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Abstract

The proof-of-stake (PoS) protocols have been proposed to eliminate the unnecessary waste of computing
power in Bitcoin. Multiple practical and provably secure designs have been developed, such as Ouroboros
Praos (Eurocrypt 2018), Snow White (FC 2019), and more. However, an important security property called
unpredictability has not been carefully studied in these provably secure PoS. Unpredictability property is criti-
cal for PoS since the attackers could use predictability to launch strengthened versions of multiple attacks (e.g.,
selfish-mining and bribing). Unpredictability has previously been investigated by Brown-Cohen et al. (EC 2019)
in incentive-driven settings. In this paper, we investigate the property in the cryptographic setting, to achieve the
“best possible” unpredictability for PoS.

First, we present an impossibility result for all proof-of-stake protocols under the single-extension design frame-
work. In this framework, each honest player is allowed to extend exactly one chain in each round; the state-
of-the-art permissionless PoS protocols (e.g., Praos, Snow White, and more), are all under this single-extension
framework. Our impossibility result states that, if a single-extension PoS protocol achieves the best possible un-
predictability, then this protocol cannot be proven secure unless more than 73% of stake is honest. Then, to over-
come the impossibility result, we introduce a new design framework, called multi-extension PoS, which allows
each honest player to extend multiple chains in a round. We develop a novel strategy called “D-distance-greedy”
strategy (where D is a positive integer), in which honest players are allowed to extend a set of best chains that are
“close” to the longest chain. (Of course, malicious players are allowed to behave arbitrarily in the protocol exe-
cution.) This “D-distance-greedy” strategy enables us to construct a class of PoS protocols that achieve the best
possible unpredictability. Plus, we design a new tiebreak rule for the multi-extension protocol to choose the best
chain that can be extended faster. This ensures that the adversary cannot slowdown the chain growth of honest
players. Note, these protocols can be proven secure, assuming a much smaller fraction (e.g., 57%) of stake to be
honest.

To enable a thorough security analysis in the cryptographic setting, we develop several new techniques. As
the players are allowed to extend multiple chains, the analysis of chain growth is highly non-trivial. We introduce
a new analysis framework to analyze the chain growth of a multi-extension protocol. To prove the common
prefix property, we introduce a new concept called “virtual chains”, and then present a reduction from the regular
version of the common prefix to “common prefix w.r.t. virtual chains”.
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1 Introduction

Cryptocurrencies like Bitcoin [Nak08] have proven to be a phenomenal success. These protocols are executed by
a large-size peer-to-peer network of nodes using the proof-of-work mechanism [DN93, Bac02]. They provide a
trustworthy, append-only, and always-available public ledger, facilitating the implementation of a global payment
system (e.g., Bitcoin) or a global computer (e.g., Ethereum).

Bitcoin-like consensus protocols.

In Bitcoin, consensus is achieved through a PoW mechanism. Specifically, the participant who discovers a valid
solution (a random nonce) to the hash-based PoW puzzle becomes the block producer for generating the next block.
As detailed in [GKL15], two distinct hash functions (treated as random oracles) are used to extract the chain con-
text and solve the puzzle, determining who can generate new blocks. The newly created block is then appended
to the longest chain.
From proof-of-work (PoW) to proof-of-stake (PoS). However, the PoW-based consensus requires substantial com-
puting power. Utilizing alternative resources like coins (also known as stake) to secure a blockchain is desirable. If
successful, the new system would be environmentally friendly, as it would not rely on extensive computing power
for security. Several attempts have been made, with PoS mechanisms widely discussed in the cryptocurrency com-
munity (e.g., [NXT14, Kwo14, Vas14, BGM16]). In a PoS-based blockchain protocol, players must prove ownership
of a specified number of stakes (coins); only those who can provide such proofs are permitted to participate in
maintaining the blockchain.

In PoS-based consensus, to extend the chain, players attempt to find solutions to the hash-based PoS puzzles. It’s
important to note that PoS puzzles are defined based on “contexts”, usually extracted from previous blocks on the
blockchain. In our protocol, the context is the hash value of the last block on the longest chain. At a high level,
this context serves as biased randomness to determine which players can generate the next block. The solution to
the puzzle is based on stake information, a time step (round number), and the context. In comparison with PoW
mechanisms, the computational cost of finding solutions in PoS mechanisms is very “cheap”.
From ad hoc to rigorous designs. Early PoS designs (e.g., [NXT14, Kwo14, Vas14, BGM16]) and PoW-based de-
signs, such as the original Bitcoin, were initially crafted in an ad hoc style. However, the contemporary trend
leans towards a more rigorous approach where security concerns are precisely defined, and the designed proto-
cols undergo mathematical analysis. Notable contributions include the work by Garay et al. [GKL15] and Pass
et al. [PSs17], analyzing the PoW-based blockchain in Bitcoin within the cryptographic setting. In this context,
malicious players may deviate arbitrarily from the protocol, while honest players strictly adhere to the protocol
instructions. The analysis demonstrated that the Bitcoin blockchain can achieve crucial security properties, such
as common prefix, chain quality, and chain growth. (Please refer to Section 2.2 for formal definitions.) Jumping
ahead, as in [PSs17], the analysis of our design will be in the semi-synchronous network setting where the network
communication can be delayed with a known bound.

Indeed, research efforts have also been devoted to PoS-based and Bitcoin-like consensus, as seen in [DGKR18,
DPS19, BDK+19]; more discussion about these rigorous designs can be found in the Related Work (Section 11).
Nevertheless, these protocols are vulnerable to attacks due to predictability.
(Un)predictability. Intuitively, predictability in a protocol implies that certain players are aware they will be
selected to generate blockchain blocks before actually doing so. Brown-Cohen et al. [BCNPW19] explored the
predictability of PoS in incentive-driven scenarios, where players may deviate from the protocol for higher profits.
The power of predictability can be exploited by attackers to reduce the difficulty or cost of incentive-driven attacks
like selfish-mining [BCNPW19] or bribery [BDK+19].

In a selfish-mining attack, an attacker gains an unfair advantage by selectively withholding or revealing blocks.
Predictability enables the attacker to develop a more effective strategy for such attacks. In a bribery attack, an at-
tacker attempts to influence players to work on specific chains for personal gain, supporting actions like double-
spending or censorship attacks. By predicting which players are likely to mine new blocks, attackers can strategi-
cally attempt to bribe them. These attacks undermine blockchain fairness and discourage honest participation.

Therefore, it is crucial for a PoS protocol to minimize predictability and mitigate the risks of these attacks. Ide-
ally, a PoS protocol should aim for the best possible unpredictability, enabling effective counteraction of predictability-
based attacks. Achieving this goal ensures the maintenance of blockchain fairness and incentivizes honest players
to participate in the protocol.

1



Proof-of-Stake via BFT techniques.

Before we present our results, we must note that, very recently conventional Byzantine Fault Tolerance (BFT) tech-
niques have been significantly improved and then been used for constructing PoS consensus protocols. Notable
examples of the BFT-based PoS include Algorand [CM19, GHM+17] and Ethereum’s Casper [BG17]; the list can be
long. The main distinction between Bitcoin-like PoS and BFT-based PoS is that, the former is non-interactive while
the latter requires multiple rounds of interaction among the protocol participants. Very different from Bitcoin-like
PoS (e.g., [DGKR18, DPS19, BDK+19], and the one in this paper), in the BFT-based PoS, a small size committee
must be selected from a huge number of PoS protocol participants, and then the small size committee1, through
more rounds of interaction, determines who will generate the block. In addition, we note that in the Casper [BG17]
protocol, the selected committee in each phase is known, making it susceptible to DDoS attacks. In Algorand
[CM19, GHM+17], the selected committee is hidden; however, it introduces more rounds of communication. In
this paper, we focus on Bitcoin-like PoS only.

1.1 Our results

Our first result is that we formally define (best possible) unpredictability in the cryptographic setting (see Sec-
tion 2.3 for the definitions). We say a protocol achieves the best possible unpredictability if it only allows the
players to predict whether they can generate the next block (but not more).

Our major results are summarized as follows. First, based on the definition of the best possible unpredictability,
we identify an interesting impossibility for a class of PoS protocols that follow a single-extension design framework
(see Subsection 1.1.1 for more details). Existing provably secure Bitcoin-like PoS protocols (e.g., [DGKR18, DPS19,
BDK+19]) are all in the single-extension framework. Secondly, to overcome the impossibility, we introduce a new
design framework, called multi-extension. We develop a novel D-general-greedy strategy in the multi-extension
framework, which allows us to design provably a secure Bitcoin-like PoS protocol (see Subsection 1.1.2). Finally,
we present new analysis techniques to analyze the chain growth and the common prefix properties for PoS proto-
cols in the multi-extension framework (see Subsection 1.1.3 and Subsection 1.1.4, respectively). We next elaborate
on our major results.

1.1.1 Impossibility result of single-extension protocols

We formally define a single-extension framework for constructing PoS protocols, which is followed by existing
PoS protocols such as Ouroboros Praos [DGKR18], SnowWhite [DPS19], and Bagaria et al. [BDK+19]. In a single-
extension protocol, each honest player selects a chain using the best chain algorithm and then attempts to extend it
as follows. The player first extracts a context from the chain using a context extraction algorithm. Then, the player
uses the context, the current round number, and the secret key to determine whether or not they are allowed to
generate a new block at that round.

We have identified an interesting impossibility result for single-extension PoS protocols: For any single-extension
PoS protocol that achieves the best possible unpredictability, it cannot achieve the common prefix property if the honest players
control less than 73% of the stake.

We prove the impossibility based on a new property that we formulated called distinct-context-extension in PoS
protocols. The distinct-context-extension property states that the contexts of any two valid chains are different.
Our proof consists of two steps as follows. First, we show that if the single-extension PoS protocol achieves the
best possible unpredictability, it must have the distinct-context-extension property. Intuitively, if the extension
of the two different chains is shared-context-extension (the opposite of the distinct-context-extension property),
a player can predict whether or not she/he can extend one chain after attempting to extend the other chain.
Thus, if the protocol does not achieve the distinct-context-extension property, it cannot achieve the best possible
unpredictability. Secondly, we show that if the protocol has the distinct-context-extension property, then it cannot
achieve the common prefix property if the honest players control less than 73% stake. We consider an adversary
that extends a set of chains privately, and we can bound the chain growth of the adversary by using a random tree
to model the chain extension of the adversary. We can show that the adversary can amplify its stake by a factor e,
where e = 2.72 is the base of the natural logarithm. Therefore, if the honest players control less than 73% stake,
the adversary can extend the chain faster than the honest players, thus breaking the common prefix property.

We remark that, we are the first to present the impossibility result for the single-extension protocols. Our
previous version and the work in [BDK+19] showed that some single-extension protocols can be secure with 73%

1Take Casper for example. In Casper, the recommended minimal committee size is 111, and in practice the committee size is hundreds,
which is significantly smaller than the total number of PoS participants in Ethereum.
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honest stake. However, those works never claim the impossibility result. To prove the impossibility result, we
formally define the single-extension protocol and the new concept of distinct-context-extension property.

1.1.2 New design: Overcoming the impossibility via multi-extension

To overcome the impossibility, we propose a new design framework, called multi-extension, for PoS protocols. In
a multi-extension protocol, each honest player is allowed to extend multiple chains in a round, rather than just
one. We remark that designing a secure and practical multi-extension PoS protocol is challenging. For example,
Bagaria et al. [BDK+19] have shown that a protocol allowing honest players to extend slightly shorter chains than
the best chain is vulnerable to “balance attacks” which can break the common prefix property. Fortunately, we
can have a particular design that follows a novel “D-distance-greedy” strategy, that can be proven to be secure.

D-distance-greedy strategy. We propose a novel D-distance-greedy strategy that allows the honest player to a set
of best chains, where D is a positive integer. By using the D-distance-greedy strategy, we can construct a protocol
that achieves the best possible unpredictability. At the same time, the protocol can be proven to be secure with a
smaller fraction (e.g., 57%) of honest stake.

In the D-distance-greedy strategy, the players extend a set of best chains that are “close” to the best chain. We
say a chain is “close” to the best chain if a common prefix can be obtained by removing the last D blocks from
the best chain. This ensures that the honest players extend a set of chains that share the same prefix, making it
impossible for adversaries to launch balance attacks.

A new tiebreak rule. In a multi-extension protocol, the probability of generating a new best chain can change
depending on the number of chains in the set of best chains. Consider a protocol execution round, where there
are two longest chains; different strategies for choosing the best chain may increase or decrease the probability of
generating a new one. This creates an opportunity for an adversary to slow down chain growth by publishing a
chain with the same length but with fewer chains in the set of best chains, as the best chain. To address this issue,
we introduce a new tiebreak rule: If there are multiple chains with the same length, then the chain that can be
extended the fastest will be selected as the best chain.

Intuitively, honest players will generate a new best chain faster if there are more chains in the set of best chains.
To make this more concrete, we can partition the set of best chains into D + 1 subsets based on their depth. The
depth of a chain is the difference between its length and the length of the current best chain. For i ∈ [0..D ], we
denote the i-depth subset as the set of chains at depth i. A new best chain is generated if a player extends a chain
in the 0-depth subset, which consists of all chains with the same length as the current best chain. Additionally, for
i ∈ [0..D−1], a new chain is added to the i-depth subset if a chain in the (i+1)-depth subset is extended. Therefore,
we compare the number of chains in each depth-based subset, from the 0-depth subset up to the D-depth subset,
to break ties between chains of equal length. This way, players can select the best chain that can be extended the
fastest.

1.1.3 New analysis: Chain growth in multi-extension

To analyze the chain growth property, we propose a new Markov chain analysis framework to study the chain
growth in multi-extension protocols. Then, we apply the new analysis framework to analyze the chain growth of
our protocol. We consider a hybrid experiment, where all messages sent by the adversary are removed. Based on
our tiebreak rule, we can show that the chain growth in a real execution is lower bound by the chain growth in
a hybrid execution. Note that, the hybrid experiment has been introduced in the analysis in [PSs17] to analyze
the chain growth of Bitcoin protocol. In our protocol, the honest players may extend multiple chains in a round.
Thus, we design a random walk on a Markov chain to analyze the chain growth in the hybrid experiment for our
protocol.

We start by designing a simplified Markov chain and then proceed to design an augmented Markov chain. Recall
that, the set of best chains can be partitioned into D + 1 subsets based on the depth of those chains. A new best
chain is generated if a player extends a chain in the 0-depth subset, which consists of all the chains that have the
same length as the current best chain. We can analyze chain growth by analyzing the expected number of chains
in the 0-depth subset of each round. In the simplified Markov chain, each state represents a protocol round with
specific numbers of chains in all depth-based subsets. The transitions on the Markov chain depend on how the
set of best chains is updated after each round. The simplified Markov chain only gives information about the
depth-based subsets, but it doesn’t show how many chains are removed when a new chain is generated. This
makes it hard to find a good lower bound for the amplification ratio, even with a large D .
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To solve the issue in the simplified Markov chain, we propose an augmented Markov chain. We use depth-
distance-based subsets that select chains based on both their length and distance from the best chain. The augmented
Markov chain shows a more detailed representation of the best chains, so we can identify which chains belong to
the new set when a new best chain is generated. This gives a better lower bound for the amplification ratio.

We remark that the Markov chain technique has been used to analyze the common prefix property [KRs18]
for Bitcoin protocol, which follows a single-extension fashion. However, our Markov chain is very different from
the Markov chain in [KRs18]. Since our protocol follows the multi-extension framework, a more complex Markov
chain is needed to analyze the chain growth property.

1.1.4 New analysis: Common prefix in multi-extension

Previous analysis of Bitcoin’s PoW consensus [GKL15, PSs17] showed that the key factor for establishing the
common prefix property is that honest participants can contribute only one block at a block height. Breaking this
property requires the adversary to generate more blocks than the honest participants, which is infeasible due to
the majority control of mining power by the honest participants. Our proposed protocol aims to defend against
nothing-at-stake attacks by allowing players to extend multiple chains. Thus, we can no longer guarantee that
honest participants contribute only one block per block height.

To analyze the common prefix property for the multi-extension protocol, we introduce the notions of virtual
block-sets and virtual chains, and then define the common prefix property w.r.t. virtual chains. We can prove the com-
mon prefix w.r.t. virtual chains by showing that the honest players only contribute at most one virtual block-set at
a block height. Afterward, we show that the standard common prefix property can be reduced to common prefix
w.r.t. virtual chains. In detail, a virtual block-set consists of multiple blocks with the same height that are “close”
to each other. We first define two chains are “close”, and then define two blocks are “close.” We say two chains
are close if they share a common prefix in the recent past. When two chains are close, the last blocks of the two
chains are also “close”. We define the virtual chain consists of multiple virtual block-sets that are linked together.
Note that, the adversary cannot use the blocks of honest players to break the common prefix property, the adver-
sary needs to generate more virtual block-sets than the honest players to break the common prefix property (w.r.t
virtual chains). This requires the adversary to control the majority of the stake (which contradicts the assumption
that the honest players control the majority of the stake). Finally, we show the common prefix w.r.t. virtual chains
implies the regular common prefix property. This is given by the fact that the blocks in the same virtual block-set
are “close”.

1.1.5 Additional analysis and design considerations

Best possible unpredictability. Our protocol minimizes predictability by using the hash value of the last block
to extract the context. This ensures that the contexts of any two different chains in the execution of our protocol
are different, i.e., our protocol achieves distinct-context-extension property. As a result, players cannot predict the
extendibility of a future chain based on the extensions of a current chain. Players can only predict whether or not
they can extend the current best chain. Our protocol provides the best possible unpredictability for PoS protocols.

Extensions: Full-fledged blockchain and adaptive stake registration. Our protocol can be “upgraded” to a regular
blockchain to include payload, such as transactions, in the blocks. The chain in our protocol serves as a random-
ness beacon to select a PoS player to generate a new block and extend the blockchain. Similar to [BGK+18], we
also allow new players to join the system and participate in the process of extending chains, as long as they have
registered their stake a specified number of rounds earlier. This ensures that the adversary cannot gain any extra
advantage.

1.2 Organization

The remainder of the paper is organized as follows. In Section 2, we introduce an analytical framework for PoS
protocols. In Section 3, we show an impossibility result for the single-extension PoS protocols. In Section 4, we
construct a new PoS protocol in the multi-extension design framework, bypassing the impossibility of the single-
extension PoS protocols.

Next, we provide the security analysis of our new PoS protocol. In Section 5, we provide an overview of the
security analysis. In Section 6, we provide a new analysis framework to analyze the chain growth property of a PoS
protocol in the multi-extension design framework. Then, in Section 7, we apply the new analysis framework to
analyze the chain growth property for our new PoS protocol. In Section 8, we propose a new analysis framework
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to analyze the common prefix property for the new protocol. In Section 9, we show the chain quality and the best
possible unpredictability properties of the new protocol.

Finally, in Section 10, we discuss how to upgrade our protocol to a full-fledged blockchain protocol and show
how to enable players to register their key-pairs adaptively. In Section 11, we provide the related work. Sup-
plemental materials for Section 2, Section 3, Section 4, and Section 8 are provided in Appendices A, B, C, and D,
respectively.

2 Security Model

2.1 Blockchain protocol executions

The security of Bitcoin-like PoW-based protocols has been rigorously investigated by Garay et al. [GKL15] and
then by Pass et al. [PSs17] in the cryptographic setting. Below we define a framework for analyzing Bitcoin-like
PoS-based blockchain protocols. We note many formulation ideas are taken from the previous frameworks [GKL15,
PSs17].

The execution of a PoS blockchain protocol. Following Canetti’s formulation of the “real world” executions
[Can00], we present an abstract model for a PoS blockchain protocol Π in the hybrid world of the partially syn-
chronous network communication functionality, the random oracles, and certain initialization functionality.

We consider the execution of blockchain protocol Π that is directed by an environment Z(1κ), where κ is a
security parameter. A necessary condition in all common blockchain systems is that all players agree on the first,
i.e., the genesis block. The genesis block consists of the identities (e.g., public keys) and the stake distribution of the
players. Here, the registered players must control a certain number of stakes. During the protocol execution, the
stake distribution can be changed, the player can register to join or deregister to leave the system. For simplicity,
we focus on the idealized “flat” model where all PoS-players have the same number of stakes. In the non-flat
model, the players that have more stakes can register multiple identities.

The environment Z can “manage” protocol players through an adversary A that can dynamically corrupt
honest players. More concretely, the protocol execution proceeds as follows. Each player in the execution is
initialized with an initial state including all initial public information, e.g., a genesis block. The environment Z
first activates the adversary A and a set P of PoS-players. The environment Z also provides instructions for the
adversary A. The execution proceeds in rounds, and in each round, a protocol player could be activated by the
environment or the functionalities. Players are equipped with (roughly synchronized) clocks that indicate the
current round.

In any round r, each PoS-player P ∈ P, with a local state stater, receives a message from Z, and potentially
receives messages from other players. Then, it executes the protocol, broadcasts a message to other players, and
updates its local state. Note that, the network is controlled by the adversary, i.e., the adversary A is responsible for
delivering all messages sent by players. The adversary A can reorder or delay the messages. However, it cannot
modify the messages. Plus, any message, that is broadcasted by an honest player, is guaranteed to arrive at all
other honest players within a maximum delay of ∆ rounds.

At any round r of the execution, Z can send message (CORRUPT,P), where P ∈ P, to adversary A. Then,
the adversary A will have access to the player’s local state and control P . Let EXECΠ,A,Z be a random variable
denoting the joint VIEW of all players (i.e., all their inputs, random coins, and messages received, including those
from the random oracle) in the above protocol execution; note that this joint view fully determines the execution.

Protocol players are allowed to join the protocol execution EXECΠ,A,Z. In the current version of our modeling,
we assume that when (honest) PoS-players leave the protocol execution, they will erase their own local internal
information.2

Random oracles. As mentioned, we assume the availability of random oracles that capture the idealization of
hash functions. Two hash functions are used for computing the context of the chains, and for creating the puzzles,
respectively; note, to create a puzzle, the context of (certain) chains will be computed first.

Block and blockchain basics. A blockchain C consists of a sequence of ℓ concatenated blocks B0∥B1∥B2∥ · · · ∥Bℓ,
where ℓ ≥ 0 and B0 is the initial block (genesis block). We use len(C) to denote blockchain length, i.e., the number
of blocks in blockchain C; and here len(C) := ℓ. (Note that since all chains must consist of the genesis block, we
do not count it as part of the chain’s length. In other words, a chain C with length ℓ actually has ℓ + 1 blocks in
total.) We use sub blockchain (or subchain) for referring to a segment of a chain; here for example, C[0, ℓ] refers to

2Players may sell their own secret keys; this is out of scope of this paper.
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an entire blockchain, whereas C[j,m], with j ≥ 0 and m ≤ ℓ would refer to a sub blockchain Bj∥ · · · ∥Bm. We use
C[i] to denote the i-th block, Bi in blockchain C; here i denotes the block height of Bi in chain C.

If blockchain C is a prefix of another blockchain C1, we write C ⪯ C1. If a chain C is truncated the last κ blocks,
we write C[¬κ]. For some A,Z, consider some VIEW in the support of EXECΠ,A,Z. We use the notation VIEWr to
denote the prefix of VIEW up until round r. Let Cr be the set of chains in VIEWr, and let Cri be the chain in the view
of player i at round r.

2.2 Chain growth, common prefix, and chain quality

Previously, several fundamental security properties for Bitcoin-like PoW-based blockchain protocols have been
defined: common prefix property [GKL15, PSs17], chain quality property [GKL15], and chain growth property [KP15].
Intuitively, the chain growth property states that the chains of honest players should grow linearly to the number
of rounds. The common prefix property indicates the consistency of any two honest chains except the last κ
blocks. The chain quality property aims to indicate the number of honest blocks’ contributions that are contained
in a sufficiently long and continuous part of an honest chain. Specifically, for parameters ℓ ∈ N and µ ∈ (0, 1),
the ratio of blocks, that are generated by honest players, in a continuous part of an honest chain is at least µ. We
follow the same path to define the security properties for Bitcoin-like PoS-based blockchain protocols, as below.

Definition 2.1 (Chain growth). Consider a blockchain protocol Π with a set P of players. The chain growth property with
parameter g ∈ R, states: for any honest player P1 with local chain C1 at round r1, and honest player P2 with local chain C2 at
round r2, where P1,P2 ∈ P and r2− r1 = Ω(κ), in the execution EXECΠ,A,Z, it holds that len(C2)− len(C1) ≥ g(r2− r1).

Definition 2.2 (Common prefix). Consider a blockchain protocol Π with a set P of players. The common prefix property
states the following: for any honest player P1 adopting local chain C1 at round r1, and honest player P adopting local chain
C at round r, in the execution EXECΠ,A,Z, where P1,P ∈ P and r ≤ r1, it holds that C[¬κ] ⪯ C1.

Definition 2.3 (Chain quality). Consider a blockchain protocol Π with a set P of players. The chain quality property with
parameters µ, ℓ, where µ ∈ R and ℓ ∈ N, states: for any honest player P ∈ P, with local chain C in round r, in EXECΠ,A,Z,
it holds, for any ℓ = Ω(κ) consecutive blocks of C, the ratio of honest blocks is at least µ.

2.3 Unpredictability

The unpredictability property has been investigated by Brown-Cohen et al. [BCNPW19] in incentive-driven set-
tings. At a high level, predictability means that (certain) protocol players are aware that they will be selected to
generate blocks of the blockchain, before they actually generate the blocks. (Please see several predictability-based
attacks in Supplemental materials A.1.)

In this subsection, we investigate the unpredictability property in the cryptographic setting. For any environ-
ment Z and any adversary A, consider some VIEW in the support of EXECΠ,A,Z. Consider a malicious player P ∈ P

at round r. Let VIEWr be the view of all players at round r, and Cr be the best valid chain of all players in VIEWr.
At round r, the adversary A attempts to predict if the (malicious) player P can extend the best chain at a future
round r′, where r′ > r. Let zr

′

P ∈ {0, 1} be the prediction: here, zr
′

P = 1 means that the adversary A predicts that
player P can extend the best chain at round r′.

Now we need to introduce another random variable z̄r
′

P to indicate if the malicious player P indeed is able to
extend the best chain at round r′ (as the adversary predicated at an early round r, where r < r′) or not. Let VIEWr

′

be the view of all players at round r′, and Cr′ be the best valid chain of all players in VIEWr
′
. We set z̄r

′

P := 1 if there
exists a chain C = Cr′∥B in VIEW with a block B generated by player P at round r′, otherwise we set z̄r

′

P := 0.
We say a prediction zr

′

P by the adversary is considered accurate if zr
′

P = z̄r
′

P .
Consider a view VIEW, protocol round r, and a malicious player P . For L ∈ N and a prediction zr

′

P where
r′ > r, we define the predicate predictable to be true if the prediction zr

′

P accurately predicts whether or not player
P can generate a new chain at round r′ that is L blocks longer than the longest chain at round r. More concretely,
we define predictable(VIEW,P , L, r, r′, zr

′

P ) := 1 if and only if the following three conditions hold: (i) r′ > r; (ii)
len(Cr′) + 1− len(Cr) = L; and (iii) zr

′

P = z̄r
′

P .
We say a player is L-unpredictable at round r if the adversary cannot predict whether or not the player can

generate the next L blocks.
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Definition 2.4 (L-unpredictability). Consider a blockchain protocol Π. For L ∈ N, we say a malicious player P is L-
unpredictable at round r if for all PPT Z, for all PPT A, we have,

Pr
[
VIEW← EXECΠ,A,Z; (r

′, zr
′

P )← A(P , r, VIEWr) predictable(VIEW,P , L, r, r′, zr
′

P ) = 0
]
> 1− negl(κ),

where negl(·) is a negligible function.

The best possible unpredictability for any PoS protocol is 2-unpredictability. As already shown in their Obser-
vation 1 by Brown-Cohen et al. [BCNPW19], in any PoS protocol, all players can always predict whether or not
they can generate the next block. In other words, 1-unpredictability cannot be achieved, i.e., 2-unpredictability is
the best possible unpredictability. We formally define the best possible unpredictability as follows.

Definition 2.5 (The best possible unpredictability). Consider a blockchain protocol Π. We say protocol Π achieves the
best possible unpredictability if for all PPT Z,A, for any malicious player P at any round r, we have,

Pr
[
VIEW← EXECΠ,A,Z; (r

′, zr
′

P )← A(P , r, VIEWr) predictable(VIEW,P , 2, r, r′, zr
′

P ) = 0
]
> 1− negl(κ),

where negl(·) is a negligible function.

3 An Impossibility Result

We investigate an impossibility result for a group of proof-of-stake protocols, namely, single-extension PoS protocols.
The result states that a single-extension PoS protocol cannot achieve both the common prefix and the best possible
unpredictability properties if honest players control less than 73% of the stake.

We studied existing Bitcoin-like PoS protocols, such as Ouroboros Praos [DGKR18] and SnowWhite [DPS19].
These protocols use the same context to generate multiple blocks on the blockchain during an epoch. This means
that any two chains within the same epoch share the same context. We refer to this as a shared-context-extension.
Players attempt to extend the chain by solving puzzles based on the chain’s context. If two chains share the same
context, players can extend both chains simultaneously. Thus, the shared-context-extension property allows for
predictability in the PoS protocol execution. When a player receives one chain with shared-context-extension,
they can predict whether or not they can extend the other chain in the future.

In contrast to the existing PoS designs, in Bitcoin, the contexts of two different chains are always different.
Therefore, the extension of one chain does not affect the extension of any other chain. This property is referred to
as distinct-context-extension, and it provides the best possible unpredictability for PoS protocols. Players can only
obtain the context of a chain when they receive it, thus allowing them to determine whether they can extend the
chain or not.

Based on the distinct-context-extension property, we investigate an impossibility result for single-extension
PoS protocols. We first describe the single-extension proof-of-stake framework in Subsection 3.1. Then, in Subsec-
tion 3.2, we state the impossibility result for the single-extension proof-of-stake protocols. In Subsection 3.3, we
present a new definition of distinct-context-extension property and prove the impossibility result for the single-
extension proof-of-stake protocols in Subsection 3.4 and Subsection 3.5.

3.1 Single-extension proof-of-stake protocols

We now describe a design framework, called single-extension framework, for Bitcoin-like PoS protocols. Intuitively,
in a single-extension protocol, in each round, each honest player identifies only a single “best chain”, and then
extends the chosen best chain. We remark that the state-of-the-art PoS protocols (e.g., [DPS19, DGKR18, BDK+19])
can be categorized as single-extension PoS protocols (see Supplemental material B.1 for more details).

We emphasize that we focus on Bitcoin-like PoS protocols only; the players can generate new blocks in a non-
interactive fashion by solving PoS puzzles. Our design framework cannot be applied for BFT-like protocols (e.g.,
Algorand [CM19, GHM+17]); in those protocols, the players must interact with each other to generate new blocks.

Definition 3.1 (Single-extension framework for PoS protocols). A single-extension PoS protocol Π is executed by a
set of player P. Initially, each player P ∈ P holds a key pair (SK, PK). The protocol Π is parameterized by deterministic
algorithms (Context,Extend,Validate,BestChain) as follows:

The validation algorithm Validate takes a chain C and a round r as input and returns 1 if the chain C is valid at round r,
and returns 0 otherwise.
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The context extraction algorithm Context takes a valid chain C as input and returns a context η. The context η is the
hash value of some blocks on the chain C, based on some hash function hash : {0, 1}∗ → {0, 1}∗. Note that hash function
hash will be treated as a random oracle in our analysis.

More concretely, the input chain C is parsed into B0,B1, · · · ,Bℓ, where ℓ ∈ N. The algorithm Context returns a
context η := hash(Bi1∥ · · · ∥Bit). Here, ij ∈ [0..ℓ] for all j ∈ {1, . . . , t}. (Note that, the algorithm Context returns ⊥
when the input chain C is invalid.)

We remark that the state-of-the-art PoW (e.g., Bitcoin [GKL15, PSs17]) and PoS (e.g., [DPS19, DGKR18, BDK+19])
use the context extraction algorithms in the above format. For example, in Bitcoin [GKL15, PSs17], the context is
computed as the hash value of the last block on the chain. In Ouroboros Praos [DGKR18], the context is computed as the
hash value of one or multiple blocks from the previous epoch. In Snow White [DPS19], the context is the concatenation
of the random seeds from multiple blocks in the previous epoch; here, the function hash first truncates the blocks in the
previous epoch and obtains the random seeds from those blocks; then it concatenates all the random seeds to obtain the
context. More details can be found in the Supplemental material B.1.
The extension algorithm Extend is parameterized by a probability p ∈ (0, 1). The algorithm Extend takes input as a
context η, a round r, and a secret key SK and returns a new block B or ⊥ (if no new block is generated). Here, the secret
key SK is generated by a player P in the blockchain initialization phase and the corresponding public key of SK will be
stored in the genesis block. The function Extend(η, r, SK) returns a block B with probability p.
The best chain algorithm BestChain takes a set of valid chains C and returns the longest chain Cbest as the best chain.
Here, the honest player will only extend a single chain, i.e., the longest chain Cbest. Thus, we name the protocol
single-extension.

The execution of a single-extension protocol consists of two phases as follows.

Blockchain initialization phase. In this phase, the genesis block will be created; the genesis block consists of a randomness,
the public information, and the stake distribution of the players. Consider an (initial) group of PoS-players P = {P1,P2,
. . . ,Pn} and a security parameter κ. Each player Pj ∈ P generates a pair of public key PKj and private key SKj . The public
keys of all players are stored in the genesis block, denoted by B0, of the blockchain system.

Algorithm 1: A single-extension proof-of-stake protocol Π.

State : Initially, the set of chains C only consists of the genesis block. At round r, the PoS-player P ∈ P, with key
pair (SK, PK) and local chain set C, proceeds as follows.

1 Upon receiving a chain C′, set C := C ∪ {C′} after verifying Validate(C′, r) = 1;
2 Set Cbest := BestChain(C);
3 Set η := Context(Cbest); Set B := Extend(η, r, SK);
4 if B ̸=⊥ then
5 Set C := Cbest∥B ; Add C to the set C; Broadcast C;

Blockchain extension phase. A single-extension proof-of-stake protocol Π is described in Algorithm 1. In each round r, a
player P with the secret key SK proceeds as follows. First, the player P computes Cbest := BestChain(C, r). Here the local
set of chains C consists of all valid chains that are received (or generated) by P . Then, the player P uses the function Context
to compute the context η in the best chain Cbest, i.e., η := Context(Cbest). Finally, based on the context η, the current round
number r, and the secret key SK, the player P uses the function Extend to determine whether or not it can generate a new
block. If the player P can generate a new block B , it creates a new chain C := Cbest∥B , adds C to the set of chains C, and
broadcasts C to all other players.

3.2 Impossibility result for single-extension proof-of-stake protocols

We present an impossibility result for single-extension PoS protocols. More concretely, consider a PoS protocol in
the single-extension framework; we can show that, if the PoS protocol achieves the best possible unpredictability,
then the protocol cannot simultaneously maintain fundamental security properties, such as the common prefix,
when honest players control less than 73% of the stake.

We will prove the impossibility of the result through the distinct-context-extension property. This property is
essential for the protocol to achieve the best possible unpredictability. Specifically, it ensures that the contexts of
any two different chains in the execution are different, making it impossible for an adversary to predict future
chain extensions based on past extensions. However, this property also allows an adversary to amplify their stake
by a factor of e = 2.72, enabling them to break the common prefix property with only 27% of the stake. Therefore,
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if the honest players control less than 73% of the stake, it becomes impossible to simultaneously achieve both the
distinct-context-extension and common prefix properties, resulting in our impossibility result.

We remark that the aforementioned impossibility does not hold for single-extension PoW protocols. In these
protocols, the property of distinct-context-extension is also necessary for the best possible unpredictability. How-
ever, the cost of computing power needed to generate a new block in a PoW protocol is prohibitively high, pre-
venting players from extending multiple chains to improve their chances of generating new blocks. On the other
hand, the computing power required to extend a chain in a Proof-of-Stake (PoS) protocol is very cheap, making it
possible for an adversary to extend multiple chains and increase their chances of generating new blocks. There-
fore, a PoW protocol can achieve the best possible unpredictability and maintain security (e.g., common prefix
property) when 51% of the mining power is honest.

Let N be the number of players and ρ be the fraction of malicious players in the protocol execution. Let
p be the probability that a player can extend a chain in a round. The probability that honest players extend a
chain in a round is α = 1 − (1 − p)N ·(1−ρ). Similarly, the probability that the adversary extends a given chain is
β = 1− (1− p)N ·ρ. Later, we will show that if the protocol Π achieves the distinct-context-extension property, the
adversary can amplify its stake by a factor of e = 2.72. Therefore, if α < 2.72β (i.e., less than 73% of the total stake
is honest), the protocol cannot achieve the common prefix property. We are now ready to state the impossibility
theorem for protocol Π.

Theorem 3.2. Consider a single-extension PoS protocol Π that achieves the best possible unpredictability. If α < 2.72β,
then protocol Π cannot achieve common prefix property.

We describe in Figure 1, the roadmap for the proof of the impossibility theorem.

Single-extension
PoS protocol

Definition 3.1

The best possible
unpredictability

Definition 2.5

< 73% honest stake

Distinct-context-
extension

Definition 3.4

Common prefix

Definition 2.2

Lemma 3.11Lemma 3.5

Figure 1: The roadmap for the proof of our impossibility result (Theorem 3.2). First, we show in Lemma 3.5 that if a single-
extension PoS protocol achieves the best possible unpredictability, it must achieve distinct-context-extension property. Sec-
ondly, we show in Lemma 3.11 that if a single-extension PoS protocol achieves distinct-context-extension property and the
honest players control less than 73% of stake, the protocol cannot achieve common prefix property.

Proof. We prove Theorem 3.2 in the following two steps. First, we show in Lemma 3.5 that if the single-extension
PoS protocol Π achieves the best possible unpredictability, it must achieve distinct-context-extension property. Sec-
ondly, we show in Lemma 3.11 that if the single-extension PoS protocol Π achieves distinct-context-extension
property, it cannot achieve common prefix property if α < 2.72β. Specifically, if protocol Π achieves distinct-
context-extension property, then the adversary can amplify its stake by a factor e = 2.72 by extending all valid
chains. Thus, if α < 2.72β, the adversary can extend the chain faster than the honest player. Hence, they can break
the common prefix property by keeping its chain hidden for a sufficiently long period and then publishing the
hidden chain. As the chain of the adversary is longer, it will become the new best chain. Since the new best chain
does not share a common prefix with the old best chain of the honest players, the common prefix property does
not hold.

We remark that we are the first to show the impossibility result for single-extension PoS protocols. To show
the impossibility, we need to formally define the single-extension PoS protocol and introduce a new concept of
a distinct-context-extension property. Then, based on the distinct-context-extension property, we can prove the
impossibility result in two steps, as mentioned above. The proof of the second step has been shown in [BDK+19].
However, the impossibility result has not been presented in those works.
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3.3 Distinct-context-extension

We introduce a new definition for the distinct-context-extension property. As previously stated, we will use this
property to prove an impossibility result for single-extension PoS protocols. The distinct-context-extension prop-
erty states that the contexts of any chains in the execution must be distinct in order to achieve the best possible
unpredictability. This prevents the adversary from predicting the extension of a chain in the future based on an
existing chain in the past. At the same time, this also allows the adversary to amplify their stake by a factor of
e = 2.72, enabling them to break the common prefix property if they control more than 27% of the stake. There-
fore, it is impossible to simultaneously achieve the distinct-context-extension and common prefix properties if the
adversary controls more than 27% of the stake.

At round ,  cannot predict if
it can generate .

,
.

The contexts of ,  are distinct.

At round , the events that 
generates  and  generates

 are independent. 

3

Figure 2: A toy example of distinct-context-extension for two chains. Consider two chains C1 = B0∥B1∥B2∥B3 and
C2 = B0∥B1∥B2∥B3∥B4. Here, Context(C1) = hash(B3) and Context(C2) = hash(B4). As B3 ̸= B4, we have, Context(C1) ̸=
Context(C2). In other words, C1 and C2 are distinct-context-extension. At round r2, the event that the adversary A can extend
the chain C1 to generate a new block B ′

4 and the event that A can extend the chain C2 to generate a new block B5 are indepen-
dent. At round r1, the adversary A has not yet received the chain C2. Therefore, it cannot predict whether it can extend C2 to
generate block B5.

Additionally, we define shared-context-extension, which is the counterpart of distinct-context-extension. We
say two chains in the execution are shared-context-extension if the contexts of the two chains are the same. The
shared-context-extension allows the adversary to predict whether or not it can extend a future chain that has not
yet been generated. Specifically, if the future chain shares the same context as the current chain, the adversary
can base its prediction (for the future chain) on the extension of the current chain. We note that existing protocols,
such as Ouroboros Praos [DGKR18] and SnowWhite [DPS19], have the shared-context-extension property, while
our protocol in Section 4 achieves the distinct-context-extension property.

We now present the definition of distinct-context-extension and shared-context-extension for two chains. The
toy examples of distinct-context-extension and shared-context-extension can be seen in Figure 2 and Figure 3,
respectively.

Definition 3.3 (Distinct and shared-context-extension for two chains). Consider a single-extension proof-of-stake pro-
tocol Π that is parameterized by four algorithms: Validate, BestChain, Context, and Extend. Let P be the set of players. For
any adversary A and environment Z, consider some VIEW in the support of EXECΠ,A,Z. Consider two chains C1 and C2 in
VIEW.

• We say the extensions of C1 and C2 are distinct-context-extension if the contexts of C1 and C2 are distinct, i.e.,
Context(C1) ̸= Context(C2). We write distinct-context-extension(C1, C2) = 1. In this case, the event that the
adversary A can extend the chain C1 and the event that A can extend the chain C2 are independent.

• We also consider the flip side of distinct-context-extension, namely, shared-context-extension. We say the extensions of
C1 and C2 are shared-context-extension if the contexts of C1 and C2 are the same, i.e., Context(C1) = Context(C2).
We write shared-context-extension(C1, C2) = 1. In this case, if the adversary A can extend the chain C1, it can also
extend the chain C2, and vice versa.
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At round ,  can predict if it
can generate .

,
.

,  share the same context.

At round , if  can generate
, then  can generate  

Figure 3: A toy example of shared-context-extension for two chains. The definition of function Context here is very different
from that in Figure 2. Consider two chains C1 = B0∥B1∥B2∥B3 and C2 = B0∥B1∥B2∥B3∥B4. We stress that, here, Context(C1) =
hash(B1) and Context(C2) = hash(B1). While in Figure 2, Context(C1) = hash(B3) and Context(C2) = hash(B4). We have,
Context(C1) = Context(C2). In other words, C1 and C2 are shared-context-extension. At round r2, if the adversary A can extend
the chain C1 to generate a new block B ′

4, it can also extend the chain C2 to generate a new block B5. Thus, at round r1, when
the adversary A has received C1 but not yet received C2, the adversary can predict whether or not it can extend C2 to generate
block B5 at round r2.

We are now ready to define the distinct-context-extension property for a PoS protocol. Intuitively, we say that
a protocol achieves the distinct-context-extension property if all different chains in the protocol’s execution have
distinct contexts.

Definition 3.4 (Distinct-context-extension for all chains in the executions). Consider a single-extension proof-of-stake
protocol Π that is parameterized by four algorithms: Validate, BestChain, Context, and Extend. Let P be the set of players.
For any adversary A and environment Z, consider some VIEW in the support of EXECΠ,A,Z. Consider some round r; let
Cr be the set of all chains that appear in the view of some players (or the adversary) in VIEWr. Here, VIEWr is the prefix
of VIEW up until round r. We overload the predicate distinct-context-extension for a view VIEW. Intuitively, a view VIEW

is distinct-context-extension if all different chains in VIEW have distinct contexts. More concretely, we say a view VIEW

is distinct-context-extension if and only if for any round r, for any chains C1, C2 ∈ Cr such that C1 ̸= C2, we have,
distinct-context-extension(C1, C2) = 1. We write distinct-context-extension(VIEW) = 1. We say protocol Π achieves
distinct-context-extension property if for every PPT Z,A, we have,

Pr[VIEW← EXECΠ,A,Z | distinct-context-extension(VIEW) = 1] = 1− negl(κ),

where negl(·) is a negligible function.

3.4 Achieving the best possible unpredictability via distinct-context-extension

We prove that a single-extension PoS protocol can only achieve the best possible unpredictability if it satisfies the
distinct-context-extension property. Intuitively, as shown in Figure 3, if two chains are shared-context-extension,
the adversary can predict whether or not it can extend a chain in the future (i.e., the chain is not yet generated).
This contradicts the best possible unpredictability. More concretely, consider two chains C1 and C2 that share a
context extension. Without loss of generality, we assume that the length of C1 is greater than the length of C2. We
define C as the longest common prefix of C1 and C2. Recall that, the contexts of C1 and C2 are computed using a
hash function (which will be treated as a random oracle) over some blocks on the two chains. Since the contexts of
C1 and C2 are the same, the shared context must be extracted from the longest common prefix C of C1 and C2. Upon
receiving the chain C at round r, player P can predict whether or not he can extend C1. As the length of C1 is greater
than the length of C, player P is 2-predictable at round r, which contradicts the best possible unpredictability.

Lemma 3.5. Consider a single-extension proof-of-stake protocol Π that is parameterized by four algorithms: Validate,
BestChain, Context, and Extend. If the protocol Π achieves the best possible unpredictability, then it achieves distinct-
context-extension property.
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Proof. We assume toward contradiction that there exist two chains C1 and C2 such that C1 ̸= C2 and the extensions
of those two chains are shared-context-extension. We will prove that the protocol Π cannot achieve the best
possible unpredictability, i.e., there exists a round r and a malicious player P such that the player P is 2-predictable
at round r.

Let η1 = Context(C1) and η2 = Context(C2). We have, η1 = η2. We parse C1 into B0∥B1∥ · · · ∥Bℓ1 and parse C2
into B ′

0∥B ′
1∥ · · · ∥B ′

ℓ2
. Here, ℓ1 = len(C1) and ℓ2 = len(C2) are the lengths of C1, C2, respectively. Without loss of

generality, we assume ℓ1 ≥ ℓ2. Let r1, r2 be the round where C1, C2 are generated. Here, C1 is the best chain at
round r1.

Let C be the longest common prefix of C1 and C2. Let ℓ = len(C) be the length of chain C. We have, for all
i ∈ [0..ℓ], Bi = B ′

i ; and for all i ∈ [ℓ + 1, ℓ2], Bi ̸= B ′
i . Let r be the round where C is generated. We will prove that

player P is 2-predictable at round r. In other words, at round r, the player P can predict whether or not she/he
can extend the chain C1 at round r.

We will show that the contexts of C1 and C2 can be computed when the chain C is generated. As shown in
Definition 3.1, the contexts are computed based on the hash values of some blocks on the chain. Let Bi1 , · · · ,Bit

be the blocks that are used to compute the context of C1, where t ∈ N and for all j ∈ [t], ij ∈ [0..ℓ1]. We have,
η1 = hash(Bi1∥ · · · ∥Bit). Let B ′

i′1
, · · · ,B ′

i′
t′

be the blocks that are used to compute the context of C2, where t ∈ N
and for all j ∈ [t′], i′j ∈ [0..ℓ2]. We have, η2 = hash(B ′

i′1
∥ · · · ∥B ′

i′
t′
).

The function hash is treated as a random oracle3. Note that η1 = η2. Now we have, Bi1∥ · · · ∥Bit = B ′
i′1
∥ · · · ∥B ′

i′
t′

.
Thus, we have t = t′ and for all j ∈ [t], Bij = B ′

i′1
. Hence, all blocks Bi1 , · · · ,Bit must belong to the chain C, the

common prefix of C1 and C2. In other words, the contexts η1 and η2 must be obtained from the chain C.
Next, we will show that chain C1 is longer than chain C, i.e., len(C1) > len(C). We consider two cases based on

the length of C1 and C2 as follows:

• Case 1: len(C1) > len(C2). As C is a prefix of C2, we have, len(C2) ≥ len(C). Thus len(C1) > len(C2) ≥ len(C).

• Case 2: len(C1) = len(C2). Assume toward contradiction that len(C1) = len(C). As C is a prefix of C1, we have
C = C1. Similarly, we have C = C2. Thus, we have C1 = C2 (this contradicts the condition that C1 ̸= C2).
Hence, we have, len(C1) > len(C).

Let r be the round where player P receives C. At round r, player P can calculate the context η1 of the chain C1.
At round r, the adversary makes a prediction zr1P , where

zr1P =

{
0, if Extend(η1, r1, SK) =⊥,
1, if Extend(η1, r1, SK) ̸=⊥ .

If the function Extend(η1, r1, SK) returns a block, i.e., Extend(η1, r1, SK) ̸=⊥, player P can extend the chain C1
at round r1. Hence, the prediction zr1P = 1 is always accurate. Furthermore, since len(C1) − len(C) ≥ 1, i.e.,
len(C1) + 1 − len(C) ≥ 2, we have, predictable(VIEW,P , 2, r, r1, z

r1
P ) = 1. In other words, the malicious player P is

2-predictable at round r. This contradicts the fact that protocol Π achieves the best possible unpredictability, i.e.,
player P must be 2-unpredictable at every round.

We note that the single-extension protocols in [DPS19, DGKR18] cannot achieve the best possible unpre-
dictability. The execution of these protocols is divided into epochs, each consisting of O(κ) blocks. In these
protocols, the context is computed based on the hash values of the blocks in the previous epoch. As a result, all
chains in the same epoch share the same context. Thus, at the beginning of each epoch, malicious players can
predict whether or not they can extend their chains in the current epoch. Bagaria et al. [BDK+19] proposed a
single-extension protocol with a constant-sized epoch. In this protocol, the context of a chain is computed as the
hash value of the last block in the previous epoch. If each epoch consists of at least two blocks, the protocol cannot
achieve the best possible unpredictability. This is because all the chains in the same epoch share the same context.
On the other hand, if each epoch consists of only one block, the protocol can achieve the best possible unpre-
dictability. Now, the protocol achieves distinct-context-extension property. Jumping ahead, in Subsection 3.5, we
will show that the protocol requires 73% of honest stake to achieve the security properties.

3It is sufficient to assume that hash is collision resistant hash function in this proof.

12



3.5 Breaking the common prefix property via distinct-context-extension

We show that if a single-extension proof-of-stake (PoS) protocol achieves the distinct-context-extension property,
the adversary can violate the common prefix property if the honest players control less than 73% of the stake.
More specifically, based on the distinct-context-extension property, the adversary can amplify their stake by at
least a factor of e = 2.72. Therefore, if the honest players control less than 73% of the stake, the adversary can
extend chains faster than the honest players and thus break the common prefix property of the protocol.
The chain growth of the adversary. We establish a bound on the chain growth of the adversary as follows. We
demonstrate that for any valid chain C at any round r, there exists an adversary who can extend the chain C with
a probability of at least β. Given that the protocol achieves the distinct-context-extension property, the extensions
of all chains are independent. We model the chain extension of the adversary as a random tree, where each branch
of the tree represents a chain in the block tree and the extensions of the branches are modeled as independent
random variables.

Claim 3.6 (Adversarial extension). Consider any proof-of-stake protocol Π with a set of player P . For some adversary A

and environment Z, consider some VIEW in the support of EXECΠ,A,Z. Let Cr be the set of chains in the view of all players at
round r. At round r, the adversary attempts to extend a chain C ∈ Cr. Specifically, the adversary A, takes inputs as a chain
C ∈ Cr, the round number r, and output a block B . For every, PPT Z, there exists an adversary A such that, at any round r,
we have,

Pr

 VIEW← EXECΠ,A,Z;
C ← Cr; Validate(C∥B , r) = 1
B ← A(C, r);

 ≥ β.

Proof. Consider an adversary A that corrupts N · ρ players at the start of the protocol. The adversary A extends
all chains in Cr for each round r. For each malicious player P , let SK be their secret key. The adversary instructs
player P to run Extend(Context(C), r, SK). Recall that, the algorithm Extend(Context(C), r, SK) returns ⊥ if no new
block is generated. Otherwise, if Extend(Context(C), r, SK) ̸=⊥, i.e., the algorithm returns a new block, the player
P can generate a new block.

The adversary can generate a new block in a round r if there exists a malicious player P ′ successfully generates
a new block, i.e., Extend(Context(C), r, SK′) ̸=⊥, where SK′ is the secret key of P ′. In this case, the adversary returns
the block that is output by the algorithm Extend(Context(C), r, SK′). Otherwise, if all malicious players cannot
generate a new block at round r, the adversary returns ⊥.

Recall that, the algorithm Extend(Context(C), r, SK) returns a new block with probability p. As the number of
malicious players is N · ρ, the probability that there exists a malicious play can extend the chain C at round r is
1− (1− p)N ·ρ = β. In this case, the adversary returns a block core that is generated by a malicious player at round
r.

Next, we show that the adversary can amplify its stake by a factor of e = 2.72. To do this, we consider
an adversary that extends all chains. The extension of the adversary is modeled as a random tree, in which each
branch represents the extension of a chain. Based on Lemma 3.6, the probability of the adversary extending a chain
in each round is at least β. Additionally, as stated in Lemma 3.5, to achieve the best possible unpredictability, the
extensions of all chains must be distinct-context-extension. Thus, the probabilities of the adversary extending the
chains are independent. The chain extension of the adversary is modeled as a random tree with independent
extensions in each branch. To bound the growth rate of the chain, we first bound the number of branches in the
random tree, and then, based on the number of branches and the growth rate of each branch, we can determine
the maximum length of all branches in the random tree.

Before presenting the detailed proofs, we introduce a useful inequality as follows.

Claim 3.7 (Theorem 1 in [Can17]). Consider a Poisson random variable X that has the expected value of λ. We have the
following inequalities.

• For any ϵ > 0, we have, Pr[X > λ · (1 + ϵ)] ≤ e−λ ϵ2

2(1+ϵ) .

• For any 0 < ϵ < 1, we have, Pr[X < λ · (1− ϵ)] ≤ e−λ ϵ2

2(1+ϵ) .

Claim 3.8 (Theorem 3 in [Goe15]). Let X1, X2, · · · , Xt be identical independent random variables in range [0, 1] with an
expected value of λ. Then, for any ϵ > 0, we have Pr[

∑t
i=1 Xi < (1− ϵ) · t · λ] ≤ e−Ω(t).
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We describe the adversary’s chain extension as a branching process, as follows. Let Zt be the set of all branches
at round t, where t ∈ N, and Gt be the number of branches in Zt. At the beginning, there is only one branch of
length 0, i.e., Z0 = {0} and G0 = 1. Let X be a Poisson random variable with an expected value of β. Let Xt,i be
the random variable that represents the random process in the i-th branch in Zt. Here, Xt,i are independent and
identically distributed random variables of X . Let ℓt,i be the length of the i-th branch in Zt. We will add Xt,i + 1
branches with the length ℓt,i, ℓt,i+1, · · · , ℓt,i+Xt,i into Zt+1. We denote Tt as the maximum length of all branches
in Zt, i.e., Tt = maxi∈{1,2,··· ,Gt} ℓt,i. The maximum length Tt is equivalent to the length of the longest chain. To
bound the adversary’s chain growth, we first bound the number of different branches at the end of the process
(see Lemma 3.9). Then, we use the union bound for the maximum length of all branches.

Claim 3.9. Consider the set of branches Zt at time t. For any ϵ′′ > 0, we have Pr[Gt < (β + 1)(1−ϵ′′)·t] < e−Ω(t).

Proof. In each round, on average, the adversary can create β + 1 new branches from a branch in the previous
rounds. Thus, for j ∈ N, we have E

[Gj+1

Gj

]
= β+1. In other words, we have E

[
log(Gj+1)− log(Gj)

]
= log(β+1).

Let Q1, Q2, · · · , Qt be independent and identically distributed random variables with the expected value of
log(β + 1). We have, logGt =

∑t
j=1 Qj . Therefore,

Pr
[
Gt < (β + 1)(1−ϵ′′)·t] = Pr

[
log(Gt) < (1− ϵ′′) · t · log(β + 1)

]
=Pr

[ t∑
j=1

Qj < (1− ϵ′′) · t · log(β + 1)
]
< e−Ω(t).

Claim 3.10. Consider a single-extension proof-of-stake protocol Π satisfies distinct-context-extension property. For some
adversary A and environment Z, consider some VIEW in the support of EXECΠ,A,Z. Let Cr1 be the set of chains at round
r1. The adversary takes inputs as a chain C1 ∈ Cr1 and the round numbers r1, r2 and outputs a chain C2. For every, PPT Z,
there exists an adversary A such that, at any round r1, r2, where r2 − r1 = t and t = Ω(κ), we have,

Pr

 VIEW← EXECΠ,A,Z; C1 ← Cr1 ;
(
Validate(C2, r2) = 1

)
C2 ← A(C1, r1, r2);

∧ (
C1 ⪯ C2

)
ℓ1 := len(C1); ℓ2 := len(C2);

∧ (
ℓ2 − ℓ1 > (1− ϵ) · e · β · t

)
 ≥ 1− e−Ω(κ),

where e = 2.72.

Proof. Let Y :=
∑t

j=1 Xj be a Poisson random variable with the expected value of k · β. We have,

Pr
[
Tt < (1− ϵ) · t · β · e

]
≤

∑
i∈{1,2,··· ,Gt}

Pr
[
ℓt,i < (1− ϵ) · t · β · e

]
(Using union bound)

≤Gt · Pr
[
Y < (1− ϵ) · t · β · e

]
(Based on Claim 3.8)

≤(β + 1)(1+ϵ′′)·t · Pr
[
Y < (1− ϵ) · t · β · e

]
+ e−Ω(κ) (Based on Claim 3.9)

≤Pr
[
Y < (1− ϵ′) · t · β

]
+ e−Ω(κ) = e−Ω(κ) (Based on Claim 3.7).

Breaking common prefix. Since the adversary can amplify its stake by a factor e = 2.72, the adversary can extend
the chain faster than the honest players it controls more than 27% of stake. Thus, the adversary can keep its blocks
hidden and then publish those blocks when the length of the hidden chain is bigger than κ. Now, the hidden chain
will become the new best chain and it does not share a common prefix with the previous best chain.

Lemma 3.11. Assume α < e ·β, where e = 2.72. Consider a single-extension proof-of-stake protocol Π that is parameterized
by four algorithms: Validate, BestChain, Context, and Extend. If protocol Π achieves distinct-context-extension property,
then it cannot achieve common prefix property.

Proof. Consider an adversary that extends a set of chains and keeps them private from the beginning of the
protocol execution. Consider a round r = Ω(κ), and let C1 be the best chain that is generated by the adver-
sary. Here, C1 is private, i.e., it is hidden from the honest players. From Claim 3.10, we have Pr[len(C1) <
(1− ϵ1) · r · e · β] < e−Ω(κ), where e = 2.72. Let C2 be the best public chain at round r. Using Chernoff bound, we
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have, Pr[len(C2) > (1 + ϵ2) · r · α] < e−Ω(κ). Here, we choose ϵ1, ϵ2 such that (1− ϵ1) · e · β > (1 + ϵ2) · α. We have,
Pr[len(C1) > len(C2)] > Pr[(1− ϵ1) · r · e · β > (1 + ϵ2) · α]− e−Ω(κ) = 1− e−Ω(κ).

At some round r′ = Ω(κ) such that len(C1) > κ, the adversary publishes the best private chain C1. Recall that,
Pr[len(C1) > len(C2)] > 1 − e−Ω(κ). In other words, with overwhelming probability, the private chain C1 is longer
than the best public chain C2. Therefore, the honest players will adopt C1 as the best public chain.

Note that, all blocks in the private chains C1 (except the genesis block) do not belong to the public chain C2.
Thus, we have, C1[¬κ] ⪯̸ C2. Therefore, the common prefix property does not hold.

4 Greedy Strategies: How to overcome the impossibility

In Section 3, we have demonstrated the impossibility of single-extension PoS protocols. Specifically, we have
shown that a single-extension PoS protocol that achieves the best possible unpredictability cannot simultaneously
achieve the common prefix property if honest players control less than 73% of the stake. In this section, we
introduce a multi-extension framework that allows honest players to extend multiple chains (see Supplemental
Material C.2 for the definition of a multi-extension protocol). We then present greedy strategies that follow this
framework. In these strategies, honest players are allowed to extend multiple chains that are ”close” to each other.
Additionally, we design a new tiebreak rule for the multi-extension protocol to maximize the chain growth of
honest players. Our multi-extension protocol can achieve the best possible unpredictability while only requiring
a much smaller fraction (e.g., 57%) of the honest stake to achieve the security properties.

For simplicity, we consider the idealized “flat” model where all PoS-players have the same number of stakes
and register exactly one public key in the genesis block. In a non-flat model where the PoS-players may have
different numbers of stakes, we can set the difficulty of the hash inequality based on the number of stakes that the
player controls (see more details in Section 10.2). Plus, we assume all protocol players have their stake registered
at the beginning of the protocol execution. In Section 10.3, we will turn to consider a dynamic stake distribution
and use a similar strategy as in [BGK+18] to allow new players to join the system during the protocol execution.

4.1 Greedy strategies

We allow the PoS players to take a greedy strategy to extend the chains in a protocol execution: instead of extending
a single best chain (i.e., the longest chain), the players are allowed to extend a set of best chains, expecting to extend
the best chain faster. This is possible because extending the chains in a PoS protocol is “very cheap”. We remark
that the set of best chains should be carefully chosen; otherwise, the protocol may not be secure. In our greedy
strategy, the honest player extends the set of chains that share the same common prefix after removing the last
few blocks. With this strategy, the security of the protocol is guaranteed. Next, we will formally study the greedy
strategies.

Distance-greedy strategies. We first introduce distance-greedy strategies for honest protocol players. Consider a
blockchain protocol execution. In each player’s local view, there are multiple chains, which can be viewed as a
tree. More concretely, the genesis block is the root of the tree, and each path from the root to another node is
essentially a chain. The tree will “grow”: the length of each existing chain may increase, and new chains may
be created, round after round. Before giving the formal definition for distance-greedy strategies, we define the
“distance” between two chains in a tree. Intuitively, we say the distance from a “branch” chain to a “reference”
chain is d if we can obtain a prefix of the reference chain by removing the last d blocks of the branch chain.

Definition 4.1 (Distance between two chains). Let C be a chain of length ℓ. We view C as the “reference” chain, and now
consider C1 to be a “branch” chain (of the reference chain). Let ℓ1 be the length of C1. Next, we define the distance between
the reference chain C and the branch chain C1, and we use distance(branch chain→ reference chain), i.e., distance(C1 → C)
to denote the distance. More formally, if d is the smallest non-negative integer so that C1[0, ℓ1 − d] ⪯ C, then we say the
distance between the reference chain C and the branch C1 is d, and we write distance(C1 → C) = d.

Remark 4.2. Note that the distance of chain C from chain C1 is different from the distance of C1 from C, and it is possible that
distance(C → C1) ̸= distance(C1 → C). For example, in Figure 4, the distance of C from C1 is 3, i.e. distance(C → C1) = 3,
while the distance of C1 from C is 2, i.e., distance(C1 → C) = 2. We also note that the distance of C from itself is always 0,
i.e., distance(C → C) = 0.

After explaining the concept of the distance between two chains, we are ready to introduce the distance-greedy
strategies. Intuitively, a player who plays a distance-greedy strategy will make attempts to extend a set of best
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Figure 4: A toy example for illustrating the distance between two chains C = B0∥B1∥B2∥B3∥B4 and C1 = B0∥B1∥B ′
2∥B ′

3.
Here, distance(C1 → C) = 2, i.e., the distance from C1 to C is 2. Similarly, distance(C → C1) = 3, i.e., the distance from C to C1 is
3.

01

2234

4 23

13

The set of best
chains for 

Figure 5: A toy example of 1-distance-greedy strategy. Here, the best chain is Cbest = B0∥B1∥B2∥B3∥B4. The number in blue
on top of each block denotes the distance from the best chain Cbest (i.e., the branch chain) to the reference chain that consists of a
sequence of blocks from the genesis block B0 to that block. The bold blocks in the yellow area are the last blocks of the chains
in the set of best chains.

chains in which those chains should be very “close” to the best chain, i.e., the distance from the best chain to the
chain must be small. Here, we consider the best chain as the branch chain and all other chains in the set of best
chains as the reference chains. By the definition of the distance, we can obtain a common prefix of all reference
chains by removing the last few blocks of the branch chain. Jumping ahead, we will use this observation to prove
the common prefix property of our protocol. More formally, we have the following definition.

Definition 4.3 (D-distance-greedy strategy). Consider a blockchain protocol execution. Let P be a player of the protocol
execution, and let C be the set of chains in player P ’s local view. Let Cbest be the longest chain at round r, where ℓ =
len(Cbest). Let D be non-negative integers. Define a set of chains Cbest as

Cbest =
{
C ∈ C

∣∣ distance(Cbest → C) ≤ D
}
.

We say the player is D-distance-greedy if, for all r, player P makes attempts to extend all chains C ∈ Cbest.

In Figure 5, a pictorial illustration for the toy example of the 1-distance-greedy strategy can be found. The
honest players will extend the bold blocks (B3,B4,B

′′
4 ).

4.2 The protocol Π•

We present a new protocol Π• to achieve the best possible unpredictability while only requiring a much smaller
fraction (e.g., 57%) of honest stake to achieve the security properties. To simplify the presentation, we construct
a protocol in which the payloads in all blocks are empty. We will extend our protocol to include the payload
in Section 10.1. Protocol Π• uses a unique digital signature scheme and a hash function as building blocks. For
completeness, we present the definition of the unique digital signature scheme in Supplemental material C.1.

Blockchain initialization phase. In this phase, the genesis block will be created. Here, the genesis block con-
sists of a randomness, the public keys of the players. Given a group of PoS-players P = {P1,P2, . . . ,Pn}, a
security parameter κ, and a unique digital signature scheme (uKeyGen, uKeyVer, uSign, uVerify), the initialization
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is as follows: each PoS-player Pj ∈ P generates a key pair (SKj , PKj) ← uKeyGen(1κ), publishes the public key
PKj and keeps SKj secret. The public keys are stored in the genesis block of the blockchain system; let B0 de-
note the genesis block. In addition, an independent randomness rand ∈ {0, 1}κ will also be stored in B0. That is
B0 = ⟨(PK1, PK2, · · · , PKn), rand⟩4.

Algorithm 2: Algorithms Context•, Mining•, Validate•, and D-BestChainSet•.

1 Context•(C):
2 ℓ := len(C); η := h(C[ℓ]); Return η;
3 Mining•(η, r, SK, PK):
4 σ := uSign(SK, ⟨η, r⟩)
5 if H(η, r, PK, σ) < T then
6 Create new block B := ⟨η, r, PK, σ⟩; Return B ;
7 else Return ⊥
8 Validate•(C, r):
9 Parse C into B0∥B1∥ · · · ∥Bℓ;

10 for i ∈ [1, ℓ] do
11 Parse Bi into ⟨ηi, ri, PKi, σi⟩;
12 if h(Bi−1) ̸= ηi or H(ηi, ri, PKi, σi) ≥ T or uVerify(PKi, ⟨ηi, ri⟩, σi) = 0 or ri > r then
13 Return 0;
14 Return 1;
15 D-BestChainSet•(C):
16 Set Cbest as the longest chain in C and Cbest = {Cbest};
17 for C ∈ C do
18 if distance(Cbest → C) ≤ D then
19 Cbest := Cbest ∪ {C};

Blockchain extension phase. Following the design of a multi-extension framework, our protocol is parameterized
by four algorithms: Context•, Mining•, Validate•, and D-BestChainSet•. (Please see Algorithm 2 for the pseudocode
of the four algorithms.) In our protocol, the players extend a set of chains Cbest in which, for all chain C ∈ Cbest,
the distance from the best chain Cbest to the chain C does not exceed D , i.e., distance(Cbest → C) ≤ D .

The procedure D-BestChainSet• will output a set of best chains including the longest (i.e., the best) chain, and
several chains that are very close to the longest chain. First, the procedure D-BestChainSet• iterates through all
chains in the local state and uses algorithm Validate• to remove the invalid chains. Here, the algorithm Validate•

takes a chain C and the current round r as input and evaluates every block of the chain C sequentially. Let ℓ be
the length of C. Starting from the head of C, for every block C[i], for all i ∈ [ℓ], in the chain C, the procedure
D-BestChainSet• verifies that 1) C[i] is linked to the previous block C[i − 1] correctly, 2) the hash inequality is
correct, and 3) the signature is correctly generated by the player. Then, the procedure D-BestChainSet• selects the
best chain Cbest as the longest chain and iterates through the set of chains in the local state of the player to find all
the chains in which the distances from the best chain to those chains do not exceed D .

For a chain C = B0∥B1∥B2∥ . . . ∥Bi in the set of best chains Cbest, the honest players P , with key pair (SK, PK),
make attempts to extend the chain C as follows. Let r denote the current time (or round number). The player P
first computes the context η := Context•(C). Here, algorithm Context• return the hash value of the last block on C,
i.e., Context•(C) = h(Bi). A PoS-player P can successfully generate a new block if the following hash inequality
holds: H(η, r, PK, σ) < T, where σ := uSign(SK, ⟨η, r⟩). The new block Bi+1 is defined as Bi+1 := ⟨η, r, PK, σ⟩.

Algorithm 3: PROTOCOL Π•

State : Initially, the set of chains C only consists of the genesis block. At round r, the PoS-player P ∈ P, with key
pair (SK, PK) and local set of chains C, proceeds as follows.

1 Upon receiving a chain C′, set C := C ∪ {C′} after verifying Validate•(C′, r) = 1;
2 Compute Cbest := D-BestChainSet•(C);
3 for C ∈ Cbest do
4 η := Context•(C); B := Mining•(η, r, SK, PK);
5 if B ̸=⊥ then
6 C1 := C∥B ; Broadcast C1;

4For simplicity, we omit the stake distribution in the genesis block since all players have the same number of stake in the flat model.
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4.3 A new tiebreak rule for our multi-extension protocol

We design a new tiebreak rule for our D-greedy strategy. In a multi-extension protocol, the honest players extend
all chains in the set (of best chains). The probability of generating a new best chain can vary depending on the
number of chains in the set of best chains. This opens up opportunities for an adversary to slow down the chain
growth by publishing a chain with the same length as the best chain but with fewer chains in the set of best chains.
To defend against this attack, it is crucial to establish a tiebreak rule that maximizes the growth of the chain. In
contrast, the probability of generating a new best chain in a single-extension protocol is constant; thus such a
tiebreak rule (that maximizes the growth) is not needed in single-extension PoS protocols.

Intuitively, when there are two equally longest chains in a round, the best chain is selected based on the
expected time to extend the chain and generate a new best chain. Honest players will choose the chain that is
expected to be extended more quickly.

Recall that, the probability of generating a new best chain can vary depending on the number of chains in the
set. As the number of chains in the set of best chains increases, the chance for honest nodes to generate a new
longest chain also increases. To take advantage of this, our tiebreak rule prioritizes the chain with more chains
in the set of best chains. This guarantees that the adversary cannot slow down the chain growth of the honest
players.

Depth-based subsets. Before presenting the tiebreak rule, we introduce the definition of the depth-based subsets.
Consider a protocol execution at a certain round, let Cbest denote the best chain and Cbest be the set of best chains.
In our protocol execution, honest players follow the D-greedy strategy and make attempts to extend the set of best
chains. As shown in Figure 6, we partition the set Cbest into D + 1 number of disjoint subsets based on the length
of those chains. Let ℓ = len(Cbest) be the length of the best chain and for all i ∈ [0..D ], the i-depth-based subset Li

is the subset of chains with the length of ℓ− i in the set Cbest. That is, Li = {C ∈ Cbest : len(C) = ℓ− i}.

...

Figure 6: Partitioning a set of best chains Cbest into multiple disjoint depth-based subsets for D = 2. Here, the set of best
chains Cbest is partitioned into 3 subsets L0, L1, L2. Let ℓ be the length of the best chain. The 0-depth subset L0 consists of 3
chains of length ℓ, i.e., the chains that have the last blocks are Bℓ,B

′
ℓ,B

′′
ℓ . The 1-depth subset L1 consists of 3 chains of length

ℓ− 1, i.e., the chains that have the last blocks are Bℓ−1,B
′
ℓ−1B

′′
ℓ−1. The 2-depth subset L2 consists of 1 chain of length ℓ− 2, i.e.,

the chain that has the last block is Bℓ−2.

Our new tiebreak rule. The tiebreak rule states that when there are two chains of the same length, the one with a
faster expected time for further extension is chosen. Recall that, in our protocol, honest players extend all chains
in the set of best chain. The tiebreak rule is based on the number of chains in the set. By utilizing this rule, we can
ensure that the adversary is unable to slow down the growth of the chain for honest players.

In our protocol, honest players use a D-greedy strategy to extend the set of best chains. The length of the best
chain increases by 1 when a chain in the 0-depth subset (i.e., a chain with the same length as the best chain) is
extended. Therefore, having more chains in the 0-depth subset will allow honest players to extend the best chain
faster. Additionally, when a chain in the 1-depth subset is extended, the number of chains in the 0-depth subset
also increases. As a result, if the number of chains in the 0-depth subset is the same, having more chains in the
1-depth subset will also allow honest players to extend the best chain faster.

To break the tie of two equally longest chains, the players compare the number of chains in subsets at 0-depth,
1-depth, 2-depth, and so on, to determine the best chain (see Algorithm 4 for the pseudocode). If the number of
chains in subsets is the same, we break the tie by comparing the number of chains in the next depth subset, and
so on. If the tie still cannot be broken, we just choose the first chain.

More concretely, suppose we have two equally longest chains C and C′. Let Cbest and C′
best be the correspond-

ing sets of best chains for C and C′, respectively. For i ∈ [0..D ], let Li denote the set of chains in Cbest with length
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Algorithm 4: Tiebreak rule

Input : Two chains Cbest, C′
best of length ℓ, the local set of chains C

Output: Return the better chain between Cbest and C′
best

1 Cbest := ∅; C′
best := ∅

2 for C ∈ C do
3 if distance(Cbest → C) ≤ D then
4 Cbest := Cbest ∪ {C}
5 if distance(C′

best → C) ≤ D then
6 C′

best := C
′
best ∪ {C}

7 for i ∈ [0..D ] do
8 Li := {C ∈ Cbest : len(C) = ℓ− i}
9 L′

i := {C ∈ C′
best : len(C) = ℓ− i}

10 i := 0
11 while i ≤ D do
12 if |Li| > |L′

i| then
13 Return Cbest

14 if |Li| < |L′
i| then

15 Return C′
best

16 if |Li| = |L′
i| then

17 i := i+ 1

18 Return Cbest

ℓ− i, and let L′
i denote the set of chains in C′

best with length ℓ− i. In other words, Li and L′
i are i-depth subsets in

Cbest and C′
best, respectively. To break the tie between C and C′, the players follow this procedure: If the number of

chains in L0 is bigger than the number of chains in L′
0, i.e., |L0| > |L′

0|, we say the chain C is better than the chain
C′. Similarly, if |L′

0| > |L0|, we say the chain C′ is better than the chain C. If |L0| = |L′
0|, we compare the number

of chains in L1, L′
1. If |L1| > |L′

1|, we say we say the chain C is better than the chain C′. Similarly, if |L′
1| > |L1|, we

say the chain C′ is better than the chain C. If |L1| = |L′
1|, we compare the number of chains in L2, L′

2, and so on. If
we still cannot break the tie, the first chain will be selected as the best chain for simplicity.

5 Security Analysis: Overview

In this section, we provide the overview of security analysis for protocol Π•. Then, in Section 6, we propose a new
analysis framework to study the chain growth in multi-extension protocols. In Section 7, we use the above analysis
framework to examine the chain growth of our protocol. In Section 8, we present a new analysis framework to
analyze the common prefix property. Finally, in Section 9, we present the analysis of chain quality and the best
possible unpredictability.

As in the previous section, assuming the underlying scheme (uKeyGen, uKeyVer, uSign, uVerify) is a unique
digital signature scheme, a malicious player for a given context, can create exactly one signature. Now, we can
prove the security properties of protocol Π• under the assumption of honest majority of effective stake based on
α• = Â•D · α (e.g., Â•50 ≥ 2.04) and β• = 2.72β, where Â•D is the amplification ratio caused by the greedy strategy.

It is important to note that the techniques described in [GKL15, PSs17, DGKR18, BDK+19] can provide valuable
insights for analyzing the security properties of protocols based on the single extension design framework. How-
ever, our protocol Π• does not follow this framework and requires new analysis techniques to prove its security
properties.

Theorem 5.1. Consider an execution of multi-extension protocol Π• in the random oracle model, where honest players follow
the D-distance-greedy strategy while adversarial players could follow any arbitrary strategy. Additionally, all players have
their stake registered at the beginning of the execution. Assume (uKeyGen, uKeyVer, uSign, uVerify) is a unique digital
signature scheme, and α• = λβ•, λ > 1. Then protocol Π• achieves 1) chain growth, chain quality, and common prefix
properties; and 2) the best possible unpredictability.

Chain growth. We propose a new analysis framework to study the chain growth in multi-extension protocols in
Section 6. We develop a random walk in a Markov chain that consists of multiple states to analyze the chain growth
property. In the Markov chain, each state provides a representation of the set of best chains in a protocol round.
Note that, for the existing single-extension protocols [GKL15, PSs17, DGKR18], since the honest players only
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extend a single best chain, the probability that honest players extend the best chain is the same for every round.
Hence, the analysis of chain growth for such protocols is quite simple. On the other hand, in multi-extension
protocols, honest players may extend multiple chains in a single round, and the probability of extending the best
chain can vary between rounds. Therefore, a new analysis framework is necessary to evaluate the chain growth
in multi-extension protocols.

In Section 7, we use the above analysis framework to examine the chain growth of our protocol. Note that,
in a multi-extension protocol, the adversary may attempt to slow down the chain growth by launching attacks.
Fortunately, as we mentioned in the previous section, our tiebreak rule prevents the adversary from launching
such attacks. We start our analysis with the design of a simplified Markov chain and then extend it to design an
augmented Markov chain.
Simplified Markov chain. We design the simplified Markov chain using the information of the depth-based subsets.
Recall that, by following the D-distance-greedy strategy, the honest players extend a set of best chains. The set of
best chains can be partitioned into D +1 subsets based on the depth of those chains, where the depth of a chain is
computed based on the difference between its length and the length of the current best chain. For i ∈ [0..D ], the
i-depth subset consists of all the chains that are i blocks behind the best chain. In each round, a new best chain
is generated if a player extends a chain in the 0-depth subset, which consists of all the chains that have the same
length as the current best chain. Further, a new chain is added to the i-depth subset if a chain in the (i+ 1)-depth
subset is extended, where i ∈ [0..D − 1]. Hence, we can analyze the chain growth based on the number of chains
in those subsets. In the simplified Markov chain, each state represents a protocol round with specific numbers
of chains in all depth-based subsets. The chain growth of our protocol can be estimated based on the expected
number of chains in the 0-depth subset. The simplified Markov chain provides information about the number of
chains in depth-based subsets, but it does not provide how many chains are removed from the set of best chains
when a new best chain is generated. This leads to a worst-case scenario where the set of best chains only consists
of the best chain and its prefixes, making it difficult to determine a good lower bound for the amplification ratio,
even with a large D .
Augmented Markov chain. To resolve the issue in the simplified Markov chain, we introduce an augmented Markov
chain. The states of the augmented Markov chain contain more information. This helps us determine the number
of chains that are removed after generating a new best chain. By doing so, we can avoid considering the worst-
case scenario where the set of best chains only consists of the best chain and its prefixes. More concretely, we
present the notion of depth-distance-based subsets. These subsets are selected based on both the length of the chains
and their distance from the best chain. When a new best chain is generated, the distance from the new best
chain to the chains in the subsets increases by one. As a result, we can obtain the number of chains in the new
depth-distance-based subsets (when the new best chain is generated) based on the number of chains in the old
depth-distance-based subsets (when the new best chain has not been generated). The states in the augmented
Markov chain provide information about the number of chains in the depth-distance-based subset, allowing us
to identify which chains belong to the new set of best chains when a new best chain is generated. This approach
results in a better lower bound on the amplification ratio.

Common prefix. To analyze the common prefix property, we first demonstrate that the adversary can increase
their stake by a factor of e = 2.72 if they extend the chain themselves. It is worth noting that the adversary cannot
use the blocks of honest players to compromise the security property. To break the common prefix property, the
adversary must find a way to create two divergent chains, i.e., two chains that do not share a common prefix after
removing the last κ+D blocks. Recall that, in our protocol, we use the D-distance-greedy strategy, where honest
players in the protocol execution will only extend the set of best chains. Based on the definition of the D-distance-
greedy strategy, the set of best chains must be “close”. That is, these chains share a common prefix after removing
the last D blocks. Thus, the chains produced by the honest players share a common prefix with the best chain,
after removing the last D blocks. This prevents the adversary from using the chain of honest players to break the
common prefix property.

To formally prove the common prefix property, we introduce the notions of virtual block-sets and virtual chains,
and then define the common prefix property w.r.t. virtual chains. We can prove the common prefix w.r.t. virtual chains
by showing that the honest players only contribute at most one virtual block-set at a block height. Afterward, we
show that the standard common prefix property can be reduced to common prefix w.r.t. virtual chains.
Virtual block-sets and virtual chains. A virtual block-set consists of multiple blocks with the same height that are
“close” to each other. More concretely, we first define two chains as “close” if they share a common prefix after
removing the last few blocks, say D , where D is a parameter as mentioned above. When two chains are “close”,
the last blocks of the two chains are also “close”. Now the virtual chain consists of multiple virtual block-sets that
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are linked together.
Common prefix w.r.t. virtual chains. To prove the common prefix w.r.t. virtual chains, we introduce the concept of
honest virtual block-sets. We say a virtual block-set is honest if the first generated block in the virtual block-set is
generated by an honest player. As the honest players follow a D-greedy strategy that we mentioned above, at
each block height, there is at most one honest virtual block-set. Thus, to break the common prefix property w.r.t
virtual chains, the adversary needs to generate more virtual block-sets than the honest players. This requires the
adversary to control the majority of the stake, which contradicts the assumption that honest players control the
majority.
Common prefix. Finally, we demonstrate that the common prefix property can be achieved from the common prefix
w.r.t. virtual chains. Recall that, the common prefix w.r.t. virtual chains property states that the best virtual chains
of honest players share the same common prefix after removing the last κ virtual block-sets. Plus, based on the
definition of the virtual block-set, the blocks in the same virtual block-set are “close” together. In other words, the
chains that have those blocks as the last blocks share the common prefix after removing the last D blocks. Hence,
the best chains of honest players share the same common prefix after removing the last κ+D blocks.

Chain quality. After proving the chain growth and common prefix properties, the proof of chain quality will be
very similar to the proof in [PSs17]. Intuitively, to break the chain quality property, the adversary must generate κ
consecutive blocks on the best chains. This requires the adversary to control the majority of the stake.

The best possible unpredictability. In our protocol, the players extract the context of a chain based on the hash
value of the last block. Thus, a player cannot know the hash value of the next block unless he generates the block
himself. Hence, the player can only predict whether or not she/he can generate the next block. In other words,
our protocol achieves the best possible unpredictability.

6 Chain Growth in Multi-Extension: A New Analysis Framework

In this section, we present a framework for analyzing the chain growth property in multi-extension protocols
using the Markov chain. We develop a random walk in a Markov chain. The Markov chain consists of multiple
states, where each state provides some information on the set of best chains in a protocol round. Then, we will
apply this framework to analyze the chain growth property of our protocol Π•.

We construct a Markov chain with a state space S and a transition matrix T. Each state s ∈ S provides some
information on the view of the players in a protocol round. The transition matrix T is a |S|×|S|matrix that reflects
how the set of best chains is updated after one protocol round. We define a chain growth function growth : S → [0, 1]
to represent the chain growth rate on each state. Then, we consider a random walk of t states s1, s2, · · · , st, where
t ∈ N and for all i ∈ [t], si ∈ S. This random walk represents how the set of best chains is updated in t protocol
rounds. The chain growth is computed as the sum of outputs of the chain growth function over all the states in
the random walk. (See Section 6.1 for more details.)

We remark that, in a single-extension protocol, the probability of honest players extending the best chain
remains constant in every round. As a result, the chain growth function can be simplified to a constant value,
making the analysis of chain growth property easier, compared to the analysis of a multi-extension protocol.

6.1 Defining a Markov chain

Before presenting our analysis for the chain growth property, let us summarize the definition of a Markov chain
and the random walk on a Markov chain [CLLM12]. We will use the Markov chain to analyze the chain growth
property of our protocol.

Markov chain. A Markov chain is a mathematical model that describes a sequence of events in which the probabil-
ity of each event depends only on the state preceding it. The defining characteristic of a Markov chain is that no
matter how the process arrived at its present state, the possible future states are fixed. In other words, the proba-
bility of transitioning to any particular state is dependent solely on the current state. A Markov chain is specified
by a state space S and a transition matrix T. For simplicity, we will refer to the Markov chain as (S,T). Each state
s ∈ S is a tuple of d integers ⟨n0, · · · , nd−1⟩, where d ∈ N and for all i ∈ [0..d − 1], ni ∈ N. In our analysis, each
state provides some information on the view of the players in a protocol round. For example, we can define each
state s ∈ S in the format of ⟨n0⟩, where n0 ∈ N. Here, n0 is the number of chains that have the same length as the
current best chain. The state space is given as S = {⟨n0⟩}n0∈N. The transition matrix T is an |S| × |S|matrix that
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contains information on the probability of transitioning between states, where |S| is the size of the state space S.
For any two states s and s′, the probability of transitioning from state s to state s′ is Ts,s′ .
Random walk. A random walk in the Markov chain is a sequence of t states s1, s2, · · · , st, where t ∈ N and for all
i ∈ [t], si ∈ S. The random walk starts at some state s1, traverses to a new state s2, based on the transition matrix
T, and then repeats the process.
Stationary distribution. A stationary distribution Q = [qs]s∈S of a Markov chain is a probability distribution that
represents the probabilities that states appear in a random walk. Here, the probability that a state s is drawn from
the stationary distribution Q is qs. If the state s is randomly drawn from the stationary distribution Q, we write
s ∼ Q. The sum of the probabilities in Q equals 1, i.e.,

∑
s∈S qs = 1. For every state s ∈ S, the probability qs is

computed based on the transitions from other states to the state s, i.e., qs =
∑

s′∈S qs′ ·Ts′,s. Hence, we can obtain
the stationary distribution by solving the following equations.{∑

s∈S qs = 1,

qs =
∑

s′∈S (qs′ ·Ts′,s) ,∀s ∈ S.
(1)

Chain growth function. We define a chain growth function growth : S → [0, 1] to represent the chain growth rate on
each state. For example, if each state s ∈ S is in the format of ⟨n⟩, where n is the number of chains that have the
same length as the current best chains, we have, growth(n) = n·α. Consider a random walk s1, s2, · · · , st. The chain
growth, i.e., the increasing length of the best chain, in those t protocol rounds is computed as

∑t
i=1 growth(si). As

the stationary distribution Q represents the probabilities that states appearing in a random walk, the expected
chain growth in a protocol round is given by

ḡ = Es∼Q[growth(s)].

Compatible Markov chain and chain growth function for a protocol execution. To analyze the chain growth of
a multi-extension protocol, we need to design a compatible Markov chain and chain growth function. We say the
Markov chain (S,T) and the chain growth function growth is compatible to the execution of protocol Π◦ if for every
state s ∈ S that represents the view of the players at round r, the probability that the honest players generate a
new best chain is growth(s).

Definition 6.1 (A compatible Markov chain and chain growth function for a protocol execution). Consider a multi-
extension proof-of-stake protocol Π◦. Consider a Markov chain (S,T) and a chain growth function growth : S → [0, 1]. For
a protocol round r, the view VIEWr of players at round r can be mapped to a state s in the state space S. We say the Markov
chain (S,T) and the chain growth function growth : S → [0, 1] are compatible to the execution of protocol Π◦ if for every
round r with the view VIEWr, which is represented by a state s ∈ S, we have the probability that the length of the best chain
increases by 1 at round r is growth(s).

6.2 Chain growth property for a multi-extension protocol

Consider a multi-extension proof-of-stake protocol Π◦. Consider a Markov chain (S,T) and a chain growth func-
tion growth : S → [0, 1] that are compatible to the execution of the protocol Π◦. We can bound the chain growth,
i.e., the increasing length of the best chain, in a multi-extension proof-of-stake protocol Π◦ using the compatible
Markov chain and chain growth function as follows.

Lemma 6.2 (Chain growth property for a multi-extension protocol). Consider a Markov chain (S,T) and a chain
growth function growth : S → [0, 1] that are compatible to a multi-extension protocol Π◦. Let Q be the stationary distribution
over S, and ḡ = Es∼Q[growth(s)] be the expected chain growth. Consider an honest player P with the best chain C in round
r, and an honest player P1 with the best chain C1 in round r1, where r1 = r + t, for some t = Ω(κ). Then we have
Pr

[
len(C1)− len(C) ≥ (1− δ) · ḡ · t

]
≥ 1− e−Ω(κ) where t = r1 − r, and δ > 0 .

Proof. Consider a random walk from round r to round r1. Let si denote that state at round i in the random walk,
where i ∈ [r..r1] and si ∈ S. Since the Markov chain (S,T) and the chain growth function growth : S → [0, 1] that
is compatible to protocol Π◦, the probability that the players extend the best chain at round i is growth(si). Using
the Chernoff bound on the Markov chain in [CLLM12], we have,

Pr[len(C1)− len(C) < (1− δ) · ḡ · t] < e−Ω(κ).

22



We remark that our analysis framework can be applied to other multi-extension protocols, beyond the protocol
in Section 4.2. By designing the compatible Markov chain, and chain growth function, we can use the Chernoff
bound to analyze the chain growth over a sufficiently long period. This approach provides a general and flexible
way to study the chain growth of multi-extension protocols.

7 Chain Growth in Multi-Extension: Security analysis details

We will now analyze the chain growth property of our protocol using the analysis framework in Section 6. Before
constructing the Markov chains for our protocol, we will first consider a hybrid execution in which the malicious
players will not contribute to the chain extension. We demonstrate that by utilizing the tiebreak method, honest
players will always follow the best chain with the fastest expected time for extension. As a result, the adversary is
unable to slow down the growth of the chain for honest players. The chain growth in this hybrid scenario serves
as a lower bound for the chain growth in the real execution. We will then construct two Markov chains to analyze
the chain growth in the hybrid execution for the protocol.

We start with a simplified Markov chain. Then, we extend the simplified Markov chain to design an aug-
mented Markov chain. In Figure 7, we show the lower bounds of the amplification ratio using the simplified and
augmented Markov chains. In Figure 8, we show the corresponding fraction of honest stake to prove the secu-
rity of the protocol based on the lower bounds of the amplification ratio. For example, by using the augmented
Markov chain, we have Â•50 ≥ 2.04, i.e., protocol Π• is secure if 57% of stake is honest.
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Figure 7: The lower bounds of the amplification ratio
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We facilitate the analysis of the chain growth property for our protocol by defining a new notion, called am-
plification ratio. The amplification ratio is the ratio between the chain growth when the honest players follow
D-distance-greedy strategy and 0-distance-greedy strategy. In our protocol, in each round, for each chain in the
set of best chains, each honest player makes one attempt to generate a new block by making one query to the
random oracle. The event where an honest player successfully generates a new block (from a given chain in the
set of best chains) can be modeled as an (independent) Bernoulli random variable which takes the value 1 with
probability p = T

2κ . Hence, in each round, the probability that an honest player extends a chain in the set of best
chains is α = 1 − (1 − p)N ·(1−ρ), where N is the number of players and ρ is the fraction of malicious players. Let
N0 and ND be the average increased length of the longest chain that is extended by the honest players, following
the 0-distance-greedy, and D-distance-greedy strategies, respectively. In the 0-distance-greedy, since the honest
players only extend the best chain, we have, N0 = α. We define the amplification ratio in the presence of an
adversary for the D-distance-greedy strategy as A•D = ND

α . We can compute the amplification ratio as

Â•D =
ḡ

α
= Es∼Q

[
growth(s)

α

]
.

7.1 A hybrid experiment: Ignoring the adversarial extension

We consider a hybrid experiment where all messages sent by the adversary are removed. Through this experiment,
we demonstrate that the adversary cannot slow down the growth of the honest player’s chain. We note that hybrid
experiments were introduced in the analysis of the Bitcoin protocol in [PSs17].
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Let REAL(ω) = EXECΠ•,A,Z(ω) denote the standard execution of Π•, where ω is the randomness involved in
the execution. Let HYBr(ω) denote the hybrid execution, which is identical to the real execution up until round
r, with the following modifications: 1) the randomness is fixed to ω, and 2) honest players eliminate all new
messages sent by the adversary.

No slow-down tiebreak. First, we show that by using the tiebreak rule in Subsection 4.3, the adversary cannot
slow down the chain growth of honest players. More specifically, we will demonstrate that, based on the tiebreak
rule, honest players always choose the best chain that can be extended more quickly.

We consider the expected time for the honest players to generate a new best chain by extending a set of best
chain Cbest. The set of best chains Cbest is partitioned into D + 1 depth-based subsets L0, L1, · · · , LD . The length
of the best chain increases by 1 if a chain in the subset L0 (i.e., a chain that has the same length as the best chain)
is extended. Plus, for i ∈ [0..D − 1], the number of chains in a subset Li increases by 1 if a chain in the subset Li+1

is extended.
Let w(n) = 1−(1−p)N ·n·(1−ρ) be the probability that the honest players generate at least one block by extending

n blocks in a round. Furthermore, we can calculate the probability of only one honest player generating just one
block is

w′(n) =

(
N · (1− ρ)

1

)
·
(
n

1

)
· p · (1− p)N ·n·(1−ρ)−1.

Since p is sufficiently small (which is negligible in κ), then we have w′(n) ≈ N ·n ·(1−ρ) ·p ≈ w(n) ≈ n ·α. In other
words, in a single round, the probability of generating more than one block can be safely disregarded because p is
small enough.

For i ∈ [0..D ], let ni = |Li| be the number of chains in i-depth subset. The probability that the honest players
generate a new best chain of length ℓ+1 is w(n0) ≈ n0 ·α. For i ∈ [0..D−1], the probability that the honest players
generate a new chain in Li is w(ni+1) ≈ ni+1 · α.

Let BlockTime(n0, · · · , nD) be the expected time for the honest players to generate a new best chain by extend-
ing a set of best chains Cbest. By the following lemma, we can show that honest players always choose the best
chain that can be extended more quickly.

Lemma 7.1. We consider two chains, C and C′ of the same length. Let Cbest and C′
best be the corresponding sets of best

chains for C and C′, respectively. In other words, the distance from C to the chains inCbest is smaller than D , and the distance
from C′ to the chains in C′

best is smaller than D . Here, Cbest is partitioned into D + 1 depth-based subsets L0, L1, · · · , LD

and C′
best is partitioned into D + 1 depth-based subsets L′

0, L
′
1, · · · , L′

D . For i ∈ [0..D ], let ni = |Li| be the number of
chains in Li and n′

i = |L′
i| be the number of chains in L′

i. If the tiebreak rule in Algorithm 4 return the chain C, then, we
have,

BlockTime(n0, · · · , nD) ≤ BlockTime(n′
0, · · · , n′

D).

Proof. If ni = n′
i for all i ∈ [0..D ], then we have BlockTime(n0, · · · , nD) = BlockTime(n′

0, · · · , n′
D). If there exists a

smallest i such that ni ̸= n′
i, then according to Algorithm 4, we have ni > n′

i, and nj = n′
j for all j ∈ [0..i−1]. Next,

we will employ induction on i to show that BlockTime(n0, · · · , ni, · · · , nD) < BlockTime(n′
0, · · · , n′

i, · · · , n′
D).

The base case is when i = 0, meaning n0 > n′
0. The probability that honest players can extend one best chain

in Cbest (resp. Cbest) after one round is w(n0) (resp. w(n′
0)). On the flip side, the probability of not successfully

extending in the first round is 1 − w(n0) (resp. 1 − w(n′
0)). In the second round, the expected value of |L0| (resp.

|L′
0|) is n0 + w(n1) · 1 ≈ n0 + n1 · α (resp. n′

0 + n′
1 · α). Therefore, in the second round, the probability that honest

parties can successfully extend the longest chain is (1−w(n0)) ·w(n0 + n1 ·α) ≈ (1− n0 ·α)(n0 ·α+ n1 ·α2) (resp.
(1− n′

0 · α)(n′
0 · α+ n′

1 · α2)). Since p is small enough, we can neglect higher-order terms involving α. As a result,
in the second round, the probability that honest players can extend a best chain in Cbest (resp. C′

best) is also w(n0)
(resp. w(n′

0)), which is the same as the first round. For subsequent rounds, we can obtain the same result. Finally,
since n0 > n′

0, it follows that w(n0) > w(n′
0), and therefore BlockTime(n0, · · · , nD) < BlockTime(n′

0, · · · , n′
D).

Assuming BlockTime(n0, · · · , ni, · · · , nD) < BlockTime(n′
0, · · · , n′

i, · · · , n′
D) holds for i = s (where s is in [0..D−

1]), let’s proceed to prove that the same conclusion holds for i = s + 1. In this case, we have nj = n′
j for all j in

the range [0..s], and ns+1 > n′
s+1. We just need to prove that honest players take less time to generate a new chain

in Ls than in L′
s. Since ns+1 > n′

s+1, this step is straightforward, as it aligns with the same reasoning presented in
the base case proof. Therefore, we conclude this proof.

Analyzing chain growth in the hybrid experiment. Next, we show that the chain growth rate in the execution
REAL(ω) is always bigger than or equal to the chain growth rate in the execution HYBr(ω). The tiebreak rule
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ensures that honest players always follow the best chain with the fastest expected time to extend it. Therefore,
if the adversary broadcasts its chain to the honest players, the growth of the best chain will speed up, making it
impossible for the adversary to slow down the chain growth of the honest players.

Lemma 7.2. For all randomness ω and all round r, consider two executions REAL(ω) and HYBr(ω). Consider an honest
player P at round r1, where r1 > r. Let C be the best chain at round r1 in the execution REAL(ω), and let Chyb be the best
chain at round r1 in the execution HYBr(ω). Then, we have, len(C) ≥ len(Chyb).

Proof. As demonstrated in Lemma 7.1, the tiebreak rule described in Subsection 4.2 guarantees that honest players
always follow the best chain with the fastest expected time for extension. Therefore, if the adversary broadcasts
its chain to the honest players, the growth of the best chain will accelerate, making it impossible for the adversary
to impede the chain growth of the honest players.

To analyze the chain growth from round r to round r1 in the real execution REAL(ω), we consider the hybrid
execution HYBr(ω). Since the first r rounds in the hybrid execution HYBr(ω) are the same as in the real execution
REAL(ω), the best chain at round r in both executions is the same. Moreover, as stated in Lemma 7.2, the best
chain at round r1 in the real execution REAL(ω) is longer than the best chain in the hybrid execution HYBr(ω).
Thus, the chain growth from round r to round r1 in the real execution REAL(ω) is larger than the chain growth in
the hybrid execution HYBr(ω).

7.2 Analyzing the chain growth property via a simplified Markov chain

Next, we design Markov chains and a chain growth function to analyze the chain growth in the hybrid execution.
In this subsection, we introduce a simplified Markov chain. Then, in Subsection 7.3, we extend the simplified
Markov chain to design a more complex augmented Markov chain. Using the augmented Markov chain, we can
obtain a tighter bound for chain growth.

We will use the definition of the depth-based subsets to design the simplified Markov chain. We show how to
use the depth-based subsets to analyze the chain growth in Subsection 7.2.1. Here, each state in the simplified
Markov chain contains information about the number of chains in the depth-based subsets. Then, we present a
simplified Markov chain to analyze the chain growth property for D = 1 in Subsection 7.2.2. Finally, we present a
simplified Markov chain to analyze the chain growth property for an arbitrary D in Subsection 7.2.3.

7.2.1 Depth-based subsets in the set of best chains in the execution

We represent the definition of depth-based subsets in the set of best chains. Consider a protocol execution at a
certain round, let Cbest denote the best chain and Cbest be the set of best chains. We partition the set Cbest into
D + 1 number of disjoint subsets based on the length of those chains. Let ℓ = len(Cbest) be the length of the best
chain and for all i ∈ [0..D ], the i-depth-based subset Li is the subset of chains with the length of ℓ − i in the set
Cbest. That is, Li = {C ∈ Cbest : len(C) = ℓ− i}.

...

A new best chain of length
 is generated with

probablity 

A new chain is added to  with
probablity 

where 

Figure 9: Partitioning a set of best chains Cbest into multiple disjoint depth-based subsets for D = 2. Note that, the set of best
chains Cbest here is identical to the one in Figure 6. The set of best chains Cbest is partitioned into 3 subsets L0, L1, L2. Let ℓ
be the length of the best chain. Here, the probability that honest players generate a new best chain of length ℓ + 1 is w(|L0|).
The probability that honest players generate a new chain in L0 is w(|L1|). The probability that honest players generate a new
chain in L1 is w(|L2|).
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Let n0 = |L0| be the number of chains in 0-depth subset. The probability that the honest players generate a
new best chain of length ℓ + 1 is w(n0) ≈ n0 · α (see Figure 9). Recall that, if the honest players follow the single
extension framework and only extend the best chain, then the probability that the honest players generate a new
best chain of length ℓ+ 1 is w(1) = α. Here, the amplification ratio Â•D can be estimated by the average number of
chains in L0. More concretely, let E[n0] be the expected value of the number of chains n0 in L0 and E[w(n0)] be the
expected value of the probability that the honest players generate a new best chain. We have, the amplification
ratio is

Â•D =
E[w(n0)]

α
≈ E[n0 · α]

α
= E[n0].

To analyze the number of chains in L0, we need to analyze the number of chains in L1. Similarly, for all
i ∈ [D − 1], to analyze the number of chains in Li, we need to analyze the number of chains in Li+1. Thus, to
compute the amplification ratio, we develop a Markov chain that consists of multiple states. The states in the
Markov chain represent the number of chains in all depth-based subsets in the set of best chains. Note that, as the
subset LD always has exactly one chain, we omit the representation of |LD | in the Markov chain state.

7.2.2 The simplified Markov chain for D = 1

We describe the simplified Markov chain with the state space S and a transition matrix T to analyze the chain
growth for D = 1. Here, each state in S is in the format of ⟨n0⟩ that represents a protocol round in which a set
of best chains in which the number of chains in 0-depth subset is n0, where n0 ∈ N. The state space is given as
S = {⟨n0⟩}n0∈N. More concretely, consider the set of best chains that is partitioned into two subsets L0 and L1.
Let ℓ be the length of the current best chain. Let n0 = |L0| and n1 = |L1| be the numbers of chains in L0 and L1,
respectively. Note that, the number of chains in L1 always equals 1, i.e., n1 = 1. Thus, we omit the representation
of |L1| in the states of the Markov chain.

The transition matrix T is an |S| × |S| matrix that contains information on the probability of transitioning
between states. We construct the transition matrix T as follows. Initially, we set all the values in T to 0. Then, for
each state ⟨n0⟩, we update the transition matrix based on the following cases of transitions (see Figure 10).
Case 1: A new best chain of length ℓ + 1 is generated. In other words, a chain of length ℓ in L0 is extended. The
probability that the honest players generate at least one new best chain of length ℓ+ 1 is w(n0), where n0 is the
number of chains in L0. Recall that the extension of more than one chain in a round is negligible. In this case,
the new 0-depth subset of the new set of best chains only consists of one chain, i.e., the new best chain. The state
machine moves from state ⟨n0⟩ to state ⟨1⟩. We set T⟨n0⟩,⟨1⟩ := w(n0).
Case 2: A new chain of length ℓ is generated (and Case 1 does not happen). In other words, a chain of length ℓ− 1 in L1

is extended. As the number of chains in L1 is one, the probability that the honest players generate a new chain
of length ℓ is w(1). In this case, the state machine moves from state ⟨n0⟩ to state ⟨n0 + 1⟩. We set T⟨n0⟩,⟨n0+1⟩ :=
w(1) · (1−T⟨n0⟩,⟨1⟩) ≈ w(1).
Case 3: No new chain is generated. The state machine remains at the current state ⟨n0⟩ with a probability of 1 −
w(1)− w(n0). We set T⟨n0⟩,⟨n0⟩ := 1− w(1)− w(n0).

Let qn0
be the stationary probability of the state ⟨n0⟩. Similar to Equation 1, for all s ∈ S, we have,

∑
s∈S qs = 1

and qs =
∑

s′∈S qs′ ·Ts′,s. We define the chain growth function growth : S → [0, 1] such that growth(n0) = w(n0) ≈
n0 · α. The amplification ratio Â•1 is computed as the expected number of chains in L0 in each round, i.e.,

Â•1 =

∞∑
n0=1

(
qn0
· growth(n0)

α

)
=

∞∑
n0=1

qn0
· n0.

Based on the equation, we have Â•1 = 1.39.

7.2.3 The simplified Markov chain for a general D

We now describe the simplified Markov chain with the state space S and a transition matrix T to analyze the chain
growth for arbitrary D . Consider a protocol round in which the set of best chains is Cbest. For i ∈ [0..D ], let Li be
the i-depth subset in Cbest and ni = |Li| be the number of chains in Li. In the simplified Markov chain, we use the
state ⟨n0, · · · , nD−1⟩ to represent the protocol round with the set of best chains Cbest. Note that, since the subset
LD always has exactly one chain, i.e., nD = 1, we do not include the number of chains in LD in the representation
of the states. The state space of the simplified Markov chain is given as S = {⟨n0, · · · , nD−1⟩}ni∈N,∀i∈[0..D−1].
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Case 1: Case 2: 

Case 3: 

...

The transitions from state 

Case 1

Case 3

Case 2

Figure 10: The complete state machine for the simplified Markov chain for D = 1. In the 1-distance-greedy strategy, the set
of best chains can be partitioned into two depth-based subsets L0 and L1. Since there is only one chain in L1, each state ⟨n0⟩
only indicates the number of chains in L0, which is n0. For each state ⟨n0⟩, we have the following cases of transitions. Case 1:
A new best chain of length ℓ+1 is generated. In other words, a chain of length ℓ in L0 is extended. The probability that the honest
players generate a new best chain of length ℓ+ 1 is w(n0), where n0 is the number of chains in L0. In this case, the new 0-depth
subset only consists of one chain, i.e., the new best chain. The state machine moves from state ⟨n0⟩ to state ⟨1⟩. Case 2: A new
chain of length ℓ is generated (and Case 1 does not happen). In other words, a chain of length ℓ−1 in L1 is extended. As the number
of chains in L1 is one, the probability that the honest players generate a new chain of length ℓ is w(1). In this case, the state
machine moves from state ⟨n0⟩ to state ⟨n0 + 1⟩. Case 3: No new chain is generated. The state machine remains at the current
state n0 with a probability of 1− w(1)− w(n0).
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The state of the simplified Markov chain provides information about the set of best chains in each round.
After each round, the state machine transitions to a new state depending on updates in the set of best chains. We
categorize the transitions in the simplified Markov chain based on how the set of the best chains is updated as
follows.

• Case 1: A new best chain is generated, i.e., the length of the best chain increases by 1. As a result, the new best
chain is added to the set of best chains, while some existing chains may be removed. Based on the number
of chains in the depth-based subsets, we cannot know how many chains are removed. Thus, we consider
the worst-case scenario where the set of best chains only consists of the best chain and its prefixes. The state
machine moves to the new state in which the number of each depth-based subset contains only one block.

• Case 2: A new chain is generated but the length of the best chain remains unchanged. In this case, a chain will be
added to a depth-based subset. The remaining depth-based subsets will remain the same. The state machine
moves to a new state in which the number of chains in the updated depth-based subset increases by one.

• Case 3: No chain is generated. The set of best chains remains unchanged. The state machine remains in the
same state.

-- -

Case 1- : 
Case 2: 

Case 3: 

Case 1
Case 2

Case 3

Figure 11: The transitions from state s = ⟨n0, · · · , nD−1⟩ in the state machine of a simplified Markov chain for a general D .
Here, the state represents the protocol round in which the set of best chains is partitioned into D + 1 subsets L0, L1, · · · , LD

and i ∈ [0..D − 1], the number of chains in Li is |Li| = ni. Note that, the number of chains in LD always equals 1, i.e., nD = 1.
From state ⟨n0, · · · , nD−1⟩, we have three cases of transitions as follows. Case 1: A new best chain is generated, i.e., the length of
the best chain increases by 1. In this case, a chain in the subset L0 is extended. The probability that the honest players generate
a new best chain of length ℓ+ 1 is w(n0), where n0 is the number of chains in the subset L0. This case is the generalization of
Case 1 in Figure 10. In this case, we consider the worst-case scenario where the set of best chains only consists of the best chain
and its prefixes, meaning each depth-based subset contains only one block. This is because based on the information on depth-
based subsets, we cannot determine how many chains will be removed from the set of best chains if the distance from the new
best chains to those chains is greater than D . We define the function new-best-chain : S → S that takes as input a state in S
and outputs an updated state when a new best chain is generated. In other words, if a new best chain is generated, the state
machine moves from state ⟨n0, · · · , nD−1⟩ to state new-best-chain(n0, · · · , nD−1). Next, we show the definition of function
new-best-chain. For a state ⟨n0, · · · , nD−1⟩ ∈ S, let ⟨n′

0, · · · , n′
D−1⟩ = new-best-chain(n0, · · · , nD−1). For all i′ ∈ [0..D − 1], we

have, n′
i′ = 1. For example, with D = 1, we have, new-best-chain(n0) = ⟨1⟩. Case 2: A new chain is generated but the length of

the best chain remains the same. Here, a player generates a chain C such that len(C) ≤ ℓ. The chain C can be added to the i-depth
subset ofCbest, where i ∈ [0..D−1]. This case is the generalization of Case 2 in Figure 10. Based on the depth of the new chain,
we divide this case into D sub-cases as follows. For any i ∈ [0..D − 1], we consider the sub-case 2-i in which the new chain
is added to subset Li. In other words, a chain in subset Li+1 is extended. The probability of such an event is w(ni+1), where
ni+1 is the number of chains in the subset Li+1. For each i ∈ [0..D−1], we define the function new-chaini : S → S that takes as
input a state in S and outputs an updated state when a new chain is added to the i-depths subset Li. In other words, if a new
chain is added to Li, the state machine moves from state ⟨n0, · · · , nD−1⟩ to state new-chaini(n0, · · · , nD−1). Next, we show the
definition of function new-chaini. For a state ⟨n0, · · · , nD−1⟩ ∈ S, let ⟨n′

0, · · · , n′
D−1⟩ = new-chaini(n0, · · · , nD−1). We have,

n′
i′ = ni′ , ∀i′ ̸= i and n′

i′ = ni′ + 1 if i′ = i. For example, with D = 1, we have, new-chain0(n0) = ⟨n0 + 1⟩. Case 3: No chain is
generated. In this case, the state machine remains at the current state ⟨n0, · · · , nD−1⟩ with a probability of 1−

∑D
i=0 w(ni).

The transition matrix T is constructed as follows. First, all values in T are initially set to 0. Then, for each state
⟨n0, · · · , nD−1⟩ ∈ T, the transition matrix is updated based on the three cases of transitions (see Figure 11).
Case 1: A new best chain is generated, i.e., the length of the best chain increases by 1. In this case, a chain in the subset
L0 is extended. The probability that the honest players generate a new best chain of length ℓ + 1 is w(n0), where
n0 is the number of chains in the subset L0. This case is the generalization of Case 1 in Figure 10. In this case, we
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consider the worst-case scenario where the set of best chains only consists of the best chain and its prefixes, mean-
ing each depth-based subset contains only one block. This is because based on the information on depth-based
subsets, we cannot determine how many chains will be removed from the set of best chains if the distance from
the new best chains to those chains is greater than D . We define the function new-best-chain : S → S that takes
as input a state in S and outputs an updated state when a new best chain is generated. In other words, if a new
best chain is generated, the state machine moves from state ⟨n0, · · · , nD−1⟩ to state new-best-chain(n0, · · · , nD−1).
Next, we show the definition of function new-best-chain. For a state ⟨n0, · · · , nD−1⟩ ∈ S, let ⟨n′

0, · · · , n′
D−1⟩ =

new-best-chain(n0, · · · , nD−1). We have, n′
i′ = 1, ∀i′ ∈ [0..D−1]. For example, with D = 1, we have, new-best-chain(n0) =

⟨1⟩. We set T⟨n0,··· ,nD−1⟩,new-best-chain(n0,··· ,nD−1) := w(n0).
Case 2: A new chain is generated but the length of the best chain remains unchanged. Here, a player generates a chain
C such that len(C) ≤ ℓ. The chain C can be added to one of the i-depth subsets Li in the set of best chains Cbest,
where i ∈ [0..D − 1]. This case is the generalization of Case 2 in Figure 10. Based on the depth of the new chain,
we divide this case into D sub-cases as follows. For any i ∈ [0..D − 1], we consider the sub-case 2-i in which the
new chain is added to the subset Li. In other words, a chain in subset Li+1 is extended. The probability of such
an event is w(ni+1), where ni+1 is the number of chains in the subset Li+1. For each i ∈ [0..D − 1], we define the
function new-chaini : S → S that takes as input a state in S and outputs an updated state when a new chain is
added to the i-depths subset Li. In other words, if a new chain is added to Li, the state machine moves from state
⟨n0, · · · , nD−1⟩ to state new-chaini(n0, · · · , nD−1). Next, we show the definition of function new-chaini. For a state
⟨n0, · · · , nD−1⟩ ∈ S, let ⟨n′

0, · · · , n′
D−1⟩ = new-chaini(n0, · · · , nD−1). We have, n′

i′ = ni′ , ∀i′ ̸= i and n′
i′ = ni′ + 1

if i′ = i. For example, with D = 1, we have, new-chain0(n0) = ⟨n0 + 1⟩. (Here, we do not consider the possibility
of multiple sub-cases happening at the same time. Take the instance of sub-cases 2-i and 2-j, where i ̸= j; the
probability of both happening together in one round is w(ni+1) · w(nj+1) ≈ ni+1 · nj+1 · α2, and we can ignore
higher-order terms involving α.) We set T⟨n0,··· ,nD−1⟩,new-chaini(n0,··· ,nD−1) := w(ni+1) ·

∏
i′∈[0..D],i′ ̸=i+1(1−w(ni′)) ≈

w(ni+1).
Case 3: No chain is generated. In this case, the state machine remains at the current state ⟨n0, · · · , nD−1⟩ with a
probability of 1−

∑D
i=0 w(ni). We set T⟨n0,··· ,nD−1⟩,⟨n0,··· ,nD−1⟩ := 1−

∑D
i=0 w(ni).

Let qn0,··· ,nD−1
be the stationary probability of the state ⟨n0, · · · , nD−1⟩. Similar to Equation 1, we have,

∑∞
n0=1 · · ·

∑∞
nD−1=1 qn0,··· ,nD−1 = 1,

qn0,··· ,nD−1
=

∑
⟨n′

0,··· ,n′
D−1⟩∈S

(
qn′

0,··· ,n′
D−1
·T⟨n′

0,··· ,n′
D−1⟩,⟨n0,··· ,nD−1⟩

)
.

(2)

We define the chain growth function growth : S → [0, 1] such that growth(n0, · · · , nD−1) = w(n0) ≈ n0 · α. The
amplification ratio Â•D equals the expected number of chains in L0 in each round, i.e.,

Â•D =

∞∑
n0=1

· · ·
∞∑

nD−1=1

(
qn0,··· ,nD−1

· growth(n0, · · · , nD−1)

α

)

=

∞∑
n0=1

· · ·
∞∑

nD−1=1

(
qn0,··· ,nD−1

· n0

)
.

Using the simplified Markov chain, we can find a lower bound of the amplification ratio as shown in Figure 7.
For D = 50, we can find a lower bound Â•50 ≥ 1.56.

7.3 Analyzing the chain growth via an augmented Markov chain

In the simplified Markov chain, the state only provides the information on the number of chains in the depth-
based subsets. Some critical information is omitted due to this simple representation. Indeed, when a new best
chain is generated and some of the chains are removed from the set of best chains, we have to consider the worst-
case scenario. Hence, we cannot establish a good lower bound of the amplification ratio, even when D is big! For
example, with D = 50, using the simplified Markov chain, we can only guarantee an amplification of 1.56. Here,
we present an augmented Markov chain in which each state contains more information on the set of best chains. With
the augmented Markov chain, we can find a better lower bound of the amplification ratio.

Before presenting the augmented Markov chain, we introduce the notion of depth-distance-based subsets in Sub-
section 7.3.1. The chains in a depth-distance-based subset are selected based on both the length of those chains and
the distance from the best chain to those chains. Each state in the augmented Markov chain contains information

29



about the number of chains in each depth-distance-based subset. With this information, we can determine the
number of chains removed from the set of best chains when a new longest chain is generated. This avoids having
to consider the worst-case scenario where each depth-based subset contains only one chain, as in the simplified
Markov chain.

We first present an augmented Markov chain to analyze the chain growth for D = 2 in Subsection 7.3.2 and
then extend the augmented Markov chain for an arbitrary D int Subsection 7.3.3.

7.3.1 Depth-distance-based subsets in the set of best chains in the execution

...

Figure 12: The depth-distance-based subsets of the set of best chains Cbest for D = 2. Recall that, in Figure 9, the set of best
chains Cbest is partitioned into 3 disjoint depth-based subsets L0, L1, L2. Let Cextend be the first chain in L0 that is extended.
In this figure, Cextend = · · · ∥Bℓ−1∥Bℓ−1∥Bℓ. (In some future round, a new best chain is generated by adding a block Bℓ+1 to
Cextend.) Consider a i-depth subset Li, where i ∈ [0..D ]. We further define multiple subsets of chains based on the distance
from Cextend to those chains in Li. More concretely, for i ∈ [0..D ], j ∈ [i..D ], the “i-depth j-distance” subset Li,j consists
of all the chains in the i-depth subset Li such that the distance from the chain Cextend to those chains does not exceed j, i.e.,
Li,j = {C ∈ Li : distance(Cextend → C) ≤ j}. For example, the “0-depth 0-distance” L0,0 consists of 1 chain that has the last
block is Bℓ. The “0-depth 1-distance” L0,1 consists of 2 chains that have the last blocks are Bℓ,B

′
ℓ. The “0-depth 2-distance”

L0,2 consists of 3 chains that have the last blocks are Bℓ,B
′
ℓ,B

′′
ℓ .

We introduce the notion of depth-distance-based subsets. Let Cextend be the first chain in L0 that is extended.
We remark that the chain Cextend can be changed when the set of best chain Cbest is updated. Indeed, when a
chain C′ is added to subset L0, the chain C′ can be extended earlier than the current chain Cextend. In this case, we
update Cextend = C′. For i ∈ [0..D ], we define multiple subsets of the i-depth subset Li as follows. For j ∈ [0..D ],
the “i-depth j-distance” subset Li,j is the set of chains in the i-subset Li such that the distance from Cextend to
those chains does not exceed j, i.e., Li,j = {C ∈ Li : distance(Cextend → C) ≤ j} (see Figure 12 for an example
of depth-distance-based subsets). Here, for all j < i, Li,j = ∅ and Li,i consists of exact 1 chain, i.e., the prefix of
Cextend with the length ℓ − i, where ℓ = len(Cextend). Further, Li,j is a subset of Li,j+1, i.e., Li,j ⊆ Li,j+1. In other
words, Li,i ⊆ Li,i+1 ⊆ · · · ⊆ Li,D .

When the chain Cextend is extended, a new best chain is added and some chains are removed from the set
of best chain (see Figure 13 for an example). Let C′best be the new best chain and C′

best be the new set of best
chain. Let L′

i be the i-depth subset of the set of best chains C′
best, i.e., L′

i = {C ∈ C′
best : len(C) = ℓ + 1 − i}.

The subset L′
0 only consists of one best chain C′best. For i ∈ [1..D ] and j ∈ [i..D ], the “i-depth j-distance” subset

of C′
best can be obtained by the depth-distance-based subsets of Cbest in Figure 12. Indeed, for any chain C, we

have, distance(Cextend → C) = distance(C′best → C) − 1. Thus, C′
best = {C : distance(C′best → C) ≤ D} = {C :

distance(Cextend → C) ≤ D − 1}. Hence, L′
i,j = {C : len(C) = ℓ+ 1− i ∧ distance(Cextend → C) ≤ j − 1} = Li−1,j−1.

7.3.2 The augmented Markov chain for D = 2

We will now design an augmented Markov chain to analyze chain growth. The augmented Markov chain keeps
track of the number of chains in Li,j for different values of i and j, providing a way to analyze chain growth.
The states in the augmented Markov chain capture information about the number of chains in each Li,j , where
i ∈ [0..D ] and j ∈ [0..D ]. Note that for all i ∈ [1..D ], we have |Li,j | = 0 for j ∈ [0..i − 1] and |Li,i| = 1. Thus, for
i ∈ [0..D ] and j ∈ [0..i], we omit the representation of Li,j .

For D = 1, the augmented Markov chain is equivalent to the simplified Markov chain. Therefore, we will first
design an augmented Markov chain for D = 2. Then, we will extend the design for a general D .
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...

Figure 13: The new set of best chains C′
best when a new block is added on Cextend. Here, the set of best chains C′

best consists
of the chains in which the last blocks of those chains are Bℓ−1,Bℓ,B

′
ℓ,Bℓ+1. The chains in which the last block of those chains

are Bℓ−2,B
′
ℓ−1,B

′′
ℓ−1,B

′′
ℓ belongs to Cbest but not C′

best. For i ∈ [0..D ], j ∈ [i..D ], let L′
i,j be the “i-depth j-distance” subset

of the set of best chains C′
best, i.e., L′

i = {C ∈ C′
best : len(C) = ℓ + 1 − i}. The subset L′

0 only consists of the best chain
C′
best = · · · ∥Bℓ−2∥Bℓ−1∥Bℓ∥Bℓ+1. For i ∈ [1..D ], the i-depth subset of C′

best can be obtained by the depth-distance-based
subsets of Cbest in Figure 12. Indeed, L′

i,j = Li−1,j−1, where Li−1,j−1 is the “(i− 1)-depth (j − 1)-distance” subset of Cbest.

We describe the augmented Markov chain with the state space Ŝ and a transition matrix T̂ to analyze the chain
growth for D = 2. Consider a round with the set of best chains Cbest, let Cextend be the first chain in L0 that is
extended. For i, j ∈ [0..2], let Li,j be the “i-depth j-distance” subset of the set of best chain Cbest, i.e., Li,j = {C ∈
Li : distance(Cextend → C) ≤ j}. Let ni,j = |Li,j | be the numbers of chains in Li,j . In the augmented Markov chain,
the state ⟨(n0,1, n0,2), (n1,2)⟩ represents the protocol round with the set of best chainsCbest. (Note that, for i ∈ [0..D ]
and j ∈ [0..i], we omit the representation of Li,j since the numbers of chains in those subsets are the same for every
state.) The state space of the augmented Markov is given as Ŝ = {⟨(n0,1, n0,2), (n1,2)⟩}n0,1,n0,2,n1,2∈N. Here, each
state in Ŝ is in the format of ⟨(n0,1, n0,2), (n1,2)⟩ that represents a set of best chains such that the numbers of chains
in “0-depth 1-distance”, “0-depth 2-distance”, and “1-depth 2-distance” subsets are n0,1, n0,2, n1,2, respectively.
The state space is given as Ŝ = {⟨(n0,1, n0,2), (n1,2)⟩}n0,1,n0,2,n1,2∈N.

Recall that, the transition matrix T̂ is an |Ŝ| × |Ŝ| matrix that contains information on the probability of tran-
sitioning between states. We construct the transition matrix T̂ as follows. Initially, we set all the values in T̂ to 0.
Then, for each state ⟨(n0,1, n0,2), (n1,2)⟩, we update the transition matrix based on the following cases of transitions
(see Figure 14). Furthermore, we assume that in each round, state transitions belong to one and only one of the
following cases. While situations where multiple cases occur at the same round may exist, similar to the analysis
of the simplified Markov chain, we can overlook the probabilities of these situations.
Case 1: A new best chain is generated, i.e., the length of the best chain increases by 1. A new best chain is generated if
a chain in the subset L0 is extended. As L0 = L0,2, the number of chains in L0 is n0,2. Thus, with a probability
of w(n0,2), a new best chain is generated. After the new chain is generated, the 0-depth subset only consists of
the best chain. Thus, the number of chains in “0-depth 1-distance” subset and “0-depth 2-distance” subset are the
same and equal 1. The number of chains in “1-depth 2-distance” subset is n0,1. Thus, the state machine moves
from state ⟨(n0,1, n0,2), (n1,2)⟩ to state ⟨(1, 1), (n0,1)⟩. We set T̂⟨(n0,1,n0,2),(n1,2)⟩,⟨(1,1),(n0,1)⟩ := w(n0,2).
Case 2: A new chain C is added to subset L1,2. A chain C is added to subset L1,2 if a chain in L2,2 is extended.
As the number of chains in the subset L2,2 is 1, the probability of this case is w(1). In this case, the state ma-
chine moves from state ⟨(n0,1, n0,2), (n1,2)⟩ to state ⟨(n0,1, n0,2), (n1,2 + 1)⟩. In fact, similar to the analysis of
the simplified Markov chain, here we also need to consider the probability of Case 1 not occurring. However,
this probability can be neglected. (In the subsequent case analyses, we will omit such explanations.) We set
T̂⟨(n0,1,n0,2),(n1,2)⟩,⟨(n0,1,n0,2),(n1,2+1)⟩ := w(1).
Case 3: A new chain C is added to subset L0,1 and the chain C is the first chain that is extended in the subset L0. A new
chain C is added to subset L0,1 if a chain in subset L1,1 is extended. As the number of chains in the subset L1,1 is 1,
the probability that a new chain C is added to subset L0,1 is w(1). The probability that the chain C is the first chain
that is extended in the subset L0 is 1

n0,2+1 . The probability of this event is 1
n0,2+1 . Due to the change of Cextend,

we consider the worst-case scenario here, where the size of L0,1 becomes 1. In this case, the state machine moves
from state ⟨(n0,1, n0,2), (n1,2)⟩ to state ⟨(1, n0,2 + 1), (n1,2)⟩. We set T̂⟨(n0,1,n0,2),(n1,2)⟩,⟨(1,n0,2+1),(n1,2)⟩ :=

w(1)
n0,2+1 .

Case 4: A new chain C is added to subset L0,1 and the chain C is not the first chain that is extended in the subset L0. As
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Case 6: 

Case 7: 

Cases 2,4: 

Case 3: 

Case 5: 

Case 1: 

1

7

2

4
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Figure 14: The transitions from a state ⟨(n0,1, n0,2), (n1,2)⟩ in the state machine for D = 2. We have the following cases of
transitions. Case 1: A new best chain is generated, i.e., the length of the best chain increases by 1. A new best chain is generated if a
chain in the subset L0 is extended. As L0 = L0,2, the number of chains in L0 is n0,2. Thus, with a probability of w(n0,2), a new
best chain is generated. After the chains are generated, the 0-depth subset only consists of the best chain. Thus, the number
of chains in “0-depth 1-distance” subset and “0-depth 2-distance” subset are the same and equal 1. The number of chains in
“1-depth 2-distance” subset is n0,1. Thus, the state machine moves from state ⟨(n0,1, n0,2), (n1,2)⟩ to state ⟨(1, 1), (n0,1)⟩. Case 2:
A new chain C is added to subset L1,2. A chain C is added to subset L1,2 if a chain in L2,2 is extended. As the number of chains
in the subset L2,2 is 1, the probability of this case is w(1). In this case, the state machine moves from state ⟨(n0,1, n0,2), (n1,2)⟩
to state ⟨(n0,1, n0,2), (n1,2 + 1)⟩. Case 3: A new chain C is added to subset L0,1 and the chain C is the first chain that is extended in the
subset L0. A new chain C is added to subset L0,1 if a chain in subset L1,1 is extended. As the number of chains in the subset
L1,1 is 1, the probability that a new chain C is added to subset L0,1 is w(1). The probability that the chain C is the first chain that
is extended in the subset L0 is 1

n0,2+1
. The probability of this event is 1

n0,2+1
. In this case, the state machine moves from state

⟨(n0,1, n0,2), (n1,2)⟩ to state ⟨(1, n0,2 + 1), (n1,2)⟩. Case 4: A new chain C is added to subset L0,1 and the chain C is not the first chain
that is extended in the subset L0. As we show in Case 3, the probability that a new chain C is added to subset L0,1 is w(1). Given
that a new chain C is added to subset L0,1, the probability that the chain C is not the first chain that is extended in the subset L0

is n0,2

n0,2+1
. In this case, the state machine moves from state ⟨(n0,1, n0,2), (n1,2)⟩ to state ⟨(n0,1 + 1, n0,2 + 1), (n1,2)⟩. Case 5: A

new chain is added to subset L0,2 and the chain C is the first chain that is extended in the subset L0. A new chain is added to subset L0,2

if a chain in the subset L1,2 is extended. As the number of chains in the subset L1,2 is n1,2, the probability that a new chain C is
added to subset L0,2 is w(n1,2). The probability that the chain C is the first chain that is extended in the subset L0 is 1

n0,2+1
. In

this case, the state machine moves from state ⟨(n0,1, n0,2), (n1,2)⟩ to state ⟨(1, n0,2 + 1), (n1,2)⟩. Recall that, we already added
a transition from state ⟨(n0,1, n0,2), (n1,2)⟩ to state ⟨(1, n0,2 + 1), (n1,2)⟩ in Case 3. Case 6: A new chain is added to subset L0,2

and the chain C is not the first chain that is extended in the subset L2. As we show in Case 5, the probability that a new chain C is
added to subset L0,2 is w(n1,2). Given that a new chain C is added to subset L0,1, the probability that the chain C is not the
first chain that is extended in the subset L0 is n0,2

n0,2+1
. In this case, the state machine moves from state ⟨(n0,1, n0,2), (n1,2)⟩ to

state ⟨(n0,1, n0,2 + 1), (n1,2)⟩. Case 7: No new chain is generated. With a probability of 1− 2 · w(1)− w(n0,2)− w(n0,2), the state
machine remains at the current state ⟨(n0,1, n0,2), (n1,2)⟩.
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we show in Case 3, the probability that a new chain C is added to subset L0,1 is w(1). Given that a new chain C
is added to subset L0,1, the probability that the chain C is not the first chain that is extended in the subset L0 is
n0,2

n0,2+1 . In this case, the state machine moves from state ⟨(n0,1, n0,2), (n1,2)⟩ to state ⟨(n0,1 + 1, n0,2 + 1), (n1,2)⟩. We

set T̂⟨(n0,1,n0,2),(n1,2)⟩,⟨(n0,1+1,n0,2+1),(n1,2)⟩ :=
n0,2·w(1)
n0,2+1 .

Case 5: A new chain is added to subset L0,2 and the chain C is the first chain that is extended in the subset L0. A new chain is
added to subset L0,2 if a chain in the subset L1,2 is extended. As the number of chains in the subset L1,2 is n1,2, the
probability that a new chain C is added to subset L0,2 is w(n1,2). The probability that the chain C is the first chain
that is extended in the subset L0 is 1

n0,2+1 . In this case, the state machine moves from state ⟨(n0,1, n0,2), (n1,2)⟩
to state ⟨(1, n0,2 + 1), (n1,2)⟩. Recall that, we already added a transition from state ⟨(n0,1, n0,2), (n1,2)⟩ to state
⟨(1, n0,2 + 1), (n1,2)⟩ in Case 3. Thus, we set T̂⟨(n0,1,n0,2),(n1,2)⟩,⟨(1,n0,2+1),(n1,2)⟩ :=

w(n1,2)
n0,2+1 + w(1)

n0,2+1 .

Case 6: A new chain is added to subset L0,2 and the chain C is not the first chain that is extended in the subset L2. As we
show in Case 5, the probability that a new chain C is added to subset L0,2 is w(n1,2). Given that a new chain C
is added to subset L0,1, the probability that the chain C is not the first chain that is extended in the subset L0 is
n0,2

n0,2+1 . In this case, the state machine moves from state ⟨(n0,1, n0,2), (n1,2)⟩ to state ⟨(n0,1, n0,2 + 1), (n1,2)⟩. We set

T̂⟨(n0,1,n0,2),(n1,2)⟩,⟨(n0,1,n0,2+1),(n1,2)⟩ :=
n0,2·w(n1,2)

n0,2+1 .

Case 7: No new chain is generated. With a probability of 1− 2 ·w(1)−w(n0,2)−w(n0,2), the state machine remains at
the current state ⟨(n0,1, n0,2), (n1,2)⟩. We set T̂⟨(n0,1,n0,2),(n1,2)⟩,⟨(n0,1,n0,2),(n1,2)⟩ := 1− 2 · w(1)− w(n0,2)− w(n0,2).

Let q(n0,1,n0,2),(n1,2) be the stationary probability of the state ⟨(n0,1, n0,2), (n1,2)⟩. Similar to Equation 1, we have,{∑
s∈Ŝ qs = 1,

qs =
∑

s′∈Ŝ qs′ · T̂s′,s,∀s ∈ Ŝ.
(3)

The equations in Equation 3 are equivalent to the following.
∑∞

n0,1=1

∑∞
n0,2=1

∑∞
n1,2=1 q(n0,1,n0,2),(n1,2) = 1,

3 · w(1) · q(1,1),(n1,2) =
∑∞

n2,1=1

∑∞
n2,2=1 q(n0,1,n0,2),(n1,2),

(2 · w(1) + w(n0,2)) · q(n0,1,n0,2),(n1,2) = q(n0,1−1,n0,2−1),(n1,2) · w(1),
(w(1) + w(n1,2) + w(n0,1)) · q(1,n0,2),(n1,2) = q(n0,1,n0,2)−1,(n1,2) · w(1) + q(n0,1,n0,2),(n1,2) · w(n1).

(4)

We define the chain growth function growth : Ŝ → [0, 1] such that growth((n0,1, n0,2), (n1,2)) = w(n0) ≈ n0 · α.
The amplification ratio Â•2 equals the expected number of chains in L0 in each round, i.e.,

Â•2 =

∞∑
n0,1=1

∞∑
n0,2=1

∞∑
n1,2=1

(
q(n0,1,n0,2),(n1,2) ·

growth((n0,1, n0,2), (n1,2))

α

)

=

∞∑
n0,1=1

∞∑
n0,2=1

∞∑
n1,2=1

(
q(n0,1,n0,2),(n1,2) · n0,2

)
.

Combining with Equation 4, we have, Â•2 ≈ 1.51.

7.3.3 The augmented Markov chain for a general D

We now describe the augmented Markov chain with the state space Ŝ and a transition matrix T̂ to analyze
the chain growth for a general D . Consider a round with the set of best chains Cbest. Let Li be the i-depth
subset in Cbest, where i ∈ [0..D ]. Let Cextend be the first chain in L0 that is extended. For i ∈ [0..D ] and
j ∈ [0..D ], let Li,j be the “i-depth j-distance” subset of the set of best chains Cbest, i.e., Li,j = {C ∈ Li :
distance(Cextend → C) ≤ j}. Let ni,j = |Li,j | be the number of chains in Li,j . In the augmented Markov chain, the
state ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩ represents the protocol round with the set of best chains Cbest. (We remark
that, for i ∈ [0..D ] and j ∈ [0..i], we do not include the number of chains in Li,j since they are the same for every
state.) Hence, the state space is given as Ŝ = {⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩}ni,j∈N,∀i∈[0..D−1],j∈[i+1..D].

Similar to the simplified Markov chain, the state of the augmented Markov chain represents the information
about the set of best chains in each round. We categorize the transitions in the simplified Markov chain based on
how the set of the best chains is updated as follows.
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Figure 15: The transition from state s = ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩ in the state machine for a general D . We have
the following cases of transitions. Case 1: A new best chain is generated, i.e., the length of the best chain increases by 1. This
case is generalized from Case 1 in Figure 14. A new best chain is generated if a chain in the 0-depth subset L0 is extended.
As the number of chains in the subset L0 is n0 = n0,D , the probability of this event is w(n0,D). We define the function
new-best-chain : Ŝ → Ŝ that takes as input a state in Ŝ and outputs an updated state when a new best chain is generated.
In other words, if a new best chain is generated, the state machine moves from state ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩ to state
new-best-chain((n0,1, · · · , n0,D), · · · , (nD−1,D)). Case 2: A new chain that is shorter than the current best chain is generated. Based on
the depth and the distance of the new chain C to the chain Cextend, we consider the following sub-cases. For i ∈ [1..D − 1], j ∈
[i + 1..D ], we consider the sub-case 2-(i, j) where the new chain C is added to “i-depth j-distance” subset Li,j . In other
words, a player extends a chain in “(i + 1)-depth j-distance” subset Li+1,j . As the number of chains in Li+1,j is ni+1,j , the
probability of such event is w(ni+1,j). This case is generalized from Case 2 in Figure 14. We define a function new-chaini,j :

Ŝ → Ŝ that takes as input a state in Ŝ and outputs an updated state when a new chain is added to the subset Li,j . In
other words, if a new chain is added to Li,j , the state machine moves from state ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩ to state
new-chaini,j((n0,1, · · · , n0,D), · · · , (nD−1,D)). Case 3: A new chain C, that has the same length as the current best chain, is generated,
and the new chain C is not the first chain in subset L0 that is extended. Based on the distance of the new chain C to the chain Cextend,
we consider D sub-cases as follows. For j ∈ [1..D ], we consider a sub-case 3-j in which the new chain C is added to “0-depth
j-distance” subset L0,j . In other words, a player extends a chain in “1-depth j-distance” subset L1,j . As the number of chains
in L1,j is n1,j , the probability of such event is w(n1,j). Given that a new chain C is added to “0-depth j-distance” subset
L0,j , the probability that C is not the first chain in subset L0 that is extended is n0,D

n0,D+1
. In this case, the state machine moves

from state ⟨(n0,1, · · · , n0,D), · · · , ni,D), · · · , (nD−1,D)⟩ to state new-chain0,j((n0,1, · · · , n0,D), · · · , (nD−1,D)). Here the function
new-chain0,j is defined as in Case 2. Case 4: A new chain C, that has the same length as the current best chain, is generated, and the new
chain C is the first chain in subset L0 that is extended. Similar to Case 3, for j ∈ [1..D ], we consider a sub-case 4-j in which the new
chain C is added to “0-depth j-distance” subset L0,j . Given that a new chain C is added to “0-depth j-distance” subset L0,j , the
probability that C is the first chain in subset L0 that is extended is 1

n0,D+1
. We define a function new-extend-chain0,j : Ŝ → Ŝ

that takes as input a state in Ŝ and outputs an updated state when a new chain C is added to the “0-depth j-distance” subset
Li,j and the chain C is the first chain in subset L0 that is extended. If such event happens, the state machine moves from state
⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩ to state new-extend-chain0,j((n0,1, · · · , n0,D), · · · , (nD−1,D)). Case 5: No new chain is generated.
This case is generalized from Case 7 in Figure 14. The probability of this event is 1−

∑D
i=0 w(ni,D). The state machine remains

at the same state ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩.
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• Case 1: A new best chain is generated, i.e., the length of the best chain increases by 1. The new best chain has been
added and some of the chains have been removed from the set of best chains. The chain Cextend has been
updated to become the new best chain. The state machine has moved to a new state where the number
of chains in distance-depth-based subsets is determined based on the number of chains in distance-depth-
based subsets in the current state.

• Case 2: A new chain that is shorter than the current best chain is generated. In this case, a chain will be added to a
distance-depth-based subset and all its supersets. The remaining distance-depth-based subsets will remain
the same. As a result, the state machine will transition to a new state in which the number of chains in the
updated depth-based subsets has increased by one.

• Case 3: A new chain that has the same length as the current best chain is generated and added to L0, and the new chain
is not the first chain in subset L0 that is extended. In this case, the updates on the set of best chains are similar
to Case 2. A chain will be added to a distance-depth-based subset and its supersets that are subsets of the
0-depth subset. The state machine moves to the new state in which the number of chains in the updated
depth-based subsets increases by one.

• Case 4: A new chain that has the same length as the current best chain is generated and added to L0, and the new
chain is the first chain in subset L0 that is extended. In this case, the new chain is added to the set of best chains
without removing any chains. Additionally, the chain Cextend is updated as the new chain. The state machine
transitions to a new state in which the number of chains in distance-depth-based subsets is updated based
on the new value of Cextend.

• Case 5: No chain is generated. The set of best chains remains unchanged. The state machine remains at the
same state.

Let T̂ be an |Ŝ| × |Ŝ| transition matrix that contains information on the probability of transitioning between
states. We construct the transition matrix T̂ as follows. Initially, we set all the values in T̂ to 0. Then, for each state
s = ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩, we update the transition matrix based on the following cases of transitions
(see Figure 15).
Case 1: A new best chain is generated, i.e., the length of the best chain increases by 1. This case is a generalization of Case 1
in Figure 14. A new best chain is generated if a chain in the 0-depth subset L0 is extended. As the number of chains
in the subset L0 is n0,D , the probability of this event is w(n0,D). We define the function new-best-chain : Ŝ → Ŝ

that takes a state in Ŝ as input and outputs an updated state when a new best chain is generated. In other words,
if a new best chain is generated, the state machine moves from state s = ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩ to state
new-best-chain(s). Let ⟨(n′

0,1, · · · , n′
0,D), · · · , (n′

D−1,D)⟩ = new-best-chain(s). We have, n′
0,j′ := 1 for all j′ ∈ [1..D ];

and n′
i′,j′ := ni′−1,j′−1 for all i ∈ [1..D − 1], j′ ∈ [i′ + 1..D ]. We set T̂s,new-best-chain(s) := w(n0,D).

Case 2: A new chain C that is shorter than the current best chain is generated. Based on the depth and the distance
of the new chain C to the chain Cextend, we consider the following sub-cases. For i ∈ [1..D − 1], j ∈ [i + 1..D ],
we consider the sub-case 2-(i, j) where the new chain C is added to “i-depth j-distance” subset Li,j . In other
words, a player extends a chain in “(i + 1)-depth j-distance” subset Li+1,j . As the number of chains in Li+1,j is
ni+1,j , the probability of such event is w(ni+1,j). This case is generalized from Case 2 in Figure 14. We define a
function new-chaini,j : Ŝ → Ŝ that takes as input a state in Ŝ and outputs an updated state when a new chain
is added to the subset Li,j . In other words, if a new chain is added to Li,j , the state machine moves from state
⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩ to state new-chaini,j((n0,1, · · · , n0,D), · · · , (nD−1,D)).
Let ⟨(n′

0,1, · · · , n′
0,D), · · · , (n′

D−1,D)⟩ = new-chaini,j((n0,1, · · · , n0,D), · · · , (nD−1,D)). We have, n′
i′,j′ := ni′,j′ for all

i′ ̸= i, j′ ∈ [i′ + 1..D ] or i′ = i, j′ ∈ [i + 1..j − 1]; and n′
i,j′ := ni,j′ + 1 for all j′ ∈ [j..D ]. We set T̂s,new-chaini,j(s) :=

w(ni+1,j).
Case 3: A new chain C, that has the same length as the current best chain, is generated, and the new chain C is not the
first chain in subset L0 that is extended. Based on the distance of the new chain C to the chain Cextend, we con-
sider D sub-cases as follows. For j ∈ [1..D ], we consider a sub-case 3-j in which the new chain C is added
to “0-depth j-distance” subset L0,j . In other words, a player extends a chain in “1-depth j-distance” subset
L1,j . As the number of chains in the subset L1,j is n1,j , the probability of such event is w(n1,j). Given that a
new chain C is added to “0-depth j-distance” subset L0,j , the probability that C is not the first chain in subset
L0 that is extended is n0,D

n0,D+1 . In this case, the state machine moves from state ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩
to state new-chain0,j((n0,1, · · · , n0,D), · · · , (nD−1,D)). Here, function new-chain0,j is defined as in Case 2. Let
⟨(n′

0,1, · · · , n′
0,D), · · · , (n′

D−1,D)⟩ = new-chain0,j (⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩). For all i′ ̸= 0, j′ ∈ [i′ + 1..D ]

35



or i′ = 0, j′ ∈ [i + 1..j − 1], we have, n′
i′,j′ := ni′,j′ ; and for all j′ ∈ [j..D ], we have, n′

0,j′ := n0,j′ + 1. We set

T̂s,new-chain0,j(s) :=
w(n1,j)·n0,D

n0,D+1 .

Case 4: A new chain C, that has the same length as the current best chain, is generated, and the new chain C is the first
chain in subset L0 that is extended. Similar to Case 3, for j ∈ [1..D ], we consider a sub-case 4-j in which the new
chain C is added to “0-depth j-distance” subset L0,j . Given that a new chain C is added to “0-depth j-distance”
subset L0,j , the probability that C is the first chain in subset L0 that is extended is 1

n0,D+1 . We define a func-

tion new-extend-chain0,j : Ŝ → Ŝ that takes as input a state in Ŝ and outputs an updated state when a new
chain C is added to the “0-depth j-distance” subset Li,j and the chain C is the first chain in subset L0 that is
extended. If such event happens, the state machine moves from state ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩ to state
new-extend-chain0,j((n0,1, · · · , n0,D), · · · , (nD−1,D)). Let ⟨(n′

0,1, · · · , n′
0,D), · · · , (n′

D−1,D)⟩ = new-extend-chain0,j
((n0,1, · · · , n0,D), · · · , (nD−1,D)). We have, n′

i′,j′ := 1 for all i′ ∈ [0..D ], j′ ∈ [i′ + 1..D − 1]; n′
i′,D := ni′,D for

all i′ ∈ [0..D ], and n′
0,D := n0,D + 1. We set T̂s,new-extend-chain0,j(s) :=

w(n1,j)
n0,D+1 .

Case 5: No new chain is generated. This case is generalized from Case 7 in Figure 14. The probability of this event
is 1 −

∑D
i=0 w(ni,D). Here, the state machine remains at the same state ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩. We set

T̂⟨(n0,1,··· ,n0,D ),··· ,(nD−1,D )⟩,⟨(n0,1,··· ,n0,D ),··· ,(nD−1,D )⟩ := 1−
∑D

i=0 w(ni,D).
Let q(n0,1,··· ,n0,D ),··· ,(nD−1,D ) be the stationary probability of the state ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩. Based on

Equation 1, we have,



∑∞
n0,1=1 · · ·

(∑∞
n0,D=1 · · ·

(∑∞
nD−1,D=1 q(n0,1,··· ,n0,D ),··· ,(nD−1,D )

))
= 1,

q(n0,1,··· ,n0,D ),··· ,(nD−1,D ) =
∑

⟨(n′
0,1,··· ,n′

0,D ),··· ,(n′
D−1,D )⟩∈Ŝ

(
q(n′

0,1,··· ,n′
0,D ),··· ,(n′

D−1,D )·

T̂⟨(n′
0,1,··· ,n′

0,D ),··· ,(n′
D−1,D )⟩,⟨(n0,1,··· ,n0,D ),··· ,(nD−1,D )⟩

)
.

(5)

We define the chain growth function growth : Ŝ → [0, 1] such that growth((n0,1, · · · , n0,D), · · · , (nD−1,D)) =
w(n0) ≈ n0 · α. The amplification ratio Â•D equals the expected number of chains in L0, i.e.,

Â•D =

∞∑
n0,1=1

· · ·
( ∞∑

n0,D=1

· · ·
( ∞∑

nD−1,D=1

q(n0,1,··· ,n0,D ),··· ,(nD−1,D ) ·
growth((n0,1, · · · , n0,D), · · · , (nD−1,D))

α

))

=

∞∑
n0,1=1

· · ·
( ∞∑

n0,D=1

· · ·
( ∞∑

nD−1,D=1

q(n0,1,··· ,n0,D ),··· ,(nD−1,D ) · n0,D

))
.

Using the augmented Markov chain, we can find a lower bound of the amplification ratio as shown in Figure
7. For D = 50, we can find a lower bound Â•50 ≥ 2.04.

7.4 Achieving chain growth

Now, we show our protocol Π• can achieve the chain growth property, based on the augmented Markov chain.
As mentioned, we consider a hybrid experiment where all messages sent by the adversary are removed. We show
that, in the hybrid experiment, the adversary cannot slow down the chain growth of the honest players. Then, we
use the Chernoff bound on the augmented Markov chain to bound the chain growth of protocol Π•.

Lemma 7.3 (Chain growth). Consider protocol Π• in the real execution REAL(ω). Consider an honest player P with the
best local chain C in round r, and an honest player P1 with the best local chain C1 in round r1, where r1 > r. Then we have
Pr

[
len(C1)− len(C) ≥ g · t

]
≥ 1− e−Ω(t·α), where t = r1 − r = Ω(κ), g = (1− δ) · α•

0, α•
0 = Â•D · α, and δ > 0.

Proof. In order to analyze the growth of the best chain from round r to round r1 in the real execution REAL(ω), we
consider a hybrid execution HYBr(ω). Since the first r rounds of both the real execution REAL(ω) and the hybrid
execution HYBr(ω), the best chain at round r of the two executions is the same. Furthermore, based on Lemma
7.2, at round r1, the best chain in the real execution REAL(ω) is longer than the best chain in the hybrid execution
HYBr(ω). Thus, from round r to round r1, the chain growth in the real execution REAL(ω) is greater than the chain
growth in the hybrid execution HYBr(ω).
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As defined in Subsection 6.1, let Q = [qs]s∈Ŝ be the stationary distribution over Ŝ. Here, for each state s ∈ Ŝ,
the probability that the state s occurs in the random walk is Prs′∼Q[s

′ = s] = qs, where the probability qs is
computed as in Equation 5. (Here, the state s is in the format ⟨(n0,1, · · · , n0,D), · · · , (nD−1,D)⟩.)

We have,

Es∼Q

[
growth(s)

]
= E⟨(n0,1,··· ,n0,D ),··· ,(nD−1,D )⟩∼Q[w(n0,D)]

=
∑

⟨(n0,1,··· ,n0,D ),··· ,(nD−1,D )⟩∈Ŝ

q⟨(n0,1,··· ,n0,D ),··· ,(nD−1,D )⟩ · w(n0,D)

= Â•D · α.

Recall that each state in the augmented Markov chain reflects the number of chains in the depth-distance-based
subsets. The chain growth function growth returns the probability of successfully extending a chain in the 0-depth
subset L0. Thus, the chain growth function provides an expectation for the probability that the honest players
generate a new best chain. Therefore, the augmented Markov chain (Ŝ, T̂) and the chain growth function growth
are compatible to protocol Π•. Hence, based on Lemma 6.2 (using Chernoff bound), we have,

Pr
[
len(C1)− len(C) < (1− δ) · Â•D · α · t

]
< e−Ω(t·α).

8 Common Prefix in Multi-Extension: A New Analysis Framework

We present a new analysis framework for examining the common prefix property in multi-extension protocols.
We introduce the concepts of virtual block-sets and virtual chains. Then, we define the common prefix property w.r.t.
virtual chains and prove that our protocol can achieve this property. Finally, we demonstrate that the standard
common prefix property can be reduced to the common prefix w.r.t. virtual chains.

8.1 Virtual block-sets and virtual chains

We construct virtual block-sets and then form virtual chains based on them. Intuitively, blocks with the same
height that are “close” to each other are grouped into a virtual block-set. Then, a virtual chain is formed by
concatenating these virtual block-sets that are linked together. This method is intended to ensure that, at each
height, honest players will only extend blocks that belong to the same virtual block-set.

We define two blocks to be “close” as follows: Given two blocks B and B ′ with the same height, let C and C′
be the chains from the genesis block to B and B ′, respectively. The blocks B and B ′ are considered “close” to each
other if the distance from C to C′ is less than D , i.e. distance(C → C′) ≤ D .

In our protocol Π•, consider an honest player and let Cbest be the set of the player’s best chains. For any
two chains C, C′ ∈ Cbest, the distance between C and C′ is less than D , i.e. distance(C → C′) ≤ D . Hence, if
len(C) = len(C′), the last blocks on C and C′ are “close” to each other. Note that an honest player only extends
chains in the set of best chains. Thus, at each height, an honest player will only extend blocks that belong to the
same virtual block-set.

Figure 16 illustrates an example of virtual block-sets with D = 2. In this example, the set of virtual block-sets
isV = V0,V1,V2,V3,V

′
3,V4,V5. A virtual chain is formed by linking several virtual block-sets together. A virtual

block-set V is considered linked to a virtual block-set V ′ if there exists a block B ∈ V and a block B ′ ∈ V ′ such
that B is linked by B ′.

Definition 8.1 (Virtual block-sets and virtual chains). Consider an execution of protocol Π•, and consider an honest
player with the set C of local chains. Let B be the set of all blocks on the chains in C.
Based on the set of block B, we define a set V of virtual block-sets, as follows. Initially, we set V := ∅. For each block
B ∈ B, let C be the chain from the genesis block to the block B . If the block B has not been added to any virtual block-set (i.e.,
for all V ′ ∈ V, we have, B /∈ V ′), we build a virtual block V based on the block B as follows. Initialize that V := {B}. For
any block B ′ ∈ B, let C′ be the chain from the genesis block to the block B ′. If len(C) = len(C′) and distance(C → C′) ≤ D ,
we set V := V ∪ {B ′}. Finally, we set V := V ∪ {V }.
Based on the above information, we can further define a set VC of virtual chains, as follows. Initialize that VC := {V0},
where V0 = V0 = {B0} and B0 is the genesis block. For each virtual chain V = V0∥V1∥ · · · ∥Vℓ (where ℓ is a non-negative
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integer) in the set VC, we construct new virtual chains as follows. First, we define that Vℓ is linked by the Vℓ+1 if there
exists a block Bℓ+1 ∈ Vℓ+1 and a block Bℓ ∈ Vℓ such that Bℓ is linked by Bℓ+1

5. For each such virtual block-sets Vℓ+1 ∈ V
such that Vℓ is linked by Vℓ+1, we construct a new virtual chain V ′ := V∥V and set VC := VC ∪ {V ′}. In the example in
Figure 16, V0∥V1∥V2∥V ′

3 and V0∥V1∥V2∥V3∥V4∥V5 are two virtual chains.

Figure 16: A toy example for the virtual block-sets and virtual chains with D = 2. Each block is represented by a solid
rectangle and each virtual block-set is represented by a blue area that consists of multiple blocks. Here V0 = {B0}, V1 =
{B1,B

′
1,B

′′
1 }, V2 = {B2,B

′
2,B

′′
2 ,B

′′′
2 }, V3 = {B3,B

′′
3 }, V ′

3 = {B ′
3,B

′′′
3 }, V4 = {B4,B

′
4,B

′′
4 }, V5 = {B5,B

′
5}, In this case,

the best chain is Cbest = B0∥B1∥B2∥B3∥B4∥B5. Here, for all i ∈ [0..5], we have Bi ∈ Vi. Thus, the best virtual chain is
Vbest = V0∥V1∥V2∥V3∥V4∥V5.

We define the best virtual chain as the virtual chain in which each virtual block-sets in the virtual chain contains
a block in the best chains. In Figure 16, the best virtual chain is Vbest = V0∥V1∥V2∥V3∥V4∥V5 since the best chain
is Cbest = B0∥B1∥B2∥B3∥B4∥B5. We formally define the best virtual chain as follows.

Definition 8.2 (The best virtual chain). Let Cbest = B0∥B1∥ · · · ∥Bℓ be the best chain. A virtual chain Vbest =
V0∥V1∥ · · · ∥Vℓ is the best virtual chain if for all i ∈ [0..ℓ], Bi ∈ Vi.

Virtual block-set and virtual chain basics. Consider a virtual chain V consists of a sequence of ℓ concatenated
blocks V0∥V1∥V2∥ · · · ∥Vℓ, where ℓ ∈ N. We use V[i] to denote the i-th virtual block-set Vi in virtual chain V . Here,
the subscript i denotes the block height of the virtual block-set Vi in the virtual chain V . The block height of a
virtual block-set Vi is equal to the block height of all blocks in Vi. We refer to V[j,m], with j ≥ 0 and m ≤ ℓ, as a
sub virtual chain Vj∥ · · · ∥Vm. If a virtual chain V is truncated by the last κ virtual block-sets, we write V[¬κ].

8.2 Common prefix property w.r.t. virtual chains

We are now ready to define the common prefix property w.r.t. virtual chains. The property states that all honest
players share the same common prefix of virtual chains after removing the last κ virtual blocks.

Definition 8.3 (Common prefix w.r.t. virtual chains). Consider a blockchain protocol Π with a set P of players. The
common prefix with respect to virtual chains, states the following: for any honest player P ′ adopting a local best virtual chain
V ′ at round r′, and honest player P adopting a local best virtual chain V at round r, in the execution EXECΠ,A,Z, where
P ′,P ∈ P and r ≤ r′, it holds that V[¬κ] ⪯ V ′, where V[¬κ] is the virtual chain resulting from removing the last κ blocks.

To demonstrate the common prefix property with respect to virtual chains, we introduce the concept of an
honest virtual block-set, where the first block generated in the virtual block-set is honest. Our analysis shows that
there is at most one honest virtual block-set at any block height. This means that to violate the common prefix
property, the adversary must extend the virtual chain as quickly as the honest players. This, in turn, requires
the adversary to have control over the majority of the stake. Therefore, our protocol achieves the common prefix
property under the assumption that the majority of stake is controlled by honest players.

Definition 8.4 (Honest virtual block-sets). Consider a virtual block-set V , let B be the earliest block in V , i.e., B is the
block with the smallest round number. We say V is honest if the earliest block B is generated by an honest player.

5In protocol Π•, the block Bℓ+1 is in the form of ⟨η, r, PK, σ⟩, where η is the hash value of the previous block, r is the current round number,
PK is the public key of the player, and σ is the signature of the player over ⟨η, r⟩. We say Bℓ is linked by Bℓ+1 if η = h(Bℓ).
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We override the equal operator for virtual block-sets since new blocks may be added to the existing virtual
block-sets through time. Intuitively, we say two virtual block-sets are equal if all the blocks in the two virtual
block-sets are “close”.

Definition 8.5 (Equal operator for virtual block-sets). Consider two virtual block-sets Vi and V ′
i at the same block height

i. We say Vi equals V ′
i (i.e., Vi = V ′

i ) if the following constraint is satisfied: For any block B ∈ Vi and any block B ′ ∈ V ′
i ,

let C and C′ be the chains from the genesis block to B and B ′, respectively. We have, distance(C → C′) ≤ D .

The equal operator for virtual block-sets is symmetric. Given that Vi = V ′
i . For any block B ∈ Vi and any block

B ′ ∈ V ′
i , we have, distance(C′ → C) = distance(C → C′) ≤ D . Thus, based on Definition 8.5, we have, V ′

i = Vi.

Add a new block to an
existing virtual block set

Create the first block of
the first honest virtual

block at this block height

Figure 17: A toy example for illustrating an extension of honest players. Honest players extend the set of best chains from
Figure 16, using 2-distance-greedy strategy. The blue blocks denote the new blocks. Here, the players generate either a new
block to create a new longest chain (that is longer than the current longest chain) or a new block that is added to an existing
virtual block-set.

We will demonstrate that there is at most one honest virtual block-set at each block height. The definition
of virtual block-sets states that honest players only extend blocks that belong to the same virtual block-set. We
consider two cases as follows (see Figure 17 for an example).

• If an honest player creates a new longest chain, a new honest virtual block-set is created at the new block
height, as there was no honest virtual block-set at this height previously.

• If honest players do not create a new longest chain, they can only create a new block in an existing virtual
block-set.

Lemma 8.6. Consider an honest player P . Let Vbest = V0∥V1∥ · · · ∥Vℓ be the best virtual chain in the local state of
player P at the beginning of round r, where ℓ ∈ N is the length of the best chain. If player P generates a new chain
C = B0∥B2∥ · · · ∥Bℓ′ , where ℓ′ ∈ N. Then, one of the following two conditions is true: 1) ℓ′ = ℓ+ 1 (a new longest chain is
generated); or 2) ℓ′ ≤ ℓ and Bℓ′ ∈ Vℓ′ (the last block of the new chain is added to an existing virtual block-set).

Proof. Let Cbest be the best chain in the local state of player P at the beginning of round r. Let C′ = C[0, ℓ′ − 1]. At
round r, player P extend the chain C′ by adding the block Bℓ′ to generate the new chain C. Since the honest players
only extend the chains in the set of best chains, we have, C′ ∈ Cbest. Recall from procedure D-BestChainSet•, the
distance from the best chain Cbest to C′ is smaller than D , i.e., distance(Cbest → C′) ≤ D . We consider two cases of
C′ as follows.

• The length of the chain C′ equals ℓ, i.e., len(C′) = ℓ. In this case, we have, ℓ′ = len(C) = len(C′∥B) = ℓ+ 1. In
other words, a new best chain of length ℓ+ 1 is generated.

• The length of the chain C′ is smaller than ℓ, i.e., len(C′) < ℓ. Since distance(Cbest → C′) ≤ D , from Defini-
tion 4.1, we have, Cbest[0, ℓ−D ] ⪯ C′. Thus, Cbest[0, ℓ+1−D ] ⪯ C (as C = C′∥B ). Therefore, distance(Cbest[0, ℓ′]→
C) ≤ D . Plus, since Cbest belongs to Vbest, we have, Cbest[ℓ′] ∈ Vℓ′ . Thus, based on the definition of the virtual
block-set, we have, Bℓ′ ∈ Vℓ′ .
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We assume α• = λ · β•, λ > 1. If r1 − r is big enough, the adversary cannot extend the virtual chain as fast as
the honest players. Given that ∆ ·α• ≪ 1, most of the time, there is at most one honest virtual block-set at a block
height. Now, we are ready to prove the common prefix property on virtual chains.

Lemma 8.7 (Common prefix w.r.t. virtual chains). Assume α• = λ · β•, λ > 1. Consider an execution of protocol Π•

with an arbitrary adversary. Consider an honest player P in round r with the local best virtual-chain V , and an honest player
P1 in round r1 with the local best virtual-chain V1, respectively, where r1 ≥ r. Then, we have,

Pr [V[¬κ] ⪯ V1] ≥ 1− e−Ω(κ).

Proof. Assuming towards a contradiction that the virtual chain V does not share a common prefix with the virtual
chain V ′ after removing the last κ virtual block-sets, i.e., V[¬κ] ⪯̸ V ′. Let us consider the last common virtual
block-set of V and V ′ generated at round r0. By the chain growth property in Lemma 7.3, from round r0 to round
r, the virtual chain V must increase in length by at least α• · t, where t = r − r0. However, from Lemma 8.6, there
can only be at most one honest virtual block-set at any given block height. Thus, the adversary must generate at
least α• · t virtual block-sets from round r0 to round r, which occurs with probability less than e−Ω(κ).

8.3 From common prefix w.r.t. virtual chains, to the standard common prefix property

...

...

...

 blocks  blocks
 

 

...

 
 

 is the last common
block of  and 

 is the last common
virtual block-set of  and 

Figure 18: From common prefix w.r.t. virtual chains, to the standard common prefix property. If common prefix property
does not hold, i.e., C[¬(κ+ D)] ⪯ C′, then common prefix w.r.t. virtual chain property does not hold, i.e., V[¬κ] ⪯ V ′. Here, C
belongs to V and C′ belongs to V ′.

We prove the common prefix property w.r.t. virtual chains. Lemma 8.7 establishes that the virtual chains of any
two honest players share a common prefix after removing the last κ virtual blocks. All blocks in a virtual block-set
have the same common prefix after removing the last D blocks. Let V denote the last common virtual block-set
between the two virtual chains. All chains in the virtual block-set V have the same common prefix after removing
the last D blocks (see Figure 18). Therefore, the chains of any two honest players share the same common prefix
after removing the last κ+D blocks, thus achieving the common prefix property.

Lemma 8.8 (Common prefix). Assume α• = λ · β•, λ > 1. Consider an execution of protocol Π• with an arbitrary
adversary. Consider two honest players, P in round r with the local best chain C, and P ′ in round r′ with the local best chain
C′, respectively, where r′ ≥ r. Then, we have,

Pr [C[¬(κ+D)] ⪯ C′] ≥ 1− e−Ω(κ).

Proof. Assuming toward a contradiction that C[¬(κ + D)] ⪯̸ C′. Let V and V ′ be the virtual chains of C and C′,
respectively. Let ℓ = len(C) be the length of the chain C and ℓ′ = ℓ− (κ+D). Since C[¬(κ+D)] ⪯̸ C′, the blocks at
block height ℓ′ of C and C′ are different, i.e., C[ℓ] ̸= C′[ℓ]. Thus, we have, distance(C[0, ℓ′ +D ]→ C′[0, ℓ′ +D ]) > D .

Let V[ℓ′+D ],V ′[ℓ′+D ] be the virtual block-sets at block height ℓ′+D of the virtual chains V and V ′, respectively.
We have, C[ℓ′ + D ] ∈ V[ℓ′ + D ] and C′[ℓ′ + D ] ∈ V ′[ℓ′ + D ]. As distance(C[0, ℓ′ + D ]→ C′[0, ℓ′ + D ]) > D , we have,
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V[ℓ′ + D ] ̸= V ′[ℓ′ + D ]. In other words, V[0, ℓ′ + D ] ̸= V ′[0, ℓ′ + D ] or V[¬κ] ⪯̸ V ′. This contradicts the common
prefix property w.r.t. virtual chains in Lemma 8.7.

9 Chain quality and best possible unpredictability

We show that our protocol can achieve the chain quality and the best possible unpredictability properties.

9.1 Chain quality

After proving the chain growth and common prefix properties, the proof of chain quality will be very similar to
the proof in [PSs17]. Intuitively, the adversary cannot extend the chain as fast as the growth rate of the best chain.
Thus, some blocks on the best chain must be generated by honest players.

Lemma 9.1 (Chain quality). Assume α• = λ · β•, λ > 1, and δ > 0. Consider an execution of protocol Π• with an
arbitrary adversary. Consider an honest player with chain C. Consider that ℓ consecutive blocks of C, where ℓgood blocks are
generated by honest players. Then we have Pr

[
ℓgood

ℓ ≥ µ
]
≥ 1− e−Ω(ℓ) where µ = 1− (1 + δ) · 1λ .

Proof. Assuming toward contradiction that all blocks from round r to round r1 are generated by malicious players.
From Lemma 7.3, we have, the length of the best chain from round r to round r1 increase by at least (1− δ) ·α• · t,
where t = r1 − r. As all blocks from round r′ to round r′′ are generated by malicious players, the adversary can
grow the chain with the rate (1 − δ) · α•. Recall that, the adversary can grow the chain with the rate at most β•.
Thus, we have, β• > (1− δ) · α•. This contradicts the assumption that β• < (1− δ) · α•.

9.2 Best possible unpredictability

We now show that protocol Π• can achieve the best possible unpredictability. In our protocol, players only predict
whether or not they can generate the next block, i.e., they are 2-unpredictable. In our protocol, the context of a
chain is computed as the last block on the chain. Thus, the contexts of any two different chains in our protocol
execution are different. In other words, our protocol Π• archives distinct-context-extension property. Hence,
protocol Π• achieves the best possible unpredictability.

Lemma 9.2. Consider an execution of protocol Π• with a set of player P. For every PPT Z,A, for any player P ∈ P at any
round r, we have,

Pr
[
VIEW← EXECΠ•,A,Z; (r

′, zr
′

P )← A(P , r, VIEWr)
(
predictable(VIEW,P , 2, r, r′, zr

′

P ) = 0
) ]

> 1− negl(κ),

Proof. Assuming toward contradiction that the player P is 2-predictable at round r. Hence, there exists a round
r′ > r such that the adversary A can make an accurate prediction zr

′

P at round r and len(Cr′) = len(Cr) + 1, where
Cr and Cr′ are the best chains at round r and r′, respectively. Let (SK, PK) be the key pair of player P . In order to
predict whether or not the player P can extend the chain Cr′P , the adversary must be able to compute the context
η. Since the context η is computed as the hash value of the last block in the chain Cr′ , the adversary must know
the chain Cr′ to make a correct prediction on whether or not the player P can extend the chain Cr′ . As the chain
Cr′ is not generated at round r, the adversary cannot provide an accurate prediction.

10 Extensions

We provide the extensions for our protocol to make it more practical. In Subsection 10.1, we will “upgrade”
our protocol to a regular blockchain protocol so that payload (e.g., the transactions) can be included. Then, in
Subsection 10.2, we further extend our protocol in a more realistic “non-flat” model. Finally, in Subsection 10.3,
we follow a similar strategy in [BGK+18] to allow new players to join the system and participate in the process of
extending the chains if they have their stake registered a specified number of rounds earlier.
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10.1 Full-fledged blockchain

We extend protocol Π• to a full blockchain protocol by using it to generate a random beacon that selects the PoS-
players that can generate new main-blocks with payloads. The blocks are linked together as a hash chain called the
main-chain. Each PoS-player holds a pair of keys, (SK, PK), from a unique signature scheme (uKeyGen, uSign, uVerify)
and a pair of keys, (S̃K, P̃K), from a regular digital signature scheme (KeyGen,Sign,Verify). We note that to
achieve adaptive security, this regular signature scheme will be replaced by a forward-secure digital signature
scheme [BM99].

More concretely, consider a best chain C = B0∥B1∥ · · · ∥Bℓ with the corresponding main-chain C̃ = B̃0∥B̃1, · · · ∥B̃ℓ.
Here, the genesis block B0 and the genesis main-block B̃0 are the same. Once a new block Bℓ+1 is generated by
a PoS-player, then the same PoS-player is selected to generate the new main-block B̃ℓ+1, in the following format
B̃ℓ+1 = ⟨h̃ℓ,Bℓ+1, Xℓ+1, P̃K, σ̃⟩ where σ̃ ← SignS̃K(h̃ℓ,Bℓ+1, Xℓ+1), h̃ℓ := hash(B̃ℓ), Xℓ+1 is payload. By linking the
blocks in the main blockchain to the blocks in the blockchain, the security of the main blockchain protocol can be
reduced to the security of the blockchain protocol.

10.2 Blockchain in the non-flat model

In our previous sections, we presented our ideas in the “flat” PoS model, where all players are assumed to hold the
same number of stake and have an equal chance of being selected as the winning player in each round. However,
in reality, PoS players have varying amounts of stake. In this section, we will extend our design to reflect the more
realistic “non-flat” model.

The genesis block, B0, in the “non-flat” model consists of the public keys of the players, their respective stake
distribution, and a randomness. Specifically, we have, B0 = ⟨(⟨PK1, s1⟩, ⟨PK2, s2⟩, · · · , ⟨PKN , sN ⟩), rand⟩. The num-
ber of stakes held by each player can vary in this model. For a PoS player with the key pair (PK, SK) holding s
stake at round r, the hash inequality is changed as follows:

H(η, r, PK, σ) < s · T.

It is straightforward to see that the probability of a PoS player being selected to generate a new block is pro-
portional to the amount of stake they control. If the player puts all their s stake in one account, their probability
of being selected to sign a PoS block is s · p. On the other hand, if they divide their s stake into s accounts, each
with one stake, the probability of an individual account being selected is p. As the outputs of the hash function are
independent for different verification keys, the total probability of the player being selected is 1− (1− p)s ≈ s · p.

10.3 Defending against adaptive registration

Our design can be further improved to allow for the dynamic registration and deregistration of players during the
protocol’s execution. As a reminder, the chain extension process relies on the hash inequality H(context , solution) <
T, where solution takes the form of (PK, σ). However, malicious players can use a “rejection re-sampling” strategy
to generate their keys adaptively, taking advantage of the known context . In this strategy, a malicious player gen-
erates a key-pair (PK, SK) and then checks if the resulting (PK, σ) is a valid solution to the hash inequality. If it’s
not, the player repeats the key generation process. This increases the probability that the malicious player will be
selected to extend the chain.

Adaptive registration. Similar to the approach in [BGK+18], we defend against rejection re-sampling attacks by
requiring new players to have their stake registered for a specified number of rounds before being allowed to
extend the chains. To join the protocol, player P generates two key pairs: (SK, PK)← uKeyGen(1κ) and (S̃K, P̃K)←
KeyGen(1κ). P keeps SK and S̃K secret and broadcasts a registration transaction. After a player has registered,
they are eligible to extend the chain after η blocks have been added to the blockchain. It is important to note that
players who registered prior to the start of the protocol (i.e. in the genesis block) do not have to wait η blocks
before they can extend the chain.

By implementing this requirement, malicious players cannot register key pairs to extend the chains immedi-
ately. However, they can still attempt to register biased key pairs and then extend the chains many rounds later.
However since the adversary cannot accurately predict future events, they cannot choose a biased key pair that
will increase their chances of extending the chain many rounds in the future.
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11 Related Work

We summarize the existing results for the designs and analysis of PoS protocols.

11.1 Proof-of-stake protocols

The idea of using coins/stakes to construct cryptocurrency has been intensively considered. Since the inception
of the idea in an online forum [Bit11], several proof-of-stake proposals have been introduced or implemented
(e.g., [NXT14, Kwo14, Vas14, But15, BGM16]). These proposals are ad hoc without formal security. Recently,
several provably secure proof-of-stake-based blockchain proposals have been developed. More details can be
found below.

Bitcoin-like proof-of-stake protocols. We focus on Bitcoin-like PoS protocols; these are closely related to the
results in the current write-up. All these related protocols follow the single-extension framework. These related
protocols include Snow White [DPS19], Ouroboros Praos [DGKR18] and Genesis [BGK+18], and a protocol by
Bagaria et al. [BDK+19]. Note that, all of the above protocols are single-extension protocols (thus suffering from
the impossibility result in Section 3).

In Snow White [DPS19], the protocol execution is divided into epochs, where each epoch consists of Ω(κ)
blocks (for security parameter κ). The players are selected to generate new blocks based on the public key, the
current round number, and the randomness of the current epoch (via a hash inequality). The Snow White protocol
is based on the Sleepy protocol [PS17] (in which the new players are not allowed to join the system during the
execution). The Snow White protocol allows new players to join the system but relies on external trust.

In Ouroboros Praos [DGKR18], similar to Snow White, the protocol execution is divided into epochs of Ω(κ)
blocks. In each round, the player queries a verifiable random function (VRF) [MRV99] to determine whether it
can generate a new block; note that the input of VRF consists of the current round, the public key of the player,
and the randomness of the current epoch. Here, the randomness of the epoch is computed based on the output of
the VRF in the previous epoch. Note that, the protocol of Ouroboros Praos does not allow new players to join the
system after the protocol execution starts. In their follow-up work, Ouroboros Genesis [BGK+18], new players are
allowed to join the protocol execution securely.

In Bagaria et al. [BDK+19], similar to Praos, the players use a VRF to determine whether or not they can
generate new blocks. However, here, the length of each epoch can be arbitrary. The authors also adopt the
technique in [BGK+18] to allow new players to join the system. We remark that the work in [BDK+19] is independent
and concurrent from our effort in this paper.

BFT-based PoS protocols. Besides Bitcoin-like PoS protocols, in which the players generate blocks in a non-
interactive fashion, BFT-like PoS protocols (including Algorand [CM19, GHM+17], EOS [EOS18], Dfinity [HMW18],
Casper [BG17]) have been constructed in an interactive fashion.

In Algorand [CM19, GHM+17], a verifiable random function (VRF) has been used for selecting a committee
of players. For each player, the opportunity to be selected is proportional to the number of stakes in the player’s
account. Then, the committee members run a Byzantine Agreement (BA) sub-protocol to jointly generate a block.

EOS [EOS18] introduces a delegated proof-of-stake protocol, in which stakeholders (those who hold the stake
on the blockchain) can select block producers through a continuous approval voting system. At the beginning of
each round, 21 unique block producers are chosen based on the preference of votes cast by token holders. The
selected block producers can create new blocks as long as 15 or more block producers agree.

Dfinity [HMW18] proposes a four-layer consensus protocol to achieve consensus among players. The first
layer registers the players. The second layer provides randomness for all higher layers. The third layer generates
blocks. In each round, the protocol ranks the players based on the random beacon of that round. All players can
generate new blocks, but each block has a different weight. The weight of the block is assigned based on the rank
of the block procedure in that round. The best chain is selected as the “heaviest” chain in terms of accumulated
block weight. The fourth layer provides fast finality of the block by using a threshold signature.

For Casper[BG17], two voting rounds are required. In each round, participants send signed messages to the
leader. The leader then aggregates the signatures and forwards them to all participants. This process results in
2N message exchanges per round, totaling 4N for two rounds. The use of a pipeline technique can reduce the
number of voting rounds by one. However, due to the known committee in each phase, this protocol is susceptible
to DDoS attacks.

Note that, the above protocols (Algorand [CM19, GHM+17], EOS [EOS18], Dfinity [HMW18], Casper [BG17])
require quadratic communication complexity to generate new blocks. HotStuff [YMR+19] uses a threshold sig-
nature scheme to achieve linear communication complexity. Specifically, the block producer, i.e., the player who
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generates a new block, collects votes from other players. Then, they compute and broadcast a single threshold
signature that proves at least 2/3 of the players have voted for their block.

Hybrid PoS protocols using verifiable delay function (VDF). Deb et al. [DKT20a] proposed the PoSAT protocol,
which is a hybrid consensus using both proof-of-stake and verifiable delay function (VDF). In the PoSAT protocol,
the VDF acts as a random beacon to generate blocks. After computing a VDF, players can instantly attempt to
solve a hash puzzle to check if they can extend a PoS block from the output of the VDF. Since players cannot
predict the output of VDFs, the PoSAT protocol is completely unpredictable, similar to Bitcoin.

We remark that the PoSAT protocol [DKT20a] is not a “pure” PoS protocol. In “pure” PoS protocols, the process
of generating new blocks involves only the competition of “stake” (no other resources such as computing power).
VDF-based PoS protocols allow the competition of sequential computation. The PoSAT protocol is based on the
following assumptions: (1) both adversary and honest players have the same capability to execute sequential
work: they take the same time to execute a VDF; and (2) honest players hold more stake than the adversary does.
If one of the two assumptions does not hold, then the security of the PoSAT protocol cannot be ensured. However,
in practice assumption (1) may not hold; it is possible that the adversary can have faster dedicated hardware for
executing sequential work.

11.2 Security analysis for Bitcoin-like PoS protocols

Bagaria et al. [BDK+19] present a possible “balance attack” on multi-extension proof-of-stake protocols. We
emphasize that their “balance attacks” cannot be launched on our protocol. There, the adversary will try to
balance the length of the two chains by publishing the block on the shorter chain, to maintain two longest chains that
are diverted for a long period. If the protocol is not carefully designed, the honest players may extend two chains
that are diverted for a long period. Since the adversary only publishes the blocks on the shorter chain, the shorter
chain will be extended faster and eventually catch up to have the same length as the other chain. Note that, in our
protocol, the honest players only extend the chains that share a common prefix after removing the last few blocks.
That is, the honest players will never extend two chains that are diverted for a long period. Thus, the adversary is
not able to launch the “balance attacks” on our protocol.

Based on the analysis in [DPS19, DGKR18], common prefix property is guaranteed with error e−Ω(κ) by re-
moving the last O(κ2) blocks. While in Bitcoin, the consistency is guaranteed with error e−Ω(κ) by removing only
the last O(κ) blocks. Blum et al. [BKM+20] improve the analysis for the consistency (i.e. common prefix property)
of proof-of-stake-based blockchain protocols in the cryptographic setting. Now, similar to Bitcoin, the consistency
is guaranteed with error e−Ω(κ) by removing only the last O(κ) blocks. However, in [BKM+20], the “multiply
honest” rounds (the rounds that have multiple honest players that can generate new blocks) are treated as “ma-
licious” rounds (the rounds that have at least one malicious player that can generate new blocks). Kiayias et al.
[KQR20] extends the result from [BKM+20]. Here, the “multiple honest” rounds are treated as “unique honest”
rounds (the rounds that have exactly one honest player that can generate a new block). Dembo et al. [DKT+20b]
introduces a new technique to analyze blockchain protocols (including Bitcoin and proof-of-stake-based proto-
cols). The analysis shows that the best strategy for the adversary to break consistency is a private “double-spend
attack”, i.e., the adversary does not contribute to the public best chain and aims to extend a private chain that is
longer than the public best chain.

Unpredictability. The proof-of-stake protocols allow the players to predict whether or not they can create new
blocks in the future. Indeed, in proof-of-work based protocols, the randomness is in some sense external to the
blockchain. Thus, the players cannot predict whether or not they can create new blocks in the future. On the other
hand, in proof-of-stake based protocols, the randomness comes from the blockchain itself. Hence, the players can
predict whether or not they can create a few next block in the future. We refer to this as predictability. Brown-
Cohen et al. [BCNPW19] exploit the (un)predictability of proof-of-stake based protocols in a incentive-driven set-
ting. The predictability allows the adversary to perform many incentive-driven attacks such as predictable selfish
mining and predictable bribing. In this work, we investigate the unpredictability in a cryptographic setting.
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A Supplemental materials for Section 2

A.1 Predictability-based attacks

We now describe the attacks where the attackers rely on the power of predictability.

Predictable selfish mining attacks. In a selfish mining attack, a player chooses to not immediately publish the
blocks they have generated to the rest of the network, which undermines the fairness of the blockchain. This type
of attack is more prevalent in proof-of-stake protocols, as they allow players to predict their chances of successfully
mining multiple blocks in the future. Brown-Cohen et al. [BCNPW19] have demonstrated a predictable selfish
mining attack in proof-of-stake protocols, where players predict a specific time period in which they will generate
a certain number of blocks. If the probability that other players will not generate the same number of blocks
during that time period is high enough, the player can choose to keep those blocks hidden until the last block is
mined. This increases the likelihood that the player’s blocks will be included in the longest chain.

Predictable bribing attacks. In bribery attacks, an attacker pays players to work on specific chains in order to
benefit themselves, such as supporting double spending or censorship attacks. These attacks are more dangerous
in proof-of-stake protocols, as players can predict their chances of successfully mining blocks in the future. In
epoch-based proof-of-stake protocols, this is particularly true at the beginning of each epoch, when an attacker
can attempt to bribe players who are likely to mine new blocks. If the attacker is able to bribe enough players,
they can control the majority of the blocks mined during that epoch. There are two cases to consider:

Case 1: The confirmation time is shorter than the length of each epoch. In this case, the attacker can perform a double
spending attack by issuing transactions at the beginning of the epoch and then hiding their blocks. At the
end of the epoch, these transactions will be confirmed on the best public chain. The attacker can then publish
their hidden blocks and revert the transactions they issued at the beginning.

Case 2: The confirmation time is longer than the length of each epoch. The attacker can perform censorship attacks
by preventing certain transactions from being included on the blockchain. In each epoch, the attacker can
perform a predictable bribing attack to control a majority of the blocks, which means controlling the longest
chain. Since all blocks on the longest chain belong to the attacker, they can prevent any transaction from
being added to the blockchain.

B Supplemental materials for Section 3

B.1 Existing single-extension proof-of-stake protocols

We now describe the existing state-of-the-art PoS protocols in [DPS19, DGKR18, BDK+19] as single-extension PoS
protocols.

Snow White [DPS19]. The Snow White protocol [DPS19] is divided into epochs, each consisting of Tepoch = Ω(κ)
rounds. When players generate new blocks, they embed random seeds in those blocks. The random seeds are then
used to determine which players will generate blocks in the next epoch. The four algorithms Validate, BestChain,
Context, and Extend are constructed as follows:

• The algorithm Context takes as input a chain C at round r and outputs the context η as the context is the
concatenation of the random seeds from multiple blocks in the previous epoch. Here, the function hash
first truncates the blocks in the previous epoch and obtains the random seeds from those blocks. Then it
concatenates all the random seeds to obtain the context. Note that, hash can be treated as a random oracle.
The random seeds in those blocks are random; thus the probability that two random seeds are the same is
negligible.
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• The algorithm Extend takes as input a context η, a round r, and a public key PK. The algorithm returns a
new block if the hash value of the context, the round number, and the public key are smaller than a given
threshold.

• The algorithm Validate takes as input a chain C, a round number r, and outputs 1 if each block in the chain
C satisfies the following: 1) the context is correctly computed, 2) the hash inequality in the blocks holds, and
3) the round number of the block is smaller than the current round r.

• The algorithm BestChain takes as input a set of chains C and a round r. It outputs the longest valid chain in
C.

Ouroboros Praos [DGKR18]. The Ouroboros Praos protocol is constructed using a Verifiable Random Function [DY05]
(VRF). The VRF generates a pseudorandom number with a proof of its correctness. The VRF is specified by three
algorithms (Gen,Prove,Ver). The algorithm Gen takes the security parameter κ as input and outputs a key pair
(SK, PK). The algorithm Prove takes the secret key SK and a message msg as input and returns a pseudorandom
output σ along with a proof π. We write (σ, π) := ProveSK(msg). The algorithm Ver takes a public key PK, a mes-
sage msg, an output σ, and a proof π as input and returns 1 if the output and the proof are correct. Similar to the
Snow White protocol [DPS19], the Ouroboros Praos protocol [DGKR18] separates rounds into epochs; each epoch
has Tepoch = Ω(κ) rounds. The four algorithms Validate, BestChain, Context, and Extend is constructed as follows:

• The algorithm Context takes as input a chain C at round r and outputs the context η as the hash value of
the VRF output in the blocks in C that are generated in the previous epochs. Here, the function hash can be
treated as a random oracle.

• The algorithm Extend takes as input a context η, a round r, and a secret key SK. The algorithm computes
(σ, π) := ProveSK(η, r) and returns a new block if it holds that σ < T, where T is the difficulty.

• The algorithm Validate takes as input a chain C and a round number r, and outputs 1 if each block in the
chain C satisfies the following conditions: 1) the context is computed correctly, 2) the VRF output in the block
is computed correctly using algorithm Ver(·)(·), 3) the output of the VRF is smaller than the difficulty T, and
4) the round number in the block is smaller than the current round r.

• The algorithm BestChain takes as input a set of chains C and a round r. It outputs the longest valid chain in
C.

Bagaria et al. [BDK+19]. The protocol described in Bagaria et al. [BDK+19] is divided into epochs, each of which
consists of c ∈ N blocks. The protocol uses a VRF to determine which players can generate new blocks. The
following four algorithms are defined: Validate, BestChain, Context, and Extend.

• The algorithm Context takes as input a chain C at round r and outputs the context η as the VRF output of the
last block from the previous epoch. The probability that two blocks have the same VRF output equals the
probability of selecting two random numbers in {0, 1}κ that are equal. As the number of blocks is polynomial
in κ, the probability that there exist two blocks that have the same VRF output is negligible.

• The algorithm Extend takes as input a context η, a round r, and a secret key SK. The algorithm computes
(σ, π) := ProveSK(η, r) and returns a new block if it holds that σ < T, where T is the difficulty.

• The algorithm Validate takes as input a chain C and a round number r, and outputs 1 if each block in the
chain C satisfies the following conditions: 1) the context is computed correctly, 2) the VRF output in the block
is computed correctly using algorithm Ver(·)(·), 3) the output of the VRF is smaller than the difficulty T, and
4) the round number in the block is smaller than the current round r.

• The algorithm BestChain takes as input a set of chains C and a round r. It outputs the longest valid chain in
C.
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C Supplemental materials for Section 4

C.1 Unique signature scheme

In a unique signature scheme, for every possible verification key, and every message to be signed, there is a
unique signature. Please see Section 6.5.1 of Goldreich’s textbook [Gol04] for details. Here we include a version
of the definition for syntax and properties: A unique signature scheme consists of four algorithms, a randomized
key generation algorithm uKeyGen, a deterministic key verification algorithm uKeyVer, a deterministic signing
algorithm uSign, and a deterministic verification algorithm uVerify; we expect for each verification key there exists
only one signing key; we also expect for each pair of message and verification key, there exists only one signature.
We have the following definition.

Definition C.1. We say (uKeyGen, uKeyVer, uSign, uVerify) is a unique signature scheme, if it satisfies:

Correctness of key generation: Honestly generated key pair can always be verified. More formally, it holds that

Pr
[
(PK, SK)← uKeyGen(1κ) | uKeyVer(PK, SK) = 1

]
= 1.

Uniqueness of signing key: There do not exist two different valid signing keys for a verification key. More formally, for all
PPT adversary A, it holds that

Pr

 (uKeyVer(PK, SK1) = 1)
(PK, SK1, SK2)← A(1κ)

∧
(uKeyVer(PK, SK2) = 1)∧
(SK1 ̸= SK2)

 ≤ negl(κ).

Correctness of signature generation: For any message x, it holds that

Pr
[
(PK, SK)← uKeyGen(1κ);σ := uSign(SK, x) | (uVerify(PK, x, σ) = 1)

]
≥ 1− negl(κ)

Uniqueness of signature generation: For all PPT adversary A,

Pr

 (uVerify(PK, x, σ1) = 1)
(PK, x, σ1, σ2)← A(1κ)

∧
(uVerify(PK, x, σ2) = 1)∧
(σ1 ̸= σ2)

 ≤ negl(κ).

Unforgeability of signature generation: For all PPT adversary A,

Pr

[
(PK, SK)← uKeyGen(1κ); (uVerify(PK, x, σ) = 1)
(x, σ)← AuSign(SK,·)(PK)

∧
((x, σ) ̸∈ Q)

]
≤ negl(κ),

where Q is the history of queries that the adversary A made to signing oracle uSign(SK, ·).

Unique signature schemes and related notions have been investigated in literature (e.g., [GO93, MRV99, Lys02]).
Please see Section 6.5.1 of Goldreich’s textbook [Gol04] for detailed discussions about the constructions. Several
efficient constructions can be found in the literature. For example, the well-known BLS signature [BLS01] can be
a good candidate.

C.2 Multi-extension proof-of-stake protocols

We say a PoS protocol is a multi-extension protocol if, in each round, each honest player is allowed to extend
multiple chains. By extending multiple chains, honest players can extend the best chain faster, compared to the
single-extension protocol.

Definition C.2 (Multi-extension framework for PoS protocols). A multi-extension PoS protocol Π◦ is parameterized
by 4 deterministic algorithms (Validate◦, BestChainSet◦, Context◦,Extend◦) as follows:

• The validation algorithm Validate◦ takes a chain C and a round r as input and returns 1 if the chain C is valid at round
r, and returns 0 otherwise.
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• The context extraction algorithm Context◦ takes a valid chain C as input and returns a context η. If the input chain is
invalid, the algorithm returns ⊥.

• The extension algorithm Extend◦ is parameterized by a probability p ∈ (0, 1). The algorithm takes input as a context
η, a round r, and a secret key SK, and returns a new block B or⊥ (if no new block is generated). Here, the secret key SK
is generated by a player P in the blockchain initialization phase, and the corresponding public key of SK will be stored
in the genesis block. The function Extend◦(η, r, SK) returns a block B with probability p.

• The best chain set algorithm BestChainSet◦ takes a set of chains C and returns a set of the best chains Cbest. Here, the
honest players will extend multiple chains, i.e., all the chains in the set of the best chains Cbest. Thus, we name the
protocol multi-extension.

We note that the descriptions of algorithms Validate◦, Context◦, and Extend◦ are identical to the descriptions of algo-
rithms Validate, Context, and Extend in the single-extension PoS protocol, defined in Definition 3.1. The difference be-
tween the single-extension and multi-extension protocols is the utilization of different algorithms, namely BestChain and
BestChainSet◦, for determining the chains to be extended. The single-extension protocol uses the best chain algorithm
BestChain to select a single best chain. Meanwhile, the multi-extension protocol employs the best chain set algorithm
BestChainSet◦, which returns a set of multiple best chains. The advantage of extending multiple chains is that honest
players can extend the best chain faster compared to the single-extension protocol.

Blockchain initialization phase. In this phase, the genesis block will be created; the genesis block consists of a randomness,
public information, and the stake distribution of the players. Consider an (initial) group of PoS-players P = {P1,P2,
. . . ,Pn} and a security parameter κ. Each player Pj ∈ P generates a pair of public key PKj and private key SKj . The public
keys of all players are stored in the genesis block of the blockchain system. We let B0 denote the genesis block. .

Algorithm 5: A multi-extension proof-of-stake protocol Π◦.
State : Initially, the set of chains C only consists of the genesis block. At round r, the PoS-player P ∈ P, with key

pair (SK, PK) and local chain set C, proceeds as follows.
1 Upon receiving a chain C′, verify Validate◦(C′, r) = 1 and set C := C ∪ {C′};
2 Set Cbest := BestChainSet◦(C);
3 for C ∈ Cbest do
4 η := Context◦(C); B := Extend◦(η, r, SK);
5 if B ̸=⊥ then
6 C′ := C∥B ; Add C′ to C; Broadcast C′;

Blockchain extension phase. A multi-extension proof-of-stake protocol Π is described in Algorithm 5. In each round r, a
player P with the secret key SK proceeds as follows. First, the player P set Cbest := BestChainSet◦(C). Here the local set of
chains C consists of all valid chains that are received (or generated) by P . Then, for each chain C ∈ Cbest, the player P uses
the function Context◦ to extract the context η in the best chain C, i.e., η := Context◦(C, r). Finally, based on the context η,
the current round number r, and the secret key SK, the player P uses the function Extend◦ to determine whether or not it
can generate a new block. If the player P can generate a new block B , it creates a new chain C′ := C∥B , adds C′ to the set of
chains C and broadcasts C′ to all other players.

Remark C.3. We remark that there are other ways to design multi-extension protocols. However, to simplify the presentation,
we focus on the design in Definition C.2. We used this design of multi-extension protocols for our protocol in Section 4.

D Supplemental materials for Section 8

D.1 An upper bound for the chain growth of the adversary

We now analyze the chain growth of an adversary that extends the chain by itself. First, we show that the prob-
ability that an adversary can generate a new block from a chain in a round is at most β. Then, we show that an
arbitrary strategy adversary can amplify its chain growth by a factor of at most e. Therefore, the probability that
an adversary can extend the best chain in a round is at most e · β.

Lemma D.1. Consider protocol Π•. Consider a valid chain C at round r. The probability that the chain C is extend by a
malicious player at round r is β = 1− (1− p)N ·ρ.
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Proof. The uniqueness of the signature generation property of the unique signature scheme ensures that in each
round, each malicious player can generate one solution from the context of the chain C. In other words, in each
round, each malicious player can make at most one attempt to generate a new block by making one query to
the random oracle. The event where a malicious player successfully extends the chain C can be modeled as an
(independent) Bernoulli random variable which takes the value 1 with probability p. Plus, the number of malicious
players is at most N · ρ. Therefore, the probability that the chain is extended by a malicious player at round r is at
most β = 1− (1− p)N ·ρ.

Lemma D.2. Consider protocol Π•. Assume that the malicious players could follow any arbitrary strategy to extend a chain
C1 at round r1 into C2 at round r2, where r2 = r1 + 1, and t = Ω(κ). For some ϵ > 0, we have Pr

[
len(C2) − len(C1) <

(1 + ϵ) · β• · t
]
≥ 1− e−Ω(t), where β• = e · β, and e = 2.72.

Proof. Similar to the proof of Lemma 3.10, we model the chain extension of the adversary as a random tree in which
the extension in the branches is independent. We describe the chain extension of the adversary as a branching
process as follows. At the beginning, there is only one branch of length 0, i.e., Z0 = {0}. Let Zj be the set of
all branches at round j, where j ∈ [t] and Gj be the number of branches in Zj . Let Xj,i denote the random
variable corresponding to the random process in the i-th branch in Zj . Here Xj,i are independent and identically
distributed random variables of X , where X is a Poisson random variable that has the expected value of β. Let
ℓj,i be the length of the i-th branch in Zj . We will add Xj,i + 1 branches with the length ℓj,i, ℓj,i + 1, · · · , ℓj,i +Xj,i

into Zj+1. We denote Tj as the maximum length of all branch in Zj , i.e.,Tj = maxi∈{1,2,··· ,Gj} ℓj,i. The length of a
branch set is equivalent to the increasing length of the longest chain.

Consider the set of branches Zt at time r1 + t. For any ϵ′′ > 0, we have Pr[Gt > (β + 1)(1+ϵ′′)·k] < e−Ω(κ). Let
Y =

∑t
j=1 Xj be a Poisson random variable with the expected value of t · β. We have,

Pr
[
Tt > (1 + ϵ) · t · β · e

]
≤

∑
i∈{1,2,··· ,Gt}

Pr
[
ℓt,i > (1 + ϵ) · t · β · e

]
≤Gt · Pr

[
Y > (1 + ϵ) · t · β · e

]
≤(β + 1)(1+ϵ′′)·t · Pr

[
Y > (1 + ϵ) · t · β · e

]
+ e−Ω(κ)

≤Pr
[
Y > (1 + ϵ′) · t · β

]
+ e−Ω(κ) = e−Ω(k).
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