
Non-Interactive Zero Knowledge from Sub-exponential DDH

Abhishek Jain Zhengzhong Jin

Johns Hopkins University

Abstract

We provide the �rst constructions of non-interactive zero-knowledge and Zap arguments for NP based
on the sub-exponential hardness of Decisional Di�e-Hellman against polynomial time adversaries (with-
out use of groups with pairings).

Central to our results, and of independent interest, is a new notion of interactive trapdoor hashing
protocols.

1 Introduction

Zero-knowledge (ZK) proofs [36] are a central object in the theory and practice of cryptography. A ZK proof
allows a prover to convince a veri�er about the validity of a statement without revealing any other informa-
tion. ZK proofs have found wide applications in cryptography in all of their (interactive) avatars, but especially
so in the non-interactive form where a proof consists of a single message from the prover to the veri�er. This
notion is referred to as non-interactive zero knowledge (NIZK) [26]. Applications of NIZKs abound and include
advanced encryption schemes [54, 27], signature schemes [4, 7], blockchains [6], and more.

Since NIZKs for non-trivial languages are impossible in the plain model, the traditional (and de facto)
model for NIZKs allows for a trusted setup that samples a common reference string (CRS) and provides it
to the prover and the veri�er algorithms. Starting from the work of [26], a major line of research has been
dedicated towards understanding the assumptions that are su�cient for constructing NIZKs in the CRS model
[10, 32, 5, 21, 40, 39, 35, 61, 22, 19, 17, 58, 25]. By now, NIZKs for NP are known from most of the standard
assumptions known to imply public-key encryption – this includes factoring related assumptions [10, 32],
bilinear maps [21, 40, 39], and more recently, learning with errors (LWE) [17, 58].

Notable exceptions to this list are standard assumptions related to the discrete-logarithm problem such
as the Decisional Di�e-Hellman (DDH) assumption. In particular, the following question has remained open
for three decades:

Do there exist NIZKs for NP based on DDH?

From a conceptual viewpoint, an answer to the above question would shed further light on the crypto-
graphic complexity of NIZKs relative to public-key encryption. It would also improve our understanding of
the power of groups with bilinear maps relative to non-pairing groups in cryptography. There are (at least)
two prominent examples where bilinear maps have traditionally had an edge – advanced encryption schemes
such as identity-based [12] and attribute-based encryption [62, 38] (and more broadly, functional encryption
[62, 13, 56]), and NIZKs. For the former, the gap has recently started to narrow in some important cases; see,
e.g., [28]. We seek to understand whether such gap is inherent for NIZKs based on standard assumptions.1

1If we allow for non-standard assumptions (albeit those not known to imply public-key encryption), then this gap is not inherent,
as demonstrated by [19, 25].
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A recent beautiful work of Brakerski et al. [15] demonstrates that this gap disappears if we additionally
rely on the hardness of the learning parity with noise (LPN) problem. Namely, they construct NIZKs assuming
that DDH and LPN are both hard. NIZKs based on the sole hardness of DDH, however, still remain elusive.

Zaps. Dwork and Naor [30] introduced the notion of Zaps, aka two-round public-coin proof systems in
the plain model (i.e., without a trusted setup) that achieve a weaker form of privacy known as witness-
indistinguishability (WI) [33]. Roughly speaking, WI guarantees that a proof for a statement with multiple
witnesses does not reveal which of the witnesses was used in the computation of the proof.

Despite this seeming weakness, [30] proved that (assuming one-way functions) Zaps are equivalent to
statistically-sound NIZKs in the common random string model. This allows for porting some of the known
results for NIZKs to Zaps; speci�cally, those based on factoring assumptions and bilinear maps. Subsequently,
alternative constructions of Zaps were proposed based on indistinguishability obfuscation [8]. Very recently,
computationally-sound Zaps, aka Zap argumentswere constructed based on quasi-polynomial LWE [2, 49, 37].

As in the case of NIZKs, constructing Zaps (or Zap arguments) for NP based on standard assumptions re-
lated to discrete-logarithm remains an open problem. Moreover, if we require statistical privacy, i.e., statistical
Zap arguments , curiously, even bilinear maps have so far been insu�cient. This is in contrast to statistical
NIZKs, where constructions based on bilinear maps are known [40, 39]. Presently, statistical Zap arguments
are only known based on quasi-polynomial LWE [2, 37]. A recent work of [50] constructs a variant of statisti-
cal Zap arguments based on bilinear maps that achieves public veri�ability, but falls short of achieving public
coin property.

1.1 Our Results

I. Main Results. In this work, we construct (statistical) NIZK and Zap arguments for NP based on the
sub-exponential hardness of DDH against polynomial-time adversaries in standard groups.

Theorem 1.1 (Main Result – Informal). Assuming sub-exponential hardness of DDH, there exist:

• (Statistical) NIZK arguments for NP in the common random string model.

• Statistical Zap arguments for NP.

Our NIZK achieves adaptive, multi-theorem statistical zero knowledge and non-adaptive soundness. By re-
laxing the zero-knowledge guarantee to be computational, we can achieve adaptive soundness. Our Zap
argument achieves adaptive statistical witness indistinguishability and non-adaptive soundness.2

Our results in Theorem 1.1 rely on the assumption that polynomial-time adversaries cannot distinguish
Di�e-Hellman tuples from random tuples in standard ℤ∗@ group with better than sub-exponentially small
advantage. Alternatively, if we also assume hardness against sub-exponential time adversaries, then we can
instantiate Theorem 1.1 using Elliptic curves over F? with a prime ? > 3 (see Appendix B). To the best of our
knowledge, our assumption is una�ected by known attacks on the discrete logarithm problem.3

Discussion. While our primary focus is on constructing NIZKs and Zap arguments from DDH, we note that
our constructions enjoy certain properties that have previously not been achieved even using bilinear maps:

2Following [50], by standard complexity leveraging, our statistical NIZK and Zap arguments can be upgraded (without changing
our assumption) to achieve adaptive soundness for all instances of a priori (polynomially) bounded size. For the “unbounded-size”
case, [57] proved the impossibility of statistical NIZKs where adaptive soundness is proven via a black-box reduction to falsi�able
assumptions [52].

3There are well-known attacks for discrete logarithm over ℤ∗@ that require sub-exponential time and achieve constant success
probability [1, 24]. However, as observed in [19], a 2C time algorithm with constant successful probability does not necessarily imply
a polynomial time attack with 2−C successful probability.
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• Our NIZK constructions rely on a common random string setup unlike prior schemes based on bilinear
maps that require a common reference string for achieving statistical ZK [40, 39].

• Our statistical Zap argument is the �rst group-based construction (irrespective of whether one uses
bilinear maps or not). Known constructions of Zaps from bilinear maps only achieve computational WI
[40, 39].

In particular, statistical NIZKs in the common random string model were previously only known from LWE
(or circular-secure FHE) [17, 58], and statistical Zap arguments were previously only known from (quasi-
polynomial) LWE [2, 37].

II. Correlation-Intractatable Hash Functions. In order to obtain our main results, we follow the cor-
relation intractability (CI) framework for Fiat-Shamir [33] implemented in a recent remarkable sequence of
works [19, 41, 17, 58, 15, 25]. The central idea of this framework is to instantiate the random oracle in the
Fiat-Shamir transformation by correlation intractable hash functions (CIH) [20]. Roughly speaking, a family of
hash functions (Gen,Hash) is said to be correlation intractable for a relation class ℛ if for any ' ∈ ℛ, given a
hash key k sampled by Gen, an adversary cannot �nd an input G such that (G,Hash(k, G)) ∈ '. In the sequel,
we focus on searchable relations where ' is associated with a circuit � and (G, H) ∈ ' if and only if H = �(G).

A sequence of works [18, 43, 19, 41, 25] have constructed CIH for various classes of (not necessarily
e�ciently searchable) relations from well-de�ned, albeit strong assumptions that are not well understood.
Recently, Canetti et al. [17] constructed CIH for all e�ciently searchable relations from circular-secure fully
homomorphic encryption. Subsequently, Peikert and Shiehian [58] obtained a similar result based on standard
LWE. More recently, Brakerski et al. [15] constructed CIH for relations that can be approximated by constant-
degreee polynomials (over ℤ2) based on various standard assumptions.

In this work, we expand the class of searchable relations that can be supported by CIH without relying
on LWE. Speci�cally, we construct CIH for constant-depth threshold circuits from sub-exponential DDH.

Theorem 1.2 (Informal). Assuming sub-exponential hardness of DDH against polynomial-time attackers, there
exists a CIH for TC0.

In fact, we can trade-o� between the hardness assumption on DDH and the depth of the circuits that
CIH can support. Assuming sub-exponential hardness of DDH against sub-exponential time adversaries, we
can obtain CIH for threshold circuits of depth$(log log =). Moreover, assuming exponential hardness of DDH
against polynomial time adversaries (which can be conjectured to hold in elliptic curve groups), we can obtain
CIH for log-depth threshold circuits, i.e., TC1. We refer the reader to Section 6.4 for details.

While our primary interest in this work is using CIH for constructing NIZKs (and Zap arguments), we
note that recent works (e.g., [17, 48]) have also explored applications of CIH to succinct arguments [45, 51],
veri�able delay functions [11] and establishing hardness of complexity classes such as PPAD [23]. Our con-
structions of CIH may therefore be of independent interest for applications beyond NIZKs.

1.1.1 Main Tool: Interactive Trapdoor Hashing Protocols

Towards obtaining our results, we introduce the notion of interactive trapdoor hashing protocols (ITDH). An
ITDH for a function family � is an interactive protocol between two parties – a sender and a receiver – where
the sender holds an input G and the receiver holds a function 5 ∈ �. At the end of the protocol, the parties
obtain an additive secret-sharing of 5 (G). An ITDH must satisfy the following key properties:

• The sender must be laconic in that the length of each of its messages (consisting of a hash value) is
independent of the input length.
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• The receiver’s messages must hide the function 5 (the exact formulation of this property is nuanced).

ITDH generalizes and extends the recent notion of trapdoor hash functions (TDH) [29] to multi-round
interactive protocols. Indeed, ignoring some syntactic di�erences, a TDH can be viewed as an ITDH where
both the receiver and the sender send a single message to each other.

Our primary motivation for the study of ITDH is to explore the feasibility of a richer class of computations
than what can be supported by known constructions of TDH. Presently, TDH constructions are known for
a small class of computations such as linear functions and constant-degree polynomials (based on various
assumptions such as DDH, Quadratic Residuosity, and LWE) [29, 15]. We demonstrate that ITDH can support
a much broader class of computations.

Assuming DDH, we construct a constant-round ITDH protocol for TC0 circuits. While ITDH for TC0

su�ces for our main application, our approach can be generalized to obtain a polynomial-round ITDH for
P/poly.

Theorem 1.3 (Informal). Assuming DDH, there exists a constant-round ITDH for TC0.

We view ITDH as a natural generalization of TDH that might allow for a broader pool of applications.
While our present focus is on the class of computations, it is conceivable that the use of interaction might
enable additional properties in the future that are not possible (or harder to achieve) in the non-interactive
setting.

From ITDH to NIZKs: Round Collapsing, Twice. The work of [17] shows that given a CIH for all ef-
�ciently searchable relations, the Fiat-Shamir transformation can be used to collapse the rounds of so-called
trapdoor sigma protocols to obtain NIZKs in the CRS model. Presently, however, CIH for all e�ciently search-
able relations are only known from LWE-related assumptions [58, 17].

Recently, Brakerski et al. [15] demonstrated a new approach for constructing CIH from (rate-1) TDH
by crucially exploiting the laconic sender property of the latter. This raises hope for potential instantiations
of CIH – ideally for all e�ciently searchable relations – from other standard assumptions (such as DDH).
So far, however, this approach has yielded CIH only for relations that can be approximated by constant-
degree polynomials over ℤ2 due to limitations of known results for TDH. This severely restricts the class of
compatible trapdoor sigma protocols that can be used for constructing NIZKs via the CIH framework. Indeed,
Brakerski et al. rely crucially on LPN to construct such sigma protocols.

Somewhat counter-intuitively, we use interaction to address the challenge of constructing NIZKs solely
from DDH. Speci�cally, we show that by using interaction – via the abstraction of ITDH – we can expand the
class of functions that can be computed with a laconic sender (as per Theorem 1.3). Furthermore, if an ITDH
is su�ciently function-private (where the amount of security required depends on the round complexity),
then we can collapse its rounds to construct CIH. Using this approach, we construct a CIH for TC0 based on
sub-exponential DDH (as per Theorem 1.2).

Expanding the class of relations for CIH in turn expands the class of compatible trapdoor sigma protocols.
In particular, we show that trapdoor sigma protocols for NP compatible with CIH from Theorem 1.2 can be
built from DDH. This allows us to construct NIZK and Zap arguments in Theorem 1.1.

Overall, our approach for constructing NIZKs involves two stages of round collapsing – we �rst collapse
rounds of ITDH to construct CIH, and then use CIH to collapse rounds of trapdoor sigma protocols to obtain
NIZKs. Our construction of Zaps follows a similar blueprint, where the �rst step is the same as in the case of
NIZKs and the second round-collapsing step is similar to the recent works of Badrinarayanan et al. [2] and
Goyal et al. [37].
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1.2 Guide to the paper

We present the technical overview in Section 2 and the necessary preliminaries in Section 3. We de�ne and
construct ITDH in Sections 4 and Section 5 respectively, and construct CIH for TC0 in Section 6. Then we
construct NIZKs in Section 7, and Zaps in Section 8.

2 Technical Overview

Our constructions rely on the correlation-intractability framework for instantiating the Fiat-Shamir paradigm.
We start by recalling this framework.

Fiat-Shamir via Correlation Intractability. The correlation intractability (CI) framework instantiates the
random oracle in the Fiat-Shamir paradigm for NIZKs via a family of correlation intractable hash functions
(Gen,Hash). Let Σ be a sigma protocol for a language ℒ where the messages are denoted as 
, � and �. To
obtain a NIZK in the CRS model, we collapse the rounds of Σ by computing � as the output of Hash(:, 
) for
a key : sampled by Gen and �xed as part of CRS.

We now recall the argument for soundness of the resulting scheme. From the special soundness of Σ,
for any G ∉ ℒ and any 
, there exists a bad challenge function BadC such that the only possible accepting
transcript (
, �, �) must satisfy � = BadC(
). In other words, any cheating prover must �nd an 
 such that
� = Hash(k, 
) = BadC(
). However, if (Gen,Hash) is CI for the relation searchable by BadC, then such an
adversary must not exist.

Note that in general, BadC may not be e�ciently computable. However, for trapdoor sigma protocols,
BadC is e�ciently computable given a “trapdoor” associated with the protocol. In this case, we only require
CI for e�ciently searchable relations.

Main Challenges. As mentioned earlier, the recent work of Brakerski et al. [15] leverages the compact-
ness properties of (rate-1) trapdoor hash functions to build CIH for functions that can be approximated by
a distribution on constant-degree polynomials. While this is a small class, [15] show that by relying on the
LPN assumption, it is possible to construct trapdoor sigma protocols where the bad challenge function has
probabilistic constant-degree representation. By collapsing the rounds of this protocol, they obtain NIZKs for
NP from LPN and DDH (or other standard assumptions that su�ce for constructing TDH).

We now brie�y discuss the main conceptual challenges in buildings NIZKs based solely on DDH. On the
one hand, (non-pairing) group-based assumptions seem to have less structure than lattice assumptions; for
example, we can only exploit linear homomorphisms. Hence it is not immediately clear how to construct rate-
1 trapdoor hash functions from DDH beyond (probabilistic) linear functions or constant-degree polynomials
(a constant-degree polynomial is also a linear function of its monomials).4 On the other hand, it seems that we
need CIH for more complicated functions in order to build NIZKs from (only) DDH via the CIH framework.

Indeed, the bad challenge function in trapdoor sigma protocols involves (at least) extraction from the
commitment scheme used in the protocol, and it is unclear whether such extraction can be represented by
probablistic constant-degree polynomials when the commitment scheme is constructed from standard group-
based assumptions. For example, the decryption circuit for the ElGamal encryption scheme [31] (based on
DDH) is in a higher complexity class, and is not known to have representation by probabilistic constant-degree
polynomials. Indeed, there are known lower-bounds for functions that can be approximated by probabilistic

4The breakthrough work of [14] shows that in the case of homomorphic secret-sharing, it is in fact possible to go beyond linear
homomorphisms in traditional groups. The communication complexity of the sender in their scenario, however, grows with the input
length and is not compact as in the case of TDH.
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polynomials. Speci�cally, [63, 64, 55, 47] proved that approximating a = fan-in majority gate by probabilistic
polynomials over binary �eld with a small constant error requires degree at least Ω(

√
=).

Roadmap. We overcome the above dilemma by exploiting the power of interaction.

• In Section 2.1, we introduce the notion of interactive trapdoor hashing protocols (ITDH) – a general-
ization of TDH to multi-round interactive protocols. We show that despite increased interaction, ITDH
can be used to build CIH. Namely, we devise a round-collapsing approach to construct CIH from ITDH.

• We next show that ITDH can capture a larger class of computations than what can be supported by
known constructions of TDH. Namely, we construct a constant-round ITDH protocol for TC0 where
the sender is laconic (Section 2.2).

• Finally, we demonstrate that using DDH, it is possible to construct trapdoor sigma protocols where the
bad challenge function can be computed in low depth. Using such sigma protocols, we build multi-
theorem (statistical) NIZK and statistical Zap arguments for NP (Sections 2.3 and 2.4, respectively).

2.1 Interactive Trapdoor Hashing Protocols

We start by providing an informal de�nition of ITDH and then describe our strategy for constructing CIH
from ITDH.

De�ning ITDH. An !-level ITDH is an interactive protocol between a “sender” and a “receiver”, where the
receiver’s input is a circuit 5 and the sender’s input is a string G. The two parties jointly compute 5 (G) by
multiple rounds of communication that are divided into ! levels. Each level ℓ ∈ [!] consists of two consecutive
protocol messages – a receiver’s message, followed by the sender’s response:

• First, the receiver uses 5 (and prior protocol information) to compute a key kℓ and trapdoor tdℓ . It sends
the key kℓ to the sender.

• Upon receiving this message, the sender computes a hash value hℓ together with an encoding eℓ . The
sender sends hℓ to the receiver but keeps eℓ to herself. (The encoding eℓ can be viewed as sender’s
“private state” used for computing the next level message.)

Upon receiving the level ! (i.e., �nal) message h! from the sender, the receiver computes a decoding value d
using the trapdoor. The function output 5 (G) can be recovered by computing e ⊕ d, where e is the �nal level
encoding computed by the sender. We require the following properties from ITDH:

• Compactness: The sender’s message in every level must be compact. Speci�cally, for every level ℓ ∈
[!], the size of the hash value hℓ is bounded by the security parameter, and is independent of the length
of the sender’s input G and the size of the circuit 5 .

• Approximate Correctness: For an overwhelming fraction of the random tapes for the receiver, for
any input G, the Hamming distance between e⊕ d and 5 (G)must be small. Note that this is an adaptive
de�nition in that the input G is chosen after the randomness for the receiver is �xed.

• Leveled Function Privacy: The receiver’s messages computationally hide the circuit 5 . Speci�cally,
we require that the receiver’s message in every level can be simulated without knowledge of the circuit
5 . Moreover, we allow the privacy guarantee to be di�erent for each level by use of di�erent security
parameters for di�erent levels.

As we discuss in Section 4.1, barring some di�erences in syntax, trapdoor hash functions can be viewed
as 1-level ITDH. We refer the reader to the technical sections for a formal de�nition of ITDH.
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CIH from ITDH. We now describe our round-collapsing strategy for constructing CIH from ITDH. Given
an !-level ITDH for a circuit family C, we construct a family of CIH for relations searchable by C as follows:

• Key Generation: The key generation algorithm uses the function-privacy simulator for ITDH to com-
pute a simulated receiver message for every level. It outputs a key : consisting of ! simulated receiver
messages (one for each level) as well as a random mask mask.

• Hash Function: Given a key k and an input G, the hash function uses the ITDH sender algorithm on
input G to perform an ITDH protocol execution “in its head.” Speci�cally, for every level ℓ ∈ [!], it
reads the corresponding receiver message in the key : and uses it to computes the hash value and the
encoding for that level. By proceeding in a level-by-level fashion, it obtains the �nal level encoding e.
It outputs e ⊕ mask.

We now sketch the proof for correlation intractability. For simplicity, we �rst consider the case when
! = 1. We then extend the proof strategy to the multi-level case.

For ! = 1, the proof of correlation intractability resembles the proof in [15]. We �rst switch the simulated
receiver message in the CIH key to a “real” message honestly computed using a circuit � ∈ C. Now, suppose
that the adversary �nds an G such that Hash(k, G) = �(G). Then by approximate correctness of ITDH, �(G) ≈
e ⊕ d, where the “ ≈ ” notation denotes closeness in Hamming distance. This implies that e ⊕ d ≈ e ⊕ mask,
and thus d ≈ mask. However, once we �x the randomness used by the receiver, d only depends on h. Since
h is compact, the value d is exponentially “sparse” in its range. Therefore, the probability that d ≈ mask is
exponentially small, and thus such an input G exists with only negligible probability.

Let us now consider the multi-level case. Our starting idea is to switch the simulated receiver messages
in the CIH key to “real” messages in a level-by-level manner. However, note that the honest receiver message
at each level depends on the hash value sent by the sender in the previous level, and at the time of the key
generation of the CIH, the sender’s input has not been determined. Hence, it is not immediately clear how to
compute the honest receiver message at each level without knowing the sender’s input.

To get around this issue, at each level ℓ , we �rst simply guess the sender’s hash value hℓ−1 in the previous
level (ℓ − 1), and then switch the simulated receiver message in level ℓ to one computed honestly using the
ITDH receiver algorithm on input hℓ−1. To ensure this guessing succeeds with high probability, we rely on
the compactness of the hash values. Speci�cally, let �ℓ denote the security parameter for the ℓ th level in ITDH
(as mentioned earlier, we allow the security parameters for each level to be di�erent). Then the guessing of
the level (ℓ − 1) hash value succeeds with probability 2−�ℓ−1 . We set �ℓ−1 to be sublinear in �, where � is the
security parameter for CIH. Then, when we reach the �nal level, all our guesses are successful with probability
2−(�1+�2+...+�!), which is sub-exponential in �. Since the probability of d ≈ mask can be exponentially small
in �, we can still get a contradiction.

However, the above argument assumes the function privacy is perfect, which is not the case. Indeed, at
every level, we must also account for the adversary’s distinguishing advantage when we switch a simulated
message to a real message. In order to make the above argument go through, we need the distinguishing
advantage to be a magnitude smaller than 2−�ℓ−1 (for every ℓ ). That is, we require ITDH to satisfy sub-
exponential leveled functional privacy. Now, the distinguishing advantage can be bounded by 2−�

2
ℓ , where

0 < 2 < 1 is a constant. Once we choose �ℓ large enough, then 2−�
2
ℓ can be much smaller than 2−�ℓ−1 , and

thus the above argument goes through as long as ! is not too large.
In particular, there is room for trade-o� between the number of levels in ITDH that we can collapse and

the amount of leveled function privacy required. If we wish to rely on polynomial time and sub-exponential
advantage assumptions, then the above transformation requires the number of levels to be constant. If we
allow for sub-exponential time (and sub-exponential advantage) assumptions, then the above transformation
can work for up to $(log log�) levels. We refer the reader to Section 6.4 for more details.
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2.2 Constructing ITDH

We now provide an overview of our construction of constant-round ITDH for TC0. Let not-threshold gate be
a gate that computes a threshold gate and then outputs its negation. Since not-threshold gates are universal
for threshold circuits, it su�ces for our purpose to consider circuits that consist of only not-threshold gates.

The starting template for our construction consists of the following natural two-step approach reminiscent
of classical secure computation protocols [34]:

• Step 1 (Depth-1 Circuits): First, we build an ITDH for a simple circuit family where each circuit is
simply a single layer of layer of not-threshold gates.

• Step 2 (Sequential Composition): Next, to compute circuits with larger depth, we sequentially com-
pose multiple instances of ITDH from the �rst step, where the output of the 8th ITDH is used as an input
in the (8 + 1)th ITDH.

Input Passing. While natural, the above template doesn’t work straight out of the box. Recall that the
protocol output in any ITDH execution is “secret shared” between the sender and the receiver, where the
sender holds the �nal level encoding e, and the receiver holds the decoding d. Then the �rst challenge in the
sequential composition is how to continue the circuit computation when the result of the previous ITDH e⊕d
is not known to the sender and the receiver.

A plausible way to resolve this challenge is for the receiver to simply send the decoding in the 8th ITDH to
the sender so that the latter can compute the output, and then use it as input in the (8 + 1)th ITDH. However,
this leaks intermediate wire values (of the TC0 circuit that we wish to compute) to the sender, thereby com-
promising function privacy. Note that the reverse strategy of requiring the sender to send the encoding to the
receiver (to allow output computation) also does not work since it violates the compactness requirement on
the sender’s messages to the receiver.

To overcome this challenge, we keep the secret-sharing structure of the output in every ITDH intact.
Instead, we extend the functionality of ITDH for depth-1 threshold circuits so that the output of the 8th ITDH
can be computed within the (8 + 1)th ITDH. Speci�cally, we �rst construct an ITDH for a circuit family T ⊕
where every circuit consists of a single layer of Xor-then-Not-Threshold gates. Such a gate �rst computes xor
of its input with a vector pre-hardwired in the gate description, and then computes a not-threshold gate over
the xor-ed value.

This allows for resolving the above problem as follows: the �nal-level encoding from the 8th ITDH con-
stitutes the sender’s input in the (8 + 1)th ITDH. On the other hand, the decoding in the 8th ITDH is used as
the pre-hardwired string in the circuit computed by the (8 + 1)th ITDH.

ITDH for a single Xor-then-Not-ThresholdGate. We now describe the main ideas for computing a single
Xor-then-Not-Threshold gate. Our ideas readily extend to the case where we want to compute a single layer
of such gates.

To construct an ITDH for a single Xor-then-Not-Threshold gate, we only rely on trapdoor hash functions
(TDH) for linear functions. Crucially, however, we use interaction to go beyond computing linear functions. At
a high-level, we �rst “decompose” an Xor-then-Not-Threshold gate as the composition of two linear functions.
We then use TDH for computing each of these linear functions separately. Finally, we “compose” the two TDH
executions sequentially to obtain a 2-level ITDH for an Xor-then-Not-Threshold gate.

An observant reader may wonder how we decompose a Xor-then-Not-Threshold gate into computation of
linear functions. Indeed, the composition of linear functions is still a linear function, while such a threshold
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gate involves non-linear computation. As we will soon see, our decomposition strategy crucially relies on “of-
�ine” processing by the parties on the intermediate values between the two TDH executions. This introduces
the desired non-linearity in the computation.

Let the vector G ∈ {0, 1}= be the input to the Xor-then-Not-Threshold gate, H ∈ {0, 1}= be the binary
vector pre-hardwired in the gate description, and let C be the threshold. The Xor-then-Not-Threshold gate
computes whether the number of 1’s in G ⊕ H is smaller than C. To compute such a gate, we proceed in the
following three simple steps:

• Xor: First, xor the input vector G with H, where H is part of the gate description.

• Summation: Second, sum the elements in the vector G ⊕ H over ℤ.

• Comparison: Finally, compare the summation with the threshold C.

We now describe how to express each step as a linear function. For the �rst step, let G8 and H8 be two
bits at (say) the 8th coordinate of G and H, respectively. Then G8 ⊕ H8 = 1 if and only if G8 = 0 ∧ H8 = 1 or
G8 = 1 ∧ H8 = 0. Hence, G8 ⊕ H8 = (1 − G8) · H8 + G8 · (1 − H8). Since H8 is part of the circuit description, the
right hand side is a linear function of G8 over ℤ.

In the second step, we simply sum over all the coordinates of G ⊕ H. Since the summation is a linear
function, and the �rst step is also linear, composing these two linear functions, we obtain a linear function of
G over ℤ. Then we can use a TDH for linear functions for this task. We note, however, that the construction of
TDH in [29, 15] only works for linear functions over ℤ2. We therefore extend their construction to arbitrary
polynomial modulus. In our case, since the summation cannot be more than =, it su�ces to choose the modulo
(= + 1).

We now proceed to express the comparison in the �nal step as a linear function. Suppose the summation
value from the second step is sum ∈ {0, 1, 2, . . . , =} and we want to compare it with a threshold C. Let 1sum

denote the indicator vector of sum, i.e., 1sum = (0, 0, . . . , 0, 1, 0, . . . , 0), where the (sum + 1)th coordinate is
1, and all other coordinates are 0. Then, we have that

sum < C ⇐⇒ 〈1sum , 1<C〉 = 1,

where 1<C = (1, 1, . . . , 1, 0, 0, . . . , 0) is a vector with 1’s on the �rst C-coordinates, and 0’s on the remaining
coordinates. We can therefore express the comparison in the �nal step as an inner product of 1sum and 1<C ,
which is a linear function of 1sum. This means that we can again use a TDH for linear functions for performing
this computation.

Note, however, that the sender and the receiver do not directly obtain the summation value sum after the
�rst TDH execution. Indeed, after the �rst TDH execution, the sender obtains an encoding e and the receiver
obtains a decoding d such that (e + d) mod ' = sum. Thus, we need a mechanism to perform the �nal step
even though neither party holds sum.5

Fortunately, we can still express the comparison (e + d) mod ' < C as

(e + d) mod ' < C ⇔ 〈1e , 1d,<C〉 = 1,

where 1d,<C =
∑C−1
9=0 1(9−d) mod ' . The above equation follows from the fact that checking (e + d) mod ' < C

is equivalent to check whether there exists a 9 ∈ {0, 1, . . . , C − 1} such that (e + d) mod ' = 9, which is
equivalent to checking e = (9 − d) mod '. Note that by this equation, we express the comparison as a linear
function of 1e over ℤ2. Hence, the comparison in the �nal step can be computed by another TDH.

5For reasons as discussed earlier, the straightforward idea of simply requiring one of the two parties to send their secret share to
the other party (for computing sum) does not work.
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Between the two executions of TDH, the sender processes e from the �rst TDH to obtain 1e, and use
it as the input to the second TDH. Similarly, the receiver processes d from the �rst TDH to obtain 1d,<C =∑C−1
9=0 1(9−d) mod ' , and use the linear function 〈·, 1d,<C〉 as the input to the second TDH. Note that this in-

termediate processing is non-linear, since computing the indicator vector can be done by several equality
checks, and the equality check is not a linear function. Hence, it introduces the necessary non-linearity in the
computation, but is done “outside” of the TDH execution.

Controlling the Error. We now discuss another issue that arises in the implementation of our template.
Recall that an ITDH guarantees only approximate correctness, i.e., the xor of the �nal-level encoding e and
decoding d is “close” (in terms of Hamming distance) to the true function output. Then, in a sequential
composition of an ITDH protocol, each execution only guarantees approximate correctness. This means that
the errors could spread across the executions, ultimately causing every output bit of the �nal execution to be
incorrect. For example, suppose a coordinate of the output for an intermediate execution is �ipped and later,
the computation of every output bit depends on this �ipped output bit. In this case, every output bit could be
incorrect.

To overcome this issue, we observe that any circuit can be converted to a new circuit that satis�es a
“parallel” structure demonstrated in Figure 1.

Figure 1: Parallel structure. The top (resp., bottom) layer corresponds to input (resp., output) wires.

In such circuits, each output bit only depends on the input to one parallel execution. Hence, the spreading
of one Hamming error is controlled in one parallel execution. This allows us to prove approximate correctness
of the sequential composition.

2.3 Constructing NIZKs

Armed with our construction of CIH, we now sketch the main ideas underlying our construction of (statistical)
multi-theorem NIZK for NP. We proceed in the following two steps:

1. First, using CIH for TC0, we construct a non-interactive witness indistinguishable (NIWI) argument
for NP in the common random string model. Our construction satis�es either statistical WI and non-
adaptive soundness, or computational WI and adaptive soundness.

2. We then transform the above NIWI into an adaptive, multi-theorem NIZK for NP in the common ran-
dom string model via a variant of the Feige-Lapidot-Shamir (FLS) “OR-trick” [32].6 Our NIZK satis�es
either statistical ZK and non-adaptive soundness, or computational ZK and adaptive soundness. Cru-
cially, unlike the classical FLS transformation, our transformation does not require “CRS switching” in

6By using “programmable” CIH, one could directly obtain NIZKs in the �rst step. However, the resulting NIZK only achieves
single-theorem ZK; hence an additional step is still required to obtain multi-theorem NIZKs.
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the security proof and hence works for both statistical and computational ZK cases seamlessly while
preserving the distribution of the CRS in the underlying NIWI.

Statistical NIZKs. In the remainder of this section, we focus on the construction of statistical NIZKs. We
brie�y discuss the steps necessary for obtaining the computational variant (with adaptive soundness) at the
end of the section.

Towards implementing the �rst of the above two steps, we �rst build the following two ingredients:

• A lossy public key encryption scheme with an additional property that we refer to as low-depth decryp-
tion, from DDH. Roughly speaking, this property requires that there exists a TC0 circuit Dec that takes
as input any ciphertext ct and a secret key sk, and outputs the correct plaintext.

• A trapdoor sigma protocol for NP with bad challenge function in TC0 from the above lossy public key
encrytion scheme. We also require the trapdoor sigma protocol to satisfy an additional “knowledge
extraction” property, which can be viewed as an analogue of special soundness for trapdoor sigma pro-
tocols. Looking ahead, we use this property to construct NIWIs with argument of knowledge property,
which in turn is required for our FLS variant for constructing NIZKs.

Lossy Public Key Encryption. The lossy public key encryption we use is essentially the same as in [46,
59, 3]. We start by brie�y describing the scheme.

A public key pk =

[
61 61

60 62

]
is a matrix of elements in a group G. When the matrix

[
1 1

0 2

]
is singular

(i.e., 2 = 01), then the public key is in the “injective mode” and the secret key is sk = 0; when the matrix is
non-singular (i.e., 2 ≠ 01), then the public key is in the “lossy mode.” The encryption algorithm is described
as follows:

Enc

(
pk, < ∈ {0, 1}; A =

[
A1
A2

] )
=

[
(61)A1 · (61)A2
(60)A1 · (62)A2 · 6<

]
= 6


1 1

0 2



A1
A2

+

0
<

 .
Let us now argue the low-depth decryption property. Let [21 , 22]) denote the ciphertext obtained by

encrypting a message < using an injective mode public key pk with secret key sk = 0. To decrypt the
ciphertext, we can compute 2−01 · 22 = 6< and then comparing with 1G to recover <. However, it is not
known whether 2−01 can be computed in TC0 (recall that 0 depends on the security parameter).

In the following, we assume the DDH group is a subgroup of ℤ∗@ , for some positive integer @. For the
instantiation from Elliptic curves over F? with a prime ? > 3, see Appendix B for more details.

Towards achieving the low-depth decryption property, we use the following observation. Let 00 , 01 , . . . 0�
be the binary representation of 0. Then, we have that(

2−2
0

1

) 00
·
(
2−2

1
1

) 01
·
(
2−2

2
1

) 02
· . . . ·

(
2−2

�

1

) 0�
· 22 = 6< .

Note that given [21 , 22]) , one can “precompute” 2−201 , 2−2
1

1 , . . . , 2−2
�

1 without using the secret key sk. In
our application to NIZKs and Zaps, such pre-computation can be performed by the prover and the veri�er.

We leverage this observation to slightly modify the de�nition of low-depth decryption to allow for a
deterministic polynomial-time “pre-computation” algorithm PreComp. Speci�cally, we require that the output
of Dec(PreComp(1� , ct), sk) is the correct plaintext <. We set PreComp(1� , 2) = (2−201 , 2−2

1
1 , . . . , 2−2

�

1 , 22),
and allow the circuit Dec to receive 2−201 , 2−2

1
1 , . . . , 2−2

�

1 , 22 and 00 , 01 , . . . , 0� as input. The decryption circuit
Dec proceeds in the following steps:
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• For each 8 = 0, 1, . . . ,�, it chooses 68 to be either 1G or 2−281 , such that 68 = (2−2
8

1 )08 . This computation
can be done in constant depth, and is hence in TC0.

• Multiply the values 60 , 62 , . . . , 6� and 22. From [60], this iterative multiplication can be computed in
TC0 when we instantiate G as a subgroup of ℤ∗@ .

• Compare the resulting value with 1G. If they are equal, then output 0. Otherwise output 1.

Since each of the above steps can be computed in TC0, we have that Dec is also in TC0.

Trapdoor Sigma Protocol for NP. Recently, Brakerski et al. [15] constructed a “commit-and-open” style
trapdoor sigma protocol where the only cryptographic primitive used is a commitment scheme. Crucially,
the bad challenge function for their protocol involves the following two computations: extraction from the
commitment, and a post-extraction veri�cation using 3-CNF. By exploiting the speci�c form of their bad
challenge function, we construct a trapdoor sigma protocol for NP with our desired properties by simply
instantiating the commitment scheme in their protocol with the above lossy encryption scheme.

Let us analyze the bad challenge function of the resulting trapdoor sigma protocol. Since our lossy public
key encryption satis�es the low-depth decryption property, the �rst step of the bad challenge computation
can be done in TC0. Next, note that the second step of the bad challenge computation is also in TC0 since it
involves evaluation of 3-CNF which can be computed in AC0. Thus, the bad challenge function is in TC0.

We observe that our protocol also satis�es a knowledge extraction property which requires that one can
e�ciently extract a witness from a single accepting transcript (
, �, �) by using a trapdoor (namely, the secret
key of the lossy public key encryption), if � does not equal to the output of the bad challenge function evaluated
on 
. We use this property to construct NIWIs with argument of knowledge property.

NIWI from Fiat-Shamir via CIH. We construct NIWI arguments in the CRS model by using CIH to col-
lapse the rounds of our trapdoor sigma protocol repeated � times in parallel. The CRS of the resulting con-
struction contains a public-key of lossy public key encryption scheme from above and a CIH key. When
the public key is in lossy mode, the NIWI achieves statistical WI property and non-adaptive argument of
knowledge property.

To prove the argument of knowledge property, we observe that for any accepting transcript ({
8}8∈[�] ,
{�8}8∈[�] , {�8}8∈[�]), it follows from correlation intractability of the CIH that {�8}8∈[�] is not equal to the
outputs of the bad challenge function evaluated on {
8}8∈[�]. Hence, there exists at least one index 8∗ such
that �8∗ is not equal to the output of the bad challenge function on 
8∗ . We can now extract a witness by
relying on the knowledge extraction property of the 8∗-th parallel execution of the trapdoor sigma protocol.

From NIWI to Multi-theorem NIZK. The FLS “OR-trick” [32] is a standard methodology to transform
NIWIs (or single-theorem NIZKs) into multi-theorem NIZKs. Roughly speaking, the trick involves supple-
menting the CRS with an instance (say) H of a hard-on-average decision problem and requiring the prover to
prove that either the “original” instance (say) G or H is true. This methodology involves switching the CRS
either in the proof of soundness or zero-knowledge, which can potentially result in a degradation of security.
E.g., in the former case, one may end up with non-adaptive (computational) soundness while in the latter
case, one may end up with computational ZK even if the underlying scheme achieves statistical privacy. The
instance H also needs to be chosen carefully depending on the desired security and whether one wants the
resulting CRS to be a reference string or a random string.

We consider a variant of the “OR-trick” that does not require CRS switching and preserves the distribution
of the CRS of the underlying scheme. We supplement the CRS with an instance of hard-on-average search
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problem, where the instance is subjected to the uniform distribution, and can be sampled together with a wit-
ness. For our purposes, the discrete logarithm problem su�ces. To sample the instance uniformly at random
together with a witness, we �rstly sample a secret exponent, and then set the instance as the exponent raised
to a group generator. The ZK simulator simply uses the secret exponent of the discrete-log instance in the CRS
to simulate the proof. On the other hand, soundness can be argued by relying on the computational hardness
of the discrete-log problem. One caveat of this transformation is that the proof of soundness requires the
underlying NIWI to satisfy argument of knowledge property. We, note, however, that this property is usually
easy to achieve (in the CRS model). Using this approach, we obtain statistical multi-theorem NIZK arguments
in the common random string model from sub-exponential DDH. Previously, group-based statistical NIZKs
were known only in the common reference string model [39, 39].

We remark that the above idea can be easily generalized to other settings. For example, starting from
LWE-based single-theorem statistical NIZKs [58], one can embed the Shortest Integer Solution (SIS) problem
in the CRS to build multi-theorem statistical NIZKs in the common random string model. This settles an open
question stated in the work of [58].

Computational NIZKs with Adaptive Soundness. Using essentially the same approach as described
above, we can also construct computational NIZKs for NP with adaptive soundness. The main di�erence is
that instead of using lossy public-key encryption scheme in the construction of trapdoor sigma protocols, we
use ElGamal encryption scheme [31]. Using the same ideas as for our lossy public-key encryption scheme,
we observe that the ElGamal encryption scheme also satis�es low-depth decryption property. This allows us
to follow the same sequence of steps as described above to obtain a computational NIZK for NP with adaptive
soundness in the common random string model.7

2.4 Constructing Zaps

At a high-level, we follow a similar recipe as in the recent works of [2, 37] who construct statistical Zap
arguments from quasi-polynomial LWE.

The main idea in these works is to replace the (non-interactive) commitment scheme in a trapdoor sigma
protocol with a two-round statistical-hiding commitment scheme in the plain model and then collapse the
rounds of the resulting protocol using CIH, as in the case of NIZKs. Crucially, unlike the non-interactive com-
mitment scheme that only allows for extraction in the CRS model, the two-round commitment scheme must
support extraction in the plain model. The key idea for achieving such an extraction property (in conjunction
with statistical-hiding property) is to allow for successful extraction with only negligible but still much larger
than sub-exponential probability (for example, 2− log2 �) [42]. By carefully using complexity leveraging, one
can prove soundness of the resulting argument system.

Statistical-Hiding Commitment with Low-depth Extraction. We implement this approach by replac-
ing the lossy public-key encryption scheme in our NIWI construction (from earlier) with a two-round statisti-
cal hiding commitment scheme. Since we need the bad challenge function of the sigma protocol to be in TC0,
we require the commitment scheme to satisfy an additional low-depth extraction property.

To construct such a scheme, we �rst observe that the construction of (public-coin) statistical-hiding ex-
tractable commitments in [44, 42, 2, 37] only makes black-box use of a two-round oblivious transfer (OT)
scheme. We instantiate this generic construction via the Naor-Pinkas OT scheme based on DDH [53]. By ex-
ploiting the speci�c structure of the generic construction as well as the fact that Naor-Pinkas OT decryption

7We note that one could obtain computational NIZKs with adaptive soundness by simply “switching the CRS” in our construction
of statistical NIZKs. However, the resulting scheme in this case is in the common reference string model.
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can be computed in TC0, we are able to show that the extraction process can also be performed in TC0. We
refer the reader to Section 8 for more details.

3 Preliminaries

For any positive integer # ∈ ℤ, # > 0, denote [#] = {1, 2, . . . , #}. For any integer ' > 0, and G ∈ ℤ' ,
0 ≤ G < ', the indicator vector 1G of G is a vector in {0, 1}' , where the (G + 1)th position is 1, and all other
coordinates are zero. A binary relation ℛ is a subset of {0, 1}∗ × {0, 1}∗.

Statistical Distance. For any two discrete distributions %, &, the statistical distance between % and & is
de�ned as SD(%, &) = ∑

8

�� Pr [% = 8] − Pr [& = 8]
��/2 where 8 takes all the values in the support of % and &.

Hamming Distance. Let = be an integer, and ( be a set, and G = (G1 , G2 , . . . , G=) and (H1 , H2 , . . . , H=) be
two tuples in (= , the Hamming distance Ham(G, H) is de�ned as Ham(G, H) =

��{8 | G8 ≠ H8}��.
Threshold Gate. Let G1 , G2 , . . . , G= be = binary variables. A threshold gate is de�ned as the following
function:

ThC(G1 , G2 , . . . , G=) =
{
1

∑
8∈[=] G8 ≥ C

0 Otherwise

Not-Threshold Gate. A not-threshold gate ThC is the negation of a threshold gate.

Threshold Circuits and TC0. A threshold circuit is a directed acyclic graph, where each node either com-
putes a threshold gate of unbounded fan-in or a negation gate.

In this work, for any constant !, we use TC0
!

to denote the class of !-depth polynomial-size threshold
circuits. When the depth ! is not important or is clear from the context, we omit it and simply denote the
circuit class TC0

!
as TC0. The not-threshold gate is universal for TC0, since we can convert any threshold circuit

of constant depth to a constant depth circuit that only contains not-threshold gates. The conversion works as
follows: for each negation gate, we convert it to a not-threshold gate with a single input and threshold C = 1.
For each threshold gate, we convert it to a not-threshold gate with the same input and threshold and then
compose it with a negation gate, where the negation gate can be implemented as a not-threshold gate.

3.1 Number-Theoretic Assumptions

Discrete Logarithm Assumption. In the following, we state the discrete logarithm (DL) assumption.

De�nition 3.1 (Discrete Logarithm). A prime-order group generator is an algorithm G that takes the security
parameter � as input, and outputs a tuple (G, ?, 6), where G is a cyclic group of prime order ?(�), and 6 is a
generator ofG. We say that the DL problem is hard in G, if for any n.u. PPT adversaryA, there exists a negligible
function �(�) such that,

Pr
[
(G, ?, 6) ← G(1�), ℎ ← G, G ←A(1� ,G, ?, 6, ℎ) : 6G = ℎ

]
≤ �(�).

We say that the DL is sub-exponentially hard in G, if there exists a constant 0 < 2 < 1 such that for any n.u.
PPT adversary, the success probability is bounded by 2−�2 for any su�ciently large �.
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Decisional Di�e-Hellman Assumption. In the following, we state the decisional Di�e-Hellman (DDH)
assumption.

De�nition 3.2 (Decisional Di�e-Hellman). Let G be a prime-order group generator (as in De�nition 3.1). We
say that G satis�es the DDH assumption if for any n.u. PPT distinguisher D, there exists a negligible function
�(�) such that���� Pr [

(G, ?, 6) ← G(1�), 0, 1 ← ℤ? : D(1� ,G, ?, 6, 60 , 61 , 601) = 1
]
−

Pr
[
(G, ?, 6) ← G(1�), 0, 1, 2 ← ℤ? : D(1� ,G, ?, 6, 60 , 61 , 62) = 1

] ���� ≤ �(�)

We say that G satis�es the sub-exponential DDH assumption, if there exists a constant 0 < 2 < 1 such
that for any n.u. PPT distinguisher, the advantage �(�) is bounded by 2−�2 for any su�ciently large �.

3.2 Non-Interactive Argument Systems

We recall the syntax and security properties associated with non-interactive argument systems in the common
random string (CRS) model.

A non-interactive argument system for an NP language ℒ with associated relation ℛ is a tuple of algo-
rithms Π = (CGen, P,V) described as follows.

• CGen(1�): It takes as input the security parameter �, and outputs a common random string crs.

• P(crs, G, F): It takes as input a common random string crs, an instance G ∈ ℒ, a witness $, and outputs
a proof �.

• V(crs, G,�): It takes as input a common random string crs, an instance G, a proof �, and decides to
accept (output 1) or reject (output 0) the proof.

We now de�ne various properties of non-interactive proof systems that we consider in this work.

• Completeness: For any instance G ∈ ℒ, and any witness $ of G, we have

Pr
[
crs← CGen(1�),�← P(crs, G, $) : V(crs, G,�) = 1

]
= 1.

• Computational Soundness: For any n.u. PPT cheating prover P∗, there exists a negligible function
�(�) such that

Pr
[
crs← CGen(1�), (G,�) ← P∗(crs) : G ∉ ℒ ∧ V(crs, G,�) = 1

]
≤ �(�).

We say that the proof system achieves sub-exponential computational soundness, if there exists a con-
stant 0 < 2 < 1 such that for any n.u. PPT cheating prover, the success probability is bounded by 2−�2

for any su�ciently large �.
We refer to the above as adaptive soundness. If we modify the above de�nition s.t. the adversary
chooses the statement G before obtaining the CRS, then the resulting notion is referred to as non-
adaptive soundness.
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• Argument of Knowledge: There exists a PPT extractor � = (�1 , �2) such that, for any n.u. PPT
prover P∗, there exists a negligible function �(�) such that

Pr
[
G ← P∗(1�), (c̃rs, td) ← �1(1�),�← P∗(c̃rs), $← �2(td, G,�) : ℛ(G, $) = 1

]
≥

Pr
[
G ← P∗(1�), crs← CGen(1�),�← P∗(crs) : V(crs, G,�) = 1

]
− �(�).

We say that the proof system achieves sub-exponential non-adaptive argument of knowledge, if there
exists a constant 0 < 2 < 1 such that for any n.u. PPT cheating prover, �(�) is bounded by 2−�2 for any
su�ciently large �.
We refer to the above as non-adaptive argument of knowledge. If we modify the above de�nition such
that the adversary chooses the statement G after obtaining the CRS, and SD(crs, c̃rs) ≤ �(�), then the
resulting notion is referred to as adaptive argument of knowledge. (Note that this de�nition is slightly
stronger in the sense that we require the CRS output by CGen and �1 to be statistically close.)

• Adaptive Statistical Witness Indistinguishability (SWI): For any unbounded adversary A, there
exists a negligible function �(�) such that

| Pr[Expr0 = 1] − Pr[Expr1 = 1]| ≤ �(�),

where Expr1 , for every 1 ∈ {0, 1}, is de�ned as the following experiment:
Experiment Expr1 :

– crs← CGen(1�).
– (G, $0 , $1) ← A(1� , crs).
– If ℛ(G, $0) ≠ 1 or ℛ(G, $1) ≠ 1, output 0 and halt.
– �← P(crs, G, $1).
– OutputA(crs,�).

We say that the proof system satis�es adaptive computationalwitness indistinguishability if the above
condition holds for any non-uniform PPT adversary.

• Adaptive Statistical Zero Knowledge (SZK): There exists a simulator S = (S1 , S2) such that for any
unbounded adversaryA and polynomial &(�), there exists a negligible function �(�) such that���� Pr [

crs← CGen(1�) : AReal(·,·)(1� , crs) = 1
]
− Pr

[
(crs, td) ← S1(1�) : AIdeal(·,·)(1� , crs) = 1

] ���� ≤ �(�)

where the oracles Real(·, ·) and Ideal(·, ·) are de�ned as follows, andA makes at most &(�) queries to
each oracle.

Real(G, $)

– If ℛ(G, $) ≠ 1 output ⊥.
– Otherwise, output �← P(crs, G, $).

Ideal(G, $)

– If ℛ(G, $) ≠ 1 output ⊥.
– Otherwise, output �← S2(td, G).
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We say that the proof system satis�es adaptive computational zero knowledge if the above condition
holds for any non-uniform PPT adversary.

3.3 Statistical Zap Arguments

Zaps [30] are two-round witness indistinguishable proof systems with a public-coin veri�er message. Be-
low, we de�ne statistical Zap arguments, i.e., Zaps that achieve statistical WI property and computational
soundness.

A statistical Zap argument for an NP language ! is a two-round protocol (P,V)with a public-coin veri�er
message that satis�es the following properties:

• Completeness: For every G ∈ ! and witness $ for G, we have that

Pr
[
OutV

(
P(1� , G, $) ↔ V(1� , G)

)
= 1

]
= 1

where OutV(4) is the output of V in a protocol execution 4 .

• Computational Soundness: For any non-uniform PPT prover P∗, there exists a negligible function
�(·) such that for any G ∉ !, we have that

Pr
[
OutV

(
P∗(1� , G) ↔ V(1� , G)

)
= 1

]
< �(�)

The above is referred to asnon-adaptive soundness. If we modify the above de�nition s.t. the adversary
chooses the statement G after receiving the veri�er’s message, then the resulting notion is referred to
as adaptive soundness.

• Statistical Witness Indistinguishability: For any unbounded veri�er V∗, there exists a negligible
function �(·) such that for every G ∈ !, and witnesses $1 , $2 for G, we have that

SD
(
Trans

(
P(1� , G, $1) ↔ V∗(1� , G)

)
, Trans

(
P(1� , G, $2) ↔ V∗(1� , G)

) )
< �(�)

where Trans(4) is the transcript of a protocol execution 4 .

3.4 Two-Round Oblivious Transfer

De�nition 3.3. A statistical sender-private oblivious transfer (OT) is a tuple of algorithms (OT1 ,OT2 ,OT3):

OT1(1� , 1): On input security parameter �, a bit 1 ∈ {0, 1}, OT1 outputs the �rst round message ot1 and a state
st.

OT2(1� , ot1 , <0 , <1): On input security parameter �, a �rst round message ot1, two bits <0 , <1 ∈ {0, 1}, OT2
outputs the second round message ot2.

OT3(1� , ot2 , st): On input security parameter �, the second round message ot2, and the state generated by OT1,
OT3 outputs a message <.

We require the following properties:

Correctness For any 1, <0 , <1 ∈ {0, 1},

Pr[(ot1 , st) ← OT1(1� , 1), ot2 ← OT2(1� , ot1 , <0 , <1), < ← OT3(1� , ot2 , st) : < = <1] = 1

17



Statistical Sender Privacy There exists a negligible function �(�) and an deterministic exponential time ex-
tractor OTExt such that for any (potential maliciously generated) ot1, OTExt(1� , ot1) outputs a bit 1 ∈
{0, 1}. Then for any <0 , <1 ∈ {0, 1}, we have

SD
(
OT2(1� , ot1 , <0 , <1),OT2(1� , ot1 , <1 , <1)

)
≤ �(�)

Pseudorandom Receiver’s Message For any 1 ∈ {0, 1}, let ot1 be the �rst round message generated by
OT1(1� , 1). For any n.u. PPT adversary D, there exists a negligible function �(�) such that, for any
� ∈ ℕ, ���� Pr [

D(1� , ot1) = 1
]
− Pr

[
D ← {0, 1} |ot1 | : D(1� , D) = 1

] ���� ≤ �(�)

Furthermore, we say that the OT satis�es the sub-exponential pseudorandom receiver’s message property,
if there exists a constant 0 < 2 < 1 such that for any n.u. PPT adversary, the advantage �(�) is bounded
by 2−�2 for any su�ciently large �.

Lemma 3.4. Assuming DDH, there exists a two-round oblivious transfer.

A two-round oblivious transfer from DDH was constructed by [53]. Their construction satis�es correct-
ness and statistical sender-privacy. Further, the receiver’s message in their scheme is (sub-exponentially)
pseudorandom, assuming (sub-exponential) DDH.

3.5 Rate-1 Trapdoor Hash Functions

We recall the notion of (rate-1) trapdoor hash functions (TDH) introduced in [29]. For our constructions, we
require TDH with an “enhanced correctness” property, as de�ned in [15].

Previously, [29] constructed TDH for index predicates. Their construction was later generalized by [15]
to linear functions and constant degree polynomials over ℤ2. In this work, we consider a further generalized
family of functions, namely, linear functions over ℤ' , where ' is a polynomial in the security parameter.

De�nition 3.5 (Linear Function Family). ℱ = {ℱ=,'}=,' is a family of linear functions over ℤ' if every
5 ∈ ℱ=,' is of the form:

5 (G1 , G2 , . . . , G=) = (00 + 01G1 + 02G2 + . . . + 0=G=) mod ',

where 0 ≤ 08 < ' for every 8 ∈ {0, . . . , =}.

De�nition. A trapdoor hash function for ℱ is a tuple of algorithms TDH = (HKGen, EKGen,Hash, Enc,
Dec) described as follows:

• HKGen(1� , 1= , 1'): The hash key generation algorithm takes as input a security parameter �, input
length =, and a modulo '. It outputs a hash key hk.

• EKGen(hk, 5 ): The encoding key generation algorithm takes as input a hash key hk and a circuit 5 ∈ ℱ= ,
and it outputs an encoding key ek together with a trapdoor td.

• Hash(hk, G): The hashing algorithm takes as input a hash key hk and an input value G, and it outputs
a hash value h ∈ {0, 1}�.
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• Enc(ek, G) : The encoding algorithm takes as input an encoding key ek and an input G ∈ {0, 1}= , and it
outputs an encoding e ∈ ℤ' .

• Dec(td, ℎ): The decoding algorithm takes as input a trapdoor td and the hash value h, and it outputs a
value d ∈ ℤ' .

We require TDH to satisfy the following properties:

• Compactness: The bit-length � of a hash value h is independent of =, and is a �xed polynomial in �.
For simplicity, in this work, we require that � ≤ �.

• �-Enhanced Correctness: For any �, =, ' ∈ ℕ, any string h ∈ {0, 1}�(�), any 5 ∈ ℱ=,' , and any hk
output by HKGen(1� , 1= , 1'), we have

Pr[(ek, td) ← EKGen(hk, 5 ) : ∀G s.t. Hash(hk, G) = h, 5 (G) = (e + d) mod '] ≥ 1 − �(�),

where e = Enc(ek, G), d = Dec(td, h), and the probability is over the randomness of EKGen.

• Function Privacy: There exists a simulator Sim and a negligible function �(�) such that, for any
polynomials = and ' in the security parameter �, there exists a constant 2 < 1 such that for any � ∈ ℕ,
any function 5 ∈ ℱ=,' , and any n.u. PPT adversaryD,���� Pr [

hk← HKGen(1� , 1= , 1'), (ek, td) ← EKGen(hk, 5 ) : D(1� , (hk, ek)) = 1
]
−

Pr
[
hk← HKGen(1� , 1= , 1'), ẽk← Sim(1� , 1= , 1') : D(1� , (hk, ẽk)) = 1

] ���� ≤ �(�)

We say that the TDH achieves sub-exponential function privacy, if there exists a constant 0 < 2 < 1
such that for any n.u. PPT adversary, the advantage �(�) is bounded by 2−�2 for any su�ciently large
�.

Theorem 3.6. Assuming sub-exponential DDH, for any inverse polynomial � in the security parameter �, there
exists a TDH construction for the linear function family ℱ = {ℱ=,'}=,' with �(�)-enhanced correctness and
sub-exponential function privacy.

The proof of this theorem follows via a simple modi�cation of the TDH construction in [29]. For com-
pleteness, we prove it in Appendix A.

4 Interactive Trapdoor Hashing Protocols

In this section, we de�ne interactive trapdoor hashing protocols (ITDH). At a high-level, ITDH is a gener-
alization of trapdoor hash functions – which can be viewed as two-round two-party protocols with speci�c
structural and communication e�ciency properties – to multi-round protocols.

More speci�cally, an interactive trapdoor hashing protocol involves two parties – a sender and a receiver.
The sender has an input G, while the receiver has a circuit 5 . The two parties jointly compute 5 (G) over several
rounds of interaction. We structure the protocols in multiple levels, where a level consists of the following
two successive rounds:

• The receiver generates a key k and a trapdoor td using a key generation algorithm KGen, which takes
as input the circuit 5 , the level number, and some additional internal state of the receiver. Then it sends
k to the sender.
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• Upon receiving a key k, the sender computes a hash value h and an encoding e using the algorithm
Hash&Enc, which takes as input G, the key k, the level number, and the previous level encoding. Then
it sends the hash h to the receiver, and keeps e as an internal state.

Finally, there is a decoding algorithm Dec that takes the internal state of the receiver after the last level
as input, and outputs a decoding value d. Ideally, we want the output 5 (G) to be e ⊕ d.

In the following, we proceed to formally de�ne this notion and its properties.

Per-level Security Parameter. In our formal de�nition of ITDH, we allow the security parameter to be
di�erent for every level. This formulation is guided by our main application, namely, constructing correlation-
intractable hash functions (see Section 6). Nevertheless, we note that ITDH could also be meaningfully de�ned
w.r.t. a single security parameter for the entire protocol.

4.1 De�nition

Let C = {C=,D}=,D be a family of circuits, where each circuit 5 ∈ C=,D is a circuit of input length = and output
length D. An !-level interactive trapdoor hashing protocol for the circuit family C is a tuple of algorithms
ITDH = (KGen,Hash&Enc,Dec) that are described below.

We use �1 , . . . ,�! to denote the security parameters for di�erent levels. Throughout this work, these
parameters are set so that they are polynomially related. That is, there exists a � such that �1 , . . . ,�! are
polynomials in �.

• KGen(1�ℓ , ℓ , 5 , hℓ−1 , tdℓ−1): The key generation algorithm takes as input a security parameter �ℓ (that
varies with the level number), a level number ℓ , a circuit 5 ∈ C=,D , a level (ℓ − 1) hash value hℓ−1 and
trapdoor tdℓ−1 (for ℓ = 1, hℓ−1 = tdℓ−1 = ⊥). It outputs an ℓ th level key kℓ and a trapdoor tdℓ .

• Hash&Enc(kℓ , G, eℓ−1): The hash-and-encode algorithm takes as input a level ℓ hash key kℓ , an input
G, and a level (ℓ − 1) encoding eℓ−1. It outputs an ℓ th level hash value hℓ and an encoding eℓ ∈ {0, 1}D .
When ℓ = 1, we let eℓ−1 = ⊥.

• Dec(td! , h!): The decoding algorithm takes as input a level ! trapdoor td! and hash value h!, and
outputs a value d ∈ {0, 1}D .

We require ITDH to satisfy the following properties:

• Compactness: For each level ℓ ∈ [!], the bit length of hℓ is at most �ℓ .

• (Δ, &)-Approximate Correctness: For any =, D ∈ ℕ, any circuit 5 ∈ C=,D and any sequence of
security parameters (�1 , . . . ,�!), we have

Pr
A1 ,A2 ,...,A!

[
∀G ∈ {0, 1}= ,Ham(e ⊕ d, 5 (G)) < Δ(D)

]
> 1 − &(D,�1 , . . . ,�!),

where e, d are obtained by the following procedure: Let h0 = td0 = e0 = ⊥. For ℓ = 1, 2, . . . , !,

– Compute (kℓ , tdℓ ) ← KGen(1�ℓ , ℓ , 5 , hℓ−1 , tdℓ−1; Aℓ ) using random coins Aℓ .
– Hash and encode the input G: (hℓ , eℓ ) ← Hash&Enc(kℓ , G, eℓ−1).

Finally, let e = e! be the encoding at the �nal level, and d = Dec(td! , h!).
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• Leveled Function Privacy: There exist a simulator Sim and a negligible function �(·) such that for
any level ℓ ∈ [!], any polynomials =(·) and D(·) in the security parameter, any circuit 5 ∈ C=,D , any
trapdoor td′ ∈ {0, 1} |tdℓ−1 | , any hash value h′ ∈ {0, 1} |hℓ−1 | , and any n.u. PPT distinguisherD,���� Pr [

(kℓ , tdℓ ) ← KGen(1�ℓ , ℓ , 5 , h′, td′) : D(1�ℓ , kℓ ) = 1
]
−

Pr
[̃
kℓ ← Sim(1�ℓ , 1= , 1D , ℓ ) : D(1�ℓ , k̃ℓ ) = 1

] ���� ≤ �(�ℓ ).

We say that the ITDH satis�es sub-exponential leveled function privacy, if there exists a constant 0 <
2 < 1 such that for any n.u. PPT distinguisher, �(�ℓ ) is bounded by 2−�

2
ℓ for any su�ciently large �ℓ .

Note that since the security parameters for di�erent levels are polynomially related, =(·) and D(·) are
polynomials in �ℓ i� they are polynomials in �.

Relationship with Trapdoor Hash Functions. A 1-level ITDH is essentially the same as TDH, except
that in TDH, there are two kinds of keys: a hash key and an encoding key(see Section 3.5) . In particular,
a hash value is computed using the hash key and can be reused with di�erent encoding keys for di�erent
functions. In 1-level ITDH, however, the receiver’s message only consists of one key that is used by the
sender for computing both the hash value and the encoding. Therefore, the hash value is not reusable for
di�erent functions.

We choose the above formulation of ITDH for the sake of a simpler and cleaner de�nition that su�ces
for our applications. If we consider multi-bit output functions, then the above di�erence disappears, since we
can combine multiple functions into one multi-bit output function and encode it using one key.

5 Construction of ITDH

In this section, we construct an interactive trapdoor hashing protocol (ITDH) for TC0 circuits. We refer the
reader to Section 2 for a high-level overview of our approach. The remainder of this section is organized as
follows:

• Depth-1 Circuits: In Section 5.1, we �rst construct a 2-level ITDH protocol forT ⊕ – roughly speaking,
a family of depth-1 Xor-then-Not-Threshold circuits (see below for the precise de�nition of T ⊕).

• Sequential Composition: Next, in Section 5.4, we present a sequential composition theorem for ITDH
where we show how to compose ! instances of a 2-level ITDH for some circuit family to obtain a 2!-
level ITDH for a related circuit family.

• Construction for TC0: Finally, in Section 5.7, we put these two constructions together to obtain an
ITDH for TC0.

5.1 ITDH for T ⊕

We start by introducing some notation and de�nitions.

XOR-then-Compute Circuits. Let C = {C=,D}=,D be a circuit family, where for any = and D, C=,D contains
circuits with =-bit inputs and D-bit outputs. For any C, we de�ne an Xor-then-Compute circuit family C⊕ =
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{C⊕=,D}=,D consisting of circuits that �rst compute a bit-wise xor operation on the input with a �xed string and
then compute a circuit in C on the resulting value.

Speci�cally, C⊕=,D contains all the circuit C⊕H : {0, 1}= → {0, 1}D , where H ∈ {0, 1}= and there exists a
� ∈ C=,D such that for every G ∈ {0, 1}= ,

C⊕H(G) = �(G ⊕ H).

Circuit Families T and T ⊕. We de�ne a circuit family T = {T=,D}=,D consisting of depth-1 not-threshold
circuits, i.e., a single layer of not-threshold gates (see Section 3). Speci�cally, T=,D contains all circuits T®C ,®� :
{0, 1}= → {0, 1}D where ®C = {C1 , . . . , CD} is a set of positive integers, and ®� = {�1 , . . . , �D} is a collection of
sets � 9 ⊆ [=] s.t. for any G ∈ {0, 1}= ,

T®C ,®�(G) =
(
ThC1(G[�1]), . . . , ThCD (G[�D])

)
,

where for any index set � 9 = {81 , 82 , . . . , 8F} ⊆ [=], we denote G[� 9] = (G81 , G82 , . . . , G8F ) as the projection of
string G to the set � 9 .

The function family T ⊕ = {T ⊕=,D}=,D is de�ned as the Xor-then-Compute family corresponding to T . We
denote the circuits in T ⊕=,D as T⊕H®C ,®� , where ®C, ®� and H are as de�ned above.

For a high-level overview of our construction, see Section 2.2. We now proceed to give a formal description
of our construction.

Construction of ITDH for T ⊕. We construct a 2-level interactive trapdoor hashing protocol ITDH =

(KGen,Hash&Enc,Dec) for the circuit family T ⊕ as de�ned above. Our construction relies on the following
ingredient: a trapdoor hash function TDH = (TDH.HKGen, TDH.EKGen, TDH.Hash, TDH.Enc, TDH.Dec)
for the linear function family ℱ = {ℱ=,'}=,' (see De�nition 3.5) that achieves �-enhanced correctness and
function privacy.

For ease of exposition, we describe the algorithms of ITDH separately for each level. The �rst level al-
gorithms of ITDH internally use TDH to evaluate a circuit (de�ned below) with input length =1 = = and
modulus '1 = = + 1. The second level algorithms of ITDH internally use TDH to evaluate another circuit
(de�ned below) with input length =2 = '1 · D and modulus '2 = 2. We use �1 and �2 to denote the security
parameters input to the �rst and second level algorithms, respectively.

• Level 1 KGen(1�1 , 1, T⊕H®C ,®� , h0 = ⊥, td0 = ⊥):

– Sample a hash key of TDH w.r.t. security parameter �1, input length =1 = = and modulus '1 =

= + 1
hk1 ← TDH.HKGen(1�1 , 1=1== , 1'1==+1)

– Parse ®� = {�1 , . . . , �D}. For every 8 ∈ [D], sample an encoding key:

(ek1,8 , td1,8) ← TDH.EKGen(hk1 , XorSum�8 ,H)

where for any set � ⊆ [=], XorSum� ,H is the linear function described in Figure 2.
– Output (k1 , td1) where k1 = (1, hk1 , {ek1,8}8∈[D]) and td1 = {td1,8}8∈[D].

• Level 1 Hash&Enc(k1 , G, e0 = ⊥):

– Parse k1 = (1, hk1 , {ek1,8}8∈[D]).
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Linear Function XorSum� ,H(G1 , . . . , G=) over ℤ'1

• Let H = (H1 , H2 , . . . , H=).

• Compute and output
∑
8∈� G8 · (1 − H8) + (1 − G8) · H8 .

Figure 2: Description of the linear function XorSum� ,H . This function computes the sum over ℤ'1 of � values
obtained by bit-wise XOR of H[�] and G[�], where G = (G1 , . . . , G=).

– Compute “�rst level” hash over G: h1 ← TDH.Hash(hk1 , G)
– For every 8 ∈ [D], compute a “�rst level” encoding: e1,8 ← TDH.Enc(ek1,8 , G)
– Output (h1 , e1), where e1 = {e1,8}8∈[D].

• Level 2 KGen(1�2 , 2, T⊕H®C ,®� , h1 , td1):

– Parse td1 = {td1,8}8∈[D]. For every 8 ∈ [D], decode h1: d1,8 ← TDH.Dec(td1,8 , h1)
– Sample a new hash key of TDH w.r.t. security parameter �2, input length =2 = '1 ·D and modulus
'2 = 2,

hk2 ← TDH.HKGen(1�2 , 1=2='1·D , 1'2=2).

– Parse ®C = {C1 , . . . , CD}. For each 8 ∈ [D], sample a new encoding key

(ek2,8 , td2,8) ← TDH.EKGen(hk2 ,AddTh8 ,C8 ,d1,8 ),

where for any index 8 ∈ [D], positive integer C and value d ∈ ℤ'1 , AddTh8 ,C ,d is the linear function
de�ned in the Figure 3.

– Output (k2 , td2), where k2 = (2, hk2 , {ek2,8}8∈[D]) and td2 = {td2,8}8∈[D].

• Level 2 Hash&Enc(k2 , G, e1):

– Parse k2 = (2, hk2 , {ek2,8}8∈[D]), and e1 = {e1,8}8∈[D].
– Compute “second level” hash over {1e1,8 }8∈[D], where 1e1,8 is the indicator vector for e1,8 .

h2 ← TDH.Hash(hk2 , {1e1,8 }8∈[D])

– For any 8 ∈ [D], compute “second level” encoding: e2,8 ← TDH.Enc(ek2,8 , {1e1, 9 }9∈[D]).
– Output (h2 , e2), where e2 = {e2,8}8∈[D].

• Decoding Dec(td2 , h2):

– Parse td2 = {td2,8}8∈[D]. For every 8 ∈ [D], decode h2: d2,8 ← TDH.Dec(td2,8 , h2).
– Output d = {d2,8}8∈[D].

This completes the description of ITDH. We prove that it achieves approximate correctness and leveled
function privacy in Lemmas 5.1 and 5.2, respectively.
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Linear Function AddTh8 ,C ,d(®e) over ℤ2

• Let ®e = (e1 , . . . , eD), where e9 ∈ {0, 1}'1 for every 9 ∈ [D].

• Compute and output the inner product: 〈e8 , f〉 mod 2, where f =
∑C−1
9=0 1(9−d) mod '1

is the sum of indicator vectors for (9 − d) mod '1, for 0 ≤ 9 < C.

Figure 3: Description of the linear function AddTh8 ,C ,d. For any e1 , e2 , . . . , eD ∈ ℤ'1 , this function computes
whether (e8 + d) mod '1 is less than the threshold C. The actual input ®e to the function is such that e8 is the
indicator vector for e8 .

5.2 Proof of Approximate Correctness

Lemma 5.1 (Approximate Correctness). For any function Δ(D), the proposed protocol ITDH satis�es (Δ, &)-
approximate correctness, where

& = 2 (24 ·max{�(�1), �(�2)} · D/Δ)Δ/2 · 2�1+�2

D is the output length of the circuit, and 4 is the base for natural logarithms.

Proof. We �rst establish some notation that we shall use throughout the proof. Whenever necessary, we
augment a variable with ∗ in the superscript to denote the “ideal” value of the variable, whereas the “real” –
and possibly erroneous – value is denoted without any emphasis.

Level 1. For each 8 ∈ [D], let sum8 = (e1,8 + d1,8) mod '1. By the �-enhanced correctness of TDH, for any
�xed hk1, �xed h1 and index 8, we have

Pr
[
(ek1,8 , td1,8) ← TDH.EKGen(hk1 , XorSum�8 ,H) :

∀G : h1 = TDH.Hash(hk1 , G), sum8 = XorSum�8 ,H(G)
]
> 1 − �(�1)

Denote sum∗
8
= XorSum�8 ,H(G). Then, for any �xed hk1, and �xed h1, since the encoding keys {ek1,8}8∈[D]

are sampled independently, for any Δ′ ∈ [D], we have

Pr
{ek1,8}8∈[D]

[
∃G : h1 = TDH.Hash(hk1 , G),Ham({sum8}8∈[D] , {sum∗8 }8∈[D]) > Δ′

]
< �(�1)Δ

′
(
D

Δ′

)
≤

(
4 · �(�1) · D

Δ′

)Δ′
,

where the second inequality follows from the upper bound for the combinatorial coe�cients
(
D
Δ′
)
< (4 ·

D/Δ′)Δ′ .
Next, by taking the union bound on the choice of h1, we have that for any �xed hk1,

Pr
{ek1,8}8∈[D]

[
∃G,Ham

(
{sum8}8∈[D] , {sum∗8 }8∈[D]

)
> Δ′

]
<

(
4 · �(�1) · D

Δ′

)Δ′
· 2�1 .

Finally, by averaging over all possible choices of hk1, the above bound still holds when hk1 is sampled
from HKGen.
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Level 2. Similarly, in the second level, let’s consider two arbitrary encoding {e′1,8}8∈[D] and decoding {d′1,8}8∈[D].
We will wire them with {e1,8}8∈[D] and {d1,8}8∈[D] in the �rst level later. Then we have

Pr
hk2 ,{ek2,8}8∈[D]

[
∃{e′1,8}8∈[D] ,Ham

(
{out8}8∈[D] , {out∗8 }8∈[D]

)
> Δ′

]
<

(
4 · �(�2) · D

Δ′

)Δ′
· 2�2 , (1)

where out∗
8
= AddTh8 ,C8 ,d′1,8 ({1e′1, 9

}9∈[D]), and out8 is obtained by the following procedure.

• ∀8 ∈ [D], (ek2,8 , td2,8) ← TDH.EKGen(hk2 ,AddTh8 ,C8 ,d′1,8 ).

• h2 ← TDH.Hash(hk2 , {1e′1,8
}8∈[D]), ∀8 ∈ [D], e2,8 ← TDH.Enc(ek2,8 , {1e′1, 9

}9∈[D]).

• ∀8 ∈ [D], d2,8 ← TDH.Dec(td2,8 , h2).

• ∀8 ∈ [D], out8 = (e2,8 + d2,8) mod 2.

Now, we �x the random coins A1 used by the �rst level key generation algorithm. Let hk1 and {ek1,8 , td1,8}8∈[D]
be the values generated by the �rst level key generation algorithm using randomness A1. Let e1,8 be the �rst
level encodings computed by the sender using the keys ek1,8 and input G. Let out8 and out∗

8
be as de�ned

above, except that they are computed w.r.t. e1,8 .
Then from Equation 1, for any �xed A1 and �xed d′1, if we let {e′1,8}8∈[D] = {e1,8}8∈[D], we have

Pr
hk2 ,{ek2,8}8∈[D]

[
∃G : d′1 = {d1,8}8∈[D] ,Ham

(
{out8}8∈[D] , {out∗8 }8∈[D]

)
> Δ′

]
<

(
4 · �(�2) · D

Δ′

)Δ′
· 2�2 ,

where d1,8 = TDH.Dec(td1,8 , h1), and we only consider every G such that {d1,8}8∈[D] derived from A1 and G is
equal to d′1. To further remove such a constraint on G, we need to take an union bound on all possible choices
of {d1,8}8∈[D].

Since td1,8 is �xed by A1, the total possibilities of {d1,8}8∈[D] is bounded by the number of possible choices
of h1, which is at most 2�1 . Hence, applying the union bound on d′1, we derive that for any �xed A1,

Pr
hk2 ,{ek2,8}8∈[D]

[
∃G,Ham

(
{out8}8∈[D] , {out∗8 }8∈[D]

)
> Δ′

]
<

(
4 · �(�2) · D

Δ′

)Δ′
· 2�1+�2

By averaging over all possible choices of A1, this bound still holds when A1 is sampled uniformly at random.

Putting it all together. From the above, except (4max{�(�1), �(�2)} · D/Δ′)Δ
′ · (2�1 + 2�1+�2) fraction of

the random coins, we have

∀G,Ham
(
{sum8}8∈[D] , {sum∗8 }8∈[D]

)
≤ Δ′ and Ham

(
{out8}8∈[D] , {out∗8 }8∈[D]

)
≤ Δ′.

From the triangle inequality of Hamming distance, we have

Ham
(
{out8}8∈[D] , 5 (G)

)
≤ Ham

(
{out8}8∈[D] , {out∗8 }8∈[D]

)
+ Ham

(
{out∗8 }8∈[D] , 5 (G)

)
On the right hand side, the �rst term is bounded by Δ′. For the second term, out∗

8
in fact only depends on

sum8 . This is because out∗
8
= AddTh8 ,C8 ,d1,8 ({1e1, 9 }9∈[D]). Then by construction, AddTh outputs 1 if and only if

(e1,8 + d1,8) mod '1 < C8 , which is equivalent to sum8 < C8 .
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SinceHam({sum8}8∈[D] , {sum∗8 }8∈[D]) ≤ Δ′, we know that there are at mostΔ′Hamming errors in {sum8}8∈[D],
and these errors lead to at mostΔ′Hamming errors in {out∗

8
}8∈[D]. Therefore, we obtain thatHam

(
{out∗

8
}8∈[D] , 5 (G)

)
≤

Δ′.
Hence, we have

Pr
A1 ,hk2 ,{ek2,8}8∈[D]

[∃G,Ham({out8}8∈[D] , 5 (G)) > 2Δ′] < (4 ·max{�(�1), �(�2)} · D/Δ′)Δ
′
· (2�1 + 2�1+�2)

< 2 (4 ·max{�(�1), �(�2)} · D/Δ′)Δ
′
· 2�1+�2

By letting Δ′ = Δ(D)/2, we �nish the proof. �

5.3 Proof of Leveled Function Privacy

Lemma 5.2 (Leveled Function Privacy). The proposed protocol ITDH satis�es leveled function privacy property.

Proof. We build the simulator Sim(1�ℓ , 1= , 1D , ℓ ) in Figure 4.

Simulator Sim(1�ℓ , 1= , 1D , ℓ )

• If ℓ = 1, let =ℓ = =, 'ℓ = '1 = =. Otherwise let =ℓ = '1 · D = = · D, 'ℓ = 2.

• Sample a hash key: hkℓ ← TDH.HKGen(1�ℓ , 1=ℓ , 1'ℓ )

• For each 8 ∈ [D], compute a simulated encoding key:

ekℓ ,8 ← TDH.Sim(1�ℓ , 1=ℓ , 1'ℓ )

• Output kℓ = (ℓ , hkℓ , {ekℓ ,8}8∈[D]).

Figure 4: Simulator Sim(1� , 1= , 1D , ℓ )

We construct a series of hybrids to prove that the output of Sim is indistinguishable from an honestly
sampled key for any circuit T⊕H®C ,®� ∈ T

⊕
=,D . We only prove indistinguishability for the �rst level, or ℓ = 1. The

proof for the second level (ℓ = 2) follows similarly.

Hyb0: This is the “real world”, where the keys are computed using the key generation algorithm KGen(1�1 , 1,
T⊕H®C ,®� , ℎ0 = ⊥, td0 = ⊥).

Hyb8
∗
1 : In this hybrid, for every 8 < 8∗, the encoding key ek1,8 is computed using the simulator TDH.Sim. For
every 8 ≥ 8∗, the encoding key ek1,8 is computed honestly using TDH.EKGen.

• For each 8 < 8∗, let ek1,8 ← TDH.Sim(1�1 , 1=1 , 1'1).
• For each 8 ≥ 8∗, let (ek1,8 , td1,8) ← TDH.EKGen(hk1 , XorSum�8 ,H).

Hyb2: This hybrid is the same as the simulator Sim(1�1 , 1= , 1D , 1).

From the description of the hybrids, it follows that Hyb0 is identical to Hyb11, and Hyb2 is identical to HybD+11 .
Hence, it su�ces to show thatHyb8∗1 andHyb8

∗+1
1 are indistinguishable. For 8∗ ∈ [D], suppose that there exists a

n.u. PPT distinguisherD that distinguishes between Hyb8
∗
1 and Hyb8

∗+1
1 with non-negligible advantage �(�1).

We build a distinguisherD′ who breaks the function privacy of TDH.
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The distinguisher D′(1�1 , (hk, ek)) takes as input the security parameter �1, a hash key hk and an en-
coding key ek. For each 8 < 8∗, it runs the simulator TDH.Sim(1�1 , 1=1 , 1'1) to generate an encoding key
ek1,8 . For 8 = 8∗, it sets ek1,8 = ek as the encoding key. For each 8 > 8∗, it computes an encoding key
(ek1,8 , td1,8) ← TDH.EKGen(hk, XorSum�8 ,H) using the key generation algorithm. Finally, D′ runs distin-
guisherD with input (1, hk, {ek1,8}8∈[D]), and returns the output ofD.

Now, if ek in (hk, ek) is generated using TDH.EKGen, thenD′ successfully simulates the hybrid Hyb8
∗
1 for

the distinguisherD′. Hence,

Pr
[
D(1�1 ,Hyb8

∗
1 ) = 1

]
= Pr

[
hk←TDH.HKGen(1�1 ,1=1 ,1'1 ),

(ek,td)←TDH.EKGen(hk,XorSum�8∗ ,H)
: D′(1�1 , (hk, ek)) = 1

]
On the other hand, if ek is generated using TDH.Sim, then D′ successfully simulates the hybrid Hyb8

∗+1
1

for the distinguisherD′. Hence,

Pr
[
D(1�1 ,Hyb8

∗+1
1 ) = 1

]
= Pr

[
hk←TDH.HKGen(1�1 ,1=1 ,1'1 ),
ek←TDH.Sim(1�1 ,1=1 ,1'1 ) : D′(1�1 , (hk, ek)) = 1

]
Since TDH achieves function privacy, the di�erence of the probabilities on the right hand side of the

above two equations is bounded by a negligible function. Hence, there exists a negligible function �(·) such
that | Pr[D′(1�1 ,Hyb8

∗
1 ) = 1] − Pr[D′(1�1 ,Hyb8

∗+1
1 ) = 1]| ≤ �(�1).

Since we have D hybrids, and D is polynomial in �, we conclude that the construction satis�es leveled
function privacy. �

Remark 5.3. If the underlying TDH satis�es sub-exponential leveled function privacy, then the proposed con-
struction of ITDH also satis�es the sub-exponential leveled function privacy.

5.4 ITDH Composition

In this section, we establish a sequential composition theorem for ITDH. Roughly speaking, we show how
a 2-level ITDH for an “Xor-then-Compute” circuit family can be executed sequentially ! times to obtain an
ITDH for a related circuit family (the exact transformation is more nuanced; see below). The main bene�t of
sequential composition is that it can be used to increase the depth of circuits that can be computed by ITDH.

We start by introducing some notation and terminology for circuit composition that we shall use in the
sequel.

Parallel Composition. Let F be a positive integer. Informally, a F-parallel composition circuit 5 is a
structured circuit that computes F circuits 5 ′1 , 5 ′2 , . . . , 5 ′F in parallel. More formally, for any circuit family C,
we de�ne a corresponding parallel-composition circuit family as follows:

De�nition 5.4 (Parallel Composition). For any circuit family C and any polynomial F = F(=), we say that
C[−→F ] = {C[−→F ]=,D}=,D is a family of F-parallel composition circuits if for every 5 ∈ C[−→F ]=,D , there exists
a sequence of circuits 5 ′1 , 5

′
2 , . . . , 5

′
F ∈ C=′,D′ such that = = =′ · F(=) and D = D′ · F(=), and for any input

G = (G1 , G2 , . . . , GF) ∈ {0, 1}===
′·F (where every G8 ∈ {0, 1}=

′
), we have

5 (G1 , G2 , . . . , GF) = ( 5 ′1 (G1), 5 ′2 (G2), . . . , 5 ′F(GF)).

Parallel-and-Sequential-Composition. For any circuit family C, we now de�ne another circuit family
obtained via parallel and sequential composition of circuits in C.

Informally speaking, for any polynomials F(=) and !(=) and an integer B, a F-parallel-and-!-sequential-
composition of a circuit family C is a new circuit family C[−→F↓!] = {C[

−→F
↓!]=,B}=,B , where each circuit 5 ∈ C[−→F↓!]=,B

27



is computed by a sequence of circuits 51 , 52 , . . . , 5!. For any input G, to compute 5 (G), we �rstly evaluate 51
on input G, then use the output 51(G) as the input to the circuit 52, and so on, such that the output of 5! is the
output of 5 . Furthermore, we require that for every ℓ ∈ [!], 5ℓ is an <-parallel composition of some sequence
of circuits 5 ′

ℓ ,1 , 5
′
ℓ ,2 , . . . , 5

′
ℓ ,F
∈ C. For the ease of presentation, we �x the output length of the circuit 5ℓ for

every ℓ < ! as B, and the output length of 5 as F.

De�nition 5.5 (Parallel-and-Sequential-Composition). Let C = {C=,D}=,D be a circuit family, where each
circuit in C=,D has input length = and output length D. For any polynomials F = F(=), ! = !(=), and integer
B, we say that C[−→F↓!] = {C[

−→F
↓!]=,B}=,B is a family of F-parallel-and-!-sequential-composition circuits if every

circuit 5 ∈ C[−→F↓!]=,B is of the form
5 = 5! ◦ 5!−1 ◦ . . . ◦ 51

where for every ℓ ∈ [!], 5ℓ : {0, 1}=ℓ → {0, 1}=ℓ+1 satis�es =1 = =, =2 = =3 = . . . = =!−1 = B, =! = F.
Furthermore, there exists a sequence of integers {=′

ℓ
}ℓ and circuits { 5 ′

ℓ , 9
}ℓ∈[!], 9∈[F], where 5 ′ℓ , 9 ∈ C=′ℓ ,=′ℓ+1 , and

=ℓ = =
′
ℓ
· F,

5ℓ (G1 , . . . , GF) =
(
5 ′ℓ ,1(G1), 5

′
ℓ ,2(G2), . . . , 5

′
ℓ ,F(GF)

)
for every G = (G1 , . . . , GF) ∈ {0, 1}=

′
ℓ
·F , where G8 ∈ {0, 1}=

′
ℓ for every 8 ∈ [F].

Construction of ITDH for C[−→F↓!]. Let C = {C=,D}=,D be any circuit family, and let C[−→F ] be the corre-
sponding F-parallel composition circuit family. Let C[−→F ]⊕ = {C[−→F ]⊕=,D}=,D be the “Xor-then-Compute”
circuit family de�ned w.r.t. C[−→F ]. Let ITDH = (ITDH.KGen, ITDH.Hash&Enc, ITDH.Dec) be a 2-level in-
teractive trapdoor hashing protocol for C[−→F ]⊕ = {C[−→F ]⊕=,D}=,D with (Δ, &)-approximate correctness and
leveled function privacy.

Given ITDH, we construct a 2!-level interactive trapdoor hashing protocol ITDH′ = (KGen,Hash&Enc,
Dec) for the circuit family C[−→F↓!] as de�ned above. For ease of exposition, we describe the algorithms of ITDH′
for “odd” and “even” levels separately.

• Level ℓ ′ = 2ℓ − 1, KGen(1�ℓ′ , ℓ ′, 5 , hℓ ′−1 , tdℓ ′−1):

– If ℓ = 1, set d0 to be an all zero string of length =.
– If ℓ ≥ 2, decode hℓ ′−1: dℓ−1 ← ITDH.Dec(tdℓ ′−1 , hℓ ′−1)
– Let 51 , . . . , 5! be such that 5 = 5! ◦ 5!−1 ◦ . . . ◦ 51 (as de�ned above), where 5ℓ has input length
=ℓ and output length =ℓ+1.

– Compute a key w.r.t. security parameter�ℓ ′ and the “Xor-then-Compute” circuit 5 ⊕dℓ−1
ℓ

∈ C[−→F ]⊕=ℓ ,=ℓ+1

(kℓ ,1 , tdℓ ,1) ← ITDH.KGen(1�ℓ′ , 1, 5 ⊕dℓ−1
ℓ

,⊥,⊥).

– Output (kℓ ′ , tdℓ ′) where kℓ ′ = (ℓ ′, kℓ ,1) and tdℓ ′ = tdℓ ,1.

• Level ℓ ′ = 2ℓ − 1, Hash&Enc(kℓ ′ , G, eℓ ′−1):

– If ℓ = 1, let Gℓ = G, otherwise, let Gℓ = eℓ ′−1. Execute

(hℓ ,1 , eℓ ,1) ← ITDH.Hash&Enc(kℓ ,1 , G,⊥)

– Output (hℓ = hℓ ,1 , eℓ = (Gℓ , eℓ ,1)).
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• Level ℓ ′ = 2ℓ , KGen(1�ℓ′ , ℓ ′, 5 , hℓ ′−1 , tdℓ ′−1):

– Parse hℓ ′−1 = hℓ ,1, and tdℓ ′−1 = tdℓ ,1.

(kℓ ,2 , tdℓ ,2) ← ITDH.KGen(1�ℓ′ , 2, 5 ⊕dℓ−1
ℓ

, hℓ ,1 , tdℓ ,1)

– Output (kℓ ′ , tdℓ ′), where kℓ ′ = (ℓ ′, kℓ ,2), and tdℓ ′ = tdℓ ,2.

• Level ℓ ′ = 2ℓ , Hash&Enc(kℓ ′ , G, eℓ ′−1):

– Parse eℓ ′−1 = (Gℓ , eℓ ,1), kℓ ′ = kℓ ,2.
– Output (hℓ ′ , eℓ ′) ← Hash&Enc(kℓ ,2 , Gℓ , eℓ ,1).

• Decoding Dec(td2! , h2!):

– Output d← ITDH.Dec(td2! , h2!).

This completes the description of ITDH′.

5.5 Proof of Approximate Correctness

Lemma 5.6 (Approximate Correctness). For any circuit 5 ∈ C[−→F↓!]=,B , ITDH′ satis�es (Δ′, &′)-approximate
correctness, where

Δ′ =
∑
ℓ∈[!]

Δℓ (=ℓ+1), &′ =
∑
ℓ∈[!]

&ℓ (=ℓ+1 ,�2ℓ−1 ,�2ℓ ) · 2�1+�2+...+�2ℓ−2

Proof. We start by bounding the error at each level ℓ .

Bounding error at ℓ -th level. For each ℓ ∈ [!], let A2ℓ−1 and A2ℓ be the random coins used for the KGen in
the (2ℓ −1)th level and 2ℓ th level, respectively. For each ℓ ∈ [!], let ℓ ′ = 2ℓ −1 be the starting level number for
5ℓ . Since the underlying ITDH satis�es (Δℓ (D), &ℓ (D,�1 ,�2))-approximate correctness, for any �xed ℓ ∈ [!],
and any �xed d′

ℓ−1 we have

Pr
Aℓ′ ,Aℓ′+1

[
∃G′ℓ : Ham(e2ℓ ⊕ dℓ , 5

⊕d′
ℓ−1

ℓ
(G′ℓ )) > Δℓ (=ℓ+1)

]
< &ℓ (=ℓ+1 ,�ℓ ′ ,�ℓ ′+1),

where the e2ℓ and dℓ are obtained by executing the ITDH protocol with sender’s input G′
ℓ
, and receiver’s input

5
⊕3′

ℓ−1
ℓ

, and the randomness is over the random coins Aℓ ′ , Aℓ ′+1.
Hence, if we �x the random coins A1 , A2 , . . . , Aℓ ′−1, and also �x d′

ℓ−1, then we have

Pr
Aℓ′ ,Aℓ′+1

[
∃G : dℓ−1 = d′ℓ−1 ,Ham(e2ℓ ⊕ dℓ , 5

⊕d′
ℓ−1

ℓ
(Gℓ )) > Δℓ (=ℓ+1)

]
< &ℓ (=ℓ+1 ,�ℓ ′ ,�ℓ ′+1),

where the e2ℓ and dℓ are obtained by executing the ITDH′ protocol to the (ℓ ′ + 1)th level, with sender’s input
G, receiver’s input 5 , and the random coins A1 , A2 , . . . , Aℓ ′−1 , Aℓ ′ , Aℓ ′+1. Note that in this probability, we only
consider all G such that dℓ obtained from the execution equals to the �xed d′

ℓ−1. To further remove this
restriction on G, we need to take an union bound on all possible choice of dℓ−1.
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Since we �xed A1 , A2 , . . . , Aℓ ′−1, the decoding dℓ−1 only depends on h1 , h2 , . . . , hℓ ′−1. Hence, the total num-
ber of possibilities of dℓ−1 is bounded by 2�1+�2+...+�ℓ′−1 . By taking an union bound, for any �xed A1 , A2 , . . . , Aℓ ′−1,
we have

Pr
Aℓ′ ,Aℓ′+1

[
∃G,Ham(e2ℓ ⊕ dℓ , 5

⊕dℓ−1
ℓ
(Gℓ )) > Δℓ (=ℓ+1)

]
< &ℓ (=ℓ+1 ,�ℓ ′ ,�ℓ ′+1) · 2�1+�2+...+�ℓ′−1 ,

By averaging over all possibilities of A1 , A2 , . . . , Aℓ ′−1, the above inequality still holds when A1 , A2 , . . . , Aℓ ′−1 are
sampled uniformly at random.

Now, except with probability ∑
ℓ∈[!]

&ℓ (=ℓ+1 ,�ℓ ′ ,�ℓ ′+1) · 2�1+�2+...+�ℓ′−1 ,

we have that for any G, and any ℓ ∈ [!], Ham(e2ℓ ⊕ dℓ , 5
⊕dℓ−1
ℓ
(Gℓ )) ≤ Δ(=ℓ+1).

Controlling the Error Spread. For each ℓ ∈ [!], denote out∗
ℓ

as the ideal (intermediate) outputs, out∗
ℓ
= 5ℓ◦

5ℓ−1◦· · ·◦ 51(G). Then we have out∗
ℓ
= 5ℓ (out∗ℓ−1). We denote the real (intermediate) outputs as outℓ = e2ℓ ⊕dℓ

in the honest execution. Next, instead of bounding the Hamming distance outℓ and out∗
ℓ

directly, we bound
the following Hamming distance HamF over a larger alphabet.

For any two strings 0, 1 ∈ {0, 1}= , where = = =′ ·F, we �rstly “partition” 0 as 0 = (01 , 02 , . . . , 0F)where
08 ∈ {0, 1}=

′
, 8 ∈ [F], and 1 as 1 = (11 , 12 , . . . , 1F) where 18 ∈ {0, 1}=

′
, 8 ∈ [F]. We de�ne the Hamming

distance HamF between 0 and 1 as the number of index 8 ∈ [F] such that 08 and 18 di�er. Then we have

HamF(outℓ , out∗ℓ ) ≤ HamF(outℓ , 5 ⊕dℓ−1ℓ
(Gℓ )) + HamF( 5 ⊕dℓ−1ℓ

(Gℓ ), out∗ℓ ) (2)

= HamF(e2ℓ ⊕ dℓ , 5
⊕dℓ−1
ℓ
(Gℓ )) + HamF( 5 ⊕dℓ−1ℓ

(Gℓ ), 5ℓ (out∗ℓ−1)) (3)
≤ Δ(=ℓ+1) + HamF( 5ℓ (Gℓ ⊕ dℓ−1), 5ℓ (out∗ℓ−1)) (4)
≤ Δ(=ℓ+1) + HamF(outℓ−1 , out∗ℓ−1) (5)

The �rst inequality comes from the triangular inequality of the Hamming distance. The second line follows
from the de�nition of outℓ and out∗

ℓ
. The third line follows from the bound between e2ℓ⊕dℓ and 5 ⊕dℓ−1

ℓ
(Gℓ ), and

the de�nition of the circuit 5 ⊕dℓ−1
ℓ

. The fourth line follows from the fact that 5ℓ is a F-parallel composition
circuit, hence, the “partitioned” Hamming errors between the output of 5ℓ is bounded by the “partitioned”
Hamming errors between the input of 5ℓ . Recursively applying the Equation 5, we have

Ham(e2! ⊕ d, 5 (G)) = HamF(out! , out∗!) ≤
∑
ℓ∈[!]

Δ(=ℓ+1).

By the de�nition of approximate correctness, we �nish the proof. �

5.6 Proof of Leveled Function Privacy

Lemma 5.7 (Leveled Function Privacy). The construction above satis�es leveled function privacy.

Proof. Since each key in construction ITDH′ is also a key of ITDH, the leveled function-privacy follows directly
from the leveled function privacy of the underlying protocol ITDH. �

Remark 5.8. If the underlying ITDH satis�es sub-exponential leveled function privacy, then the ITDH′ also
satis�es sub-exponential leveled function privacy.
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5.7 ITDH for TC0

We now describe how we can put the above constructions together to obtain an ITDH for TC0. Recall that,
we use the notation TC0

!
to denote the class of !-depth TC0 circuits.

Let T [−→F↓!] be the circuit family obtained by F-parallel-and-!-sequential composition of the circuit family
T , as per De�nition 5.5. We �rst show that any circuit in TC0

!
can be converted to a circuit in T [−→F↓!].

Lemma 5.9. TC0
!
can be computed in T [−→F↓!]. Speci�cally, for any circuit 5 ∈ TC0

!
with = bit input and F

output bits, we convert it in polynomial time to a circuit 5 ′ ∈ T [−→F↓!] such that, for any G ∈ {0, 1}= , 5 (G) =
5 ′(G, G, . . . , G).

Proof. For any circuit 5 ∈ TC0
!

with F output bits, we can always convert it to a layered circuit (of the same
depth !). Hence, we obtain a series of depth-1 circuits 5 ′1 , 5 ′2 , . . . , 5 ′! such that 5 ′ = 5 ′

!
◦ 5 ′

!−1 ◦ . . . 5
′
1 . To make

it a F-parallel-and-!-sequential-composition circuit, we repeat the input for F times, and for every 9 ∈ [F],
we compute the 9th output bit of 5 ′

!
◦ 5 ′

!−1 ◦ . . . ◦ 5
′
1 on the 9th repetition of the input. �

Next, we combine the construction of ITDH for the circuit family T ⊕ from Section 5.1 together with the
sequential composition theorem in section 5.4 to obtain an ITDH for the circuit family T [−→F↓!], and therefore
an ITDH for TC0

!
.

Theorem 5.10. If for any inverse polynomial � in the security parameter, there exists a trapdoor hash function
TDH for linear function family ℱ (as de�ned in De�nition 3.5) with �-enhanced correctness and sub-exponential
function privacy, then for any constants ! = $(1), 
 = $(1), and any polynomial F in the security parameter,
there exists a 2!-level interactive trapdoor hashing protocol for TC0

!
that achieves (Δ, &)-approximate correctness

and sub-exponential function privacy, where Δ(F) = 
 · F and for any �1 < �2 < . . . < �2! < F/2!,
&(F,�1 , . . . ,�!) = 2−2F+$(1).

Proof. By Lemma 5.9, since each circuit in TC0
!

can be converted to a circuit in T [−→F↓!], it su�ces to construct
ITDH for T [−→F↓!]. Since the circuit family T [−→F ]⊕ is a subset of T ⊕ , we combine the ITDH for T ⊕ with the
generic composition in section 5.4. From Lemma 5.1, we have that the interactive trapdoor hashing proto-
col ITDH for circuit family T ⊕ satis�es (Δ, & = 2(24 · max{�(�1), �(�2)} · D/Δ)Δ/2 · 2�1+�2)-approximate
correctness for any Δ. Setting Δℓ (=ℓ+1) = 
F/!, we have

&ℓ (D,�2ℓ−1 ,�2ℓ ) = 2
(
24! · �ℓ · D


F

) 
F
2!

· 2�2ℓ−1+�2ℓ ,

where �ℓ = max{�(�2ℓ−1), �(�2ℓ )}.
From Lemma 5.6, for any security parameters �1 < �2 < . . . < �2!, we have that ITDH′ satis�es (Δ′, &′)-

approximate correctness, where

Δ′(<) =
∑
ℓ∈[!]

Δℓ (=ℓ+1) ≤ ! · 
F/! ≤ 
F

&′(<,�1 ,�2 , . . . ,�2!) =
∑
ℓ∈[!]

&ℓ (=ℓ+1 ,�2ℓ−1 ,�2ℓ ) · 2�1+�2+...+�2ℓ−2 ≤ 2! ·
(
24! · �′ · B


F

) 
F
2!

· 22!·�2! ,

where �′ = max{�(�1), �(�2), . . . , �(�2!)}, and B is the upper bound for =ℓ . We set � such that

�′ <
2−6!/

F
24! · B ,
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which is an inverse polynomial. Hence, there exists a TDH construction with �-enhanced correctness. Since
2! · �2! < F, we bound &′ by &′ < 2! · 2−3F · 2F < 2−2F+$(1).

For the function privacy, since we assume sub-exponential leveled function privacy for the TDH, by Re-
mark 5.3, the ITDH satis�es sub-exponential function privacy. Then by Remark 5.8, the ITDH′ construction
satis�es sub-exponential function privacy. Since B is a polynomial in �, we prove the theorem. �

ITDH for P/poly. Since any circuit in P/poly can be converted to a layered circuit as in Lemma 5.9, the
above construction of ITDH for TC0 can be naturally extended to obtain a polynomial-level ITDH for P/poly.

6 Correlation Intractable Hash Functions for TC0

In this section, we build correlation intractable hash functions for the circuit family TC0.

6.1 De�nition

Correlation intractable hash (CIH) function is a tuple of algorithms CIH = (Gen,Hash) described as follows:

• Gen(1�): It takes as input a security parameter � and outputs a key k.

• Hash(k, G): It takes as input a hash key k and a string G, and outputs a binary string H of length
F = F(�).

We require CIH to satisfy the following property:

• Correlation Intractability: Recall that, a binary relation ' is a subset of {0, 1}∗× {0, 1}∗. We say that
CIH is correlation intractable for a class of binary relations {ℛ�}� if there exists a negligible function
�(�) such that, for any � ∈ ℕ, any n.u. PPT adversaryA, and any ' ∈ ℛ�,

Pr
[
k← Gen(1�), G ←A(1� , k) : (G,Hash(k, G)) ∈ '

]
≤ �(�)

We say that the CIH is sub-exponential correlation intractable, if there exists a constants 2 such that for
any n.u. PPT adversary, its successful probability is bounded by 2−�2 for any su�ciently large �.

De�nition 6.1 (CIH for TC0). Let =(�), F(�) be polynomials. Let ! = $(1) be a constant. Recall that, we use
TC0

!
to denote the class of !-depth threshold circuits. We say that CIH is a CIH for TC0

!
, if CIH is correlation

intractable for the class of relations {ℛ�}�, where ℛ� = {' 5 ,� | 5 ∈ TC0
!
}, and

' 5 ,� = {(G, H) ∈ {0, 1}=(�) × {0, 1}F(�) | H = 5 (G)}

6.2 Our Construction

For any ! = $(1), we show a generic transformation from an !-level ITDH for TC0
!

to a CIH for the same
circuit family.

CIH for TC0. Let ITDH = (ITDH.KGen, ITDH.Hash&Enc, ITDH.Dec) be an !-level interactive trapdoor
hashing protocol for the circuit class TC0

!
that satis�es the following properties:

• (0.01F, 2−2F+$(1))-approximate correctness.
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• Sub-exponential leveled function privacy. Let Sim be the leveled function privacy simulator. Let 2 be
the constant in the sub-exponential security de�nition.

We construct a correlation intractable hash function CIH = (CIH.Gen,CIH.Hash) for TC0
!

in Figure 5.

Correlation Intractable Hash CIH

• Gen(1�):

– For each ℓ ∈ [!], set �ℓ = �
1
2 ( 22 )!−ℓ .

– Compute simulated receiver’s messages for ITDH:

∀ℓ ∈ [!], kℓ ← ITDH.Sim(1�ℓ , 1= , 1F , ℓ )

– Sample a mask mask← {0, 1}F uniformly at random.
– Output k =

(
{kℓ }ℓ∈[!] ,mask

)
.

• Hash(k, G):

– Parse k = ({kℓ }ℓ∈[!] ,mask).
– Let e0 = ⊥. Compute hash values and encodings for ITDH:

∀ℓ ∈ [!], (hℓ , eℓ ) ← ITDH.Hash&Enc(kℓ , G, eℓ−1).

– Output e ⊕ mask, where e = e!.

Figure 5: Description of CIH.
Theorem 6.2 (Correlation Intractability). If F = Ω(�), the construction in Figure 5 is sub-exponential correla-
tion intractable for the circuit class TC0

!
.

6.3 Proof of Correlation Intractability

We prove Theorem 6.2 by contradiction. Let { 5�}� be a sequence of circuits in TC0
!
, and let A be a n.u. PPT

adversary breaking correlation intractability with probability &(�).
We �nd the contradiction by constructing a series of hybrids.

• Hyb0: In this hybrid, if the adversary’s attack successes, then output 1, otherwise output 0.

– Sample the CIH key k← Gen(1�), and run the adversary G ←A(1� , k).
– If Hash(k, G) = 5�(G), then output 1, otherwise output 0.

• Hybℓ
∗
1 : This hybrid is the same as Hyb0, except that we additionally guess the hash value hℓ ∗−1 by

sampling h′
ℓ ∗−1 from uniform distribution.

– Let h0 = td0 = ⊥. For ℓ = 1, 2, . . . , ℓ ∗ − 1, if ℓ > 1, let h′
ℓ−1 ← {0, 1}�ℓ−1 . Let

(kℓ , tdℓ ) ← ITDH.KGen(1�ℓ , ℓ , 5� , h′ℓ−1 , tdℓ−1)

– If ℓ ∗ > 1, sample h′
ℓ ∗−1 ← {0, 1}�ℓ

∗−1 uniformly at random. Let kℓ ∗ ← ITDH.Sim(1�ℓ∗ , 1= , 1F , ℓ ∗).
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– For ℓ = ℓ ∗ + 1, . . . , !, let kℓ ← ITDH.Sim(1�ℓ , 1= , 1F , ℓ ).
– Sample mask← {0, 1}F uniformly at random. Let k = ({kℓ }ℓ∈[!] ,mask).
– Run the adversary G ←A(1� , k).
– If Hash(k, G) = 5�(G) and ∀8 ∈ [ℓ ∗ − 1], h′

ℓ
= hℓ , then output 1. Otherwise, output 0.

• Hybℓ
∗
1.5: This hybrid is the same as Hybℓ

∗
1 , except that we replace the ℓ th level key with a “real key”

generated by ITDH.KGen.

– Let h0 = td0 = ⊥. For ℓ = 1, 2, . . . , ℓ ∗, if ℓ > 1, let h′
ℓ−1 ← {0, 1}�ℓ−1 . Let

(kℓ , tdℓ ) ← ITDH.KGen(1�ℓ , ℓ , 5� , h′ℓ−1 , tdℓ−1)

– For ℓ = ℓ ∗ + 1, . . . , !, let kℓ ← ITDH.Sim(1�ℓ , 1= , 1F , ℓ ).
– Sample mask← {0, 1}F uniformly at random. Let k = ({kℓ }ℓ∈[!] ,mask).
– Run the adversary G ←A(1� , k).
– If Hash(k, G) = 5�(G) and ∀8 ∈ [ℓ ∗ − 1], h′

ℓ
= hℓ , then output 1. Otherwise, output 0.

• Hyb2: This hybrid is the same as Hyb!+11 .

– Let h0 = td0 = ⊥. For ℓ = 1, 2, . . . , !, if ℓ > 1, let h′
ℓ−1 ← {0, 1}�ℓ−1 . Let

(kℓ , tdℓ ) ← ITDH.KGen(1�ℓ , ℓ , 5� , h′ℓ−1 , tdℓ−1)

– Sample h′
!
← {0, 1}�! uniformly at random.

– Sample mask← {0, 1}F uniformly at random. Let k = ({kℓ }ℓ∈[!] ,mask).
– Run the adversary G ←A(1� , k).
– If Hash(k, G) = 5�(G) and ∀8 ∈ [!], h′

ℓ
= hℓ , then output 1. Otherwise, output 0.

Lemma 6.3. For any su�ciently large �, Pr[Hybℓ ∗1.5 = 1] ≥ Pr[Hybℓ ∗1 = 1] − 2−�2ℓ∗ .

Proof. For n.u. PPT adversary A, we build the following distinguisher D for the sub-exponential function
privacy in Figure 6. When the challenger computes kℓ ∗ from ITDH.KGen, the distinguisher D simulates the
environments forA, and hence

Pr
[
kℓ ∗ ← ITDH.KGen(1�ℓ∗ , ℓ ∗ , 5� , h′ℓ ∗−1 , tdℓ ∗−1) : D(1

�ℓ∗ ) = 1
]
= Pr[Hybℓ ∗1.5 = 1].

Similarly, we also have

Pr
[
kℓ ∗ ← ITDH.Sim(1�ℓ∗ , 1= , 1F , ℓ ∗) : D(1�ℓ∗ ) = 1

]
= Pr[Hybℓ ∗1 = 1].

Note that, the distinguisherD(1�ℓ∗ ) runs in poly(�) time, since � = poly(�ℓ ∗), the distinguisher also runs
in poly(�ℓ ∗) time. If the ITDH satis�es the sub-exponential function privacy property, the probabilities on the
left hand sides di�er by at most 2−�ℓ∗ 2 , where 2 is a constant. Hence, we �nish proving the lemma.

�

Lemma 6.4. Pr[Hybℓ ∗+11 = 1] ≥ Pr[Hybℓ ∗1.5 = 1]/2�ℓ∗ .
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DistinguisherD(1�ℓ∗ )

• For each ℓ < ℓ ∗, generate kℓ using ITDH.KGen,

h′ℓ−1 ← {0, 1}
�ℓ−1 , (kℓ , tdℓ ) ← ITDH.KGen(1�ℓ , ℓ , 5� , h′ℓ−1 , tdℓ−1).

• If ℓ ∗ > 1, sample h′
ℓ ∗ ← {0, 1}ℓ

∗ uniformly at random, query the challenger with h′
ℓ ∗−1 and

tdℓ ∗−1, and get kℓ ∗ from the challenger.

• For each ℓ > ℓ ∗, generate kℓ using ITDH.Sim,

kℓ ← ITDH.Sim(1�ℓ , 1= , 1F , ℓ ).

• Sample mask← {0, 1}F uniformly at random, and let k = ({kℓ }ℓ∈[!] ,mask).

• Run the adversaryA(1� , k).

• If Hash(k, G) = 5�(G) and ∀8 ∈ [ℓ ∗ − 1], h′
ℓ
= hℓ , then output 1. Otherwise, output 0.

Figure 6: Description of the distinguisherD.

Proof. The di�erence between Hybℓ
∗
1.5 and Hybℓ

∗+1
1 is that, in Hybℓ

∗+1
1 , we guess the hash value h′

ℓ ∗ . Hence,

Pr
[
Hybℓ

∗+1
1 = 1

]
= Pr

Hybℓ
∗+1
1

[
Hash(k, G) = 5�(G) ∧ (∀8 ∈ [ℓ ∗], h′ℓ = hℓ )

]
= Pr

Hybℓ
∗+1
1

[
Hash(k, G) = 5�(G) ∧ (∀8 ∈ [ℓ ∗ − 1], h′ℓ = hℓ ) ∧ h′ℓ ∗ = hℓ ∗

]
= Pr

Hybℓ
∗+1
1

[
Hash(k, G) = 5�(G) ∧ (∀8 ∈ [ℓ ∗ − 1], h′ℓ = hℓ )

]
Pr

[
h′ℓ ∗ = hℓ ∗

]
= Pr

Hybℓ
∗
1.5

[Hash(k, G) = 5�(G) ∧ (∀8 ∈ [ℓ ∗ − 1], h′ℓ = hℓ )]/2�ℓ∗

= Pr
[
Hybℓ

∗
1.5 = 1

]
/2�ℓ∗ .

The �rst line follows from the construction of the hybrid Hybℓ
∗+1
1 . The second line is obtained by considering

the cases 8 ∈ [ℓ ∗ − 1] and 8 = ℓ ∗ separately. The third line follows from the independence of h′
ℓ ∗ and all other

random variables. The fourth line follows from the fact that the bit length of h′
ℓ ∗ is �ℓ ∗ . The �fth line follows

from the de�nition of Hybℓ ∗1.5. Hence, we �nish proving the lemma. �

Lemma 6.5. Pr[Hyb2 = 1] < 2−Ω(�).

Proof. In Hyb2, we check if ∀8 ∈ [!], h′
ℓ
= hℓ . Note that if such check passes, then Hash(k, G) equals to

e ⊕ mask, where e is the encoding in the �nal level in an honest execution. Hence,

Pr[Hyb2 = 1] ≤ Pr
mask←{0,1}F ,A1 ,A2 ,...,A!

[
∃G : e ⊕ mask = 5�(G)

]
,

where A1 , A2 , . . . , A! are the random coins for the ITDH, and the encoding e is obtained from the following
procedure.

Let h0 = td0 = e0 = ⊥. For ℓ = 1, 2, . . . , !,
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• Compute (kℓ , tdℓ ) ← ITDH.KGen(1�ℓ , ℓ , 5�hℓ−1 , tdℓ−1; Aℓ ) with random coins Aℓ .

• Hash the input G using the hash key (hℓ , eℓ ) ← ITDH.Hash&Enc(kℓ , G, eℓ−1)

Finally, let e = e! be the encoding at the �nal level, and also let d = ITDH.Dec(td! , h!).
Since the ITDH satis�es (0.01F, 2−2F+$(1))-approximate correctness, we have

Pr
A1 ,A2 ,...,A!

[∃G,Ham(e ⊕ d, 5�(G)) > 0.01F] < 2−2F+$(1).

Hence, except with probability 2−2F+$(1), we have that ∀G,Ham(e⊕d, 5�(G)) ≤ 0.01F. Denote the Hamming
error between e ⊕ d and 5�(G) as �. Then we have 5�(G) = e ⊕ d ⊕ �, and the weight of � is at most 0.01F.
Now, we have,

Pr
mask←{0,1}F ,A1 ,A2 ,...,A!

[∃G : e ⊕ mask = 5�(G)] ≤ 2−2<+$(1) + Pr
mask←{0,1}F ,A1 ,A2 ,...,A!

[∃G, � : e ⊕ mask = e ⊕ d ⊕ �]

≤ 2−2<+$(1) + Pr
mask←{0,1}F ,A1 ,A2 ,...,A!

[∃G, � : mask = d ⊕ �]

Note that, for any �xed random coins A1 , A2 , . . . , A!, the decoding value d only depends on h1 , h2 , . . . , h!. The
number of possible choice of d is 2�1+�2+...+�! ≤ 22�! ≤ 22�1/2 . The number of possible values of � is at most(

F
0.01F

)
≤ (1004)0.01F ≤ 2F/2. Hence, we have

Pr
mask←{0,1}F ,A1 ,A2 ,...,A!

[∃G, � : mask = d ⊕ �] < 22�1/2 · 2F/2 · 2−F = 2−(F/2−2�1/2) = 2−Ω(�)

�

Completing the Proof. Let &(�) = Pr[Hyb0 = 1]. We �rst claim that, for each ℓ ∗ ∈ [! + 1], we have

Pr
[
Hybℓ

∗
1 = 1

]
≥ (&(�) − ℓ ∗2−�2

1+2�1)/22�ℓ∗−1 ,

where �0 = 0.
We now prove this claim by induction on ℓ ∗. For ℓ ∗ = 1, since Hyb11 and Hyb0 are identical, we have

Pr
[
Hyb11 = 1

]
= Pr

[
Hyb0 = 1

]
≥ &(�). Hence, then the claim holds for ℓ ∗ = 1. Now, we assume the claim

holds for ℓ ∗, we prove that the claim holds for ℓ ∗ + 1 as follows.
From Lemma 6.3, we have

Pr
[
Hybℓ

∗
1.5 = 1

]
≥ Pr

[
Hybℓ

∗
1 = 1

]
− 2�2ℓ∗ ≥ &(�) − ℓ ∗2−�2

1+2�1/22�ℓ∗−1 − 2−�2ℓ∗ .

By the choice of the parameters, we have �ℓ ∗ = (�ℓ ∗−1)
2
2 . Hence, the right hand side is bounded by

&(�) − ℓ ∗2−�2
1+2�1/22�ℓ∗−1 − 2−�2

ℓ∗−1 = (&(�) − ℓ ∗2−�2
1+2�1 − 2−�2

ℓ∗−1+�ℓ∗−1)/22�ℓ∗−1

≥ (&(�) − (ℓ ∗ + 1)2−�2
1+2�1)/22�ℓ∗−1

Then, by Lemma 6.4, we have

Pr
[
Hybℓ

∗+1
1 = 1

]
≥ Pr[Hybℓ ∗1.5 = 1]/2�ℓ∗ ≥ (&(�) − (ℓ ∗ + 1)2−�2

1+2�1)/22�ℓ∗−1+�ℓ∗

> (&(�) − (ℓ ∗ + 1)2−�2
1+2�1)/22�ℓ∗ .

Hence, we �nish prove the claim.
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By this claim, and the fact that Hyb2 is identical to Hyb!+11 we know that

Pr[Hyb2 = 1] = Pr[Hyb!+11 = 1] ≥ (&(�) − (! + 1)2−�2
1+2�1)/22�1/2

.

From Lemma 6.5, we have Pr[Hyb2 = 1] < 2−Ω(�). Hence, we have

&(�) < 2−Ω(�)+2�1/2 + (! + 1)2−�2
1+2�1 .

Since ! = $(1) and �1 = �Θ(1), we �nish the proof.

6.4 On the Trade-o� between DDH-hardness and the Circuit Class for CIH

In the previous subsections, we constructed CIH for TC0 based on sub-exponential hardness of DDH against
polynomial time adversaries. In this section, we show that we can in fact trade-o� between the hardness
assumption on DDH and the depth of the circuit class for CIH.

CIH for $(log log�)-depth Threshold Circuits. If we assume sub-exponential hardness of DDH against
sub-exponential time adversaries, then we can obtain CIH for $(log log�)-depth threshold circuits.

Theorem 6.6 (CIH for $(log log�)-depth Threshold Circuits.). If we assume there exists a constant 0 < 2 < 1
such that for any non-uniform adversary running in time 2$(�2), the advantage for DDH is bounded by 2−Ω(�2),
then there exists a construction of CIH for any polynomial size circuits with depth 1−>(1)

4 log(2/2) log log�, and output
length Ω(�).

We can set the security parameters for 8th level as �8 = (log2 �)(
2
2 )8 , for 8 = 1, 2, . . . , 1

4 log(2/2) log log� ·
(1 − >(1)). Note that at the last level, �! ≤ �1/2. Then the proofs in Section 6.3 can be extended to CIH
for 1−>(1)

4 log(2/2) log log�-depth threshold circuits. Note that here we crucially rely on the sub-exponential time
assumption, since an adversary that runs in time polynomial in � is an adversary that runs in time sub-
exponential in �8 .

CIH for TC1. If we assume exponential hardness of DDH against polynomial time adversaries, then we can
obtain CIH for TC1, i.e., log-depth threshold circuits.

Theorem 6.7 (CIH for TC1). If we assume there exists a constant� > 1 such that for any non-uniform adversary
running in polynomial time, the advantage for DDH is bounded by 2−Ω(�/�). Then there exists a construction of
CIH for any polynomial size threshold circuits with depth b 13 · log2� �c and output length Ω(�).

We can set the security parameter for 8th level as �8 = �1/3 · (2�)8 , where 8 = 1, 2, . . . , b 13 · log2� �c. Note
that at the last level, �! ≤ �2/3. Then the proofs in Section 6.3 also work for TC1 circuits.

7 Non-Interactive (Statistical) Zero-Knowledge Arguments for NP

In this section, we present our constructions of NIZK arguments for NP in the common random string model.
We present two variants: one that achieves statistical zero knowledge and non-adaptive soundness, and an-
other that achieves computational zero knowledge and adaptive soundness. For most of this section, we focus
on the �rst variant, namely, statistical NIZK arguments for NP. We obtain the computational variant via simple
modi�cations to our �rst construction.

The rest of this section is organized as follows:
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• In Section 7.1, we construct a lossy public key encryption scheme LPKE with low-depth decryption
property, which essentially requires that the decryption circuit is in TC0.

• Using LPKE, we construct a trapdoor sigma protocol for NP that achieves statistical honest-veri�er zero
knowledge. This protocol achieves two additional key properties – low-depth bad challenge function and
knowledge extraction. We describe this construction in Section 7.2.

• Next, in Section 7.3, we construct non-interactive statistical witness indistinguishable (NISWI) argu-
ments for NP in the common random string model via the correlation-intractability framework. Namely,
we use CIH for TC0 to collapse the rounds of � parallel-repetitions of the trapdoor sigma protocol
from the previous step to obtain NISWIs. We further prove that the resulting scheme achieves (sub-
exponential) non-adaptive argument of knowledge property.

• In Section 7.4, we describe a variant of the FLS “OR-trick” [32] to transform NISWI for NP from the
previous step to multi-theorem statistical NIZK for NP, while preserving the distribution of the CRS.

• Finally, in Section 7.5, we sketch our construction of multi-theorem computational NIZK arguments for
NP with adaptive soundness in the common random string model. This variant is obtained via the same
steps as above, except that we replace the lossy public-key encryption scheme (used for constructing
trapdoor sigma protocol) with Elgamal encryption [31].

7.1 Lossy Public Key Encryption with Low-Depth Decryption

A lossy public key encryption scheme is a tuple of algorithms (LossyGen,Gen, Enc), which proceeds as fol-
lows.

• Gen(1�): The key generation algorithm takes as input a security parameter �, and it outputs a public
key pk and a secret key sk.

• LossyGen(1�): The lossy public key generation algorithm takes as input the security parameter, and it
outputs a lossy public key p̃k.

• Enc(pk, <): The encryption algorithm takes as input a public key pk, and a message < ∈ ℤ2, it outputs
a ciphertext ct.

We require the algorithms to satisfy the following properties.

• Key Indistinguishability: For any n.u. PPT distinguisher D, there exists a negligible function �(�)
such that for any � ∈ ℕ,���� Pr [

(pk, sk) ← Gen(1�) : D(1� , pk) = 1
]
− Pr

[
p̃k← LossyGen(1�) : D(1� , p̃k) = 1

] ���� ≤ �(�).

Furthermore, we say the scheme satis�es sub-exponential key indistinguishability, if there exists a con-
stants 2 and �0 such that for any n.u. PPT distinguisher, the advantage �(�) is bounded by 2−�2 for any
su�ciently large �.

• Statistical Semantic Security in Lossy Mode: There exists a negligible function �(�) s.t. for any two
messages <1 , <2 ∈ ℤ2,

SD
((
p̃k, Enc(p̃k, <1)

)
,
(
p̃k, Enc(p̃k, <2)

))
≤ �(�),
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where p̃k← LossyGen(1�), and the randomness of the distribution is over the randomness of LossyGen
and Enc.

• Low-Depth Decryption: There exists a sequence of circuits {Dec�}� in TC0 and a deterministic
polynomial-time algorithm PreComp such that, for any � ∈ ℕ and any message < ∈ ℤ2,

Pr
[
(pk, sk) ← Gen(1�), ct← Enc(pk, <), <′← Dec�(PreComp(1� , ct), sk) : < = <′

]
= 1.

7.1.1 Construction

We describe our lossy public key encryption scheme LPKE in Figure 7. Our construction is essentially the same
as the dual-mode encryption scheme in [59]. We show that this construction achieves low-depth decryption
property.

We instantiate the group G as the standard prime order subgroup of ℤ∗@ , with e�cient group membership
testing algorithm. For instantiation from Elliptic curves, see Appendix B.

Lossy Public Key Encryption LPKE

• Gen(1�):

– Generate a group using G: (G, ?, 6) ← G(1�).
– Sample 0, 1 ← ℤ? .

– Output
(
pk =

(
G, ?,

[
6 61

60 601

] )
, sk = 0

)
.

• LossyGen(1�):

– Generate a group using G: (G, ?, 6) ← G(1�).
– Sample the elements uniformly at random from G, 612 , 621 , 622 ← G.

– Output p̃k =
(
G, ?,

[
6 612
621 622

] )
.

• Enc(pk, <; A):

– Parse pk =

(
G, ?,

[
611 612
621 622

] )
, < ∈ {0, 1} and A = (A1 , A2) ∈ ℤ2

? .

– Output the ciphertext ct =
[

6A111 · 6
A2
12

6A121 · 6
A2
22 · 6<

]

Figure 7: Construction of the lossy public key encryption.

We now prove that LPKE achieves the required properties.

Lemma 7.1 (Statistical Semantic Security in Lossy Mode). The proposed scheme LPKE satis�es statistical se-
mantic security in lossy mode.
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Proof. For any lossy public key

p̃k =

(
G, ?,

[
61 60

61 62

] )
,

where 0, 1, 2 are sampled from uniform distribution over ℤ? , with probability 1 − 1/|G|, 2 ≠ 01. When it

happens, the matrix
[
1 0

1 2

]
is non-singular and hence the ciphertext ct← Enc(p̃k, <) is uniformly distributed

over G2 and is independent of <. Hence,

SD((p̃k, Enc(p̃k, <)), (p̃k, *)) ≤ 1/|G|,

where* is the uniform distribution overG2. By the triangular inequality of statistical distance, (p̃k, Enc(p̃k, <1))
and (p̃k, Enc(p̃k, <2)) are statistically indistinguishable, for any messages <1 , <2 ∈ ℤ2. We �nish the proof.

�

Lemma 7.2 (Key Indistinguishability). Assuming (sub-exponential) DDH, the proposed scheme LPKE satis�es
(sub-exponential) key indistinguishability.

Proof. Since an injective mode public key is a DDH tuple and a lossy public key is subjected to uniformly dis-
tribution, the (sub-exponential) key indistinguishability follows from the (sub-exponential) DDH assumption
directly. �

Lemma 7.3 (Low-Depth Decryption). The proposed scheme LPKE satis�es low-depth decryption property.

Proof. We construct the following algorithm PreComp and the circuit family {Dec�}�. For any sk = 0, we
denote (00 , 01 , . . . , 0�) to be binary representation of 0, i.e., 0 = 0020 + 0121 + . . . + 0�2� where 08 ∈ {0, 1}.
Since Dec� is a circuit over boolean value, it takes as the inputs in the binary representation form. Hence, we
can assume Dec� takes 00 , 01 , . . . , 0� as input.

• PreComp(1� , 2 = (21 , 22) ∈ G2): Output (2−201 , 2−2
1

1 , 2−2
2

1 , . . . , 2−2
�

1 , 22).

• Dec�
(
(2′0 , 2′1 , 2′2 , . . . , 2′� , 22), sk = (00 , 01 , . . . , 0�)

)
:

– For each 8 ∈ 0, 1, . . . ,�, if 08 = 0, let 68 = 1G. Otherwise, let 68 = 2′8 .
– Compute D = 60 · 61 · . . . · 6� · 22, where the iterative multiplication is over ℤ∗@ .
– Compare D with 1G. If D = 1G, output 0. Otherwise output 1.

We �rst argue the correctness of Dec�. It is easy to see that for any ciphertext ct = Enc(pk, <; A) of
the message < ∈ {0, 1} and randomness A using public key pk, we have that Dec�(PreComp(1� , 2), td) =
2−01 · 22 = <.

Next, we argue the low-depth property. Note that the �rst step of Dec� can be easily computed by a
constant depth threshold circuit. From [60], we have that the second step, which involves multiplication of �
inputs mod a prime @, can also be computed in TC0. For the third step, the comparison between 60 and 1G
can be computed in TC0. Hence, by composing these circuits, we obtain a circuit for Dec� in TC0. �

7.2 Trapdoor Sigma Protocol

In this section, we construct trapdoor sigma protocols for NP with low-depth bad challenge functions, and
with an additional knowledge extraction property. We start by providing a formal de�nition.
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De�nition. A trapdoor sigma protocol for a languageℒ is a tuple of algorithmsΣ = (Genzk ,Gensound , P,V)
described as follows:

• crszk ← Genzk(1�): It takes as input the security parameter and outputs a uniformly distributed “ZK
mode” CRS crszk.

• (crssound , td) ← Gensound(1�): It takes as input the security parameter and outputs a “soundness mode”
CRS crssound and a trapdoor td.

• Round 1: At the start of the protocol, the prover P and the veri�er V receive a CRS crs and an instance
G ∈ ℒ. The prover P additionally receives a witness $. It computes a �rst round message 
 and sends
it to V.

• Round 2: The veri�er V sends a random challenge � ∈ {0, 1} to P.

• Round 3: Upon receiving �, the prover P computes a third round message � and sends it to the veri�er
V.

• Veri�cation: Upon receiving �, V either accepts or rejects the transcript (
, �, �).

We require Σ to satisfy the following properties:

• Completeness: For any crs generated by Genzk or Gensound, G ∈ ℒ and any witness $ for G,

Pr [OutV (P (crs, G, $) ↔ V (crs, G)) = accept] = 1,

where OutV(4) is the output of V in a protocol execution 4 .

• CRS Indistinguishability: For any n.u. PPT distinguisher D, there exists a negligible function �(�)
such that for any � ∈ ℕ,���� Pr [

crszk ← Genzk(1�) : D(1� , crszk) = 1
]
− Pr

[
crssound ← LossyGen(1�) : D(1� , crssound) = 1

] ���� ≤ �(�).

Furthermore, we say the scheme satis�es sub-exponential CRS indistinguishability, if there exists a
constant 0 < 2 < 1 such that for any n.u. PPT distinguisher, the advantage �(�) is bounded by 2−�2 for
any su�ciently large �.

• Adaptive Statistical Honest-Veri�er Zero Knowledge: There exists a PPT simulator S and a negli-
gible function �(�) such that, for any unbounded adversaryA,��Pr [

Real(1�) = 1
]
− Pr

[
Ideal(1�) = 1

] �� ≤ �(�),

where the experiments Real and Ideal are described as follows:
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Real(1�) :

crszk ← Genzk(1�).
(G, $) ← A(crszk).
If ℛ(G, $) ≠ 1, output 0.

← P(1� , crszk , G, $).
�← {0, 1}, and �← P(�).
OutputA(
, �, �).

Ideal(1�) :

crszk ← Genzk(1�).
(G, $) ← A(crszk).
If ℛ(G, $) ≠ 1 output 0.
�← {0, 1}.
(
, �) ← S(1� , crszk , G, �).
OutputA(
, �, �).

We say that the trapdoor sigma protocol satis�es adaptive computational honest-veri�er zero knowl-
edge, if the above condition holds for any non-uniform PPT adversary.

• BadChallenge Function in TC0: There exists a sequence of circuits {BadC�}� in TC0, and a determin-
istic polynomial time algorithm PreComp(·, ·), such that for any (crssound , td) ← Gensound(1�), instance
G ∉ ℒ and any accepting transcript (
, �, �) for G,

� = BadC�(PreComp(1� , 
), td).8

• Knowledge Extraction: There exists a polynomial time extractor Ext such that, for any soundness
mode CRS (crssound , td) ← Gensound(1�), any instance G ∈ {0, 1}∗, and any accepting transcript
(
, �, �), if � ≠ BadC�(PreComp(1� , 
), td), then

Pr
[
$← Ext(
, �, �, td) : ℛ(G, $) = 1

]
= 1.

Remark 7.4. The bad challenge function we de�ne above satis�es the “instance-universality” property [15].
Namely, the bad challenge function does not depend on the instance G. As in [15], we rely on this property to
achieve adaptive soundness for our computational NIZK construction.

7.2.1 Construction

We construct our desired trapdoor sigma protocol for NP by instantiating the commitment scheme in the
trapdoor sigma protocol of [15] (Construction 3.1) with the lossy public key encryption from Section 7.1.

Protocol from [15], Slightly Modi�ed. Brakerski et al. [15] constructed a so-called “commit-and-open”
trapdoor sigma protocol where in the �rst round, the prover commits to a string bit-by-bit, and then in the
third round, the prover opens some positions of the commitments and provides some other information to
complete the proof. The crucial property of their construction, that we shall use, is that the bad challenge
function only consists of the following two computations: extraction from the commitments sent by the
prover, and veri�cation of a 3-CNF. While the �rst step is common to trapdoor sigma protocols, the second
step is due to the use of Cook-Levin theorem in [15] (for reducing the depth of the bad challenge function).
Recall that for any polynomial size circuit �(·), from the Cook-Levin theorem, we can convert it e�ciently
to a 3-CNF Φ�(·, ·) such that, for any input G, �(G) = 1 if and only if Φ�(G, ·) is satis�able. Furthermore, for
any �(G) = 1, we can compute e�ciently a witness $′ such that Φ�(G, $′) = 1.

We now brie�y describe the trapdoor sigma protocol, which is slightly modi�ed from [15].
8Note that this implies that for any false instance G ∉ ℒ and any 
, there is a unique � for which there exists an accepting �.
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• CRS Generation: The CRS crs contains a commitment key. The commitment key is generated with a
trapdoor td that allows one to extract the message from the commitment.

• First Round: The prover prepares the �rst round message 
 in Blum’s protocol [9]. In addition, the
prover prepares the third round response �1 for the challenge bit � = 1. Let �(
, �1) = V(crs, 
, 1, �1)
be the veri�cation circuit for the challenge bit � = 1 in Blum’s protocol.9 The prover applies a Cook-
Levin reduction to � and the assigment (
, �1), and obtains a 3-CNF Φ�(·, ·) and a witness $′. Then
the prover sends the bit-by-bit commitments 2�1 ← Com(�1), 2$′ ← Com($′) and 
 to the veri�er.

• Second Round: The veri�er sends a random challenge �← {0, 1} to the prover.

• Third Round: Upon receiving the random challenge � ∈ {0, 1}, if � = 0, then the prover responds
with the third round message in the Blum’s protocol. If � = 1, the prover opens the commitments to �1
and $′, and sends �1 , $′ and their openings to the veri�er.

• Veri�cation: Given the transcript, if � = 0, the veri�er performs the same veri�cation as in Blum’s pro-
tocol. If � = 1, the veri�er checks if the openings of �1 , $′ are correct, and checks ifΦ�((
, �1), $′) = 1.

• Bad Challenge Function: It proceeds in the following two steps:

– Extraction: It uses td to extract the (�1 , $′) from the commitments.
– Ver�cation: If Φ�((
, �1), $′) = 1, then output 1, otherwise output 0.

Our Construction. We construct our desired trapdoor sigma protocol Σ for NP by instantiating the com-
mitment scheme Com in the above protocol with the lossy public key encryption LPKE in Section 7.1. A CRS
of the resulting protocol contains a public key of LPKE; when the public key is lossy (resp., injective), the CRS
is in ZK (resp., soundness) mode.

We now prove that the resulting protocol satis�es our required properties. The CRS indistinguishability
follows directly from the key indistinguishability of LPKE. The completeness property follows from the com-
pleteness of the underlying Blum’s protocol and the Cook-Levin theorem. The construction in [15] is proven
to achieve adaptive computational zero-knowledge property. Here, we observe that when we instantiate the
commitment scheme with LPKE, the resulting construction achieves adaptive statistical zero knowledge prop-
erty since LPKE satis�es statistical semantic security in lossy mode.

Next, we argue that the construction satis�es the bad challenge function in TC0 and the knowledge ex-
traction properties.

Bad Challenge Function in TC0. As described above, the bad challenge function for the trapdoor sigma protocol
of [15] consists of two steps: extraction from the commitments, and an evaluation ofΦ� . For our instantiation,
the �rst step can be computed as LPKE.Dec�(LPKE.PreComp(1� , ·), td), where {LPKE.Dec�}� is the sequence
of decryption circuits in TC0 for LPKE and LPKE.PreComp is the associated deterministic pre-computation
algorithm. Furthermore, the second step that involves evaluation of Φ� can be computed in AC0.

We therefore de�ne BadC� and PreComp for our trapdoor sigma protocol as follows:

PreComp(1� , (2�1 , 2$′ , 
)) = (LPKE.PreComp(1� , 2�1), LPKE.PreComp(1� , 2$′), 
),
BadC�((2′�1 , 2

′
$′ , 
), td) = Φ�((
, LPKE.Dec�(2′�1 , td)), LPKE.Dec�(2

′
$′ , td)).

From the above, it follows that BadC� ∈ TC0.
9Here we assume that the veri�cation circuit does not take the instance G as input for the challenge � = 1. Recall that Blum’s

protocol only checks whether the committed graph is a cycle graph for one of the challenge. Hence such a property can be achieved.
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Knowledge Extraction. To argue knowledge extraction, we leverage the special soundness of Blum’s protocol.
Recall that special soundness guarantees that given two accepting transcripts with di�erent challenges where
the �rst round messages are the same, one can e�ciently extract a witness.

For any accepting transcript (
′, �, �) with � ≠ BadC�(PreComp(1� , 
′), td), where 
′ = (2�1 , 2$′ , 
),
we consider two cases.

• Case 1 � = 0: Then the bad challenge function outputs 1. We �rst execute the extraction step in the
bad challenge function, and obtain (�1 , $′). As the bad challenge function outputs 1, �1 is an accepting
witness for the Blum’s protocol. Since � is the other accepting response for the challenge � = 0 for
Blum’s protocol, we obtain two accepting transcripts, and hence can extract a witness via the special
soundness property of Blum’s protocol.

• Case 2 � = 1: Then the bad challenge function outputs 0. We will argue that this is impossible. Recall
that, � contains (�1 , $′) and the openings with respect to their commitments. Since the transcript is
accepting, Φ�((
, �1), $′) = 1 and the openings are accepted. Recall that, once we instantiate the
commitment scheme with our lossy public key encryption, the opening contains the randomness used
in the encryption. Hence, since the openings are accepted, the bad challenge function also extracts the
same (�1 , $′). However, the output value of the bad challenge function implies thatΦ�((
, �1), $′) = 0,
which contradicts Φ�((
, �1), $′) = 1. Hence, this case is impossible.

From the above, we have that only the �rst case is possible. This concludes the proof of the knowledge
extraction property.

7.3 Non-Interactive Statistical Witness Indistinguishable Argument for NP

We construct a non-interactive statistical witness indistinguishable (NISWI) argument systemΠ = (CGen, P,V)
for NP in the common random string model with adaptive statistical witness indistinguishability and (sub-
exponential) non-adaptive argument of knowledge properties.

Our construction relies on the following two ingredients:

• A trapdoor sigma protocol Σ = (Σ.Genzk ,Σ.Gensound ,Σ.P,Σ.V) for ℒ. Let {Σ.BadC�}� be the family
of bad challenge functions in TC0 and Σ.PreComp be the deterministic “pre-computation” algorithm
associated with Σ, and let Σ.Ext be the knowledge extractor associated with Σ.

• A correlation intractable hash function CIH = (CIH.Gen,CIH.Hash) for TC0. Furthermore, we require
that the CIH satis�es sub-exponential correlation intractability.

Construction of Π. Our scheme Π is described in Figure 8.

Lemma 7.5 (Completeness). The proposed scheme Π satis�es completeness.

Proof. Let � = ({
8}8∈[F] , {�8}8∈[F]) be any proof generated by an honest prover for an instance G ∈ ℒ. From
the completeness of the sigma protocol Σ, we have that

Pr
[
out8 ← Σ(8).V(crszk , G, (
8 , �8 , �8)) : out8 = 1

]
= 1.

Hence, the veri�er accepts the proof with probability 1. �

Lemma 7.6 (Adaptive SWI). The proposed scheme Π is adaptive statistical witness indistinguishable.

Proof. We prove the adaptive statistical WI property by constructing a series of hybrids.
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NISWI Argument System Π for NP

CRS Generation CGen(1�): Sample a CIH key k← CIH.Gen(1�), and a CRS crszk ← Σ.Genzk(1�).
Output crs = (k, crszk).

Prover P (crs, G, $): The prover receives as input a CRS crs = (k, crszk), an instance G and a witness
$ where ℛ(G, $) = 1.

The prover runs F = � copies of the trapdoor sigma protocol Σ, denoted as Σ(1) , . . . ,Σ(F) in parallel:

• Compute �rst round prover messages: 
8 ← Σ(8).P(1� , crszk , G, $).

• Compute veri�er challenges:

{�8}8∈[F] ← CIH.Hash(k, {Σ(8).PreComp(1� , 
8)}8∈[F]).

• Compute third round prover messages: �8 ← Σ(8).P(�8).

It outputs the proof � =
(
{
8}8∈[F] , {�8}8∈[F]

)
.

Veri�er V(crs, G,�): The veri�er takes as input a CRS crs = (k, crszk), an instance G and a proof �.
It performs the following steps:

• Parse the proof � =
(
{
8}8∈[F] , {�8}8∈[F]

)
.

• Compute veri�er challenges:

{�8}8∈[F] ← CIH.Hash
(
k,

{
Σ(8).PreComp(1� , 
8)

}
8∈[F]

)
.

• For every 8 ∈ [F], verify the transcript (
8 , �8 , �8) of Σ(8): out8 ← Σ(8).V
(
crszk , G,

(

8 , �8 , �8

) )
.

If any out8 = 0, then output reject. Otherwise output accept.

Figure 8: NISWI Argument System Π for NP

• Hyb0: This hybrid is simply the experiment Expr0 in the de�nition of adaptive SWI. Let ($0 , $1) be the
two witnesses chosen by the adversary.

• Hyb8
∗
1 : This hybrid is the same as Hyb0, except that for each 8 < 8∗, we compute (
8 , �8) using $1. For

each 8 ≥ 8∗, we compute (
8 , �8) using $0.

• Hyb8
∗
2 : This hybrid is the same as Hyb8∗1 , except that, before the output, we guess a random �← {0, 1}.

Let {�8}8∈[F] = CIH.Hash(k, {Σ(8).PreComp(1� , 
8)}8∈[F]). If � = �8∗ , then proceed to output. Other-
wise, start running the hybrid from the beginning again. If the guessing process fails for � times, then
abort.

• Hyb8
∗
3 : This hybrid is the same as Hyb8

∗
2 , except that for 8 = 8∗, we run the simulator on the guessed

challenge � to compute (
8∗ , �8∗) ← Σ.S(1� , crszk , G, �).
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• Hyb4 This hybrid is identical to the experiment Expr1, where all (
8 , �8) tuples are computed using $1.

We now show that Hyb0 and Hyb4 are statistically indistinguishable.

Hyb0 ≡ Hyb11: This follows from the de�nition of these two hybrids.

Hyb8
∗
1 ≈B Hyb8

∗
2 : Since � is sampled uniformly at random, it is independent of �8∗ . Hence each guess in Hyb8

∗
2

is correct with probability 1/2, and thus the hybrid aborts with probability 1/2�. Conditioned on the
event thatHyb8∗2 doesn’t abort, its output distribution is identical toHyb8

∗
1 . Hence, the statistical distance

between Hyb8
∗
1 and Hyb8

∗
2 is at most 1/2�.

Hyb8
∗
2 ≈B Hyb8

∗
3 : This follows from the adaptive statistical honest veri�er zero-knowledge property of Σ.

Hyb8
∗
3 ≈B Hyb8

∗+1
1 : This also follows from the adaptive statistical honest veri�er zero-knowledge property of

Σ.

HybF+11 ≡ Hyb4: This follows from the de�nition of the hybrids above.

�

Lemma 7.7 (Non-adaptive Argument of Knowledge). The proposed scheme Π satis�es sub-exponential non-
adaptive argument of knowledge.

Proof. Let Ext be the extractor in the knowledge extraction property of the trapdoor sigma protocol. We build
the extractor in Figure 9.

Extractor �1(1�)

• Sample k← CIH.Gen(1�), (crssound , td) ← Σ.Gensound(1�).

• Output (crs = (k, crssound), td).

Extractor �2(td, G,�)

• Parse � = ({
8}8∈[F] , {�8}8∈[F]).

• Let {�8}8∈[F] = CIH.Hash
(
k,

{
Σ.PreComp(1� , 
8)

}
8∈[F]

)
.

• If �8 = Σ.BadC�(Σ.PreComp(1� , 
8), td) for all 8 ∈ [F], then abort.

• Let 8∗ be the smallest 8 such that �8 ≠ Σ.BadC�(Σ.PreComp(1� , 
8), td).

• Output Σ.Ext(
8∗ , �8∗ , �8∗ , td).

Figure 9: Extractor � = (�1 , �2).

Since the only di�erence between the CRS generated by CGen and the CRS obtained from �1 is that, CGen
invokes Σ.Genzk while �1 invokes Σ.Gensound, by the sub-exponential CRS indistinguishability, for any n.u.
PPT cheating prover P∗ we have

Pr
[
G ← P∗(1�), (crs, td) ← �1(1�),�← P∗(crs) : V(crs, G,�) = 1

]
≥
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Pr
[
G ← P∗(1�), crs← CGen(1�),�← P∗(crs) : V(crs, G,�) = 1

]
− �(�),

where �(�) is a sub-exponential function.
By the correlation intractability of CIH, there exists a sub-exponential function �′ such that

Pr
[
G ← P∗(1�), (crs, td) ← �1(1�),�← P∗(crs) : �2(td, G,�) abort

]
≤ �′(�).

Hence, we have

Pr[G ← P∗(1�), (crs, td) ← �1(1�),�← P∗(crs) : V(crs, G,�) = 1 ∧ �2(td, G,�) does not abort] ≥
Pr

[
G ← P∗(1�), crs← CGen(1�),�← P∗(crs) : V(crs, G,�) = 1

]
− �(�) − �′(�),

When V(crs, G,�) = 1, we have that (
8 , �8 , �8) is accepted, for any 8 ∈ [F]. By the knowledge extraction
property of the trapdoor sigma protocol, when �2 does not abort, we have ℛ(G, $) = 1. Hence, we �nish the
proof. �

7.4 From NISWI to Multi-Theorem NIZK

We now provide a general transformation from a statistical NISWI argument system for NP with non-adaptive
argument of knowledge property to an adaptive, multi-theorem statistical NIZK argument system for NP with
non-adaptive soundness. Our transformation relies on the hardness of discrete logarithm and uses a slight
variant of the “OR-trick” from [32].

Construction. Let Π′ = (Π′.Gen,Π′.P,Π′.V) be a NISWI argument system for an NP-Complete language
ℒ′ with (sub-exponential) non-adaptive argument of knowledge property. Let G be a prime-order group
generator for which discrete logarithm is hard.

We build a NISZK argument system Π = (Gen, P,V) for any NP language ℒ, with adaptive statistical
zero-knowledge and (sub-exponential) non-adaptive computational soundness property. The construction is
described in Figure 10.

Lemma 7.8 (Completeness). The proposed scheme Π satis�es completeness.

Proof. For any instance G ∈ ℒ, and any witness $ of G, by the de�nition of ℒor, we have that Gor constructed
in Figure 10 is in ℒor, and $or = ($, 0) is a witness for Gor. Hence, the completeness follows from the
completeness of the underlying protocol Π′. �

Lemma 7.9 (Multi-Theorem Adaptive Statistical Zero-Knowledge). The proposed scheme Π is multi-theorem
adaptive statistical zero knowledge.

Proof. We build the following simulator S = (S1 , S2).

• S1(1�):

– Sample a CRS of Π′: Π′.crs← Π′.Gen(1�).
– Generate a prime order group (G, ?, 6) ← G(1�).
– Sample C ← ℤ? , and let ℎ = 6C .
– Output crs = (Π′.crs, (G, ?, 6, ℎ)), and td = (C , crs).

• S2(td, G):
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NISZK Argument System Π for Language ℒ.

• CRS Generation Gen(1�):

– Sample a CRS for Π′: Π′.crs← Π′.Gen(1�).
– Generate a prime order group (G, ?, 6) ← G(1�).
– Sample ℎ ← G uniformly at random.
– Output crs = (Π′.crs, (G, ?, 6, ℎ))

• Prover P(crs, G, $):

– Let ℒor be an NP language, where an instance (G, (G, ?, 6, ℎ)) ∈ ℒor if and only if
there exists a witness ($, 0) such that either $ is a witness for G ∈ ℒ or 60 = ℎ.

– Let Gor = (G, (G, ?, 6, ℎ)) and $or = ($, 0). Use NP reduction on (Gor , $or) to obtain
an instance G′ ∈ ℒ′ and witness $′ for G′.

– Compute a proof for Π′: �← Π′.P(Π′.crs, G′, $′).
– Output �.

• Veri�er V(crs, G,�):

– Parse crs = (Π′.crs, (G, ?, 6, ℎ)).
– Let Gor = (G, (G, ?, 6, ℎ)). Use NP reduction on Gor to obtain G′.
– Output out← Π′.V(Π′.crs, G′,�).

Figure 10: NISZK argument system Π for language ℒ.

– Let Gor = (G, (G, ?, 6, ℎ)), and $̃or = (0, C). Use NP reduction on (Gor , $̃or) to obtain an instance
G′ ∈ ℒ′ and witness $̃′ for G′. Run the prover algorithm of Π′ to compute:

�← Π′.P(Π′.crs, G′, $̃′).

– Output �.

Since C is sampled uniformly at random from ℤ? and 6 is a generator of G, 6C is uniformly distributed
over G. Hence, the distribution of crs generated by the simulator is identical to that in the real execution.
Then, the adaptive statistical zero knowledge property of Π follows from the adaptive statistical witness
indistinguishability of Π′. �

Lemma 7.10 (Non-adaptive Computational Soundness). Assuming (sub-exponential) hardness of discrete log-
arithm, the proposed scheme Π satis�es (sub-exponential) non-adaptive computational soundness.

Proof. Suppose there exists a n.u. PPT adversary P∗, and a non-negligible function &(�) such that

Pr
[
G ← P∗(1�), crs← Gen(1�),�← P∗(crs) : G ∉ ℒ ∧ V(crs, G,�) = 1

]
> &(�),

for in�nite many � ∈ ℕ. Then there exists in�nite many � such that, there exists a random coin A� and
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G� = P∗(1�; A�) such that

Pr
[
G� = P∗(1�; A�), crs← Gen(1�),�← P∗(crs) : G� ∉ ℒ ∧ V(crs, G� ,�) = 1

]
> &(�),

where the probability is only over the randomness of Gen(1�) and P∗(crs). Since the probability is greater
than 0, G� ∉ ℒ.

We build the following non-uniform cheating prover P′ for Π′:

• P′(1�) computes G� = P∗(1�; A�), and generates a prime order group (G, ?, 6) ← G(1�). Then it samples
ℎ ← G and outputs Gor = (G� , (G, ?, 6, ℎ)).

• Upon receiving input Π′.crs, P′ sets crs = (Π′.crs, (G, ?, 6, ℎ)). It computes � ← P∗(crs) and outputs
�.

From the non-adaptive argument of knowledge property ofΠ′, there exists an extractor � = (�1 , �2) and
a negligible function �(�) such that

Pr[Gor ← P′(1�), (Π′.crs, td) ← �1(1�),�← P′(Π′.crs), $or ← �2(td, Gor ,�) : ℛor(Gor , $or) = 1] (6)
≥ Pr[Gor ← P′(1�),Π′.crs← Π′.Gen(1�),�← P′(Π′.crs) : Π′.V(Π′.crs, Gor ,�) = 1] − �(�) ≥ &(�) − �(�),

(7)

where the relation ℛor(Gor , $or) = 1, if and only if $or is a witness for the instance Gor ∈ ℒor.
Next, we build the following adversaryA for the discrete logarithm problem:

• A receives as input a security parameter �, a group G and its order ?, a generator 6, and ℎ ∈ G.

• It computes G� = P∗(1�; A�), and Gor = (G� , (G, ?, 6, ℎ)).

• Next, it computes (Π′.crs, td) ← �1(1�), and sets crs = (Π′.crs, (G, ?, 6, ℎ)).

• Finally it computes �← P∗(crs) and $or ← �2(td, Gor ,�). It parses $or = ($, C), and outputs C.

When the input toA is computed (G, ?, 6) ← G(1�) and ℎ ← G, the distribution of crs = (Π′.crs, (G, ?, 6, ℎ))
is identical to the distribution of the crs← Gen(1�) in the real execution of the protocolΠ. Hence, the adver-
sary A correctly simulates the cheating prover P′. Since G� ∉ ℒ, if ℛor(Gor , $or = ($, C)) = 1, then 6C = ℎ.
Therefore,

Pr
[
(G, ?, 6) ← G(1�), ℎ ← G, C ←A(1� ,G, ?, 6, ℎ) : 6C = ℎ

]
≥ Pr[Gor ← P′(1�), (Π′.crs, td) ← �1(1�),�← P′(Π′.crs),

$or ← �2(td, Gor ,�) : ℛor(Gor , $or) = 1] ≥ &(�) − �(�),

for in�nite many �, which is a contradiction.
�

7.5 Computational NIZKs for NP with Adaptive Soundness

In this section, we describe our construction of computational NIZK for NP with adaptive soundness in the
common random string model. We proceed via the same steps as in the construction of statistical NIZK for NP,
except that we replace the lossy public-key encryption scheme in the construction of trapdoor sigma protocol
with Elgamal encryption.

We outline each of the steps below.
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Lemma 7.11. If we replace the lossy public key encryption in the trapdoor sigma protocol in Section 7.2 with
ElGamal encryption [31], then the resulting trapdoor sigma protocol Σ satis�es adaptive computational honest-
veri�er zero-knowledge and the bad challenge in TC0 property. Furthermore, the resulting protocol is in the
common random string model.

Proof sketch. The proof of adaptive computational honest-veri�er zero-knowledge follows from the compu-
tational semantic security of ElGammal encryption scheme.

For the bad challenge in TC0 property, recall that a ciphertext in ElGamal encryption scheme is of the
form (21 , 22) ∈ G2 and a secret key sk = B is an element in ℤ? . Furthermore, the decryption process simply
involves computing 2B1 · 22, which is the same as in the case of lossy public-key encryption scheme in Section
7.1. Hence, using the same argument as in Lemma 7.3, it follows that the ElGamal encryption scheme also
satis�es low-depth decryption property. Then, following the same argument as in Section 7.2, we have that
Σ satis�es the bad challenge in TC0 property.

Finally, we note that since a public key of ElGamal encryption scheme is of the form (6B , 6)where 6 ← G,
the public key is uniformly distributed over G2. Hence, Σ is in the common random string model. �

Theorem 7.12. If we replace the trapdoor sigma protocol in Π with Σ obtained from Lemma 7.11 then the
resulting protocolΠ satis�es adaptive computational witness indistinguishability and (sub-exponential) adaptive
argument of knowledge in the common random string model.

Proof sketch. The proof of computational witness indistinguishability relies on the computational honest-
veri�er zero-knowledge property, and its proof follows the same idea as Lemma 7.6. The adaptive argument
of knowledge property follows the same argument as in Lemma 7.7. �

Theorem 7.13. In Figure 10, if we replace the NISWI Π′ with the computational NIWI Π obtained from Theo-
rem 7.12 then the resulting protocol satis�es adaptive multi-theorem adaptive computational zero-knowledge and
(sub-exponential) adaptive computational soundness in the common random string model.

The proof follows in the same manner as in Lemma 7.9 and Lemma 7.10.

8 Statistical Zap Arguments for NP

In this section, we describe our construction of statistical Zap arguments for NP. Our construction closely
follows the recent works of [2, 37] who constructed statistical Zap arguments from quasi-polyomial hardness
of LWE.

We proceed in the following two steps:

• In Section 8.1, we construct a two-round (public-coin) statistical-hiding commitment scheme with low-
depth extraction property, which essentially requires that the extraction circuit is in TC0.

• Next, in Section 8.2, we construct statistical Zap arguments by replacing the lossy public-key encryption
scheme used in our construction of NISWI in Section 7.3 with the two-round commitment scheme from
the previous step.

8.1 Statistical Hiding Commitments with Low-Depth Extraction

A (public-coin) statistical hiding commitment scheme with low-depth extraction (ECOM) is an interactive
protocol between a receiver and a sender: in the �rst round, the receiver sends a commitment key to the
sender. Using the key, the sender computes a commitment to some value and sends it to the receiver. We
require such schemes with a statistical hiding property as well as a low-depth extraction property.
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Here we are interested in two-round protocols – in the plain model – that achieve security against ma-
licious receivers. More speci�cally, in such protocols, statistical hiding property is required to hold with
respect to even adversarially chosen commitment keys. At the same time, we require the commitments to be
extractable, i.e., it should be possibly to e�ciently extract the committed value from the sender’s message.
The extraction property is only required to hold in a special “extraction mode” which is determined by choice
of the commitment key.

The key to achieving these two properties simultaneously is to allow the “extraction mode” to happen
with only negligible probability [42]. Following the syntax in [2], we provide an additional input – a random
string b – to the commitment algorithm. The “extraction mode” key generation algorithm also takes a random
string b̃ as an additional input. Consequently, extraction is only required when the strings b and b̃ are equal.
As in prior works [42, 2, 37], this weak extraction guarantee su�ces for our target application by careful use
of complexity leveraging.

For our purposes, we further require that the extraction process can be represented via low-depth compu-
tation, namely, TC0 circuits.

De�nition. For any security parameter �, let G denote a cyclic group of order ? = ?(�). Let � = �(�) be
a polynomial in �.

A group-based statistical hiding commitment scheme with low-depth extraction, and with message space
ℤ2 and key spaceK , is a tuple of algorithms ECOM = (Gen, ExtGen,Com) described as follows:

• Gen(1�): It takes as input a security parameter �, and outputs a uniformly distributed “normal mode”
commitment key  .

• ExtGen(1� , b̃): It takes as input the security parameter �, and a string b̃ of length �, and outputs an
“extraction mode” commitment key  ̃ and a trapdoor td.

• Com(b,  , <; A): It takes as input the security parameter �, an integer �, a binary string b ∈ {0, 1}�, a
message <, and the random coins A, and outputs a commitment 2.

We require ECOM to satisfy the following properties.

• Key Veri�ability: There exists a PPT algorithm KeyVer such that, for any string  ,

Pr
[
KeyVer(1� ,  ) = 1 ⇐⇒  ∈ K

]
= 1.

• Key Indistinguishability: For any n.u. PPT distinguisher D, there exists a negligible function �(·)
such that, for any � ∈ ℕ, any b̃ ∈ {0, 1}�,���� Pr [

 ← Gen(1�) : D(1� ,  ) = 1
]
− Pr

[
( ̃, td) ← ExtGen(1� , b̃) : D(1� ,  ̃) = 1

] ���� ≤ �(�).

We say that the ECOM achieves sub-exponential key indistinguishability, if there exists a constants 2
such that for any n.u. PPT distinguisher, the advantage �(�) is bounded by 2−�2 for any su�ciently
large �.

• Statistical Hiding: For any key  ∈ K , any <1 , <2 ∈ ℤ2, there exists a negligible function �(·) such
that, for any � ∈ ℕ,

SD ((b,Com(b,  , <1)), (b,Com(b,  , <2))) ≤ �(�).
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• Low-Depth Extraction: We say that ECOM supports extraction in TC0 if there exists a sequence of
circuits {Dec�(·, ·)}� in TC0 and a deterministic polynomial-time algorithm PreComp(1� , ·) such that,
for any � ∈ ℕ, any binary string b̃ ∈ {0, 1}�, and extraction mode key ( ̃, td) ← ExtGen(1� , b̃), and
any message < ∈ ℤ2,

Pr
[
2 ← Com(̃b,  ̃, <) : <′← Dec�(PreComp(1� , 2), td) : < = <′

]
= 1.

8.1.1 Construction

Our construction follows the work of [42] who constructed statistical hiding extractable commitments gener-
ically from two-round oblivious transfer protocols. To achieve the low-depth extraction property, we instan-
tiate their construction with the Naor-Pinkas oblivious transfer scheme based on DDH [53].

• Gen(1�): Sample and output � strings uniformly at random, where each string is of the same length as
an OT receiver �rst round message. Let  denote the output.

• ExtGen(1� , b̃): Parse b̃ = (1̃1 , 1̃2 , . . . , 1̃�). Generate � �rst round OT messages

OT1(1� , 1̃1),OT1(1� , 1̃2), . . . ,OT1(1� , 1̃�),

and output them as commitment key  ̃. Let td denote the set of random strings used for computing the
OT messages.

• Com(b,  , <): Parse b = (11 , 12 , . . . , 1�) and  = {ot1,8}8∈[�].

– Randomly sample <1 , <2 , . . . , <� ∈ ℤ2 such that
∑
<8 mod 2 = <.

– For each 8 ∈ [�], compute the second round OT message 28 = OT2(ot1,8 , <8 ,0 , <8 ,1) with <8 ,18 =

<8 , and sample <8 ,1−18 ← ℤ2 uniformly at random.
– Output the second round messages {28}8∈[�] as the commitment.

The key veri�ability follows directly from the underlying oblivious transfer protocol and the group in-
stantiation. The key indistinguishability property follows from the pseudorandomness of receiver’s message
in Naor-Pinkas OT. The statistical hiding property follows the same argument as in [42, 2, 37]. Intuitively, for
any key in the key space, one can use an ine�cient extractor to extract b̃. Since b is sampled uniformly at
random, with probability 1− 2−�, there exists an index 8 such that 18 ≠ 1̃8 . Hence, from the statistical sender-
privacy of the OT, <8 is statistically hidden. Since <1 , <2 , . . . , <� constitute an =-out-of-= secret sharing of
<, < is also statistically hidden.

Low-Depth Extraction. When b = b̃, to extract <, we need to proceed in the following two steps.

1. Use OT3 and td to decrypt <1 , <2 , . . . , <� from the commitment.

2. Compute < = <1 + <2 + . . . + <� in ℤ2.

When we instantiate the OT with Naor-Pinkas OT, the output computation algorithm OT3 is of the same
form as the decryption algorithm of the lossy public key encryption in Section 7.1. Hence, it also satis�es
the low-depth decryption property, and there exists a TC0 circuit sequence {Dec�}� and a deterministic pre-
computation algorithm PreComp such that <8 = Dec�(PreComp(1� , 28), td8), where td8 is the receiver’s
randomness for the 8th OT. For the second step, the summation of <1 , <2 , . . . , <� in ℤ2 can be computed in
TC0 [60]. Composing these two steps, we prove the low-depth extraction property.
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8.2 Construction of Statistical Zap Arguments

We now describe our construction of statistical Zap arguments for NP with non-adaptive soundness. We rely
on the following ingredients:

• A statistical-hiding commitment scheme ECOM = (Gen, ExtGen,Com) with low-depth extraction and
sub-exponential key indistinguishability.
Let {ECOM.Dec�} be the sequence of low-depth decryption circuits and let ECOM.PreComp be the
deterministic pre-computation algorithm associated with ECOM.

• A correlation intractable hash function CIH for TC0, with sub-exponential correlation intractability.

• A “commit-and-open” trapdoor sigma protocol Σ for NP with low-depth bad challenge function, from
Section 7.2.

Each of these ingredients can be based on sub-exponential DDH. We thus obtain our construction based
on the same assumption.

Construction. Our construction and its security proof resembles the recent works of [2, 37]. Below, we
sketch the construction and the proof of security. In the following, we set � = log2 �.

• Veri�er: It generates  ← ECOM.Gen(1�) and a CIH key k← CIH.Gen(1�), and sends ( , k) to the
prover.

• Prover: Upon receiving a message ( , k), it �rst checks if  ∈ K by checking KeyVer(1� ,  ) = 1. If
the check fails, then abort.
Next, it randomly samples b← {0, 1}�, and emulates F = � executions of the trapdoor sigma protocol
Σ in parallel, as follows.

– For each 8 ∈ [F], run the prover’s �rst round algorithm for Σ to generate the �rst round message

8 , where the commitment scheme is instantiated as ECOM.Com(b,  , ·; ·).

– Compute the ver�er’s challenges by using CIH: {�8}8∈[F] ← CIH.Hash(k, {ECOM.PreComp(1� , 
8)}8∈[F]).
– For each 8 ∈ [F], run the prover’s third round algorithm for Σ, with challenge bit �, where the

commitment is instantiated as ECOM.Com(b,  , ·; ·). Let �8 be the computed message.

Finally, the prover sends � = (b, {
8}8∈[F] , {�8}8∈[F]) to the veri�er.

• Veri�cation: Given the transcript (( , k),�), the veri�er parses � = (b, {
8}8∈[F] , {�8}8∈[F]), and
computes

{�8}8∈[F] = CIH.Hash(k, {ECOM.PreComp(1� , 
8)}8∈[F]).

For each 8 ∈ [F], it veri�es if (
8 , �8 , �8) is a accepting transcript for Σ, where the commitment is
instantiated as ECOM.Com(b,  , ·; ·).

This completes the description of the protocol. The completeness of the protocol directly follows from the
completeness of the underlying sigma protocol Σ. The proof of statistical witness indistinguishability resem-
bles the proof of Lemma 7.6. The only di�erences is that, here, for any  ∈ K , when b← {0, 1}� is sampled
from uniform distribution, the commitment ECOM.Com(b,  , ·; ·) is statistical hiding. Below, we argue that
the protocol achieves non-adaptive computational soundness.
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Non-adaptive Computational Soundness. For any instance G ∉ ℒ, and any cheating prover P∗ with
success probability &(�), we build the following hybrids.

• Hyb0: In this hybrid, the cheating prover tries to break the soundness of Zaps.

–  ← ECOM.Gen(1�), k← CIH.Gen(1�),�← P∗(1� , ( , k))
– If � = (b, {
8}8∈[F] , {�8}8∈[F]) is accepted, then output 1. Otherwise output 0.

Since the cheating prover succeeds with probability &(�), we have that Pr[Hyb0 = 1] = &(�).

• Hyb1: This hybrid is the same as Hyb0, except that we additionally guess b by sampling b̃ uniformly at
random.

– b̃← {0, 1}� ,  ← ECOM.Gen(1�), k← CIH.Gen(1�),�← P∗(1� , ( , k)).
– If � = (b, {
8}8∈[F] , {�8}8∈[F]) is accepted and b = b̃, then output 1. Otherwise output 0.

Since the only di�erence between this hybrid and Hyb0 is that we additionally guess b̃← {0, 1}�, we
have

Pr[Hyb1 = 1] ≥ &(�)/2�.

• Hyb2: This hybrid is the same as Hyb1, except that we switch the  to a extraction key  ̃.

– b̃← {0, 1}� ,  ̃ ← ECOM.ExtGen(1� , b̃), k← CIH.Gen(1�),�← P∗(1� , ( ̃, k)).
– If � = (b, {
8}8∈[F] , {�8}8∈[F]) is accepted and b = b̃, then output 1. Otherwise output 0.

Since the only di�erence between this hybrid and Hyb1 is the ECOM key generation, let 0 < 2 < 1 be
the constant in the sub-exponential key indistinguishability de�nition, we have

Pr[Hyb2 = 1] ≥ Pr[Hyb1 = 1] − 2−�2 ≥ &(�)/2� − 2−�2 .

Now we argue that there exists a constant 0 < 2′ < 1 such that Pr[Hyb2 = 1] ≤ 2−�2
′

for any su�ciently
�. When the proof � is accepted and b = b̃, the commitment scheme ECOM.Com(b,  , ·; ·) is in “extraction”
mode. By the same argument as in Section 7.2, we can prove the trapdoor sigma protocol instantiated with
ECOM.Com(b,  , ·; ·) as the commitment scheme satis�es the bad challenge function in TC0 property. Hence,
one can compute {PreComp(1� , 
8)}8∈[F] from any accepting transcript, which constitutes an attack for the
correlation intractability of CIH. Since we assume the CIH is sub-exponential correlation intractable, let 2′ be
the constant in the de�nition, we have Pr[Hyb2 = 1] ≤ 2−�2

′
, for any su�ciently large �.

Combining the two inequalities, we obtain &(�)/2� − 2−�2 ≤ Pr[Hyb2 = 1] ≤ 2−�2
′
, and thus &(�) ≤

2� · (2−�2 + 2−�2
′
). When we set � = log2 �, &(�) is sub-exponential.
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A Extension of Rate-1 Trapdoor Hash Functions

In this section, we present an extension (and a slight simpli�cation) of trapdoor hash functions based on DDH
in [15] to any polynomial modulo setting.
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Construction of Trapdoor Hash for Linear Functions over ℤ'. In the following construction, we use
a hash function ) : G → {0, 1}∗, which is sampled from a hash function family Φ. Here we can use a
pseudo-random function as in the previous work [15], or :-wise independent hash functions.

• HKGen(1� , 1= , 1'):

– Generate a group (G, ?, 6) ← G(1�).
– For each 8 ∈ [=], sample an element uniformly at random from the group G, ℎ8 ← G.
– Output hk = (G, ?, 6, {ℎ8}8∈[=] , ').

• EKGen(hk, 5 ):

– Let the linear function

5 (G1 , G2 , . . . , G=) = (00 + 01G1 + 02G2 + . . . + 0=G=) mod ',where 0 ≤ 08 < '.

– Sample a secret B ← ℤ? uniformly at random. For each 8 ∈ [=], let 58 = ℎB8 · 608 .
– Set the parameters �′ = dlog2(2'2 · (= + 1)/�)e + 1, and ) = 2�′ dln(2/�)e + 1.
– Let Φ be a family of pseudo-random functions from G to {0, 1}�′ . Sample )← Φ.
– Output (ek = (), { 58}8∈[=]), td = (B, 00)).

• Hash(hk, G):

– Let G = (G1 , G2 , . . . , G=), where 0 ≤ G8 < ', for each 8 ∈ [=].
– Output h =

∏
8∈[=] ℎ

G8
8

• Enc(ek, G):

– Let ℎ4 ←
∏

8∈[=] 5
G8
8

.
– Output DLog(6, ), ', ℎ4).

• Dec(td, h):

– Let ℎ3 = ℎB · 6−00 .
– Output (−DLog(6, ), ', ℎ3)) mod '.

Lemma A.1. Let ( be an integer, and 0 < � < 1 be a real number. Let Φ = {) : G → {0, 1}�′} be a pseudo-
random hash function family with output length �′ = dlog2(2(/�)e +1, and set parameter ) = 2�′ dln(2/�)e +1.
Then, for any cyclic group G of order ? with generator 6, and any ℎ ∈ G, we have

Pr
)←Φ

[
∀0 ≤ G < (, (DLog(6, ), ', ℎ · 6G) − DLog(6, ), ', ℎ)) mod ' = G

]
> 1 − � − negl(�).

Furthermore, if ( is a polynomial in =, and � is an inverse polynomial in =, then running time of the algorithm
DLog is also a polynomial in =.

Proof. The proof follows the same strategy as Proposition B.2 in [15]. Since the input to ) is �xed before )
is sampled, we can switch ) to a random function. For ease of presentation, let the event � denote ∀0 ≤ G <
(, (DLog(6, ), ', ℎ · 6G) − DLog(6, ), ', ℎ)) mod ' = G. We consider three cases:

60



Distributed Discrete Logarithm DLog(6, ), ', ℎ)

• Let 8 = 0

• Loop while 8 ≤ )

– If )(ℎ · 6 8) = 0, output (8 mod ').
– Let 8 = 8 + 1.

Output 0.

Figure 11: Description of the distributed discrete logarithm algorithm DLog.

• Case 1: There exists a 0 ≤ 8 < ( such that )(ℎ · 6 8) = 0. In this case, � may not hold, hence we bound
the probability of this case. By the union bound, we bound it by (/2�′ .

• Case 2: For any 0 ≤ 8 < (, )(ℎ · 6 8) ≠ 0, and there exists a ( ≤ 8 ≤ ) such that )(ℎ · 6 8) = 0. In this
case, � always holds.

• Case 3: For any 8 ≤ ), )(ℎ · 6 8) ≠ 0. In this case, � may not hold. Hence, we bound the probability of
this case. Since the hash function ) is random, we bound the probability by (1 − 2−�′)) .

In total, we have

Pr
)
[�] ≥ 1 −

(
(

2�′
+

(
1 − 2−�′

)))
> 1 − (�/2 + �/2) ≥ 1 − �.

�

Lemma A.2 (�-Enhanced Correctness for TDH). The above construction of TDH satis�es �-enhanced correct-
ness.

Proof. For any polynomial ' = '(=), any hash value h ∈ G, and any linear function 5 ∈ ℱ=,' , and any hash
key hk output by HKGen(1� , 1= , 1'),

Pr
),{ 58}8∈[=]

[∀G : Hash(hk, G) = h, 5 (G) = (e + d) mod ']

= Pr
)←Φ

[
∀G : Hash(hk, G) = h, 5 (G) = (DLog(6, ), ', ℎ4) − DLog(6, ), ', ℎ3)) mod '

]
≥ Pr
ℎ←Φ

[
∀0 ≤ H ≤ '2 · (= + 1), (DLog(6, ), ', ℎ3 · 6H) − DLog(6, ), ', ℎ3)) mod ' = H

]
>1 − �

The second line follows from the de�nition of e and d. The third line follows from

ℎ4 =
∏
8∈[=]

5
G8
8
=

∏
8∈[=]
(ℎB8 · 608 )G8 =

∏
8∈[=]
(ℎG8
8
)B · 6

∑
8 08G8 = (ℎB · 6−00) · 600+

∑
8 08G8

= ℎ3 · 600+
∑
8 08G8 .

Let H = 00 +
∑
8∈[=] 08G8 , then we have 0 ≤ H < '2 · (= + 1). The forth line follows from Lemma A.1. �
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LemmaA.3 (Sub-exponential Function Privacy). Assuming sub-exponential hardness of DDH, the construction
of TDH satis�es sub-exponential function privacy.

The proof of this lemma follows in the same manner as the proof of Theorem 4.2 in [29] since the ek is
the same as in the construction of [29].

B Instantiation from Elliptic Curves

In this section, we instantiate the result in Theorem 1.1 from any Elliptic curves in the short Weierstrass form
over F? (? ≠ 2, 3). In Lemma B.1, we show that to compute an iterative multiplication of � group elements,
we only need a >(log�)-depth threshold circuit. Next, when assuming DDH hardness against sub-exponential
time adversaries, by complexity leveraging, we shrink the security parameter of the group to log$(1) �, while
the commitments from such groups remain hiding for polynomial time adversaries. Then the depth of the
threshold circuit computing the iterative multiplication becomes >(log log�), and hence can be handled by
the CIH for $(log log�)-depth threshold circuit in Theorem 6.6 (See Theorem B.3).

Lemma B.1. Let 0, 1 be two integers, H2 = G3 + 0G + 1 be a short Weierstrass equation, and ? be a prime
with 403 + 2712 ≠ 0 (mod ?). Then the short Weierstrass equation de�nes a Elliptic curve G = {(- : . : /) |
-,., / ∈ F? , .2/ = -3+ 0-/2+ 1/3} in the �nite projective space, where the identity is de�ned as (0 : 1 : 0).
Then

• Iterative Multiplication: For any integer = and security parameter �, let the iterative multiplication
function be Mul�,=(61 , 62 , . . . , 6=) = 61 · 62 · 63 . . . 6= , where 61 , 62 , . . . , 6= ∈ G. Then Mul�,= can be
computed by a series of polynomial-size threshold circuits {��,=}�,= of depth >(log =).

• Identity Testing: For any security parameter �, de�ne the Identity�(6) be the function which outputs
whether 6 is the identity element 1G. Then Identity� can be computed in TC0.

Proof. We prove the lemma by computing Mul�,= and Identity�, as follows.

• Iterative Multiplication: Our construction of the circuit computing Mul�,= is a complete �-ary tree
of depth log� =, where � = log∗ =. Each tree node is a gate computing the iterative multiplication of its
� children. The leaf nodes correspond to 61 , 62 , . . . , 6= . Since the depth of the tree is log� = = >(log =),
it su�ces to show the product of � group elements can be computed in TC0.
Note that, for any group elements ℎ = (-ℎ : .ℎ : /ℎ), 5 = (- 5 : .5 : / 5 ) ∈ G, if we denote
ℎ · 5 = D, where D = (-D : .D : /D), then -D , .D and /D can be computed by constant-degree
polynomials in ℤ?[-ℎ , .ℎ , /ℎ , - 5 , .5 , / 5 ] using the uni�ed point addition formula [16]. Hence, if we
let E = 61 · 62 · . . . 6�, where E = (-E : .E : /E), then -E , .E , /E are 2$(�)-degree multivariate
polynomials about the coordinates of 61 , 62 , . . . , 6�. Since we choose � = log∗ =, we have at most
($(�))2$(�) = poly(=)monomials in each polynomial. Since iterative multiplication and addition in ℤ?

can be computed in TC0 by [60], we can evaluate each monomial in TC0 by interative multiplication,
and add them in TC0 by iterative addition. Hence, E can be computed in TC0.

• Identity Testing: Given a group element 6 = (- : . : /), we can test whether 6 = 1G by checking if
- = / = 0. Since this checking can be done in TC0, we can compute Identity� in TC0.

�

Lemma B.2. From any Elliptic curve in Lemma B.1, we can construct a lossy public key encryption scheme
whose decryption can be decomposed to a deterministic polynomial time algorithm PreComp and >(log�)-depth
threshold circuit Dec�.
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The proof follows the same idea as Lemma 7.3, the only di�erence is that we apply Lemma B.1 for the
iterative multiplication and the identity testing.

Theorem B.3. Assuming DDH over the Elliptic curve in Lemma B.1 is hard for any sub-exponential time adver-
sary, we can obtain NIZKs and Zaps with the same properties in Theorem 1.1.

If we assume any 2$(�2)-time adversary for DDH can obtain at most 2−Ω(�2) advantage, then we can set
the security parameter of the lossy public key encryption scheme in the construction of NIZKs with the lossy
public key encryption scheme to be log2/2 �. By Lemma B.2, the decryption circuit of such lossy public key
encryption can be decomposed to a deterministic algorithm PreComp and >(log log�)-depth threshold circuit
Dec�. Applying the CIH in Theorem 6.6, we obtain the result.
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