
Rinocchio: SNARKs for Ring Arithmetic

Chaya Ganesh1, Anca Nitulescu2, and Eduardo Soria-Vazquez3

1 Indian Institute of Science, India.
2 Protocol Labs, USA.

3 Technology Innovation Institute, UAE. ORCID: 0000-0002-4882-0230??

chaya@iisc.ac.in, anca.nitulescu@protocol.ai,

eduardo.soria-vazquez@tii.ae

Abstract. Succinct non-interactive arguments of knowledge (SNARKs)
enable non-interactive efficient verification of NP computations and ad-
mit short proofs. However, all current SNARK constructions assume
that the statements to be proven can be efficiently represented as either
Boolean or arithmetic circuits over finite fields. For most constructions,
the choice of the prime field Fp is limited by the existence of groups of
matching order for which secure bilinear maps exist.
In this work we overcome such restrictions and enable verifying com-
putations over rings. We construct the first designated-verifier SNARK
for statements which are represented as circuits over a broader kind of
commutative rings.
Our contribution is threefold:
1. We first introduce Quadratic Ring Programs (QRPs) as a character-

ization of NP where the arithmetic is over a ring.
2. Second, inspired by the framework in Gennaro, Gentry, Parno and

Raykova (EUROCRYPT 2013), we design SNARKs over rings in
a modular way. We generalize pre-existent assumptions employed
in field-restricted SNARKs to encoding schemes over rings. As our
encoding notion is generic in the choice of the ring, it is amenable
to different settings.

3. Finally, we propose two applications for our SNARKs.
– Our first application is verifiable computation over encrypted

data, specifically for evaluations of Ring-LWE-based homomor-
phic encryption schemes.

– In the second one, we use Rinocchio to naturally prove state-
ments about circuits over e.g. Z264 , which closely matches real-
life computer architectures such as standard CPUs.

1 Introduction

Succinct Non-interactive ARguments of Knowledge (SNARKs) are non-interactive
proof systems with short proofs that can be verified very efficiently, that show
knowledge of a witness for a given NP statement. Moreover, Zero-knowledge

?? Work partially done while at Department of Computer Science, Aarhus University,
Aarhus, Denmark.

SNARKs (zk-SNARKs) also guarantee that no information is revealed beyond
the validity of the statement. Since their introduction, zk-SNARKs proofs have
been shown to be very powerful and versatile in the design of secure crypto-
graphic protocols. Many constructions of SNARKs [34, 39, 7, 31, 42, 40, 4, 35],
are in pre-processing model, i.e., they require a setup that generates a struc-
tured common reference string (SRS). The SRS is relation-dependent and can
be reused to prove multiple statements.

A recent line of work on zk-SNARK [41, 20] follows a modular approach
to construct SNARKs: first, an information-theoretic component is constructed,
such as Interactive Oracle Proofs (IOP) or Algebraic Holographic Proofs (AHP);
and then this interactive proof system is compiled into an argument using
cryptographic tools. Finally, this is made non-interactive in the random oracle
model (ROM), to obtain a SNARK. While this approach leads to very efficient
SNARKs, the schemes relying on random oracle only (without SRS) have the
size of the proof logarithmic in the size of the witness. In this work, we focus
on SNARKs with constant size proofs that are secure in the standard model
avoiding idealised models such as ROM.

1.1 SNARKs for Computation over Rings

Despite the progress we have seen in SNARKs, all existing contructions offer ef-
ficiency benefits only for proving statements which can be efficiently represented
as very particular forms of computation: The works of [31, 42, 40, 35] consider
statements represented as circuit computations, either as Boolean circuits or as
arithmetic circuits over a field. The compiler of [3] gives an efficient reduction
from the correctness of programs to arithmetic circuit satisfiability for a prime
field of suitable size. However, it is clearly interesting to consider computations
over more general rings, that better suit applications such as proving evaluations
over encrypted data or proving CPU computations. While this can be reduced
to computation over a field, emulating ring arithmetic in terms of finite field op-
erations incurs a significant overhead [38]. In addition, fixed and floating-point
arithmetic operations that frequently come up in real-world applications (for
instance in approximate, rather than exact computations such as in Machine
Learning [19]), are more naturally expressed in terms of operations over rings.

Applications. Verifiable computation (VC) allows a computationally weak client
to outsource evaluation of a function to a powerful server. The client can then ver-
ify that the output returned by the server is indeed correct while performing less
work than what is necessary for computing the function itself. SNARKs immedi-
ately give a VC scheme, where the server performs the computation and returns
a SNARK proof together with the output. Recently, there has been significant
progress in constructing protocols and implementing systems for verifiable com-
putation that leverage SNARKs [3, 4, 15, 24]. Nevertheless, the performance of
existing constructions deteriorate for functionalities that have “bad” arithmetic
circuit representations, as has been noted in prior works [42]. Similarly, the prob-
lem of ensuring both correctness and privacy of the computation performed by
untrusted machines faces the same bottleneck of circuit representation. A natural

2

construction for such schemes would be to consider a straightforward combina-
tion of SNARKs and Fully Homomorphic Encryption (FHE), where FHE allows
computation over encrypted data and a SNARK is used to verify the integrity
of the results of the computation. However, such a generic construction results
in a large overhead even when used with the most performant state-of-the-art
SNARKs for arithmetic circuits to prove FHE evaluations. This is due to the
limitation of having to use representations over fields for proving computations
over ciphertexts which are not naturally expressed as field elements. Therefore,
such solutions do not scale well when the evaluation in FHE has to be emu-
lated by arithmetic circuits over fields, and the resulting privacy-preserving VC
schemes have very poor efficiency.

1.2 Our Contribution

Our goal is to construct a (zk)-SNARK for ring computations, thus bringing the
theory of proof systems closer to practice. We focus on building schemes with
security in the standard model as opposed with non-interactive arguments that
require the Random Oracle Model (ROM). Along the way, we tackle new techni-
cal problems, introduce useful building blocks, such as Quadratic Ring Programs
(QRPs) and secure encodings over rings. Finally, we provide two applications for
our SNARKs based on the QRP characterization: Privacy-preserving verifiable
computation and SNARKs over Z2k .

Quadratic Programs over Rings. Gennaro et al. [31] introduced the NP represen-
tations Quadratic Span Programs (QSP) and Quadratic Arithmetic Programs
(QAP) which can be used to compactly encode computations. They show how
to convert any Boolean/arithmetic circuit into a QSP/QAP.

We are looking to design a similar characterisation for circuits over rings,
and a couple of challenges get in our way: first, not all elements of the ring are
invertible, so such a program should be defined over a subset of the ring, second
we need a generalised Schwartz-Zippel lemma that gives us the necessary sound-
ness. We treat all the technicalities encountered and we introduce Quadratic
Ring Program (QRP) for rings containing big enough exceptional sets [6, 1], i.e.
sets of elements such that their pairwise differences are invertible. As we discuss
in Section 3, there is some ‘tightness’ to the need of using exceptional sets when
capturing ring arithmetic in a black-box way using polynomials.

SNARK for Ring Computations. The QRP characterization allows to test sat-
isfiability of an arithmetic circuit over a ring. To construct a succinct proof, we
follow the blueprint of [31, 42], where the QRP test is performed in a probabilis-
tic way. The setup produces a structured reference string CRS that consists of
linearly homomorphic encodings, on top of which the prover is expected to com-
pute using the witness. Under knowledge-type assumptions made for the ring
encodings, the resulting SNARK can be proved knowledge sound.

We present Rinocchio, a generic framework for building SNARKs for ring
arithmetic based on encodings over rings. Depending on how these encodings
are instantiated, the resulting SNARK is either public or designated verifiable.

3

One plausible instantiation for publicly-verifiable encodings is based on pairing-
friendly composite order groups. However, the structure of such groups is specific
and restrictive, in the sense that the ring used to represent the computation
would not match any of the important applications considered by this work.
Therefore, we focus on more generic secret-key encodings over rings that allow
implementations using various rings and can be applied to speed-up proofs for
real-world computations. On the other hand, these encodings yield designated-
verifier SNARKs.

Our characterization of computation over rings as a QRP and subsequent
SNARK construction inherits the need for a trusted CRS generation. However,
in the designated-verifier setting, a trusted CRS is acceptable in practice, since
if we do not need zero-knowledge property, we can simply have the verifier run
the setup and send the CRS to the prover, who can reuse the CRS to prove
many statements.

We choose to build Rinocchio in the standard model, on weaker assumptions
rather than in idealized models such as Generic Group Model (GGM) or Alge-
braic Group Model (AGM) used for field-based schemes such as in [35]. Our work
sets the stage for future SNARKs over rings with even smaller proof sizes or for
other further features, e.g. an updatable structured reference string. We show
in Section 6 that we can construct a SNARK along the lines of the construction
of Groth16 [35] for general rings based on stronger assumptions for the under-
lying encodings – we prove its security by assuming that the encoding satisfies
“linear only extractability”, which roughly means that the only operations that
can be performed over the encodings are affine.
Knowledge Assumptions over Rings. We prove Rinocchio secure under variants
of the generalized q-PDH and d-PKE assumptions extended to encodings over
rings, carefully addressing the technical challenges that arise in the new ring
setting. These generalized assumptions were already stated for encodings over
fields by prior works as [31, 32] and gained some confidence as a base to build
post-quantum SNARKs. Similar to the counterpart of assumptions in the field
case, where for instance, the existence of secure bilinear groups limits the choice
of the finite fields, our ring assumptions are also cautiously made and assumed to
be plausible when care is taken about the particular choice of ring and encoding
scheme. In Section 4.2 we show that if an encryption scheme is assumed to be
a linear-only extractable encoding, then that encoding satisfies the generalized
q-PDH and q-PKE assumptions over rings. Therefore, if our assumptions turn
out to not hold for a non-trivial choice of ring and encoding, that would lead
to an efficient encoding scheme over that ring which allows for more than just
linear homomorphism, potentially towards a new fully/somewhat homomorphic
encryption scheme.

Privacy-Preserving Verifiable Computation. We take a step further to construct
better VC schemes with privacy that follows the same blueprint as prior works:
combining homomorphic encryption and a zk-SNARK. When instatiating Rinoc-
chio with encoding schemes that take as input ciphertexts of a Ring-LWE-based
FHE. The use of our generic SNARK for computation over rings allows for bet-

4

ter choices of group order q (not only primes) which improves over the approach
from prior works, e.g. [28]. Rinocchio allows for speed up through classical effi-
ciency optimisations in Rq such as Number-Theoretic Transform (NTT). Also,
we provide tools to enable the application of more advanced noise reduction
techniques for the Ring-LWE scheme such as modulo switching.

Other Applications. Rinocchio can also help to prove arithmetic computations
over rings Z2k . As opposed to the attempt of simulating arithmetic over Z2k in a
field Fp, where one has to compute the modular reduction x mod 2k, a SNARK
for ring computation can use a QRPs for the Galois Ring GR(2k, δ), which has
Z2k as a subring. We discuss other nuances of efficient considerations in Z2k

arithmetic in Section 8.4.

1.3 Comparison with Related Work

The work of LegoSNARK [16] partially mitigates the efficiency issue of being tied
to a unique, particular representation of computation in SNARK constructions.
They achieve their results by seeing a computation as naturally consisting of
different components and proposing a modular approach that uses the SNARK
best suited for each component. Composition of proof gadgets is orthogonal
to our work, and by extending our construction to be commit-and prove, the
broader class of rings to which we can efficiently apply our SNARK adds yet
another tool for works in the spirit of LegoSNARK.

The results of [9] give constructions of a designated verifier Succinct Non-
interactive ARGument (SNARG) based on vector encryption over rings under
the assumption that the encryption scheme satisfies linear targeted malleabil-
ity. The subsequent work in [10] constructs a SNARG with quasi-optimal prover
complexity. Even though these works use an encoding scheme over a ring to com-
pile the information theoretic object, the statement to be proven is represented
as Boolean/arithmetic circuit satisfiability over a field, and the computation is
still over Fp. Crucially, in these works the statement to be proved is an arith-
metic circuit over a field, whereas our motivation is proving statements that
are represented over rings like Z264 or a polynomial ring Rq = Zq[Y]/(f(Y))
directly. In [37], Kosba et al. generalize the notion of Quadratic Arithmetic Pro-
grams over a field F to that of Quadratic Polynomial Programs (QPPs), which
compute circuits whose wires carry values in the ring F[X]. These polynomial
circuits, where the addition and multiplication operations are over F[X], are in-
troduced with the goal of representing (multi-)sets S of elements over F. While
the construction in [37] is limited to rings of polynomials over the same fields for
which SNARKs à la [42] are secure, our work allows to build SNARKs for any
ring R satisfying the property that it has a large subset such that the difference
of the elements in the subset are invertible. Furthermore, our definition of QRP
also recovers the QPP formulation as an instantiation of the underlying ring R,
which we show in Appendix A.1.

Privacy-Preserving Verifiable Computation. To our knowledge, there are few
works that consider privacy in the context of VC. The first one is the seminal

5

paper of Gennaro et al. [30] who introduced the notion of non-interactive verifi-
able computation and builds it from garbled circuits and FHE. Fiore et al. [27]
proposed to use homomorphic MACs in order to prove that the evaluation of
FHE ciphertexts has been done correctly. Their solution is inherently bound to
computations of quadratic functions.

To overcome this, the more recent work in this area by Fiore et al. [28] pro-
poses a new protocol for verifiable computation on encrypted data that supports
homomorphic computations of multiplicative depth larger than 1. Towards their
VC scheme, [28] build a new SNARK that can efficiently handle computations
of arithmetic circuits over a quotient polynomial ring Rq = Zq[Y]/(f(Y)) for a
prime number q in which the prover’s costs have a minimal dependence on the
degree d of f(Y). Although this seems to fit the arithmetic structure for Ring-
LWE schemes, it imposes many limitations due to the restriction to rings Rq,
where q is a prime which also has to match secure and efficient pairing construc-
tions for some underlying SNARK over Fq. Another significant impact on the
performance present in the work of [28] is on the prover’s effort to evaluate the
circuit C over ciphertexts. In their VC scheme, the prover cannot use directly the
transcript obtained by applying the evaluation algorithm over FHE ciphertexts
as a witness for generating the proof. Instead, the prover is asked to come up
with a different witness by considering the ciphertext of the Ring-LWE scheme as
elements of Zq[Y] rather than Rq = Zq[Y]/(f(Y)). As a consequence, the degree
of the witness polynomial grows linearly with the multiplicative depth of the cir-
cuit. This is a significant overhead that reflects, besides on the increased Prover’s
effort, on the size of the public setup necessary to commit to this polynomial.
In another follow-up work, Bois et al. [8] introduced an improved solution. The
key idea of their protocol is a new homomorphic hash function, which hashes to
Galois rings. This allows for a flexible choice of FHE parameters.

Comparison. While we treat verifiable computation on encrypted data as a
use case for Rinocchio scheme, we note that our work is more general and the
main focus is on building a general SNARK that is blackbox in the choice of the
ring. The scheme of [8] is along the lines of the GKR protocol, and therefore
admits only circuits that are log-space uniform. Our QRP abstraction yields
SNARKs for general circuit computations, albeit making knowledge assump-
tions similar to analogous SNARKs for fields. Furthermore, our scheme is in the
standard model, while [28, 8] require a random oracle for non-interactivity. We
give a detailed comparison of our application to privacy-preserving VC with the
scheme of [28] in Section 7.4.

2 Preliminaries

Notation. We use κ to denote the security parameter. If A is a probabilistic
polyonomial time (PPT) algorithm, we use y ← A(x) to denote that y is the
output of A on x. By writing A‖χA(σ) we denote the execution of A followed by
the execution of χA on the same input σ and with the same random coins. The
output of the two are separated by a semicolon. Whenever we talk about a ring

6

R, unless otherwise specified, we mean a commutative finite ring with identity.
We denote the units of such a ring as R∗.

2.1 Succinct Non-interactive ARguments of Knowledge

Let R be an efficiently computable binary relation which consists of pairs of the
form (x,w) where x is a statement and w is a witness. Let L be the language
associated with the relation R, i.e., L = {x | ∃w s.t. R(x,w) = 1}.

A Proof or Argument System for R consists in a triple of PPT algorithms
Π = (Setup,Prove,Verify) defined as follows:

Setup(1κ)→ (σ, vk): takes a security parameter κ and outputs a common (struc-
tured) reference string σ together with private verification information vk.

Prove(σ, x, w)→ π: on input σ, a statement x and the witness w, outputs an
argument π.

Verify(σ, vk, x, π)→ 1/0: on input σ, the private verification key vk, a statement
x, and a proof π, it outputs either 1 indicating accepting the argument or 0
for rejecting it.

Definition 1 (SNARK). A triple of polynomial time algorithms (Setup,Prove,
Verify) is a SNARK for an NP relation R, if the following properties are satisfied:

1. Completeness. For all (x,w) ∈ R, the following holds:

Pr

(
Verify(σ, vk, x, π) = 1 :

(σ, vk)← Setup(1κ)
π ← Prove(σ, x, w)

)
= 1

2. Knowledge Soundness . For any PPT adversary A, there exists a PPT algo-
rithm χA such that the following probability is negligible in κ:

Pr

(
Verify(σ, vk, x̃, π̃) = 1
∧R(x̃, w′) = 0

:
(σ, vk)← Setup(1κ)

((x̃, π̃);w′)← A|χA(σ)

)
3. Succinctness. For any x and w, the length of the proof π is given by |π| =

poly(κ) · polylog(|x|+ |w|).

Non-black-box extraction. The notion of knowledge soundness requires the exis-
tence of an extractor that can compute a witness whenever the adversarial prover
produces a valid argument. The extractor we defined above is non-black-box and
gets full access to the adversary’s state, including any random coins.

Definition 2 (zk-SNARK). A zk-SNARK for a relation R is a SNARK for
R with the following zero-knowledge property: There exists a PPT simulator
(S1,S2) such that S1 outputs a simulated CRS σ and trapdoor τ ; S2 takes as
input σ, a statement x and τ , and outputs a simulated proof π; and, for all PPT
adversaries (A1,A2), the following is negligible in κ.

∣∣∣∣∣∣Pr

(
(x,w) ∈ R : ∧
A2(π, st) = 1

:
(σ, vk)← Setup(1κ)

(x,w, st)← A1(1κ, σ)
π ← Prove(σ, x, w)

− Pr

(
(x,w) ∈ R ∧
A2(π, st) = 1

:
(σ, τ)← S1(1κ)

(x,w, st)← A1(1κ, σ)
π ← S2(σ, τ, x)

∣∣∣∣∣∣
7

Public vs Designated verifiability. In a publicly verifiable SNARK, there is no
private verification information, i.e. vk = ∅. A SNARK is designated verifiable if
the proof can be verified only by a party knowing vk. Note that in the designated-
verifier case, the verifier’s decision bit on a proof potentially leaks some infor-
mation about vk. Thus, the same common reference string cannot be reused for
multiple proofs as in publicly-verifiable case. This was addressed in prior works
in verifiable computation [30, 22], by either keeping the decision bit secret from
the prover, or running a fresh setup every time a proof fails verification. Note
that any sound scheme can tolerate O(log κ) bits of leakage, and assuming that
the decision bit leaks only a constant number of bits of information, one would
only need to run a new setup after logarithmically-many proof rejections.

Strong Soundness. Multi-statement designated-verifier SNARKs are requiring
soundness to hold even against a prover that makes adaptive queries to a proof
verification oracle.

2.2 Verifiable Computation

Verifiable computation [33, 30] addresses the setting where a computationally
limited client wishes to outsource the computation of a function to an untrusted,
but computationally powerful worker. The goal is to enable to client to outsource
the computation and be able to verify the correctness of the result such that this
verification is less work than the evaluation of the function itself.

Definition 3 (Verifiable Computation). A verifiable computation scheme
is a tuple of polynomial time algorithms (KGen,ProbGen,Compute,Ver) defined
as follows.

– (SK,PKF) ← KGen(1κ, F): A randomized key generation algorithm takes a
function F as input and outputs a secret key SK and a public key PKF .

– ([x],VKx) ← ProbGenPKF (x) A randomized problem generation algorithm
takes the public key PKF , an input x, and outputs an encoding of x, together
with a private verification key VKx.

– [y]← ComputePKF ([x]) A deterministic worker computation algorithm takes
the public key PKF and an encoded input [x] to compute a value [y].

– y ← VerSK(VKx, [y]) A verification algorithm uses the verification key VKx,
the worker’s output [y], and outputs y ∈ {0, 1}∗∪⊥, where y is the output of
the computation and ⊥ indicates that the client rejects the worker’s output.

A verifiable computation scheme satisfies correctness, efficiency and security
properties.

– Correctness. Correctness guarantees that if the worker is honest, the veri-
fication test will pass. That is, for all F , and for all x in the domain of
F ,

8

Pr

y = F (x) :

(SK,PK)← KGen(1κ, F)
([y],VKx)← ProbGenPK([x])

[y]← ComputePK([x])
y ← VerSK(VKx, [y])

 = 1

– Efficiency. The efficiency requirement states that the complexity of the out-
sourcing algorithm ProbGen, and verification algorithm Ver together is less
than the computation required to evaluate F . A VC must satisfy the property
that for any x and any [y], the time required for ProbGen(x) plus the time
required for Ver(VKx, [y]) is o(T), where T is the time required to compute
F (x).

– Security. A VC scheme is secure if a malicious worker cannot make the
verification algorithm accept an incorrect answer. That is, a scheme is secure
if the advantage of any PPT adversary A in the game ExptV erA defined as
Pr
(
ExptV erA [V C, F, κ] = 1

)
is negligible.

procedure Game ExptV erA (V C, F, κ)
(SK,PK)← KGen(1κ, F)
for i = 1, . . . , ` = poly(κ) do

xi = A(PK, x1, [x1], . . . , xi−1, [xi−1])
([xi],VKxi)← ProbGenPK(xi)

end for
(i, [y]) = A(PK, x1, [x1], . . . , x`, [x`])
y ← VerSK(VKxi , [y])

return ((y 6= ⊥) ∧ (y 6= F (xi)))
end procedure

Context-Hiding An additional property that can be defined for a VC scheme
is called context-hiding. This captures the setting where one wants to hide in-
formation on the input x even from the verifier. Such a property would turn
useful in scenarios where the data encoder and the verifier are different entities.
Informally, this property says that output encodings [y], as well as the input
verification tokens verification key VKx do not reveal any information on the
input x. Notably this should hold even against the holders of the secret key SK.
We formalize this definition in zero-knowledge style, requiring the existence of a
simulator algorithm that, without knowing the input, should generate (VKx, [y])
that look like the real ones. More formally:

Definition 4 (Context-Hiding). A VC scheme is context-hiding for a func-
tion F if there exist simulator algorithms S1, S2 such that:

– the keys (SK,PK) and (SK′,PK′) are statistically indistinguishable, where
(SK,PK)← KGen(1κ, F) and (SK′,PK′, td)← S1(1κ, f);

9

– for any input x, the following distributions are negligibly close

(SK′,PK′,VKx, [x], [y]) ≈ (SK′,PK′,VK′x, [x], [y]′)

where (SK′,PK′, td)← S1(1κ, f), ([x],VKx)← ProbGenPK′(x),
[y]← ComputePK([x]), and ([y]′,VK′x)← S2(td,SK′, F (x)).

2.3 Background in Ring Theory

We now turn to recall useful results from ring theory. While some of the results
for fields and euclidean domains (such as Z) carry over to the more general
rings we deal with, others do not. For example, one has to be careful about the
fact that the rings we consider contain zero divisors, i.e. d ∈ R \ {0} for which
∃ q ∈ R \ {0} such that d · q = 0.

Lemma 1. Let R be a finite ring. Then all non-zero elements of R are either a
unit or a zero divisor.

We recall that an ideal of a ring R is an additive subgroup I ⊆ R such that
r · x ∈ I for any r ∈ R, x ∈ I. Through the paper, (x) will denote the ideal
generated by x ∈ R.

Theorem 1. Let R be a finite commutative ring with identity and let Z(R)
denote the set of all its zero divisors. Then the following are equivalent:

1. Z(R) is an ideal.
2. Z(R) is a maximal ideal.
3. R is local.
4. Every x ∈ Z(R) is nilpotent.

Theorem 2 (Chinese Remainder Theorem). Let I1, . . . , Im be m pairwise
co-prime4 ideals of R, i.e. ∀i 6= j, Ii + Ij = R. Denote I = I1 · · · Im. Then the
following map is a ring isomorphism:

R/I → R/I1 × · · · ×R/Im
r mod I 7→ (r mod I1, . . . , r mod Im)

Exceptional sets. Elements which satisfy that their pairwise differences are
invertible will be fundamental in our constructions. These have received different
names in the literature: ‘Condition (F)’ sets in [6], ‘exceptional sequences’ in [1]
and ‘exceptional sets’ in [25]. We will stick with the latter denomination.

Definition 5. Let A = {a1, . . . , an} ⊂ R. We say that A is an exceptional set
if ∀i 6= j, ai − aj ∈ R∗. We define the Lenstra constant of R to be the size of the
biggest exceptional set in R.

4 Such ideals are also denoted co-maximal by some authors.

10

We will need the following generalization of the Schwartz-Zippel lemma.

Lemma 2. [Generalized Schwartz-Zippel Lemma [6]] Let f : Rn → R be an
n-variate non-zero polynomial. Let A ⊆ R be a finite exceptional set. Let deg(f)
denote the total degree of f . Then:

Pr
~a←An

[f(~a) = 0] ≤ deg(f)

|A|

Interpolation. Lagrange interpolation for sets of points (xi, yi) ∈ R2 can be
computed, as long as all the xi are part of the same exceptional set A ⊂ R.
This follows from either looking at the definition of Lagrange basis polynomials
or, more formally, from the Chinese Remainder Theorem (Theorem 2). As an
intuition of the latter approach, the ideals (x − xi) are co-prime, so there is a
one-to-one correspondence between any polynomial p(x) ∈ R[x]/I, where I =∏d+1
i=1 (x − xi), and y1 = p(x1), . . . , yd+1 = p(xd+1). In other words, any p(x) ∈

R[x] of degree d is uniquely determined by its evaluation at d points of an
exceptional set. For more details about the CRT argument, see e.g. [1].

Galois Rings. Galois Rings are the generalization of Galois Fields to the ring
case. Informally, a Galois Ring relates to integers modulo pk in the same way a
Galois Field relates to integers modulo a prime p. In the following, we provide
a high level overview of their properties and arithmetic. For a more detailed
introduction to Galois Rings, see [45].

Definition 6. A Galois Ring is a ring of the form R = Zpk [X]/(h(X)), where p
is a prime, k a positive integer and h(X) ∈ Zpk [X] a monic polynomial of degree
d ≥ 1 such that its reduction modulo p is an irreducible polynomial in Fp[X].

Given a base ring Zpk , there is a unique degree d Galois extension of Zpk ,
which is precisely the Galois Ring provided on the previous definition. Hence, we
shall denote such Galois Ring as GR(pk, d). Note that Galois Rings reconcile the
study of finite fields Fpd = GR(p, d) and finite rings of the form Zpk = GR(pk, 1).

Every Galois Ring R = GR(pk, d) is a local ring and its unique maximal
ideal is (p). Hence, by Theorem 1, all the zero divisors of R are furthermore
nilpotent, and they constitute the maximal ideal (p). Furthermore, we have that
R/(p) ∼= Fpd , and thus a canonical homomorphism π : R → Fpd which can be
computed by ‘reducing modulo p’.

Proposition 1 ([1]). The Lenstra constant of R = GR(pk, d) is pd.

In this work, we will be particularly interested in Galois Rings of the form
R = GR(2k, d), i.e. of characteristic 2k, maximal ideal (2) and such that R/(2) ∼=
F2d . Whenever we need to explicitly represent elements a ∈ R, we will do so as it
follows from Definition 6. In that case, we will say that a is given in its additive
representation, which consists of the residue classes

a ≡ a0 + a1 ·X + . . .+ ad−1 ·Xd−1 mod h(X), ai ∈ Z2k . (1)

11

3 Quadratic Programs over Commutative Rings

We now give a characterization for the satisfiability of arithmetic circuits over
commutative rings with identity.

Definition 7 (Quadratic Ring Programs (QRP)). A Quadratic Ring Pro-
gram (QRP) Q over a finite commutative ring R consists of three sets of poly-
nomials, V = {vk(x) : k ∈ [0,m]}, W = {wk(x) : k ∈ [0,m]}, Y = {yk(x) : k ∈
[0,m]} and a target polynomial t(x), all in R[x]. Let C be an arithmetic circuit
over R with n inputs and n′ outputs. We say that Q is a QRP that computes C
if the following holds:

a1, . . . , an, am−n′+1, . . . am ∈ Rn+n
′

is a valid assignment to the input/output
variables of C if and only if there exist an+1, . . . , am−n′ ∈ Rm−n−n

′
such that:

t(x) divides p(x),

where p(x) = V (x) ·W (x) − Y (x), V (x) =
(
v0(x) +

∑m
k=1 ak · vk(x)

)
, W (x) =(

w0(x) +
∑m
k=1 ak · wk(x)

)
and Y (x) =

(
y0(x) +

∑m
k=1 ak · yk(x)

)
.

We define the size and degree of Q to be m and deg(t(x)) respectively. Given
polynomials V (x),W (x), Y (x) ∈ R[x] defined as above and corresponding to a
valid assignment of the input/output wires, we will call them a QRP solution.

3.1 Construction of a QRP for a Circuit over Rings

Let C be an arithmetic circuit over R. To build a QRP, we will make use of an
exceptional set A as follows. We will pick elements rg ∈ A for each multiplication
gate g ∈ C and define the target polynomial as t(x) =

∏
g∈C(x − rg). As a

consequence of the CRT over rings, the vk(x), wk(x) and yk(x) polynomials can
be computed by interpolating over those rg ∈ A in the same way one proceeds
in the QAP case [31, 42]. In more detail, let I1, . . . Ideg(t(x)) be the ideals defined
by Ig = (x− rg), which are co-prime since A is an exceptional set. Noting that
p(x) ≡ p(rg) mod (x− rg), we have that:

φ : R[x]/(t(x)) ' R[x]/I1 × . . .×R[x]/Ideg(t(x)) (2)

p(x) 7→ (p(r1), . . . , p(rdeg(t(x))))

In other words, the isomorphism above tells us that t(x) divides p(x) if and only
if p(rg) = 0 for every rg ∈ A, as long as A is an exceptional set. We show that
this imposition on A is not only sufficient, but also necessary.

Proposition 2. Let t(x) =
∏
g∈C(x − rg), Ig = (x − rg) and A = {rg}g∈C . If

the map φ given by Eq. (2) is an isomorphism, then A is an exceptional set.

Proof. Assume that A is not exceptional, i.e. that there exist r1, r2 ∈ A such
that r1−r2 /∈ R∗. Since R is a finite ring, then r1−r2 is a zero divisor, so ∃b ∈ R
s.t. b · (r1 − r2) = 0. We show that φ is not injective by giving two elements of
R[x]/(t(x)) that map to the all zeroes vector: 0 and b ·

∏
rg∈A\{r1}(x− rg).

12

The above proposition highlights the “tightness” of the requirement to use
exceptional sets in order to build QRPs. We would like to emphasize that excep-
tional sets have no further algebraic properties (e.g. no closure under addition).

In Appendix A, we show how to build a QRP for a multiplication sub-circuit,
and how to compose QRPs to obtain a QRP for any arithmetic circuit.

4 Secure Encoding Schemes over Rings

To construct a SNARK, we follow the framework in [31]. The QRP polynomials
are represented by encodings of the polynomials evaluated at a secret point, and
the encoding used is additively homomorphic in the ring of computation. We
now define these encodings and their properties.

Definition 8 (Encoding scheme). An encoding scheme Encode over a ring
R consists of a tuple of algorithms (Gen,E).

– (pk, sk)← Gen(1κ), a key generation algorithm that takes as input a security
parameter and outputs a secret key sk, and public information pk.

– s ← E(a), a probabilistic encoding algorithm mapping a ring element a ∈ R
to an encoding s in an encoding space S such that the sets {{E(a)} : a ∈ R}
partition S, where {E(a)} is the set of encodings of a. Depending on the
encoding algorithm, E could require the secret state sk. To ease notation, we
will omit this additional argument.

An encoding scheme has to satisfy the following properties:

– `-Linearly homomorphic: There is an efficient algorithm Eval that on in-
put public information pk, encodings E(a1), . . .E(a`) and coefficients c1, . . . , c` ∈
R` computes the encoding E(

∑`
i=1 ci · ai).

– Quadratic root detection: There exists an algorithm that given secret key
sk, (E(a1), . . .E(ad)), and a quadratic polynomial Q(x1, . . . , xt) ∈ R[x1, . . . , xt],
can distinguish whether Q(a1, . . . , at) = 0.

– Image verification: There exists an efficient algorithm that given sk, and
an element c, can detect if c is a valid encoding of some element in R.

While the definition of encoding above can be satisfied by, for instance, the
identity function, we will only be interested in secure encodings, i.e. those which
satisfy certain cryptographic assumptions. .

Our computational assumptions have been previously used in the discrete-
logarithm group setting. In the next subsection, we generalize q-PDH and q-PKE
to encodings over rings. We also show (in Section 4.2) how those assumptions
are weaker than the alternative, more intuitive notion of linear-only extractable
encodings from [7].

13

4.1 Assumptions on Encodings: q-PDH and q-PKE

In the following, A denotes an exceptional set of a commutative ring with identity
R. We use A∗ to furthermore signal that A∗ ⊂ R∗, i.e. the elements of the
exceptional set are units themselves too.

We start by giving a generalized version of the q-PDH problem used in [31].
This assumption has two differences with respect to the original one. First of
all, the adversary is able to win the game as long as it outputs a pair (a, y) such
that a 6= 0 and y ∈ {E(a · sq+1)}. In the field case, this is trivially equivalent to
the original q-PDH assumption, as a−1 · E(a · sq+1) = E(sq+1). Nevertheless, in
the ring case, we need to deal with elements a ∈ R which might be zero divisors.
Second, in order to have the assumption work for any given q, we need to ensure
that s2q 6= 0. Due to this and additional security reasons, we restrict s to be
a unit. Furthermore, we need s to be part of a big enough exceptional set, so
that we can prove the soundness of our SNARKs by invoking the Generalized
Schwartz-Zippel lemma.

Assumption 1 (Generalized q-PDH) The generalized q-power Diffie-Hellman
assumption holds for an encoding scheme Encode if, for every non-uniform PPT
algorithm A, the following probability is less or equal than 2q

|A∗| + negl(κ):

Pr

 a 6= 0 ∧
y ∈ {E(a · sq+1)} :

(pk, sk)← Gen(1κ),
s← A∗,

σ = (pk,E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q)),
(a, y)← A(σ)

 .

Note that we linked our generalization of q-PDH to the size of the exceptional
set A∗. Usually, we will consider A∗ to be of exponential size in the security pa-
rameter, so that the previous probability is just negligible in the security parame-
ter. Nevertheless, for the purpose of parallel soundness amplification techniques,
in some cases it will be useful to consider even exceptional sets of constant size.
The reason to bound A’s advantage by 2q/|A∗| (rather than 1/|A∗|) is the pos-
sibility of a generic attack on q-PDH, which was presented in [36]. We generalize
such attack to Assumption 1 in the following lemma.

Lemma 3. Let Encode be an `-linearly homomorphic encoding scheme over a
finite commutative ring R. Let ` ≥ 2q− 1. There exists an adversary running in
time poly(q, log |R|) which wins the Generalized q-PDH assumption with advan-
tage 2q/|A∗|.

Proof. Let A choose 2q random points z1, . . . , z2q ∈ A∗. Interpolate the poly-
nomial that has those random points as roots, which we denote by f(X) =∑2q
i=0 αix

i. It holds that ∀i ∈ [2q], αq+1z
q+1
i = −(

∑q
j=0 αjz

j
i)− (

∑2q
k=q+1 αkz

k
i).

Given a generalized q-PDH challenge, A and since the encoding scheme is `-
linearly homomorphic, A can compute an encoding of the right hand side of
the previous equation. Hence, if the secret s sampled for the q-PDH challenges
happens to be one among z1, . . . , z2q, and since the value αq+1 is known by A,
they win the game.

14

We also need a q-power knowledge assumption, which is both augmented to
handle the designated verifier setting and generalized to encodings over rings.

Assumption 2 (Generalized Augmented q-PKE) The generalized augmented
q-power knowledge of encoding assumption holds for an encoding scheme Encode
and for the class Z of “benign” auxiliary input generators if, for every non-
uniform PPT auxiliary input generator Z ∈ Z and for all non-uniform PPT
algorithm A there exists a non-uniform PPT extractor χA such that the follow-
ing probability is negligible in the security parameter:

Pr

 ĉ− αc = 0
∧

c 6=
∑q
i=0 ais

i
:

(pk, sk)← Gen(1κ), α← R∗, s← A∗,
σ = (pk,E(1),E(s), . . . ,E(sq),E(α),E(αs), . . . ,E(αsq)),

z ← Z(σ)
(E(c),E(ĉ); a0, . . . , aq)← (A||χA)(σ, z)

 .

In the above, (x; y) ← (A||χA)(σ, z) denotes that on input (σ, z), A outputs
x, and χA given the same input (σ, z), and A’s random tape, outputs y. When we
assume that Z is benign, we mean that the auxiliary information z is generated
with a dependency on sk, s and α that is limited to the extent that it can be
generated efficiently from σ.

The SNARKs that we will construct will only be concerned with one-time
soundness, which does not provide the adversary with access to a verification ora-
cle (see the two final remarks at the end of Section 2.1). In proving strong (multi-
theorem) soundness of designated-verifier SNARK constructions, one needs to
make a stronger assumption called the q power-knowledge of equality (q-PKEQ)
assumption, where adversary has access to such verification oracle. This assump-
tion is invoked to prove multi-statement soundness in the proof to test if two
(potentially adversarially generated) encodings have the same value underneath
without having the secret key. We provide its description for completeness.

Assumption 3 (Generalized q-PKEQ) The generalized q power-knowledge
of equality assumption holds for an encoding scheme Encode if for all non-
uniform probabilistic polynomial time algorithm A, there exists a non-uniform
probabilistic polynomial time extractor χA such that the following probability is
negligible in the security parameter.

Pr

(b = 0 ∧ ĉ ∈ {E(c)})
∨

(b = 1 ∧ ĉ /∈ {E(c)})
:

(pk, sk)← Gen(1κ),

s
R← A∗,

σ = (pk,E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q)),
(E(c), ĉ; b)← (A||χA)(σ)

 .

4.2 Assumptions on Encodings: Linear-only Extractability

Informally, the linear-only extractability assumption captures the fact that an
adversary can perform only affine operations over encodings. This is the assump-
tion we will need to construct a Groth16-like SNARK in Section 6.

15

Consider an encryption scheme which satisfies the properties required for an
encoding scheme from Definition 8. We show that if the encryption scheme can be
assumed to be linear-only extractable, which is the assumption in [7, 9, 10], then
it automatically is a secure encoding, i.e. it satisfies both the Generalized q-PDH
and the Generalized Augmented q-PKE assumptions. Hence, the linear-only ex-
tractability assumption is at least as strong as our previous ones. We have no
proof of it being strictly stronger or equivalent. Nevertheless, for the candidate
encodings we propose (based on either Regev’s encryption [44] or an additive
restriction of Torus FHE [21] in Section 7.2 and on the Joye-Libert encryption
scheme [5] in Section 8.1), being able to compute non-linear homomorphisms
on the underlying plaintexts would be highly interesting. Either cryptanalysis of
the underlying encryption schemes would significantly advance, or the non-linear
homomorphisms could be used in a constructive way (potentially, if the homo-
morphism was multiplication, leading to new Fully Homomorphic Encryption
constructions).

We recall the linear-only extractable definition from [7], which we generalize
to the broader context of (non-field) commutative rings with identity.

Definition 9 (Linear-only extractable). An encoding scheme Encode =
(Gen,E) over R is linear-only extractable if for all probabilistic polynomial time
algorithms A, there exists a probabilistic polynomial time extractor χA such that
the following probability is negligible in the security parameter.

Pr

c 6= a0 +
∑n
i=1 aixi :

(pk, sk)← Gen(1κ),

x1, . . . , xn
R← R,

σ = (pk,E(x1), . . . ,E(xn)),
(E(c); a0, . . . , an)← (A||χA)(σ)

 .

Lemma 4. If an encoding scheme Encode = (Gen,E) is IND-CPA secure and
linear-only extractable, then it is an encoding scheme that satisfies Generalized
Augmented q-PKE (Assumption 2).

Proof. Let σ = (pk,E(1),E(s), . . . ,E(sq),E(α),E(αs), . . . ,E(αsq)). We will show
that Encode satisfies q-PKE, meaning we will show that for any adversary A
able to produce c, ĉ such that αc − ĉ = 0, there exists an extractor χA which
outputs coefficients ai satisfying c =

∑q
i=0 ais

i with non negligible probability.
We define two adversaries Bc and Bĉ that, upon receiving as input σ, run

exactly the same code as A and output, respectively, c and ĉ. By our linear-only
extractable assumption on E, there exist an extractor χc (resp. χĉ) for Bc (resp.
Bĉ) which outputs a0, . . . , aq, b0, . . . , bq (resp. a′0, . . . , a

′
q, b
′
0, . . . , b

′
q) such that

c =
∑q
i=0 ais

i +
∑q
i=0 biαs

i, ĉ =
∑q
i=0 a

′
is
i +
∑q
i=0 b

′
iαs

i

with non negligible probability.
Knowing that αc− ĉ = 0 implies either that the polynomial

P (X,Y) = X2∑q
i=0 biY

i +X
∑q
i=0(ai − b′i)Y i −

∑q
i=0 a

′
iY

i

16

is the zero polynomial, or that (α, s) are roots of P (X,Y). We rule out the
second case by the IND-CPA security of the encoding scheme and the generalized
Schwartz-Zippel lemma. Hence, P (X,Y) = 0, which gives us that for every
i ∈ [q], bi = a′i = 0 and ai = b′i. Therefore, we have defined an extractor χA for
the Generalized Augmented q-PKE assumption, which outputs the coefficients
ai obtained from χc.

Lemma 5. If an encoding scheme Encode = (Gen,E) is IND-CPA secure and
linear-only extractable, then it is an encoding scheme that satisfies the General-
ized q-PDH assumption (Assumption 1).

Proof. Consider an adversary A that breaks q-PDH of the scheme Encode. We
construct an adversary B that breaks IND-CPA. Consider the adversary B play-
ing left-or-right oracle game where the adversary gets access to an encryption
oracle that receives a pair of chosen messages always returns a ciphertext en-
crypting either the left or the right message. The adversary wins if it guesses the
left-or-right bit.
B samples s0, s1 uniformly from an exceptional set A∗ ⊂ R∗. B gets access

to the left-or-right encryption oracle, makes queries on pairs (sk0 , s
k
1) for k ∈

{0, . . . , q, q + 2, . . . , 2q} , and receives {E(sib)}
2q,i6=q+1
i=0 for challenge bit b. B now

runs the q-PDH adversary A on {E(sib)}. A returns y ∈ {E(sq+1
b)}. B now invokes

the extractor that exists since Encode satisfies linear-only extractability (c.f.
Definition 9). χA, given the same input asA and its internal randomness, returns

a0, · · · , aq, aq+2, a2q such that a0 +
∑2q,i6=q+1
i=1 ais

i
b = sq+1

b . Since B knows s0, s1,

it checks whether a0 +
∑2q,i6=q+1
i=1 ais

i
0 = sq+1

0 or a0 +
∑2q,i6=q+1
i=1 ais

i
1 = sq+1

1 ,
and outputs the bit b∗ for which this holds. Notice that the previous strategy
will output a single possible value for b∗ with high probability, which further
matches the challenge bit b. This is because, for the random s1−b, we have that

a0 +
∑2q,i6=q+1
i=1 ais

i
1−b = sq+1

1−b will hold only with probability q/|A∗|, by the
generalized Schwartz-Zippel lemma.

5 Rinocchio: A SNARK over Rings

The QRP characterization allows a test for satisfiability of an arithmetic circuit,
by checking if the target polynomial divides p(x) =

(∑
ck · vk(x)

)
·
(∑

ck ·
wk(x)

)
−
(∑

ck · yk(x)
)
. If divisibility holds, there is a quotient polynomial

that is guaranteed to exist that serves as a witness for this test. To construct a
succinct proof, we follow the blueprint of [31, 42]: the QRP test is performed in
a probabilistic way at a random point chosen during the setup. Toward this end,
the prover is expected to give, in the proof, the polynomials V (x),W (x), Y (x)
computed as a linear combination of the QRP polynomials using the intermediate
witness values ck as coefficients. The prover also provides the quotient polynomial
H(x), and verification checks whether V (s) ·W (s) − Y (s) = H(s) · t(s), where
s is the random point that is hidden from the prover. The CRS consists of an

17

encoding of this secret point together with encodings of the QRP polynomials,
and the prover homomorphically computes the elements in the proof.

Besides the security assumptions we introduced in the previous section, our
designated verifier SNARK construction will rely on the following two technical
lemmas. The first one will be useful to define the concrete soundness error of our
construction, while the second one is an analogue of [31, Lemma 10]. At a high
level, this second lemma will be invoked in the security proof to ensure that, if
the adversary outputs a false proof that passes verification that implicitly uses
some V (x) that is not in the span of the QRP polynomial set {vk(x)}, then the
reduction will be able to use that false proof to solve a q-PDH challenge.

Lemma 6. Given an exceptional set of size n in R, we can construct another
exceptional set A = {0, a1, . . . , an−1 : ai ∈ R∗}. When an exceptional set has the
latter form, we say it is given in its canonical form.

Proof. Let B = {b1, . . . , bn} ⊂ R be an exceptional set. For all i ∈ {1, . . . , n−1},
define ai = bn − bi. By the definition of B, we have that ai ∈ R∗ and hence so
is (0 − ai). Furthermore, ∀i 6= j, ai − aj = (bn − bi) − (bn − bj) = bi − bj which
is again a unit by the definition of B.

Lemma 7. Let R[x]≤e denote the polynomials in R[x] of degree at most e. Let
R[x]¬(e) denote polynomials over R[x] that have a zero coefficient for xe. Let
A∗ ⊂ R∗ be an exceptional set. We define A∗[x]≤e, A

∗[x]¬(e) analogously. Given
a set U = {ui(x)} ⊂ R[x]≤e such that |U| = m, let span(U) denote the set of
polynomials that can be generated as R-linear combinations of the polynomials
in U . Let a(x) ∈ A∗[x]≤e+1 be generated uniformly at random subject to the
constraint that {a(x) · ui(x) : ui(x) ∈ U} ⊂ R[x]¬(e+1). Let s ← A∗. Then, if
e > m− 1, for all algorithms A,

Pr

 u(x) ∈ R[x]≤e ∧
u(x) /∈ span(U) ∧

a(x) · u(x) ∈ R[x]¬(e+1)
: u(x)← A(U , s, a(s))

 ≤ 1

|A∗|

Proof. Let u(x) = u0 + u1x+ . . .+ uex
e ∈ R[x] and u(x) /∈ span(U). Define the

vector u = (u0, . . . , ue, 0), corresponding to the coefficients of the monomials in
u and padded with a zero, and similarly define ui = (ui,0, . . . , ui,e, 0) for every
ui(x) ∈ U . Then, u is not in the span of the vectors (se+1, se, . . . , 1)

⋃
i∈[m] ui.

This follows from the assumption that u(x) /∈ span(U) and the fact that the last
element of u is a 0 and that of (se+1, se, . . . , 1) is 1.

This time following the opposite order, define a vector a = (ae+1, . . . , a0)
from the coefficients of a(x) = a0 + · · ·+ ae+1 · xe+1. Then, A has the following
information about a(x):

〈a, (se+1, se, . . . , 1)〉 = a(s)

〈a, (ui,0, . . . , ui,e, 0)〉 = 0, i ∈ [m] (3)

Where the second set of equations comes from the fact that {a(x) · ui(x) :
ui(x) ∈ U} ⊂ R[x]¬(e+1). This provides a system of m + 1 linear equations on

18

the e+ 2 coefficients a, so as e > m− 1 by hypothesis, it has an infinite amount
of solutions which can be described by at least one completely free parameter
θ ∈ A∗. Hence, when we say that a appears uniformly random to A (subject to
the constraints provided by the system of linear equations), this implies that θ
is sampled uniformly at random from A∗.

Finally, assume that A manages to satisfy the last missing condition for
u(x), that is a(x) · u(x) ∈ R[x]¬(e+1), which is equivalent to 〈a,u〉 = 0. Since
u is not in the span of (se+1, se, . . . , 1)

⋃
i∈[m] ui, it is not a linear combination

of the equations constituting the system in (3). Hence, since every ai ∈ A∗ and
a appears uniformly random to A (subject to the constraints provided by the
system of linear equations), by looking at u as the coefficients of a polynomial
ũ(x1, . . . , xe+2) = u0 · x1 + u1 · x2 + · · · + ue · xe+1 + 0 · xe+2, we have that
Pr[〈a,u〉 = 0] = Pr[ũ(a) = 0] ≤ 1/|A∗|. The last inequality is a consequence of
the Generalized Schwartz-Zippel Lemma (Lemma 2): Notice that we can push
everything that is not a parameter in a to the coefficients of the polynomial and
that there is at least one parameter θ ← A∗.

5.1 Construction from QRP

Let C be an arithmetic circuit over R, with m wires and d multiplication gates.
Let A be an exceptional set given in canonical form and AQ = {0, a1, . . . , ad−1} ⊂
A. Using AQ, define the QRP Q = (t(x), {vk(x), wk(x), yk(x)}mk=0) which com-
putes C. Let A∗ = A \AQ, which satisfies that A∗ ⊆ R∗, since A is canonical.

We denote by Iio = 1, 2, . . . ` the indices corresponding to the public input
and public output values of the circuit wires and by Imid = `+ 1, . . .m, the wire
indices corresponding to the intermediate values. We construct a SNARK scheme
Rinocchio = (Setup,Prove,Verify) for ring arithmetic as described in Figure 1.

Remark 1. Note that our construction has a proof size of nine elements, as op-
posed to eight elements in Pinocchio [42]. This saving in Pinocchio is a result
of removing the repeated (with scalar α) encoding of the quotient polynomial
h(x). We remark that this means that in the proof of security, one cannot invoke
PKE to extract the quotient polynomial. Indeed, Pinocchio does not extract
the polynomial explicitly and, for the security proof to go through, they require
multiplication of encoded values (multiplication in the exponent). This relies on
more than just quadratic root detection from the encoding, it needs one quadratic
computation in the reduction. While exponentiation admits this multiplication
via pairings, we do not make the assumption that an encoding scheme has this
property in general. Therefore, we fall back on including an additional proof
element and additional CRS elements to enable this computation.

Remark 2. An aspect of our construction that could look surprising to the reader
is the definition of A∗: Why do we not include the elements in AQ used to define
the QRP? As previously discussed, we do this in order to precisely define the
soundness of our construction. In some cases, as we will discuss in Section 8.3, it
could be useful to use parallel repetition strategies for soundness amplification.

19

Previous works in the field setting, using pairings, did not need to make such a
concrete analysis, since if circuits are assumed to be of polynomial size in the
security parameter, the probability that a randomly sampled s ← F would be
precisely one of the points used to define the QRP would be negligible, because
F has exponential size in the security parameter. In all rigour, nevertheless, the
concrete soundness error of those constructions is also bounded by the size of F
minus the size of the QRP5. We prefer this concrete analysis even when rings
might have exceptional sets of exponential size in the security parameter.

5 In order to see this, consider a proof that consists purely of encodings of zero. The
checks in the verification equations would pass if s happened to coincide with a value
in the QRP used to describe a multiplication gate with no connections to input or
output wires. This applies to e.g. [42].

20

Rinocchio
Setup(1κ,R)

(pk, sk)← Gen(1κ), s← A∗, rv, rw ← R∗, ry = rv · rw
α, αv, αw, αy ← R∗, β ← R \ {0}

crs =
(
{E(si)}di=0, {E(rvvk(s))}k∈Imid , {E(rwwk(s))}k∈Imid , {E(ryyk(s))}k∈Imid ,

{E(αvrvvk(s))}k∈Imid , {E(αwrwwk(s))}k∈Imid , {E(αyryyk(s))}k∈Imid ,

{E(αsi)}di=0, {E(β(rvvk(s) + rwwk(s) + ryyk(s))}k∈Imid , pk
)

(4)

vk = (sk, crs, s, α, αv, αw, αy, β, rv, rw, ry)

Prove(crs, u, w)

u = (a1, . . . , a`), a0 = 1,
w = (a`+1, . . . , am)

v(x) =
∑m
k=0 akvk(x)

vmid(x) =
∑
k∈Imid

akvk(x)

w(x) =
∑m
k=0 akwk(x)

wmid(x) =
∑
k∈Imid

akwk(x)

y(x) =
∑m
k=0 akyk(x)

ymid(x) =
∑
k∈Imid

akyk(x)

h(x) =
v(x)w(x)− y(x)

t(x)

Lβ=β
(
rvvmid(s)+rwwmid(s)+ryymid(s)

)
A = E(rvvmid(s)), Â = E(rvαvvmid(s)),

B = E(rwwmid(s)), B̂ = E(rwαwwmid(s)),
C = E(ryymid(s)), Ĉ = E(ryαyymid(s)),

D = E(h(s)), D̂ = E(αh(s)), F = E(Lβ).

Return π = (A, Â,B, B̂, C, Ĉ,D, D̂, F)

Verify(vk, u, π)

π = (A, Â,B, B̂, C, Ĉ,D, D̂, F),
A = E(rvVmid), Â = E(rvV̂mid),
B = E(rwWmid), B̂ = E(rwŴmid),
C = E(ryYmid), Ĉ = E(ryŶmid),
D = E(H), D̂ = E(Ĥ), F = E(L)
vio(x) =

∑`
k=0 akvk(x)

wio(x) =
∑`
k=0 akwk(x)

yio(x) =
∑`
k=0 akyk(x)

Lspan = rvVmid + rwWmid + ryYmid
P = (vio(s) + Vmid) · (wio(s) + Wmid) −
(yio(s) + Ymid)

Check: V̂mid = αvVmid,

Ŵmid = αwWmid,

Ŷmid = αyYmid,

Ĥ = αH (5)

L = βLspan (6)

P = H · t(s) (7)

Fig. 1. The Rinocchio scheme for SNARKs over a ring R.

We are now ready to state the main theorem and prove that Rinocchio scheme
satisfies the properties of a SNARK as stated in Definition 1.

Theorem 3. Let R be commutative ring with identity and A ⊆ R an exceptional
set. Let d be an upper bound on the degree of the QRP. Assuming that the gen-
eralized augmented (4d+ 3)-PKE and the generalized (4d+ 4)-PDH assumptions
hold for the encoding scheme Encode over R (and A∗), the Rinocchio protocol
described in Fig. 1 is a SNARK as per Definition 1, with soundness error 1/|A∗|.

Let us provide intuition and an informal sketch of the security reduction for
our construction. The full proof follows in Section 5.2.

21

The CRS contains encodings of powers of some random secret point s as well
as encodings of the QRP polynomials evaluated at s. The construction asks the
prover to present encodings computed homomorphically using this CRS. Further-
more, the prover has to duplicate its effort with respect to scalars α, αv, αw, αy.
This allows the simulator to extract representations of terms as polynomials of
a certain degree using the augmented d-PKE extractor. The crs also contains
terms multiplied by a value β that enforce the prover to compute its encoding
E(L) as a linear combination of some given encoded polynomials. In the case
when a proof π̂ would be accepted by the verifier but the statement is not true,
we can build an adversary B that is able to solve the q-PDH problem.

The adversary B, given its q-PDH challenge, tailors a CRS by picking values
r′v, r

′
w, r
′
y, α, αv, αw, αy and β. Since the proof π̂ verifies but the statement is

false, we can show that then one of the following must hold, where V (x) =∑
k∈Iio ckvk(x) + Vmid(x) (similarly W (x), Y (x)) and Vmid(x) is an extracted

polynomial (through the d-PKE assumption).:

Case 1: V (x) ·W (x) − Y (x) 6= H(x) · t(x), but Equation (7) holds, therefore,
V (s) ·W (s)− Y (s) = H(s) · t(s).

Case 2: U(x) = r′vx
d+1Vmid(x) + r′wx

2(d+1)Wmid(x) + r′yx
3(d+1)Ymid(x) is not

in the module S generated by the R-linear combinations of the polynomials
{uk(x) = r′vx

d+1vk(x) + r′wx
2(d+1)wk(x) + r′yx

3(d+1)yk(x)}k∈Imid .

If the first case holds, then γ(x) = V (x)·W (x)−Y (x)−H(x)·t(x) is a nonzero
polynomial of degree some k ≤ 2d that has s as a root. The simulator can then
from γ(x) and the PDH challenge subtract off encodings of lower powers of s to
get E(sq+1) and solve q-PDH. The second case follows a similar strategy, this
time invoking Lemma 7 and reasoning about U(x).

Strong Soundness. We remark that we do not prove strong soundness, which
demands that soundness holds even when the prover has access to the verification
oracle. While some designated-verifier schemes are provably strongly sound, the
reduction requires the d-PKEQ assumption (see Assumption 3 in Section 4.2)
on the encoding scheme to hold. For the sake of keeping Rinocchio as general as
possible in the choice of rings and encodings, we do not make that assumption,
but our result could be adapted to that case.

5.2 Security proof of Theorem 3

Completeness. Assuming the encoding scheme Encode satisfies (statistical)
correctness, then it follows by inspection that the verification equations are sat-
isfied by a correctly generated proof π. Therefore (statistical) completeness of
the Rinocchio protocol follows by QRP completeness.

Soundness. Assume there exists an adversary A who returns the proof of a
false statement. We use this adversary A in order to construct an adversary B
who breaks the q-PDH assumption.

22

Setting up the CRS. Adversary B is given the description of the encoding scheme,
and the challenge E(1),E(s), . . . , E(sq), E(sq+2), . . . ,E(s2q). B provides the crs to
A by constructing it as follows. It samples r′v, r

′
w, α, αv, αw, αy at random from

R∗ and sets r′y = r′vr
′
w. Let rv = r′vs

d+1, rw = r′ws
2(d+1), and ry = r′ys

3(d+1).
The value β is chosen as follows. Sample a polynomial βpoly(x) ∈ A∗[X] of degree
at most 3d + 3 uniformly at random, subject to the constraint that βpoly(x) ·
(r′vvk(x) + r′wx

(d+1)wk(x) + r′yx
2(d+1)yk(x)) has a zero coefficient for x3d+3 for

all k. B sets β = sq−(4d+3)βpoly(s). Looking ahead in our proof, the polynomial
xq−(4d+3) · βpoly(x) will play the role of a(x) in Lemma 7. B sets the CRS as
follows:

crs =
(
{E(si)}di=0, {E(rvvk(s))}k∈Imid , {E(rwwk(s))}k∈Imid , {E(ryyk(s))}k∈Imid ,
{E(αvrvvk(s))}k∈Imid , {E(αwrwwk(s))}k∈Imid , {E(αyryyk(s))}k∈Imid ,

{E(αsi)}di=0, {E(β(rvvk(s) + rwwk(s) + ryyk(s))}k∈Imid , pk
)

We now argue that B can construct the above crs using the terms provided
in its challenge. Consider the term in the proof that involves β, which is the final
proof term that the prover will have to compute using the CRS.

E(β(rvvmid(s) + rwwmid(s) + ryymid(s)))

= E(β(r′vs
d+1vmid(s) + r′ws

2(d+1)wmid(s) + r′ys
3(d+1)ymid(s))). (8)

In this term, β is multiplied by a polynomial evaluated at s. Note that B
generated β also as a polynomial evaluated at s. If we further rewrite (8) by
expressing β in terms of s, we have

E(sq−3d−2r′vβpoly(s)vmid(s) + sq−2d−1r′wβpoly(s)wmid(s) + sq−dr′yβpoly(s)ymid(s))

= E(sq−3d−2βpoly(s)(r′vvmid(s) + sd+1r′wwmid(s) + s2d+2r′yymid(s))). (9)

Since βpoly(x) · (r′vvk(x)+r′wx
d+1wk(x)+r′yx

2d+2yk(x)) has a zero coefficient

in front of x3d+3, the value underneath the encoding in (9) has a zero in front of
sq+1. The powers of s in the encoding go up to (q−3d−2)+(3d+3)+(2d+2)+d =
q+3d+3 ≤ 2q. The polynomials vk(x), wk(x), yk(x) are of degree d, and none of
the other elements in the CRS contain sq+1 inside the encoding. Since we have
q ≥ 4d + 4, all the elements in the CRS can be generated using terms in the
challenge.

We need to make sure that a crs generated as above has a distribution which
is indistinguishable to the one given in our protocol. Note that, as βpoly(x) is
a polynomial of degree at most 3d + 3 and β = sq−(4d+3)βpoly(s), we have that
Pr[β = 0] ≤ (3d+ 3)/|A∗| (Lemma 2). This is a bigger chance for β = 0 than in
our protocol, but notice that A never sees β in the clear, but rather encodings of
it. There are hence two cases: Either E(0) is computationally indistinguishable
from any E(a) where a 6= 0, or it is not (as it happens in the exponentiation-
based encodings of e.g. [31, 42]). In the former case, A will accept the crs. In the
latter case, B checks whether β = 0 by distinguishing whether the last term of
crs is E(0) and, if so, samples a new βpoly(x) and repeats the process above until
the last term is not E(0).

23

Extraction. With the CRS set this way, B can now obtain a purported proof from
A. Due to the indistinguishability of simulated CRS and real CRS, A aborting
on input the tailored CRS is negligible. Let π̂ be a purported proof returned by
A, which is parsed as follows:

π̂ = (E(rvVmid),E(rwWmid),E(ryYmid),E(H),

E(rvV̂mid),E(rwŴmid),E(ryŶmid),E(Ĥ),E(L)
)

Since B knows that rv = r′vs
d+1, rw = r′ws

2(d+1), and ry = r′ys
3(d+1), it can

reinterpret π̂ as follows:(
Er′v (sd+1Vmid),Er′w(s2d+2Wmid),Er′y (s3d+3Ymid),E(H),

Er′v (sd+1V̂mid),Er′w(s2d+2Ŵmid),Er′y (s3d+3Ŷmid),E(Ĥ),E(L)
)

Notice that the proof elements are now being treated as if they belonged to
four different encodings: E,Er′v ,Er′w ,Er′y , where the four latter are defined as
Ea(b) = E(a · b). It is easy to see that, by the fact that r′v, r

′
w, r
′
y ∈ R∗ and

the assumption that E is a secure encoding, so are Er′v ,Er′w ,Er′y . Since π̂ passes
verification (in particular Equation (5)), we can apply the following reasoning
for E and any of the other three encodings. As (E(H),E(Ĥ)) is of the form
(E(H),E(αH)), B can use the d-PKE extractor χA to extract a polynomial

H(x) =
∑d
i=0 hix

i of degree at most d such that H = H(s). This is because the
CRS given to A is of the form (σ, z), where:

σ = (pk, {E(si)}di=0, {E(αsi)}di=0), z = crs \ σ

Note that the auxiliary information z is independent of α, as the relation between
e.g. Er′v (sd+1Vmid) and Er′v (sd+1V̂mid) is an i.i.d. αv. If we look at any of the
three remaining encodings Er′v (·), Er′w(·) or Er′y (·), we will next show that B can
extract Vmid(x) of degree at most d and such that Vmid = Vmid(s) due to the
(2d+1)-PKE assumption (resp. Wmid(x) due to (3d+2)-PKE and Ymid(x) due to
(4d+3)-PKE). Focusing on Vmid(x), notice that A does not have a (2d+1)-PKE
challenge, but the following (where the problem is with σ̃v, not with z)

σ̃v = (pk, {Er′v (sd+1vk(s))}k∈Imid , {Er′v (αvs
d+1vk(s))}k∈Imid), z = crs \ σ̃v

which differs from the expected σv = (pk, {Er′v (si)}2d+1
i=0 , {Er′v (αvs

i}2d+1
i=0) in two

ways: It is completely missing the powers {si}di=0 and, for those between d+1 and
2d+ 1, it instead has the evaluation at s of the polynomials {xd+1vk(x)}k∈Imid .
Informally, since B can compute σ̃v from σv, we can extract. In more syn-
tactic rigour, B can send σv to a (2d + 1)-PKE adversary Av who runs in-
ternally the SNARK prover A on σ̃v, so as Equation (5) verifies, then, by
the PKE assumption there exists an extractor χAv which gets a polynomial

xd+1Vmid(x) =
∑d
i=0 vix

d+1+i of degree at most 2d+1 such that Vmid = Vmid(s).
Applying the same reasoning, we can conclude on the extraction of polyno-
mials Wmid(x), Ymid(x) of degree at most d such that Wmid = Wmid(s) and
Ymid = Ymid(s).

24

Reducing to Generalized q-PDH. Since the proof π̂ verifies but the statement
is false, we show that then one of the following must hold, where V (x) =∑
k∈Iio ckvk(x) + Vmid(x) and similarly W (x) and Y (x):

Case 1: V (x) ·W (x) − Y (x) 6= H(x) · t(x), but Equation (7) holds, therefore,
V (s) ·W (s)− Y (s) = H(s) · t(s).

Case 2: The polynomial

U(x) = r′vx
d+1Vmid(x) + r′wx

2(d+1)Wmid(x) + r′yx
3(d+1)Ymid(x)

is not in the module S generated by the R-linear combinations of the poly-
nomials {uk(x) = r′vx

d+1vk(x) + r′wx
2(d+1)wk(x) + r′yx

3(d+1)yk(x)}k∈Imid .

We demonstrate that those are the only cases for a false π̂ by proving that,
if none of them holds, then V (x),W (x) and Y (x) are a QRP solution, which
would then mean that π̂ is a valid proof. So, towards contradiction, assume both
that U(x) ∈ S and V (x) ·W (x)− Y (x) = H(x) · t(x). Since U(x) ∈ S, it can be
expressed as U(x) =

∑
k∈Imid ckuk(x), where ck ∈ R. Thus,

U(x) = r′vx
d+1v′(x) + r′wx

2(d+1)w′(x) + r′yx
3(d+1)y′(x),

where we define v′(x) =
∑
k∈Imid ckvk(x), w′(x) =

∑
k∈Imid ckwk(x) and y′(x) =∑

k∈Imid ckyk(x). Note that v′(x), w′(x), y′(x) have degree at most d, since they
are in the spans of {vk(x)}k∈Imid , {wk(x)}k∈Imid and {yk(x)}k∈Imid respectively.
Since Vmid(x),Wmid(x), Ymid(x) are also polynomials of degree at most d, and
since the R-submodules {xd+1+i : i ∈ [0, d]}, {x2(d+1)+i : i ∈ [0, d]}, and
{x3(d+1)+i : i ∈ [0, d]} of R[x] are disjoint (except at zero) we have that

U(x) = r′vx
d+1Vmid(x) + r′wx

2(d+1)Wmid(x) + r′yx
3(d+1)Ymid(x)

= r′vx
d+1v′(x) + r′wx

2(d+1)w′(x) + r′yx
3(d+1)y′(x),

we conclude that Vmid(x) = v′(x), Wmid(x) = w′(x) and Ymid(x) = y′(x). There-
fore, V (x) =

∑
k∈Iio ckvk(x) + Vmid(x) =

∑
k∈Iio ckvk(x) +

∑
k∈Imid ckvk(x),

W (x) =
∑
k∈Iio ckwk(x) + Wmid(x) =

∑
k∈Iio ckwk(x) +

∑
k∈Imid ckwk(x), and

Y (x) =
∑
k∈Iio ckyk(x) + Ymid(x) =

∑
k∈Iio ckyk(x) +

∑
k∈Imid ckyk(x). Fi-

nally, as we assumed that V (x) · W (x) − Y (x) = H(x) · t(x), we have that
V (x),W (x), Y (x) can be written as the same linear combination {ck}k∈Iio∪Imid
of their respective sets, and that t(x) divides V (x) ·W (x) − Y (x). Therefore,
V (x),W (x), Y (x) are a QRP solution.

We now address the two cases corresponding to a false proof π̂ and show that,
in both Case 1 and Case 2, B can break the Generalized q-PDH (Assumption 1).

Case 1: V (x) ·W (x) − Y (x) 6= H(x) · t(x). The non-zero polynomial γ(x) =
V (x) ·W (x)−Y (x)−H(x) · t(x) has degree k ≤ 2d and s as a root. Express
γ(x) = γk · xk + γ̂(x), where k ≤ 2d, γk 6= 0 and deg(γ̂(x)) < k. Since s is a
root of γ(x), it is also a root of xq+1−kγ(x). Hence, γk ·sq+1 = −sq+1−kγ̂(s).
B can compute E(γk ·sq+1) by computing E(−sq+1−kγ̂(s)), which is a known
linear combination of the {E(si)}qi=0 values belonging to the q-PDH instance.
This solves the q-PDH challenge.

25

Case 2: The polynomials Vmid(x),Wmid(x), Ymid(x) are not in the required
spans. There does not exist {ck}k∈Imid such that Vmid(x) =

∑
k∈Imid ckvk(x),

Wmid(x) =
∑
k∈Imid ckwk(x) and Ymid(x) =

∑
k∈Imid ckyk(x). Then, the

polynomial U(x) = r′vx
d+1Vmid(x) + r′wx

2(d+1)Wmid(x) + r′yx
3(d+1)Ymid(x)

is not in the module S generated by the R-linear combinations of the polyno-
mials {uk(x) = r′vx

d+1vk(x)+r′wx
2(d+1)wk(x)+r′yx

3(d+1)yk(x)}. Recall that
B chose a polynomial βpoly(x) ∈ A∗[X] of degree at most 3d + 3 subject to
the constraint that all polynomials in {βpoly(x) · (r′vvk(x) + r′wx

(d+1)wk(x) +
r′yx

2(d+1)yk(x))} have a zero coefficient for x3d+3. Thus, by Lemma 7, the

coefficient of xq+1 in the polynomial ω(x) = xq−(4d+3) ·βpoly(x) ·U(x) is a ∈
R\{0} with probability 1−1/|A∗|. Furthermore, B can compute all the coeffi-
cients of ω(x) on its own, so it can subtract from E(L) = E(sq−(4d+3)βpoly(s)·
(sd+1Vmid(s) + s2(d+1)Wmid(s) + s3(d+1)Ymid(s))) all the monomials corre-
sponding to E(sj) for j 6= q + 1 and obtain E(a · sq+1). Note that this is
possible even when βpoly(s) = 0. By outputting (a,E(a · sq+1)), B breaks the
generalized q-PDH assumption.

5.3 Adding Zero-knowledge: zk-Rinocchio

We can make our construction zero-knowledge by randomizing the elements in
the proof π such that the checks verify and the proof is statistically indistinguish-
able from random encodings. The idea is for the prover to add random multiples
of t(x) to the proof terms so that we can define a simulator that “fakes” the
proof elements from completely random values. In more detail:

The prover chooses random δv, δw, δy ← R∗, and adds δvt(s) inside the en-
coding to vmid(s); δwt(s) to wmid(s); and δyt(s) to ymid(s). It is easy to see that
the modified value of p(x) remains divisible by t(x). We need to add additional
elements to the crs to allow for this computation. The construction zk-Rinocchio
is given in Fig. 2.

Theorem 4. Let R be commutative ring with identity with an exceptional subset
A, and d be an upper bound on the degree of the QRP. Assuming that the gen-
eralized augmented (4d + 3)-PKE and the generalized q-PDH assumptions hold
for the encoding scheme Encode over R (and A∗) for q = 4d + 4, the protocol
zk-Rinocchio described in Fig. 2 is a zk-SNARK as per Defn. 2, with soundness
error 1/|A∗|.

Proof. We prove that zk-Rinocchio is statistically zero-knowledge, which will
follow from the proof of Theorem 3 and the ZK property. Towards this, we
first note the following: for a fixed crs and statement u, given the elements
vmid, wmid, ymid that are encoded in π, the rest of the elements that are en-
coded in π are determined by the constraints given by the verification equa-
tions. Fix Vmid,Wmid, Ymid. This fixes V̂mid, Ŵmid, Ŷmid, and also P since the
coefficients {ak}`k=0 of vio, wio, yio are given by u, and P = (vio(s) + Vmid) ·
(wio(s) + Wmid) − (yio(s) + Ymid). Therefore, this fixes H = P · (t(s))−1, and

26

zk-Rinocchio
Setup(1κ,R)

(pk, sk)← Gen(1κ), s← A∗, rv, rw ← R∗, ry = rv · rw
α, αv, αw, αy ← R∗, β ← R \ {0}

crs =
(
{E(si)}di=0, {E(rvvk(s))}k∈Imid , {E(rwwk(s))}k∈Imid , {E(ryyk(s))}k∈Imid ,

{E(αvrvvk(s))}k∈Imid , {E(αwrwwk(s))}k∈Imid , {E(αyryyk(s))}k∈Imid ,

{E(αsi)}di=0, {E(β(rvvk(s) + rwwk(s) + ryyk(s))}k∈Imid ,
E(rvt(s)),E(rwt(s)),E(ryt(s)),E(αvrvt(s)),E(αwrwt(s)),E(αyryt(s),

E(rvβt(s)),E(rwβt(s)),E(ryβt(s)), pk)

vk = (sk, crs, s, α, αv, αw, αy, β, rv, rw, ry)

Prove(crs, u, w)

u = (a1, . . . , a`), a0 = 1,
w = (a`+1, . . . , am)

v(x) =
∑m
k=0 akvk(x)

vmid(x) =
∑
k∈Imid

akvk(x)

w(x) =
∑m
k=0 akwk(x)

wmid(x) =
∑
k∈Imid

akwk(x)

y(x) =
∑m
k=0 akyk(x)

ymid(x) =
∑
k∈Imid

akyk(x)

h(x) =
v(x)w(x)− y(x)

t(x)

Lβ=β
(
rvvmid(s) + rwwmid(s) + ryymid(s)

)
δv, δw, δy ← R
h′(x) = h(x) + δvw(x) + δwv(x) + δvδwt(x)− δy
L′β=Lβ + β(rvδvt(s) + rwδwt(s) + ryδyt(s))

A = E(rv(vmid(s) + δvt(s)))
Â = E(rvαv(vmid(s) + δvt(s)))
B = E(rw(wmid(s) + δwt(s)))
B̂ = E(rwαw(wmid(s) + δwt(s)))
C = E(ry(ymid(s) + δyt(s)))
Ĉ = E(ryαy(ymid(s) + δyt(s)))
D = E(h′(s)), D̂ = E(αh′(s)), F = E(Lβ)

return π = (A, Â,B, B̂, C, Ĉ,D, D̂, F)

Verify(vk, u, π)

π = (A, Â,B, B̂, C, Ĉ,D, D̂, F),
A = E(Vmid), Â = E(V̂mid),
B = E(Wmid), B̂ = E(Ŵmid),
C = E(Ymid), Ĉ = E(Ŷmid),
D = E(H), D̂ = E(Ĥ), F = E(L)
vio(x) =

∑`
k=0 akvk(x)

wio(x) =
∑`
k=0 akwk(x)

yio(x) =
∑`
k=0 akyk(x)

Lspan = rvVmid + rwWmid +
ryYmid
P = (vio(s) + Vmid) · (wio(s) +
Wmid)− (yio(s) + Ymid)

Check: V̂mid = αvVmid,

Ŵmid = αwWmid,

Ŷmid = αyYmid,

Ĥ = αH

L = βLspan

P = H · t(s)

Fig. 2. The zk-Rinocchio scheme for zk-SNARKs over a ring R.

also Ĥ. Now, Vmid,Wmid, Ymid are computed by adding uniformly random val-
ues δvt(s), δwt(s), δyt(s) respectively, and are therefore statistically uniform,
since t(s) ∈ R∗. We now construct a simulator (S1,S2). S1 outputs a sim-
ulated CRS crs′ and sets the trapdoor τ to be (s, rv, rw, α, αv, αw, αy, β). S2
takes as input crs′, trapdoor τ , statement u and produces a simulated proof

27

π′ as follows. S2 samples random v(x), w(x), y(x) such that t(x) divides v(x) ·
w(x) − y(x), and sets h(x) to be the quotient polynomial. Using the state-
ment u, S2 computes vmid(x) = v(x) − vio(x), wmid(x) = w(x) − wio(x) and
ymid(x) = y(x) − yio(x). Now, S2 uses the trapdoor τ to compute elements
that are to be encoded as part of the proof; it uses s to compute encodings of
vmid(s), wmid(s), ymid(s), h(s), uses knowledge of s, α to compute encodings of
αvmid(s), αwmid(s), αymid(s), αh(s), and knowledge of s, β, rv, rw, ry to compute
an encoding of L. The encoded values satisfy the verification equations and are
statistically uniform elements just as an honestly generated proof.

6 Groth16-Like SNARK from Linear-Only Encodings

We construct a zk-SNARK scheme for ring computations with efficiency close
to its field-restricted counterpart proposed in [35].

Let C be an arithmetic circuit over R, with m wires and d multiplication
gates. Let Q = (t(x), {vk(x), wk(x), yk(x)}mk=0) be a QRP which computes C.
We denote by Iio = 1, 2, . . . ` the indices corresponding to the public input
and public output values of the circuit wires and by Imid = `+ 1, . . .m, the
wire indices corresponding to non-input, non-output intermediate values. Let
Encode = (Gen,E) be a secure encoding scheme and A∗ ⊂ R∗ an exceptional set.

Our scheme is based on the assumption of linear-only encodings and consists
in 3 algorithms RingSNARK = (Setup,Prove,Verify) described in Figure 3.

Before proving RingSNARK secure, we give a variant of the Schwartz-Zippel
lemma for Laurent polynomials over rings which we will rely on.

Lemma 8. Let A be an exceptional set. Let h(X) ∈ R[X1, X
−1
1 , . . . , Xn, X

−1
n]

where no term in any Xi has degree less than −D or larger than D. Let us
assume that h(X) is not the zero-polynomial. Let a ∈ (A)n be chosen uniformly
at random. Then

Pr[h(a) = 0] ≤ 2nD

|A|
.

Proof. We notice that f(X) :=
∏n
i=1X

D
i · h(X) is an ordinary polynomial of

degree ≤ 2nD. Since h(a) = 0 implies f(a) = 0, by the generalized Schwartz-
Zippel lemma (Lemma 2), we have that

Pr[h(a) = 0] ≤ Pr[f(a) = 0] ≤ 2nD

|A|
,

finishing the proof.

Theorem 5. Let R be a commutative ring with identity with an exceptional
subset A, and d be an upper bound on the degree of the QRP. Assuming that
the linear-only extractable assumption as per Definition 9 holds for the encoding
scheme Encode over R (and A∗), the protocol RingSNARK described in Fig. 3
is a SNARK as per Definition 1, with soundness error 1/|A∗|.

28

Setup(1κ,R) :

α, β, γ, δ ← R∗, s← A∗, (pk, sk)← Gen(1κ)

crs =
(
pk, {E(si)}d−1

i=0 ,E(α),E(β), {E(βvk(s)+αwk(s)+yk(s)
γ

)}k∈Iio ,

{E(βvk(s)+αwk(s)+yk(s)
δ

)}k∈Imid , {E(s
it(s)
δ

)}d−1
i=0

)
vk = (sk, crs, s, γ, δ)
return (crs, vk)

Prove(crs, u, w)

u = (a1, . . . , a`), a0 = 1
w = (a`+1, . . . , am)
v(x) =

∑m
k=0 akvk(x)

vmid(x) =
∑
k∈Imid

akvk(x)

w(x) =
∑m
k=0 akwk(x)

wmid(x) =
∑
k∈Imid

akwk(x)

y(x) =
∑m
k=0 akyk(x)

ymid(x) =
∑
k∈Imid

akyk(x)

h(x) = (v(x)w(x)−y(x))
t(x)

fmid = βvmid(s)+αwmid(s)+ymid(s)
δ

A = E
(
α+ v(s)

)
B = E

(
β + w(s)

)
C = E(fmid + t(s)h(s)

δ
)

return π = (A,B,C)

Verify(vk, u, π)

π = (A,B,C)
A = E(Av)
B = E(Bw),
C = E(Cy)
vio(x) =

∑`
i=0 aivi(x)

wio(x) =
∑`
i=0 aiwi(x)

yio(x) =
∑`
i=0 aiyi(x)

fio = βvio(s)+αwio(s)+yio(s)
γ

F = E(fio)

Check on encodings
AB = E(α)E(β) + γF + δC

i.e.
AvBw = αβ + γfio + δCy

Fig. 3. RingSNARK Construction from Linear-only Encodings.

Proof. Completeness. Completeness of the SNARK protocol follows by QRP
completeness and by the (statistical) correctness of the Encode scheme.
Knowledge Soundness. We will show the existence of an extrator that on same
input and random coins as A can produce a valid witness whenever the prover
A outputs a valid proof. Let A be the PPT adversary in the game for knowledge
soundness (Definition 1) able to produce a proof π for which the verification
algorithm returns true. By linear-only extractable assumption 9 we can run
an extractor that gives us a vector of coefficients Aα, Aβ , Aγ , Aδ, {Ak}mk=0 and
polynomials A(x), Ah(x) of degree d − 1, d − 2 such that the value encoded in
the proof element A can be written as a linear combination of the initial values
encoded in the crs:

Av = Aαα+Aββ+Aγγ +A(s) +
∑̀
k=0

Ak
βvk(s) + αwk(s) + yk(s)

γ
+

+

m∑
k=`+1

Ak
βvk(s) + αwk(s) + yk(s)

δ
+Ah(s)

t(s)

δ
(10)

We can write out Bw and Cy in a similar fashion. We can see the verification
equation as an equality of multivariate Laurent polynomials. By Lemma 8, A has

29

negligible success probability unless the verification equation holds when viewing
Av, Bw and Cy as formal polynomials in indeterminates xα, xβ , xγ , xδ, xs.

Using the verification test equations and following the same reasoning as the
proof in [35] we eliminate coefficient by coefficient until we obtain:

A(x) =

m∑
k=0

akvk(x), B(x) =

m∑
k=0

akwk(x), C(x) =

m∑
k=0

akyk(x).

This implies that w = (a`+1, . . . , am) is a witness for u = (a1, . . . , a`).

7 SNARKs for Computation over Encrypted Data

In this section we detail how we can apply Rinocchio to the problem of verifi-
able computation over encrypted data. Our approach is generic, where we just
run a proving mechanism – the (zk-)SNARK – on pre-existing Homomorphic
Encryption (HE) schemes in a modular way. Taking advantage of our protocol
Rinocchio with zero-knowledge (see Section 5.3) this reduces to finding secure
encoding schemes over a ring that are compatible with the ciphertext space of
the underlying HE scheme.

In Section 7.1 we review some popular homomorphic encryption schemes that
are good candidates for realising our privacy-preserving VC scheme. Then, by
using a secure encoding scheme E as the ones we provide in Section 7.2, we can
invoke Theorem 3 to obtain a DV-SNARK for Rq, as explained in Section 7.3.

7.1 Homomorphic Encryption Schemes and their Parameters

The first fully homomorphic encryption schemes were based on the Learning
With Errors (LWE) problem [44], which is the main assumption behind schemes
with ciphertexts in the ring Zq such as [12]. Nevertheless, the most efficient HE
schemes are based on the Ring-LWE problem.

For the Ring-LWE-based schemes we will work with, the ring of plaintexts is
Rp = Zp[Y]/(f(Y)) and the ring of cyphertexts isR2

q, whereRq = Zq[Y]/(f(Y))
for some degree-N polynomial f(Y). This is usually picked to be a cyclotomic
polynomial, so that it factors into ` irreducible factors modulo p. More concretely,
f(Y) ≡

∏`
i=1 fi(Y) mod p, where each fi(Y) has degree φ(N)/`. By imposing

p ≡ 1 mod N , this creates ` “plaintext slots”, and hence a popular choice is
f(Y) = Y N + 1, where N is a power of two. In order to deal with the noise
growth that affects these schemes, q has to be chosen large (several hundreds of
bits) and the rank of the associated lattice, which corresponds to N , has to be
high enough to meet security requirements (usually between 210 and 215).

Frequently, q is chosen so that q =
∏k
i=1 pi. While this does not affect the

asymptotic complexity of operations on ciphertexts, it brings an important gain
in practice: The polynomials of Rq are represented as k polynomials of same
degree but with smaller coefficients, thanks to the ring isomorphism given by
the CRT. In many cases, these smaller primes fit native (64-bit) integer data

30

types, which speeds up computation and hence this representation is imple-
mented in the SEAL (https://github.com/Microsoft/SEAL), Lattigo (https:
//github.com/ldsec/lattigo) and PALISADE (https://palisade-crypto.
org/) libraries. Being able to efficiently deal with non-prime choices for q is
hence a significant advantage of our work, compared to prior results [28]. De-
pending on the choice of q and f(Y) in the underlying schemes, we have differ-

ent options for our exceptional sets. Generally speaking, if q =
∏k
i=1 pi, where

p ≤ p1 < p2 < . . . < pk and p comes from the plaintext space Rp, we can
always find the exceptional set A∗ = {1, 2, . . . , p1 − 1} ⊂ R∗. Hence, if p1 is big
enough we don’t need to worry about anything else. Otherwise, we can move to
an extension of the ciphertext ring or apply a parallel soundness amplification
strategy, as the one we discuss in Section 8.3.

Concrete Ring-LWE schemes. The HE schemes that we will consider for our
privacy-preserving VC are BV [14], BGV [13] and FV [26]. We are interested
in “somewhat homomorphic” variants of these schemes, where the parameters
are set just large enough so as to enable homomorphic evaluation of some target
function which will be represented as a QRP and hence fixed in Rinocchio’s crs.

In this setting, schemes like BGV [13] (and a variant of FV [26]) use so-called
modulo-switching. They require a chain of moduli q0 < · · · < qL to be able to
scale the noise down after each multiplication by switching the ciphertext to a
smaller modulus. When evaluating circuits with large multiplicative depth, one
needs to choose a large chain of moduli and thus use higher dimensions, resulting
in poor performance.

Scale invariant schemes allow to partially overcome this limitation by remov-
ing the need of the modulus-switching procedure, which potentially results in
the possibility of evaluating circuits with a bigger multiplicative depth. In his
seminal work [12], Brakerski introduced a new scale-invariant scheme based on
classical LWE where the noise grows only linearly during multiplication. This
more effective noise control mechanism makes the scale-invariant schemes par-
ticularly interesting. In [26], the scale-invariant scheme of [12] was adapted to
the Ring-LWE setting.

Each Ring-LWE scheme is best suited for different types of operations. BGV
[13] uses, in general, slow operations, but benefits from optimizations to treat
many bits at the same time, while FV [26] allows to perform large vectorial
arithmetic operations as long as the multiplicative depth of the evaluated circuit
remains small.

7.2 Secure Encodings for (Ring-)LWE ciphertexts

We introduce two different instantiations for the encoding scheme, one suitable
for the ciphertext ring Zq that appears in LWE-based HE and the other one for
a polynomial ring Rq, as in the ciphertext ring of Ring-LWE-based schemes.

Regev-style Encoding. Here, we consider the ring Zq as the input space of
the encoding (the ring R over which the QRP is defined). This matches the

31

https://github.com/Microsoft/SEAL
https://github.com/ldsec/lattigo
https://github.com/ldsec/lattigo
https://palisade-crypto.org/
https://palisade-crypto.org/

ciphertext ring of LWE-based HE schemes such as [12]. Note that Zq need not
be a field. In fact, a popular choice for q is a product of co-prime numbers
q =

∏
i qi with some extra conditions on qi’s as discussed in works as [44, 43].

The encoding E.Regev we consider over the ring Zq is the same as the one used
to construct lattice-based SNARGs and SNARKs in [32], a slight variation of
the classical LWE cryptosystem initially presented by Regev [44]. The encryption
scheme is described by parameters Γ ← (q,Q, n, α), with q,Q, n ∈ N such that
(q,Q) = 1, and 0 < α < 1. We will also consider χσ(S), the discrete Gaussian
distribution over a discrete set S with mean 0 and parameter σ.

Gen(1κ, Γ): Choose some random string s← ZnQ. Output sk = s.
Esk(m): Given m ∈ Zq, sample a ← ZnQ, define σ = Qα; e ← χσ(Zq). Output

C = (−a, a · s+ qe+m).
Dsk(C): Parse sk = s, C = (a0, c1) Compute m = (a0 · s+ c1) mod q.

On the suitability of the encoding. It is easy to see that this is a statistically-
correct encoding scheme. When encodings are added together and multiplied
by scalars, the noise starts to build up. Nevertheless, for any fixed ` there is
a choice of parameters Γ such that the encoding is `-linearly-homomorphic.
Consequently, in order to ensure that we obtain a valid encoding of the result,
we need to start with sufficiently small noise in each of the initial encodings.
A more detailed discussion about the noise growth and the choices for Γ can
be found in [9, 10, 32] that specifically address SNARK applications of this
encoding. The quadratic root detection and image verification properties can be
implemented using Dsk.

Security: Regarding security, this encoding scheme was already used and con-
jectured as linear-only and secure against generalized q-PDH assumption over
fields by prior works. Our generalized q-PDH assumption over rings extends this,
taking into account encodings over rings. The constructions in [9, 10] also employ
E.Regev to instantiate their SNARG(K) and this is assumed to be linear-only
extractable which, as we show in Section 4.2, is a stronger assumption than our
secure encoding, i.e. an encoding that satisfies both the Generalized q-PDH and
the Generalized Augmented q-PKE assumptions.

Extension to Ring-LWE. Our Regev-style encoding can be naturally extended
to an encoding over the ring Rq used in Ring-LWE based schemes by combining
N copies of the encoding above under the same key, similar to what we will do
in the Torus Encoding or in Section 8.1.

Torus Encoding. We will use a variant of the Torus FHE (TFHE) cryp-
tosystem from [21]. We let RR = R[Y]/(f(Y)), RZ = Z[Y]/(f(Y)) and Rq =
Zq[Y]/(f(Y)) denote the quotient rings with respect to some polynomial f(Y) =
Y N + 1, where m is an integer and N is a power of 2. We let T = R/Z be the
torus, which is a Z-module structure but not a ring.

32

We consider the RZ-module TR = RR/RZ. The plaintext for the TFHE
cryptosystem is the Z-module T = R/Z. Our encoding scheme E.Torus has Zq as
message space and will be used for encoding of elements in Rq = Zq[Y]/(f(Y)).
The key remark is that the ring Rq can be identified with a subgroup of the
torus TN via the map Rq ' ZNq that identifies q−1Z/Z ' Zq as an isomorphism

of Z-modules. Also, TN ' TR because TN can be seen as a vector of coefficients.
The module structure of the encoding space TN+1 allows us to conjecture that
E.Torus scheme only supports linear homomorphic operations.

Let B = {0, 1}. The encoding scheme E.Torus is described by parameters
Γ ← (q,N, α), with q,N ∈ N such that 0 < α < 1. The noise parameter α is
the standard deviation for a concentrated distribution on the torus (more details
can be found in [21]). Below, we describe the algorithms of the encoding:

Gen(1κ, Γ): Choose a random vector s ∈ BN . Output sk = s.
Esk(m): Given sk = s ∈ BN and m ∈ Zq, apply the map Zq ' q−1Z/Z to

m and get m′ ∈ T such that m′ ≡ m/q mod 1, sample a vector a ∈ TN
and compute b = s · a + m′ + e where e ∈ T is sampled according to a
noise distribution defined by the standard deviation α. Output encoding
C = (a, b).

Dsk(C): Parse sk = s, C = (a, b). Compute m” = b− a · s = m” + e. Round m”
to the nearest point m′ on the torus with respect to a distance function and
apply the equivalence q−1Z/Z ' Zq to recover m.

The ring-LWE variant of the torus encoding scheme E.Torusr works for message
space Rq as follows:

Gen(1κ, Γ): Choose a random polynomial s(Y) ∈ RZ with coefficients in {0, 1}.
Output sk = s(Y).

Esk(m): Given sk = s(Y) and m(Y) ∈ Rq ' ZNq , apply the map Zq ' q−1Z/Z to

each component of m(Y) and get m′(Y) ∈ TR ' TN , sample a polynomial
a(Y) ∈ TN and compute b(Y) = s(Y) ·a(Y)+m′+e(Y) where e(Y) ∈ TR is
sampled according to a noise distribution defined by the standard deviation
α.

Dsk(C): Parse sk = s(Y), C = (a(Y), b(Y)). Compute m”(Y) = b(Y) − a(Y) ·
s(Y) = m”(Y) + e(Y). Round coefficients of m”(Y) to the nearest ones on
the torus to obtain m′(Y) ∈ TR and apply the equivalence q−1Z/Z ' Zq to
recover m(Y) ∈ Rq.

On the suitability of the encoding. It is easy to see that this is a statistically-
correct encoding scheme and due to the linearly-homomorphic property of the
cryptosystem (see Appendix B for specific details), for a fixed `, there is a choice
of parameters Γ such that we have `-linearly-homomorphic. The quadratic root
detection and image verification properties can be implemented using Dsk.

Security: E.Torus is semantically secure under the TLWE assumption, a general-
ized intractability problem similar to LWE. Also, it is plausible that E.Torus only

33

permits linear homomorphisms, therefore we conjecture that this is a secure en-
coding, satisfying both q-PDH and q-PKE assumptions. A heuristic argument for
believing multiplication of two encoded values is impossible is the torus structure
of the encoding space, T is a Z-module and not a ring (i.e., the product of ele-
ments in T is not well defined), so there is no way for one to compute any missing
E(sq+1) to solve q-PDH. Of course, the original TFHE encryption scheme defined
in [21] overcomes this limitation: it consists of three major encryption/decryption
schemes (each represented by a different plaintext space) and makes use of tools
like key-switching, gate bootstrapping and gadget decomposition function to
perform computations other than additions. These operations are possible only
if some extra keys are available, for example some precomputed ciphertexts of
the binary secret key in the case of gate bootstrapping. Since we do not consider
all these extensions and we do not provide encodings of the secret key in the crs,
our encoding E.Torus is limited to basic linear operations.

7.3 (zk-)SNARKs for Ring-LWE-based homomorphic encryption

We can now instantiate Rinocchio as defined in Section 5. We pick the ring
Rq = Zq[Y]/(f(Y)), to match the ciphertext space of the Ring-LWE schemes
from Section 7.1. We next choose a secure encoding scheme E among the ones
in Section 7.2. Assuming that the evaluation algorithm of the underlying ho-
momorphic encryption scheme (e.g. [14]) does not involve modulus switching
or rounding operations, we directly obtain a Designated Verifier SNARK for
computation on encrypted data by invoking Theorem 3 for Rq.

We could choose schemes that employ modulus switching to deal with the
quadratic growth of the noise after a multiplication, such as BGV [13] and

FV [26]. In these schemes, there is a chain of moduli qi =
∏i
j=1 pi to suc-

cessively reduce to (from q to qk, from qk to qk−1 and so on) when noise builds
up, typically after every multiplication. An advantage of the fact that we can
work over Rq natively (rather than emulating its arithmetic) is that reducing
modulo a qi in the chain is simply a multiplication by a public constant, which
corresponds to (1, . . . , 1, 0, . . . , 0) in CRT representation6, where the amount of
non-zero elements in the vector is i. As multiplication by constants can be ba-
sically considered “for free” in SNARKs, this is a clear advantage of our work
compared with field-based counterparts which cannot work natively over Rq.
Nevertheless, BGV and FV are less friendly to Rinocchio than BV [14], since
relinearization requires some bit-wise and/or rounding operations which signifi-
cantly increase the number of constraints in the QRP. Furthermore, since these
operations happen before modular reduction, in order to work with BGV and
(the modulus-switching variant of) FV, Rinocchio would have to be instantiated
over a ring Rs where s > q2, rather than Rq. Whereas this is an additional over-
head, it does not deny the advantages of working with the CRT representation of

6 The final output ciphertext obtained by the verifier, after several of these modu-
lar reductions, has to be re-interpreted as an element of the adequate ring Rqj ,
considering only the first j elements of the vector (which are followed by zeroes).

34

ciphertexts and the ease to extract a witness from it, since we can pick s = P · q,
where P > q is a prime that “creates another slot”. We consider a very interest-
ing venue for a less foundational but more experimental work to determine what
would be overall more efficient for the prover: Having a more efficient SNARK
but using BV or using more state-of-the-art schemes such as BGV and FV at
an increased cost in terms of producing a witness and computing the SNARK.

Context hiding. Another challenge for our VC scheme is preserving privacy of the
inputs against the verifier. Such a property would turn useful in the following
two example scenarios. In the first one, the party holding the secret key for
HE and the verifier (who holds the secret key for the encoding) checking the
computation over the ciphertexts are different entities. In the second scenario,
the prover wants to compute on ciphertext from the verifier using some secret
coefficients (e.g. a Machine Learning model, or his own input in a two-party
computation scenario) that he wants to remain private.

The context hiding property roughly says that output encodings together
with input verification tokens do not reveal any information on the input. Note
that this is required to hold even against a party that is in possession of the
secret key for the encryption scheme. We can make our VC scheme context-
hiding using the same techniques as proposed in [28]. In the HE schemes we
propose, information about the underlying plaintexts may be inferred from the
distribution of the noise recovered during decryption of the result. To address
this, the strategy is to statistically hide the noise. In a nutshell, the trick is to
add to the public key some honestly generated encryptions of 0 and then ask
the prover to add these to the result of the computation.

7.4 Comparison with Prior Work

We compare our work with its most close counterpart for this specific application,
which is [28]. We remind that the result from [8] is not comparable to ours, since
it is not succinct for general circuits and turning it to a non-interactive variant
requires relying on random oracles and the Fiat-Shamir heuristic.

The advantage of choosing our SNARK for ring computation as a candidate
for the VC scheme is that it is compatible with a set of optimisations on the un-
derlying homomorphic encryption schemes, which leads to a total computational
overhead smaller than in prior works not only in terms of the Prove algorithm,
but also in the work required to obtained a suitable witness for it beyond a
non-verifiable evaluation of the desired function on the ciphertexts.

The work by Fiore et al. [28] relies on bilinear-group based primitives such
as commitments and SNARKs, and therefore imposes specific parameters to the
ciphertext space, the polynomial ringRq = Zq[Y]/(f(Y)), which are not optimal
for the relevant homomorphic schemes known today. Rinocchio supports generic
rings Rq with q =

∏L
i=1 qi for a chain of moduli {q1, . . . , qL} as in the state-of-art

leveled HE schemes, whereas [28] requires q to be a prime.
Another drawback of [28] comes from the trick of moving from ciphertexts

in Rq = Zq[Y]/(f(Y)) to scalars in Fq. This requires expensive computations

35

on large degree polynomials in Zq[Y]. The prover needs to carry all the cir-
cuit computations on the ciphertext polynomials without reduction modulo
f(Y) along the way (where f(Y) is the quotient polynomial that defines Rq =
Zq[Y]/(f(Y))). Even if this is not counted in the cost of proof generation, it is
an overhead for the worker performing the homomorphic evaluation of the HE
scheme. Since f(Y) has a large degree df in practice (usually between 211 to
215, see e.g. the analysis in [8] for BV and Appendix B.2 for BGV and FV),
this incurs on a very significant overhead just in obtaining the witness. For a
depth-D circuit, the Zq[Y] polynomials in the output layer can have a degree
m = 2D · (df − 1) and since polynomial multiplication has a complexity of at
least O(m logm), this is an overhead that very soon becomes prohibitive as D
increases (which moreover requires to quickly increase df too for the security of
the underlying HE scheme!).

In our work, such an overhead is not necessary, our techniques allow for the
worker/prover to use the existing HE schemes with their latest optimisations
for computations over ciphertexts. After the HE evaluation, the prover can use
the intermediate ciphertexts from the homomorphic evaluation of the circuit as
witness to our SNARK. We remark that these are all elements in the ring Rq as
opposed to large degree polynomials in Zq[Y] computed in Fiore et al. [28].

Even though they are costly, since they incur rounding operations, Rinocchio
also enables noise reduction operations such as relinearization in BGV [13] and
FV [26]. These are directly impossible in [28], since they homomorphically hash
ciphertexts to a single element of Fq (for a prime q) and rounding/bit-wise
operations are not preserved through the homomorphic hash function. While
there are lookup techniques [11, 29] that can be used to simulate non-arithmetic
operations like bit-decomposition, it is not clear how to use them directly in the
QAP/QRP setting like the one we use without a Random Oracle assumption.

A qualitative difference is that [28] is a commit-and-prove scheme; and has
the inherent drawback that it is limited by the choice of schemes which are
compatible with both the commitment scheme and the proof system. Our scheme
is an instantiation of a SNARK without combining two different proof systems.
We believe one could turn our scheme into a commit-and-prove SNARK along
the lines of [2] by “extracting” a suitable encoding to act as a commitment to the
input wire values from the SNARK. We leave working out the details to obtain
a concrete commit-and-prove scheme for ring computation to future work.

8 SNARKs for Computation over Z2k

We instantiate Rinocchio for the ring R being the Galois Ring GR(2k, δ). As R is
a free module over Z2k of rank δ, we can embed elements from Z2k into the first
coordinate of R. Hence, a QRP for arithmetic circuits over Z2k can be embedded
in a QRP for arithmetic circuits over R. We first discuss a suitable encoding
scheme for R = GR(2k, δ). Then, we provide a simple, direct instantiation of
Theorem 3 using said encoding, together with some QRP gadgets to perform
useful computations such as bit decomposition.

36

8.1 A secure encoding for GR(2k, δ)

We will use the Joye-Libert (JL) cryptosystem [5], which has Z2k as message
space, as building block for our encoding of Galois Ring elements.

KeyGen(1κ, k): According to the security parameter κ, choose two random primes
p, q satisfying the equivalences:

p ≡ 1 (mod 2k) and q ≡ 3 (mod 4).

For simplicity, pick p = 2kp′+ 1 and q = 2q′+ 1, where p′, q′ are primes. Let
g be a random generator of both Z∗p and Z∗q , N = p · q and µ = p′. We define
pk = (g, k,N) and sk = µ.

Encpk(m): Given m ∈ Z2k , sample x← Z∗N and output C = gm · x2k (mod N).
Decsk(C): Compute c = Cµ mod p and then retrieve m bit by bit as follows.

Observe that c = Cµ mod p = (gµ)m mod p, where gµ is an element of

order 2k in Z∗p. Let m =
∑k−1
j=0 2jmj , mj ∈ {0, 1}. We can compute its

least significant bit m0 by computing c2
k−1

mod p. Set m0 = 0 if c2
k−1

mod p = 1, and 1 otherwise. After computing mi−1, . . . ,m0, compute mi as
follows: Set mi = 0 if and only if(

c

(gµ(
∑i−1
j=0 2jmj))

)2k−i−1

= 1 mod p

Note that whereas the decryption cost is linear in k, there is empirical evi-
dence [18, Section 5] that it can be faster than more common encryption schemes
such as Paillier. The JL cryptosystem is secure under the assumption that k-
quadratic residuosity is hard [5]. It is linearly homomorphic over Z2k , and it has
already been employed in the context of efficient two-party computation over
Z2k (see [18] for concrete efficiency estimates).

Let R = GR(2k, δ). Given a ∈ R written in its additive form a = a0 +a1X +
. . .+ aδ−1X

δ−1 (see Equation (1)), we define our encoding E.JL as follows:

– (pk, sk) ← Gen(1κ) calls KeyGen(1κ, k) in the JL cryptosystem and outputs
(pk, sk).

– ZN1
× . . .×ZNδ ← E.JLpk(a) is a probabilistic encoding algorithm mapping a

ring element a ∈ R to an encoding space Z = ZN1 × . . .×ZNδ such that the
sets {{E.JL(a)} : a ∈ R} partition Z, where {E.JL(a)} is the set of encodings
of a. Concretely:

E.JL(a) =
(
Encpk(a0), . . . ,Encpk(ad−1)

)
On the suitability of the encoding. The scheme E.JL clearly satisfies all non-
security properties required from an encoding. Under the security assumptions
of the JL scheme, it is also reasonable to assume that q-PDH (and q-PKE) hold
for the encoding scheme too, where A has a success probability negligible in
d. This dependence on d is intrinsic to the arithmetic in R, as A can simply

37

output (a, y) = (2k−1,E.JL(
∑d−1
`=0 s`,0 · X`)), where s`,0 are A’s guesses for the

least significant bit of each s` ∈ Z2k that conform the additive representation of
s. In [18], the authors show that an Enhanced-CPA security notion cannot be
supported by the JL cyptosystem (or an other additively homomorphic encryp-
tion scheme over Z2k). This is not an issue in our construction, since such notion
requires interaction with an oracle which the Adversary does not have access to
in our construction, since we do not aim to provide strong soundness (see also
the remarks at the end of Section 2.1).

8.2 A simple construction

We can instantiate the protocol defined in Section 5.1 for R = GR(2k, δ). It
follows from inspection that, representing elements of R in their additive nota-
tion, A = {ai ∈ R : ai =

∑δ−1
j=0 ai,j · Xj , ai,j ∈ {0, 1}} is an exceptional set in

canonical form. Let C be a circuit with d multiplication gates and define A∗

as described in Section 5.1. Then, using the secure encoding scheme E.JL from
Section 8.1, we can invoke Theorem 3 to obtain a DV-SNARK for R ⊃ Z2k with
a soundness error of |A∗|−1 = (2δ − d)−1.
Efficiency considerations. While in this construction δ is logarithmic in the de-
sired soundness error, we emphasize that our QRP does not suffer from the
overhead of adding roughly k multiplication gates whenever a modular reduc-
tion x mod 2k has to be computed, as it would happen if the circuit was to be
run by a SNARK over fields (see our discussion in Section 1.1). Hence, avoiding
this and using Rinocchio allows us not blow-up the degree of the QRP, which was
an efficiency bottleneck in e.g. [42]. We would further like to note that FFT-style
techniques can be applied to Galois Rings [17] and that the price of working with
circuits over GR(2k, δ), rather than Z2k , has the potential to be amortized, as it
has happened in the context of Multi-Party Computation protocols which faced
similar limitations (c.f. [1, 25]).

In Appendix A.3 we show how to build QRPs for bit decomposition, which
is useful for practical bit-wise operations such as comparisons. Next, we outline
a soundness amplification technique. We discuss efficiency considerations of this
construction in Section 8.4.

8.3 Soundness Amplification

Despite the previous arguments, there is a concern as to what is the practical
impact of the extension degree δ in the previous construction. We believe that
this is an interesting question to explore in experimental work, for which we
provide one more strategy here. Whereas it would seem that we cannot escape
from δ being logarithmically proportional to the soundness error, we it is good
enough to apply a parallel repetition strategy as we next describe.

Let d be the number of multiplication gates in the QRP Q. If we choose
δ ∈ O(log(d)) and work over R = GR(2k, δ), the soundness error for a single
execution of Rinocchio over R is of |A∗| = |A| − |AQ| = 2δ − d. Let us analyze
the soundness error for r independent instances of Rinocchio over R for the same

38

QRP (that is, r different crs from r independent Setup executions), for each of
which the prover computes the Prove step from the (common) QRP witness.
Now, the verifier only accepts if all the r proofs pass verification, yielding a
soundness error of |A∗|−r = (2δ−d)−r. The previous analysis considers that the
adversary does not break q-PDH. Since A has a bigger advantage (of 2q/|A∗|)
in breaking that assumption, it would be its best attack strategy. Still, A would
need to break all the q-PDH instances, which only has a success probability of
(2q/|A∗|)r. Recall that q = 4d+4. If we pick δ = log(17d), then the best cheating
strategy has a success probability of roughly 2−r.

Working over R = GR(2k, δ) rather than R̃ = GR(2k, S) improves the com-
putational efficiency without greatly affecting the total proof or crs sizes. This
is due to the fact that the size of each value in R encoded using E.JL is reduced
by a multiplicative factor of δ/S compared with R̃. Overall, and since we re-
peat r times the Rinocchio protocol over R, this results on a total proof and crs
size which is rδ/S times the ones that would result from a single execution of
Rinocchio over R̃.

8.4 Efficiency and Similar Instantiations

A natural question is whether the Rinocchio instantiation from Section 8 will
beat a QAP over a field, where reduction modulo k is computed after every
multiplication gate by using bit decomposition. We would like to emphasize that
asymptotic comparison of costs to other approaches is fairly complex. We discuss
some of the issues below for the case of computing with the integers modulo 2k.
In this instantiation, the degree of the extension affects the complexity of the
Prover, CRS size and the Verifier’s complexity. This is in the same way as in
pairing-based SNARKs, where the typical matching finite field has to be big
enough (and meet other security requirements which rule out e.g. characteristic
2 fields) for soundness. Usually, a 254-bit prime field is chosen.

– Our soundness amplification techniques (Sec 8.3) describe how to make the
extension degree logarithmic in the QRP size, rather than logarithmic in
the soundness error, for the particular case of the integers modulo 2k. The
strategy easily generalizes to other rings. This is in contrast to pairing-based
SNARKs where no similar strategies are known.

– When using a QAP to emulate ring arithmetic, addition gates are no longer
for free; in contrast to QRPs with free ring additions. This is due to the fact
that, in the QAP-based approach, a modular reduction might be necessary
after adding two numbers. Hence, the blowup in the QAP degree of the näıve
baseline needs to take addition gates into consideration as well.

– Besides having to take addition gates into account too, the cost of bit de-
composition in a QAP over a field F is not exactly k gates, but one of the
following:

• If there is no enforced upper bound on the value that has to be decom-
posed (which always happens if inputs are not known and proven to be

39

upper bounded), the cost of bit decomposition is log2(F) + 1 multiplica-
tion gates. Since the typical bit size of F is 254 bits for secure and efficient
pairings, this means approximately 255 gates per bit decomposition.

• If the values are provably bounded, the above can be reduced to logarith-
mic in the maximum value attainable in the wire, e.g. 2k for the result of
multiplying two k-bit numbers or k+ 1 for the result of adding them. In
order to provably bound values in the circuit, when some inputs are pro-
vided in ZK, this would require enforcing the bound by providing them
bit-by-bit and ensuring that they are indeed bits (i.e. computing x(1−x)
for every alleged bit and checking it equals zero, plus reconstructing the
bits into a single value: k+ 1 gates for a k-bit value). Hence, there is an
additive overhead depending on the number of ZK-inputs if opting for
this approach.

– On the plus side for QAPs, modular reduction is not needed after every oper-
ation as long as the value on every wire can be upper-bounded. Nevertheless,
optimizing the compilation of a QAP so as to reduce the cost of modular
reductions is a non-trivial problem for which practitioners have turned to
heuristics [38] (see discussion in Sec 1.1). The Rinocchio approach, on the
other hand, requires only black-box access to the underlying ring operations
and removes the need for any compilation step.

These issues are specific to the instantiation of computing with the integers
modulo 2k when k < F/2, i.e. k < 122 for the typical field choice. For larger
values of k, there are additional problems for QAP-based SNARKs over the
typical field choices. For instance, the integers modulo a composite N , there is
already an exceptional set of size as big as the smallest prime factor of N , which
reduces the impact of this efficiency concern. Furthermore, if the prover and/or
the verifier know the factorization of N , they can benefit from using a CRT
representation of data during the execution of their respective Prove and Verify
algorithms, which is more efficient in practice and incompatible with having to
emulate the arithmetic of ZN within a field.

References

1. Mark Abspoel, Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, and Chen Yuan.
Efficient information-theoretic secure multiparty computation over Z/pkZ via ga-
lois rings. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume
11891 of LNCS, pages 471–501. Springer, Heidelberg, December 2019.

2. Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-interactive zero-
knowledge proofs for composite statements. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 643–
673. Springer, Heidelberg, August 2018.

3. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. SNARKs for C: Verifying program executions succinctly and in zero knowl-
edge. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 90–108. Springer, Heidelberg, August 2013.

40

4. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct
non-interactive zero knowledge for a von neumann architecture. In Kevin Fu and
Jaeyeon Jung, editors, USENIX Security 2014, pages 781–796. USENIX Associa-
tion, August 2014.

5. Fabrice Benhamouda, Javier Herranz, Marc Joye, and Benôıt Libert. Efficient
cryptosystems from 2k-th power residue symbols. Journal of Cryptology, 30(2):519–
549, April 2017.

6. Anurag Bishnoi, Pete L Clark, Aditya Potukuchi, and John R Schmitt. On zeros of
a polynomial in a finite grid. Combinatorics, Probability and Computing, 27(3):310–
333, 2018.

7. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai,
editor, TCC 2013, volume 7785 of LNCS, pages 315–333. Springer, Heidelberg,
March 2013.

8. Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. Flexible and ef-
ficient verifiable computation on encrypted data. In Juan Garay, editor, PKC 2021,
Part II, volume 12711 of LNCS, pages 528–558. Springer, Heidelberg, May 2021.

9. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs
and their application to more efficient obfuscation. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS,
pages 247–277. Springer, Heidelberg, April / May 2017.

10. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs
via linear multi-prover interactive proofs. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 222–
255. Springer, Heidelberg, April / May 2018.

11. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller.
Arya: Nearly linear-time zero-knowledge proofs for correct program execution. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part I, volume
11272 of LNCS, pages 595–626. Springer, Heidelberg, December 2018.

12. Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer, Heidelberg, Au-
gust 2012.

13. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS
2012, pages 309–325. ACM, January 2012.

14. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 505–524. Springer, Heidelberg, Au-
gust 2011.

15. Benjamin Braun, Ariel J Feldman, Zuocheng Ren, Srinath Setty, Andrew J Blum-
berg, and Michael Walfish. Verifying computations with state. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pages
341–357, 2013.

16. Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modular design
and composition of succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2075–
2092. ACM Press, November 2019.

17. David G Cantor and Erich Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Informatica, 28(7):693–701, 1991.

41

18. Dario Catalano, Mario Di Raimondo, Dario Fiore, and Irene Giacomelli. Monza:
Fast maliciously secure two party computation on Z2k . Cryptology ePrint Archive,
Report 2019/211, 2019. https://eprint.iacr.org/2019/211.

19. Shuo Chen, Jung Hee Cheon, Dongwoo Kim, and Daejun Park. Verifiable comput-
ing for approximate computation. Cryptology ePrint Archive, Report 2019/762,
2019. https://eprint.iacr.org/2019/762.

20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable
SRS. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

21. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE:
Fast fully homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–
91, January 2020.

22. Kai-Min Chung, Yael Kalai, and Salil P. Vadhan. Improved delegation of compu-
tation using fully homomorphic encryption. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 483–501. Springer, Heidelberg, August 2010.

23. Anamaria Costache, Kim Laine, and Rachel Player. Evaluating the effectiveness
of heuristic worst-case noise analysis in FHE. In Liqun Chen, Ninghui Li, Kaitai
Liang, and Steve A. Schneider, editors, ESORICS 2020, Part II, volume 12309 of
LNCS, pages 546–565. Springer, Heidelberg, September 2020.

24. Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable
computation. In 2015 IEEE Symposium on Security and Privacy, pages 253–270.
IEEE, 2015.

25. Anders P. K. Dalskov, Eysa Lee, and Eduardo Soria-Vazquez. Circuit amortization
friendly encodingsand their application to statistically secure multiparty computa-
tion. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III,
volume 12493 of LNCS, pages 213–243. Springer, Heidelberg, December 2020.

26. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

27. Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable computa-
tion on encrypted data. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors,
ACM CCS 2014, pages 844–855. ACM Press, November 2014.

28. Dario Fiore, Anca Nitulescu, and David Pointcheval. Boosting verifiable compu-
tation on encrypted data. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 124–
154. Springer, Heidelberg, May 2020.

29. Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial
protocol for lookup tables. Cryptology ePrint Archive, Report 2020/315, 2020.
https://ia.cr/2020/315.

30. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer, Heidelberg, Au-
gust 2010.

31. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–
645. Springer, Heidelberg, May 2013.

32. Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. Lattice-
based zk-SNARKs from square span programs. In David Lie, Mohammad Mannan,

42

https://eprint.iacr.org/2019/211
https://eprint.iacr.org/2019/762
https://ia.cr/2020/315

Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 556–573.
ACM Press, October 2018.

33. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating compu-
tation: interactive proofs for muggles. In Richard E. Ladner and Cynthia Dwork,
editors, 40th ACM STOC, pages 113–122. ACM Press, May 2008.

34. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Heidelberg, December 2010.

35. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

36. Yuval Ishai, Hang Su, and David J. Wu. Shorter and faster post-quantum
designated-verifier zkSNARKs from lattices. In Giovanni Vigna and Elaine Shi,
editors, ACM CCS 2021, pages 212–234. ACM Press, November 2021.

37. Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mah-
moud F. Sayed, Elaine Shi, and Nikos Triandopoulos. TRUESET: Faster verifiable
set computations. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014,
pages 765–780. USENIX Association, August 2014.

38. Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark: A frame-
work for efficient verifiable computation. In 2018 IEEE Symposium on Security
and Privacy, pages 944–961. IEEE Computer Society Press, May 2018.

39. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive
zero-knowledge arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of
LNCS, pages 169–189. Springer, Heidelberg, March 2012.

40. Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span
programs and linear error-correcting codes. In Kazue Sako and Palash Sarkar,
editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 41–60. Springer,
Heidelberg, December 2013.

41. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press, November 2019.

42. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In 2013 IEEE Symposium on Security and Pri-
vacy, pages 238–252. IEEE Computer Society Press, May 2013.

43. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages
333–342. ACM Press, May / June 2009.

44. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages
84–93. ACM Press, May 2005.

45. Zhe-Xian Wan. Lectures on finite fields and Galois rings. World Scientific Pub-
lishing Company, 2003.

43

A QRP: Abstraction, Composition and Circuit
Representation

We begin by recalling the definition of a QRP, after which we follow with all the
results about QRP composition and circuit representation.

Definition 10 (Quadratic Ring Programs (QRP)). A Quadratic Ring Pro-
gram (QRP) Q over a finite commutative ring R consists of three sets of poly-
nomials, V = {vk(x) : k ∈ [0,m]},W = {wk(x) : k ∈ [0,m]},Y = {yk(x) : k ∈
[0,m]} and a target polynomial t(x), all in R[x]. Let C be an arithmetic circuit
over R with n inputs and n′ outputs. We say that Q is a QRP that computes C
if the following holds:

a1, . . . , an, am−n′+1, . . . am ∈ Rn+n
′

is a valid assignment to the input/output
variables of C if and only if there exist an+1, . . . , am−n′ ∈ Rm−n−n

′
such that:

t(x) divides V (x) ·W (x)− Y (x),

where V (x) =
(
v0(x)+

∑m
k=1 ak ·vk(x)

)
, W (x) =

(
w0(x)+

∑m
k=1 ak ·wk(x)

)
and

Y (x) =
(
y0(x) +

∑m
k=1 ak · yk(x)

)
.

We define the size and degree of Q to be m and deg(t(x)) respectively. Given
polynomials V (x),W (x), Y (x) ∈ R[x] defined as above and corresponding to a
valid assignment of the input/output wires, we will call them a QRP solution.

Theorem 6. Let C be a circuit over the ring R containing only one multiplica-
tion gate. If C has m− 1 inputs and a single output, there is a QRP of size m
and degree 1 that computes C.

Proof. Let t(x) = x−r, r ∈ A, whereA is the exceptional set. Define ρ1(X1, . . . , Xm−1) =

c0 +
∑m−1
i=1 ci ·Xi (resp. ρ2(X1, . . . , Xm−1) = d0 +

∑m−1
i=1 di ·Xi) to be the linear

polynomial corresponding to the left (resp. right) input wire of the only multi-
plication gate in C. For k ∈ {0, . . . ,m − 1}, let vk(x) = ck, wk(x) = dk, and
yk(x) = 0. Set vm(x) = wm(x) = 0 and ym(x) = 1. Then we have that:

(
v0(x) +

m∑
k=1

ak · vk(x)
)
·
(
w0(x) +

m∑
k=1

ak · wk(x)
)
−
(
y0(x) +

m∑
k=1

ak · yk(x)
)

= ρ1(a1, . . . , am−1) · ρ2(a1, . . . , am−1)− am = p(x)

We prove that this is a QRP for C. First assume that a1, . . . , am ∈ Rm is a valid
assignment to the input/output of C. Then p(x) = 0, which is trivially divisible
by t(x). Conversely, assume that the degree-zero polynomial p(x) is divisible by
the degree-one t(x). As r is a root of t(x), then so it has to be of p(x), which
implies p(x) = 0.

A.1 QRP as an Abstraction

Here, we highlight the generality of our notion of QRP and our construction
by outlining how our notion recovers the QPP based construction of [37] for
polynomial circuits.

44

In [37], Kosba et al. generalize the notion of Quadratic Arithmetic Programs
over a field F to that of Quadratic Polynomial Programs (QPPs), which compute
circuits whose wires carry values in the ring F[Z] of polynomials over the base
field F. These polynomial circuits, where the addition and multiplication oper-
ations are over F[Z], are introduced with the goal of representing (multi-)sets
S of elements over F. Our definition of QRPs and SNARK construction, being
more general than those of [37], also covers their work and allows us to see it as
an instantiation of Rinocchio for R = F[Z].

In [37], we have that A = F ⊂ R, i.e. the degree-zero polynomials, and A∗ =
F∗. The polynomials vk, wk, zk ∈ R[X] = F[Z][X] can be made univariate in X
by imposing that the coefficients of public linear combinations in the arithmetic
circuit over R are all field elements, rather than elements of R = F[Z], which
is also the approach taken in [37]. The secure encoding E : R → S consists in,
given ck(z) ∈ R, producing Ẽ(ck(t)) = gck(t) for some fixed, secret t ∈ F and
where Ẽ : F → S is the same encoding used for QAPs over finite fields, e.g., in
Pinocchio.

To cast the construction of [37] in our framework, consider the following
encoding E : F→ S to encode the QRP polynomials in the CRS: E(s) = {Ẽ(ti ·
s)}ni=1, where n is determined by the degree of the polynomials on the wires
of the computation circuit. When Ẽ is exponentiation in a bilinear group, the
encoding E satisfies additive homomorphism and the resulting SNARK achieves
public verifiability. The central idea is that even though one has to encode “wire
values”, which in this case are polynomials and therefore, ring elements, the
polynomials can be mapped to an evaluation instead, resulting in a field element
which is subsequently encoded during the computation of the proof by the prover.
The encoding E is designed to allow the prover to compute this encoding where
the evaluation point is the secret t. At a high level, the encoding and the CRS
crafted this way means that the secret point of evaluation of the wire polynomials
is t, the secret point of evaluation for the QRP polynomials is s, and the prover
can compute the correct encodings of the SNARK proof given the encodings in
the CRS.

We sketch how the SNARK construction via QPP is a special case of our
construction via QRP below.

QPP as an instantiation of QRP. The following definition is recovered by Def-
inition 7, where R = Fp[Z], A = Fp ⊂ R, i.e. the degree-zero polynomials, and
A∗ = F∗p. The bivariate polynomial p(x, z) accounts for the wire values them-
selves being polynomials.

Definition A1 (Quadratic Polynomial Program (QPP) [37]) A QPP Q
consists of three sets of polynomials, V = {vk(x)},W = {wk(x)},Y = {yk(x)}
and a target polynomial t(x). Let C be a polynomial circuit. We say that Q
computes C if the following holds:

a1(z), . . . , an(z), am−n′+1(z), . . . am(z) is a valid assignment to the input/output
variables of C if and only if there exist polynomials an+1(z), . . . , am−n′(z) such
that t(x) divides p(x, z), where

45

p(x, z) =
(∑m

k=1 ak(z) · vk(x)
)
·
(∑m

k=1 ak(z) · wk(x)
)
−
(∑m

k=1 ak(z) · yk(x)
)

The degree of Q is said to be deg(t(x)).

A.2 Composing QRPs

Our definition of QRPs and the construction of QRP above, allow for their
composition exactly as in the field case [31]. In the following, we use the symbol
◦ both for circuit and QRP composition. Note that the composition theorem
below holds for the particular QRP construction of Theorem 6, and we make no
claims about other constructions that satisfy the QRP definition. In particular,
we are careful to pick all the roots of the target polynomials to belong to the
same exceptional set A.

For i ∈ {1, 2}, let Qi be a QRP computing an arithmetic circuit fi. Let Ii be
the set of indices representing all wires in fi and allow I1 ∩I2 to ‘stitch’ up to `
output wires of I1 to the inputs of I2. Denote such stitched circuit as C = C2◦C1.

Express Qi as V(i) = {v(i)k (x) : k ∈ Ii},W(i) = {w(i)
k (x) : k ∈ Ii},Y(i) =

{y(i)k (x) : k ∈ Ii} and target polynomial t(i)(x). Then, let Q = Q2 ◦Q1 consists
of V = {vk(x) : k ∈ I1∪I2},W = {wk(x) : k ∈ I1∪I2},Y = {yk(x) : k ∈ I1∪I2}
and a target polynomial t(x) which are constructed as follows.

First, define t(x) = t(1)(x) · t(2)(x). Second, for all indices k̃ ∈ I2 \ I1, extend

the definition of the wire polynomials in Q1 as v
(1)

k̃
(x) = w

(1)

k̃
(x) = y

(1)

k̃
(x) = 0.

Proceed analogously for Q2 and k̂ ∈ I1 \ I2. For all k ∈ I1 ∪ I2 and i ∈ {1, 2},
we can now set vk(x) ≡ v

(i)
k (x) mod t(i)(x), wk(x) ≡ w

(i)
k (x) mod t(i)(x) and

yk(x) ≡ y(i)k (x) mod t(i)(x). Such modular equivalences can be satisfied as long
as the target polynomials have no common roots, as we show in the following
lemma.

Lemma 9. Let t(1)(x), t(2)(x) ∈ R[x] be two polynomials which have roots only
on the same exceptional set A ⊂ R and such that they have no common roots. Let
I1 = (t(1)(x)), I2 = (t(2)(x)) and I = I1 · I2. Then R[x]/I

∼−→ R[x]/I1×R[x]/I2.

Proof. For i ∈ {1, 2}, let t(i)(x) =
∏di
ji=1(x−r(i)ji). Define ideals Ii,ji = (x−r(i)ji),

where 1 ≤ ji ≤ di. Define S = {Ii,ji : 1 ≤ i ≤ 2, 1 ≤ ji ≤ di}. All the ideals in S

are pairwise coprime. To see that, take any K, K̃ ∈ S and re-denote for simplicity
K = (x−k), K̃ = (x−k̃). As k−x ∈ K, we have that k−k̃ = k−x+x−k̃ ∈ K+K̃.
Hence, as k, k̃ are two different elements from the same exceptional set A ⊂ R,
we have that k − k̃ is a unit and so K + K̃ = R[x].

Given the above, we can apply the CRT (Theorem 2) three times and con-
clude that

R[x]/I1 ×R[x]/I2
∼−→ (

d1∏
j1=1

R[x]/I1,j1)× (

d2∏
j2=1

R[x]/I2,j2)
∼−→ R[x]/I.

We prove that the above construction for Q = Q2 ◦ Q1 indeed computes
C = C2 ◦ C1.

46

Theorem 7. Let C1 and C2 be two arithmetic circuits computed by QRPs Q1

and Q2. Assume the target polynomials of both QRPs have roots only on the
same exceptional set A ⊂ R, but no common roots. Allow also some of the input
variables of C2 to include some ` output variables from C1, but let no other kind
of overlapping between the arithmetic circuits be possible. Denote by C = C2 ◦C1

the circuit obtained by stitching C1 and C2 together at those ` wires.
There exists a QRP Q with size |Q| = |Q1|+|Q2|−` and deg(Q) = deg(Q1)+

deg(Q2) that computes C. Q’s target polynomial is the product of the target
polynomials for Q1 and Q2.

Proof. Let Ii/o, I1,i/o, I2,i/o be the indices of the input/output wires of C,C1 and
C2, respectively. Suppose ai/o = {ak ∈ Ii/o} is a valid input/output assignment
for C. By definition, such input/output assignment can be extended to a valid
assignment to all wires of C and hence in particular we can extend ai/o to a valid
assignment ã = {ak ∈ I1,i/o ∪I2,i/o}. Since Q1 is a QRP, there exist coefficients
b = {bk : k ∈ I1} which are consistent with the valid assignment to I1,i/o and
such that the polynomial

p(1)(x) =
(
v
(1)
0 (x) +

∑
k∈I1

bk · v(1)k (x)
)
·
(
w

(1)
0 (x) +

∑
k∈I1

bk · w(1)
k (x)

)
−
(
y
(1)
0 (x) +

∑
k∈I1

bk · y(1)k (x)
)

is a multiple of t(1)(x). The same reasoning can be applied toQ2, for a polynomial
p(2)(x) defined from coefficients c = {ck : k ∈ I2} which must exist by the fact
that Q2 is a QRP. By construction, b and c must be consistent for the indices in
I1 ∩I2, as those are contained in both I1,i/o and I2,i/o, which were fixed by the
extended assignment ã. Therefore, we can define a = {ak ∈ I1 ∪ I2} as ak = bk
for all bk ∈ I1 and ak = ck for all ck ∈ I2. Let

p(x) =
(
v0(x) +

∑
k∈I1∪I2

ak · vk(x)
)
·
(
w0(x) +

∑
k∈I1∪I2

ak · wk(x)
)

−
(
y0(x) +

∑
k∈I1∪I2

ak · yk(x)
)

where vk(x), wk(x) and yk(x) are defined from v
(i)
k (x), w

(i)
k (x) and y

(i)
k (x), i ∈

{1, 2}, as described above (note the hypothesis of Lemma 9 are satisfied). We

show that t(x) divides p(x). Since vk(x) = v
(1)
k (x) mod t(1)(x), wk(x) ≡ w(1)

k (x)

mod t(1)(x) and yk(x) ≡ y(1)k (x) mod t(1)(x) for all k, and since vk̃(x) = wk̃(x) =

yk̃(x) ≡ 0 mod t(1)(x) for all k̃ ∈ I2 \ I1, we conclude that t(1)(x) divides p(x).
Applying analogous reasoning, we can deduce that t(2)(x) divides p(x) and, thus,
t(x) = t(1)(x) · t(2)(x) divides p(x)

Conversely, let p(x) be defined from the polynomial sets V,W and Y as
above and such that t(x) divides p(x). We show that any set of coefficients a
enabling such divisibility contains a valid assignment ai/o = {ak ∈ Ii/o} to

47

the input/output wires of C. As p(x) ≡ 0 mod t(x), by Lemma 9, p(x) ≡ 0
mod t(i)(x) for i ∈ {1, 2}. Since Q1 and Q2 are QRPs, it follows that a must
then contain valid assignment to the input/output wires of C1 and C2. As Ii/o ⊆
I1,i/o ∪ I2,i/o, we have found a valid assignment ai/o to the input/output wires
of C.

Finally, we conclude by showing how to build a QRP for any arithmetic
circuit by using the previous results from this section.

Theorem 8. Let C be an arithmetic circuit with n inputs in (a subring of) R
and s < |A| multiplication gates, each with fan-in 2. If each output wire of C is
the output of a multiplication gate, there is a QRP with size n+ s and degree s
that computes C.

Proof. We obtain this result by combining Theorem 6 and Theorem 7, one mul-
tiplication gate at a time. As long as s < |A|, we can ensure that the target
polynomials of the QRPs for each multiplication gate do not have common roots,
so that Theorem 7 can be invoked.

There is only one small task remaining. Let C be a circuit with ñ ≥ 1 output
wires which are not the output of multiplication gates. Our last result does not
teach us how to deal with C, but we can build a modified circuit C̃ for which the
hypothesis of Theorem 8 are satisfied. As in [31], C̃ has one additional ‘dummy’
input wire, which is required to be always assigned to the multiplicative identity
1. Furthermore, C̃ has a ñ additional multiplication gates: For each of them, the
left gate-input wire is the ‘dummy’ circuit-input wire and the right gate-input
wire is one of the circuit-output wires which did not satisfy the hypothesis of
Theorem 8. It follows that the QRP of size n+ s+ ñ+ 1 and degree s+ ñ that
computes C̃ also computes the original C.

Given a circuit C, we can construct a QRP for C using the composition the-
orem above. We can also construct a QRP directly for the given circuit without
relying on composition. Let C be a circuit whose gates have fan-in two and fan-
out one. To build a QRP, we will make use of a exceptional set A as follows.
In order to define the target polynomial, we will pick elements rg ∈ A for each
multiplication gate g ∈ C and define t(x) =

∏
g∈C(x− rg). We define the poly-

nomials vk(x), wk(x) and yk(x) by interpolating over those same points in the
same way one proceeds in the QAP case [42]. As an example for this procedure,
see Figure 4.

A.3 Some useful QRPs

While the QRP construction described in Section 3 would allow us to easily
describe arithmetic circuits over e.g. Z2k or the rings Rq used for homomorphic
encryption, in practical scenarios one is also interested in performing bit-wise
operations such as comparisons, for which we provide a bit decomposition gate.

48

output

×

+

a1 a2

×

a3 a4

a5

a6

Roots Polynomials in QRP (V,W,Y, t(x))

Gates Left inputs Right inputs Outputs

v3(r5) = 1 w4(r5) = 1 y5(r5) = 1

r5 vk(r5) = 0, wk(r5) = 0, yk(r5) = 0,

k 6= 3 k 6= 4 k 6= 5

v1(r6) = v2(r6) = 1 w5(r6) = 1 y6(r6) = 1

r6 vk(r6) = 0, wk(r6) = 0, yk(r6) = 0,

k 6= 1, 2 k 6= 5 k 6= 6

Fig. 4. Arithmetic circuit and equivalent QRP. The polynomials V = {vk(x) : k ∈ [6]},
W = {wk(x) : k ∈ [6]},Y = {yk(x) : k ∈ [6]} and the target polynomial t(x) =
(x−r5)(x−r6) are defined in terms of their evaluations at two random points belonging
to the same exceptional set (r5, r6 ∈ A), one for each multiplicative gate.

Bit Decomposition Gate We show how to build a QRP which, given an input
a ∈ R, gives as an output wires holding values ai ∈ {0, 1} which correspond
to the ‘binary representation’ of a. Our following description is specialized for
R = GR(2k, d), but it can be easily adapted to other rings such as those employed
in Section 7.1.

We provide two different versions of this gate. For the first one, nothing is
known about a, whereas in the second case, better efficiency is achieved by as-
suming that a ∈ Z2k . When interested in computation over Z2k only, the former
version of the gate where potentially a /∈ Z2k is necessary only if the prover is
providing some inputs to the QRP in a zero-knowledge way. Nevertheless, once
the inputs from the prover have been asserted to be elements of Z2k , one can
use the more efficient Z2k -splitter gate during the rest of the circuit. The provers
inputs can be tested to be from Z2k either by inspection when those are pro-
vided in the clear, or when they are provided in ZK, by e.g. applying the general
R-splitter gate to them and outputting to the verifier all the wires that should
be always equal to zero in a ‘binary representation’ of an element in Z2k ⊂ R.
Let A ⊂ R be the exceptional set.

1. Z2k -splitter gate: This mini-QRP has one input wire, holding a ∈ Z2k , and
k output wires holding a1, . . . , ak ∈ {0, 1} such that a =

∑k
i=1 2i−1ai. Label

the input wires as 1, . . . , k and the output wire as k + 1. Let t(x) = (x −
r)
∏k
i=1(x−ri), where r, r1, . . . , rk ∈ A are pairwise different. In an approach

similiar to Pinocchio [42], we set:

49

v0(r) = 0, vi(r) = 2i−1, for 1 ≤ i ≤ k, vk+1(r) = 0,

w0(r) = 1, wi(r) = 0, for 1 ≤ i ≤ k,wk+1(r) = 0,

y0(r) = 0, yi(r) = 0, for 1 ≤ i ≤ k, yk+1(r) = 1

For 1 ≤ j ≤ k:

vj(rj) = 1, vi(rj) = 0 for all i 6= j,

w0(rj) = 1, wj(rj) = −1, wi(rj) = 0 for all i 6= 0, j,

yi(rj) = 0 for all i

If (v0(x) +
∑
akvk(x))·(w0(x) +

∑
akwk(x))−(y0(x) +

∑
akyk(x)) is divisi-

ble by t(x), then it must be 0 at r, and therefore, by the first set of equations,

this gives, a =
∑k
i=1 2i−1ai. The second set of equations guarantee that each

rj is a root, which implies, aj(1 − aj) = 0. Since all the zero divisors of R
belong to the maximal ideal (2), it follows that if aj is a zero divisor then
aj ± 1 is not, and thence the only solutions for the previous equation are
aj ∈ {0, 1}. Together, these give the guarantee that all ai are bits, and are
the binary decomposition of a.

2. R-splitter gate: This works essentially as the previous version of the splitter
gate repeated δ times in parallel, once for every component of R seen as a
free-module of rank δ over Z2k .

B SNARKs for Computation over Encrypted Data
(Cont’d)

B.1 Further details on Torus encoding

Multiplying encoded elements with elements from R: We next show explicitly
how our TFHE-based encoding is R-linear homomorphic. R = Zm[Y]/(f(Y)) is
a free module over Zm of rank d, i.e. we can find a basis for R. Let ξ be a root of
f(Y), we have that {1, ξ, . . . , ξd−1} is one of such basis. The map φ : R→ (Zm)d,
which sends b = b0 + · · · + bd−1ξ

d−1 to φ(b) = (b0, . . . , bd−1) is an isomorphism
of Zm-modules. We will make extensive use of this isomorphism going forward.

The encoding we use is the following:

Epk : R→ (T)d

a 7→ Epk(a) = (TFHE(a0), ...,TFHE(ad−1))

For our QRPs, we wish to compute values of the form E(a · b), where a, b ∈
R, given E(a) and b. The problem is that E(a) ∈ (T)d, and the torus does
not allow us to simply and directly compute b · E(a) as in previous occasions.
Rather, we have to look at the R-module endomorphism ·b which is induced
by multiplication of any element of R with b, and use this to manipulate the d
individual values TFHE(a0), ...,TFHE(ad−1) ∈ T.

50

In a more explicit and step-by-step fashion, ·b is an R-module endomorphism
and hence a Zm-module homomorphism ·b : (Zm)d → (Zm)d. We can therefore
represent this operation as follows:

·b : (Zm)d → (Zm)d

a 7→Mb · a

where Mb ∈ Md×d(Zm). As a side note, in fact, Mb can be easily defined from
the polynomial f(Y) used to construct R ' (Zm)d. Our goal can now be re-
stated as computing E(·b(a)), given E(a) and b ∈ R. We are almost done, as
TFHE(x) + TFHE(y) = TFHE(x + y) and T allows for external multiplication
with elements in Z. In full formalism, let Nb ∈ Md×d(Z) such that Nb ≡ Mb

mod n. We only need to compute:

Nb · E(a) = E(Nb · a) = E(Mb · a) = E(·b(a)) = E(a · b)

B.2 Parameters for BGV and FV

Here, we provide some outputs of the Maple script (https://github.com/
rachelplayer/CLP19-code/blob/master/Comparison/comparison.mpl) behind
the work of Costache, Laine and Player [23]. These provide a more detailed view
of the parameters for the BGV and FV schemes than the one provided in [23],
which is necessary to understand both the soundness of our scheme and the
efficiency impact compared with [28] (see Section 7.4).

51

https://github.com/rachelplayer/CLP19-code/blob/master/Comparison/comparison.mpl
https://github.com/rachelplayer/CLP19-code/blob/master/Comparison/comparison.mpl

Scheme L n |p1| |q|

BGV 2 212 23 109
FV 2 211 22 54

BGV 4 213 24 218
FV 4 212 23 109

BGV 6 213 25 218
FV 6 213 26 218

BGV 8 214 28 438
FV 8 213 24 218

BGV 10 214 25 438
FV 10 214 25 438

BGV 12 214 27 438
FV 12 214 29 438

BGV 14 214 28 438
FV 14 214 26 438

BGV 16 215 34 881
FV 16 215 34 881

Table 1. Parameters for BGV and FV with a plaintext space Rp where p = 28. L is
the amount of levels, n the degree of the quotient polynomial, q the integer modulo of
the ciphertext ring Rq and p1 the smallest prime factor of q. With |x|, we denote the
bit-length of x.

52

Scheme L n |p1| |q|

BGV 2 212 47 109
FV 2 213 48 218

BGV 4 213 48 218
FV 4 214 51 438

BGV 6 214 51 438
FV 6 214 51 438

BGV 8 215 51 881
FV 8 214 50 438

BGV 10 215 56 881
FV 10 215 56 881

BGV 12 215 59 881
FV 12 215 57 881

BGV 14 215 51 881
FV 14 215 50 881

FV 16 215 51 881

Table 2. Parameters for BGV and FV with a plaintext space Rp where p = 232. L is
the amount of levels, n the degree of the quotient polynomial, q the integer modulo of
the ciphertext ring Rq and p1 the smallest prime factor of q. With |x|, we denote the
bit-length of x.

Scheme L n |p1| |q|

BGV 2 213 80 218
FV 2 214 81 438

BGV 4 214 81 438
FV 4 214 82 438

BGV 6 215 84 881
FV 6 215 84 881

BGV 8 215 86 881
FV 8 215 83 881

BGV 10 215 83 881

Table 3. Parameters for BGV and FV with a plaintext space Rp where p = 264. L is
the amount of levels, n the degree of the quotient polynomial, q the integer modulo of
the ciphertext ring Rq and p1 the smallest prime factor of q. With |x|, we denote the
bit-length of x.

53

