQ provides a controlled form of malleability in which one can
publicly (without requiring access to the secret key) adapt a signature to change the representative
(message). The equivalence relation provides indistinguishability on the message space if the DDH
assumption holds. If additionally, updated signatures are distributed like fresh signatures, message-
signature pairs falling into the same class are unlinkable. For unlinkability to hold, signatures should
also be randomized when adapting them to a new representative of the class. As described in [FHS19],
given a representative and its corresponding signature, a random representative of the same class with
an adapted signature are indistinguishable from a random message-signature pair.

Since their introduction, SPS-EQ have been used to build several cryptographic protocols (e.g.,
[BHKS18, FHS15, FHKS16, BHSB19, DS18, BLL+19, FGKO17]). They have been used in anonymous
credentials [HS14, DHS15a, FHS19], and delegatable anonymous credential systems, in this case under
the name of mercurial signatures [CL19, CL21], which are an extension of the equivalence classes to
the signing keys. State-of-the-art constructions focus on building schemes under weaker assumptions
and with tight security. The first step was the work from Fuchsbauer and Gay [FG18]. Subsequently,
Khalili et al. [KSD19] proposed a new SPS-EQ which is, to the best of our knowledge, the only one
under standard assumptions and with a tight security reduction to date.

The construction of [FG18] is based on the family of Matrix-Diffie-Hellman assumptions [EHK+13].
They first modify an affine MAC from [BKP14] to obtain a linear structure-preserving MAC, which is
made publicly verifiable using a known technique in the context of SPS [KPW15]. This allows to use a
tag to randomize both the signature and message. The resulting scheme is secure under a weaker notion
of unforgeability (EUF-CoMA). In [KSD19], authors observe that using a structure-preserving MAC
such as the one from [FG18] has an inherent problem in the security game. As messages and Matrix
Decision Diffie-Hellman challenges belong to the same source group of the bilinear group, one cannot
do better than EUF-CoMA security following this approach. Consequently, they proposed to use an
OR-Proof based on that in [GHKP18] to then construct tightly secure structure-preserving MACs
based on the key encapsulation mechanism of Gay et al. in [GHK17]. This allows to circumvent the
previous issue and obtain the first EUF-CMA secure SPS-EQ scheme with a tight security reduction
under standard assumptions.

In this work, we present an SPS-EQ scheme where the OR-based proof in [KSD19] is replaced by
the one in [CH20], while adapting other building blocks accordingly.

2.2 Accumulators and Set-Commitments.

In [DHS15b], Derler, Hanser and Slamanig revisited the notion of cryptographic accumulators and
proposed a unified formal model which included the notions of undeniability and indistinguishability
for accumulators, complementing the classical ones of correctness and collision-freeness. They showed
how to construct a commitment scheme using an indistinguishable accumulator in a black-box man-
ner. The relation stems from the fact that indistinguishability and collision-freeness of accumulators
resemble those of hiding and binding for commitments.

In subsequent work [HS14], Hanser and Slamanig built an ABC with constant-size credentials
and constant-size showings (for selective disclosure of attributes) based on a polynomial commitment
scheme with factor openings. They departed from the work of Kate et al. on constant-size polynomial
commitments [KZG10] with the following observations; (1) If a credential is seen as a set of attributes
mapped to roots of a monic polynomial, then one can generate a polynomial commitment of constant-
size to represent the credential using the approach from [KZG10]. (2) Instead of evaluating the
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Scheme [CL04] [CL11] [CL13] [CDHK15] & [FHS19] [TG20] [San20] [HP20] Section 6
Issuing n-attr. credential

Comm. O(n) O(n) O(n) O(1) O(n) O(1) O(n) O(1)

User O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)

Issuer O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)

Showing k-of-n attributes (selective disclosure)
|ek| O(n) O(n) O(n) O(n) O(n) O(n2) O(n) O(n)

Comm. O(n) O(1) O(k) O(1) O(1) O(1) O(1) O(1)

User O(n) O(n) O(k) O(n− k) O(n− k) O(n− k) O(1) O(max{n− k, k})
Verifier O(n) O(n) O(k) O(k) O(k) O(k) O(n) O(1)

Table 2: Asymptotic complexities of ABC systems where n is the number of attributes in the credential
and k the number of disclosed ones during a showing.

polynomial at certain points, what is important to prove possession of an attribute is to open factors
of the polynomial instead. (3) If one can open multiple factors in constant-size, a showing involving
a selective disclosure of attributes can be done in constant-size as well.
As a result they proposed an indistinguishable bilinear accumulator ([Ngu05]) with batch membership
proofs (i.e, factor opening), which was subsequently re-stated as a set-commitment scheme in a follow-
up work [FHS19].

A drawback of the ABC from [FHS19] is that the achieved level of expressiveness is limited. It
allows only to show proofs for the conjunction of attributes in arbitrary subsets of attributes encoded
in the credential (selective disclosure). Another potential issue is that verification involves a number
of exponentiations that are linear in the size of the subset to be verified. This is undesirable when
verification of the credential should be fast.

Thakur [Tha19] proposed a series of protocols for batch membership and non-membership proofs
for bilinear accumulators using proofs of exponentiation (an idea previously introduced for accumu-
lators in groups of unknown order by Boneh et. al [BBF19] and by Wesolowski [Wes20]) to shift the
computational cost from the verifier to the prover. The main idea is to replace some of the expo-
nentiations by a single polynomial division and to use of a non-interactive proof obtained via the
Fiat-Shamir transform.

Batch proofs in the bilinear accumulator setting can be traced back to the works by Papamanthou
et al. [PTT11] and by Ghosh et al. [GOP+16]. The latter presents the same underlying ideas of the
(non)membership proofs provided by Thakur, and a Zero-Knowledge Dynamic Universal Accumulator,
which strengthens the notion of indistinguishability using the randomization ideas from [DHS15b].

More recently, a new set-commitment scheme including set intersection and set difference op-
erations was proposed in [TG20]. It provides more expressiveness when compared to the one from
[FHS19] but under a weaker hiding notion.

We incorporate the previous ideas from [DHS15b, GOP+16], and [Tha19] to extend the set-
commitment scheme from [FHS19] to support disjoint sets (batch non-membership proofs), while
also allowing a faster verification and a stronger hiding notion. Thus, we obtain a set-commitment
scheme that is more expressive than the one in [FHS19] and almost as expressive as [TG20] (but
better in efficiency and strength).

2.3 Attribute-based Credentials

We recall in Table 2 the asymptotic complexities for the issuing and showing protocols, considering
recent credential systems from each of the lines of work mentioned in the introduction, and our
construction in Section 6 . For showing protocols we consider the selective disclosure of attributes
(i.e., the ability to show multiple attributes while hiding others during a showing). While the work
from [HP20] (based on aggregatable signatures) is the only one with O(1) complexity for the user
during a showing, this is obtained at the cost of a more expensive verifier. Our work achieves O(1)
complexity for the verifier but keeping better asymptotics for the user. A more detailed comparison on
the concrete efficiency of ABC’s (as well as an implementation benchmark) was provided in [TG20],
but the recent works from [San20] and [HP20] were not included. Therefore, we provide an updated
comparison for the most efficient ones in Section 8.
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2.4 Signer-Hiding
Independent and concurrent work by Bobolz et al. [BEK+21] also addressed the problem of hiding
the identity of a credential issuer/signer under the notion of issuer-hiding. There, the authors propose
a sligthly different setting to avoid using an OR-like proof as done in this work. In brief, the authors
consider access policies of the form {σi, pki}i∈[n], where σi is a signature on a given authority’s public
key pki produced by the verifier. As a result, users can prove the correspondence between a public key
(defined in the policy) and the credential verification under that public key in zero knowledge, using
a NIZK independent to the number of public keys defined in the policy. In this regard, we note that
our work is compatible with their formalization and, furthermore, under the previous setting such
NIZK can be avoided in our case. Since we use mercurial signatures, it would suffice to randomize
the access policy and the user credential consistently.

3 Preliminaries

Notation. Let BGGen be a p.p.t algorithm that on input 1λ with λ the security parameter, returns
a description BG = (p,G1,G2,GT , P1, P2, e) of an asymmetric bilinear group where G1,G2,GT are
cyclic groups of prime order p with ⌈log2 p⌉ = λ, P1 and P2 are generators of G1 and G2, and
e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear map. BG is said to be of
Type-3 if no efficiently computable isomorphisms between G1 and G2 are known. For all a ∈ Zp, we
denote by [a]s = aPs ∈ Gs the implicit representation of a in Gs for s ∈ {1, 2}. For matrices (or
vectors) A, B we extend the pairing notation to e([A]1, [B]2) := [AB]T ∈ GT . Sampling r from set
S uniformly at random is denoted by r

$← S. Finally, we use the notation A(x; y) to indicate that a
value y (usually computed internally by A), is being passed directly to A on input x.
Assumptions. We recall in the full version (Appendix A) the Diffie-Hellman assumptions in the
billinear group setting and the algebraic framework from [EHK+13] and [MRV16], including a gener-
alization of the Strong Diffie-Hellman assumption from [FHS19]. Besides, we will also use the following
generalization of the KerMDH assumption introduced in [CH20]. It allows an adversary to extend the
given matrix but requiring it to output multiple, linearly independent vectors in the kernel.
Dk-extKerMDHAssumption. Let Dk be a matrix distribution, l, k ∈ N, and s ∈ {1, 2}. We say
that the Dk-extKerMDH assumption holds in Gs relative to BGGen, if for every BG

$← BGGen(1λ),
D

$← Dk, and all p.p.t. adversaries A the following probability is negligible.

Pr

 [C]3−s ∈ Gl+1×k+l+1
3 ∧ [B]s ∈ Gl×k

s

∧ [C]3−s[D
′]s = 0

∧ rank(C) ≥ l + 1

∣∣∣∣∣∣
BG

$← BGGen(1λ);D
$← Dk

([C]3−s, [B]s)
$← A(BG, [D]s)

[D′]s := [DB]s


Characteristic Polynomial. For a set X with elements in Zp, we refer to ChX (X) =

∏
x∈X (X+

x) =
∑i=n

i=0 ci ·Xi (a monic polynomial of degree n = |X | and defined over Zp[X]) as its characteristic
polynomial. For a group generator P , ChX (s)P can be efficiently computed (e.g., using the Fast
Fourier Transform) when given (siP )

|X |
i=0 but not s. This is because ChX (s)P =

∑i=n
i=0 (ci · si)P .

In addition to exploiting properties of characteristic polynomials, we will also use the Schwartz-
Zippel lemma and the Extended Euclidean Algorithm (EEA) in our constructions following the ideas
from [GOP+16].

Lemma 1 (Schwartz-Zippel). Let q1(x), q2(x) be two d-degree polynomials from Zp[X] with
q1(x) ̸= q2(x), then for s

$← Zp, the probability that q1(s) = q2(s) is at most d/p, and the equality
can be tested in time O(d).

3.1 Non-interactive Zero-Knowledge Arguments and Malleable Proof Systems
We next define fully adaptive NIZK arguments (i.e., the crs does not depend on the language distri-
bution or language parameters), and the notions of malleable proof systems given in [CKLM12] and
[KSD19] respectively.
NIZK Syntax. A fully adaptive NIZK Π for a family of language distribution {Dpp}pp consists of
four probabilistic algorithms:
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PGen(1λ): On input 1λ generates public parameters pp, a crs and a trapdoor td.
Prove(crs, ρ, x, w): On input a crs, a language description ρ ∈ Dpp and a statement x with witness w,

outputs a proof π for x ∈ Lρ.
Verify(crs, ρ, x, π): On input a crs, a language description ρ ∈ Dpp, a statement x and a proof π,

accepts or rejects the proof.
SimProve(crs, td, ρ, x): Given a crs, the trapdoor td, a language description ρ ∈ Dpp and a statement

x, outputs a simulated proof for the statement x ∈ Lρ.
The following properties need to hold for NIZK arguments with respect to a family of language

distributions Dpp.
Perfect Completeness.

Pr

[
Verify(crs, ρ, x, π) = 1

∣∣∣∣∣ (pp, crs, td) $← PGen(1λ); ρ ∈ Supp(Dpp);

(x,w) ∈ Rρ;π
$← Prove(crs, ρ, x, w)

]
= 1

Computational Soundness. For every efficient adversary A,

Pr

[
Verify(crs, ρ, x, π) = 1

∧ x /∈ Lρ

∣∣∣∣∣ (pp, crs, td)
$← PGen(1λ);

ρ ∈ Supp(Dpp); (π, x)
$← A(crs, ρ)

]
≈ 0

where the probability is taken over PGen.
Perfect Zero-Knowledge. For all λ, all (pp, crs, td) ∈ Supp(PGen(1λ)), all ρ ∈ Supp(Dpp) and all
(x,w) ∈ Rρ, the distributions Prove(crs, ρ, x, w) and SimProve(crs, td, ρ, x) are identical.

LetRL be the witness relation associated to a language L, then a controlled malleable proof system
is accompanied by a family of efficiently computable n-ary transformations T = (Tx, Tw) such that
for any n-tuple {(x1, w1), . . . , (xn, wn)} ∈ Rn

L it holds that (Tx(x1, . . . , xn),Tw(w1, . . . , wn)) ∈ RL.
Intuitively, such a proof system allows when given valid proofs {Ωi}i∈[n] for words {xi}i∈[n] with
associated witnesses {wi}i∈[n] to publicly compute a valid proof Ω for word x := Tx(x1, . . . , xn)
corresponding to witness w := Tw(w1, . . . , wn) using an additional algorithm ZKEval which is defined
as follows:
ZKEval(crs, T , (xi, Ωi)i∈[n]) takes as input a common reference string crs, a transformation T ∈
T , words x1, . . . , xn and their corresponding proofs Ω1, . . . , Ωn, and outputs a new word x′ :=
Tx(x1, . . . , xn) and proof Ω′.
Proofs computed by ZKEval should be indistinguishable from freshly computed proofs for the

resulting word x′ and corresponding witness w′. This notion is captured by the following definition.
Derivation Privacy. A NIZK proof system Π, malleable with respect to a set of transformations T
defined on some relation R is derivation private, if for all p.p.t adversaries A, the following probability
is negligible,

Pr



crs
$← PGen(1λ), b

$← {0, 1}
(st, ((xi, wi), Ωi)i∈[q], T )

$← A(crs),
if (T /∈ T ∨ (∃ i ∈ [q] : (Verify(crs, xi, Ωi) = 0) ∨ (xi, wi) /∈ R)
return ⊥,
else if b = 0 : Ω ← Prove(crs, Tx((xi)i∈[q]), Tw((wi)i∈[q])),
else if b = 1 : Ω ← ZKEval(crs, T, (xi, πi)i∈[q]),

b′
$← A(st, Ω)

: b = b′



4 A Set-Commitment Scheme supporting Disjoint Sets
We extend the set-commitment scheme in [FHS19] to support non-membership proofs for disjoint
sets, while also including an optional proof of exponentiation to replace most of the exponentiations
in the verifier (outsourcing them to the prover) with a single polynomial division. To do so, we borrow
the previously mentioned ideas in [DHS15b], [GOP+16] and [Tha19], and adapt them to the Type-3
setting.
SCDS Syntax. A set-commitment scheme supporting disjoint sets (SCDS) consists of the following
p.p.t algorithms:
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Setup(1λ, 1q) is a probabilistic algorithm which takes as input a security parameter λ and an upper
bound q for the cardinality of committed sets, both in unary form. It outputs public parameters pp
(including an evaluation key ek), and discards the trapdoor key s used to generate them. Z∗

p \ {s}
defines the domain of set elements for sets of maximum cardinality q.

TSetup(1λ, 1q) is equivalent to Setup but also returns the trapdoor key.
Commit(pp,X ) is a probabilistic algorithm which takes as input pp and a set X with 1 ≤ |X | ≤ q. It

outputs a commitment C on set X and opening information O.
Open(pp, C,X , O) is a deterministic algorithm which takes as input pp, a commitment C, a set X ,

and opening information O. It outputs 1 if and only if O is a valid opening of C on X .
OpenSS(pp, C,X , O,S) is a deterministic algorithm which takes as input pp, a commitment C, a set
X , opening information O, and a non-empty set S. If S is a subset of X committed to in C,
OpenSS outputs a witness wit that attests to it. Otherwise, outputs ⊥.

OpenDS(pp, C,X , O,D) is a deterministic algorithm which takes as input pp, a commitment C, a set
X , opening information O, and a non-empty set D. If D is disjoint from X committed to in C,
OpenDS outputs a witness wit that attests to it. Otherwise, outputs ⊥.

VerifySS(pp, C,S,wit) is a deterministic algorithm which takes as input pp, a commitment C, a non-
empty set S, and a witness wit. If wit is a valid witness for S a subset of the set committed to in
C, it outputs 1 and otherwise ⊥.

VerifyDS(pp, C,D,wit) takes as input pp, a commitment C, a non-empty set D, and a witness wit.
If wit is a valid witness for D being disjoint from the set committed to in C, it outputs 1 and
otherwise ⊥.

PoE(pp,X , α) takes as input pp, a non-empty set X , and a randomly-chosen value α. It computes
a proof of exponentiation for the characteristic polynomial of X and outputs a proof πQ and a
witness Q.
A SCDS scheme is secure if it satisfies the properties of correctness, binding, hiding, and soundness.

These notions are defined next, modified to suit the scheme, but following the usual convention.
Correctness. An SCDS scheme is correct if for all q > 0, all λ > 0, all pp ∈ [Setup(1λ, 1q)], all
non-empty S ⊆ X and all non-empty D : D ∩ X = ∅, the following probabilities equal 1:

1. Pr
[
(C,O)

$← Commit(pp,X ) : Open(pp, C,X , O) = 1
]

2. Pr

[
(C,O)

$← Commit(pp,X );
wit← OpenSS(pp, C,X , O,S) : VerifySS(pp, C,S,wit) = 1

]
3. Pr

[
(C,O)

$← Commit(pp,X );
wit← OpenDS(pp, C,X , O,D) : VerifyDS(pp, C,D,wit) = 1

]
Binding. An SCDS scheme is binding if for all q > 0 and all p.p.t adversaries A, the following
probability is negligible,

Pr

[
pp

$← Setup(1λ, 1q),

(C,X , O,X ′, O′)
$← A(pp)

:
Open(pp, C,X , O) = 1 ∧

Open(pp, C,X ′, O′) = 1 ∧ X ̸= X ′

]

Hiding. We say that an SCDS scheme is hiding if for all q > 0 and all p.p.t adversaries A with
access to OSS, an opening oracle which allows queries for sets X ′ ⊆ X0 ∩ X1, and to ODS, for sets X ′

s.t. X ′ ∩ {X0 ∪ X1} = ∅, there is a negligible function ϵ(·) such that:

Pr


b

$← {0, 1}; pp $← Setup(1λ, 1q);

(X0,X1, st)
$← A(pp);

(C,O)
$← Commit(pp,Xb);

b∗
$← AOSS(pp,C,Xb,O,·),ODS(pp,C,Xb,O,·)(st, C)

: b∗ = b

− 1

2
≤ ϵ(k).

where X0 and X1 are two distinct sets s.t. 1 ≤ |Xb| ≤ q.
If the above holds for ϵ ≡ 0, the scheme is said to be perfectly hiding.
Soundness. An SCDS scheme is sound if for all q > 0 and all p.p.t adversaries A, the following
probabilities are negligible,

1. Pr
[
pp

$← Setup(1λ, 1q);

(C,X , O,S,wit) $← A(pp)
:
S ⊈ X ∧ OpenSS(C,X , O) = 1

∧ VerifySS(C,S,wit) = 1

]

2. Pr
[
pp

$← Setup(1λ, 1q);

(C,X , O,D,wit) $← A(pp)
:
D ∩ X ̸= ∅ ∧ OpenDS(C,X , O) = 1

∧ VerifyDS(C,D,wit) = 1

]
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SCDS.Setup(1λ, 1q):
BG

$← BGGen(1λ); s $← Z∗
p

pp← (BG, (siP1, s
iP2)i∈[q])

return pp

SCDS.TSetup(1λ, 1q):
BG

$← BGGen(1λ); s $← Z∗
p

pp← (BG, (siP1, s
iP2)i∈[q])

return (pp, s)

SCDS.PoE(pp,X , α):
Q← ChX (s)P2; Let h(X) and β s.t.
ChX (X)=(X + α) · h(X) + β; πQ ← h(s)P2

return (πQ, Q)

SCDS.Commit(pp,X ):
if |X | > q return ⊥; r $← Z∗

p

if ∃ s′ ∈ X : s′P1 = sP1

C ← rP1; O ← (1, (r, s′))
else C ← r · ChX (s)P1; O ← (0, r)
return (C,O)

SCDS.Open(pp, C,X , O):
if O = (1, (r, s′)) ∧ s′P1 = sP1

if C = rP1 return 1 else 0
if O = (0, r)

if C = r · ChX (s)P1 return 1 else 0

SCDS.OpenSS(pp, C,X , O,S):
if SCDS.Open(C,X , O) = 0 ∨
S ⊈ X ∨ S = ∅ return ⊥

if O = (1, (r, s′))
if s′ /∈ S return ChS(s

′)−1C
if O = (0, r) return r · ChX\S(s)P1

else return ⊥

SCDS.VerifySS(pp, C,S,wit, [PoE]):
if (S = ∅ ∧ wit = ⊥) return 1
if ∃ s′ ∈ S : s′P1 = sP1

if wit = ⊥ return 1 else 0
if PoE = ⊥
return e(wit,ChS(s)P2) = e(C,P2)

else
parse PoE = (α, πQ, Q)
β ← ChS(X)(mod (X + α))
return e(sP1+αP1, πQ)+e(βP1, P2)
= e(P1, Q) ∧ e(wit, Q) = e(C,P2)

SCDS.OpenDS(pp, C,X , O,D):
if (t = 0 ∨ |D ∩ X| > 0) return ⊥
if O = (1, (r, s′))

if s′ ∈ D return ⊥ else
γ

$← Z∗
p; (w0, w1)← (γP2,

1−γ·r
ChD(s)

P1)

if O = (0, r)

γ
$← Z∗

p; Let q1(X) and q2(X) s.t.
ChX (X) · q1(X) + ChD(X) · q2(X) = 1
q′1(s)← q1(s) + γ · ChD(s)
q′2(s)← q2(s)− γ · ChX (s)
(w0, w1)← ((r−1 · q′1(s))P2, q

′
2(s)P1)

return (w0, w1)

SCDS.VerifyDS(pp, C,D,wit, [PoE]):
if (D = ∅ ∧ wit = ⊥) return 1
if ∃ s′ ∈ D : s′P1 = sP1

if wit = ⊥ return 1 else 0
parse wit = (w0, w1)
if PoE = ⊥ return
e(C,w0)+e(w1,ChD(s)P2)=e(P1, P2)

else
parse PoE = (α, πQ, Q)
β ← ChD(X)(mod (X + α))
return e(sP1+αP1, πQ)+e(βP1,P2)
=e(P1, Q) ∧ e(C,w0)+e(w1, Q)=e(P1, P2)

Fig. 2: Our SCDS construction
4.1 Construction

Our construction is presented in Figure 2. As in [FHS19] we use a special opening for the case in
which the commited set contains the trapdoor to achieve perfect correctness and perfect hiding. To
prove that a given set is disjoint with respect to the commited set, the EEA is computed to obtain the
Bézout coefficients. This way, equality is checked randomizing q1, q2 and using a single PPE. Finally,
the PoE computes a polynomial division, and produces the corresponding proof.
Theorem 1. The SCDS construction from Figure 2 is correct and perfectly hiding. Furthermore, if
the q-co-DL (resp. q-co-GSDH) assumption holds, SCDS is computationally binding (resp. sound).

Proof. The proof strategy follows closely that of [FHS19]. We extend these proofs in a similar manner
to consider disjoint sets. The full proof is provided in the full version (Appendix B).

5 Our SPS-EQ construction

The starting point for the SPS-EQ construction in [KSD19] was the tightly secure SPS from [GHKP18],
which builds on a structure-preserving MAC (based on the works from [GHK17] and [Hof17]) and
a NIZK OR-Proof from [Ràf15]. To couple with equivalence classes, the authors proposed a way to
adapt the OR-Proof so that it could be randomized and malleable. Unfortunately, as the CRS used in
the OR-Proof from [Ràf15] was incompatible with the required randomization properties, the authors
were forced to build a QA-NIZK on top to overcome the limitation.
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In this section we introduce a new SPS-EQ scheme based on the one from [KSD19], which we
obtain replacing the underlying OR-Proof from [Ràf15] with one given in [CH20], while adapting
accordingly. As a result we obtain a more efficient signature scheme based on a new malleable OR-
NIZK argument. Before giving the intuition of our construction, we recall the syntax and security
properties for SPS-EQ introduced in [FHS19] and [KSD19].
SPS-EQ Syntax. An SPS-EQ consists of the following p.p.t algorithms:

ParGen(1λ) is a probabilistic algorithm which takes as input a security parameter λ and returns public
parameters pp including an asymmetric bilinear group, but without the related trapdoor.

TParGen(1λ) is like the ParGen algorithm but it also returns the trapdoor.
KGen(pp, ℓ) is a probabilistic algorithm which takes as input pp and a vector length ℓ > 1, and outputs

a key pair (sk, pk).
Sign(pp, sk,m) is a probabilistic algorithm which takes as input pp, a representative m ∈ (G∗

i )
ℓ for

class [m]R, a secret key sk, and outputs a signature σ′ = (σ, τ) (potentially including a tag τ) on
the message m.

ChgRep(pp,m, (σ, τ), µ, pk) is a probabilistic algorithm which takes as input pp, a representative
message m ∈ (G∗

i )
ℓ, a signature σ (and potentially a tag τ), a scalar µ and a public key pk. It

computes an updated signature σ′ on new representative m∗ = µm and returns (m∗, σ′).
Verify(pp,m, (σ, τ), pk) is a deterministic algorithm which takes as input pp, a representative message

m, a signature σ (potentially including a tag τ) and public key pk. If σ is a valid signature on m
it outputs 1 and 0 otherwise.

Correctness. An SPS-EQ scheme over (G∗
i )

ℓ is correct if for any λ ∈ N, any ℓ > 1, any pp
$←

ParGen(1λ), any pair (sk, pk), any message m ∈ (G∗
i )

ℓ, and any µ ∈ Z∗
p, the following holds:

Pr
[
Verify(m, Sign(sk,m), pk) = 1

]
= 1, and

Pr
[
Verify(ChgRep(m, Sign(sk,m), µ, pk), pk) = 1

]
= 1.

EUF-CMA. An SPS-EQ scheme over (G∗
i )

ℓ is existentially unforgeable under adaptively chosen-
message attacks, if for all ℓ > 1 and p.p.t adversaries A with access to a signing oracle Sign, the
following probability is negligible,

Pr

pp
$← ParGen(1λ),

(sk, pk)
$← KGen(pp, ℓ),

([m]∗i , σ
∗)

$← ASign(sk,·)(pk)

:
[m∗]R ̸= [m]R ∀ [m]i ∈ Q ∧

Verify([m]∗i , σ
∗, pk) = 1

 ,

where Q is the set of queries that A has issued to the signing oracle Sign. Note that in the tag-based
case this oracle returns (σi, τi).

The following notion is based on Definition 10 from [KSD19], which defines perfect adaption of
signatures in the CRS model. Perfect adaption mandates that signatures output by the algorithm
ChgRep are distributed identically to new signatures on the respective representative. When this
notion is defined considering adversaries who could maliciously generate signing keys, one obtains the
strongest possible notion for perfect adaption. Unlike [KSD19], we opt to explicitly state that perfect
adaption is defined with respect to the message space. We do this, as later on we will introduce a
new a definition for perfect adaption with respect to the key space.
Perfect adaption of signatures (under malicious keys in the honest parameters model) with
respect to the message space: An SPS-EQ over Sm perfectly adapts signatures with respect to the
message space if for all tuples (pp, pk, [m]i, σ, µ) where pp

$← ParGen(1λ), [m]i ∈ Sm, µ ∈ Z∗
p,

and Verify([m]i, σ, pk) = 1, we have that the output of ChgRep([m]i, (σ, τ), µ, pk) is ([µ ·m]i, σ
∗),

with σ∗ being a uniformly random element in the space of signatures, conditioned on Verify([µ ·m]i,
σ∗, pk) = 1.

5.1 Our Malleable NIZK argument

Our malleable NIZK argument is based solely on the fully-adaptive OR-Proof from [CH20]. This
allows us to circumvent the randomization problem in the OR-Proof from [Ràf15], and to avoid the
need to build a QA-NIZK atop.

As a result, we reduce the number of exponentiations required in the proving and ZKEval algo-
rithms, which leads to a more efficient signature scheme. This comes at the cost of relying on the
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PGen(1λ):
BG

$← BGGen(1λ); z $← Zp

return ((BG, [z]2), z)

PPro(crs, [x1]1,w1, [x2]1,w2):
// [xj ]1 = Aiwj with A ∈M2k×k

sj
$← Zk

p; z1−i
$← Z∗

p; δ $← Z∗
p

[zi]2 ← δ[z]2 − [z1−i]2
[dj

i ]2 ← [zi]2wj + [sj ]2
[aj

i ]1 ← [Ai]sj
dj
1−i

$← Zk
p

[aj
1−i]1 ← A1−id

j
1−i − z1−ixj

return ([aj
i ]1, [d

j
i ]2, [zi]2, δP1)

j∈{1,2}
i∈{0,1}

PSim(crs, z, [x1]1, [x2]1):
z0

$← Zp; δ $← Z∗
p; z1 ← δz − z0

for all i ∈ {0, 1}, j ∈ {1, 2} do
dj
i

$← Zk
p; [aj

i ]1 ← Aid
j
i − zixj

return ([aj
i ]1, [d

j
i ]2, [zi]2, δP1)

j∈{1,2}
i∈{0,1}

PRVer(crs, [x]1, π):
parse π = ([ai]1, [di]2, [zi]2, Z1)i∈{0,1}

check e(Z1, [z]2)=e([1]1, [z0]2 + [z1]2)

for all i ∈ {0, 1} check
e([Ai]1, [di]2)=e([x]1, [zi]2)+e([ai]1, [1]2)

PVer(crs, [x1]1, [x2]1, Ω):
parse Ω = ([aj

i ]1,[dj
i ]2,[zi]2,Z1)

j∈{1,2}
i∈{0,1}

check e(Z1, [z]2) = e([1]1, [z0]2 + [z1]2)

for all i ∈ {0, 1}, j ∈ {1, 2} check
e([Ai]1, [d

j
i ]2)=e([xj ]1, [zi]2)+e([aj

i ]1, [1]2)

ZKEval(crs, [x1]1, [x2]1, Ω):
parse Ω = ([aj

i ]1,[dj
i ]2,[zi]2,Z1)

j∈{1,2}
i∈{0,1}

check PVer(crs, [x1]1, [x2]1, Ω)

α, β
$← Z∗

p; Z′
1 ← αZ1

for all i ∈ {0, 1}
[z′i]2 ← α[zi]2; [a′

i]1 ← α[a1
i ]1 + αβ[a2

i ]1
[d′

i]2 ← α[d1
i ]2 + αβ[d2

i ]2
return ([a′

i]1, [d
′
i]2, [z

′
i]2, Z

′
1)

Fig. 3: Malleable NIZK argument for language L∨
A0,A1

L1-1-extKerMDH assumption. We argue that the change is justified as the extKerMDH is a natural
extension of the KerMDH assumption and in this case, the assumption is also falsifiable.
Intuition. We look for a NIZK proof which can be randomizable and malleable so that randomized
proofs look like fresh proofs, while the malleability allows to update the proof statements. The goal is
to obtain derivation privacy, which is crucial to perform the change of representative in the signature
scheme.

The fully-adaptive NIZK argument from [CH20] is based on a challenge z = z0 + z1, where z is
in the CRS, and z0 and z1 are elements of the proof and chosen such that the equation holds. To
randomize a proof we need to randomize z0 and z1 and so, instead of checking the original equation
we will check for linear combinations of the equation αz = z0 + z1. We modify the original proof to
compute a random α and add an extra element Z = αP1 to the proof. Consequently, the verification
algorithm will now check an extra pairing.

As observed in [KSD19], the malleability of the OR-NIZK proof can be achieved by using a tag
and a second NIZK for that tag with shared randomness. We follow the same approach. The resulting
malleable NIZK argument for the OR-language (for fixed A0 and A1) is defined below and presented
in Figure 3.

L∨
A0,A1

= {[x]1 ∈ G2k
1 |∃ w ∈ Zk

p : [x]1 = [A0]1 ·w ∨ [x]1 = [A1]1 ·w},

Theorem 2. The protocol in Figure 3 is a fully adaptive NIZK argument for the OR-language L∨
A0,A1

if the falsifiable L1-(4k + 1)-extKerMDH assumption holds in G2.

Proof. The proof follows [CH20] and is provided in the full version (Appendix C).

5.2 Signature Construction
Our construction is shown in Figure 4, where the highlighted sections note the main differences to
the scheme presented in [KSD19] In the full version (Appendix H), we also show how to extend it to
obtain mercurial signatures (later explained in Section 7.1).
Theorem 3. The SPS-EQ in Figure 4 perfectly adapts signatures (under malicious keys in the honest
parameter model) with respect to the message space.

To prove Theorem 3 we follow almost verbatim the original proof from [KSD19].
Proof. For all [m]1 and pk = ([K0A]2, [KA]2), a signature σ=([u1]1, [t]1, Ω1 ,[z0]2, [z1]2, Z1) gener-
ated according to the CRS ([A]2, [A0]1, [A1]1, [z]2) satisfying the verification algorithm must be of the
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SPS-EQ.ParGen(1λ):
BG

$← BGGen(1λ); A,A0,A1
$← D1

(crs, td)
$← PGen(1λ;BG)

return (BG, [A]2, [A0]1, [A1]1, crs)

SPS-EQ.TParGen(1λ):
BG

$← BGGen(1λ); A,A0,A1
$← D1

(crs, td)
$← PGen(1λ;BG)

pp← (BG, [A]2, [A0]1, [A1]1, crs)

return (pp, td)

SPS-EQ.KGen(pp, 1λ):
K0

$← Z2×2
p ; K $← Zℓ×2

p

[B]2 ← [K0]2[A]2; [C]2 ← [K]2[A]2
sk← (K0,K); pk← ([B]2, [C]2)

return (sk, pk)

SPS-EQ.Sign(pp, sk, [m]1):
r1, r2

$← Zp

[t]1 ← [A0]1r1; [w]1 ← [A0]1r2
Ω ← PPro(crs, [t]1, r1, [w]1, r2)

parse Ω = (Ω1, Ω2, [z0]2, [z1]2, Z1)

u1 ← K⊤
0 [t]1 +K⊤[m]1; u2 ← K⊤

0 [w]1
σ ← ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)

τ ← ([u2]1, [w]1, Ω2)

return (σ, τ)

SPS-EQ.Verify(pp, [m]1, (σ, τ), pk):
parse σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)

parse τ ∈ {([u2]1, [w]1, Ω2) ∪ ⊥}
check PRVer(crs, [t]1, Ω1, [z0]2, [z1]2, Z1)

check e([u1]
⊤
1 , [A]2) = e([t]⊤1 , [B]2)+ e([m]⊤1 , [C]2)

if τ ̸=⊥ check
PRVer(crs, [w]1, Ω2, [z0]2, [z1]2, Z1)

e([u2]
⊤
1 , [A2]) = e([w]⊤1 , [B]2)

SPS-EQ.ChgRep(pp, [m]1, σ, τ, µ, pk):
parse σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)

parse τ ∈ {([u2]1, [w]1, Ω2) ∪ ⊥}
Ω ← (Ω1, Ω2, [z0]2, [z1]2, Z1)

check PVer(crs, [t]1, [w]1, Ω)

check e([u2]
⊤
1 , [A]2) ̸= e([w]⊤1 , [B]2)

check e([u1]
⊤
1 , [A]2) ̸= e([t]⊤1 , [B]2)+ e([m]⊤1 , [C]2)

α, β
$← Z∗

p

[u′
1]1 ← µ[u1]1 + β[u2]1

[t′]1 ← µ[t]1 + β[w]1 = [A0]1(µr1 + βr2)

for all i ∈ {0, 1}
[z′i]2 ← α[zi]2
[a′

i]2 ← αµ[a1
i ]2 + αβ[a2

i ]2
[d′i]1 ← αµ[d1i ]1 + αβ[d2i ]1

Ω′ ← (([a′
i]1, [d

′
i]2, [z

′
i]2)i∈{0,1}, αZ1)

σ′ ← ([u′
1]1, [t

′]1, Ω
′)

return (µ[m]1, σ
′)

Fig. 4: Our SPS-EQ scheme.
form: σ=(K⊤

0 [A0]1r1+K⊤[m]1, [A0]1r1, [A0]s1, [A1]d
1
1 − z1[A0]1r1, [z0]2r1+[s1]2, [d11]2, [z0]2, [z1]2,

Z1). A signature output by ChgRep has the form σ=(K⊤
0 [A0]1(µr1 + βr2)+K⊤[µm]1, [A0]1(µr1 +

βr2), [A0]α(µs1 + βs2), [A1]α(µd
1
1 + βd21)− z1[A0]1α(µr1 + βr2), α([z0]2(µr1 + βr2)+µ[s1]2+β[s2]2),

α(µ[d11]2 + β[d21]2), α[z0]2, α[z1]2, αZ1), for new independent randomness α, β and µ so is a random
element in the space of all signatures. Furthermore, the signature output by ChgRep is distributed
identically to a fresh signature on message [m]1 output by Sign. □

Theorem 4. If the KerMDH and MDDH assumptions hold, the SPS-EQ in Figure 4 is unforgeable.

Proof. The proof is provided in the full version (Appendix D).

6 Extending the ABC Model from [FHS19]

In this section we present a new ABC model which extends [FHS19] to consider NAND showing
proofs and the use of a CRS (denoted as pp). A NAND showing proof allows users to demonstrate
that a given set of attributes is not present in their credential. The core differences in this extended
ABC model follow naturally from (1) the addition of disjoint sets in the SCDS scheme in section 4,
and (2) the removal of the key verification algorithm (as we work with a CRS).
ABC Syntax. An ABC scheme consists of the following p.p.t algorithms:

Setup(1λ, 1q) takes a security parameter λ and an upper bound q for the size of attribute sets, and
outputs public parameters pp discarding any trapdoor.

TSetup(1λ, 1q) similar to Setup but it also returns a trapdoor (if any).
OrgKeyGen(pp) takes pp as input and outputs an organization key pair (osk, opk).
UserKeyGen(pp) takes pp as input and outputs a user key pair (usk, upk).
Obtain(pp, usk, opk,X ) and Issue(pp, upk, osk,X ) are run by a user and the organization respectively,

who interact during execution. Obtain takes as input pp, the user’s secret key usk, an organization’s
public key opk, and an attribute set X of size |X | < t. Issue takes as input pp, a user public key
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upk, the organization’s secret key osk, and an attribute set X of size |X | < t. At the end of this
protocol, Obtain outputs a credential cred on X for the user or ⊥ if the execution failed.

Show(pp, opk,X ,S,D, cred) and Verify(pp, opk,S,D) are run by a user and a verifier respectively, who
interact during execution. Show takes as input pp, an organization public key opk, a credential
cred for the attribute set X , potentially non-empty sets S ⊆ X , D ⊈ X representing attributes
sets being a subset (S) or disjoint (D) to the attribute set (X ) committed in the credential. Verify
takes as input pp, an organization public key opk, the sets S and D. At the end, Verify outputs 1
or 0 indicating whether or not the credential showing was accepted.

6.1 Security Properties

The following notions are based on the security model from [FHS19] (Section 5.1), which we adapt
to consider the use of a crs (pp) and NAND showing proofs. Informally, an ABC scheme is secure if
it has the following properties:

Correctness. A showing of a credential with respect to a non-empty sets S and D of attributes always
verify if the credential was issued honestly on some attribute set X with S ⊂ X and D ⊈ X .

Unforgeablility. Given at least one non-empty set S ⊂ X or D ⊈ X , a user in possession of a
credential for the attribute set X cannot perform a valid showing for D ⊂ X nor for S ⊈ X .
Moreover, no coalition of malicious users can combine their credentials and prove possession of a
set of attributes which no single member has. This holds even after seeing showings of arbitrary
credentials by honest users (thus, covering replay attacks).

Anonymity. During a showing, no verifier and no (malicious) organization (even if they collude) is
able to identify the user or learn anything about the user, except that she owns a valid credential
for the shown attributes. Furthermore, different showings of the same credential are unlinkable.

To introduce the corresponding formal definitions, the following global variables and oracles are
listed below.
Global variables. At the beginning of each experiment, either the experiment computes an or-
ganization key pair (osk, opk) or the adversary outputs opk. In the anonymity game there is a bit b,
which the adversary must guess.

In order to keep track of all honest and corrupt users, we introduce the sets HU, and CU, respectively.
We use the lists UPK, USK, CRED, ATTR and OWNR to track user public and secret keys, issued credentials
and corresponding attributes and to which user they were issued. Furthermore, we use the sets JLoR
and ILoR to store which issuance indices and corresponding users have been set during the first call
to the left-or-right oracle in the anonymity game.
Oracles. Considering an adversary A the oracles are as follows:

OHU(i) takes as input a user identity i. If i ∈ HU∪ CU, it returns ⊥. Otherwise, it creates a new honest
user i by running (USK[i], UPK[i]) $← UsrKGen(opk), adding i to the honest user list HU and returning
UPK[i].

OCU(i, upk) takes as input a user identity i and (optionally) a user public key upk; if user i does not
exist, a new corrupt user with public key upk is registered, while if i is honest, its secret key and
all credentials are leaked. In particular, if i ∈ CU or if i ∈ ILoR (that is, i is a challenge user in the
anonymity game) then the oracle returns ⊥. If i ∈ HU then the oracle removes i from HU and adds
it to CU; it returns USK[i] and CRED[j] for all j with OWNR[j] = i. Otherwise (i.e., i /∈ HU ∪ CU), it
adds i to CU and sets UPK[i]← upk.

OObtIss(i,X ) takes as input a user identity i and a set of attributes X . If i /∈ HU, it returns⊥. Otherwise,
it issues a credential to i by running

(cred,⊤) $← Obtain(pp, USK[i], opk,X ), Issue(pp, UPK[i], osk,X ).

If cred = ⊥, it returns ⊥. Else, it appends (i, cred,X ) to (OWNR, CRED, ATTR) and returns ⊤.
OObtain(i,X ) lets the adversary A, who impersonates a malicious organization, issue a credential to

an honest user. It takes as input a user identity i and a set of attributes X . If i /∈ HU, it returns
⊥. Otherwise, it runs

(cred, ·) $← Obtain(pp, USK[i], opk,X ), ·),
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where the Issue part is executed by A. If cred = ⊥, it returns ⊥. Else, it appends (i, cred,X ) to
(OWNR, CRED, ATTR) and returns ⊤.

OIssue(i,X ) lets the adversary A, who impersonates a malicious user, obtain a credential from an
honest organization. It takes as input a user identity i and a set of attributes X . If i /∈ CU, it
returns ⊥. Otherwise, it runs

(·, I) $← (·, Issue(pp, UPK[i], osk,X )),

where the Obtain part is executed by A. If I = ⊥, it returns ⊥. Else, it appends (i,⊥,X ) to
(OWNR, CRED, ATTR) and returns ⊤.

OShow(j,S,D) lets the adversary A play a dishonest verifier during a showing by an honest user. It
takes as input an index of an issuance j and attributes sets S and D. Let i

$← OWNR[j]. If i /∈ HU,
it returns ⊥. Otherwise, it runs

(S, ·) $← Show(pp, opk, ATTR[j],S,D, CRED[j]), ·)

where the Verify part is executed by A.
OLoR(j0, j1,S,D) is the challenge oracle in the anonymity game where A must distinguish (multiple)

showings of two credentials CRED[j0] and CRED[j1]. The oracle takes two issuance indices j0 and
j1 and attribute sets S and D. If JLoR ̸= ∅ and JLoR ̸= {j0, j1}, it returns ⊥. Let i0

$← OWNR[j0]
and i1

$← OWNR[j1]. If JLoR ̸= ∅ then it sets JLoR
$← {j0, j1} and ILoR

$← {i0, i1}. If i0, i1 ̸= HU ∨
S ⊈ ATTR[j0] ∩ ATTR[j1] ∨ D ∩ {ATTR[j0] ∪ ATTR[j1]} ̸= ∅, it returns ⊥. Else, it runs

(S, ·) $← (Show(opk, ATTR[jb],S,D, CRED[jb]), ·),

(with b set by the experiment) where the Verify part is executed by A.

Correctness. An ABC system is correct, if for all λ > 0, all t > 0, all X with 0 < |X | ≤ t and all
∅ ̸= S ⊂ X and ∅ ̸= D ⊈ X with 0 < |D| ≤ t it holds that:

Pr


pp

$← Setup(1λ, 1q);

(osk, opk)
$← OrgKGen(pp);

(usk, upk)
$← UsrKGen(pp);

(cred,⊤) $← (Obtain(pp, usk, opk,X ),
Issue(pp, upk, osk,X ))

:
(⊤, 1) $← (Show(pp, opk,X ,S,
D, cred),Verify(pp, opk,S,D))

 = 1.

Unforgeability. An ABC system is unforgeable, if for all λ > 0, all q > 0 and p.p.t adversaries
A having oracle access to O := {OHU, OCU, OObtIss, OIssue, OShow} the following probability is negligible.

Pr


pp

$← Setup(1λ, 1q);

(osk, opk)
$← OrgKGen(pp);

(S,D, st) $← AO(pp, opk);

(·, b∗) $← (A(st),Verify(pp, opk,S,D))

:
b∗ = 1 ∧
∀ j : OWNR[j] ∈ CU =⇒
(S /∈ ATTR[j] ∨ D ∈ ATTR[j])


Anonymity. An ABC system is anonymous, if for all λ > 0, all q > 0 and all p.p.t adversaries
A having oracle access to O := {OHU, OCU, OObtain,OIssue, OShow, OLoR} the following probability is
negligible.

Pr

[
pp

$← Setup(1λ, 1q); b
$← {0, 1}; (opk, st) $← A(pp);

b∗
$← AO(st)

: b∗ = b

]
− 1

2

7 Our ABC construction

As previously explained in Section 1.3, our ABC scheme is based on the one from [FHS19]. The main
changes are the following:

– As we use a signature scheme that relies on a CRS, we move the parameters of the set-commitment
scheme from the organization’s key pair to the public parameters pp that include the previous
CRS. Furthermore, we instantiate the ZKPoK’s using Pedersen commitments and the construction
from [Dam00], as suggested in [FHS19] (Remark 1).
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– Our showing protocol can be instantiated with two sets S and D, one to compute AND proofs
(selective disclosure) and one to compute NAND proofs.

– We integrate the proof of exponentiation to the showing protocol 5.
Intuition. We begin explaining the difference to [FHS19] with respect to malicious organizations
as it clarifies the changes introduced in the issuing protocol. We recall that in this context the term
malicious organizations refers to organizations whose key-pairs are generated in a way that trapdoor
information is included. Such trapdoor information could later be used by an organization to break
anonymity, provided that extra information (a transcript of a given showing protocol containing a
credential issued by the organization) is available. The ABC scheme from [FHS19] defines a ZKPoK
in the issuing protocol (ΠRO ) for which the organization needs to prove knowledge of the corre-
sponding secret key to avoid the previous scenario. Since the signing keys in our SPS-EQ need to be
generated using the CRS (which includes the matrix A), we do not need to request a ZKPoK from
the organization in the issuing protocol as the signature’s verification algorithm a pairing involving
the matrix A and the organization’s public key opk = (B,C) is used to check the signature. Hence,
a signature that verifies rules out that 1) someone impersonated the issuer signing with a different
secret key, and 2) that the public key was maliciously generated. Regarding the showing protocol,
the only changes are the addition of NAND and exponentiation proofs. For the latter, we require the
verifier to randomly pick the challenge and send it to the user.

For ease of exposition, we present the resulting construction (Scheme 1) in Figure 5 considering
selective disclosures only. We highlight in grey the required changes to do NAND proofs, but both
types of proofs could be computed while executing a single showing. If so, a NAND proof increases
bandwidth by 4 elements (two from G1 and two from G2), as the PoE can reuse the same challenge.
Theorem 5. Scheme 1 is correct.

Theorem 6. If the q-co-DL assumption holds, the ZKPoK’s have perfect ZK, SCDS is sound, and
SPS-EQ is EUF-CMA secure, then Scheme 1 is unforgeable.

Theorem 7. If the DDH assumption holds, the ZKPoK’s have perfect ZK, and the SPS-EQ perfectly
adapts signatures, then Scheme 1 is anonymous.

Proof. Proof of Theorem 6 follows closely to that presented in [FHS19] but extended to include
disjoint sets. Proof of Theorem 7 also follows that in [FHS19] with the exception that we work with
a CRS and an accordingly modified definition of perfect adaption. All proofs are provided in the full
version (Appendix E).

7.1 Revocation strategies

The natural approach to revocation would be to follow that described in [DHS15a] where they use the
fact that randomization of a credential is compatible with the randomization of the accumulator and
its corresponding witness. This approach requires the revocation authority to compute and maintain
the witness list. As it uses the accumulator from [ATSM09], the cost of non-membership proofs is
linear in the size of the accumulator (i.e., revoked users), and this should be done at least once by
the manager for every user. If, instead, the dynamic variant is used (as discussed in [DHS15a]), then
users could be given their non-membership witness once and subsequently update it with a single
constant size operation. Other approaches for revocation are discussed in the full version (Appendix
F).

7.2 Signer-Hiding

We recall that our signature scheme is based on the one from [KSD19] and that we are using the
credential framework of [FHS19]. Therefore, as we have k = 1 and ℓ = 3, the public keys consist of
two vectors [B]2 ∈ (G∗

2)
2 and [C]2 ∈ (G∗

2)
3, where the secret keys have the form sk = (K0,K) with

K0
$← (Z∗

p)
2×2 and K

$← (Z∗
p)

3×2. With this in mind, we can naturally define equivalence relationships
on the key spaces Ssk = {(Z∗

p)
2×2 × (Z∗

p)
3×2} and Spk = {(G∗

2)
2 × (G∗

2)
3} as follows:

5 The security of this integration is discussed in the full version (Appendix J).
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ABC.Setup(1λ, 1q):
(BG, scdspp)

$← SCDS.Setup(1λ, q); (spspp) $← SPS-EQ.ParGen(1λ;BG);
r

$← Z∗
p; ck← (P1, rP1); return (BG, scdspp, spspp, ck)

ABC.TSetup(1λ, 1q):
(BG, scdspp, scdstd)

$← SCDS.TSetup(1λ, q); (spspp, spstd) $← SPS-EQ.TParGen(1λ;BG);
r

$← Z∗
p; ck← (P1, rP1); cktd ← r; return ((BG, scdspp, spspp, ck), (scdstd, spstd, cktd))

ABC.OrgKGen(pp): ABC.UsrKGen(pp):
return SPS-EQ.KGen(BG, spspp, 3) usk

$← Z∗
p; upk← uskP1

return (usk, upk)

ABC.Obtain(pp, usk, opk,X ) ABC.Issue(pp, upk, osk,X )
r1, r2

$← Z∗
p; a← r1P1

c← Commit(ck, a, r2)
c−−−−→

z ← r1 + e · usk e←−−−− e
$← Z∗

p

(C,O)← SCDS.Commit(scdspp,X ; usk) C,R,

r3
$← Z∗

p; R← r3C
z,a,r2−−−−→ if (zP1 ̸= a+ e · upk ∨

c ̸= Commit(ck, a, r2)) return ⊥
if (e(C,P2) ̸= e(upk,ChX (s)P2)
∧ ∀ x ∈ X : xP1 ̸= ek01) return ⊥

(σ,τ)←−−−− (σ, τ)← SPS-EQ.Sign((C,R, P1), osk)

check SPS-EQ.Verify(spspp, (C,R, P1), (σ, τ), opk)
return cred = (C, (σ, τ), r3, O)

ABC.Show(pp, usk, opk, ek,S, cred) ABC.Verify(pp, opk,S)
parse cred = (C, σ, r,O); µ $← Z∗

p

if O = (1, (o1, o2)) then
O′ = (1, (µ · o1, o2)) else O′ = µO

σ′ $← SPS-EQ.ChgRep(spspp, (C, rC, P1), σ, τ, µ, opk)
(C1, C2, C3)← µ · (C, rC, P1)
cred′ ← (C1, C2, C3, σ

′)

wit← SCDS.OpenSS(scdspp, µC,S, ek, O′)

r1, r2, r3, r4
$← Z∗

p; a1 ← r1C1; a2 ← r3P1

c1 ← Commit(ck, a1, r2) cred′, wit,

c2 ← Commit(ck, a2, r4)
c1,c2−−−−→ parse cred′ = (C1, C2, C3, σ)

π ← SCDS.PoE(scdspp,S, ẽ)
e,ẽ←−−−− e, ẽ

$← Z∗
p

z1 ← r1 + e · (r · µ); z2 ← r3 + e · µ
Ω = ((zi, ai, ri)i∈{1,2}, π)

Ω−−−−→ parse Ω = ((zi, ai, ri)i∈{1,2}, π)

check
z1C1 = a1 + eC2; z2P1 = a2 + eC3

c1 = Commit(ck, a1, r2)
c2 = Commit(ck, a2, r4)
SPS-EQ.Verify(spspp, cred

′, opk)
SCDS.VerifySS(scdspp, C1,S,wit;π, ẽ)

Fig. 5: Scheme 1.
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PGen(1λ):
BG

$← BGGen(1λ); z $← Zp; crs← (BG, [z]1); td← z

return (crs, td)

PPrv(crs, (Bi,Ci)i∈[n], (B
′
i,C

′
i), ρ):

// B′
i = Bi · ρ ∧C′

i = Ci · ρ
s1, s2, z1, ..., zn−1

$← Zp

[zn]1 ← [z]1 −
∑j=n−1

j=1 [zj ]1

[a1
i ]2 ← s1Bi; [a2

i ]2 ← s2Ci

[d1i ]1 ← ρ[zi]1+[s1]1; [d2i ]1 ← ρ[zi]1+[s2]1

for all j ̸= i ∈ [n] do
d1j , d

2
j

$← Zp

[a1
j ]2 ← d1jBj-zjB′

i; [a2
j ]2 ← d2jCj-zjC′

i

return (([ak
n]2, [d

k
n]1)

k∈[2]

n∈[n], ([zj ]1)j∈[n−1])

PSim(crs, td, (Bi,Ci)i∈[n], (B
′
i,C

′
i)):

z1, ..., zn−1
$← Zp

[zn]1 ← [td]1 −
∑j=n−1

j=1 [zj ]1

for all i ∈ [n] do
d1i , d

2
i

$← Zp

[a1
i ]2 ← d1iBi-ziB′

i; [a2
i ]2 ← d2iCi-ziC′

i

return (([ak
n]2, [d

k
n]1)

k∈[2]

n∈[n], ([zj ]1)j∈[n−1])

PVer(crs, (Bi,Ci)i∈[n], (B
′
i,C

′
i), π):

parse π=(([ak
n]2, [d

k
n]1)

k∈[2]

n∈[n], ([zj ]1)j∈[n−1])

[zn]1 = [z]1 −
∑j=n−1

j=1 [zj ]1

for all i ∈ [n] check
e([d1i ]1,Bi)=e([zi]1,B

′
i)+e([1]1, [a

1
i ]2)

e([d2i ]1,Ci)=e([zi]1,C
′
i)+e([1]1, [a

2
i ]2)

Fig. 6: Fully adaptive NIZK argument for L∨
(Bi∧Ci)i∈[n]

Rsk = {(sk, s̃k) ∈ Ssk × Ssk | ∃ ρ ∈ Z∗
p s.t s̃k = ρ · sk}

Rpk = {(pk, p̃k) ∈ Spk × Spk | ∃ ρ ∈ Z∗
p s.t p̃k = ρ · pk}

If we have a list of public keys (B1,C1), ..., (Bn,Cn) and define the equivalence class of each
public key as before ((B′

i,C
′
i) = (Bi,Ci) ·ρ), we can efficiently prove that a given public key (B′

i,C
′
i)

belongs to the equivalence class of one of the public keys (B1,C1), ..., (Bn,Cn) for some (Bi,Ci). The
idea is to use a generalized version of the OR-Proof from [CH20], and building a generalized NIZK
OR-Proof for the AND statements of the two components. The new language is defined as follows
(remember we use ℓ = 3):

L∨
(Bi∧Ci)i∈[n]

= {(B′
i,C

′
i) ∈ G2×ℓ

2 | ∃ ρ ∈ Z∗
p : ∨ (B′

i = Bi · ρ ∧C′
i = Ci · ρ)i∈[n]}

The resulting NIZK argument is given in Figure 6.

Theorem 8. The proof system given in Figure 6 is a fully-adaptive NIZK argument for the language
L∨

(Bi∧Ci)i∈[n]
.

Proof. The proof follows from Theorem 19 in [CH20]. The only difference is that we rely on the
AND composition for sigma protocols to compile the one in [CH20] using the same challenge for both
proofs.

We now explain how the above NIZK can be used to hide the identity of a signer. First, we need
to consider a scenario in which n-authorities can issue credentials to different sets of users. As we are
in the classical setting, we also assume that every user gets a credential from one of the n-authorities
and that the organization keys are certified and publicly available.

When showing a credential, the verifier needs to check the signature using the corresponding
public key. The idea is to use the above NIZK proof so that a user can randomize the public key
and present this randomized key to the verifier, which in turn will check the NIZK to verify that the
public key is valid (i.e., it belongs to the equivalence class of one of the n-authorities).

Signatures need to be adapted by the users so that they can be verified with the randomized public
key. Therefore, we consider the definition of mercurial signatures [CL19], which includes algorithms
ConvertPK, ConvertSK and ConvertSig, and introduce the following notion.
Perfect adaption of signatures (under malicious keys in the honest parameters model) with re-
spect to the key space; An SPS-EQ over a message space Sm perfectly adapts signatures with respect
to the key space Spk if for all tuples (pp,[pk]j ,[m]i,(σ, τ),ρ) where pp

$← ParGen(1λ), [pk]j ∈ Spk, [m]i ∈
Sm, Verify([m]i, (σ, τ), [pk]j) = 1 and ρ ∈ Z∗

p, we have that the output of ConvertSig([m]i, (σ, τ), ρ, [pk]j)
is σ∗, with σ∗ being a random element in the space of signatures, conditioned on Verify([m]i,
σ∗,ConvertPK([pk]j , ρ)) = 1.

ConvertSig is analogous to the ChgRep algorithm, but restricted to act on the equivalence class
defined by the key space. The algorithms ConvertPK and ConvertSK are just defined to abstract the
computation of new representatives.
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As our signature construction is compatible with the joint executions of the algorithms ChgRep
and ConvertSig, we define below a general notion for perfect adaption where the ChgRep algorithm
acts on all the equivalence classes.
Perfect adaption of signatures (under malicious keys in the honest parameters model); An
SPS-EQ over Sm perfectly adapts signatures if for all tuples (pp, [pk]j , [m]i, (σ, τ), µ, ρ) where pp

$←
ParGen(1λ), [pk]j ∈ Spk, [m]i ∈ Sm, Verify([m]i, (σ, τ), [pk]j)=1 and µ, ρ ∈ Z∗

p we have that the
output of ChgRep([m]i, (σ, τ), µ, ρ, [pk]j) is ([µ ·m]i, σ

∗), with σ∗ being a random element in the space
of signatures, conditioned on Verify([µ ·m]i, σ

∗,ConvertPK([pk]j , ρ))=1.

Our construction satisfies perfect adaption under malicious keys in the honest parameter model
with respect to the message space but not with respect to the key space. Therefore we consider perfect
adaption under honestly generated keys next.

Theorem 9. The above extension applied to the SPS-EQ from Figure 4 perfectly adapts signatures
(under honestly generated keys in the honest parameter model).

Proof. It follows from the security of SPS-EQ and the definition of perfect adaption for mercurial
signatures (Appendix D and H in the full version).

We now formalize the signer-hiding notion and show that our construction satisfies it.
Signer-Hiding. An ABC system supports signer-hiding if for all λ > 0, all q > 0, all n > 0, all
t > 0, all X with 0 < |X | ≤ t, all ∅ ̸= S ⊂ X and ∅ ̸= D ⊈ X with 0 < |D| ≤ t, and p.p.t adversaries
A, the following holds.

Pr


pp

$← Setup(1λ, 1q);

∀ i ∈ [n] : (oski, opki)
$← OrgKGen(pp);

(usk, upk)
$← UsrKGen(pp); j

$← [n];

(cred,⊤) $← (Obtain(usk, opkj ,X ), Issue(upk, oskj ,X ));
j∗

$← AOShow(pp,S,D, (opki)i∈[n])

: j∗ = j

 ≤
1

n

where the oracle OShow is defined as in Section 6.

Theorem 10. If the underlying signature scheme is a SPS-EQ which perfectly adapts signatures
(under honestly generated keys in the honest parameter model), the resulting ABC from Section 7.2
supports signer-hiding.

Proof. Let us first observe that the adversary can guess the bit j∗ with probability 1/n. By definition
of perfect adaption, for all tuples (pp, [opk]j , [m]i, (σ, τ), µ, ρ) s.t (σ, τ) $← Sign(pp, oskj , [m]i), we have
that [µ ·m]i and [ρ ·opk]j are identically distributed in the message and key spaces, where ([µ ·m]i, σ

∗)
← ChgRep([m]i, (σ, τ), µ, ρ, [opk]j) and [ρ·opk]j ← ConvertPK(opkj , ρ). Furthermore, we also have that
σ∗ is a random element in the space of signatures conditioned on Verify([µ ·m]i, σ

∗, [ρ · opk]j) = 1.
Therefore, an adversary with access to [µ · m]i, σ∗ and [ρ · opk]j can only guess the bit j∗ with
probability at most 1/n. □

Integration with our ABC scheme. As our NIZK argument is fully adaptive, users can choose
the size of the anonymity set (i.e., the set of public keys in the OR-Proof). We find this approach
much simpler than using delegatable credentials to achieve a similar result as users do not need to
interact with the organizations to compute the NIZK proof nor to adapt the signature. Moreover,
there is no need to use pseudonyms for public and secret keys. We essentially compute public key’s
pseudonyms “on-the-fly” guaranteeing that the signature adaption is done with respect to a valid
public key. In other words, our NIZK argument is a proof of correct randomization, where the same
randomizer is used to adapt the signature and generate a pseudonymous public key. A complete figure
for the proposed ABC, including the signer-hiding extension as well as NAND proofs, is given in the
full version (Appendix I).
Efficiency analysis. As the proof size is 9n−1 for an anonymity set of n-authorities, communica-
tion bandwidth will no longer be constant. Nevertheless, given the previously mentioned advantages
we believe that this is a fair trade-off for the added functionality. In terms of computational cost, it
is also substantially more efficient than similar variants (see, for instance, Table 2 from [CH20]).
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ABC [San20] [HP20] [TG20] [FHS19] Section 7
Parameters size (n-attributes)

ek (n
2+n+2

2
)G1+nG2 (2n+ 2)G2 (n+ 1)G1+ (n+ 1)G1+ (n+ 1)G1+

(n+ 1)G2 (n+ 1)G2 (n+ 1)G2

Cred 2G2 4G1 1G1 + 6Zp 3G1+1G2 + 2Zp 18G1 + 6G2 + 3Zp

Bandwidth
Issue 4G2 + 2Zp nG1 3G1+(n+3)Zp 12G1+1G2+8Zp 14G1+11G2+7Zp

Show 2G1+2G2+1GT +2Zp 3G1+1Zp 3G1+5Zp 10G1+1G2+8Zp 18G1+14G2+4Zp

k-of-n attributes (AND)
Usr (2(n-k)+2)G1 ,2G2 , 6G1 (6+n-k)G1 (11+n-k)G1 ,1G2 , (20+n-k)G1 ,

1 8 (k-1)G2 ,19
Ver (k+1)G1 ,1GT ,5 4G1 ,2nG2 ,3 5G1 ,(k+1)G2 ,3 4G1 ,(k+1)G2 ,10 10G1 ,16

k-of-n attributes (NAND)
Usr N/A N/A (6+n)G1 N/A (31+n)G1 ,

(9+2k)G2 ,19
Ver N/A N/A (2k+5)G1 , N/A 10G1 ,17

(k+3)G2 ,3
Table 3: Efficiency of ABCs considering issuing and showing interactions (the number of pairings is

marked in bold).

8 Comparison of state-of-the-art ABC

We provide comparisons on the efficiency of state-of-the-art ABC and ours (Section 7) on Table 3.
For ease of exposition, we list the work from [FHS19] next to ours, and consider an instantiation of
it in the CRS model, and using the same ZKPoK’s as the ones used in Section 7.

When looking at a whole, the work from Sanders [San20] presents very good results while also
allowing showings to prove relationships between attributes and to consider malicious keys. Never-
theless, security of the related construction is proven in the GGM model and thus, falls short in that
aspect. The same also applies to the works from [HP20] and [FHS19].

While for the comparisons only the classical setting (credentials are issued by a single authority)
was considered, it is worth to mention that [HP20] does consider multi-authorities. As authors point
out, in order to allow multi-authorities they base their construction on aggregate signatures, and
obtain the most efficient showing for the users. Their security model follows the game-based approach
from [FHS19] but because of the multi-authority setting, they also consider malicious credential
issuers, with adaptive corruptions, and collusions with malicious users. Unfortunately, this is done
assuming that the keys are honestly generated.

[TG20] uses a set-commitment scheme which alongside an SDH-based signature, leads to a cre-
dential system that supports a variety of show proofs for complex statements among which AND and
NAND are included. For this reason, we also compare our work with the one from [TG20] considering
NAND showings. In terms of security models, authors provide a formalization for impersonation at-
tacks and prove their scheme secure against impersonation under active and concurrent attacks. The
security of their ABC scheme is proven in the standard model and providing a tight reduction.

Considering the different trade-offs, our ABC provides very similar performance when compared
to [FHS19] and it is not too distant from the most efficient ones either. Unlike the rest, it can
be adapted to different scenarios in case that reducing the verification cost is not needed, and it
can also be efficiently adapted to provide revocation features. Furthermore, as for many practical
applications the ability to perform AND and NAND showings suffices, we also achieve a good level
of expressiveness too. Finally, the signer-hiding feature makes it suitable for scenarios in which the
rest of the alternatives struggle.

9 Conclusions and Future Work

Our results explore multiple paths to extend the ABC framework of [FHS19] to include more appli-
cations and scenarios where it can be used. In order to improve expressiveness of the set-commitment
scheme in [FHS19] we allow openings on sets of attributes disjoint from those possessed by a user.
We also enhance efficiency by employing the trick of allowing the prover to compute a proof of
exponentiation leaving the verifier only to compute a polynomial division.
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Our signature scheme is based on [KSD19] where we adapt the SPS-EQ scheme by alleviating
the need to build a QA-NIZK incorporating results from the recent framework of [CH20]. With this
fully adaptive NIZK, we find further interesting applications by looking at equivalence classes on the
key-space. We develop a signer-hiding notion to allow a credential-bearing user to hide their issuing
organization upon presentation of the credential. As we increasingly see cases of (algorithmic) bias
against users, notions such as this are of growing importance. Moreover, we also present interesting
directions to integrate revocation features.

We worked in the classical setting where each credential is issued by a single authority. It would
be interesting to follow the related work on aggregatable signatures to see if we could lift SPS-EQ to
the multi-authority setting.

While our set-commitment scheme is more expressive than [FHS19] it is still less expressive
than [TG20]. Hence, it would be interesting to see if the set-commitment scheme introduced there
would yield greater expressiveness to the ABC scheme from this work. Likewise, to verify if the
stronger security notions presented here, could enhance the construction in [TG20].
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A Auxiliary Definitions

DL Assumption. Let BGGen be a bilinear-group generator that outputs BG = (p,G1,G2,GT ,P1,P2,e).
The discrete logarithm assumption holds in Gi for BGGen if for all probabilistic polynomial-time (p.p.t)
adversaries A, the following probability is negligible.

Pr
[
BG

$← BGGen(1λ); a
$← Zp; a

′ $← A(BG, aPi) : a′ = a
]

q-co-DL Assumption. Let BGGen be a bilinear-group generator that outputs BG=(p,G1,G2,GT ,P1,P2,e).
The q-co-discrete logarithm assumption holds in BGGen if for all p.p.t adversaries A, the following
probability is negligible.

Pr
[
BG

$← BGGen(1λ); a
$← Zp; a

′ $← A(BG, (ajP1, a
jP2)j∈[q]) : a′ = a

]
DDH Assumption. Let BGGen be a bilinear-group generator that outputs BG=(p,G1,G2,GT ,P1,P2,e).
The decisional Diffie-Hellman assumption holds in Gi for BGGen, if for all p.p.t adversaries A the
following probability is negligible.

Pr

[
b

$← {0, 1},BG $← BGGen(1λ), r, s, t
$← Zp

b∗
$← A(BG, rPi, sPi, ((1− b) · t+ b · rs)Pi)

: b∗ = b

]
− 1

2

SXDH Assumption. Let BGGen be a bilinear-group generator that outputs BG=(p,G1,G2,GT ,P1,P2,e).
The symmetric external Diffie-Hellman assumption holds for BGGen if DDH holds in G1 and in G2.
q-co-Generalized SDH Assumption. Let BGGen be a bilinear-group generator that outputs BG =
(p,G1,G2,GT , P1, P2, e). The q-co-generalized-strong-Diffie-Hellman assumption (introduced in [FHS19])
holds for BGGen, if for all p.p.t adversaries A, the following probability is negligible.

Pr

BG
$← BGGen(1λ), s

$← Z∗
p

(Q, f1, f2)
$← A(BG, (siP1, s

iP2)0≤i≤q)
:
Q ∈ G1 ∧ f1, f2 ∈ Zp[X] ∧
0 ≤ deg f1 < deg f2 ≤ q ∧
e(Q, f2(s)P2) = e(f1(s)P1, P2)


Matrix Distribution. Let k ∈ N . We call Dk a matrix distribution if it outputs matrices in
Z(k+1)×k
p of full rank k in polynomial time.
Dk-MDDH Assumption. Let Dk be a matrix distribution. We say that the Dk-Matrix Diffie-Hellman
assumption holds in Gs relative to BGGen, if for every BG

$← BGGen(1λ), A $← Dk, w $← Zk
p, u $← Zk+1

p

and all p.p.t adversaries A, the following advantage is negligible,
AdvMDDH

Dk,Gs
(A) := |Pr [A(BG, [A]s, [Aw]s) = 1]− Pr [A(BG, [A]s, [u]s) = 1] |

Dk-KerMDHAssumption. Let Dk be a matrix distribution and s ∈ {1, 2}. We say that the Dk-Kernel
Diffie-Hellman assumption holds in Gs relative to BGGen, if for every BG

$← BGGen(1λ), A $← Dk

and all p.p.t adversaries A, the following advantage is negligible,

AdvKerMDH
Dk,Gs

(A) := Pr
[
[c]3−s

$← A(BG, [A]s) : c
⊺A = 0 ∧ c ̸= 0

]
Lemma 2 (Dk-MDDH ⇒ Dk-KerMDH)Let k ∈ N and let Dk be a matrix distribution. For any
p.p.t adversary A, there exists a p.p.t adversary B such that AdvKerMDH

Dk,Gs
(A) ≤ AdvMDDH

Dk,Gs
(B).

As stated in [GHKP18], for Q ∈ N, W $← Zk×Q
p and U

$← Z(k+1)×Q
p , we consider the Q-fold Dk-

MDDH assumption, which states that distinguishing tuples of the form ([A]s, [AW]s) from ([A]i, [U]i)
is hard. That is, a challenge for the Q-fold Dk-MDDH assumption consists of Q independent challenges
of the Dk-MDDH assumption (with the same A but different randomness w). In [EHK+13] it is shown
that the two problems are equivalent, where the reduction loses at most a factor (k + 1)− k.

Lemma 3 (Random self-reducibility of Dk-MDDH [EHK+13]) Let k,Q ∈ N with Q > 1 and
s ∈ {1, 2, T}. For any p.p.t adversary A, there exists and adversary B s.t. T (B) ≈ T (A) +Q · poly(λ)
with poly(λ) independent of T (A), and

AdvQ−MDDH
Dk,Gs,A (λ) ≤ AdvMDDH

Dk,Gs,B(λ) +
1

p−1 .

Here
AdvQ−MDDH

Dk,Gs,A (λ) := |Pr [A(BG, [A]s, [AW]s) = 1]− Pr [A(BG, [A]s, [U]s) = 1]
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where the probability is taken over BG← BGGen(1λ), A← Dk, W← Zk×Q
p , U← Z(k+1)×Q

p .

Pedersen commitment. The Pedersen commitment [Ped92] is a non-interactive commitment scheme
Γ = (Setup,Commit,Open), which consists of the following algorithms:

– Setup(1λ). On input the security parameter λ, generates a group G of prime order p with ⌈log2
p⌉ = λ, picks a generator g and td

$← Z∗
p. It outputs public parameters pp = (G, p, g, h = gtd) and

trapdoor information td.
– Commit(pp,m). On input the public parameters pp and a message m ∈ Zp outputs a commitment-

opening pair (c, d)← (gmhr, r).
– Verify(pp, c, d,m). On input d = r outputs 1 if and only if gmhr = c.

The Pedersen commitment scheme is correct, perfectly hiding and computationally binding under
the DL assumption in G.

B Security proofs of our SCDS scheme

Theorem 1. The SCDS construction from Figure 2 is correct and perfectly hiding. Furthermore, if
the q-co-DL (resp. q-co-GSDH) assumption holds, SCDS is computationally binding (resp. sound).

Proof. Correctness: We refer the reader to [FHS19](Th. 3) which already proved almost verbatim the
same claim.

Hiding: We refer the reader to [FHS19](Th. 4) which already proved almost verbatim the same
claim.

Binding: Following the approach from [FHS19], we consider the view of an unbounded adversary A
in the hiding experiment and assume w.l.o.g that every query S to the OSS oracle satisfies S ⊂ Zp and
∅ ̸= S ⊆ (X0∩X1). Similarly, every query D to the ODS oracle satisfies D ⊂ Zp and ∅ ̸= D∩{X0∪X1} =
∅. To prove perfect hiding, the results from the adversary queries should be independent from b. In
the following, we will prove that this is the case for the queries made to the oracle ODS. We omit to
prove here the case for queries made to OSS as the corresponding proof can be found almost verbatim
in [FHS19](Th. 6).
(1) A chooses X0,X1 with s ∈ X0 ∩ X1. Note that for all queries Dj , we have s /∈ Dj and for both
b ∈ {0, 1}, Cb = rbP1 is uniformly random in G∗

1 for some rb ∈ Z∗
p . Furthermore, jth query Dj to

ODS is answered with witj,b = (γP2,
1−γ·rb
ChDj

(s)P1, πQ, Q) for a uniformly random γ ∈ Z∗
p, so it does not

depend on the bit b. Thus it is information-theoretically hidden.
(2) A chooses X0,X1 s.t. s is contained in one of the sets; say s ∈ X0. As in the previous case, for
all queries Dj , we have s /∈ Dj . If b = 0 then A receives a uniformly random C0 = r0P1 in G∗

1 for
some r0 ∈ Z∗

p , and when it queries Dj to the ODS oracle, it receives witj,0 = (γP2,
1−γ·r0
ChDj

(s)P1, πQ, Q)

for a uniformly random γ ∈ Z∗
p. If b = 1 then A receives C1 = ChX1(s) · r1P1 for a random r1 ∈ Z∗

p

and the jth query Dj to ODS is answered with witj,1 = (q′1(s).
1
r1
P2, q

′
2(s)P1, πQ, Q). In this case,

q′1(s) = q1(s) + γ · ChX1
(s), and q′2(s) = q2(s) + γ · ChDj

(s) for a random γ ∈ Z∗
p so both witnessess

witj,0 and witj,1 are indistinguishable and do not depend on the bit b. Therefore, b is information-
theoretically hidden from A.
(3) A chooses X0,X1 with s /∈ X0 ∪X1. For both b ∈ {0, 1}: Cb = P

ChXb
(s)·rb

1 for a random rb ∈ Z∗
p . If

s /∈ D′
j the jth query is answered with witj,b = (q′1(s).

1
rb
P2, q

′
2(s)P1, πQ, Q). If s ∈ D′

j : the jth query
is answered with witj,b = (q′1(s).

1
rb
P2, q

′
2(s)P1, πQ, Q). Observe that in both cases the first witness

component q′1(s).
1
rb
P2 perfectly hides b because q′1(s) = q1(s) + γ · ChXb

(s) is uniformly random for
γ

$← Z∗
p. Similarly, the second component q′2(s) = q2(s) + γ · ChDj

(s) is also uniformly random. We
conclude that b is information theoretically hidden from A.

Soundness: We prove both equations in the soundness definition by reduction to the q-co-GSDH
assumption. To do so, we consider an adversary B which on input an instance I = (BG, s), sets
pp← BG and runs A(pp) in the soundness game.
(1) We assume that A is able to output (C,O,X ,S,wit) s.t. X ⊈ S, Open(pp,C,X ,O) = 1 and
VerifySS(pp, C, S,wit) = 1.

Following the approach from [FHS19], we prove here the second inequality in the soundness def-
inition considering an adversary B which on input an instance I = (BG, s), sets pp ← BG and runs
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A(pp) in the soundness game. We omit to prove here the first inequality as the corresponding proof
can be found almost verbatim in [FHS19](Th. 5).
(2) We now assume A is able to output (C,O,X ,D,wit) s.t. X ∩ D ̸= ∅, Open(pp, C,X , O) = 1 and
VerifyDS(pp, C,D,wit) = 1.
(2.1) s /∈ {X ∪ D}: In this case, observe that ∃ c ∈ Z∗

p s.t s ̸= c ∈ X ∩ D. Hence, the adversary can
compute polynomials q1(s) and q2(s) s.t ChX (s) = (c + X)q1(s) and ChD(s) = (c + X)q2(s). Since
VerifyDS(pp, C,D,wit) = 1, we have that:

e(P1, P2) = e(C,w0) · e(w1,ChD(s)P2)

= e(ChX (s) · rP1, w0) · e(w1,ChD(s)P2)

= e((c+ s)q1(s) · rP1, w0) · e(w1, (c+ s)q2(s)P2)

= e(q1(s) · rP1, w0) · e(w1, q2(s)P2)
(c+s)

Hence we have e(q1(s) · rP1, w0) ·e(w1, q2(s)P2) = e(P1, P2)
1

(c+s) . A is able to efficiently compute q1(s)
and q2(s), and so the left side of the last equation can also be efficiently computed by A. It follows
that B can output the pair (c, e(q1(s) · rP1, w0) · e(w1, q2(s)P2)) to break the q-co-GSDH assumption.
(2.2) s ∈ {X ∩ D}: We have that C = γP1 for a random γ ∈ Z∗

p and that s is a root of ChD(s).
Therefore, the verification equation can be written as follows:

e(P1, P2) = e(C,w0) · e(w1,ChD(s)P2)

= e(C,w0) · e(w1, [Id]2)

= e(C · w1, w0)

Since B can efficiently compute the right side of the previous equation, A can also output a solution
(c, e(C · w1, w0)

1
c+s ) to the q-co-GSDH problem.

(2.3) s ∈ X ∧ s /∈ D: As before, C = γP1 for a random γ ∈ Z∗
p, but we also have that ∃ c ∈ Z∗

p

s.t s ̸= c ∈ X ∩ D, and we can write ChD(s)=(c + X)q1(s). The verification equation can then be
re-stated as:

e(P1, P2) = e(C,w0) · e(w1,ChD(s)P2)

= e(γP1, w0) · e(w1, (c+ s)q1(s)P2)

= e(w1 · γP1, w0 · q2(s)P2)
(c+s)

Hence, we have e(P1, P2)
1

(c+s) = e(w1 · γP1, w0 · q2(s)P2), where the right side can be efficiently
computed by A. Therefore, B can output a solution (c, e(w1 · γP1, w0 · q2(s)P2)) to the q-co-GSDH
problem.
(2.4) s /∈ X ∧ s ∈ D: In this case we have that C = ChD(s) · rP1 with ChD(s) = (c +X)q1(s), for
some s ̸= c ∈ {X ∩D}. Again, c and q1 can be efficiently computed and the verification equation can
then re-stated as:

e(P1, P2) = e(ChX (s) · rP1, w0) · e(w1,ChD(s)P2)

= e((c+ s)q1(s) · rP1, w0) · e(w1, P
0
2 )

= e(q1(s) · rP1 · w1, w0)
(c+s)

Hence, we have e(P1, P2)
1

(c+s) = e(q1(s) · rP1 ·w1, w0), where the right side can be efficiently computed
by A. Therefore, B can output a solution (c, e(q1(s) · rP1 · w1, w0)) to the q-co-GSDH problem. □

C Security proofs of our Malleable NIZK Argument

Theorem 2. The protocol in Figure 3 is a fully adaptive NIZK argument for the OR-language L∨
A0,A1

if the falsifiable L1-(4k + 1)-extKerMDH assumption holds in G2.

Proof. We have to show completeness, perfect zero-knowledge, computational soundness and derivation
privacy. We do it in the same way as done for the original protocols from [CH20] (Theorem 19)
and [KSD19] (Theorem 1).
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Perfect Completeness: Let [x1]1 = [A0]1w1 and [x2]1 = [A0]1w2 be valid statements for L∨
A0,A1

with witnesses w1 and w2, and let π1=(([ai]
1
1, [di]

1
2, [zi]2)i∈{0,1}, P ) and π2 = (([ai]

2
1, [di]

2
2, [zi]2)i∈{0,1}, P )

be valid proofs for [x1]1, [x2]1 ∈ L∨
A0,A1

. Let π̂ = (α[a0]
1
1+αβ[a0]

2
1, α[a1]11+αβ[a1]

2
1, α[d0]

1
2+αβ[d0]

2
2,

α[d1]
1
2 + αβ[d1]

2
2, α[z0]2, α[z1]2, αP ) be the output from PPrv(crs, [x1]1, w1, [x2]1, w2), where

the corresponding witness is ŵ = w1 + βw2. In the following we show that PRVer(crs, [̂x]1 =
[x1]1 + β[x2]1, π̂) = 1.

First, we have that

A0 · d̂0 = x̂ · ẑ0 + â0

⇐⇒ A0(α[d0]
1
2 + αβ[d0]

2
2) = x̂ · ẑ0 + (α[a0]

1
1 + αβ[a0]

2
1)

[a0]i1=A0·si
⇐⇒ A0(α[d0]

1
2 + αβ[d0]

2
2) = x̂ · ẑ0 + (αA0 · s1 + αβA0 · s2)

[d0]i1=z0wi+si

⇐⇒ A0(α(z0w1 + s1) + αβ(z0w2 + s2)) = x̂ · ẑ0 +A0(αs1 + αβs2)

⇐⇒ A0(αz0w1 + αβz0w2 + (αs1 + αβs2)) = x̂ · ẑ0 +A0(αs1 + αβs2)

⇐⇒ A0(αz0w1 + αβz0w2) +A0(αs1 + αβs2) = x̂ · ẑ0 +A0(αs1 + αβs2)
x̂=A0ŵ

⇐⇒ A0(αz0w1 + αβz0w2) = A0 · ŵ · ẑ0
ẑ0=αz0

⇐⇒ αz0(w1 + βw2) = αz0ŵ

⇐⇒ w1 + βw2 = ŵ

Similarly, we have that

A1 · d̂0 = x̂ · ẑ1 + â1

⇐⇒ A1(α[d1]
1
2 + αβ[d1]

2
2) = x̂ · ẑ1 + (α[a1]

1
1 + αβ[a1]

2
1)

[a1]i1=A1di
1−z1xi

⇐⇒ A1(α[d1]
1
2 + αβ[d1]

2
2) = x̂ · ẑ1 + (α(A1d

1
1 − z1x1)

+ αβ(A1d
2
1 − z1x2))

⇐⇒ αA1[d1]
1
2 + αβA1[d1]

2
2 = x̂ · ẑ1 + α(A1d

1
1)− αz1x1

+ αβ(A1d
2
1)− αβz1x2

ẑ1=αz1

⇐⇒ αA1[d1]
1
2 + αβA1[d1]

2
2 = x̂ · αz1 − (x1 + βx2)αz1

+ αA1[d1]
1
2 + αβA1[d1]

2
2

x̂=x1+βx2

⇐⇒ αA1[d1]
1
2 + αβA1[d1]

2
2 = αA1[d1]

1
2 + αβA1[d1]

2
2

Finally, we also have that e(P, [z]2) = [αz]T = e([1]1, [αz]2) = e([1]1, [z0]2 + [z1]2).

Perfect Zero-Knowledge: We have to show that the distributions PSim and PPrv are identical. As
in [CH20] (Theorem 19), this follows from the fact that the simulator is able to generate an identically
distributed proof when given the trapdoor e, while also hiding the value α used to randomize the
challenges with P as done by the real prover.

Computational Soundness: Again, the only difference from [CH20] (Theorem 19) is that we now use
a linear relation to check the challenge, which is equivalent to verifiy the original equation z = z0+z1
and therefore soundness can be proven following the proof from [CH20] almost in verbatim.

Derivation Privacy: As in [KSD19], the algorithm ZKEval outputs a proof with new independent
randomness, which has an idientical distribution compared to the PProv when computing a single
proof. Thus, we also achieve perfect derivation privacy. □



28 A. Connolly et al.

Expcore0 (λ), β ∈ {0, 1}:
ctr← 0

BG
$← BGGen(1λ)

A0,A1
$← D1

(crs, td)
$← PGen(1λ;BG)

pp← (BG, [A0]1, [A1]1, crs)

k0,k1
$← Z2

p

tag← ATAGO()(pp)

return VERO(tag)

TAGO():
ctr← ctr + 1; r1, r2 $← Zp

[t]1 ← [A0]1r1, [w]1 ← [A0]1r2
Ω = (Ω1, Ω2, [z0]2, [z1]2, Z1)← PPro(crs, [t]1, r1, [w]1, r2)

[u′]1 ← (k0 + β ·RF(ctr))⊤[t]1; [u′′]1 ← (k0 + β · k1)
⊤[w]1

tag← ([t]1, [w]1, Ω, [u′]1, [u
′′]1)

return tag 

VERO(tag):
parse tag = ([t]1, Ω1, [z0]2, [z1]2, Z1, [u

′]1)

if PRVer(crs, [t]1, (Ω1, [z0]2, [z1]2, Z1)) ∧
∃ ctr′ ≤ ctr : [u′]1 = (k0 + β ·RF(ctr′))⊤[t]1
return 1 else return 0

Fig. 7: Core lemma for our SPS-EQ scheme.
D Security proofs of our SPS-EQ scheme

Lemma 4 (Core Lemma) If the D1-MDDH (DDH) assumption holds in G1 and the tuple of
algorithms Π = (PGen,PPro,PSim,PRVer) is a non-interactive zero-knowledge argument for L∨

A0,A1
,

then going from experiment Expcore0 to Expcore1 (Fig. 7) can (up to negligible terms) only increase the
winning chance of an adversary. More precisely, for every adversary A, there exists adversaries B, B1
and B2 s.t

Advcore
0 (A)−Advcore

1 (A) ≤ ∆core
A , where

∆core
A = (2 + 2⌈log Q⌉Advzk

Π(B) + (8⌈log Q⌉+ 4)AdvMDDH
D1,Gs

(B1)

2⌈log Q⌉Advsnd
Π (B2) + ⌈log Q⌉∆D1

+
(8⌈log Q⌉+ 4)

p− 1
+

(⌈log Q⌉)Q
p

and the term ∆D1
is statistically small.

Proof. The proof of this lemma is very similar (in parts verbatim) to the one given in [KSD19],
which in turns extends the original core lemma from [GHKP18]. The main difference is that we use
the standard definition for zero-knowledge in our NIZK argument system instead of the composable
one. As pointed out in [AJO+19], the standard notion of zero-knowledge suffices in this context. For
completeness, we present the full proof below.
Game 0: We define Game 0= Expcore0 ad thus by definition:

Adv0 = Advcore
0 (A)

Game 1: In this game we replace PPro with PSim in Game 0 to compute the proof. An adversary
B for Game 1 is such that T (B) ≈ T (A) +Q · poly(λ) and

Adv0 −Adv1 ≤ Advzk
Π(B)

where Advzk
Π(B) is the advantage of B ito break the zero-knowledge property from Π.

Game 2: In this game we pick [t]1, [w]1
$← G2

1 instead of computing them as in the previous game. We
can switch [t]1 and [w]1 to random over G2

1 by applying the D1-MDDH assumption. More precisely,
let A be an adversary distinguishing between Game 1 and Game 2 and let B1 be an adversary
given two Q-fold D1-MDDH challenges (BG, [A0]1, [q1]1, ..., [qQ]1) and (BG, [A0]1, [q

′
1]1, ..., [q

′
Q]1) as

input. Now B1 sets up the game for A similar to Game 1, but instead choosing A0
$← D1, it uses

its challenge matrix [A0]1 as part of the public parameters pp. Further, to answer tag queries B1 sets
[ti]1 := [qi]1, and [wi]1 := [qi]1 and computes the rest accordingly. This is possible as the proof Ω is
simulated from Game 1 on. In case B1 was given a real D1-MDDH challenge, it simulates Game 1
and otherwise Game 2. Thus, by lemma 3, we have an adversary B1 with T (B1) ≈ T (A)+Q ·poly(λ)
and

Adv1 −Adv2 ≤ 2AdvMDDH
D1,Gs

(B1) + 2
p−1
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Game 3.0: Let us denote a sequence of games with 3.i, where RFi is the random function RF on
i-bit prefixes, and the i-bit prefix of ctr is ctr|i. In this game, we compute [u′]1 = (k0+RFi(ctr|i)[t]1,
and [u′′]1 = (k0 + k′

0)[w]1 (where k′
0 = RF0(ctr|0)). In the verification algorithm also, we verify

[u′]1 = (k0 + RFi(ctr|i′)[t]1 for ctr′ ≤ ctr, and [u′′]1 = (k0 + k′
0)[w]1. As for all ctr ∈ N we have

RF0(ctr|0) = RF0(ϵ) and k0 is identically distributed to k0 +RF0(ϵ) for k0
$← Zp, we have

Adv3.0 = Adv2

Game 3.i→Game 3.(i+1) We proceed via a series of hybrid games Hi.j for i ∈ [0,log(Q)− 1] and
j ∈ [1, 8], marking the adversary’s advantage on each game with Adv′.
Game 3.i→Hi.1: In this game, we compute [t]1 = [Actri+1 ]1r1.i and [w]1 = [Actri+1 ]1r2.i, instead
of picking them randomly. Here, ctri+1 is the i + 1’st bit of the binary representation of ctr. More
precisely, we introduce an intermediary game Hi.0, where we choose [ti]1 and [wi]1 as

[ti]1 =

{
[Actri+1

]r1.i for r1.i
$← Zp if ctri+1 = 0

[ui]1 for ui
$← Z2

p otherwise

[wi]1 =

{
[Actri+1

]r2.i for r2.i
$← Zp if ctri+1 = 0

[u′
i]1 for u′

i
$← Z2

p otherwise

Let A be an adversary distinguishing between Game 3.i and Hi.0 and let B1 be an adversary given
two Q-fold D1-MDDH challenges (BG, [A0]1, [q1]1, ..., [qQ]1) and (BG, [A0]1, [q

′
1]1, ..., [q

′
Q]1). Then B1

sets up the game for A similar to Game 3.i, where it embeds [A0]1 into the public parameters
pp. Further, whenever obtaining a simulation query ctr with ctri+1 = 0, B1 sets [ti]1 := [qi]1 and
[wi]1 := [q′

i]1 and otherwise follows Game 3.i. Similarly, we can reduce the transition from game
Hi.0 to Hi.1 to the MDDH assumption. We have

|Adv3.i −Adv′
i.1| ≤ 4AdvMDDH

D1,Gs
(B1) + 4

p−1

Hi.1→Hi.2: In this step we reverse the transition from Game 0 to Game 1 and thus replace PSim
with PPro from game Hi.1 on. We choose all [t]1, [w]1 in tag queries from L∨

A0,A1
with corresponding

witness and can thus honestly generate proofs. Therefore,
|Adv′

i.2 −Adv′
i.1| ≤ Advzk

Π(B2)

Hi.2→Hi.3: From game Hi.3 on we introduce an additionally check in the verification oracle. Namely,
VERO checks that [t]1, [w]1 ∈ span([A0]1) ∨ span([A1]1). We can employ the soundness of Π to
obtain

|Adv′
i.3 −Adv′

i.2| ≤ Advsnd
Π (B2)

Hi.3→Hi.4: Let A⊥
0 ∈ orth(A0) and A⊥

1 ∈ orth(A1). We introduce an intermediary game Hi.3.1 ,
where we replace the random function RFi : {0, 1}i → Z2

p by
RF′

i : {0, 1}i → Z2
p, RF′

i(v) := (A⊥
0 |A⊥

1 )(Γi(v) Υi(v))
⊤

where v ← {0, 1}i is an i-bit string and Γi, Υi : {0, 1}i → Zp are two independent random functions.
With probability 1 −∆D1

the matrix (A⊥
0 |A⊥

1 ) has full rank. In this case, going from game Hi.3 to
game Hi.3.1 consists merely in a change of basis, thus, these two games are perfectly indistinguishable.
We obtain

|Adv′
i.3.1 −Adv′

i.3| ≤ ∆D1

We now define RFi+1 : {0, 1}i+1 → Z2
p s.t,

RFi+1(v) :=

{
(A⊥

0 |A⊥
1 )(Γ

′
i (v|i) Υi(v|i))

⊤ if v|i+1 = 0

(A⊥
0 |A⊥

1 )(Γi(v|i) Υ
′
i (v|i))

⊤ otherwise

where Γ ′
i , Υ

′
i : {0, 1}i → Zp are fresh independent random functions. Now RFi+1 constitutes a random

function {0, 1}i+1 → Z2
p. Replacing RF′

i+1(ctr|i) by RFi+1(ctr|i+1) does not show up in any of the
tag queries, as we have

RFi+1(ctr|i+1)
⊤[t]1 = RFi+1(ctr|i+1)

⊤[Actri+1
]1r1 = ... = RF′

i(ctr|i)
⊤[Actri+1

]1r1
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In the verification oracle we check [t]1, [w]1 ∈ span([A0]1) ∨ span([A1]1). Let us define d[t] = 0 if t ∈
span(A0) and d[t] = 1 if t ∈ span(A1), and replace RFi(ctr|i) by RFi+1(ctr|i|d[t]). Thus, by similar
reasoning as for tag queries, the change does not show up in the final verification query either. We
obtain

|Adv′
i.4 −Adv′

i.3| ≤ ∆D1

Hi.4→Hi.5: From game Hi.5 on, we extend the set S in the verification oracle from Si.4 := RFi+1(ctr
′
|i|d[t]) :

ctr′ ≤ ctr to Si.5 := RFi+1(ctr
′
|i|b) : ctr′ ≤ ctr, b ∈ {0, 1}. That is, we regard a verification query

([t]1, [w]1, Ω, [u′]1, [u
′′]1) as valid, if there exists a ctr′ ≤ ctr such that [u′]1 = (k0+RFi+1(ctr

′
|i|b)⊤[t]1

for b ∈ {0, 1} arbitrary, instead of requiring b = d[t] . As changing the verification oracle does not
change the view of the adversary before providing its output and as we have Si.4 ⊆ Si.5, the transition
from game Hi.4 to game Hi.5 can only increase the chance of the adversary. We thus have

Adv′
i.4 ≤ Adv′

i.5

Hi.5→Hi.6: The difference between game Hi.5 and game Hi.6 is that in the latter we only regard
a verification query ([t]1, [w]1, Ω, [u′]1, [u

′′]1) valid, if there exists a ctr′ ≤ ctr such that [u′]1 =
(k0 +RFi+1(ctr

′
|i|ctr

′
|i+1)

⊤[t]1 (instead of allowing the last bit to be arbitrary). As the only way an
adversary can learn the image of RFi+1 on a value is via tag queries and RFi+1 is a random function,
a union bound over the elements in Qtag yields

|Adv′
i.5 −Adv′

i.6| ≤
Q
p

Hi.6→Hi.7: The oracle VERO does not perform the additional check [t]1, [w]1 ∈ span([A0]1 ∨ span([A1]1)
anymore from game Hi.7 on. This is justified by the soundness of Π. As in transition Hi.2 → Hi.3 we
obtain

|Adv′
i.6 ≤ Adv′

i.7| ≤ Advsnd
Π (B2)

Hi.7→Hi.8: This transition is similar to transition Game 0 to Game 1. For an adversary B2 we
obtain

Adv′
i.7 −Adv′

i.8 ≤ Advzk
Π(B2)

Hi.8→Game 3.(i+1): We switch [t]1, [w]1 generated by TAGO to uniformly random over G2
1, using

the MDDH assumption first on [A0]1, then on [A1]1. Similarly than for the transition Game 3.i
→ Hi.1, we obtain

|Adv3.(i+1) −Adv′
i.8| ≤ 4AdvMDDH

D1,Gs
(B2) + 4

p−1

Game 3.(log(Q))→Expcore1,A: It is left to reverse the changes introduced in the transitions from Game
0 to Game 2 to end up at the experiment Expcore1,A. In order to do so we introduce an intermediary
Game 4, where we set [t]1 := [A0]1r1 and [w]1 := [A0]1r2 for r1, r2

$← Zp. This corresponds to
reversing transition Game 1 to Game 2. By the same reasoning for every adversary A we thus
obtain

|Adv3.(log Q) −Adv4| ≤ 2AdvMDDH
D1,Gs

(B1) + 2
p−1

As [t]1, [w]1 are now chosen from span([A0]1) again, we have
Adv4 −Advcore

1 ≤ Advzk
Π(B2)

□

Theorem 4. If the KerMDH and MDDH assumptions hold, the SPS-EQ in Figure 4 is unforgeable.

Proof. We prove the claim by using a sequence of Games and we denote the advantage of the adversary
in the j-th game as Advj .
Game 0: This game is the original game and we have:

Adv0 = AdvEUF−CMA
SPS−EQ (A)

Game 1: In this game, in Verify, we replace the verification in line (2:) with the following equation:
[u∗

1]1 = K⊤
0 [t

∗]1 +K⊤[m∗]1
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For any signature σ = ([u∗
1]1, [t

∗]1, Ω
∗
1 , [z

∗
0 ]2, [z

∗
1 ]2, Z

∗
1 ) that passes the original verification but not

verification of Game 1, the value [u∗
1]1 − K⊤

0 [t
∗]1 − K⊤[m∗]1 is a non-zero vector in the ker-

nel of A. Thus, if A outputs such a signature, we can construct an adversary B that breaks the
D1-KerMDH assumption in G2. First, the adversary B receives (BG, [A]2, [A0]1, [A1]1, [z]2), sam-
ples all other parameters and simulates Game 1 for A. When B receives the forgery from A as
σ = ([u∗

1]1, [t
∗]1, Ω

∗
1 , [z

∗
0 ]2, [z

∗
1 ]2, Z

∗
1 ) for [m∗]1, he passes the following values to its own challenger:

[u∗
1]1 −K⊤

0 [t
∗]1 −K⊤[m∗]1. We have:

|Adv1 −Adv0| ≤ AdvKerMDH
D1,G2

(A)
Game 2: In this game, we set K0 = K0 + k0(a

⊥)⊤ (in the key generation we can pick k0 ∈ Z2
p and

K0 ∈ Z2×2
p and set K0; we have a⊥A = 0). We compute [u1]1 = K⊤

0 [t]1+K⊤[m]1+a⊥(k0)
⊤[t]1 and

[u2]1 = K⊤
0 [w]1+a⊥(k0)

⊤[w]1. There is no difference to the previous game since both are distributed
identically. So, we have:

Adv2 = Adv1

Game 3: In this game, we add the part of RF(ctr) for ctr = ctr+1, where RF is a random function,
and obtain [u1]1 = K⊤

0 [t]1 +K⊤[m]1 + a⊥(k0 +RF(ctr))⊤[t] − 1 and [u2]1 = K⊤0[w]1 + a⊥(k0 +
k′)⊤[w]1. In the verification we have:

1← PRVer(crs, [t]1, (Ω1, [z0]2, [z1]2, π)) and
∃ ctr′ ≤ ctr : [u1]1 = K⊤

0 [t]1 + a⊥(k0 +RF(ctr′))⊤ +K⊤[m]1

Let A be an adversary that distinguishes between Game 3 and Game 2. We can construct an adver-
sary B1 that breaks the core lemma. B1 receives pp = (BG, [A0]1, crs) from Expcoreβ,B1

. B1 picks A $← Dk,
a⊥ ∈ orth(A), K0

$← Z2×2
p , K $← Z2×ℓ

p , and sends public key pk = ([A]2, [K0A]2, [KA]2) to A. B1
uses the oracle TAG() to construct the signing algorithm. This oracle takes no input and returns tag =
(([t]1, [w]1, (Ω1, Ω2, [z0]2, [z1]2, Z1), [u

′]1, [u
′′]1). Then B1 computes [u1]1 = K0[t]1+a⊥[u′]1+K⊤[m]1,

[u2]1 = K⊤
0 [w]1 + a⊥[u′′]1, and sends the signature σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1) and tag τ =

([u2]1, [w]1, Ω2) toA. When the adversaryA sends the forgery ([m∗]1, σ
∗)=([u∗

1]1,[t∗]1,Ω∗
1 ,[z∗0 ]2,[z∗1 ]2,Z∗

1 ),
B returns 0 if [u1]1 = 0; otherwise it checks whether there exists [u′∗]1 such that [u∗

1]1 −K⊤
0 [t

∗]1 −
K⊤[m∗]1= a⊥[u′∗]1. If it does not hold, then it returns 0 to A, otherwise B1 computes [u′∗]1, and
calls the verification oracle VERO() on the tag tag∗ = ([u′∗]1, [t

∗]1, Ω
∗
1 , [z

∗
0 ]2, [z

∗
1 ]2, Z

∗
1 ) and returns

the answer to A. Using the core lemma, we have:
Adv2 −Adv3 ≤ Advcore

BG (B1)
Game 4: In this game, we pick r1, r2 from Z∗

p instead of Zp. The difference of advantage between
Game 3 and Game 4 is bounded by the statistical distance between the two distributions of r1, r2.
So, under Q adversarial queries, we have:

Adv4 −Adv3 ≤ Q
p

Game 5: In this game, we pick c̃tr
$← [1, Q], and we add a condition ctr′ = c̃tr to verification. Actually,

now we have this conditions:
1← PRVer(crs, [t]1, (Ω1, [z0]2, [z1]2, Z1)) and

∃ctr′ ≤ ctr : [u1]1 = K⊤
0 [t]1 + a⊥(k0 +RF(ctr′))⊤ +K⊤[m]1

Since the view of the adversary is independent of ctr, we have
Adv5 = Adv4

Q

Game 6: In this game, we can replace K by K+ v(a⊥)⊤ for v
$← Zℓ

p. Also, we replace {RF(i) : i ∈
[1, Q], i ̸= ctr} by {RF(i) +wi : i ∈ [1, Q], i ̸= c̃tr}, for wi

$← Z2k
p and i ̸= ctr. So, in each i-th query,

where i ̸= ctr, we compute
[u1]1 = K⊤

0 [t]1 + (K⊤ + a⊥v⊤)[mi]1 + a⊥(k0 +RF(i) +wi)
⊤[t]1

Also, for c̃tr-th query for the message [mc̃tr]1, we compute
[u1]1 = K⊤

0 [t]1 + (K⊤ + a⊥v⊤)[mc̃tr]1 + a⊥(k0 +RF(c̃tr) +wi)
⊤[t]1

So, A must compute the following:
[u∗

1]1 = K⊤
0 [t

∗]1 + (K⊤ + a⊥v⊤)[m∗]1 + a⊥(k0 +RF(c̃tr) +wi)
⊤[t∗]1

Since m∗ ̸= [mc̃tr]R (in different classes) by definition of the security game, we can argue v⊤m∗

and v⊤mc̃tr are two independent values, uniformly random over G1. So, A only can guess it with
probability of 1

p . So, we have
AdvEUF−CMA

SPS−EQ (A) ≤ AdvKerMDH
BG (B) +Advcore

BG (B1) + 2Q
p

□
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E Security proofs of our ABC scheme

Theorem 5. Scheme 1 is correct.

Follows by inspection
Theorem 6. If the q-co-DL assumption holds, the ZKPoK’s have perfect ZK, SCDS is sound, and
SPS-EQ is EUF-CMA secure, then Scheme 1 is unforgeable.

In the proof of unforgeability we distinguish whether the adversary wins the game by forging a
signature, breaking the opening soundness of the commitment scheme or computing a discrete loga-
rithm. The proof of unforgeability follows almost verbatim the strategy in [FHS19] with modifications
to take care of disjoint sets.

Proof. We first introduce the following syntactic changes to the experiment, which allows us to
distinguish forgeries: (1) We include the value R in the credential cred output by Obtain. (2) When
the adversary makes a valid call to OIssue the experiment receives the values C,R and produces a
signature σ; instead of appending ⊥ to the list CRED, the oracle now appends ((C,R), σ,⊥,⊥). Note
the adversary’s view in the experiment remains unchanged.

Assume that an efficient adversary A wins the unforgeability game with non-negligible probability
and let ((C∗

1 , C
∗
2 , C

∗
3 ), σ

∗) be the message-signature pair it uses and wit∗ be the witness for an attribute
set S∗ ⊈ ATTR[j], or wit∗ be the witness for an attribute set D∗ ⊆ ATTR[j] for all j with OWNR[j] ∈ CU.
We distinguish the following cases:

Type 1: [(C∗
1 , C

∗
2 , C

∗
3 )]R ̸= [(C,R, P )]R for ((C,R), σ, ∗, ∗) = CRED[j] for all issuance indices j (i.e., OWNR[j] ∈

HU∪CU). The pair ((C∗
1 , C

∗
2 , C

∗
3 ), σ

∗) is a signature forgery and using A we construct and adversary
B that breaks the EUF-CMA security of the SPS-EQ scheme.

Type 2: [(C∗
1 , C

∗
2 , C

∗
3 )]R = [(C,R, P )]R for ((C,R), σ, ∗, ∗) = CRED[j] for some index j with OWNR[j] ∈

CU. Since A wins if (1) S ⊈ ATTR[j] or (2) D ⊆ ATTR[j], it must have broken the soundness of the
set-commitment scheme SCDS.

Type 3: [(C∗
1 , C

∗
2 , C

∗
3 )]R = [(C,R, P )]R for ((C,R), σ, r, O) = CRED[j] for some index j with OWNR[j] ∈

HU. Then we use A to break q-co-DL.

Type 1. In this case B interacts with a challenger C in the EUF-CMA game of SPS-EQ and simulates
the ABC-unforgeability game for A. The challenger C runs (osk, opk)

$← OrgKGen(crs) and gives opk

to B. Then B selects a
$← Zp, defines scdspp and sets (osk, opk) ← (a, pk). Then B runs A(opk) and

simulates the environment and the oracles. All oracles are executed as in the real game, except the
following which use the signing oracle instead of the signing key osk.

OObtIss(i,X ): B computes (C,O)← SCDS.Commit(ek,X ; usk), picks r $← Z∗
p and then queries its oracle

Sign(sk, ·) on (C, r · C,P ) to obtain σ. B appends (i, ((C, r · C), σ, r, O),X ) to (OWNR, CRED, ATTR).
OIssue(i,S): Instead of signing (C,R, P ), B obtains the signature σ from C’s signing oracle. If successful,
B appends (i, ((C,R), σ,⊥,⊥),X ) to (OWNR, CRED, ATTR) and returns ⊤.

When A outputs (S∗,D∗, st), then B runs A(st) and interacts with A as the verifier in the showing
protocol. If A produces a valid showing using a credential ((C∗

1 , C
∗
2 , C

∗
3 ), σ

∗), then B rewinds A to the
step after sending the commitments and restarts A with a new challenge e′ ̸= e. Then B performs a
Schnorr-like knowledge extraction to obtain µ. If there is a credential ⊥ ̸= ((C ′, R′), σ′, ∗, ∗) ∈ CRED
such that (C ′, R′, P ) = µ−1 · (C∗

1 , C
∗
2 , C

∗
3 ) then B aborts (as the forgery is not of type 1). Otherwise,

B has never queried a signature for class [(C∗
1 , C

∗
2 , C

∗
3 )]R and outputs ((C∗

1 , C
∗
2 , C

∗
3 ), σ∗) as a forgery.

B thus breaks the EUF-CMA security of SPS-EQ.

Type 2. Adversary B interacts with the challenger C in the soundness game for SCDS for some q ≥ 0.
First, C generates set-commitment parameters scdspp ← (BG, (siP1, s

iP2)i∈[q]) with BG = BGGen(1λ)

and sends scdspp to B. B generates a key pair (osk, opk) $← OrgKGen(crs) and runs A(opk), simulating
the oracles. All oracles are as in the real game, except OObtain in which OIssue is simulated as:

OIssue(i,S): B runs A twice to extract usk and sets USK[i]← usk.

When A outputs (S∗,D∗, st), B runs A(st) and interacts with A as the verifier in the showing protocol.
Assume A produces a valid showing using ((C∗

1 , C
∗
2 , C

∗
3 ), σ

∗) and a witness wit∗ for the attribute set
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S∗, or a valid witness wit∗ for the attribute set D∗ such that S∗ ⊈ ATTR[j] or D∗ ⊆ ATTR[j] for all j
with OWNR[j] ∈ CU. Then B rewinds A to the step after sending the commitments and restarts A with
a new challenge e′1 ̸= e1. B can then perform a knowledge extraction to obtain µ such that C∗

3 = µP .
Let (C ′, R′, P ) = µ−1 · (C∗

1 , C
∗
2 , C

∗
3 ): if there is no credential ⊥ = ((C ′, R′), ∗, ∗, ∗) ∈ CRED then B

aborts as the forgery was of type 1. Otherwise, let j∗ be such that ((C ′, R′), ∗, ∗, ∗) = CRED[j∗]. If
OWNR[j∗] ∈ HU then B aborts as the forgery is of Type 3. Else we have OWNR[j∗] ∈ CU and S∗ ⊈ ATTR[j∗]
or D∗ ⊆ ATTR[j∗]. If for some a′ ∈ ATTR[j∗] : a′P = aP then B sets O∗ ← (1, a′). Else, B sets
O∗ ← (0, µ · USK[OWNR[j∗]]). B outputs (C∗

1 , ATTR[j∗], O∗,S∗,wit∗) which satisfies S∗ ⊈ ATTR[j∗] ̸=
⊥ and VerifySS(pp, C∗

1 ,S∗,wit∗) = 1 or B outputs (C∗
1 , ATTR[j∗], O∗,D∗,wit∗) which satisfies D∗ ⊆

ATTR[j∗] ̸= ⊥ and VerifyDS(pp, C∗
1 ,D∗,wit∗) = 1.

B’s output thus breaks the subset- or disjoint-set soundness of SCDS.

Type 3. In this case we assume A can produce a forgery by computing a discrete log. We proceed via
a sequence of games which are indistinguishable under q-co-DL. We denote an adversary succeeding
to win Game i by Si.
Game 0: The original game, which only outputs 1 if the forgery is of Type 3. Game 1: As Game 0,
except for the following oracles:
OObtIss(i,S): As in Game 0, except that the experiment aborts if the set-commitment trapdoor is

contained in S.
OIssue(i,S): As in Game 0, except that the experiment aborts if the set-commitment trapdoor is

contained in S.
Game 0 → Game 1: If A queries either set S,D with s ∈ S or d ∈ D to one of the two oracles,

then this breaks the q-co-DL assumption for q = s and BG = BGGen(1λ). Denoting the advantage of
solving the q-co-DL by ϵqDL(λ), we have

|Pr[S0]− Pr[S1]| ≤ ϵqDL(λ).

Game 2: As Game 1, with the difference that the oracle OShow is run as follows

OShow(j,S): As in Game 0, but the freshness is simulated by leveraging the fact that the environment
has access to the TSetup algorithm. The proof of knowledge can be run as normal, but given access
to td the elements of the Pederson commitment can be changed.

Game 1 → Game 2: By the perfect zero-knowledge property we have

Pr[S1] = Pr[S2].

Game 3: As Game 2, except that the oracle OHU is run as follows:

OHU: As in Game 1, but when executing UsrKGen(opk), the experiment draws usk
$← Zp instead of

usk
$← Z∗

p and aborts if usk = 0.

Game 2 → Game 3: Denoting by qu the number of queries to OHU, we have

|Pr[S2]− Pr[S3]| ≤
qu
p
.

Game 4: As Game 3, except that when A eventually delivers a valid showing, the experiment
rewinds A to the point before the commitments are sent, issues a new challenge and extracts a
witness (r, σ). If the extractor fails, we abort.
Game 3 → Game 4: The success probability in Game 4 is the same as in Game 3, unless the
extraction fails, i.e., using knowledge soundness, we have

|Pr[S3]− Pr[S4]| ≤ ϵks(λ).

Game 5: As Game 4, except that we pick and index k
$← [qo], where qo is the number of queries

to OObtIss. Intuitively, this is the environment guessing that the adversary will use the kth issued
credential in its Type 3 forgery.

The extracted witness is such that w = (r, µ) ∈ (Z∗
p)

2, and C∗
2 = rC∗

1 and C3 = µP . If the creden-
tial ((C ′, R′), σ′, r′, O′) ← CRED[k] is such that (C ′, R′, P ′) ̸= µ−1 · (C∗

1 , C
∗
2 , C

∗
3 ) then the experiment

aborts. We further abort if the adversary wants to corrupt the owner of the kth credential and adapt
OCU as follows:
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OCU(i): As in Game 0, except that the experiment aborts when i = OWNR[k].

Game 4 → Game 5: When the forgery is of Type 3 then there exists some j s.t. for CRED[j] =
((C ′, R′), σ′, r′, O′) we have (C ′, R′, P ) = µ−1 ·(C∗

1 , C
∗
2 , C

∗
3 ); moreover, OWNR[j] ∈ HU. With probability

1
qo

we have k = j, in which case the experiment does not abort, i.e., we have

Pr[S5] ≥
1

qo
Pr[S4]

We will now show that Pr[S5] ≤ ϵDL(λ), where ϵDL(λ) is the advantage of solving the DLP.
B plays the role of the challenger for A in Game 5 and obtains a G1-DLP instance (BG, xP ). B
generates a key pair (osk, opk)

$← OrgKGen(crs). Then, B runs A(opk) and simulates the oracles as in
Game 5, except for OObtIss, whose simulation is as follows:

OObtIss(i,S): Let this be the jth query. B first computes C ← USK[i] · ChX (a) · xP (= x · C), O =
(O, USK[i]) and appends cred = ((C,R)σ,⊥, O) to CRED. Otherwise B proceeds as in Game 5.

Note that since Game 2, the third component r of the credential is not required to simulate
OShow queries. When A outputs (S∗,D∗, st) then B runs A(st) and interacts with A as the verifier in
the showing protocol. If A wins Game 5 using (C∗

1 , C
∗
2 , C

∗
3 ) and conducting the proof of knowledge

on the freshness, then B can rewind A and extract a witness w = (r′, µ) ∈ (Z∗
p)

3 such that C∗
2 = r′C∗

1

and C∗
3 = µP . Further, we have that ((C ′, R′), σ′,⊥, O′) = CRED[k]. In the end, B outputs r′ as a

solution to the DLP in G1. We thus have

Pr[S5] ≤ ϵDL(λ)

Collecting the success probabilities, we have Pr[S0] ≤ qo · ϵDL(λ) + ϵks(λ) +
qu
p + ϵqDL(λ) where

q = t and qo and qu and the number of queries to OObtIss and OHU respectively. □
Theorem 7. If the DDH assumption holds, the ZKPoK’s have perfect ZK, and the SPS-EQ perfectly
adapts signatures, then Scheme 1 is anonymous.

The following proof is an adaptation (most of it verbatim) of the one given in [FHS19]. The only
different is that since we use a CRS and manage a slightly different definition for perfect adaption,
we need to adjust the previous proof for this new setting. For ease of exposition we only consider
selective disclosures showings in the proof, but the adecuation for NAND showings follows directly.
As in [FHS19], the proof proceeds by defining a sequence of indistinguishable games in the last of
which the answers of OLoR are independent of the bit b.

Proof. We assume that the adversaryA will callOLoR for some (j0, j1,S) with both OWNR[j0], OWNR[j1] ∈
HU. This is w.l.o.g. as otherwise the bit b is perfectly hidden from A. Henceforth, we denote the event
that the adversary wins Game i by Si.
Game 0: The original anonymity game as given in Section 6.1.

Game 1: As Game 0, except we replace Setup with TSetup.

Game 0 → Game 1: The adversary’s view does not change so we have

Pr[S0] = Pr[S1].

Game 2: As Game 1, except that the experiment runs OLoR as follows:

OLoR(j0, j1,S): As in Game 1, but the ZKPoK for (C∗
1 , C

∗
2 , C

∗
3 ) is simulated.

Game 1 → Game 2: By perfect zero-knowledge of Π2, we have

Pr[S1] = Pr[S2].

Game 3: As Game 2, except for the following changes. Let qu be (an upper bound on) the number
of queries made to OHU. At the beginning Game 2 pick k

$← [qu] (it guesses that the user that owns
the jbth credential is registered at the kth call to OHU) and runs OHU, OCU and OLoR as follows:

OHU(i): As in Game 2, except if this is the kth call to OHU then it additionally defines i∗ ← i.



Improved Constructions of Anonymous Credentials From SPS-EQ 35

OCU(i, upk): If i ∈ CU or i ∈ ILoR, it returns ⊥ (as in the previous games). If i = i∗ then the experiment
stops and outputs a random bit b′

$← {0, 1}. Otherwise, if i ∈ HU it returns user i’s usk and
credentials and moves i from HU to CU; and if i /∈ HU ∪ CU, it adds i to CU and sets UPK[i]← upk.

OLoR(j0, j1,S): As in Game 2, except that if i∗ ̸= OWNR[jb], the experiment stops outputting b′
$←

{0, 1}.

Game 2 → Game 3: By assumption, OLoR is called at least once with some input (j0, j1,S) with
OWNR[j0], OWNR[j1] ∈ HU. If i∗ = OWNR[jb] then OLoR does not abort and neither does OCU (it cannot
have been called on OWNR[jb] before that call to OLoR (otherwise OWNR[jb] /∈ HU); if called afterwards,
it returns ⊥, since i∗ ∈ ILoR). Since i∗ = OWNR[jb] with probability 1

qu
, the probability that the

experiment does not abort is at least 1
qu

, and thus

Pr[S3] ≥ (1− 1
qu
) 12 + 1

qu
· Pr[S2].

Game 4: Same as Game 3.

Game 3→ Game 4: Let (BG, xP1, yP1, zP1) be a DDH instance for BG = BGGen(1λ). After initializing
the environment, the simulation initializes a list L ← ∅. The oracles are simulated as in Game 3,
except for the subsequent oracles, which are simulated as follows:

OHU(i): As in Game 3, but if this is the kth call then, besides setting i∗ ← i, it sets USK[i]⊥ and
UPK[i]← xP1 (which implicitly sets usk← x)

OObtain(i,X ): As in Game 3, except for the computation of the following values if i = i∗. Let this
be the jth call to this oracle. If s /∈ X , it computes C as C ← ChX (s) · xP1 and sets L[j]← ⊥. If
s ∈ X it picks ρ

$← Z∗
p, computes C as C ← ρ · xP1, sets L[j] ← ρ and simulates the ZKPoK for

upk (by the perfect ZK property of the simulation is perfect). (In both cases C is thus distributed
as in the original game.)

OShow(i,S): As in Game 3, with the difference that if OWNR[j] = i∗ and s /∈ S it computes the witness
wit← µChX\S(s) · xP1. (wit is thus distributed as in the original game.)

OLoR(j0, j1,S): As in Game 3, with the following difference. Using self-reducibility of DDH, it picks
s, t

$← Zp and computes Y ′ ← t · yP1 + sP1 = y′P1 with y′ ← ty + s, and Z ′ ← t · zP1 + s · xP1 =
(t(z− xy) + xy′)P1.(If z ̸= xy then Y ′ and Z ′ are independently random; otherwise Z ′ = y′X.) It
performs the showing using the following values (implicitly setting µ← y′):

- If s /∈ ATTR[jb]: C1 ← ChX (s)Z ′ and wit← ChS(s)
−1C1

- If s ∈ ATTR[jb] and s /∈ S: C1 ← ρZ ′ with ρ← L[jb] and wit← ChS(s)
−1C1;

- If s ∈ S: c1 ← ρZ ′ with ρ← L[jb] and wit← ⊥;

Apart from an error event happening with negligible probability, we have simulated Game 3 if the
DDH instance was “real” and Game 4 otherwise. If xP1 = 0G1

, or if during the simulation of OLoR

it occurs that Y ′ = 0G1
or Z ′ = 0G1

then the distribution of values is not as in one of the two
games. Otherwise, we have implicitly set usk ← x and µ ← y′ (for a fresh value y′ at every call
of OLoR). In case of a DDH instance, we have (depending on the case) C1 ← uskµChX (s) · P1 (or
C1 = ρ · xµ · P1 = µ ·C). Letting ϵDDH(λ) denote the advantage of solving the DDH problem and ql
the number of queries to the OLoR, we have

|Pr[S3]− Pr[S4]| ≤ ϵDDH(λ) + (1 + 2ql)
1
p .

Game 5: Same as Game 4.

Game 4→ Game 5: Let (BG, xP1, yP1, zP1) be a DDH instance for BG = BGGen(1λ). After initializing
the environment, the simulation initializes a list L ← ∅. The oracles are simulated as in Game 4,
except for the subsequent oracles, which are simulated as follows:

OObtain(i,X ): As in Game 4, except for the computation of the following values if i = i∗.Let this be
the jth call to this oracle. It first picks u $← Zp and sets X ′ ← xP1+u ·P1 and L[j]← u. If s /∈ X ,
it computes C ← ChX (s) · USK[i]P1 and R ← ChX (s) · USK[i]X ′. If s ∈ X , it picks ρ

$← Z∗
p and

computes C ← ρP1 and R← ρX ′.In both cases it sets r ← ⊥ (r is implicitly set to r ← x′ := x+u
and C and R = rC are distributed as in the original game; unless X ′ = 0G1

). Note that, since the
ZKPoK in OShow is simulated, r is not used anywhere in the game.
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OLoR(j0, j1,S): As in Game 4, with the difference that it fetches u ← L[jb], picks s, t
$← Zp and

recomputes Y ′ ← t ·yP1+sP1 = y′P1 with y′ ← ty+s,and Z ′ ← t ·zP1+s ·xP1+ut ·yP1+us ·P1 =
(t(z − xy) + x′y′)P1. It performs the showing as in the previous simulation (using the new Y ′, Z ′

and µ← y′).

Apart from an error event happening with negligible probability, we have simulated Game 4 if the
DDH instance was valid and Game 5 otherwise. If X ′ = 0G1 during the simulation of OObtain, or if
during the simulation of OLoR it occurs that Y ′ = 0G1 or Z ′ = 0G1 then the distribution of values is
not as in one of the two games. Otherwise, we have implicitly set r ← x′ (for a fresh value x′ at every
call of OObtain). Letting ϵDDH(λ) denote the advantage of solving the DDH problem, and qo and ql
be the number of queries to OObtain and OLoR, respectively, we get

|Pr[S4]− Pr[S5]| ≤ ϵDDH(λ) + (qo + 2ql)
1
p .

In Game 5, by definition of perfect adaption the oracle OLoR returns a signature that is a random
element in the space of signatures conditioned to verify with the shown credential (each generated
with fresh independent randomness µ ← y′, when calling the oracle OLoR), and with respect to a
simulated proof. Hence, the bit b is information-theoretically hidden from A and we have Pr[S5] =

1
2 .

Therefore, we have that:

Pr[S4] ≤ Pr[S5] + ϵDDH(λ) + (qo + 2ql)
1

p
=

1

2
+ ϵDDH(λ) + (qo + 2ql)

1

p
,

Pr[S3] ≤ Pr[S4] + ϵDDH(λ) + (1 + 2ql)
1

p
≤ 1

2
+ 2 · ϵDDH(λ) + (1 + qo + 4ql)

1

p
,

Pr[S2] ≤
1

2
+ qu · Pr[S3]−

1

2
· qu ≤

1

2
+ qu · (2 · ϵDDH(λ) + (1 + qo + 4ql)

1

p
),

where Pr[S2] = Pr[S1] = Pr[S0]; qu, qo and ql are the number of queries to OHU,OObtain and OLoR,
respectively. Assuming security of the ZKPoKs and DDH, the adversary’s advantage is thus negligible.
□

F Revocation strategies

The revocation approach from [DHS15a] requires the authority to compute and mantain the witness
list. We observe that instead of using the accumulator from [ATSM09] one could use the one from
[KB21], which has constant size non-membership proofs at the cost of a more expensive setup involving
all the pseudonyms (up to the upper bound). If such accumulator is used, to keep most of the
computational cost done in G1 and not in G2, verification under the revocation model from [DHS15a]
would now require the evaluation of four pairings by the verifier and none by the user (before it
was two and one respectively) but one less ZKPoK. By doing this, users can compute their non-
membership witness more efficiently and the overhead related to the accumulator management is
reduced to the minimum. The authority just needs to update the accumulator value every time users
are revoked or unrevoked.

In Figure 8 we present the accumulator construction from [KB21] tailored to batch addition and
deletions, which simplifies the management.

Another alternative to manage revocation would be to leverage NAND proofs with the following
idea. When a credential is issued, users include a pseudonym given by the authority in their credential
and then, to prove they are not revoked, given a public list of revocated users they compute a NAND
proof for the list with respect to their own credential. However, this requires the revocation list to be
kept below the size limit of the set-commitment scheme.

G Expressiveness of our Set-commitment scheme

In this section we elaborate on the expressivity gained by adding a set-commitment supporting proofs
of disjoint sets (i.e., NAND showings).

First of all, scenarios considering access control policies can benefit of NAND showings as they
allow users, for instance, to prove that they do not belong to a particular business unit within
a company. Another example includes applications providing discounts to tourists of a particular
region. With the ABC [FHS19] there is no easy way for users to prove that they are not nationals
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RevAcc.Setup(1λ, 1q):
BG

$←; BGGen(1λ); td = s← Z∗
p

return (BG, (siP1, s
iP2)i∈[q], td)

RevAcc.Commit(pp,X ):
if |X | > q ∨ ∃ s′ ∈ X : s′P1 = sP1 return ⊥
else

r1, r2
$← Z∗

p

acc1 ← r1P1; acc2 ← r2 · ChX (s)P1

return ((acc1, acc2), (r1, r2))

RevAcc.NonMemWit(pp, td, acct, τ):
return ( 1

td+τ
)acct2

RevAcc.VerifyWit(pp, acc, τ,wit):
return e(wit, (td+ τ)P2) = e(acc, P2)

RevAcc.Add(pp, td, acct, auxt,S):
r′1, r

′
2

$← Z∗
p

acct+1 ← ((r′1 · ChS(s))acct1,
r′2

ChS(s)
acct2)

auxt+1 ← (r′1aux
t
1, r

′
2aux

t
2)

return (acct+1, auxt+1)

RevAcc.Del(pp, td, acct, auxt,S):
r′1, r

′
2

$← Z∗
p

acct+1 ← (
r′1

ChS(s)
acct1, (r

′
2 · ChS(s))acct2)

auxt+1 ← (r′1aux
t
1, r

′
2aux

t
2)

return (acct+1, auxt+1)

Fig. 8: Revocation accumulator from [KB21] tailored to batch updates.
of a particular country. Using a NAND proof, any user from Spain can easily prove to the italian
authorities that is a tourist computing a NAND proof for the attribute {“residence, Italy”}.

Furthermore, we borrow the following example from [TG20] (Section 6.2) to illustrate how NAND
showings can be used to perform interval proofs. Suppose that a users want to prove that they are
at least 18 year-old. Assuming the current date is 2 January 2020 and the user’s birthday is on 1
January 2002, we can have two redundant attributes {“byear = 2002”}, {“bmth = Jan2002”} for
{“bday = 01Jan2002”} in the user’s credential so that the verifier can ask for a NAND showing on
the attribute set
D={{“byear = 2020”}, . . . , {“byear = 2003”}, {“bmth = Feb2002”}, . . . , {“bmth = Dec2002”},

{“bday = 02Jan2002”}, . . . , {“bday = 31Jan2002”}}

Such a proof can only be done in the ABC from [FHS19] encoding predefined statements like {“adult,
>18”}.

H Mercurial Signatures

In the following we present the required changes on our scheme to obtain a mercurial signature. It
suffices to define the algorithms ConvertPK,ConvertSK and ConvertSig as in shown in Figure 9.

With respect to the security properties, we need to consider now the perfect adaptation of signa-
tures with respect to the key space. As pointed out in [KSD19], perfect adaption is a stronger notion
than the one from original class-hiding (which was the one used in earlier works on mercurial signa-
tures [CL19, CL21]). We therefore follow the former approach and work with the definition of perfect
adaption. That being said, as in previous constructions of mercurial signatures, ours only satisfies
perfect adaption under honestly generated keys (otherwise signers could identify adapted signatures).

Theorem 11. The resulting mercurial signature from Figure 9 has perfect adaption of signatures
(under honestly generated keys in the honest parameters model) with respect to the key space.

Proof. For all [m]1 and pk = ([K0A]2, [KA]2), a signature σ=([u1]1,[t]1,Ω1,[e0]2, [e1]2,E1) generated
according to the CRS ([A]2, [A0]1, [A1]1, [e]2) satisfying the verification algorithm must be of the form:
σ=(K⊤

0 [A0]1r1+K⊤[m]1, [A0]1r1, [A0]s1, [A1]d
1
1 − e1[A0]1r1, [e0]2r1+[s1]2, [d11]2, [e0]2, [e1]2, E1).

A signature output by ConvertSig has the form σ=(ρK⊤
0 [A0]1(µr1 + βr2)+ρK⊤[µm]1, [A0]1(µr1 +

βr2), [A0]α(µs1 + βs2), [A1]α(µd
1
1 + βd21)− e1[A0]1α(µr1 + βr2), α([e0]2(µr1 + βr2)+µ[s1]2+β[s2]2),

α(µ[d11]2+β[d21]2), α[e0]2, α[e1]2, αE1), for new independent randomness α, β, µ and ρ so is a random
element in the space of all signatures. Furthermore, the signature output by ChgRep is distributed
identically to a fresh signature on message [m]1 output by Sign(pp,ConvertSK(sk, ρ), [m]1). □

Remark. Since our construction requires the use of a tag, to implement the delegatable credentials
from [CL19] with our construction, users would be required to store the tags and to randomize them
when delegating to another user (i.e., tags need to be randomized and passed along for each delega-
tion level with the corresponding signature). Therefore, users should verify the tag correctness when
obtaining a signature but such verification would still not be required for credential presentations.
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SPS-EQ.ConvertSK(sk, ρ):
parse sk = (K0,K); return (ρK0, ρK)

SPS-EQ.ConvertPK(pk, ρ):
parse pk = ([B]2, [C]2); return (ρ[B]2, ρ[C]2)

SPS-EQ.ConvertSig(crs, [m]1, σ, τ, µ,ρ ,pk):
parse σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)
parse τ ∈ {([u2]1, [w]1, Ω2) ∪ ⊥}
Ω ← (Ω1, Ω2, [z0]2, [z1]2, Z1)
check PVer(crs, [t]1, [w]1, Ω)

check e([u2]
⊤
1 , [A]2) ̸= e([w]⊤1 , [B]2)

check e([u1]
⊤
1 , [A]2) ̸= e([t]⊤1 , [B]2) + e([m]⊤1 , [C]2)

α, β
$← Z∗

p

[u′
1]1 := ρ(µ[u1]1 + β[u2]1)

[t′]1 ← µ[t]1 + β[w]1 = [A0]1(µr1 + βr2)
for all i ∈ {0, 1}

[z′i]2 ← α[zi]2
[a′

i]2 ← αµ[a1
i ]2 + αβ[a2

i ]2
[d′i]1 ← αµ[d1i ]1 + αβ[d2i ]1

Ω′ ← (([a′
i]1, [d

′
i]2, [z

′
i]2)i∈{0,1}, αZ1)

σ′ ← ([u′
1]1, [t

′]1, Ω
′)

return (µ[m]1, σ
′)

Fig. 9: Our mercurial signature scheme (ConvertSig also changes the message representative).
I Our full ABC scheme
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ABC.Setup(1λ, 1q):
(BG, scdspp)

$← SCDS.Setup(1λ, q); (spspp) $← SPS-EQ.ParGen(1λ;BG);
r

$← Z∗
p; ck← (P1, rP1); return (BG, scdspp, spspp, ck)

ABC.TSetup(1λ, 1q):
(BG, scdspp, scdstd)

$← SCDS.TSetup(1λ, q); (spspp, spstd) $← SPS-EQ.TParGen(1λ;BG);
r

$← Z∗
p; ck← (P1, rP1); cktd ← r; return ((BG, scdspp, spspp, ck), (scdstd, spstd, cktd))

ABC.OrgKGen(pp): ABC.UsrKGen(pp):
return SPS-EQ.KGen(BG, spspp, 3) usk

$← Z∗
p; upk← uskP1; return (usk, upk)

ABC.Obtain(pp, usk, opk,X ) ABC.Issue(pp, upk, osk,X )
r1, r2

$← Z∗
p; a← r1P1

c← Commit(ck, a, r2)
c−−−−→

z ← r1 + e · usk e←−−−− e
$← Z∗

p

(C,O)← SCDS.Commit(scdspp,X ; usk) C,R,

r3
$← Z∗

p; R← r3C
z,a,r2−−−−→ if (zP1 ̸= a+ e · upk ∨ c ̸= Commit(ck, a, r2))

return ⊥
if (e(C,P2) ̸= e(upk,ChX (s)P2)
∧ ∀ x ∈ X : xP1 ̸= ek01) return ⊥

(σ,τ)←−−−− (σ, τ)← SPS-EQ.Sign(spspp, (C,R, P1), osk)

check SPS-EQ.Verify(spspp(C,R, P1), (σ, τ), opk)
return cred = (C, (σ, τ), r3, O)

ABC.Show(pp, usk, (opki)i∈[n], opk,S,D, cred) ABC.Verify(pp, (opki)i∈[n],S,D)
parse cred = (C, (σ, τ), r, O); µ, ρ $← Z∗

p

if O = (1, (o1, o2)) then O′ = (1, (µ · o1, o2))
else O′ = µ ·O
σ′ $← SPS-EQ.ChgRep(spspp, (C, rC, P1), σ, τ, µ, ρ, opk)
(C1, C2, C3)← µ · (C, rC, P1)
cred′ ← (C1, C2, C3, σ

′); opk′ ← ConvertPK(opk, ρ)
Π ← SH.PPrv((opki)i∈[n], opk

′, ρ)
wit← SCDS.OpenSS(scdspp, µC,S, O′)
wit← SCDS.OpenDS(scdspp, µC,D, O′)

r1, r2, r3, r4
$← Z∗

p; a1 ← r1C1; a2 ← r3P1

c1 ← Commit(ck, a1, r2); c2 ← Commit(ck, a2, r4)

Σ1 = (cred′, Π, opk′,wit,wit, c1, c2)
Σ1−−−−→ parse Σ1 = (cred′, Π, opk′,wit,wit, c1, c2)

π1 ← SCDS.PoE(ek,S, ẽ) e,ẽ←−−−− e, ẽ
$← Z∗

p

π2 ← SCDS.PoE(ek,D, ẽ) parse cred′ = (C1, C2, C3, σ)
z1 ← r1 + e · (r · µ); z2 ← r3 + e · µ
Σ2 = (zi, ai, ri, πi)i∈{1,2}

Σ2−−−−→ parse Σ2 = (zi, ai, ri, πi)i∈{1,2}

check
z1C1 = a1 + eC2; z2P1 = a2 + eC3

c1 = Commit(ck, a1, r2); c2 = Commit(ck, a2, r4)
SH.PVer(crs, (opki)i∈[n], opk

′, Π1)
SPS-EQ.Verify(spspp, cred

′, opk′)
SCDS.VerifySS(scdspp, C1,S,wit;π1, ẽ)
SCDS.VerifyDS(scdspp, C1,S,wit;π2, ẽ)

Fig. 10: Full ABC scheme from Section 7.
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J On the integration of the proof of exponentiation

Protocol 2.1 and Proposition 2.2 from [Tha19] consider a general pairing e and a general polynomial
f(X) ∈ Fp[X]. The protocol PoE used in this work relies on other restrictions and therefore it’s
security is not based on Proposition 2.2. In our case, the pairing function e being used is of Type-III
and α is chosen by the verifier meaning that β is also determined by α. Below we argue the security
of our PoE protocol considering the use of the PoE in the VerifySS algorithm of our scheme (a similar
reasoning also applies to VerifyDS).

The adversary A is given α (chosen by the verifier at random) and has to produce witnesses w1, w2

and w3 for a set S, with ChS(X) = (X + α)qS(X) + β and s.t the following holds:

(e((s+ α)P1, w1) + e(βP1, P2) = e(P1, w2)) ∧ (e(w3, w2) = e(C,P2))

This means that the w2 used to verify the first pairing equation is also used to verify the second
equation and hence, adds a restriction on the witness that needs to be produced in Proposition 2.2
from [Tha19] (where, unlike here, the KEA assumption is required).

We can assume w.l.o.g that w2 is of the form ChD(s)P2 for some set D ⊆ X , where X is the
accumulated set by C. Otherwise, even if the first pairing equation is verified, the second will fail if
the q-co-GSDH assumption holds.

With the above in mind, we study the existence of ChD(X) that verifies the first pairing equation
given that (X + α) and β are fixed for the adversary.

We have three cases: (1) S ⊆ D, (2) D ⊂ S and (3) D ∩ S = ∅.

(1) If S ⊆ D and the adversary succeeds in producing the witnesses that pass both verifications,
a proof for D ⊆ X would also work as a proof for S ⊆ X (in which case the adversary would be
doing extra computations which are not required and thus such a case is not considered as an attack).

(2) D ⊂ S: We assume that α and α+ 1 do not belong to S. We have that:

ChS(X) = (X + α)qChS (X) + β (1)
ChD(X) = (X + α)qChD (X) + β (2)

We deduce that β = ChD(X)− (X + α)qChD (X) then we obtain

ChS(X) = (X + α)qChS (X) + ChD(X)− (X + α)qChD (X)

Moreover, we have ChS(X) = ChD(X)Q(X) and so we get that

ChD(X)(Q(X)− 1) = (X + α)(qChS (X)− qChD (X))

Since α /∈ ChD(X), the terms (X+α) and (qChS (X)−qChD (X)) have to divide Q(X)−1 and ChD(X)
respectively. Therefore, we have:

(qChS (X)− qChD (X)) = ChD(X)B

Q(X)− 1 = (X + α)B

From the first equation we get that deg(qChS (X)− qChD (X)) ≤ deg(qChS (X)) = deg(ChS(X))− 1
(which follows from (1)). This means that deg(ChD(X)) ≤ deg(ChS(X)) − 1. Looking at the second
equation, we recall that ChS(X) = ChD(X)Q(X). Since ChS(X) and ChD(X) are irreducible poly-
nomials we can deduce that B = 1. Hence Q(X) = (X + (α + 1)) and (X + (α + 1)) is a factor of
ChS(X), which contradicts the assumption that α+ 1 /∈ S. We conclude that no such set D exists.
(3) D ∩ S = ∅: In this case the adversary needs to produce a subset D ⊆ X for which the following
holds: ChD(X) = (X + α)qChD (X) + β. In such case, looking at the first pairing equation we have
that:

e((s+ α)P1, w1) + e(βP1, P2) = e(P1,ChD(s)P2)

e(P1, (s+ α)w1) = e(P1, (ChD(s)− β)P2)
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which means that (s+ α)w1 = (ChD(s)− β)P2. We show that if such a w1 exists then we can build
and adversary that breaks the q-co-SDH assumption. Therefore, we assume that f(X) = ChD(X)−β
does not divide (X + α). Since f(X) and (X + α) are relatively prime we can compute polynomials
h1(X), h2(X) such that

f(X)h1(X) + (X + α)h2(X) = 1

Set w∗
1 := h1(s)w1 + h2(s)P2. Then ((s + α))w∗

1 = P2 and we have a pair (α,w∗
1) which breaks the

q-co-SDH in G2.


	Improved Constructions of Anonymous Credentials From Structure-Preserving Signatures on Equivalence Classes 

