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In an election where each voter may express P preferences among M possible choices, the Amun protocol

allows to secure vote casting against over-the-shoulder adversaries, retaining privacy, fairness, end-to-end
verifiability, and correctness. We prove the security of the construction under the standard Decisional Diffie

Hellman assumption in the random oracle model.

1 INTRODUCTION

Remote voting, enhanced by advanced cryptographic
techniques, offers more security than traditional
paper-based voting but raises privacy concerns when
voting outside secure booths.

Although many systems protect against various
adversaries who try to bribe electors, we found
that it is more difficult to counter opponents that
closely monitor voters during the voting phase (over-
the-shoulder attacks). The main mitigation tech-
nique against coercion is the usage of fake creden-
tials (JCJ10), which are indistinguishable from real
ones but that do not produce valid votes. However, if
the adversary keeps the voter under control until the
end of the voting period, it becomes impossible to re-
vote with the valid credential.

Here we present the Amurﬂ protocol, which hides
the real choice expressed by a voter even if an adver-
sary is physically monitoring the elector during vote
casting. This feature protects the elector against over-
the-shoulder attacks without the need to re-vote. The
Amun protocol aims to achieve end-to-end verifiabil-
ity, universal verifiability, privacy, correctness, fair-
ness, and coercion resistance.

The authors in (SLS21) suggest a blockchain-
based remote e-voting protocol for two candidates,
where voters have two voting tokens (v-fokens): one
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is valid and the other is a decoy, but only the voter
knows which is which. The Amun protocol ex-
tends this concept to support multiple candidates and
choices.

In a setting where the voter can choose P out of
M candidates, extra care has to be taken in the de-
sign of the v-tokens. In fact, a naive straightforward
adaptation of (SLS21) might reveal whether two v-
tokens have the same validity, since there are multiple
valid and decoy v-tokens. To deal with this we had
to introduce extra masking steps and another author-
ity to fully hide the v-fokens validity. So, in Amun,
three authorities share the administration of the elec-
tion: they setup the parameters, manage voters’ reg-
istration, and compute the final tally at the end of the
voting phase. Privacy is preserved even if an attacker
colludes with one authority, limiting their power. As
in (SLS21), votes are cast by assigning to the candi-
dates some “voting tokens” generated during registra-
tion. Among these tokens, only a few are valid and
express the real preference of the voter, but they are
indistinguishable from the other, decoy, tokens. This
trick disguises the actual choice made, even if the ad-
versary is watching.

1.1 Related Work

Protocols for electronic election systems have been
abundantly proposed in recent years. Many have
addressed the problem of coercion resistance, giv-
ing a plurality of definitions (GGRO9; [HS19; JCJ10;
KW19; KTV10). Civitas (CCMO8)), which derives
from JCJ (JCJ10), deals with coercion by allowing
voters to vote multiple times via a mechanism of real



and fake credentials. Selene (RRI16) associates to ev-
ery vote a unique tracker: the idea is that, in case of an
attack, every voter is able to open up its commitment
to a fake tracker in order to deceive the attacker. Be-
lenios (CGG19) itself is not coercion resistant: voters
can keep the randomness used to encrypt the ballot to
prove how they voted. This limitation has been over-
come with BeleniosRF (CCFG16).

Organization We present some preliminaries in
Section [2} in particular in Section [2.4] we describe
what we mean by the term bulletin board. We de-
scribe our protocol in Section [3] and we provide a
proof of security in Section [5} Finally, in Section [6]
we draw some conclusions.

2 PRELIMINARIES

Most of the algebraic preliminaries we need to build
the protcol, such as the Decisional Diffie-Hellmann
Assumption (DDH) and commitment schemes, can be
found in (SLS21). Here we report only the additional
tools required for the generalization.

For the sake of compactness we use the following
notation for the indexes: [n] = {i e N:1 <i <n},
(t(,-)je[m] =11, tm).

2.1 Equality of discrete logarithms

Since it is used extensively in the protocol, we report
here the Zero-Knowledge Proof (ZKP) for the equal-
ity of two discrete logarithms (SLS21), which is a
variation of the Schnorr interactive protocol (Sch91;
SAO07).

Protocol 1. Let G be a cyclic group of prime order p,
let u,it be generators of G, and let 2,7 € G, W € Zj,.
P knows ® and wants to convince V that u® = z and
i® =z, without disclosing . The values of u, z, it and
z are publicly known.

1. P generates a random r and computes the com-
mitments t = u" and f = ii", then sends (t,f) to V.

2. 'V generates a challenge c € Z, and sends it to TEI

3. P computes s =r+c-®and sends s to V.

4. V checks that u* = z°-t, i® = z° -1. If the check
fails, the proof fails and the protocol aborts.

2Depending on how this challenge is generated, differ-
ent types of ZKP can be instantiated, see Section[2.2]

2.2 Non-Interactive Zero-Knowledge
Proofs.

Non-Interactive Zero-Knowledge Proofs (NIZKP) are
a special type of ZKPs that allow the prover to publish
a proof that can be independently verified by all the
relevant parties later on. The Fiat-Shamir technique
(IV19) can be used to transform an interactive sigma
protocol into a NIZKP by exploiting a hash function
modeled as a random oracle (RO). In particular, the
non-interactive version of Protocol [I] proceeds as fol-
lows:

e P performs the first step as in the ZKP, derives
¢=H(u,i,z,7,t,7), then computes s as in the third
step of the ZKP, and publishes (u,i,z,7,t,f,s);

* 'V computes ¢ = H(u, i,z,Z,t,f), then performs the
checks as in the last step of the ZKP.

2.3 Designated-Verifier
Zero-Knowledge Proofs.

Designated-Verifier Non-Interactive ZKP systems
(DVNIZKPs (JSIO1))) are protocols which retain most
of the security properties of a NIZKP, but are not pub-
licly verifiable: only the owner of some secret (the
designated verifier) can check the proof. This prop-
erty is useful in the context of e-voting to achieve
end-to-end verifiability while still preventing the voter
from transferring some proofs.

A method that can be used to build a DVNIZKP
is to prove either the knowledge of a secret key or
that x € £, with a NIZKP that assures that one of
these two statements is true without revealing which
one. Given two NIZKPs for the languages £y and
Ly, with a challenge ¢ € Z,, the Cramer-Damgard-
Schoenmakers technique (CDS94) allows to build a
NIZKP for the disjunction Ly V £L;. The method ex-
ploits the ability of the prover to simulate the proof if
¢ is known in advance, and the fact that given ¢ € Z,
you can freely choose ¢ € Z,, and in consequence fix
1 € Zp such that ¢ = ¢o +c¢1.

Protocol 2. Let G be a cyclic group of prime order p,
let u,it be generators of G, and let 2,7 € G, ® € Zj.
Let e € Z,, be the secret key of V with D = u® € G the
corresponding public key. As in Protocol|l} P knows
o and wants to convince V that u® = z and i® = 7,
without disclosing ®. We also want V to be able to
exploit the knowledge of e to forge such a proof for
any value of z,Z without knowing ® (such an ® may
also not exist). The values of u, z, i, Z, and D are
publicly known.

1. P computes t,i € G as in Protocol[I}



2. P chooses uniformly at random sy,co € Z, and
computes ty = u*0 - D70

3. P computes c = H(u,ii,z,Z,t,f,t9,D), c1 = ¢ —co;

4. P computes sy = r+cy-® and publishes the
DVNIZKP: (u,it,z,7,t,f,t0,D,s0,51,C0,C1) .

V checks that us' =z -t, @' = 71 -f, u’® = D0 . g,
and co+ ¢y = ¢ with ¢ = H(u,i,z,Z,t,1,1y,D). If the
check fails the proof is rejected.

V, who knows e, can forge a proof for any z,7 € G
in the following way:

1. 'V chooses ry € Z, uniformly at random and com-
putes fo = u'?;

2. V chooses uniformly at random s1,c¢; € Z, and
computes 1 = w7 =il 7

3. 'V computes ¢ = H(u,i,z,7,t,f,t,D), co =c—cy;

4. 'V computes so = rg + ¢o - ¢ and obtains the forged
DVNIZKP: (u,i,z,Z,t,i,t,D,s0,51,C0,C1) -

2.4 Bulletin Board

The concept of (Web) Bulletin Board (BB,
(KKL"18)) is well established in literature, as
its use in e-voting.

A BB is a log service (CCMOS)) that implements
publicly readable, insert-only storage. It is often man-
aged by the administrator of the election and relies on
some security assumptions:

* it is not possible to forge messages,

* attempts to present different views of log contents
to different readers should be detected.

A secure voting system should protect against a ma-
licious administrator or bulletin board which tries to
forge or unduly redact data (e.g. tries to insert arbi-
trary ballots or reject valid ballots). A more detailed
discussion on bulletin boards can be found in (HLOS)).

2.5 General requirements for remote
voting systems

A trustworthy e-voting protocol has to satisfy con-
flicting requirements: it should preserve both integrity
of election results and confidentiality of votes. In this
section we define the properties that a trustworthy e-
voting protocol should fulfill. We will prove that our
proposed protocol satisfies them in Section[5.2]

Definition 1 (Correctness). Correctness (JCJ10) re-
quires that an adversary cannot preempt, alter, or
cancel the votes of honest voters, and cannot cause
voters to cast ballots resulting in double voting.

Definition 2 (Fairness). Fairness (oM7) requires
that no information about how many votes each can-
didate has received can be learned until the voting
results are published.

Definition 3 (Privacy). Privacy ((NISI7; |[KTVII;
BCG™15))) is defined as the inability of the adversary
to distinguish, given two candidates C1,Cy, whether
Vi voted for Cy or Cs.

Definition 4 (Verifiability). Verifiability (ANO6;
JCJ10; |CCFG16) requires that the results of tabu-
lation cannot be different than if all votes were an-
nounced and tabulated publicly (even if an adversary

tries to change the election result). Verifiability can
be divided (ANO0G) into:

» Universal Verifiability: the correctness of elec-
tions results can be verified by all observers;

e Individual Verifiability: every voter can check that
their vote has been cast correctly and has been
accurately counted.

— Cast-as-intended verifiability (EGHM16): ev-
ery voter can check that their vote was correctly
cast.

— Recorded-as-cast verifiability (Ltd21): every
voter can check that their vote was recorded as
it was cast.

— Tallied-as-recorded verifiability (PKRV10):
anyone can check that cast votes were correctly

tallied.
In (BRR'15), the combination of cast-as-
intended, recorded-as-cast, and tallied-as-

recorded, is called End-to-end.

Coercion resistance ((JCJ10;/[HS19)) requires that
an adversary cannot learn any additional information
about the votes other than what is revealed by the
results of tabulation. In other words, voters cannot
prove whether or how they voted, even if they can in-
teract with the adversary while voting.

The Amun protocol protects against coercers that
wish to sway elections towards specific candidates,
but is not very effective against the more subtle ran-
domization and forced abstention attacks. In this
simplified model, we use a slightly weaker adapta-
tion of the definition of Coercion Resistance given in
{Jcr10p:

Definition 5 (Vote-Coercion Resistance). Let A
be a coercer, V. the set of coerced voters, and
(Ci1,-...,Cip) the choices that A wants to impose to
the voter corresponding to v; € V.. Let ¥ be the sce-
nario in which A has access only to the final tally. Let
W, be the scenario in which A has access to the whole
Bulletin Board, and can see all the actions performed
by the voters in V., with the exception of the ones



carried out in a protected environment (or through
an untappable channel). A voting protocol is Vote-
Coercion Resistant if the probability of A detecting
that a voter in V, has not followed its instruction is
the same in V| and 5.

3 MULTI-CANDIDATE E-VOTING

This section presents our proposal for a remote e-
voting protocol that manages an election with N vot-
ers, where each one expresses P preferences among
M candidates (obviously P < M). The basic idea is
that every voter owns M voting tokens (v-fokens): P
are valid, the others are a decoy, but only the voter
knows which is which. When voting, voters express
their preferences assigning the valid v-fokens to the
chosen candidates and the decoy ones to the others.

The protocol allows for re-voting: before tallying
duplicate ballots (i.e. with the same v-fokens ignoring
their order) are discarded, keeping only the most re-
cent. After the voting phase, when counting the votes,
the decoy v-tokens do not contribute to the tally, so
only valid v-tokens are counted. The whole process is
publicly auditable and fully verifiable, and preserves
privacy as long as at most one authority is corrupt.
The protocol is divided into four phases:

e Setup. Three authorities, knowing a list of eli-
gible voters, generate the values for the creation
of both the v-fokens and the masks associated to
the candidates. These masks guarantee the voters’
privacy, and prevent early tallying.

* Registrar Phase. In this phase, the three author-
ities engage in a 5-step protocol (see Figure[I)) to
create M indistinguishable v-tokens (P are valid
and M — P are a decoy) employing masking and
shuffling so that at the end the authorities will
not be able to identify which tokens are valid.
The voter can check the validity of these v-fokens
thanks to DVNIZKPs issued by the authorities.
These proofs are worthless for a coercer because
the voter can forge them.

III: shuffle

Figure 1: The main steps of the ballot generation procedure,
which correspond to steps 3-7 of the Registrar Phase as de-
scribed in Section[3.1.2}

* Voting Phase. During this phase the voter express
their preferences by assigning each of their M v-
tokens to the candidates. All v-fokens of a voter
must be assigned together, each to a distinct can-
didate. After the v-fokens have been assigned, the
voter gets a transcript that reports the assignment
of the v-tokens to the candidates. This transcript is
worthless for a coercer since the v-fokens are in-
distinguishable. Here we assume that every can-
didate receives at least one legitimate vote (with a
valid v-token), otherwise it is trivial to discern the
validity of some tokens from the election results.

* Tallying. The v-tokens are processed (see Fig-
ure [2), removing the candidate masks, which al-
lows to count the number of valid and decoy
tokens assigned to each candidate. The results
and the intermediate computations are published,
alongside a set of NIZKPs that allow anyone to
check that the results are correct and there has
not been any tampering. Every voter can also
check, by examining the bulletin board, that their
v-tokens have been cast and counted correctly.

Figure 2: Example of voting and tallying. Each voter has

two valid tokens @ and two decoy tokens . After the tal-
lying it is revealed that candidates C3 and C4 are elected
having received more preferences (3) with respect to the
other two candidates (who received only 2).

3.1 Protocol Description

The key components involved in the protocol are:

1. a finite set of voters V = {v;};cy) (Where v; is a
pseudonymous id), with N € N the number of eli-
gible voters;

2. afinite set of candidates C = {c¢ } e p) WithM € N
the number of candidates;

3. three trusted authoritieﬂ Ay, Ay, and 4.
4. one ballot b; (comprising M v-tokens) for every
i € [N], i.e. one for each eligible voter.

3We use a weak concept of trust here, since the conduct
of these authorities can be checked by voters.



Throughout the protocol we implicitly assume that
every public value (including a description of the key
components presented above) are published in the
BB. The protocol is divided into four phases.

3.1.1 Setup

The authority 4y selects and publishes:

1. a secure group G of prime order p in which the
DDH assumption holds, with a generator g € G;

2. acommitment scheme Comm to be used to commit
to the values computed before publishing them, in
order to improve security.

Then Ay performs the following operations:

1. chooses uniformly at random two values k and A
in Zj,. Ay knows that the v-fokens computed using
k are valid, while the ones computed using A are
decoys, but this information is kept secret;

2. chooses uniformly at random N - M distinct values
Zip € Ly, with i € [N], £ € [M];

3. finally, 4y commits to the values gk, g7‘, and, for
every i € [N], it commits to (vi, (g%) repur))-

An honest authority A is supposed to keep private all
the values Z; ¢, k, A.

The authority A; performs the following operations:

1. chooses uniformly at random M distinct values
oy € Zy, with £ € [M], these will be the first half
of the candidates’ masks;

2. chooses uniformly at random N distinct values
xie Zy,, with i € [N];

3. chooses uniformly at random two sets of N - M dis-
tinct values z; ,,y; , € Zy, with i € [N],£ € [M];

4. finally, 4; commits to the values g%, V¢ € [M],
and for every i € [N] it commits to the tuple

(v,,gxt( e (8 ')ée[Ml)'

An honest authority A4; is supposed to keep private
the values o, X}, z ;, V. -

The authority 4, performs the following operations:

1. chooses uniformly at random M distinct values
7 € L, with £ € [M], these will be the second
half of the candidates’ masks;

2. chooses uniformly at random N distinct values
Xl e Zy,, with i € [N];

3. chooses uniformly at random N - M distinct values
Yig € Zp, withi € [N], £ € [M];

4. Finally 4, commits to the values g% , V¢ € [M],
and for every i € [N] it commits to the tuple

(Vi, g (g )EE[M]) :

An honest authority A, is supposed to keep private all
the values OL(, xl , yl 2

Once that all the commitments have been published,
the authorities can decommit the values:

* 4y publishes the decommitments for the
values gk, gx, alongside all the tuples
(vi, (85 ) ) Vi € [N];

e 4; publishes the decommitments for
the values g%V¢ € [M], and the tuples

(Vi,gxﬁ, (g% )eem)s (g )fe[M]) Vi€ [N];

e 4, publishes the decommitments for
the values g%Vl € [M], and the tuples

(w8, <g>w>eeM])Vz € .

All these published values are accompanied by
NIZKPs which prove that the authority who pub-
lished them knows the corresponding secret expo-
nents. These NIZKPs can be constructed using the
Schnorr protocol and the Fiat-Shamir transformation
just like in Section[2.2]

To simplify notation we introduce some defini-
tions for aggregate values for all i € [N] and ¢ € [M]:

xi =, +x7, oy = Ock Ocl7

= /
Zif = ZilZigs Vi = yi/,‘ 'yi,e~

3.1.2 Registrar Phase

For every pseudonymous id v; € V the following steps
are performed:

1. Let Alice be the person associated to the
pseudonymous id v;, note that the authorities do
not need to know this association. She goes in a
safe and controlled environment (see Section[6|for
further discussion on this requirement) where she
is identified and authenticated as the eligible and
not yet registered pseudonymous id v;. In this en-
vironment she can interact with all three authori-
ties without fear of eavesdropping or interference.

2. Alice creates a signing key-pair (s;,K;), a desig-
nated verifier key-pair (e;, D;), and gives K;, D; to
the authorities proving the knowledge of s; (e.g.
by signing a challenge message), and of e¢; via
a NIZKP (which includes the challenge message
among the public values). The authorities asso-
ciate Kj, D; to v; in their respective voters lists.

3. Ay performs the following steps:



(a) Ay chooses, for every i € [N], a random subset
V; C [M] with cardinality is exactly P, then sets:

S k= LeV

HTAN = v
i.e. the random choice of the V; determines
which tokens will be valid and which a decoy;

(b) Ay takes the (publicly available) values g"g
and g"gl_ and creates the step 0 of the ballot
bo,i = (bo,i ) eeim) Where, VL € [M]:

_ Ziy -
bos = <g6[,z g‘”, .gxé/) " gZuf(Gi,HXz);

(¢) Ay sends to 4 the initial ballot by; and sends
to Alice by ; and V;;
(d) Ay proves its computations correct with multi-
ple instances of the DVNIZKP of Protocol [}
i. 4y proves that the g%%¢ are correct (using
Gi¢ =k or ;¢ = A) with:

wzk? u:g7 Z:gk7
= gZi’[> z= gZMka Ve e Vi,
0):}"» u=g, Z:g)\’v

i, z=guh yee M\V,

g
ii. then Ay proves that the Z)o’i’g are correct using
a

for all £ € [M]
O=7Zy, =8 e=g",
=gl g% g%, z= bo,ig-

. A computes the step 1 of the ballot
b = (b1,i,0) re[m) Where:

El,i,é - (BOM)ZH _ gZi,i(Gi,éJrXi) Ve € [M]

and send§ it to Alice and to 4. Then A4; proves
that the by ;¢ are correct with the DVNIZKP of
Protocol [2] using:

Zie

u=g, z=8",
Ve € [M].

/
=2z,
i=by;g,

. A chooses uniformly at random a permutation
7; € Sym([M]) and computes the step 2 of the bal-
lot by j = (b2,i¢)re|p) Where, VL € [M]:

_ SN sy ., (Oigtxi)
byig= (brig) ™ O =g "m0
and sends it to Alice and to 4, T, is sent to Alice
and 4. Then A, proves that the b, ; ¢ are correct
with the DVNIZKP of Protocol 2] using:

1 ) im0

(O l-mi—l(é)a u=4g, =8 9

I
S =

1,i0s Z=by;y VlE[M)].

2"y

u=

6. A4y computes the step 3 of the ballot
b3;= (b3,i,[)ge[M] where, V¢ € [M]:
L Z;[yj,tn.,1 ® (i p+xi)

bsio= (1_72,1'.[,) it =g
and send§ it to Alice and to A4;. Then A4, proves
that the b3 ;¢ are correct with the DVNIZKP of
Protocol 2] using:

7,
— — il
0=— u=got,

- z=g,
Zie

i=byy, Z=b3y VL€ [M].

7. A computes the final ballot b; = (b; ¢) re[m)> With:
I-V§.1
big = (b3 im(ey) ™ = g CmO L € M)
and sends it to Alice and publishes on the BB the

pair (Kj,b;). Then A, proves that the b; ¢ are cor-
rect with the DVNIZKP of Protocol [2|and using:

Y , ,

0=, =g, g=gl,
Zimi(0)

i=bsixw), Z=Dbis Ve € [M].

Note that Alice, thanks to the proofs and the knowl-
edge of the intermediate values, knows which ones are
a valid token (the ones with 6; ¢ = k), but thanks to the
random choices of V; and &; the authorities cannot dis-
tinguish the tokens unless they collude. Effectively,
the DVNIZKPs prove to Alice that the ballot has been
created by Ay with the correct number of valid and
decoy tokens, and that it has been correctly shuffled
by 4,. Moreover the properties of the DVNIZKP al-
low Alice to forge the transcript changing which to-
kens are valid, making them useless for proving the
validity of a token. In fact, since Alice is in a pro-
tected environment, she can manipulate the received
data without being able to prove or disprove any ma-
nipulation.So, given that she knows e;, she can forge a
proof that states the presumed validity of any P of the
M tokens, making any proof worthless to a coercer.

3.1.3 Voting Phase

Voters assign their valid tokens to preferred candi-
dates and decoy tokens to the others. Each voter signs
this assignment with their private key and publishes it
on the BB for verification. After voting, duplicate, in-
complete, and forged ballots are filtered out (relying
on public data only).

3.1.4 Tallying

Once the voting phase is over, the tallying can start.



In order to count the votes, the authorities have to
process the tokens received by each candidate, sub-
stituting the voter’s masks y; ¢ with the appropriate
candidate mask oy. Suppose that T < N participants
voted. Without loss of generality, we can assume that
only the participants with index i € [T] voted, while
the remaining N — 7 abstained from voting.

For every i € [T], let ¢; : [M] — [M] be the bi-
jective map that associates to each candidate index
¢ the index of the token b, 4, that the voter asso-
ciated to v; sent to the candidate Cy. Then, for ev-
ery i € [T],£ € [M], the authorities process the token
bi ¢,(¢) by performing the following steps:

1. A4; computes and publishes the preliminary vote
fp; as:
7
ﬁiZ(h¢MQ%mu ) = %60 Cimi(ai(0) )
gl th gl

)

alongside a NIZKP that proves this computation
correct. A; proves that #;; is correct with the
NIZKP version of Protocol [I]and using:

I {4 —_ L +
tr; = (7)) = g Cimtoyen T4i)

alongside a NIZKP that proves this computation
correct. A proves that #;; is correct with the
NIZKP version of Protocol [T]and using:

Vo0
u:g«,‘bz(f)’ Z:g7

Once that all final votes have been computed, the ac-
tual tallying is performed.

Let R, be the number of valid tokens given to the
{-th candidate (i.e. the number of preferences re-
ceived by said candidate), and let F; be the number
of decoy tokens given to the ¢-th candidate. Clearly
T =R;+F, Vle][M]. The count Ry can be com-
puted with the following steps:

1. Both 4; and 4, can compute g% (as (g% )0‘2 and
(go‘lé)o‘lfl respectively). A4; can prove the correct-
ness of this value by publishing a NIZKP (from
Protocol [T)) computed using:

/ !
m:aZ7 u=g, Z:gaé7

_ o - oy
M—g/, Z_g[7

A, can prove the correctness of this value by pub-
lishing a NIZKP (from Protocol [T)) computed us-
ing:

1 off
w:al7 u=g, Z:g[’

o = oy

u=g-t, =8
In practice, each authority may publish half of the
values.

. computes and publishes g™* = (g™)" an
N d publishes g%k @)% and

g = (go‘f)k. Then A, proves that g% is correct
by publishing a NIZKP (from Protocol [T)) com-
puted using:

o=k, u

8, =8,

=g g%,

and that g** is correct by publishing a NIZKP
(from Protocol|l) computed using:

oy
b

H

0*):7\'7 u=4g, =8,

oy

u=g-, =8

. 4, computes Y\ x|, and publishes gMILI¥,

Then A4; proves that gWZiT:l"; is correct by pub-
lishing a NIZKP (from Protocol[I)) using:

T
/ T ¥
m:Z‘xiv u=g, Z:gzlzlxla

i=g", I=g

noting that any observer can compute the value
T ¥ T /
gzt*lxt = H lgxl

T /
0‘1:‘):1':1"1',

. S1m1larly, A, computes ): 1%/ and publishes

g™ YL1% . Then A, proves that g% Y514 is correct
by publishing a NIZKP (from Protocol [T) com-
puted using:

T

T U

w=)x, u=g, =g,
=

=g, z=g*ha,

. T 1" "
again, anyone can compute g=i=1% =[], g% .

. Given that any observer can compute the value:

T
T . .
g(x/():izlx,+Rkk+F/;k) _ Htf’i’

and that:

g(X/:‘Z,-T:l o X1 () _ OWZ o ¥l ;’

Xi— g i=1 ; g
then anyone can compute'

T (gfsziT:lxi) g (L | xi+Rek+FL)

()



6. Ry and F; can now be computed by brute force,
giving the number of preferences received by the
{-th candidate.

Given a positive integer T € N, it is possible to rep-
resent it in 7 + 1 ways as a sum of two non-negative
integers. Given that the number of valid and decoy
votes must sum up to the number of actual voters T,
it follows that the number of possible values for ¥ is
T + 1, so the effort of computing R, and F; is linear in
the number of actual votes.

4 USABILITY

In order to cast a vote, the voter has to remem-
ber which are the P valid v-tokens among the M in
their ballot. This can be an usability issue when P
and M grow. To help the voter remembering the
position of the valid tokens, we can exploit error
correcting codes. We can see the information on
which tokens are valid as a binary vector of Fi/ with
constant weight P. We can exploit constant-weight
codes (FS96) to encode these vectors as a vector of
the space ¥ and then use a [n, >, shortened Reed-
Solomon code (Rot06) to add error-correction capa-
bilities. With this approach the voter has only to re-
member n elements of I, with the added bonus that

up to “=* errors can be automatically corrected.

Example 1. We can encode the information about
which tokens are valid with a 6 digits PIN that cor-
rects up to two errors (and therefore also an inversion
of two digits, which is a fairly common error). To do
so we set q =9, n =06, »x =2. With this encoding
we can cover any value of P if M < 8, and values of
P<30orP>M-3ifM<13 (since in these cases
() < ).

Example 2. With a short 3-letter sequence (case-
insensitive) that automatically corrects one error, we
can encode the information about which tokens are
validforM <6, M=TANP<2, M<25A(P=1VP=
M —1), by setting g =25, n =13, 3c = 1. Adding a let-
ter to the sequence (n =4, »x = 2), we can cover more
cases:

M<11,
M=12A(P<4VP>38),
M<16A(P<3VP>M-3),

Finally, we highlight that, with the DVNIZKPs
and the permutation received during the registrar
phase, the voter can check whether they remember
correctly the positions of the valid tokens.

S SECURITY ANALYSIS

The goal is to prove that an adversary cannot dis-
tinguish between valid and decoy v-fokens and guess
how voters cast their preferences. Since election re-
sults are obviously public, we have to avoid some triv-
ial cases in which the adversary can deduce the votes
by simply observing the results.

Therefore we assume that the adversary controls
one authority and all but two voters, and that these
two voters express distinct preferences. In particu-
lar, we let the adversary select two distinct sets of
preferences, then we randomly assign to each of the
two uncorrupted voters one set of these sets of pref-
erences. The adversary wins the security game if it
guesses correctly which voter expressed which set of
preferences, i.e. guesses the random assignment.

5.1 Security Model

The security of the protocol will be proven in terms
of vote indistinguishability (VI), as detailed in Defi-
nition[7] We will assume the presence of a malicious
authority, so the simulator in the proof will take on
the roles of the two honest authorities and of the two
voters that the adversary does not control.

To simplify our analysis we assume that the
adversary-controlled authority does not intentionally
fail decommitments or (DV)NIZKPs, so the protocol
does not abort. This is a reasonable assumption con-
sidering the application context, however it is not nec-
essary to attain security. In fact, if the adversary wins
the security game with non-negligible advantage, then
it must run the protocol smoothly with non-negligible
probability (since it outputs its guess only once the
protocol has correctly terminated).

Definition 6 (Security Game). The security game for
the election protocol proceeds as follows:

e Init. The adversary A chooses the authority and
the N — 2 voters that it will control (i.e. the ad-
versary knows which are the valid and decoy v-
tokens of these voters). The remaining two voters
are called free voters. The challenger C takes the
role of the other authorities and the free voters.

e Phase 0. A and C run the Setup and Registrar
phases of the protocol, interacting as needed.

Phase 1. The adversary votes with some or all of
the voters it controls.

Challenge. The challenge phase is articulated as

follows:

1. A selects two distinct sets of preferences
Py # Py, with B; C [M), #P; = P fori= 0,1, and
sends them to C;



2. C flips a random coin u € {0,1} to determine
which preference set the first free voter will use,
ie. P = f’,u, setting also P, = 15@1;

3. € constructs two random ballot assignment
maps 01,0 : [M] — [M] such that §;(£) refers
to a valid token if and only if { € P;, fori=1,2;

4. finally, C votes by sending to the candidate Cy,
Ve € [M], the &1 (¢)-th and §(€)-th tokens of
the first and second free voter respectively.

e Phase 2. The adversary votes with some or all of
the voters it controls.

e Phase 3. A and C run the Tallying phase of the
protocol, and the election result is published.

» Guess. The adversary outputs a guess y' of the
coin flip that randomly assigned the voting pref-
erences of the two free voters.
A wins if i = p.
Definition 7 (Vote Indistinguishability). An E-Voting
Protocol with security parameter 0 is VI-secure if, for
every probabilistic polynomial-time adversary A that
outputs a guess i of the coin flip u (as described in
the security game of Definition[6)), there exists a neg-
ligible function M such that Ply/ = u] < % +n(0).

In the following theorem we prove our voting pro-
tocol VI-secure under the DDH assumption in the se-
curity game defined above.

Theorem 1. In the Random Oracle Model (ROM), if
the DDH assumption holds, then the protocol of Sec-
tion[3.1is VI-secure, as per Definition|[7}

Proof. Suppose there exists a polynomial time adver-
sary A, that can attack the scheme with advantage €.
We claim that a simulator 8 can be built to play the
decisional DH game with advantage §. The simula-
tor controls the random oracle that defines the hash
function H, and starts by taking in a DDH challenge:

(g.A=g"B=g"5),

withE = g% or & =R = g.
First we consider the case in which the adversary
controls Ay, the simulation proceeds as follows.

 Init. The adversary chooses the N —2 voters to
control. Without loss of generality we assume that
the two free voters are associated to v and v,.

* Setup. 8 chooses uniformly at random in Z,, the
values X;, O, Ji¢, and Z; ¢ for all i € [2], £ € [M],
and implicitly sets for all i € [2], £ € [M]:

X =%+ (=1)b,

/ ~
yij =a-yiu,

O(/E:a%i[,

12 ~
Zig=ayig-

8 chooses the other values for authorities 4; and
4, following the protocol.

In the improbable case that a = 0, the DDH prob-
lem is trivially solvable (g% = g = 1). If a # 0,
since a and b come from an uniform distribution,
then also these implicit values are uniformly dis-
tributed, so the choices of the simulator are indis-
tinguishable from a real protocol execution.

Note that 8 can compute all the values g"ﬁ/, g“ﬁz,

gyé“f , gZ;-“ , either normally (when the parameter has
been explicitly chosen) or as follows:

ngi/ :g/‘:i'B(_l)iv

y/. ), Vi
g il :A)t,(7

/ -
Oy __ A0y

gi=A",
o ~

gt = A%l

for all i € [2], £ € [M]. Therefore, 8 can simulate

the setup phase, exploiting the RO to simulate the

NIZKPs for x7, oy, y; , z; , for i € 2], £ € [M].

Registrar Phase. For the voters associated to v;

with 3 <i < N, § can simulate this phase follow-

ing the protocol normally (since all relevant pa-
rameters have been explicitly chosen), while for

i € [2] 8§ does the following:

1. A computes the initial step of the ballot 130,,- on
behalf of 4y and proves its correctness with the
appropriate DVNIZKPs. By rewinding A and
exploiting the control of the random oracle, 8
is able to extract from the DVNIZKPs the val-
ues of k, A, and Z;  for all £ € [M] (see (SLS21)).
Moreover, since 4y communicates the set of in-
dexes of valid tokens V; to the voter associated
to v; (that is controlled by the simulator), 8 can
reconstruct the values of the ;¢ for all £ € [M].

2.8 computes step 1 of the ballot

1_71,1' = (Bl.i,/f)(fe[M] as:

by ;¢ = A%itGie(Cietaitsi) =G (= 1)
L gat(Cietxi) g e [M] (1)

where = of Equation holds iff = g® in
the DDH challenge. Since it controls the voter
associated to v;, 8 can forge the DVNIZKPs ex-
ploiting the value ¢;. In order to hide from A
which tokens are valid, these DVNIZKPs are
forged using random values.

3. 8 can perform step 2 on behalf of 4, normally,

then A computes step 3 on behalf of 4, and
proves its correctness.

4. Finally 8 computes the final ballot

bi = (bi7g)(4€[M] as:

biy = AYNi,UZg(Giﬁni(é)ﬂ‘;*‘fi) _Efi,ﬂ)’gfg(*l)

2 Yie(Oim () i) 2)



where again = of Equation (2) holds if and only
if = = g% in the DDH challenge.
* Voting: Phases 1, 2, and the Challenge are per-
formed as in Definition [6]
 Tallying. Without loss of generality, suppose that
only the v; with i € [T] have voted. For ¢ € [M], §
carries on with the simulation as follows:
1. 8 computes the preliminary and final votes on
behalf of 4; and A4, following the protocol
without problems. In fact, for i € [2], we have:

o & v
A A )
Yiviy  Pidi)  Yidi(0)
and these values are known to S.
2. & computes and publishes the values

g% =A%% ¢ c [M], and simulates the
proofs of correctness.
3. Finally note that 8§ can compute:
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L

T T T
X =% —b+% +b+2x§’ =% +H+ ) i,

=1 i=3 =3

so for the rest of the tallying phase § can follow
the protocol.

* Guess Eventually A will output a guess ¢ of the
coin flip performed by & during the Challenge. §
then outputs O to guess that £ = g if i’ = u, oth-
erwise it outputs 1 to indicate that E is a random
group element R € G.

The case in which the adversary controls A4; and the
case in which the adversary controls 4,, proceed sim-
ilarly. If 4; is corrupted, the main difference is that §
implicitly sets:

OCIEI =a- 0y,

/! ~ — ~
Yig =aYig, Zig=a-yis,

while o, ¥}, 7} , are chosen normally.

If 4, is corrupted, the main difference is that §
implicitly sets:

X =%+ (—1)b,

while x is chosen normally.

Essentially, in all three cases when E is not ran-
dom the simulator 8§ gives a perfect simulation. This
means that the advantage is preserved, so it holds that:

1

3 +€.

On the contrary, when E is a random element R € G,
every token and vote belonging to the free voters be-
comes independent from the values that would have
been computed by following the protocol (since they
are simulated using the random value R), so A can
gain no information about the votes from them, while

]P)[S(gaAvBa E= gab)

0] =
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the tally is always correct. Since the security game is
structured in such a way that the tally and the tokens
of the other voters (i.e. the values where & is not used
in the computation by 8) do not give any information
about the coin flip u, we have that:
1

Therefore, 8§ can play the DDH game with non-
negligible advantage 5. O

5.2 General properties of the protocol

The general properties of a vote system introduced
in Section [2.3] can all be proved for the protocol de-
scribed in Section 3.11

Proposition 1 (Correctness). If the underlying BB is
insert-only (as described in Section[2.4)), then the pro-
tocol is correct, as per Definition[l]

Proof. This property derives directly from the prop-
erties of the bulletin board: since it is insert-only cast
votes cannot be altered or erased. As specified at the
end of the voting phase (see Section [3.1.3)), forged
ballots are not accepted. This means that only the
voter to whom the v-fokens have been issued is able to
cast them since the adversary does not have the sign-
ing key s; of honest voters. Finally, in case of multiple
ballots cast by the same voter only the most recent one
is considered, preventing double voting. O

Proposition 2 (Vote-Coercion Resistance). In the
ROM, if the DDH assumption holds, then the proto-
col is vote-coercion resistant, as per Deﬁnition@

Proof. In order to comply with the coercer’s request,
a voter associated to v; € V, has to assign the valid
tokens to (C; 1,...,Cip). Since the Registrar Phase is
performed in a protected environment, only the voter
associated to v; knows which tokens are valid, and
cannot give a meaningful proof of this fact to A as dis-
cussed at the end of the registrar phase (Section[3.1.2).

Thanks to Theorem [I} in the ROM, if the
DDH assumption holds, then the protocol has vote-
indistinguishability and the only way to determine if a
vote expresses a specific choice is to distinguish valid
and decoy tokens. Since A cannot do so, all the infor-
mation that can be gained from the votes is given by
the final tally. This means exactly that the probability
of A detecting that a voter in V. has not followed its
instruction is the same in ¥ and 5. O

The proof of the following propositions are
straightforward adaptations of the proofs of Proposi-
tion 5, 7, 8 of (SLS21)).



Proposition 3 (Fairness). In the ROM, if the DDH as-
sumption holds, then the protocol is fair, as per Defi-
nition

Proposition 4 (Privacy). In the ROM, if the DDH as-
sumption holds, the bulletin board is publicly read-
able and insert-only (see Section[2.4), then the proto-
col is private, as per Definition

Proposition 5 (Verifiability). In the ROM, if the DDH
assumption holds, and the bulletin board is publicly
readable, then the protocol satisfies both universal
and individual (end-to-end) verifiability, as per Def-
inition4)

6 CONCLUSIONS

In this paper we have generalized the two-candidates-
one-preference e-voting protocol of (SLS21) into
an M-candidates-P-preferences protocol. We have
tweaked the system of ZKPs that ensure transparency
and full auditability of the process by using non-
interactive proofs to enhance efficiency, exploiting
designated-verifier proofs to preserve plausible denia-
bility against coercers. Moreover, we have abandoned
the blockchain infrastructure in favor of a more tradi-
tional bulletin board.

Compared with the two-candidates protocol, our
generalization introduces an additional authority, that
is required in order to properly mask the multiple
valid and decoy tokens in each ballot, so that the sys-
tem remains secure even if one authority is corrupt.

Note that the authorities can perform the setup
phase asynchronously, and possible DOS attacks may
be mitigated with a long-lasting Registrar phase. We
can also adopt the strategy of dividing the authorities
in independent triplets that manage restricted pools
of voters (much like how large-scale elections are di-
vided in voting districts). This approach limits the
damage in case that more than one authority is cor-
rupted, speeds up the final step of tallying (whose
computational cost is linear in the number of votes
managed by a triplet of authorities), and enhances the
overall efficiency by distributing the workload.

Efficiency and scalability. The computational and
resource cost of our protocol scales linearly in N - M,
where M is the number of candidates and N is the
number of voters managed by a triplet of authorities.
In particular:

* In the setup phase the size of the published values
is:

2-2MN+N+M+1)-2|G|+|Z,|) +N - v,
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where |v| is the size of a pseudonymous identi-
fier. Ay stores 2+ NM secret elements of Z,, A;
stores 2NM + N + M secret elements of Z,, A
stores NM + N + M secret elements of Z,. Every
authority also stores the N identifiers.

* In the registrar phase each of the N voters receive
data of size:

23M - |G| +24M - |Z| +|v],

and have to store also the designated and
signing key-pairs which have additional size
|G|+ |Zp| + |K| + |s| (|K| and |s| are respectively
the size of the public and secret signing keys).
The size of the data published on the BB in this
phase is:

N- (M- |G|+ |K|+[v]).

* In the voting phase the size of the data published
on the BB is:

(T +revote) - (|v|+ |sig|+M-|C]|),

where T is the number of voters that cast a valid
ballot, revote is the number of duplicate votes,
|sig] is the size of the signature, |C| is the size of
a candidate’s identifier.

¢ In the tallying phase the size of the data published
on the BB is:

M- [(6T +15)- |G|+ (2T +5)-|Zy] .

The effort required by an observer to compute the
results of the election is:

M-[(2T +5)-hash+ (87 +9) -mul
+ (10T +21)-exp+ (5T + 10) - check],

where hash denotes the cost of computing the
hash digest on 6 elements of G, mul denotes the
cost of the group operation (multiplication) in G,
exp denotes the cost of the scalar operation (expo-
nentiation) in G, check denotes the cost of com-
paring two elements of G.

Once the results have been published, to
check them we save a computational effort of
[M-(T —1)] - (mul +2exp -+ check), since we
do not have to re-compute R, and F;.

Security. The protocol fulfills all the security prop-
erties required for an e-voting protocol to be consid-
ered secure, proven in the random oracle model under
the classical Decisional Diffie-Hellman Assumption.
Regarding coercion resistance, the differences be-
tween definitions are subtle. In its strongest form,
coercion resistance includes protection against forced



abstention attacks and randomized voting. Random-
ized vote attacks are less effective in swaying an
election result with respect to other coercion attacks,
while forced abstention may be more effective, but it
would require more effort, since more voters have to
be controlled in order to achieve an impacting result.
In fact, in our protocol the attacker should identify ev-
ery coerced voter by requesting a signature, in order
to link the voter’s identity with a public key and its
ballot, as published in the BB.

Although our definition of coercion resistance
seems weaker, we remark that the most prominent e-
voting protocols with stronger defence against coer-
cion assume that there is a moment during the vot-
ing phase when the voter is not under control of the
attacker. The Amun protocol, instead, protects the
voter even if during the voting period there is con-
stant surveillance from the coercer. Therefore, this
may be preferable when the voting period is limited,
since, in this scenario, it is more likely for the attacker
to maintain continuous control.

To have any kind of anti-coercion resistance is
essential that there is a moment where the voter re-
ceives some private information that can then be con-
cealed from the coercer with plausible deniability.
In the description of the protocol we have assumed
that the communication between the voter and the au-
thorities during the registrar phase happens in a safe
and controlled environment, where the coercer has no
power. This requirement is equivalent to exchang-
ing information through untappable channels. This
is a common assumption in coercion-resistant proto-
cols (JCJ10; | CCMO8).

In the scenario where the voting period is limited,
some voters may struggle to access a secure physical
voting booth, potentially leading to disenfranchise-
ment. However, the longer duration of the registration
phase provides more opportunities for voters to reach
a secure registration booth.

The authors of (LMST22; BLM™23) propose a
method to protect voters from coercion by exploit-
ing surveillance gaps. They assume that an adversary
cannot maintain constant surveillance over a voter,
allowing the voter to act freely during these gaps.
In particular, when a voter registers, the voting cre-
dential is not issued immediately, but after a ran-
dom delay. A DVNIZKP is sent after another ran-
dom wait to prove the credential’s correctness. These
random waiting periods allow a coerced voter to ex-
ploit surveillance gaps to forge a credential and its
DVNIZKP. This approach can also be applied to our
protocol, where the credential can be seen as the set
of indexes of the valid v-tokens.
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Final remarks. Many election systems allow voters
to cast a blank ballot or to leave some of the P possible
preferences unexpressed. This feature can be easily
added to the protocol presented here by simply adding
P dummy candidates that represent blank choices.
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