
1

Neural Network Modeling Attacks on
Arbiter-PUF-Based Designs

Nils Wisiol∗o, Bipana Thapaliya†o , Khalid T. Mursi‡, Jean-Pierre Seifert§ and Yu Zhuang¶
∗§Technische Universität Berlin

†¶Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA
‡Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah,

Saudi Arabia
Email: ∗nils.wisiol@tu-berlin.de, †bipana.thapaliya@ttu.edu, ‡kmursi@uj.edu.sa, §jean-pierre.seifert@tu-berlin.de,

¶yu.zhuang@ttu.edu

Abstract—By revisiting, improving, and extending recent
neural-network based modeling attacks on XOR Arbiter PUFs
from the literature, we show that XOR Arbiter PUFs, (XOR)
Feed-Forward Arbiter PUFs, and Interpose PUFs can be attacked
faster, up to larger security parameters, and with an order
of magnitude fewer challenge-response pairs than previously
known both in simulation and in silicon data. To support our
claim, we discuss the differences and similarities of recently
proposed modeling attacks and offer a fair comparison of the
performance of these attacks by implementing all of them using
the popular machine learning framework Keras and comparing
their performance against the well-studied Logistic Regression
attack. Our findings show that neural-network-based modeling
attacks have the potential to outperform traditional modeling
attacks on PUFs and must hence become part of the standard
toolbox for PUF security analysis; the code and discussion in this
paper can serve as a basis for the extension of our results to PUF
designs beyond the scope of this work.

Index Terms—Physical Unclonable Function, Strong PUFs,
Machine Learning, Modeling Attacks, Arbiter PUF.

I. INTRODUCTION

In all cryptographic applications deployed today, what
distinguishes the legitimate user from an adversary is the
knowledge of the secret keys, which are found anywhere
cryptography is used, including in computers of microscopic
scale embedded in digital door keys, credit cards, and
passports. As cryptography became more ubiquitous, gaining
access to the secret key itself became an important attack
strategy, as the revealed secret key causes the security
guarantees of the employed scheme to collapse.

To mitigate such attacks, a branch of research on Physically
Unclonable Functions (PUFs) emerged [20], where the
difference of the legitimate user and adversary is not defined
by knowledge, but by possession of a physical object. The
physical object, called PUF token, is assumed to exhibit
highly individual physical behavior when prompted with a
physical stimulus such as an electrical signal or laser beam.
Further, it is assumed to be physically unclonable, meaning
that it is inherently impossible to produce two identical tokens.
The envisioned cryptography shall be based on this unique
response behavior of each individual unclonable token instead
of classical secrets stored in memory.

oNils Wisiol and Bipana Thapaliya contributed equally to this work.

While such PUF-based, secret-free cryptography is by
definition immune against attacks that recover any secret key,
adversaries may be able to study the individual behavior of
a PUF token and extrapolate it using a mathematical model,
in which case it is impossible for a remotely connected
party to tell the original PUF token and mathematical model
apart. If such modeling attacks succeed, the security of most
applications would collapse, just like in the case of a leaked
secret key. (Note that, on the other hand, inability to model a
PUF successfully does not by itself guarantee its security.)

An important tool to launch modeling attacks is machine
learning, a highly parameterized approach to create predictions
from observed data by using specialized algorithms. In the
past two decades, machine learning has emerged as the tool
of choice for the security analysis of PUFs [11], [21], where
an attacker attempts to create a model of a PUF token
which, if successful, can be used to predict PUF responses
with high accuracy. Studies on modeling attacks hence
represent an essential part of research on PUFs and secret-free
cryptography. With the growing popularity in both science and
industry as well as the rapid development of machine learning
software frameworks such as Tensorflow/Keras or Torch, we
expect this to remain the case for the foreseeable future.

Traditionally, most machine-learning-based modeling
attacks on strong PUFs have been based on the optimization
of the parameters of a physically motivated model of the
strong PUF. More recently, this approach was complemented
by a modeling attack methodology based on general models
not derived from physical insights [34], [18], [3], [17], [23],
[32] and models that are extensions of a physical model [23].
Generic models in this sense are no longer restricted to a
certain class of functions derived from physical inspiration,
but are able to model any Boolean function. Thus, such
attacks do not require exact modeling of the PUF under
attack and allow for rapid testing of PUF design ideas. While
also generic models benefit from feature selection based on
physical insights, using general neural networks such as
the multilayer perceptron as an analysis tool for strong PUF
design has found some adoption, and is in particularly helpful
in the analysis of designs composed of several Arbiter PUFs.

For example, in a recent modeling attack on the Interpose
PUF by Wisiol et al. [32], the authors used such general



2

models to demonstrate that also slight variations of the PUF
under attack are not promising candidates for a secure strong
PUF. In another modeling attack study, Santikellur et al. [22]
use a multilayer perceptron approach to study the security of
the MPUF, cMPUF, rMPUF, Lightweight Secure PUF, XOR
Arbiter PUF, and Interpose PUF. The authors of the SCA-PUF
[37] show that their proposed design is more resilient than an
XOR Arbiter PUF with respect to attacks based on neural
networks. In the security analysis of their novel PUF design
based on a subthreshold voltage divider array, Venkatesh et
al. [29] provide a failed modeling attack using a multilayer
perceptron as evidence for the security of their proposal.

The quick advancement and rising popularity in modeling
attacks based on neural networks raise questions regarding
the significance of the results obtained using such general-
purpose models. To estimate a PUF design’s security level, it
is particularly important to know, first, how the data and time
complexity of general neural-network-based attacks relate to
more specialized physical-model-based attacks, second, how
the chances of success of these two types of attacks relate,
and, third, how the various hyperparameters of such attacks
need to be configured.

In this work, we answer the above questions with respect
to the Arbiter PUF and its variants, a family of electrical
PUF designs that is commonly used in PUF research as a
baseline for comparison or as a building block for novel PUF
designs. With the contributions of this work, other researchers
are enabled to conduct similar analyses for other PUF designs.
In more detail, our contributions are:

1) We show that XOR Arbiter PUFs can be attacked
faster, up to larger security parameters, and with an
order of magnitude fewer challenge-response pairs than
previously known by using generic neural networks,
even if the implementation gives reliable responses. We
thereby show that neural networks are an essential tool
in PUF security analysis and refute statements to the
contrary of Nguyen et al. [19] made at CHES 2019.

2) We show that our results reduce the data complexity
of the Splitting Attack on the Interpose PUF and
enable attacks on the Feed-Forward Arbiter PUF, thus
demonstrating that the improved performance of neural-
network-based attacks has implications beyond the
security of the XOR Arbiter PUF itself.

3) We replicate three neural-network-based attacks and
the physical-model-based Logistic Regression attack on
XOR Arbiter PUF from the literature and provide an
exhaustive and fair comparison of their performances.
We overview and summarize all four attacks, discussing
differences and similarities, and justify design choices.

4) We refute a recently claimed very low data complexity
of XOR Arbiter PUF modeling attacks [17].

5) We provide a comprehensive, unified, and easy-to-use
Python implementation of all attacks in this work under
an open-source license at https://github.com/nils-wisiol/
pypuf/tree/2021-mlp, integrated in the pypuf framework
[31].

This paper is organized as follows. In the next section, we

give an overview on work that relates to modeling attacks
on XOR Arbiter PUFs and modeling attacks using neural
networks. In Sec. IV, we discuss and evaluate the Logistic
Regression attack as a baseline for comparison of attacks
in this work. In Sec. V, VI, and VII, we replicate and
extend neural-network-based attacks from the literature and
discuss design choices as well as attack performance, with a
comparison of the XOR Arbiter PUF attacks given in Sec.
VIII. We apply our findings to the Interpose PUF in VII-D, to
XOR Arbiter PUF silicon data in Sec. VII-E, and to the XOR
Feed-Forward Arbiter PUF in Sec. IX. We draw conclusions
and discuss future work in Sec. X.

II. RELATED WORK

The security analysis of PUFs is not limited to modeling
attacks based on machine learning, and not limited to the
attacker model used in this work.

For XOR Arbiter PUF, the state-of-the-art attack operates
on information about the reliability with respect to a given
challenge, i.e., on information about the probability that
the PUF token will produce the same response when given
the same challenge [5]. Given this information, the data
complexity of the modeling of XOR Arbiter PUFs is
drastically reduced, even compared to the results of neural-
network-based attacks in this work. Recently, Tobisch et al.
demonstrated that this attack methodology can be extended to
other PUF designs and launched an attack on the Interpose
PUF [26]. Chatterjee et al. [7] used a reliability-based attack
to show that the security level of the S-PUF is drastically
reduced within this attacker model.

In contrast to these works, the related work below consider a
weaker attacker model in which only the response information
is considered.

Highly specialized attacks based on machine learning are
also an essential part of the security analysis of PUFs, as
demonstrated by Delvaux [8] in a collection of five attacks
on PUFs with accompanying lightweight obfuscation logic.
This approach contrasts the generic models used in this work.

Another branch of security analysis of PUFs uses the
Probably Approximately Correct (PAC) framework [28],
which is concerned with classes of functions for which an
asymptotically polynomial-time learning algorithm exists that
will yield a model of prescribed accuracy with prescribed
success rate. In certain cases, this can be done without using a
physically inspired model [10], which relates to the application
of generic neural networks in this work. Recently, a semi-
automated approach for analysis was proposed [6].

III. PRELIMINARIES

A. Additive Delay Model

An n-bit k-XOR Arbiter PUF [11], [24], as displayed in Fig.
1, can be modeled using a Boolean function f : {−1, 1}n →
{−1, 1} which is parameterized by real values W ∈ Rk×n and
b ∈ Rk. The response to a challenge c ∈ {−1, 1}n is given by

f(c) = sgn

k∏
l=1

(〈Wl, x〉+ bl) .

https://github.com/nils-wisiol/pypuf/tree/2021-mlp
https://github.com/nils-wisiol/pypuf/tree/2021-mlp


3

In this setting, the feature vector x ∈ Rn is a function
of the given challenge c defined by xi =

∏n
j=i cj . The

parameterization W , called weights in this work, represents
the physical intrinsics of a particular PUF token. This model is
commonly referred to as the additive delay model. A physical
motivation, derived from the intrinsic delay values of an
Arbiter PUF circuit, can be found in full version [33].

In the case of Arbiter PUFs, i.e., k = 1, the additive delay
model can be understood as a hyperplane in n dimensions,
dividing the edges of the Boolean cube {−1, 1}n (and, by
extension, Rn) into two regions labeled by the -1 and 1
responses of f . The boundary between the two regions is
a linear, or in case of nonzero bias, affine subspace of Rn.
In this sense, the model can be understood as linear. In an
XOR Arbiter PUF, the decision boundary in Rn becomes
more complex, hence adding XOR operations increases the
nonlinearity of the model.

This linearity of the Arbiter PUF model is also the
motivation of using the feature map xi =

∏n
j=i cj . Without

it, the decision boundary cannot easily be represented as a
hyperplane in Rn. This, however, is a prerequisite for the
successful application of the Logistic Regression attack [21]
(cf. Sec. IV).

Most modeling attacks in this work are based on simulated
challenge-response data, with the application of our attack to
silicon data given in Sec. VII-E. The reason for this is twofold.
First, security analysis with a focus on the PUF design should
be done on ideal data, i.e., without regard to the properties
of a specific implementation. This ideal data should follow
the expected properties of implementations. In the case of
the Arbiter PUF, as pointed out by Tobisch and Becker [27],
this means that different PUF tokens may have varying ML
resistance. Any implementation’s security should be studied
separately in case the security analysis of the ideal primitive
is promising. Second, while FPGA implementations of Arbiter
PUFs suffer from known weaknesses, ASIC implementations
are expensive and are well known to behave very closely as
predicted by the additive delay model [9], [25].

For the modeling of noise, we rely on the model by Delvaux
et al. [9]. In this model, for each evaluation of the PUF, a
Gaussian noise value with zero mean is added to the delay
difference of the two delay lines in the Arbiter PUF. That is,
the Arbiter PUF response is modeled as

f(c) = sgn (〈W,x〉+ b+N) ,

where N is chosen from a Gaussian distribution with zero
mean and defined variance, W ∈ Rn and b ∈ R model
the Arbiter PUF physical properties, and x ∈ {−1, 1}n is
the feature vector corresponding to the given challenge c.
This model extends to k-XOR Arbiter PUFs by drawing k
independent noise values.

To measure how the noise influences the behavior of the
PUF, we define the reliability of the PUF as the expected
value over the challenge space that the PUF will return the
same response when given the challenge twice in independent
evaluations,

reliability(f) = E
c

[
f (1)(c) = f (2)(c)

]
,

⊕c1 = 1

c2 = −1

cn−1 cn

c1 = 1

c2 = −1

cn−1 cn

f(c)

Fig. 1. Schematic representation of a 2-XOR Arbiter PUF with n-bit
challenge c and final response f(c).

where f (1)(c), f (2)(c) are independent evaluations of the PUF
token.

Given this definition, we can adjust the variance of the noise
such that the reliability of our simulation reaches a certain
value.

B. Attacker Model

The standard attacker model for PUFs is based on the
promise of increased hardware security of PUF tokens,
compared to the traditional approach of cryptographic
hardware extended by secure key storage. Hence, in the
standard PUF attacker model, the adversary gets physical
access to the PUF token for some limited amount of time,
allowing them to collect a large number of challenge response
pairs. (During that time, also hardware attacks are allowed,
but not studied in this work.)

Given this attacker model, XOR Arbiter PUFs and Interpose
PUFs can be attacked using information that is exposed by
the per-challenge reliability, which the attacker can recover
by evaluating a challenge multiple times [5], [26].

In this work, however, we consider the weaker attacker
model used in the works that we replicate, where the passive
attacker only gets access to a large collection of uniformly
random challenges and the corresponding responses of the
PUF. While this is, in general, an unjustified restriction of
the PUF attacker model, it is equivalent to a situation where
the reliability information of the PUF under attack is either not
available or not useful. This is the case in some PUF-based
authentication protocols [16], [35], [36], and may be the case
for some novel PUF designs, as a weaker justifiable attacker
model is desirable for the PUF designer. Thus, the passive
attacker model serves an appropriate basis for our argument
that neural-network-based modeling attacks should become
part of the standard security analysis of PUFs. Nevertheless,
due to the restricted attacker model, we emphasize that a failed
modeling attack in this attacker model cannot by itself serve
as evidence for security.

C. Methodology

To provide a fair comparison of the properties of four
different machine learning modeling attacks on XOR Arbiter



4

PUFs, in this work, we reimplemented these attacks using the
popular Keras framework and ran all experiments on the same
CPU. Also, our novel attacks on the Interpose PUF and Feed-
Forward Arbiter PUFs are using this framework. As the attacks
run, compared to previous works, relatively fast, we focus
our attention on the comparison of the data complexity, i.e.,
how much training data is required to obtain good modeling
predictions.

In this work, we do not focus on the exact accuracy metrics
of prediction quality for several reasons. First, the attacks
that we study do not yield intermediate results when correctly
parameterized, i.e., the attacks end either with accuracy 50% or
close to 100%. Additionally, we observed that high-accuracy
results can be further improved by letting the training continue
for a few more epochs. Second, to impersonate a PUF token,
no extremely high accuracy is needed, and any prediction
accuracy significantly better than 50% should be considered
a security weakness of the PUF design [8]. Hence, instead of
prediction accuracy, we focus on the attack success rate, i.e.,
the proportion of independently run attacks on independent
PUF simulations that yielded prediction accuracy greater
than 90%. Given that virtually all successful attacks yielded
accuracy 95% or better and virtually all unsuccessful attacks
yielded accuracy 55% or below, the success rate is very
insensitive to the exact choice of this threshold. Nevertheless,
for the sake of completeness, the prediction accuracy of
obtained models is given as the average over several attacks
on different PUF tokens.

To ensure that all of our results are reproducible in detail, we
seed all involved pseudorandom number generators used for
generating PUF token simulations, initializations of machine
learning models, etc. with defined values.

IV. BASELINE: IMPROVED LOGISTIC REGRESSION
ATTACK

In this work, we compare three neural network modeling
attacks against the commonly used Logistic Regression (LR)
attack by Rührmair et al. [21] on XOR Arbiter PUFs. The LR
attack has become an important tool for the security analysis
of delay-based PUFs and is used in a large number of different
works, including in the recent proposal of the Interpose PUF
[19] and an attack on it [32]. In this work, we use our Keras
implementation of the LR attack with a few modifications
detailed below as the baseline for comparison of XOR Arbiter
PUF attacks.

The LR attack is based on a physical model of the
Arbiter PUF, which can be represented as a hyperplane in
n-dimensional space by converting a given challenge into an
appropriately chosen feature vector. A physical motivation for
the feature vector used in this and previous works can be found
in the full version of this paper [33]; if the Arbiter PUF uses
any logic to transform the challenge before applying it to the
delay paths, this needs to be taken into consideration as well.
This Arbiter PUF model was extended to the XOR Arbiter
PUF using the observation that the XOR operation can be
written in a differentiable way by representing the Arbiter PUF
response values by −1 and 1 and the XOR operation with the
real product of these values.

A large-scale study of Tobisch and Becker [27] determined
training set sizes for the LR attack that yield optimal results,
i.e., have the lowest training times, and minimal training
set sizes, for which the attack was observed to work at
least once, which we confirmed and will use for comparison.
To provide for a fair comparison with the neural network
attacks, we reimplemented the LR attack in the Keras machine
learning framework. Differences in run time hence may not
only be caused by the usage of different CPUs, but also by
optimization differences in the implementations. Nevertheless,
we obtain the same number of required CRPs, which indicates
that our implementation behaves similar to the one of Tobisch
and Becker.

To increase the training performance of the original LR
algorithm, we modified some details. First, to reduce the
number of epochs required for training, we introduced the
usage of mini batches, where the network is updated with the
gradient not only after evaluating the complete training data,
but several times in each epoch. This allows for convergence
using fewer epochs, and thus (except in corner cases), for
shorter training time, but one must be careful to not choose
the batch size too small. Too small batch sizes can lead to
noisy gradient values, which will in turn perform unhelpful
updates on the network.

Second, we use Adam optimizer [12] instead of the
originally used resilient backpropagation, as the latter works
poorly together with the use of mini batches.

Third, we apply the tanh activation function to each of the
k delay values computed by the respective arbiter chains, i.e.
we change the model function from

fLR(c) = tanh

(
k∏

l=1

(〈Wl, x〉+ bl)

)
to

f ′LR(c) = tanh

(
k∏

l=1

tanh (〈Wl, x〉+ bl)

)
.

(1)

This change was motivated by the observation that in the
traditional LR network, a single arbiter chain can have large
influence on the absolute value of the final output. However,
in the electrical circuit, no analogue to the absolute value
exists. Instead, XOR Arbiter PUF model weights can be scaled
using positive scalars without affecting the computed function.
We speculate that different influences can hamper the training
process, as weight updates during backpropagation may be
applied predominantly to influential arbiter chains. Applying
the tanh function ensures a more equalized influence of all
arbiter chains on the final output, as factor values are bounded
by an absolute value of 1.

By the introduction of the additional tanh activation
function, our attack does not fulfill the definition of logistic
regression anymore1. In a slight abuse of terminology, we will
refer to this version as the improved LR attack. A sketch of
the network structure used in the attack is displayed in the full
version of this paper [33].

1One can argue that already the LR attack on XOR Arbiter PUF hardly fits
the textbook definition of a logistic regression.



5

TABLE I
EMPIRICAL RESULTS ON LEARNING SIMULATED XOR ARBITER PUFS

OBTAINED USING OUR KERAS-BASED IMPLEMENTATION OF THE LR
ATTACK. REFERENCE VALUES OF TOBISCH AND BECKER [27] USE UP TO

16 CORES. (? RESULT OBTAINED USING A DIFFERENT NUMBER OF CRPS.)
WE USED 4 THREADS FOR ATTACKS WITH k ≤ 8; 40 THREADS FOR k ≥ 9.

THE ATTACKS FOR k = 9 AND k = 10 USED 132GIB AND 197GIB OF
MEMORY, RESPECTIVELY.

success duration mean success
k CRPs rate (threads) accuracy [27]

4 30k 10/10 1 min 95.5% 1 min
5 260k 10/10 4 min 96.9% 1 min
6 2M 20/20 1 min 97.6% 1 min
7 20M 10/10 3 min 98.5% 55 min
8 150M 10/10 28 min 96.4% 391 min
9 500M 7/10 14 min 96.8% ?2266 min

10 1B 6/10 41 min 95.7% -

Using our Keras-based implementation together with these
improvements, we could increase the performance of the LR
algorithm (with respect to wall clock time, i.e., elapsed real-
time from beginning to end of the model training procedure),
which is summarized in Tab. I. We found that the largest
proportion of the performance gain is due to Keras, which
allows for optimized and highly parallel computing, and to a
smaller extent due to our improvements. In a comparison of
attack performance on 64-bit 5-XOR Arbiter PUFs, we found
that our implementation of the original LR attack achieved
a success rate of 16/20, while the improved version yielded
18/20 successful, with all other parameters being equal. We did
not study in more detail the performance of the two versions
depending on the choice of mini batch size, number of CRPs,
learning rate, etc, as the neural-network attacks presented in
this work outperform the LR attack by an order of magnitude
in data complexity. We thus performed such analysis on the
neural-network attack (Fig. 2).

Similar to the attacks based on neural networks shown
below, performance of the improved LR attack crucially
depends on the choice of hyperparameters, in particular on a
good combination of learning rate and batch size. The number
of required epochs is also heavily influenced by any early
stopping logic, which may depend on the validation accuracy
or loss. We thus expect that the wall-clock performance and
the number of required epochs can be further reduced, e.g., by
using a systematic approach to find optimal hyperparameters.
On the other hand, we expect that for the LR attack, the data
complexity cannot significantly be reduced by hyperparameter
tuning, as our results are in-line with previous research on the
LR attack [21], [27], [30], [32].

Our numbers confirm once more [21], [32] that the LR
attack requires a number of CRPs in the training set that grows
exponentially with the number of employed XORs in the target
XOR Arbiter PUF. In Fig 4, we show the required training set
size. Based on a fitted function k 7→ α · ek using the least
squares method, we predict the number of required CRPs for
k = 10 is 1.3 billion, for k = 11 is 3.6 billion, and for k = 12
is 1012.

V. TENSOR REGRESSION NETWORK ATTACK BY
SANTIKELLUR ET AL.

To reduce the computational effort for modeling attacks on
XOR Arbiter PUFs, Santikellur et al. [23] proposed to use an
efficient CP-Decomposition Tensor Regression Network (ECP-
TRN), which is parameterized by an integer rank R. To model
an k-XOR n-bit Arbiter PUF, the proposed model computes
the function

f(x) = sgn

[
R∑
i=1

(
αi ·

k∏
l=1

〈wi,l, x〉+ bi,l

)]
,

where wi,l ∈ Rn and bi,l ∈ R. A drawing of the network
structure is shown in the full version of this paper [33]. Due to
the highly parallel structure of the network, the approach may
benefit from performance improvements during training. The
parameters to be trained are αi, i ∈ {1, . . . , R} and wi,l, bi,l,
l ∈ {1, . . . , k}, i ∈ {1, . . . , R}. Hence, there are nkR+kR+R
trainable parameters.

Given this network structure, the network can be understood
as an approach that trains R XOR Arbiter PUF models in
parallel. The final response of the model is then computed as
the weighted sum of the R model outputs, then the sign of the
response is returned. After the training completes, the network
is filled with R sets of XOR Arbiter PUF weights, which raises
the question how the individual prediction accuracy differs
from the overall prediction accuracy reported by Santikellur
et al.

For our experiments operating on simulations of 4, 5, and
6-XOR Arbiter PUFs with 64-bit challenge lengths, we found
that in all successfully trained networks, exactly one of the
R trained models showed high correlation with the simulation
weights, whereas the other R − 1 had no correlation. This
finding was confirmed by the prediction accuracy: R−1 of the
models in the successfully trained network had an individual
prediction accuracy of around 50%, whereas exactly one had
high prediction accuracy. Using the single model allowed for
even higher prediction accuracy than using the fully trained
network, as the noise of the R − 1 low-correlation models is
removed. Considering that there is hardly any improvement in
loss when more than one model predicts the correct answer,
we can conclude that the R-rank model of the ECP-TRN does
not provide benefits over the 1-rank model.

As the final response of the ECP-TRN network is computed
as the weighed sum of the R individual model responses,
the individual models influence each others training process
through the backpropagation algorithm. To examine if this
interdependency during training provides an advantage to the
modeling attack, we run many attack attempts on a single PUF
under attack, i.e., we restart the training process with different
initializations of the model, while keeping the PUF simulation
and CRP set constant. In the case of many attack attempts, the
training of each attempt is independent of the training process
of the other attempts, above-mentioned interdependency is
removed. This allows us to compare the performance metrics
of rank R ECP-TRN attacks using a single attack attempt
versus rank 1 ECP-TRN using R attack attempts. The results
are displayed in Tab. II.



6

TABLE II
COMPARING SINGLE-ATTEMPT ATTACKS USING RANK R ECP-TRN

VERSUS R-ATTEMPT ATTACKS USING RANK 1 ECP-TRN ON 64-BIT XOR
ARBITER PUFS. OUR RESULTS INDICATE THAT THE TRAINING OF THE

ECP-TRN DOES NOT BENEFIT FROM INTERACTION OF THE MODELS; BUT
GIVES SOME INDICATION TO THE CONTRARY. COMPARED TO THE FIGURES

OF SANTIKELLUR ET AL. [23], FOR k = 5 AND k = 6, WE TRIPLED AND
DOUBLED THE NUMBER OF CRPS, RESPECTIVELY, TO OBTAIN ANY

SUCCESSFUL RESULTS.

attempts total run mean attempt
k CRPs R per run runs success rate success acc.

4 40k 1 5 10 100% 95.2%
4 40k 5 1 10 100% 94.6%

5 320k 1 10 10 90% 94.9%
5 320k 10 1 10 90% 94.9%

6 800k 1 10 10 80% 95.1%
6 800k 10 1 10 80% 95.0%

7 800k 1 100 5 20% 95.4%
7 800k 1000 1 4 0% —

In none of the cases that we studied, we found that the
training of a rank R ECP-TRN did not surpass the success
rate of just running R independent learning attempts using a
rank 1 ECP-TRN.

Unfortunately, we were not able to replicate the ECP-
TRN results of Santikellur et al. [23] exactly as published
in the original paper. While the 64-bit 4-XOR case could
be replicated, our experiments for 5-XOR and 6-XOR
required significantly more CRPs for reliable convergence than
originally claimed. For 7-XOR and larger, we failed to achieve
any success using the proposed high-rank model. A discussion
with the original authors also could not improve our results.
We suspect that the reason for the larger requirement of CRPs
is either caused by the different behavior of Keras internals
compared to the original Tensorflow v1 implementation,
or, considered more likely, by some differences in CRP
generation. It may also play a role that by training R models
in parallel, the original authors effectively report the maximum
accuracy among (a large number of) R learning attempts,
while our work reports data complexities for success rates
mostly close to 100%. We further discuss this in Sec. VIII
and X.

VI. MULTILAYER PERCEPTRON ATTACK BY ASEERI ET AL.
After an attack on 3-XOR 64-bit Arbiter PUFs by Yashiro

et al. [34] using a neural network with autoencoders and an
attack by Alkatheriri et al. [2] on Feed-Forward Arbiter PUFs
using a multilayer perceptron, Aseeri et al. [3] were the first
ones to attack XOR Arbiter PUFs with more than four arbiter
chains using neural networks.

While much of their work focused on the fact that their
version of the modeling attack can be run on a regular laptop
computer, i.e., on a machine without GPU, but with limited
memory and just using a single core of a consumer CPU,
their attack also achieves a significant reduction in both time
and data complexity, compared to the then state-of-the-art LR
attack by Tobisch and Becker [27].

Some attempts to replicate the work of Aseeri et al. failed,
[22], likely because at the time, the source code of the

TABLE III
EXTENDED RESULTS ON LEARNING SIMULATED XOR ARBITER PUFS

OBTAINED USING OUR KERAS-BASED IMPLEMENTATION OF THE
MULTILAYER PERCEPTRON ATTACK BY ASEERI ET AL. [3]. MEMORY

USED BY OUR IMPLEMENTATION IS PROPORTIONAL TO THE NUMBER OF
CRPS, WITH THE LARGEST ATTACK REQUIRING 50GIB FOR 100M CRPS

WHEN n = 128. ?TO ALLOW FOR COMPARISON WITH THE ORIGINAL
FIGURES, WE COMPUTED AN APPROXIMATION OF THE DURATION USING A

SINGLE CORE. THE PERFORMANCE LOSS IS CAUSED BY THE LOWER
SINGLE-CORE PERFORMANCE OF OUR CPUS (INTEL XEON E5-2630 V4)

COMPARED TO ASEERI ET AL.’S (INTEL CORE I7). ALL OF OUR
EXPERIMENTS USE UP TO 40 THREADS; ASEERI ET AL. USED ONLY ONE.

success duration success duration [3]
n k CRPs rate (40 threads) accuracy (1 thread)

64 4 400k 10/10 <1 min 96.8% <1 min
64 5 400k 10/10 <1 min 96.7% <1 min
64 6 2M 9/10 <1 min 97.3% 7 min
64 7 5M 9/10 <1 min 97.3% 12 min
64 8 30M 10/10 3 min 98.1% 23 min
64 9 80M 9/10 86 min 98.2% -

128 4 400k 10/10 <1 min 96.8% 1 min
128 5 3M 10/10 <1 min 97.1% 5 min
128 6 20M 10/10 <1 min 98.0% 19 min
128 7 40M 10/10 5 min 97.9% 90 min
128 8 100M 1/10 45 min 98.6% -

attack was not publicly available yet. Consequently, the attack
was not sufficiently considered in the security analysis of
the Interpose PUF [19]. We take this as evidence that the
publication of code that is the basis for claimed attack results
should be strongly encouraged by the community.

The original implementation of this attack was done using
scikit learn. As part of our comparison of neural network
attacks, in this work, we reimplemented the network used
by Aseeri et al. using the Keras machine learning framework
and were able to replicate all of their results. An overview
of our replicated results can be found in Tab. III, including
an extension to the 64-bit 9-XOR and 128-bit 8-XOR cases.
While the original figures strictly use single-core performance
on a consumer CPU, we used up to 40 cores in parallel.
To allow for comparison, we include an estimation of the
single-core performance of our implementation by multiplying
the measured wall clock time with the maximal number of
threads our experiment allowed. This overestimates the time
required by our attack, especially for cases where multi-
threading allows only for little speedup, i.e., for small training
sets.

Aseeri et al. did not include arguments for the specific
hyperparameter settings they used in their attack. We include
a discussion of the multilayer perceptron hyperparameters in
Sec. VII. A comparing overview can be found in Tab. V; a
drawing of the network can be found in the full version of the
paper [33].

VII. MULTILAYER PERCEPTRON ATTACK BY MURSI ET
AL.

A. Neural Network

In follow-up work to Aseeri et al. [3] and Santikellur et al.
[22] (not to be confused with the ECP-TRN model), Mursi et
al. [17] presented an enhancement of the multilayer perceptron



7

XOR Arbiter PUF modeling attack, claiming to reduce the data
and time complexity of XOR Arbiter PUF modeling attack
by several orders of magnitude. We refute their empirical
results, but show that their attack still requires fewer CRPs
than other response-based XOR Arbiter PUF modeling attacks.
Consequently, we are able to demonstrate that XOR Arbiter
PUFs can be attacked up to higher security parameters than
previously known, posing a challenge to implementors who
need to keep the noise low enough to allow for the fabrication
of XOR Arbiter PUFs with such large security parameters.

To attack a n-bit k-XOR Arbiter PUF, Mursi et al. propose
to use a neural network that consists of three fully connected
hidden layers of sizes 2k−1, 2k, 2k−1. We depict such a
network in the full version of this paper [33]. By its design, this
model uses fewer trainable parameters than the MLP-approach
by Aseeri et al. and the high-rank approach by Santikellur et
al., which can benefit training. Nevertheless, it uses orders of
magnitude more parameters than the traditional LR attack. For
example, in the attack of a 64-bit 9-XOR Arbiter PUF, LR uses
585 trainable parameters, while the MLP attack in this section
uses 66,560.

Mursi et al. also use the tanh activation function for the
hidden layers, compared to the usage of ReLU by Aseeri et
al. This is beneficial to the learning process as the inputs to
the next layer are normalized, i.e. have zero mean [14]. While
Santikellur et al. [22] argue that tanh suffers from the vanishing
gradient problem, the successful use of tanh in the MLP attack
can be explained by the relatively shallow three-layer structure
of the neural network, which makes the vanishing gradient
problem unlikely to appear [17]. A detailed comparison of
hyperparameters as used in the different attacks showed in
this paper can be found in Tab. V.

B. Replication and Results

To make the various neural-network-based attacks
comparable, we reimplemented the attack by Mursi et al.
using the Keras machine learning framework and found that
their results could not be replicated. The difference in attack
performance of our implementation and the original could be
traced back to a bug in the CRP generator used by Mursi
et al., which was based on a simulation of the delays. For
each PUF instance, 4n delays were supposed to be drawn
independently from a Gaussian distribution with mean 300
and variance 40; given a challenge, the delay difference can
then be computed and converted into the PUF response. Due
to the bug, which we discovered during our independent
replication of the results using pypuf [31], about 20% of the
randomly drawn delays were inadvertently set to zero. This
was difficult to notice from the CRP data, as the bias was
hardly influenced and the MLP-based attack does not recover
the simulation delays or weights, but a neural network that is
hard to be interpreted.

To study the attack by Mursi et al., we use our
reimplementation of the neural network attack and the pypuf
CRP generator [31] used throughout this work and in a
recent LR-based attack on the Interpose PUF [32]. The
CRP generation is, for performance reasons, based on the

equivalent approach of using weights instead of delays. We
found that while the attack performance reported by Mursi et
al. significantly benefited from the faulty CRP generation, the
results obtained on valid CRPs still improve on the LR attack
in terms of data complexity by an order of magnitude, with
increasing advantage for an increasing number of XORs, cf.
Fig. 4. We also observed an improvement in run time. Detailed
results are reported in Tab. IV.

For challenge lengths 128 and 256, we found that the data
complexity grows fast with the number of XORs. Nevertheless,
for 128 bit challenges, it remains below the figures that
Tobisch and Becker [27] reported for the LR attack; for 256
bit challenges we could not find numbers in the literature
to compare to. However, the LR attack is known to have
polynomially increasing data complexity in the challenge
length [32]. The steeply increasing required number of CRPs
of the MLP attack could be caused by an inherent effect
of the XOR Arbiter PUF structure, or by a mismatch of
hyperparameters or neural network structure on the model.
Considering everything, we conclude that there is no evidence
that increasing the challenge length will be an effective defense
against modeling attacks and let this question open to be
studied in case sufficiently large XOR Arbiter PUFs can be
built.

In light of the reduced data complexity, we come to the
conclusion that a model with far more trainable parameters
is able to outperform a model with fewer model parameters,
which falsifies the claim by Nguyen et al. that the LR attack
is the best performing among the XOR Arbiter PUF attacks
[19].

By the detailed comparison of the attacks run by Mursi et al.
with our results, we can identify the faulty CRP generation as
the sole cause for the different data complexity of the attack.
Hence, as a byproduct of our replication of the attack, we find
that a relatively small proportion of zero-valued delays in the
XOR Arbiter PUF can lead to a large loss of data complexity
for the modeling attack. With this in mind, implementors of
PUFs should treat any significant deviation from simulation-
based attack results on real-world data with additional scrutiny
on the validity of their implementation. In future security
analyses of PUFs, the detailed validity of the simulation in use
needs to be established, otherwise the analysis could over- or
underestimate the PUF’s security. Such validation is especially
challenging when using generic models such as the MLP for
modeling attacks. However, in case of the Arbiter PUF, several
independent results confirming the validity of the additive
delay model exist [11], [25], [9].

C. Hyperparameter Optimization

As a technical note, we found it difficult to configure
the hyperparameters of the attack by Mursi et al. While
the processing of the training data in mini batches provides
benefits regarding the run time, and thus the development
of the attack, it also requires to adjust the learning rate
appropriately. In Fig. 2 we report the success rate of MLP-
based attacks on 8-XOR 64-bit for a large variety of different
configurations of learning rate and batch size, showing that



8

only an appropriate combination of those two hyperparameters
will yield a successful attack. We speculate that on the one
hand, for high learning rates on small batches, the gradient
direction is too noisy to yield a meaningful update to the
model, and on the other hand, that for low learning rates
on large batches the learning process runs into the maximum
number of epochs before a convergence could be achieved.

D. Noise Resilience and Application to the Splitting Attack

During our experiments, we found the attack to work in
the presence of noise without significant changes in data
complexity when compared to the noise-free case. This is
surprising, as the MLP attack, in contrast to the LR attack,
is not restricted to functions of a certain class. Nevertheless,
the training converges to the desired XOR Arbiter PUF model
and approaches the maximum predictive power. We report
detailed results on the noise resilience in Tab. IV.

We also report that the MLP-based attack can be used
as a drop-in replacement of the LR attack in the Splitting
Attack on the Interpose PUF [19], [32]. We found that, similar
to the results we obtained on XOR Arbiter PUFs, the data
complexity of the Splitting Attack can be significantly reduced.
Experiments using our MLP-based implementation of the
splitting attack showed that a 64-bit (1, 7)-Interpose PUF
can be modeled with 6 million CRPs in minutes, compared
to 20 million CPRs and 20 hours required by the original
implementation. A 64-bit (1, 8)-Interpose PUF was modeled
using our MLP attack in less than one hour using 18 million
CRPs (i.e., with data complexity less than previously reported
for the (1, 7) case).

In the splitting attack on the Interpose PUF, essentially
two XOR Arbiter PUFs are attacked. First, the attack on the
lower layer uses all available CRP data, then the attack on
the upper layer of the Interpose PUF can only use about one
half of the available CRP data. Compared to the XOR Arbiter
PUF, this results in effectively doubling the data complexity of
the splitting attack for Interpose PUFs of size (x, x), and no
increase in data complexity for designs (x, y) where x < y.
We extrapolate our attack results on the Interpose PUF (above)
and the XOR Arbiter PUF (Tab. IV) and conclude that the
MLP attack is able to attack 64-bit (1,11) Interpose PUFs
using 325M CRPs (Wisiol et al. [32] originally used 750M
to attack the (1,9) version), and 650M CRPs to attack a 64-bit
(11,11)-Interpose PUF. While this has two orders of magnitude
larger data complexity than the attacks by Tobisch et al. [26],
the MLP attack provides better convergence rate and faster
computation time.

As the splitting attack relies on a training set in which one
feature is chosen at random [32], these results demonstrate
that the MLP-based attack is (to some extend) resilient against
feature noise, which makes it suitable in a variety of different
attack scenarios, such as when XOR Arbiter PUF attacks are
used as a building block in modeling attacks on PUFs that are
composed of XOR Arbiter PUFs. Our results on noisy XOR
Arbiter PUFs demonstrate that the MLP attack is (to some
extend) resilient against label noise.

0.
00

01

0.
00

02

0.
00

03

0.
00

04

0.
00

05

0.
00

06

0.
00

07

0.
00

08

0.
00

09

0.
00

1

learning rate

500
1000
3000
5000
7000
9000

20000

bl
oc

k 
siz

e

0.00

0.25

0.50

0.75

1.00

Fig. 2. Success rate for training an 8-XOR Arbiter PUF, 6M CRPs, with the
attack by Mursi et al. [17], with varying learning rates and block sizes. For
each combination, 10 learning attempts were run.

TABLE IV
EMPIRICAL RESULTS ON LEARNING SIMULATED n-BIT k-XOR ARBITER

PUFS OBTAINED USING OUR IMPROVED IMPLEMENTATION OF THE
NEURAL NETWORK ATTACK BY MURSI ET AL. [17]. THE LEARNING WAS
CONFIGURED TO STOP AT VALIDATION ACCURACY 95%, THE VARIANCE

OF ADDED NOISE WAS CONFIGURED SUCH THAT THE SIMULATION
ACHIEVES THE GIVEN RELIABILITY VALUE. SUCCESS RATES ARE 10/10
FOR MOST ROWS SHOWN, OTHERWISE AT LEAST 7/10. (“—” INDICATES

NO SUCCESSFUL RUN) RUN TIMES ARE GIVEN IN MINUTES.

k CRPs time [min] success memory [17]
(threads) acc. CRPs time

fully reliable responses, n = 64

4 150k <1 (40) 97.0% 1 GiB
5 200k <1 (20) 97.3% 3 GiB 42k <1
6 2M <1 (40) 97.5% 2 GiB 255k 2
7 4M <1 (40) 97.5% 2 GiB 680k 1
8 6M 13 (4) 95.5% 1.7M 5
9 45M 16 (40) 98.1% 14 GiB 4.2M 9

10 119M 291 (40) 97.9% 41 GiB
11 325M 1898 (40) 98.1% 104 GiB

fully reliable responses, n = 128

4 1M <1 (40) 97.3% 1 GiB
5 1M <1 (20) 97.4% 3 GiB
6 10M <1 (20) 98.1% 5 GiB
7 30M 2 (20) 98.2% 20 GiB

fully reliable responses, n = 256

4 6M 1 (40) 97.7% 6 GiB
5 10M 2 (20) 97.8% 10 GiB
6 30M — (20) — 30 GiB

85% reliability, n = 64

4 180k <1 (4) 90.9% 1 GiB
5 150k <1 (4) 91.2% 1 GiB
6 2M <1 (4) 91.8% 1 GiB
7 4M 3 (4) 91.6% 2 GiB

E. Application to Real-World Data

To confirm the lower data complexity of the MLP attack for
realistic challenge-response and noise data, we compare the
improved LR attack and MLP attack on the (XOR) Arbiter
PUF data sets provided by Mursi et al. [17] and Aghaie and
Moradi [1].

The data of Mursi et al. contains one instance of each
an 64-bit k-XOR Arbiter PUF for k ∈ {4, . . . , 9}, queried
on the same set of 1 million (for k ∈ {4, 5, 6}) and 5
million challenges (for k ∈ {7, 8, 9}). This data set does
not provide repeated measurements, hence no statement about
the reliability can be made. Our statistical analysis of the



9

50
00

10
00

0
20

k
50

k
10

0k
20

0k
50

0k
99

0k

#CRPs

0.5

1.0

te
st

 a
cc

ur
ac

y k=4

10
00

0
20

k
50

k
10

0k
20

0k
50

0k
99

0k

#CRPs

k=5

10
0k

20
0k

50
0k

10
00

k
2M 5M

*

#CRPs

k=7
LR MLP

(a) Data collected by Mursi et al. [17].

50 10
0

20
0

50
0

10
00

20
00

50
00

#CRPs

0.5

1.0

te
st

 a
cc

ur
ac

y k=1

50
0

10
00

20
00

50
00

10
00

0
20

k
50

k

#CRPs

k=3

10
00

0
20

k
50

k
10

0k
20

0k
50

0k
99

0k
#CRPs

k=5

(b) Data collected by Aghaie et al. [1].

Fig. 3. Comparison of improved LR attack (Sec. IV) and our MLP attack (Sec.
VII) on FPGA data. These results are in line with our results on simulated
data: the MLP attack shows lower data complexity for XOR Arbiter PUFs
with a large number of XORs k. (*Training set size was actually 4,990,000;
10,000 CRPs were used for testing.)

responses confirmed the expectation of decreasing bias with
an increase in the number of XORs; the 4-XOR Arbiter PUF
has an average response of 0.03, the 9-XOR Arbiter PUF an
average response of 10−5 (with its Boolean responses given
as -1 and 1).

The data of Aghaie and Moradi [1] contains a 64-
bit (1,5)-Interpose PUF queried on 1 million uniformly
random challenges, each including the responses of all 6
individual Arbiter PUFs. The data also contains 11 repeated
measurements of all challenges, which we only used to
compute the reliability of the PUFs (all Arbiter PUFs had
99.7% or better). For the attacks, we just used the first of
the 11 measurements, discarding the other 10. We confirmed
the quality of the data by testing that all six involved Arbiter
PUFs individually can be modeled using the delay model with
high accuracy (all 98%). To use the Interpose PUF data in the
context of XOR Arbiter PUF attacks, we discard the (64-bit)
top layer and compose the five given 65-bit Arbiter PUFs of
the Interpose bottom layer to 65-bit k-XOR Arbiter PUFs for
k ∈ {1, . . . , 5}. The data shows that the involved Arbiter PUFs
are heavily biased, with 3 out of 5 have an average response
of 0.3 or higher, computed from Boolean responses given as
-1 and 1.

We ran the LR and MLP attack with varying number of
CRPs on the XOR Arbiter PUFs obtained from the data to
compare the data complexity of the attacks. The detailed
results are displayed in Fig. 3. All attacks ran within a few
seconds to few minutes each.

The results on the data of Mursi et al. show that for k-XOR
Arbiter PUFs with k = 5 and k = 7, the data complexity of the

TABLE V
PARAMETER COMPARISON OF NEURAL-NETWORK-BASED MODELING

ATTACKS ON k-XOR ARBITER PUFS.

Santikellur et al. Aseeri et al. Mursi et al.
[23] [3] [17]

Method TRN MLP MLP
Architecture many delay mod. (2k, 2k, 2k) (2k−1, 2k, 2k−1)
Hid. lay. activ. — ReLU tanh
Optimizer Adam Adam Adam
Loss function BCE BCE BCE
Learning rate (multiple) 10−3 adaptive
Initializer Glorot Normal Glorot Unif. Gaussian

4 5 6 7 8 9 10 11
k

104

105

106

107

108

109

1010

Tr
ai

ni
ng

 S
et

 S
ize

n = 64

4 5 6 7
k

n = 128
Attack

Aseeri et al. (Keras)
Improved LR (Keras)
Santikellur et al. (Keras)
Mursi et al. (Keras)

Fig. 4. Data complexity of our attacks on n-bit Arbiter PUF with k
individual arbiter chains as determined as the lowest number of CRPs
(among exponentially increasing options) that yielded at least 50% successful
attacks, where successful means prediction accuracy of 90% or better. Our
implementation of the attack by Mursi et al. outperforms the improved LR
attack by an order magnitude with regard to data complexity.

MLP is much lower than that of the improved LR attack. (Note
that the x-axis is scaled approximately logarithmically.) On the
other hand, the results on the data of Aghaie and Moradi show
that the MLP attack is either unsuited or ill-parameterized for
k-XOR Arbiter PUF with smaller numbers for k and provides
no advantage or improved LR in data complexity, like we
observed for results we obtained on simulated CRPs (Fig.
4). As there is already a large variety of attacks available in
this setting, we did not explore further if the neural-network
attacks can be optimized for these sizes. We conclude that our
experiments on real-world data confirm our findings obtained
with simulated data.

VIII. COMPARISON OF XOR ARBITER PUF ATTACKS

Of the three studied neural-network-based modeling attacks
and the improved LR attack used as a baseline for comparison,
we found that the claims by Mursi et al. [17] could be traced
back to an error in CRP generation, which leaves the work by
Santikellur et al. [23] to claim, to the best of our knowledge,
the lowest data complexity of XOR Arbiter PUFs in the



10

literature. However, we were unable to replicate these attacks
for the cases of 7-XOR and larger.

Among the attacks successfully replicated in this work,
we found the attack by Mursi et al. [17] to have, despite
a relatively high number of trainable parameters, the lowest
data complexity. Being an enhancement of neural network
attacks presented by Aseeri et al. [3] and Santikellur et al.
[22] (not to be confused with the ECP-TRN), we attribute
the advantage in data complexity to the choice of network
size and hyperparameters, concluding that a further reduction
of complexity may well be possible for more carefully
optimized settings. Optimizing further for the XOR Arbiter
PUF, however, will not yield novel results, as the XOR Arbiter
PUF must be considered broken under reliability attacks
[5]; optimization effort should be invested in neural-network
attacks on other PUF designs.

Comparing the data complexity of the MLP-attack by Mursi
et al. to the results obtained with our improved version
of the LR attack, we find that MLP only has advantages
in data complexity for XOR Arbiter PUFs with more than
four arbiter chains, but not for smaller designs. Next to the
above-mentioned steep increase of data complexity for larger
challenge lengths of the MLP-attack (cf. Sec. VII), we read
this as evidence that the neural network structure is not optimal
with respect to arbitrary values of challenge length and number
of XORs.

Comparing the complexity of the MLP-attack by Mursi et
al. with the MLP-attack by Aseeri et al., we find that the main
differences of the attacks are the network shape and the choice
of activation function in the hidden layers. While Mursi et al.
demonstrated that attacks on XOR Arbiter PUFs are possible
on consumer laptops, our results show that the time and data
complexity of attacks can be further reduced. As discussed
above, using the tanh activation function instead of ReLU
provides outputs (inputs to the next layer) that are on average
zero, which is beneficial to the training process [14].

For a detailed comparison of the four modeling attacks,
graphs of the respectively used network structure are shown
in the full version of this paper [33]. Chosen hyperparameters
are shown in Tab. V, an overview over the data complexities
is provided in Fig. 4.

We do not include a detailed comparison of run times, as
most of the attacks presented in this work run in minutes,
which makes a valid comparison difficult. Furthermore, using
the Keras-based implementation, our attacks can be run in a
variety of different settings, i.e., on CPUs and GPUs, with
and without multi-threading, which will lead to different run
times. In any event, none of the attack times reported in this
work are prohibitively long for an attacker.

IX. MULTILAYER PERCEPTRON ATTACK ON
FEED-FORWARD ARBITER PUFS

To illustrate our argument that MLP attack should become
part of the standard security analysis of Strong PUF designs,
we apply our attacks to Feed-Forward Arbiter PUFs and
variants thereof.

Feed-Forward Arbiter PUFs were first introduced by
Gassend et al. [11] and Lee et al. [15] and are based

on the idea of introducing non-linearity to the response
behavior (as discussed in Sec. III-A) by adding more arbiter
elements that pick up the signal on the delay lines before
they reach the last stage. These arbiter elements produce
additional challenge bits which will be used in later stages.
As such, the Feed-Forward Arbiter PUF can be thought
of as a predecessor of the Interpose PUF, using the same
Arbiter PUF instead of an additional layer of PUFs to produce
additional, attacker-unknown, challenge bits. We will refer to
the additional arbiter elements and challenge bits as feed-
forward loops. An extension of the Feed-Forward Arbiter PUF
is the (homogeneous) XOR Feed-Forward Arbiter PUF [4],
where the result bit is – similar to the XOR Arbiter PUF –
determined by a number of k individual Feed-Forward Arbiter
PUFs with identical loop placements.

The Feed-Forward Arbiter PUF shows much stronger
modeling attack resistance than the XOR Arbiter PUF.
Rührmair et al. [21] attack only the Feed-Forward Arbiter
PUF whose loops are arranged in regular patterns. Kumar and
Burleson [13] demonstrated attacks on silicon data of Feed-
Forward Arbiter PUFs with up to 8 loops, using an attack
based on evolution strategies. They report data complexity
much lower than our attack allows, but did not report results
on XOR Feed-Forward Arbiter PUFs. Alkatheiri and Zhuang
[2] use an MLP-based approach for learning, however their
attack shows declining accuracy for an increase in the number
of loops. Furthermore, the attack also requires the loop pattern
to be known to the attacker, a condition that will not easily
hold since different Feed-Forward Arbiter PUFs can have
different loop patterns [2, personal communication]. While this
deficiency could be alleviated by either an (computationally
expensive) brute-force search or via a physical attack on the
circuit, they do not report attack results on XOR Feed-Forward
Arbiter PUFs.

In this work, we attack n-bit Feed-Forward Arbiter PUFs
and XOR Feed-Forward Arbiter PUFs with up to 10 loops. To
run the attack, we use an MLP of fitted size. In contrast to the
MLP network we used to attack the XOR Arbiter PUF, this
network is composed of four hidden layers with n, n/2, n/2, n
neurons, respectively. In our experiments, increasing the
number of hidden layers beyond this resulted in a decrease
in predictive power, increase of training time, or both. The
network shape and hyperparameters are chosen independently
of the number of loops and their positioning, hence no
knowledge of this information is required to run the attack.
As argued for the XOR Arbiter PUF (see Sec. VII), we opted
to choose the tanh activation function over the common choice
of ReLU. The attack network is displayed in the full version
of this paper [33]. We target both simulated PUFs, with the
simulation based of an appropriate adaptation of the additive
delay model (Sec. III-A), and PUFs implemented on FPGAs.

We implemented 64-stage Feed-Forward Arbiter PUFs
on three Artix®-7 FPGAs using the Xilinx Vivado design
suite that consists of an editable MicroBlaze CPU. VHSIC
Hardware Description Language (VHDL) was used to build
the Feed-Forward Arbiter PUFs designs. The placement of
each Feed-Forward Arbiter PUF on the chip was carried out
horizontally on the chips using the Tool Command Language



11

TABLE VI
RESULTS OF ATTACKING 64-STAGE AND 128-STAGE SIMULATED FF PUFS

USING OUR KERAS BASED IMPLEMENTATION OF THE MULTILAYER
PERCEPTION COMPARED WITH THE MULTILAYER PERCEPTION ATTACK BY
ALKATHEIRI ET. AL. [2]. THEIR METHOD ASSUMES THE LOOP PATTERN IS

KNOWN TO THE ATTACKER, THE PROPOSED METHOD HAS NO SUCH
ASSUMPTION. EACH SHOWN ROW HAS A SUCCESS RATE OF 10 OUT OF 10

TRIALS.

n no. of
loops CRPs duration acc. Alkatheiri et. al.[2]

CRPs duration acc.

64 4 135k 6 min 95% 200k 1.5 min 89%
64 6 315k 10 min 93% 200k 6.2 min 87%
64 8 540k 21 min 92% — — —
64 10 630k 26 min 93% — — —

128 1 36k 2 min 96% 20k 1 min 95%
128 3 180k 8 min 93% 100k 1 min 92%
128 5 405k 17 min 93% 200k 1.4 min 87%
128 7 900k 35 min 92% — — —
128 9 1.2M 45 min 91% — — —

TABLE VII
RESULTS OF ATTACKING 64-STAGE SIMULATED k-XOR FEED-FORWARD

ARBITER PUFS. RESULTS FOR ODD k ARE OMITTED FOR BREVITY.

success success
loops k CRPs rate duration accuracy memory

1

2 120k 10/10 0.5 min 98% <1 GiB
4 540k 10/10 2.8 min 98% 2.6 GiB
6 900k 10/10 7 min 98% 4.3 GiB
8 6M 7/10 6 hrs 96% 10 GiB

2

2 180k 10/10 5 min 97% 1 GiB
4 720k 10/10 32 min 98% 3.5 GiB
6 2.7M 9/10 1.4 hrs 97% 9.8 GiB
8 9.5M 9/10 22 hrs 96% 18.8 GiB

3

2 360k 10/10 8 min 97% 1.8 GiB
4 900k 10/10 2.3 hrs 96% 3.3 GiB
6 3.15M 10/10 9.2 hrs 94% 8.1 GiB
8 13.5M 6/10 40 hrs 91% 21 GiB

4

2 900k 10/10 1.4 hrs 97% 3.7 GiB
4 2.7M 9/10 8.3 hrs 96% 6.9 GiB
6 9M 6/10 26 hrs 94% 13 GiB
8 18M 4/10 46 hrs 92% 27 GiB

5

2 1.8M 10/10 4.9 hrs 95% 6.4 GiB
4 7.2M 7/10 19 hrs 93% 14 GiB
6 11.7M 5/10 32 hrs 91% 22 GiB
8 18M 4/10 24 hrs 90% 30 GiB

(TCL). AXI Universal Asynchronous Receiver Transmitter
(UART), with baud rate of 230kbits/second, was used to speed
up the CRPs transformation between the Tera Term terminal
and the FPGAs. The Xilinx SDK was utilized to program
the input/output workflow of the CRPs generation from the
chips. The implementation was done on three FPGA chips. We
generated five million CRPs out of each implemented silicon
PUF. The CRPs were generated at an ambient temperature of
around 22°C, and core voltage set to 1.0V using the built-in
chips resistor.

Our results show that our MLP-based method is able to
model 64-stage Feed-Forward Arbiter PUFs with 10 loops and
64-stage 8-XOR Feed-Forward Arbiter PUFs when using 5
homogeneous loops per Arbiter PUF. Note that the challenge
length of the PUF is reduced by the number of loops inserted,
however our results also indicate no fundamental change in

attack performance even when the challenge length is doubled
to approx. 128 bit. The detailed results on simulated data is
shown in Tab. VI for Feed-Forward Arbiter PUFs and in Tab.
VII for XOR Feed-Forward Arbiter PUFs.

In our experiments, increasing the depth of the neural
network and/or using different activation functions degraded
performance of the attack compared to the results shown in
this work.

Our experiments with real-world data largely confirm the
attacks on 64-bit Feed-Forward Arbiter PUFs, independently
of the choice of loop pattern, with the attack on 10 loops
requiring a lightly larger amount of 770,000 CPRs. As the
XOR operation of the XOR Feed-Forward Arbiter PUF is done
in Boolean logic and noise-free, we expect that our results
in simulation also transfer to real-world data on XOR Feed-
Forward Arbiter PUFs. A table showing the results is omitted
for brevity.

A further extension of the k-XOR Feed-Forward Arbiter
PUF can be made by introducing heterogeneous loops, i.e.
by using individual loop placements on the k involved Feed-
Forward Arbiter PUFs. We report that the network of our
MLP attack is unable to attack heterogeneous XOR Feed-
Forward Arbiter PUFs even for moderate parameter settings
involving just one loop per Arbiter PUF and k = 3. Modeling
accuracy was saturated at around 60%. We hence believe that
the neural network structure will need major modifications,
such as more layers, more nodes, or a structure different from
fully connected, to allow successful training for this extension
and encourage further research in this direction.

Our results demonstrate that the MLP attack can model
variants of the Feed-Forward Arbiter PUFs that previously
were out of reach for modeling attacks. This underlines our
argument that MLP attacks should be part of the security
analysis of future PUF designs and further reduces the security
level of the Feed-Forward Arbiter PUF family.

X. CONCLUSION

In this work, we compared three neural-network-based
XOR Arbiter PUF modeling attacks [23], [3], [17] against
a baseline given by an improved version of the Logistic
Regression modeling attack. While we could not replicate
experiments that claim extremely low data complexity of
attacks, our results prove that even XOR Arbiter PUFs with
perfectly reliable responses can be attacked faster, with far
fewer challenge-response pairs than previously known, and
consequently up to much security parameters. As increasing
the security parameter of XOR Arbiter PUFs is technologically
challenging, our results cast further doubt that XOR Arbiter
PUFs of sufficient security level can be fabricated. Given the
large hyperparameter space of neural-network-based attacks,
it is well possible that with more optimization, the attack
performance can be further improved.

Providing the implementations of all four attacks studied in
this work in a common framework and tested on a common
platform, we are able to provide a fair comparison of their
performances and confirm that previously reported better
performances are not just due to better frameworks or faster



12

CPUs, but are an intrinsic property of the strategy employed
by Mursi et al.’s multilayer perceptron-based modeling attack
[17]. We further demonstrated that neural network modeling
attacks can be used to attack (XOR) Feed-Forward Arbiter
PUFs for the security parameters typically studied in the
literature. By applying the attack to silicon data of XOR
Arbiter PUFs and Feed-Forward Arbiter PUFs, we confirm
that these advantages carry over to implementations of these
PUFs.

The MLP’s advantage in data complexity and modeling
power lets us conclude that neural-network-based attacks
should become part of the standard toolkit for PUF security
analysis, as on the one hand, they allow for rapid testing for
PUF design ideas [32], and on the other hand, as we showed
in this work, they may be able to provide lower attack time
or data complexity. However, we explicitly do not advocate
for neural-network-based attacks to replace the study of PUF
design by specialized attacks inspired from physical models. In
the case of XOR Arbiter PUFs, the physically inspired model
still has important relevance to the MLP-attack, as it provides
the features on which the modeling is based. Hence, attempting
the MLP attack without any knowledge of the physical model
would be to no avail, as the neural-network-based attacks
studied in this work fail when operating on challenge bits,
except for toy-sized XOR Arbiter PUFs.

In an application of the MLP attack to the Splitting Attack
on Interpose PUFs, we underlined the importance of adding
MLP to the standard toolkit for PUF security evaluation and
demonstrated that the low data complexity shown in this work
has also applications in the security analysis of composite PUF
designs.

We falsified claims of Mursi et al. [17] of extremely low
data complexity of XOR Arbiter PUF modeling attacks and
reevaluated their results, showing that their attack still has
data complexity an order of magnitude lower than state-of-
the-art attacks. We further falsified the claims of Nguyen et
al. [19] that the Logistic Regression attack has the lowest data
complexity among all modeling attacks on XOR Arbiter PUFs.

To facilitate future security analyses of PUFs and to avoid
errors in such attacks, we publish all our implementations
as a free open-source contribution to the pypuf framework
[31], and encourage the PUF community to do similarly. The
code of this work and the above detailed discussion of attack
methodology, hyperparameter choices, and network design
shed light on some of the inner workings of MLP-based PUF
modeling attacks and may help to apply the MLP approach to
other PUF designs.

Our results raise the question if reliability-based attacks like
the recently presented one by Tobisch et al. [26] can benefit
from the neural network approach in a similar way. If so,
that may pave the way to generalize reliability attacks to PUF
designs other than the XOR Arbiter PUF (and its variants).

Finally, with XOR Arbiter PUF, Interpose PUFs, and
homogeneous XOR Feed-Forward Arbiter PUFs successfully
attacked, it will be interesting to see which other PUF designs
neural-network-based attacks will be able to model.

XI. ACKNOWLEDGEMENTS

The authors would like to thank Anita Aghaie, Ahmad O.
Aseeri, Amir Moradi, Pranesh Santikellur, Johannes Tobisch,
and the anonymous reviewers. We acknowledge the provided
HPC computing time of Texas Tech University, Technische
Universität Berlin, and Freie Universität Berlin.

The research was supported in part by the National Science
Foundation under grant No. 2103563 and the German Ministry
for Education and Research as BBDC 2 (ref. 01IS18025A).

REFERENCES

[1] Anita Aghaie and Amir Moradi. Inconsistency of Simulation
and Practice in Delay-based Strong PUFs. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 520–551, July
2021.

[2] Mohammed Saeed Alkatheiri and Yu Zhuang. Towards fast and accurate
machine learning attacks of feed-forward arbiter PUFs. In 2017 IEEE
Conference on Dependable and Secure Computing, pages 181–187,
August 2017.

[3] A. O. Aseeri, Y. Zhuang, and M. S. Alkatheiri. A Machine Learning-
Based Security Vulnerability Study on XOR PUFs for Resource-
Constraint Internet of Things. In 2018 IEEE International Congress
on Internet of Things (ICIOT), pages 49–56, July 2018.

[4] S. V. Sandeep Avvaru, Ziqing Zeng, and Keshab K. Parhi. Homogeneous
and Heterogeneous Feed-Forward XOR Physical Unclonable Functions.
IEEE Transactions on Information Forensics and Security, 15:2485–
2498, 2020.

[5] Georg T. Becker. The Gap Between Promise and Reality: On the
Insecurity of XOR Arbiter PUFs. In Tim Güneysu and Helena
Handschuh, editors, Cryptographic Hardware and Embedded Systems
– CHES 2015, Lecture Notes in Computer Science, pages 535–555.
Springer Berlin Heidelberg, 2015.

[6] D. Chatterjee, D. Mukhopadhyay, and A. Hazra. PUF-G: A CAD
Framework for Automated Assessment of Provable Learnability from
Formal PUF Representations. In 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pages 1–9, November
2020.

[7] Durba Chatterjee, Urbi Chatterjee, Debdeep Mukhopadhyay, and Aritra
Hazra. SACReD: An Attack Framework on SAC Resistant Delay-PUFs
leveraging Bias and Reliability Factors. February 2021.

[8] J. Delvaux. Machine-Learning Attacks on PolyPUFs, OB-PUFs,
RPUFs, LHS-PUFs, and PUF–FSMs. IEEE Transactions on Information
Forensics and Security, 14(8):2043–2058, August 2019.

[9] Jeroen Delvaux and Ingrid Verbauwhede. Side channel modeling attacks
on 65nm arbiter PUFs exploiting CMOS device noise. In Hardware-
Oriented Security and Trust (HOST), 2013 IEEE International
Symposium On, pages 137–142. IEEE, 2013.

[10] Fatemeh Ganji, Shahin Tajik, Fabian Fäßler, and Jean-Pierre Seifert.
Strong Machine Learning Attack Against PUFs with No Mathematical
Model. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
Cryptographic Hardware and Embedded Systems – CHES 2016, Lecture
Notes in Computer Science, pages 391–411. Springer Berlin Heidelberg,
2016.

[11] Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten van Dijk, and
Srinivas Devadas. Identification and authentication of integrated circuits.
Concurrency and Computation: Practice and Experience, 16(11):1077–
1098, September 2004.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. arXiv:1412.6980 [cs], January 2017.

[13] Raghavan Kumar and Wayne Burleson. Side-Channel Assisted Modeling
Attacks on Feed-Forward Arbiter PUFs Using Silicon Data. In
Stefan Mangard and Patrick Schaumont, editors, Radio Frequency
Identification, Lecture Notes in Computer Science, pages 53–67, Cham,
2015. Springer International Publishing.

[14] Yann Lecun, Leon Bottou, Genevieve B. Orr, and K. Muller. Efficient
backdrop. In G. Orr and K. Muller, editors, Neural Networks. Springer,
1998.

[15] J. W. Lee, Daihyun Lim, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas. A technique to build a secret key in integrated circuits for
identification and authentication applications. In 2004 Symposium on
VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525),
pages 176–179, June 2004.



13

[16] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and
S. Devadas. Slender PUF Protocol: A Lightweight, Robust, and Secure
Authentication by Substring Matching. In 2012 IEEE Symposium on
Security and Privacy Workshops, pages 33–44, May 2012.

[17] Khalid T. Mursi, Bipana Thapaliya, Yu Zhuang, Ahmad O. Aseeri,
and Mohammed Saeed Alkatheiri. A Fast Deep Learning Method for
Security Vulnerability Study of XOR PUFs. Electronics, 9(10):1715,
October 2020.

[18] Khalid T Mursi, Yu Zhuang, Mohammed Saeed Alkatheiri, and
Ahmad O Aseeri. Extensive examination of xor arbiter pufs as
security primitives for resource-constrained iot devices. In 2019 17th
International Conference on Privacy, Security and Trust (PST), pages
1–9. IEEE, 2019.

[19] Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel
Mahmood, Ulrich Rührmair, and Marten van Dijk. The Interpose PUF:
Secure PUF Design against State-of-the-art Machine Learning Attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 243–290, August 2019.

[20] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld.
Physical One-Way Functions. Science, 297(5589):2026–2030,
September 2002.

[21] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas
Devadas, and Jürgen Schmidhuber. Modeling Attacks on Physical
Unclonable Functions. In Proceedings of the 17th ACM Conference
on Computer and Communications Security, CCS ’10, pages 237–249,
New York, NY, USA, 2010. ACM.

[22] Pranesh Santikellur, Aritra Bhattacharyay, and Rajat Subhra
Chakraborty. Deep Learning based Model Building Attacks on
Arbiter PUF Compositions. page 10, 2019.

[23] Pranesh Santikellur, Lakshya, Shashi Ranjan Prakash, and Rajat Subhra
Chakraborty. A Computationally Efficient Tensor Regression Network
based Modeling Attack on XOR APUF. In 2019 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST), pages 1–6,
December 2019.

[24] G. Edward Suh and Srinivas Devadas. Physical Unclonable Functions
for Device Authentication and Secret Key Generation. In Proceedings of
the 44th Annual Design Automation Conference, DAC ’07, pages 9–14,
New York, NY, USA, 2007. ACM.

[25] Shahin Tajik, Enrico Dietz, Sven Frohmann, Jean-Pierre Seifert, Dmitry
Nedospasov, Clemens Helfmeier, Christian Boit, and Helmar Dittrich.
Physical Characterization of Arbiter PUFs. In David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard
Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y.
Vardi, Gerhard Weikum, Camille Salinesi, Moira C. Norrie, and Óscar
Pastor, editors, Advanced Information Systems Engineering, volume
7908, pages 493–509. Springer Berlin Heidelberg, Berlin, Heidelberg,
2014.

[26] Johannes Tobisch, Anita Aghaie, and Georg T. Becker. Combining
Optimization Objectives: New Modeling Attacks on Strong PUFs. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages
357–389, February 2021.

[27] Johannes Tobisch and Georg T. Becker. On the scaling of machine
learning attacks on PUFs with application to noise bifurcation. In
International Workshop on Radio Frequency Identification: Security and
Privacy Issues, pages 17–31. Springer, 2015.

[28] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, November 1984.

[29] Abilash Venkatesh, Aishwarya Bahudhanam Venkatasubramaniyan,
Xiaodan Xi, and Arindam Sanyal. 0.3 pJ/Bit Machine Learning
Resistant Strong PUF Using Subthreshold Voltage Divider Array. IEEE
Transactions on Circuits and Systems II: Express Briefs, 67(8):1394–
1398, August 2020.

[30] Nils Wisiol, Georg T. Becker, Marian Margraf, Tudor A. A. Soroceanu,
Johannes Tobisch, and Benjamin Zengin. Breaking the Lightweight
Secure PUF: Understanding the Relation of Input Transformations and
Machine Learning Resistance. In Sonia Belaı̈d and Tim Güneysu,
editors, Smart Card Research and Advanced Applications, Lecture Notes
in Computer Science, pages 40–54, Cham, 2020. Springer International
Publishing.

[31] Nils Wisiol, Christoph Gräbnitz, Christopher Mühl, Benjamin Zengin,
Tudor Soroceanu, Niklas Pirnay, and Khalid T. Mursi. pypuf:
Cryptanalysis of Physically Unclonable Functions, 2021.

[32] Nils Wisiol, Christopher Mühl, Niklas Pirnay, Phuong Ha Nguyen,
Marian Margraf, Jean-Pierre Seifert, Marten van Dijk, and Ulrich
Rührmair. Splitting the Interpose PUF: A Novel Modeling Attack

Strategy. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 97–120, June 2020.

[33] Nils Wisiol, Khalid T. Mursi, Jean-Pierre Seifert, and Yu Zhuang.
Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs
Revisited. Technical Report 555, 2021.

[34] Risa Yashiro, Takanori Machida, Mitsugu Iwamoto, and Kazuo
Sakiyama. Deep-Learning-Based Security Evaluation on Authentication
Systems Using Arbiter PUF and Its Variants. In Kazuto Ogawa
and Katsunari Yoshioka, editors, Advances in Information and
Computer Security, volume 9836, pages 267–285. Springer International
Publishing, Cham, 2016.

[35] Meng-Day Yu, Matthias Hiller, Jeroen Delvaux, Richard Sowell, Srinivas
Devadas, and Ingrid Verbauwhede. A Lockdown Technique to Prevent
Machine Learning on PUFs for Lightweight Authentication. IEEE
Transactions on Multi-Scale Computing Systems, 2(3):146–159, July
2016.

[36] Meng-Day Yu, David M’Raı̈hi, Ingrid Verbauwhede, and Srinivas
Devadas. A noise bifurcation architecture for linear additive physical
functions. In 2014 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pages 124–129, May 2014.

[37] Haoyu Zhuang, Xiaodan Xi, Nan Sun, and Michael Orshansky. A
Strong Subthreshold Current Array PUF Resilient to Machine Learning
Attacks. IEEE Transactions on Circuits and Systems I: Regular Papers,
67(1):135–144, January 2020.


	Introduction
	Related Work
	Preliminaries
	Additive Delay Model
	Attacker Model
	Methodology

	Baseline: Improved Logistic Regression Attack
	Tensor Regression Network Attack by Santikellur et al.
	Multilayer Perceptron Attack by Aseeri et al.
	Multilayer Perceptron Attack by Mursi et al.
	Neural Network
	Replication and Results
	Hyperparameter Optimization
	Noise Resilience and Application to the Splitting Attack
	Application to Real-World Data

	Comparison of XOR Arbiter PUF Attacks
	Multilayer Perceptron Attack on Feed-Forward Arbiter PUFs
	Conclusion
	Acknowledgements
	References

