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symKrypt: A General-purpose and Lightweight
Symmetric-Key Cryptography

Abstract—Symmetric-key cryptography is used widely due to its capability to provide a strong defense against diverse attacks;
however, it is prone to cryptanalysis attacks. Therefore, we propose a novel and highly secure symmetric-key cryptography, symKrypt
for short, to defend against diverse attacks and provide absolute security. Our proposed algorithm changes private keys in each block
of communication, i.e., symKrypt uses multiple private keys to encrypt a single block of a message. Moreover, symKrypt keeps secret
the bit mixing of the original message with the private keys. Also, the number of private keys is kept secret. In addition, the private keys
are generated dynamically based on the initial inputs using a pseudo-random number generator which is highly unpredictable and
secure. In this article, we theoretically analyze the capabilities of symKrypt and provide experimental demonstration using millions of
private keys to prove its correctness. Furthermore, we demonstrate the proposed pseudo-random number generator algorithm
experimentally in NIST SP 800-22 statistical test suite. Our propose pseudo-random number generator passes all 15 tests in the said
test suite. symKrypt is the first model to use multiple private keys in encryption yet lightweight and powerful.

Index Terms—Security; Security Protocol; Encryption; Cryptography; Symmetric Cryptography; Diffie-Hellman Cryptography; Random
Number Generator; Computer Networking.
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1 INTRODUCTION

YMMETRIC-key cryptography is the most secure cryp-
Stography protocol. Therefore, there are diverse vari-
ants of symmetric-key cryptography, particularly, Twofish
[1], Serpent, AES (Rijndael) [2], Salsa20 [3], ChaCha20 [3],
Blowfish, Kuznyechik, DES, 3DES, Skipjack, and IDEA [4].
Diverse new variants are suggested by many researchers
[5], [6], [7], [8], [9], [10]. Also, diverse platforms are avail-
able, which requires modification of symmetric-key cryp-
tography techniques [11], [12], [13]. Recent analysis on
symmetric-key cryptography suggests many possible at-
tacks [14], [15], [16], [17], [18].

There are diverse attacks on symmetric-key cryptog-
raphy, and therefore, it demands a symmetric-key cryp-
tography algorithm that shows strong resistance to the
attacks. It also demands general-purpose symmetric-key
cryptography that can be applied in diverse domains,
for instance, the Internet of Medical Things. Moreover,
most modern devices require lightweight symmetric-key
cryptography, particularly securing small IoT devices [19].
Moreover, Edge Computing is emerging, and therefore,
there are diverse cryptographic requirements. For instance,
Edge Nodes and Cloud Computing can communicate with
high-sized key cryptography. But the Edge Devices are
low-, mid-, and high-powered. Therefore, the large key
size of the block cipher algorithm becomes expensive for
low-powered powered devices. Therefore, the key size re-
quirements range from 16-bits to 2048 bit; even more.
For instance, smartphones are highly capable devices but
not wearable devices. Consequently, it demands general-
purpose symmetric-key cryptography, which can provide
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absolute security. A general-purpose symmetric key cryp-
tography is required to suffice all those requirements.
Furthermore, there are various attacks on symmetric-key
cryptography due to single-keyed encryption. We propose
a general-purpose symmetric-key cryptography algorithm
called symKrypt, which is a straightforward solution and
lightweight cryptography yet very powerful to address the
above issues. symKrypt relies on Diffie-Hellman algorithm
[20] for key sharing, where symKrypt computes two secret
keys, namely, shared secret key and shared secret seed
value (Elliptic-curve cryptography [21], [22] or Elliptic-
curve Diffie-Hellman (ECDH) algorithm [23] can also be
used). Once the secret keys are computed, symKrypt does
not require Diffie-Hellman key exchange for the entire
session. The secret keys are used to generate the private
keys, and these are not used in encryption. symKrypt uses
multiple private keys in each round of encryption of a block
of a message. Similarly, it uses multiple private keys in the
encryption of each block of a message. The private keys
are computed asymmetrically by the sender and receiver;
but both has to maintain the order of the private keys for
each message. Therefore, the private keys play a vital role
in defending diverse attacks in symmetric-key cryptogra-
phy. These private keys are generated dynamically using a
pseudo-random number generator algorithm that is highly
unpredictable for adversaries. symKrypt performs rotation,
and it never shares the information of rotation r and the
total number of private keys ¢. Therefore, symKrypt creates
a strong deterrence against the attackers. The ¢ and r are
computed dynamically, and also, the value of r changes
in each iteration. symKrypt also protects the left or right
rotation information, and thus, the adversaries do not have
any clue on the types of the rotations.

The main contributions of this article are outlined below-
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e We propose a novel and highly secure symmetric-key
cryptography algorithm, called symKrypt for short,
based on dynamic private keys.

o symKrypt changes its private key in each iteration of
a block of message. Also, it changes the private keys
in each block of a message.

e The private keys are generated by a pseudo-random
number generator which is highly unpredictable. The
shared secret key and shared secret seed value are
replaced with the private keys.

e The total number of private keys is kept secret.
Moreover, the rotation information is kept secret, and
it is dynamically generated.

o We propose a pseudo-random number generator to
generate the private keys which rely on the non-
cryptographic string hash function.

o symKrypt demonstrates its strong resistance against
many attacks, including cryptanalysis attacks.

This article demonstrates the capabilities of symKrypt
theoretically and experimentally. To the best of our knowl-
edge, symKrypt is the first of its kind to use multiple
keys in encryption. The changes of the private keys create
a resistance against cryptanalysis attacks. This article also
demonstrates how to change its private keys and generate
the dynamic private keys in each round. Moreover, we
show how it helps in defending many attacks by keeping
secret about the rotation information and the total number
of private keys. The adversaries have no clue in gain-
ing these information. Therefore, symKrypt can provide a
strong deterrence to any possible attacks of symmetric-key
cryptography yet lightweight.

This article is organized as follows- Section 2 describes
the proposed system and elaborates the proposed algo-
rithms in detail. Section 4 analyzes the proposed system
theoretically and demonstrates the resistance of symKrypt
against any attacks. Section 5 proves the proposed system
experimentally. Finally, Section 6 concludes the article.

2 PROPOSED SYSTEMS

We propose a novel and highly secure symmetric-
key cryptography algorithm, symKrypt (SYMmetric-Key
cRYPTography) for short. The key objective of our proposed
systems is to provide strong resistance against the possible
attacks on symmetric-key cryptography. Therefore, we have
a few assumptions, and these assumptions are outlined
below-

o At the given time, the sender and the receiver must
be active.

e Our proposed algorithm relies on the Diffie-Hellman
key exchange protocol, and thus, we omit a detailed
analysis of the same. Also, we assume that the
symmetric-key exchange protocol is secure enough
to protect against any attacks on key sharing.

o We assume that sender and receiver are valid. There-
fore, the man-in-the-middle attack is out of scope.
Moreover, our proposed system does not deal with
DDosS attacks.

TABLE 1: Parameters and their states of symKrypt

State
Secret & Static
Secret & Static

Secret & Dynamic
Secret & Dynamic
Public
Secret & Dynamic
Secret & Dynamic
Public

Parameter
Shared secret key SKC
Shared secret seed value S
Private key P
Total number of private keys ¢
Minimum /Maximum number of public key ¢
Number of circular shift rotation r
Left or Right shift rotation
Bit size of the key

3 PRELIMINARY

Table 1 shows the essential parameters of our proposed
algorithm and their state. Most of the parameters are secret.
The shared secret key and the shared secret seed value
are kept secret, and used only once to generate the first
bit of the first private key. The key-exchange take place
only once. The private keys are changed and generated
dynamically, and these are kept secret. Similarly, the » and
t are kept secret, and generated dynamically. Moreover, the
rotation decision is also made dynamically. However, the
minimum/maximum number of public key range and bit
size of the keys are made public.

3.1 Description

Let A and B be the sender and receiver, respectively. Let
A and B mutually agree on a shared secret key SK and a
shared secret seed value S securely using the Diffie-Hellman
algorithm. The sender A divides the message m into several
blocks. The blocks are encrypted and sent to the . The SK
and B are used to generate private keys for encryption and
let the private keys be P = {P1, P2, Ps, ..., P;} and the
bit size of the private keys be the 3. A block of a message is
encrypted by all these randomly generated private keys as
given in Equation (1).

C=P1dm
rotate(¢, (Py mod f3))

(=P2®¢
rotate(C, (P2 mod f3))

C=P3d( 1)
rotate(¢, (Ps mod ())

(=P
rotate(¢, (Py mod f3))

The ¢ is rotated using circular shift right/left operation
depending on the last bit of the private key. The total
number of rotations is calculate using modulus operation
as shown in Equation (1). The circular shift right/left and
the total number of rotations in the circular shift right/left
rotation are kept secret.

In the decryption process, the receiver B receives cipher-
text ¢ and decrypts using secret private keys P as given in
Equation (2). The sender’s private keys must be same as the
receiver; otherwise, the decryption process fails. Firstly, the
B derives the total number of rotations and performs the
ciphertext exactly the opposite rotation of the encryption
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process. Secondly, the rotated ciphertext is decrypted using
the private keys shown in Equation (2).

rotate(m, (P mod 3))
m = Pt D C
rotate(m, (P—1) mod [3))

m="Py_1)Dm
s (P(t—2) mod 3)) )
m = Pi_2 Bm

rotate(m

rotate(m

, (P1 mod f3))
m=P1dm

The decryption process is the opposite of the encryption
process. Therefore, the private keys are XORed with the
ciphertext in descending order.

3.2 Encryption process

3

¢ = 5, then at least five rounds of XOR operations need
to be performed between the original message and the five
private keys. Alternatively, the ¢ represents the total number
of private keys to be used in encryption and decryption.
The private keys are generated using a pseudo-random
number generator (PRNG) algorithm. Moreover, the seed
value changed to the generated private key in each iteration.
The generated private key P is XORed with the original
message m. The ciphertext ¢ is rotated by the circular shift
left/right rotation operation r times in each iteration. If the
shared secret key is odd, then performs circular shift left
operation; otherwise, performs circular shift right operation.
The adversary is unable to know whether to perform a
circular shift right or left. The sender 4 sends the ciphertext
( to the B over insecure channel.

3.3 Decryption process

Algorithm 2 Algorithm for decryption.

Algorithm 1 Algorithm for encryption.

1: procedure SYMENC(m, SK, S, )

2: t = (SKmod ) +c

3 (=m

4: 1 =1

5: r=38 mod f3

6 odd=S8K A1

7 while 7 <t do

8 P; = GENPRNG(SK, S, 5)

9: S=P;

10: r ="P; mod 8

11: (=CaeP;

12: if P; A1 =1 then

13: ¢ = CIRCULARROTATELEFT((, 7)
14: else

15: ¢ = CIRCULARROTATERIGHT((, r)
16: end if

17: 1=1+1

18: end while

19: Send C to the receiver
20: return P

21: end procedure

The sender A wants to send a message to receiver B,
and therefore, both parties agree on the shared secret key
SK and the shared secret seed value S, where SKC # S.
Algorithm 1 requires the original message m, shared secret
key K, shared secret seed value S, and the bit size of
encryption 3 as the input parameters. The bit size of both
B must be equal to or greater than m, and 3 be of any
size (8 > m or 128 bits by default and the size of 3 can
be 16 bits, 32 bits, 64 bits, 128 bits, 256 bits, 512 bits, and
so on, as per the requirement of the user’s application).
The bit size 3 is public. Let ¢ and r be the total number
of rounds and the total number bits’ rotation. Algorithm 1
calculates t = SK mod 8+ c and r = P mod [ which
are not known to adversaries. The ¢ is a constant value
which means that at least ¢ rounds of XOR operation need
to be performed, and it is made public. For instance, if

1: procedure SYMDEC((, SK, S, 5)
22 t=(SKmodp)+c

3 m=_

4: r=38 mod

5: odd=8K N1

6: i=1

7 while 1 <t do

8 P; = GENPRNG(SK, S, )
9: S=P;

10: 1=1+1

11: end while

12: 1=1

13: while 7 > 1 do

14: r ="P; mod 8

15: if P; A1 =1 then

16: ¢ = CIRCULARROTATERIGHT((, r)
17: else

18: ¢ = CIRCULARROTATELEFT((, 7)
19: end if
20: m=mo®P;
21: 1=1—1
22: end while

23: Write

24: return P
25: end procedure

The receiver B receives the ciphertext ¢, and decrypts
the ciphertext using Algorithm 2. Algorithm 2 is similar to
Algorithm 1 except the rotation operation and its order. The
circular shift rotation is performed in each iteration after the
XOR operation in the encryption process. In contrast, the
circular shift rotation is performed in each iteration before
the XOR operation in the decryption process. Moreover,
the rotation direction should be opposite to each other; for
instance, if encryption performs circular shift rotate left,
then decryption has to perform a circular shift right oper-
ation depending on the private key. In short, the decryption
operation has to perform the reverse order of the encryption
operation.
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4

Algorithm 3 Algorithm for Pseudo-random number gener-
ation.

1: procedure GENPRNG(SK, S, f)

2: 1=0

3 I = LENGTH(SK)

4 while 5 > 1 do

5: d = STRINGHASHFUNCTION(SK, I, S)
6: S=d

7: e = STRINGHASHFUNCTION(SK, 1, S)
8 S=edd

9: bin[i)] =d A 1

10: 1=1+1

11: B8=p-1

12: end while

13: 7 = CONVERTTOINTEGER(bin, ()
14: return n

15: end procedure

3.4 Pseudo-random Number Generator

The necessary conditions of pseudo-random number gener-
ator for symKrypt are outlined below-

e The PRNG must be able to produce a highly random,
unpredictable, and cryptographically secure key.

e The PRNG must pass all the 15 tests of NIST SP 800-
22.

o The generated random key must be reproducible for
the correct inputs.

The PNRG must satisfy the above conditions to decrypt
the encrypted message correctly; otherwise, the symKrypt
fails. symKrypt heavily depends on PRNG with the above-
cited conditions. Our proposed PRNG depends on the non-
cryptographic string hash functions, and the string hash
function mixes the bits and produces unpredictable LSB bits.
The LSB bit is extracted to form a private key. Algorithm 3
iterates 3 times and forms private keys of 3 bits. Algorithm
3 takes shared secret key, shared secret seed value, and bit
information as the initial inputs. It can produce the same
output for a given input set at any given time. However, the
output is truly random, tested in NIST SP 800-22 statistical
test suite [24], [25].

3.5 Sequence of messages’ blocks

Algorithm 4 Encryption of the blocks of messages by
symKrypt.

1: procedure SYMKRYPTENC(m[¢], SK, S, §)

2: =1

3: while ¢ > ¢ do

4 PK = sYMENC(m;, SK, S, /)
5; S=5§dSK

6: SK =PK

7: 1=1+1

8 end while

9: end procedure

Algorithm 1 and Algorithm 2 demonstrate the encryp-
tion and decryption of a single block. It returns a pri-
vate key, and it is required to encrypt or decrypt the

Algorithm 5 Encryption of the blocks of messages by
symKrypt.

1: procedure SYMKRYPTDEC([¢], SK, S, )

2: 1=1

3: while ¢ > 9 do

4 PK = sYMDEC(¢;, SK, S, 0)
5: S=8SaSK

6: SK =PK

7: 1=1+4+1

8 end while

9: end procedure

next blocks of messages. Let the blocks of message be the
mi, Mg, M3, ..., My. Algorithm 4 and Algorithm 5
demonstrate the encryption and decryption of entire blocks
of messages in a communication between A and B, respec-
tively. In encryption or decryption, the private keys are
changed in each round or iteration. Moreover, the shared
secret key SK and the shared secret seed value S are used
only once to generate the first bit of the first private key.
Later, the shared secret key and shared secret seed value
are replaced. Moreover, the value of ¢ and r change in each
block’s encryption or decryption.

4 ANALYSIS

symKrypt is a symmetric-key cryptography algorithm that
depends on symmetric key exchange algorithms. There
are a few symmetric-key exchange algorithm, namely,
Diffie-Hellman [20], Elliptic-key cryptography [21], [22] and
ECDH [23]. We choose one of the most secure symmetric key
exchange algorithm, Diffie-Hellman algorithm. The security
of symKrypt depends on a pseudo-random number gener-
ator that generates private keys. Moreover, Table 1 shows
that the minimal number of parameters are made public,
preventing the attackers from gaining information on the
ciphertext.

4.1 Time Complexity

The time complexity of a block of a message in symKrypt is
constant. The time complexity of Algorithm 1 depends on
the time complexity of Algorithm 3. The time complexity of
Algorithm 3 depends on the hash function and the number
of bit size requirements. The has function’s time complexity
depends on the input string length, for instance, [. Algo-
rithm 3 iterates 3 times, and hence, the total time complexity
of the Algorithm 3 is O(8 x 1). In practical applications, the
bit size ranges from 16 bits to 2048, quite a small number.
Also, the string length is similar to the bit sizes. Therefore,
we can easily rewrite the time complexity of Algorithm
3 intuitively, and it is O(1). The total time complexity of
Algorithm 1 is O(t x 8 x [). In a practical scenario, the
value of t ranges from 10 to 100. Therefore, the total time
complexity of Algorithm 1 and Algorithm 2 is O(1). The
time complexity of symKrypt depends on Algorithm 4 and
Algorithm 5. Algorithm 4 and Algorithm 5 depends on
the number of blocks. The total number of blocks is .
Therefore, the total time complexity is O(y8 x 1) = O(%)).
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4.2 Correctness of symKrypt

We exploit the XOR property to perform encryption. The
plaintext m is XORed with several private keys. It also
performs several rotation operations. XOR operation pro-
duces zero if two bits are equal; otherwise, it produces one.
Similarly, XOR operation produces zero for two same keys.
Therefore, symKrypt can produce zero in the encryption
process to transmit to the receiver. The zero value is correct,
and it can be sent to the receiver. The receiver can retrieve
the original message from the zero value if the shared
secret key and shared secret seed value are correct. It is
also possible that symKrypt produces ‘1" in all bit fields.
Moreover, symKrypt can also produce single-digit output or
two digits output in the encryption process. symKrypt can
produce any output in encryption. The original message can
be decrypted from the ciphertext in any condition.

The message m is XORed with set of keys P. For exam-
ple, Equation (3) encrypts the message m.

C=mdP; 3)

Equation (4) decrypts the encrypted message by Equation
®).
m=CoP @)

Let us assume that the encryption process using multiple
keys as shown in Equation (5).

(=moPOP0P38...0F;
C=mD(P1OP2®Ps5D...DP) ®)
¢ = m @ (equivalent to a single key)

Equation (5) shows that encrypting a message with multiple
keys cannot protect the attackers if we do not mix the
message with private keys properly. Equation (5) is easy to
decrypt by any novice attacker. Therefore, we address this
issue by rotation in each iteration. The rotation information
is kept secret, and therefore, there is no way to trace back
the original message from the ciphertext for the adversaries.
Exclusively, the intended user can decrypt the original mes-
sage even if the encryption process produces a single or
double-digit number.

Moreover, the correctness of symKrypt also depends on
the rotation. Let m is circular shift left rotated by r times. It
requires a circular shift right rotate by r times to produce m
correctly. The value of r is dynamic and changes in each iter-
ation. In addition, the left/right rotation is also dynamic and
depends on the private keys. The exact reverse order of the
encryption process can decrypt the original message from
the ciphertext. Therefore, the intended user can exclusively
decrypt the original message. The rotation process creates a
strong resistance against any attacks. Moreover, the value of
t also provides a good defense against attacks.

4.3 Brute-force attacks

A brute-force attack is the most famous attack; however,
many symmetric-key cryptographies have already taken
preventive measures to secure communication. Similarly,
symKrypt provides a strong resistance to brute-force attacks.
Let us assume that the ¢ = 0 and SK mod g = 0, then the
value of ¢ is zero in t = (SK mod () + ¢ and there is no
encryption. A raw message is sent to the receiver. In this

5

case, symKrypt fails. Another instance, if c = 1 and ¢t = 0,
then symKrypt also fails. Therefore, we suggest the value of
c between 10 and 100 for the practical scenario. In the worst-
case scenario, the value of t is 227 where SIC mod § = 127
in 128 bits key size and ¢ = 100. It implies that symKrypt
has to perform encryption or decryption using 227 private
keys; however, an adversary is unable to know the total
number of private keys. In addition, the private keys are
highly unpredictable, and thus, it also provides a strong
deterrence against any attacks.

Let us assume that the adversary knows the value of
t, which is 10. Let us also assume that the same adver-
sary knows the shared secret key SK. Theoretically, the
adversary has the most information of the communication;
however, the adversary does not know the seed value of
S. The probability of gaining the correct information about
the seed value is 57 where 8 can be 26, 27, 28, ... bits
and it is made public. Our assumption was the adversary
knows the shared secret key SK. If the adversary does
not know the SK, then the probability of getting correct
SK is 5. Therefore, the total probability break of both the
secret information using brute-force attack (BF) is given in
Equation (6).

Pr(BF) = Pr(SK)n Pr(S)

11

28 98 ©®)
1

T »

The Pr(BF) is the probability of breaking security using
the brute-force method, and the two secret information are
independent of each other. Therefore, the probability of not
getting secret information is (1— 4% ). If the adversary knows
the two secret information, it is easy to decrypt an encrypted
message.

We also assumed that the adversary knows the value
of t. If the adversary does not the value of ¢, then it can
also provide a strong deterrence against the attacks. Let us
assume that the attacker can match the secret information
due to collision, but the attacker is unable to produce the
correct value of ¢. Let us assume that the value of ¢ ranges
from 10 to 137 for the value of ¢ = 10 and 8 = 128. Thus,
the probability to get correct ¢ value is 13- because ¢ and
B are public. Alternatively, the probability is ﬁ Also, the
value of r is private, and therefore, the probability to know
the total value of r is 203%1) where the maximum value of 7
is (8 — 1). Thus, the total probability of breaking symKrypt
using brute-force is given in Equation (7).

Pr(BF) = Pr(SK)n Pr(S) N Pr(t) N Pr(r)

1 1

T2 X (1) x 20-D @)
1

TR (51

Therefore, the probability of not able to break symKrypt is
(1 - (7))

Let us assume that attacker is not interested in attacking
the shared secret keys. Let also us assume that the adversary
knows the value of ¢. Therefore, there are ¢ private keys used
to encrypt. The probability of knowing a private key is 217
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There are t private keys; thus, the total probability break a
single block of communication is 2[% Moreover, there are 9
blocks in a message, thus, the total probability capture entire
message is Z(Bf 2y which almost zero. If the adversary does
not know the value of ¢ and r, then the total probability of
capturing entire message is 55— 1)X2<5 1y- Moreover,
the value of ¢ and r change in each communication of each
block. The adversary does not know whether to rotate left
or right, and how many times to rotate, as shown in Table 1.
Therefore, it is easier to attack in Diffie-Hellman algo-
rithm rather than symKrypt. Hence, symKrypt assumes that
Diffie-Hellman algorithm can provide strong security. Thus,
our proposed system is able to provide a strong security
measurement against the attacks because there is a few
public information of symKrypt as shown in Table 1. Most of
the parameters are dynamically generated and kept secret.

4.4 Cryptanalysis attacks

A cryptanalysis attack is an attack by analyzing the
ciphertext to discover the plaintext. An attacker col-
lects many ciphertexts and performs analysis on the
collected database. It performs ciphertext-only, known-
plaintext, chosen-plaintext/ciphertext, adaptive chosen-
plaintext/ciphertext, related-key, and differential attacks.
These types of attacks can be applied in the single-keyed
symmetric ciphertext. symKrypt uses ¢ random key gen-
erated by pseudo-random number generator. The private
keys change in the encryption or decryption of each block
of messages. Therefore, cryptanalysis attack does not apply
in symKrypt.

The dictionary attack is an attack by creating a dictionary
through collecting several ciphertexts. A dictionary attack
is dangerous for password-based attacks by creating a large
dictionary. Moreover, there is also a birthday attack based on
collision probability; however, this kind of attack does not
apply to symKrypt due to encryption using several private
keys. Also, symKrypt provides strong resistance against a
preimage attack.

4.5 Unknown attacks

Let us assume that an adversary is able to break symKrypt
with a probability of (W )- The adversary may use any
techniques to break the security of symKrypt, for instance,
fault attack [14]. In this case, the adversary can break a par-
ticular block of message with the probability of (m)
But there are several blocks of the messages still secured
even if a block of message is compromised. It provides a
strong deterrence against any possible attacks.

5 EXPERIMENTAL RESULTS

We have conducted a series of rigorous tests to verify the
correctness of our proposed system. This experimentation
is two-fold- first, we experiment the encryption and de-
cryption, and secondly, we test the pseudo-random number
generator on NIST SP 800-22 statistically test suite. Our ex-
perimental environment is as follows- a) CPU is configured
with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, b) RAM
size is 8GB, HDD size is 1TB, c) operating system is Ubuntu
18.04.5 LTS, and d) programming language is GCC version
7.5.0.

5.1 Cryptography testing
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Fig. 1: Comparison between symEnc and symDec in various
values of ¢ (the ¢ is the total rounds of encryption). Lower is
better.

Figure 1 demonstrates the time taken to encrypt and de-
crypt by symKrypt for various round settings. The round ¢ is
set for single message encryption with IM~5M private keys.
Algorithm 1 takes approximately equal times as Algorithm
2. Algorithm 1 and Algorithm 2 can perform 476399.83 and
479518.57 rounds per second, respectively. It implies that
symKrypt can perform XOR operation between the original
message and the 476399.83 and 479518.57 private keys per
second. Therefore, it is quite fast to encrypt or decrypt a
message using symKrypt.
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Fig. 2: The total times taken for encryption and decryption
by symKrypt in ¢ rounds (the ¢ is the total rounds of
encryption).

Figure 2 depicts the total time taken to both encrypt
and decrypt a single message by various ¢ value settings.
The ¢ value represents the total number of private keys
ranging from 1M to 5M in encryption and decryption each.
symKrypt takes time 4.21 and 20.85 seconds total time for
1M and 5M private keys.

Figure 3 shows the time taken to encrypt and decrypt
1M~5M blocks of messages at t = 10. Here, we use ten
private keys to encrypt or decrypt. symKrypt takes 20.92
and 20.99 seconds to encrypt and decrypt 1M blocks, respec-
tively. Similarly, symKrypt takes 104.92 and 104.97 seconds
to encrypt and decrypt 5M blocks, respectively.

Figure 4 demonstrates the total number of blocks per
second for various ¢ value settings. The ¢ value ranges from
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Fig. 3: Time taken to encrypt or decrypt several millions of
blocks in seconds at the settings of ¢ = 10. Lower is better.
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Fig. 4: Comparison between symEnc and symDec for time
as the total number of blocks per second in various values
of t. Higher is better.

10 to 50 which directly translates it uses 10 to 50 private keys
for encryption or decryption. At ¢ = 10, symKrypt can per-
form 47639.98 and 47551.85 blocks per second, respectively.
Similarly, symKrypt can perform 9527.99 and 9510.37 blocks
per second at ¢ = 50, respectively.

5.2 Randomness testing

Algorithm 3 is experimented to test its randomness in NIST
SP 800-22 statistical test suite [24], [25]. This experimental
evaluation shows the randomness of the generated private
keys. Table 2 demonstrates the P-value and pass rate of
randomness testing in NIST SP 800-22 statistical test suite.
NIST SP 800-22 provides approximation entropy, frequency,
block frequency, cumulative sums, runs, longest runs, rank,
FFT, non-overlapping template, overlapping template, ran-
dom excursions, random excursions variant, serial, linear,
and universal statistical testing of a given input. We have
generated 10M random bits and input them into the test
suite. The 32 bits, 64 bits, and 128 bits stream are tested in
the default configuration of the NIST SP 800-22 test suite.
Table 2 proves that the generated private keys are highly
unpredictable and random. Therefore, it is difficult to guess
the private keys by the adversaries.

The P-value (> 0.01) is important in deciding the ran-
domness and the pass rate. Table 2 shows the P-values and
these P-values are greater than minimum P-value (0.01). The
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maximum P-value of 32 bits, 64 bits, and 128 bits stream are
0.991468, 0.976060, and 0.941144, respectively. The minimum
P-value of 32 bits, 64 bits, and 128 bits stream is 0.100508,
0.016990, and 0.028181, respectively. The maximum pass rate
is 1 for all. The minimum pass rate of 32 bits, 64 bits, and
128 bits stream is 0.9375, 0.96875, and 0.96875, respectively.
Thus, Algorithm 3 proves its capability of generating a truly
random number that can be used to generate the private
keys for symKrypt.

6 CONCLUSION

This article demonstrates our proposed symmetric-key
cryptography algorithm, symKrypt, which is the first of its
kind. Our proposed algorithm is simple and straightforward
yet powerful. It can be used on any platform to secure
symmetric communication. symKrypt depends on multiple
private keys, which are generated dynamically and kept
secret. Our experimental results show that the proposed
pseudo-random number generator algorithm to generate
private keys are unpredictable and secure. It is tested in
NIST SP 800-22 statistical test suite. Moreover, the symKrypt
uses two shared secret keys, namely, shared secret key and
shared secret seed value computed by the Diffie-Hellman al-
gorithm. These two secret keys are used to generate private
keys but are not used to encrypt the messages. In addition,
symKrypt changes its private key for the encryption or
decryption process in each iteration of a block of message.
Also, it changes the private keys in each block of a message.
symKrypt is the first variant to use multiple private keys
without using extra communication for the private keys.
The sender and receiver do not exchange the private keys
but compute the private keys independently without com-
munication.

Furthermore, the total private keys ¢ and the rotation
information r are kept secret. These are calculated dy-
namically. Besides, the left or right rotation is kept secret,
which is also computed dynamically. Thus, symKrypt has
two public information: the bit size information 5 and the
maximum/minimum private key ranges.

We have demonstrated the value of ¢ > 10 ranging from
1M to 5M experimentally and validated its correctness. It
shows the correctness of our proposed algorithm that it
works on a very large set of private keys. The performance
of encryption and decryption is quite fast, as shown in the
experimental section. Moreover, the bit size can be defined
by the user, and it can be any size as per the requirement
of the user’s application. However, the condition is 8 > m
where m is the block of a message. There is no restriction on
bit size, unlike conventional symmetric-key cryptography.
We also analyzed the time complexity, which is O(m) where
m is the total block of messages. Moreover, we discuss
the correctness of our proposed algorithm theoretically and
experimentally.

symKrypt provides strong resistance against any attacks
except DDoS and MITM attacks. We illustrate the resistance
of the symKrypt for any attacks. The probability of attacking
symKrypt is too small, and it is almost negligible. Our
proposed algorithm can defend any possible symmetric-
key cryptography attack due to various reasons, particularly
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TABLE 2: P-values and success rates of Algorithms 3 for 32, 64 and 128 bits in NIST SP 800-22.

Test name 32 bits 64 bits 128 bits
P-value Pass rate P-value Pass rate P-value Pass rate
Approximate Entropy 0.299251 32/32 0.350485 62/64 0.378138 128/128
Frequency 0.299251 32/32 0.253551 63/64 0.025193 127/128
Block Frequency 0.299251 32/32 0.534146 64/64 0.170294 127/128
Cumulative sums 0.299251 32/32 0.500934 63/64 0.028181 127/128
Runs 0.739918 31/32 0.637119 63/64 0.148094 124/128
Longest runs 0.100508 32/32 0.568055 64/64 0.723129 126/128
Rank 0.534146 31/32 0.949602 61/64 0.155209 127/128
FFT 0.407091 30/32 0.016990 64/64 0.671779 125/128
Non-overlapping Template 0.991468 32/32 0.976060 64/64 0.941144 128/128
Overlapping Template 0.213309 32/32 0.407091 64/64 0.095617 128/128
Random Excursions 0.637119 13/13 0.122325 18/18 0.534146 12/12
Random Excursions Variant | 0.637119 13/13 0.213309 18/18 0.911413 12/12
Serial 0.602458 32/32 0.862344 62/64 0.834308 127/128
Linear complexity 0.299251 31/32 0.862344 62/64 0.213309 123/128
Universal 0.350485 31/32 0.772760 63/64 0.706149 127/128
a) minimal public key, b) secret information is dynamic in  [13] S. Raza, L. Seitz, D. Sitenkov, and G. Selander, “S3k: Scalable

nature, and c) multiple private keys.
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