
SECDSA: Mobile signing and authentication
under classical “sole control”?

Eric R. Verheul

KeyControls
The Netherlands

eric.verheul@keycontrols.nl

Version 1 July 2024

Abstract The 2014 European eIDAS regulation regulates strong elec-
tronic authentication and legally binding electronic signatures. Both re-
quire user “sole control”. Historically smartcards are used based on direct
interaction between user and relying party. Here sole control is provided
by giving users both physical possession and control of the cryptographic
key used for signing/authentication through a PIN. Such classical sole
control is required in the 1999 electronic signature directive by some in-
terpretations. The eIDAS regulation repeals the directive and explicitly
relaxes its sole control requirements in a trade-off between security and
usability. This allows user interaction to be outsourced to intermediary
parties (authentication providers, signing services). This also allows mo-
bile applications as user friendly alternatives for smartcards. However,
current mobile platforms are only equipped with limited cryptographic
hardware not supporting secure knowledge factors (PINs) controlling
keys. The eIDAS relaxation raises concerns on sole control; intermediary
parties should not be able to act as man-in-the-middle and impersonate
users. In this paper we present a simple cryptographic design for signing
and authentication on standard mobile platforms providing classical sole
control. We argue that our design can meet the highest eIDAS require-
ments, effectively introducing a new signature category in a 2016 decision
of the European Commission. We also sketch a SECDSA based imple-
mentation of the European Digital Identity Wallet recently proposed by
the European Commission as part of the eIDAS regulation update.

Keywords: legally binding signing, limited cryptographic hardware,
mobile platforms, sole control, non-repudiation, strong authentica-
tion

? Patent pending.

Contents
1 Introduction . 2

1.1 Background and motivation . 2
1.2 Role of public key cryptography and certificates 2
1.3 Classical versus eIDAS “sole control” . 3
1.4 Link with the eIDAS assurance levels . 6
1.5 Cryptographic objectives of this paper . 8

2 Cryptographic primitives, notation and conversions 10
2.1 Mathematical context and notation . 10
2.2 The Digital Signature Algorithm (DSA) . 11
2.3 Schnorr proofs of knowledge . 13

3 SECDSA . 15
3.1 SECDSA context . 15
3.2 Idea behind SECDSA . 17
3.3 Full SECDSA description . 20
3.4 SECDSA security enhancements . 26
3.5 An alternative SECDSA PIN change protocol 30

4 Decentralized SECDSA use cases (EU-ID Wallet) 32
4.1 EU-ID wallet authentication and selective disclosure 33
4.2 EU-ID wallet signing . 36
4.3 Off-line decentralized authentication and selective disclosure 39
4.4 Comparison between SECDSA and EU-ID Wallet requirements . 41

5 Centralized SECDSA use cases . 42
5.1 Centralized SECDSA authentication . 42
5.2 Centralized SECDSA signing . 43

6 References . 44
A Examples of PIN-binder constructions . 47

1. INTRODUCTION

1 Introduction

1.1 Background and motivation

The 2014 European eIDAS regulation [18] stipulates requirements for both elec-
tronic authentication and signing. This regulation introduces three assurance
levels for authenticators i.e. the technical means of user authentication towards
Service Providers, e.g. a token, smartcard or mobile application. These eIDAS as-
surance levels are Low, Substantial and High. For this paper the latter two levels
are most relevant. These two levels require strong authentication, i.e. based on at
least two of the three authentication factors: possession (something the user has),
knowledge (something the user knows) and biometrics (something the user is).
Strong authentication is also required in the financial sector by the European
Payment Service Directive (PSD2), cf. [19,21]. This is known as Strong Cus-
tomer Authentication (SCA). Although we focus on techniques meeting eIDAS
requirements these are also applicable to PSD2. The eIDAS regulation also in-
troduces various forms of electronic signatures of which qualified signatures are
most relevant for this paper. These signatures provide the highest assurance and
are legally equivalent to handwritten ones. Following the eIDAS regulation [18]
we call the device (software and/or hardware) holding a private signing key the
Signature Creation Device (SCD). The SCD protection of the private key is cru-
cial. Indeed if this key was stolen or copied from the SCD by a fraudster, he
could sign on behalf the user.

It is fundamental in the eIDAS regulation that the user has sole control over
its authenticator/SCD. Before the eIDAS regulation sole control was regulated in
the Electronic Signatures Directive 1999/93/EC. This steered discussion among
member states. Some “purist” member states, e.g. Germany, interpreted it as
a requirement that the user has both physical possession and control of the
cryptographic key used for signing (and by extension used for authentication).
We refer to this as classical sole control as the eIDAS regulation (repealing the
directive) explicitly relaxed sole control requirements so that physical control of
the keys by the user was not (or no longer) required. As we further elaborate on
later, this relaxation in the eIDAS regulation was driven by usability allowing for
mobile applications. In this paper we present a cryptographic design supporting
mobile strong authentication and qualified signing under classical sole control. In
cryptography, signing is closely related to non-repudiation, i.e. the property that
the user cannot denied having signed something. Although this notion is closely
related to sole control, it surprisingly is not mentioned in the eIDAS regulation
or the signature directive.

1.2 Role of public key cryptography and certificates

Although the eIDAS regulation is formulated technology neutrally, in practice
signing and authentication is typically based on public key cryptography and
certificates. The left side of Figure 1, illustrates how public key cryptography
can facilitate electronic signing. Here the user generates a public-private key pair
where the private key (depicted red) allows signing messages. In practice a short
representation of the message (hash) is signed, cf. [53]. The public key (depicted

2

1. INTRODUCTION

yellow) is provided to service providers and allows for signature verification. A
basic property is that the private key cannot be derived from the public key. To
link the public key with the user identity, these are typically bound in a so-called
public key certificate digitally signed by a Certificate Authority (CA). The public
verification key of the CA is publicized, cf. [37]. Obviously, the certificate quality
is dependent of its user binding. As indicated in the right side of Figure 1, public
key cryptography can also facilitate authentication by letting the user sign a
random challenge generated by the service provider. After signature verification,
the service provider deduces the user identity from the certificate.

Figure 1. Two prominent PKI use cases

1.3 Classical versus eIDAS “sole control”

For best protection, private keys are historically placed in a smartcard, i.e. a sep-
arate integrated circuit card forming the possession factor. On the smartcard an
application exists that allows signing with the private key but that precludes ex-
porting it. Also, signing with the private key is under the control of a knowledge
factor called Personal Identification Number (PIN). That is, a PKI smartcard is
an archetype for an SCD that allows for authentication and signing under clas-
sical sole control. A PKI smartcard can conveniently meet the highest eIDAS
requirements: the “eIDAS High” assurance level for authentication and qualified
signing. Of course this is under the assumption that the certificates sufficiently
provide in user binding (e.g. based on a face-to-face registration process). Des-
pite it security advantages, a PKI smartcard has serious usability shortcomings
for both users and service providers:

1. PKI smartcards are user unfriendly
Users need to carry around smartcards and equipment (readers) interacting
with them, making them user unfriendly. An SCD implementation in the
form of a mobile application would be preferable from a usability perspective.

2. Service providers want outsourcing authentication and signing
The direct interaction between service provider and user PKI smartcard also
requires user technical support for it. Service providers want to avoid this
and want to outsource this to specialized intermediate parties only providing
the “happy flow” end result, i.e. an authentication or signature, to the service
provider. This is also known as the centralized approach.

3

1. INTRODUCTION

Figure 2. Legal overview combined with recommendations/standardization

These shortcomings were addressed in the eIDAS regulation and further regu-
lations and standards by lowering the Electronic Signatures Directive require-
ments. Figure 2 gives an overview of the legal situation combined with the recom-
mendiations/standarisations. The former is indicated with continuous lines and
the latter with dashed lines. In contrast with this directive, the eIDAS regulation
stipulates the user should have sole control [only] with “a high level of confid-
ence”, cf. [18, Article 26]. This allows for other authenticators and SCDs than
based on PKI smartcards. Most notably it allows for mobile applications where
an intermediary party sits between the user and the service provider handling
user interaction. See Figure 3. In case of authentication such parties are known
as authentication providers and in case of signing as (remote) signing services.
OpenID Connect [5] and SAML [50] are protocols facilitating the centralized
approach as indicated in Figure 3.

4

1. INTRODUCTION

Figure 3. Setup allowed by eIDAS regulation

The SCD requirements for signing under classical sole control, e.g. with smart-
card like devices, are fully specified in a 2016 eIDAS implementing decision of the
European Commission [24]. These require smartcard-like SCDs to be Common
Criteria (CC) certified at EAL 4+ against the protection profile in the European
standard EN 419211 [10]. The (technical) requirements for remote signing indic-
ated in Figure 3, where there is no classical control, are not yet specified at
European level. This is left to the member states by [24]. To date only seven
member states (Austria, France, Germany, Italy, the Netherlands, Slovakia, and
Spain) have notified such national schemes [25]. We refer to [40] for further
background. The national requirements in [25] vary but there seems to be con-
sensus that the user signing keys at the signing service need to be managed in a
remote Signature Creation Device (rSCDev) conforming to the European stand-
ard EN 419221-5 [11]. In practice such an rSCDev takes the form of a so-called
Hardware Security Module (HSM). This is further elaborated on in the upcom-
ing European standard EN 419241-2 [13] which specifies a Signature Activation
Module (SAM). Compare Figure 4. According to the standard, the SAM forms
the bridge between the “signer interaction component” (SIC) in the user envir-
onment authenticating the user and the HSM holding the user signing key on
the other. In practice the SIC is an authenticator from our context, allowing the
user through the SAM to instruct the HSM generating qualified signatures. For
qualified signing EN 419241-2 requires so-called Sole Control Assurance Level
2 (SCAL2) to be implemented between the SIC and the SAM. The SCAL2 re-
quirements are further specified in the first of the European standard, i.e. EN
419241-1 [12]. In this standard its is noted that SCAL2 is “aimed to achieve the
same sole control assurance level as what would be achieved by a stand-alone
QSCD”, i.e. a PKI smartcard. We conclude that European standards seem to
confirm the necessity of classical sole control, at least between the authenticator
and the SAM.

5

1. INTRODUCTION

Figure 4. Setup of European standards EN 419221-5 and EN 419241-2

1.4 Link with the eIDAS assurance levels

Regarding the authentication between the user and the SAM the European
standard EN 419241-1 requires at least eIDAS assurance level Substantial. The
most stringent security requirement the eIDAS regulation [23] poses on authen-
ticators is that they must be resistant against a certain attack potential, respect-
ively Moderate and High for authenticators of assurance level Substantial and
High. The eIDAS guidance [27] recommends this term to be interpreted in the
sense of the Common Criteria methodology for IT security evaluation, i.e. as
Appendix B of [36]. This means that, in Common Criteria terms, the eIDAS
guidance recommends that authenticators of assurance level Substantial (High)
are tested against AVA VAN.4 (AVA VAN.5).

For at least three reasons it seems remarkable that not eIDAS assurance
level High is required in the European standard EN 419241-1. First, legally
binding signing can be considered as one of the most security critical applications,
thus requiring the highest assurance level available. Secondly, one can argue
eIDAS assurance level High is what “a high level of confidence” refers to in
Article 26 of the eIDAS regulation. Thirdly, and perhaps strongest, the CC
certification against the European standard EN 419211 [10] of a smartcard-like
SCD includes AVA VAN.5 (Advanced Vulnerability Assessment level 5). This
consists of testing for resistance against attacker potential High which is also
the recommended basis for the eIDAS assurance level High, cf. [23,27]. The
eIDAS assurance level Substantial is only recommended to provide resistance
against attacker potential Moderate, i.e. AVA VAN.4. So not only that the user
authenticating part of remote signing is not required to be Common Criteria
certified as the other parts are, it also requires less resistance against attacker
potential than the other parts. This is illustrated in Figure 2. It also appears
that the authenticating part of remote signing in [13] is not consistent with the
corresponding SCD security requirements in [10]. As a chain is only as strong
as its weakest link, this seems inconsistent. For consistency, one can argue that
the European Commission decision [24] should strive for a better middle ground
between remote and smartcard-like signing by two changes. Firstly it should only
require that smartcard-like SCDs are resistant against attacker potential High,
i.e. without requiring full CC certification. Secondly it should require that the
authenticating part of remote signing should adhere to eIDAS assurance level
High. We will argue that SECDSA can achieve all this.

6

1. INTRODUCTION

Regardless of legal requirements; a remote signing service sitting between the
user and the service provider should (ideally) not be able to act as man-in-the-
middle. That is, it should cryptographically be precluded that the intermediary
party is able to authenticate or sign on behalf of the user without his consent.
This property is closely related to support of classical sole control, but also to
support of end-to-end security between the user and the relying party (service
provider). In the our context this implies protection of both integrity and au-
thenticity of the communication between the user and the relying party. This
is conceptually the simplest technical way avoiding man-in-the-middle attacks.
Such end-to-end security is not required in the eIDAS regulation [18,23] or in
the European standard [13]. That is, a man-in-the-middle attack on a qualified
signing service is not required to be precluded cryptographically. In fact, as far
we know all qualified remote signing services in practice are theoretically sus-
ceptible to such attacks. We note that such end-to-end security does seem to
be required in the NIST authentication guidelines [48]. For its highest assurance
level (FAL3) NIST requires an “holder of key assertion” where the user (and not
any other party) proves possession of an authentication key to the relying party.

Also note that this risk does not occur in the classical setup of Figure 1 where
there is direct interaction between the device and the service provider providing
both classical sole control and end-to-end security. All and all, the centralized
approach depicted in Figure 3 allowed by the eIDAS regulation can be considered
a trade-off between security and usability.

Ideally one would not to have to make such a trade-off in the centralized setup
and to still have both classical sole control and end-to-end security. In Figure
5 we have depicted the desired situation which is based on eIDAS assurance
level High and in which both classical sole control and end-to-end security are
supported as indicated.

Figure 5. Cryptographic security objectives

The eIDAS guidance [27] seems to implicitly require that a possession factor
of an authenticator consists of cryptographic hardware holding (signing) keys

7

1. INTRODUCTION

in non-exportable fashion like smartcards do.1 Luckily standard mobile plat-
forms (Apple/iOS, Android) typically have such cryptographic hardware. This
is known as the Secure Enclave in the context of Apple/iOS [1] and hardware
backed keystore in the context of Android [3]. Around 90 percent of current
smartphones have such hardware a number that will increase to a 100 percent in
a few years.2 This also indicates that the use of such cryptographic hardware as
possession factor is “state of the art” in strong mobile authentication. Authen-
tication deals with disclosing user personal data to relying parties and typically
also allows access to user personal data stored at relying parties. In that sense
strong authentication can be seen as a technical data protection measure. Article
32 of the European General Data Protection Regulation (GDPR) [17] stipulates
that such measures should take into account “state of the art”. In other words,
in addition to the eIDAS guidance also the GDPR seems to require the use of
cryptographic hardware as a mobile authentication possession factor.

Complicating in achieving classical sole control and end-to-end security is
the limited nature of this hardware. It allows managing signing keys in a non-
exportable fashion like smartcards but does not similarly support PINs con-
trolling signing keys. So one of the challenges in achieving our objectives is to
design PINs in way that they support classical user sole control.

The eIDAS regulation [23] requires authenticators to be resistant against a
certain attack potential. As indicated earlier, the eIDAS guidance [27] recom-
mends this term to be interpreted in the sense of the Common Criteria method-
ology for IT security evaluation, which is not trivial to accomplish. So even if one
argues that end-to-end security between user and service provider is not form-
ally required in the eIDAS regulation, it certainly is helpful in proving resistance
against (high) attack potentials.

1.5 Cryptographic objectives of this paper

In this paper we present a novel cryptographic technique called Split-ECDSA
(SECDSA) achieving a mobile authentication and signing application with the
objectives indicated in Figure 5. That is, classical user sole control and end-
to-end security. One of the SECDSA innovations is that relying parties do not
get access to the actual signatures produced by the mobile device based on two
authentication factors, but only to zero-knowledge proofs that these signatures
were formed and exist. SECDSA is based on the standard cryptographic hard-
ware in mobile devices that is already required for a possession factor through
binding with non-exportable signing keys, cf. Footnote 1. On this limited cryp-
tographic hardware also an additional knowledge factor (PIN) is based. This
hardware is not the bottleneck in meeting the highest eIDAS assurance level.

1 The guidance writes: “[...] it is important that reproduction of it [possession-factor]
by a third party is so difficult and unlikely that the risk of this is negligible.”

2 Based on https://deviceatlas.com/blog/most-popular-iphones (nearly) all
iPhones used are 5s or higher which possess a Secure Enclave. Android 5 and onwards
has a hardware backed keystore; starting from Android 7 support was mandatory.
According to Android Studio the respective installed base percentages are 94,1 and
73,7. See https://youtu.be/XZzLjllizYs.

8

https://deviceatlas.com/blog/most-popular-iphones
https://youtu.be/XZzLjllizYs

1. INTRODUCTION

This is indicated from the successful peer review and notification of three eIDAS
High mobile authenticator applications which are also based on this limited
hardware. This relates to solutions from the Netherlands, Latvia and Belgium,
cf. [14,15,16]. However, the (cryptographic) designs and properties of the three
solutions mentioned are not made public whereas ours is openly specified in this
document. We note that the European digital identity wallet recently proposed
by the European Commission, also seems to require open specifications. See
Section 4.

To minimize platform dependence our design does not rely on biometrics.
Application of biometrics not only introduces various technical and compliance
complications but also requires issuers (remotely) verifying that registered bio-
metrics belong to users. One can also argue that “sole control” is difficult to
achieve with biometric authentication as this can be coerced. These complica-
tions also emerge from the successful eIDAS High peer-review and notification
of the Latvian and Belgium mobile authentication solutions. Their eIDAS no-
tifications are conditional under disabling biometric authentication, cf. [15,16].
Despite all these objections raised against the use of biometric authentication,
in Section 3.5 we do hint how this could be supported within SECDSA.

Document outline

• Section 2 contains the cryptographic prerequisites used in this paper.
• Section 3 contains the basic idea behind SECDSA and formalizes a full de-

scription in the form of a signing S-APP useable as SECDSA building block.
• In Section 4 we apply the S-APP in example SECDSA use cases in a de-

centralized approach allowing users selectively disclosing attributes based on
eIDAS High authentication. This coincides with required functionality in a
European proposal [20] for a European Digital Identity Wallet as part of an
update of the eIDAS regulation [18].

• In Section 5 we apply the S-APP in example SECDSA use cases in a cent-
ralized approach.

• In SECDSA, so-called PIN-binders play an important role. Appendix A
describes various PIN-binder constructions based on limited cryptographic
hardware also supported in Apple or Android based mobile devices.

In this paper we also motivate that SECDSA allows implementing authentica-
tion/signing in conformity with various laws and regulations. In Figure 6 below
we have indicated some of these laws and regulations and the sections where this
is discussed.

9

2. CRYPTOGRAPHIC PRIMITIVES, NOTATION AND CONVERSIONS

Figure 6. Laws and regulations supported by SECDSA

2 Cryptographic primitives, notation and conversions

2.1 Mathematical context and notation

We let Fr denote the Galois field consisting of the integers modulo a prime num-
ber r. We let F∗r denote the multiplicative subgroup, i.e. the non-zero elements.
See [53]. We sometimes implicitly use that Fr, respectively F∗r , corresponds to
the integers in the interval [0, r − 1], respectively [1, r − 1] and write operations
in combination with “mod r”. We let |r| = dlog256(r)e denote the size in bytes
of r, i.e. the minimal number of bytes to represent r.

Central in our constructions is an additive group G = (〈G〉,+) of order q
generated by a base point (generator) G. We use additive notation as this is
customary in the context of elliptic curve groups we deploy in practice. We
assume that q is prime. For any natural scalar n and element H ∈ 〈G〉 we
define the (point) multiplication nH as adding H n-times, e.g. 2H = H +H. As
nH = mH if and only if n = m mod q we can represent scalars as elements of Fq.
This allows for compact notation as x·G, −x·G for x ∈ Fq and y−1 ·G for y ∈ F∗q .
We sometimes omit the “·” symbol and simply write xG. A cryptographically
secure (pseudo) randomly chosen element from a set is denoted by ∈R.

The required cryptographic security of the group (〈G〉,+) can be formu-
lated in the intractability of three problems. The first one is the Diffie-Hellman
problem: computing the values of the function DHG(xG, yG) = xyG for any
x, y ∈ Fq (implicitly given but unknown). The second problem is the Decision
Diffie-Hellman (DDH) problem: given A,B,C ∈R 〈G〉 decide whether C =
DHG(A,B) or not. An equivalent definition is as follows. Any quadruple of
points (G,A,B,C) in 〈G〉 can be written as (G,A, xG, yA) for some (unknown)

10

2. CRYPTOGRAPHIC PRIMITIVES, NOTATION AND CONVERSIONS

x, y ∈ Fq. DDH amounts to deciding whether a random quadruple of points in G
is a DDH quadruple, i.e. if x = y. The DH problem is at least as difficult as the
DDH problem. The last related problem is the discrete logarithm (DL) problem
in 〈G〉: given A = xG ∈ 〈G〉, with x ∈ Fq then find x = DLG(A). It easily follows
that the DL problem is at least as difficult as the DH problem.

We assume that all three introduced problems in G are intractable which
implies that the size |q| of the group order should be at least 256 bits. Although
strictly speaking not necessary, we assume in our constructions that G is a group
of points over a field Fp on a curve with simplified Weierstrass equation

y2 = x3 + ax+ b (1)

for some suitable a, b ∈ Fp. That is, each non-zero group element takes the form
(x, y) where 0 ≤ x, y < p satisfying Equation (1) modulo p. Compare [32]. We
denote the zero element (point at infinity) as O. For practical implementations
one can use one of the NIST curves, e.g. P-256. Compare [44].

A Personal Identification Number (PIN) is a numeric string of length typ-
ically 4, 5 or 6. For generality and simplicity of presentation we choose a more
generic PIN representation. A PIN is a byte array of length L, i.e. of the form
{PL−1, PL−2, . . . , P0} with all 0 < Pi < 256, i.e. representing a non-zero byte
value. Typically the byte values correspond to printable ASCII-values in which
case the PIN can also be represented as a string. For example, the ASCII value
of the digits 0, 1, 2, 3, 4 are 0x30, 0x31, 0x32, 0x33, 0x34 in hexadecimal repres-
entation. Consequently the PIN “01234” is a PIN of length 5 and is represented
by the array {0x30, 0x31, 0x32, 0x33, 0x34}.

2.2 The Digital Signature Algorithm (DSA)

Part of our novel setup for strong authenticators is a method to strongly bind
the user PIN to a digital signature. This method works for several standard
digital signature algorithms including the most commonly used DSA. See [44].
We specify this method for ECDSA, the Elliptic Curve variant of DSA, from
which the generic method for DSA easily follows. We first describe the working
of ECDSA. The context of this is a group G = (〈G〉,+) introduced earlier. Here
the user has a private key u ∈ F∗q and a public key U = uG. Algorithms 1 and 2
below specify ECDSA signing and verification following [32]. In this construction
a secure hash function H(.) appears, cf. [53,43]. Such a function takes as input
byte arrays of arbitrary input and outputs a byte array of fixed length equal to
|q|. The latter can be accomplished by taking a secure hash function with larger
output size and truncating its output.

11

2. CRYPTOGRAPHIC PRIMITIVES, NOTATION AND CONVERSIONS

Algorithm 1 ECDSA signature generation
Input: message M , private key u
Output signature (r, s).

1: Compute H(M) and convert this to an integer e.
2: Select random k ∈ {1, ..., q − 1}.
3: Compute kG = (x, y) and convert x to integer x̄.
4: Compute r = x̄ mod q. If r = 0 go to Line 1.

5: If r mod q = 0 then go to Line 1.

6: Compute s = k−1(e+ u·r) mod q. If s = 0 go to Line 1.
7: Return (r, s).

We remark that in the situations where cryptographic hardware is used, the
calculation of the hash value of message M in Line 1 of Algorithm 1 is typically
not performed by this hardware. This is typically due to communicational or
computational restrictions in using the hardware. In these circumstances the
hash value of message M is pre-computed in the application calling the hardware
and then sent to the hardware. The hardware then converts the hash value to
the integer e of Line 1 of Algorithm 1 and performs the following Lines 2-7. This
setup is known as raw signing, i.e. generation of a signature directly on basis of
a hash value without a deploying a hash operation. The cryptographic hardware
in Apple and Android based platforms, cf. Section 1, also support raw signing.

Algorithm 2 ECDSA signature verification
Input: message M , signature (r, s), public key U
Output: Acceptance of rejection of the signature.

1: Verify that r, s are integers in interval [1, q−1]. On failure reject the

signature.

2: Compute H(M) and convert this to an integer e.
3: Compute w = s−1 mod q.
4: Compute t1 = e·w mod q and t2 = r·w mod q.
5: Compute X = t1·G+ t2·U .
6: If X = O reject the signature.
7: Convert the x-coordinate of X to an integer x̄; compute v = x̄ mod q.
8: If v = r accept the signature otherwise reject it

For our design it will be convenient to have an alternative but equivalent repres-
entation of an ECDSA signature and corresponding verification algorithm. This
representation, called the full representation, takes the form (R, s) ∈ 〈G〉×[1, q−
1]. The alternative verification algorithm is specified in Algorithm 3 below.

12

2. CRYPTOGRAPHIC PRIMITIVES, NOTATION AND CONVERSIONS

Algorithm 3 Alternative ECDSA signature verification
Input: message M , signature (R, s), public key U
Output: Acceptance of rejection of the signature.

1: Verify that O 6= R ∈ 〈G〉 and that s is integer in interval [1, q − 1]. On

failure reject the signature.

2: Compute H(M) and convert this to an integer e.
3: Compute w = s−1 mod q.
4: Convert the x-coordinate of R to an integer r̄; compute r = r̄ mod q.
5: Compute G′ = wG and U ′ = wU
6: Compute X = eG′ + rU ′.
7: If X = R accept the signature otherwise reject it

Although straightforward, for further reference we prove equivalence between
the two representations of ECDSA signatures and verifications algorithms.

Proposition 2.1 Let Y be an ECDSA public key and M a message, then the
following are equivalent:
1. One possesses a valid ECDSA signature (r, s) on message M .
2. One possesses a valid full ECDSA signature (R, s) on message M .

Proof: Suppose one possesses a valid signature (r, s) on message M . Then it
follows that (X, s) is a valid full ECDSA signature where X is as in Line 5
of Algorithm 2. Conversely suppose one possess a full valid signature (R, s) on
message M . Then it follows that (r, s) is a valid ECDSA signature where r is as
in Line 4 of Algorithm 3. �

2.3 Schnorr proofs of knowledge

To prevent certain attacks it will be fruitful to have techniques allowing parties
(the user and the AP) proving they possess certain secret values (keys) without
providing any information on those. Such proofs are known as zero-knowledge
proofs of knowledge (ZPK). In this section we recall the ZKPK techniques of
Schnorr, cf. [52]. Here it is convenient to also allow other generators U, V of G
then G.

We let D = d·U be a public key in G with respect to U with corresponding
private key d ∈ F∗q . The private key holder forms

E = d·V (2)

and sends E and V to another person (verifier) together with his public key
D and generator U (implicitly defining d). Now suppose the holder wants to
prove the form of E in Formula (2) to the verifier. That is, the holder wants to
provide the verifier some information T allowing the later to verify this. In fact,
this should be publicly verifiable (also known as “transferable”): anybody should
be able to verify this. The simplest way to do this would be full disclosure of
the holder private key d. However, we require that the information T provided
should not leak any secret information on d.

The Schnorr proofs of knowledge [52] allow for this in an interactive protocol
between the holder and the verifier. In these proofs the holder first commits to

13

2. CRYPTOGRAPHIC PRIMITIVES, NOTATION AND CONVERSIONS

certain values related to Formula (2), the verifier then sends a challenge which
the holder can only answer with a suitable response if Formula (2) holds. These
proofs of knowledge do not “leak” secret information (“zero-knowledge”) on d
as it can be shown that the verifier essentially does not get any information he
could not have generated himself.

The Schnorr protocols can also be made non-interactive (and transferable)
using the Fiat-Shamir heuristic [31]. Here the verifier challenge is replaced with a
secure hash of the holder commitment. That means that the holder can generate
a transcript that allows the verifier (and in fact anybody) to verify that Formula
(2) holds. We denote such transcript by

DT (V
d→ E |D = d·U).

In the following two algorithms we specify how such transcripts can be created
and verified proving Formula (2). Their correctness and security follow from [52].
The transcripts not only prove Formula (2) to the verifier but also that the prover
knows private key d. In this sense the transcripts can be considered an extension
of the Schnorr signature algorithm based on private key d, cf. [34, Section 6.10].
As in Section 2.2 we let H(.) represent a hash function producing byte arrays
equal to the byte length |q| of the group order q. In Algorithm 4 we allow
including an additional byte array A binding it to the proof of knowledge. This
further strengthens the resemblance with Schnorr signatures. The byte array A
can be empty, which actually is the case in the applications in this paper.

Algorithm 4 DTc(V
d→ E |D = d·U,A)

Creation of transcript by holder of a private key d and binding to byte array A.

1: Select random k ∈ {1, ..., q − 1}.
2: Compute k·U, k·V (i = 1, . . . , n), and convert to byte arrays Ū , V̄ .

3: Compute byte array H(Ū || V̄ ||A) of size |q| and convert it to integer r
4: If r = 0 then go to Line 1.

5: Compute s = k + r · d mod q.
6: If s = 0 then go to Line 1.
7: Return (r, s).

In Line 2 of Algorithm 4 we write each of the elliptic curve points in their x- and
y-coordinates and concatenate these as input to the hash function in Line 3.

Algorithm 5 DTv(V,E,DT , D,A)
Verification of transcript DT = (r, s) by verifier using public key D = d·U .

1: Verify that V,E ∈ G on failure Return False.

2: Verify that r ∈ {1, 28·|q| − 1} and s ∈ {1, q − 1}, on failure Return False.

3: Compute Q1 = s·U − r·D, Q2 = s·V − r·E
4: if Q1 = O or Q2 = O Return False.

5: Convert Q1, Q2 to byte arrays Q̄1, Q̄2.

6: Compute byte array H(Q̄1 ||Q̄2 ||A) of size |q| and convert it to integer v.
7: If v = r Return True otherwise Return False.

We remark that by the nature of Schnorr based proofs of knowledge there is
a negligible probability (in the order or 2−8·|q|, i.e. 2−256 in the context of the

14

3. SECDSA

NIST curve P-256, that Algorithm 5 is erroneously successful. For simplicity
we do not further stipitate that in the algorithms. In Section 3.4 we show how
one can deploy ECDSA to provide alternative proofs of knowledge albeit at the
expense of some theoretical security.

3 SECDSA

In this section we specify Split-ECDSA (SECDSA) allowing two factor based
signing and authentication on standard mobile devices under classical sole con-
trol. In Section 3.1 we describe the SECDSA context, the basic idea behind
SECDSA is in Section 3.2 from which we arrive at the full specification in Sec-
tion 3.3 by first developing some further heuristics. In Sections 3.4 and 3.5 we
outline some SECDSA enhancements and alternatives respectively.

3.1 SECDSA context

In the SECDSA context we will design a signing APP (S-APP) allowing users
generating signatures that are publicly verifiable by relying parties. S-APP forms
the basis for several applications which are outlined in Sections 4, 5. S-APP
consists of the following elements (cf. Figure 7):

1. User and Relying Party
A user that wants to generate SECDSA signatures on messages for a rely-
ing party that is verifiable with the user public key certificate. The signing
process is based on a possession and a knowledge factor referred to as PIN.

2. Platform
The physical manifestation of S-APP for the user, e.g. a mobile device such
as a smartphone.

3. Operation System (OS)
The OS supports interaction with the outside world including the user, forms
the basis for the user application environment and the interaction of that
with the Secure Cryptographic Environment (see below).

4. Signing Application (S-APP)
In S-APP all the functional part of the signing application is implemen-
ted and some of the security part. S-APP has its own local storage that is
typically separated by the local storage of other applications by the OS.

5. Secure Cryptographic Environment (SCE)
The SCE allows applications like S-APP to securely manage cryptographic
keys, e.g. for signing. An application like S-APP can instruct SCE to generate
secret cryptographic keys which can then be used in certain cryptographic
operations but cannot be exported from the SCE. This allows such keys to
form a possession factor. The OS will typically only allow applications using
their own key material and not those of others.

6. Certificate Issuer (CI)
A trusted party that issues public key certificates binding user identities Id
with SECDSA public keys Y.

15

3. SECDSA

7. Signing Facilitator (SF)
A trusted party that assists S-APP in generating the SECDSA signatures.
The certificate issuer and signing facilitator roles can be combined. The
necessity of and rationale for the SF which will be explained below.

In the context of Apple devices, the SCE is formed by its secure enclave [1]
whereas in the context of Android based devices the SCE is typically formed
by its “hardware-backed keystore” [3]. The secure enclave consists of a separ-
ate cryptographic processor whereas the “hardware-backed keystore” is typically
based on a trusted execution environment based on the device processors. How-
ever, Android also supports separate cryptographic processors known as Strong-
Box, similar to the Apple secure enclave. If a StrongBox is available its use is
advisable over the use of the hardware backed keystore.

Over 80-90 percent of current smartphones have such hardware, cf. Footnote
2 in the introduction. The Apple secure enclave is certified against FIPS 140-2
level 2. Also the StrongBox is required to be common criteria certified against
assurance level EAL5 augmented by AVA VAN.5, i.e. resistant to attack poten-
tial High. Compare Section 1.3.3 Both Apple and Android SCEs support (raw)
ECDSA signing based on the NIST curves [44]. In all cases ECDSA private keys
are non-extractable from the SCE.

We remark that the (Apple) secure enclave should not be confused with a
secure element. Although it has the same abbreviation, it typically has the form
of an enhanced SIM card in a mobile phone, also known as UICC (universal
integrated circuit card). Such enhanced UICCs can be considered as PKI smart-
cards and can be embedded by the device manufacturer or issued by the telecom
provider (as “SIM”). Generally speaking UICC usage by third parties introduces
several technical and financial (access is typically not free) issues. By contrast the
Apple secure enclave and the Android hardware-backed keystore and StrongBox
(if available) are freely useable by developers.

Figure 7. S-APP Context

3 See https://support.apple.com/en-us/HT209632 and Section 9.11.2 of
https://source.android.com/compatibility/11/android-11-cdd.

16

https://support.apple.com/en-us/HT209632
https://source.android.com/compatibility/11/android-11-cdd

3. SECDSA

Establishing a possession factor in the context above is easy: generate a public-
private key pair in the SCE (SCE-key) that allows for signing messages. So
the question is how to implement an additional possession factor (PIN) in this
setup. This PIN could be managed by a separate server. As part of the signing
process the user would then sign the message with the SCE-key and separately
authenticate to the server by entering his PIN. This server would then form
a new signature with a signing key under control of the server. However, such
a setup conflicts with ‘sole control’, moreover it will not allow for (two-factor)
end-to-end security to relying parties. Indeed, how would the server prove to a
relying party it really was the user that entered the PIN?

3.2 Idea behind SECDSA

The above discussion leads to the question if it is feasible to form a signing key
in the user platform that is based on both a SCE-key and on a key derived from
a PIN (PIN-key), i.e. based on some key derivation function [49]. Given the lim-
ited capabilities of a typical SCE this appears impossible in general. However
the characteristics of the (EC)DSA algorithm allow for a special construction ac-
complishing precisely that. This construction is presented in the next algorithm
and it properties are proven in the proposition following it.

Algorithm 6 Split-ECDSA (SECDSA) signature generation
Input: message M , SCE-key u ∈ F∗q , PIN-key σ ∈ F∗q
Output signature (r, s).

1: Compute H(M) and convert this to an integer e.
2: Compute e′ = σ−1·e mod q
3: Select random k ∈ {1, ..., q − 1}
4: Compute kG = (x, y) and convert x to integer x̄
5: Compute r = x̄ mod q. If r = 0 go to Line 1

6: If r mod q = 0 then go to Line 1

7: Compute s0 = k−1(e′ + u·r) mod q. If s0 = 0 go to Line 1

8: Compute s = σ·s0 mod q
9: Return (r, s)

Note that the pair (r, s) appearing in Lines 3-7 of Algorithm 6 is just a raw
ECDSA signature on e′ with respect to the SCE-key u. Compare the remarks
following Algorithm 1 describing ECDSA. This means that Lines 3-7 simply
consist of calling the SCE to generate a raw signature on e′ with respect to the
SCE-key u. In Line 2 the input of the SCE signature is modified using the PIN-
key as is the outputted signature itself in Line 8. The next proposition states
that this results in a signature based on both the SCE-key and the PIN-key.

Proposition 3.1 Algorithm 6 returns an ECDSA signature (r, s) on message
M based on the private key u·σ mod q, i.e. the product of the SCE-key u and the
PIN-key σ.

Proof: We show that the ECDSA signature validation (Algorithm 2) always
returns True with input M , (r, s) and public key Y = u·σ·G. To this end, clearly

17

3. SECDSA

r, s are integers in the interval [1, q− 1] as required in Line 1 of Algorithm 2. As
we remark above (r, s0) is a raw ECDSA signature on e′ based on private key
u. By inspecting Algorithm 2 (ECDSA verification) it follows that r is equal to
the x-coordinate of

e′·s−10 G+ r·s−10 U = e·σ−1·s−10 G+ r·s−10 U

= e·s−1G+ r·σ·s−1U)

= e·s−1G+ r·s−1(σ·uG) (3)

The first equality follows as e′ = σ−1·e mod q by the construction in Line 2 of
Algorithm 6. The second equality follows as s−10 = σ·s−1 mod q which directly
follows from the construction in Line 8 of Algorithm 6. The last equality follows
from a direct verification and the definition of public key U .

It follows that (r, s) is a raw ECDSA signature on e based on private key σ·u.
That is, (r, s) is an ECDSA signature on message M based on private key σ·u. �

SECDSA security is based on the security of raw ECDSA signing, i.e. not let-
ting the cryptographic hardware compute the hash value itself but instead but
letting it sign only the result, i.e. the hash value. We let a hash value be a byte
array representing a big integer of the size of |q|, e.g. 32 bytes in the case of the
NIST curve P-256. In the raw signing context, the hash value is computed by the
application calling the cryptographic library/hardware. As cryptographic hard-
ware typically has computational or communicational restraints, raw signing
is typically used in practice. This is why most (if not all) cryptographic lib-
raries/hardware including the iOS/Secure Enclave, Android/HBK+Strongbox,
TPMs, PKCS11 based HSMs support this.

With raw ECDSA signing security we mean that the following attack is not pos-
sible: an attacker can request the SCE (cryptographic hardware) to sign a series
of chosen hash values H1, H2, ...,Hn with the SCE-key u (and public key u·G)
and is then able to generate a signature based on SCE private key u on a value
H that was not requested by the attacker. Note that the raw ECDSA signing se-
curity notion is stronger than what is commonly used for security of a signature
scheme, cf. [39]. The latter only allows the attacker to choose messages to be
signed that first need to be hashed. In raw ECDSA signing security, the attacker
has the freedom to choose hash values which gives him more freedom. Never-
theless, one can argue that raw ECDSA signing security is commonly accepted
to hold, as ECDSA raw signing is commonly used and supported by most (if
not all) cryptographic libraries/hardware. We can similarly define raw SECDSA
signing security by replacing the SCE private key u with the SECDSA private
key σ·u (with public key Y = u·σ·G). The following proposition shows that raw
SECDSA signing security follows from raw ECDSA signing security.

Proposition 3.2 If one can break raw SECDSA signing security, one can break
raw ECDSA signing security.

Proof: First of all, from the series of equalities (3) appearing in Proposition 3.1
one can conclude the following (actually the converse from what is used in this

18

3. SECDSA

proposition): If (r, s) is an ECDSA signature on hash value e with private key
u·σ (and public key σ·u·G) then (r, s·σ−1) is an ECDSA signature on hash value
e·σ−1 with private key u.

Now suppose that an attacker can break SECDSA security, i.e. the attacker can
call Algorithm 6 to SECDSA sign specific hashvalues H ′1, H

′
2, ...,H

′
n leading to

a SECDSA signature (r, s) on a hashvalue H ′ not requested. From the above
conclusion it then follows that (r, s·σ−1) is signature on hashvalue H ′·σ−1 with
private key u. Also, in Algorithm 6, the calls for signing with private u are
H ′1·σ−1, H ′2·σ−1, ...,H ′−1n ·σ which are all different from H ′·σ−1 as H ′1, H

′
2, ...,H

′
n

and H ′ are different. We have arrived at an successful attack on raw ECDSA
signing security with the underlying possession key u. �

We remark that SECDSA uses two different keys (an SCE-key and a PIN-key)
to form an ECDSA signature, but works fundamentally different than ECDSA
threshold signing [41] that also deploys two keys. In the latter one key is un-
der control of the user and the other by another party, e.g. an authentication
provider in our context. In SECDSA both keys are under control of the user.
Moreover, by their nature threshold signing does not allow for implementation
in standard cryptographic standard cryptographic hardware in mobile devices.

Proposition 3.1 now naturally gives rise to SECDSA public-private key pairs,
where the private key is the product of a SCE-key and a PIN-key. To this end,
it is convenient to introduce the notion of a PIN-binder. This is a key derivation
function P(., .) enabling deriving a secret cryptographic PIN-key P(K,PP) from
a master key KP (also known as PIN-binder key) and a PIN P , i.e. an array of
non-zero bytes of length L. The basic KDF security property is that, provided
the master key K is suitable chosen, the derived keys are as secure as truly
random keys in practice. Compare [49]. In SECDSA we require a PIN-binder to
take non-zero values, i.e. in F∗q . The idea is that, like the SCE-key u, the PIN-
binder key KP is also generated and maintained in the SCE and that the secret
cryptographic operations leading to the PIN-binder value take place inside the
SCE. As the SCE needs to support this, the latter places restrictions on the PIN-
binders we can use. In Appendix A we describe a few PIN-binder constructions
when the SCE is formed by a Apple or Android based mobile device. If an
Android device supports a StrongBox then its use as SCE is advisable over the
use of the hardware backed keystore. See the discussion on page 16. In fact, when
a StrongBox is available one could also base the PIN-binder on combining the
StrongBox and the hardware backed keystore. This would consist of running the
PIN based cryptographic output of one as input to the other resulting in a PIN-
key dependent of keys in both the StrongBox and the hardware backed keystore.
This would provide some additional security over only using the StrongBox. In
the next algorithm we formalize the generation of SECDSA public-private key
pairs. Here we assume that a PIN-binder is chosen in S-APP.

19

3. SECDSA

Algorithm 7 SECDSA key generation in S-APP
Input: user PIN
Output: SECDSA public key Y = u·P(KP ,PIN)·G with u an SCE-key and KP

a PIN-binder key both maintained in the SCE.
1: S-APP instructs SCE to generate ECSDA key u with public key U = u·G
2: S-APP instructs the SCE to generate a PIN-binder key KP

3: The user is asked to choose a PIN // entered twice to avoid errors

4: S-APP generates σ = P(KP , PIN) and computes Y = σ·U
5: S-APP deletes σ
6: S-APP returns Y

We also refer to u and U appearing in Line 1 as the SCE private and public key
respectively. The public key Y is called the SECDSA public key and y = u·σ the
SECDSA private key. By Proposition 6 it is now obvious how SECDSA signing
takes place. We have fully formalized this in Algorithm 2 below.

We note an attacker with both local access to call the SCE and possession of
public key Y would be able to mount a brute-force attack on the PIN. Indeed,
such an attacker would execute lines 4-6 of Algorithm 7 for all possible PINs until
he meets one with a public key equal to Y. This is why in the full SECDSA
specification (Section 3.3) the public key is treated as sensitive data that are
not stored inside S-APP and encrypted outside S-APP. Also, as will be clear
in the next section, the SECDSA public key Y is not stored (in plaintext) at
either the certificate issuer or the signing facilitator. In theory an (internal)
attacker of these trusted services could retrieve the SECDSA public key Y of a
user by gaining unauthorized access to a certain encryption key (ZKP-key a).
However, the attacker can only brute-force the user PIN under the condition the
attacker has also access to the user platform/SCE. One can argue that this risk is
manageable in practice as it is comparable with the risk related to PIN Unlocking
Keys (PUKs). Such PUKs allowing resetting the PIN code and are commonly
retained at PKI smartcard issuers. Indeed, an (internal) attacker could in theory
also gain unauthorized access to a user PUK. However, such an attacker can only
reset the PIN under the condition he also has access to the user smartcard. We
further think that brute-forcing the PIN in SECDSA context will considerably
harder for an adversary than using a PUK code. Indeed, before such PIN brute-
forcing can take place the attacker first has to bypass the platform security, e.g.
“jailbrake” or “root” the device without losing the data stored on it. In Section
3.4 we discuss two further controls mitigating local PIN brute-force attacks:
usage of Hardware Security Modules (HSMs) and controlling the time it takes
calculating a PIN-key.

3.3 Full SECDSA description

We first develop some further heuristics on the basic SECDSA idea leading to
the final SECDSA specification in Protocols 1 and 2. As indicated above the
public key Y cannot be stored on the device and also needs to appear encrypted
in the user certificate to preclude the PIN is brute-forceable from the mobile
device in principle. In Protocol 1 we specify how the certificate issuer encrypts a

20

3. SECDSA

SECDSA based public key before placing them in the certificate. This protocol
also includes the signing facilitator introduced earlier.

To further explain the role and necessity of the signing facilitator; it is well
known that one can recover the ECDSA public key used from a valid ECDSA
signature on a known message M . Compare [9, Section 4.6]. This implies that
also the SECDSA signature returned by Algorithm 6 needs to be encrypted when
leaving S-APP. In Lines 12-15 of Protocol 2 it is specified how S-APP encrypts
an SECDSA signature. It follows that verification of a SECDSA signature by a
relying party must somehow take place on basis of an encrypted public key (in
the certificate) and an encrypted signature.

Now if this encrypted signature was completely formed by S-APP alone then
an attacker would be able to perform a PIN brute-force with SCE access. It
follows that the encryption of the SECDSA signature must be performed in two
steps: one step by the S-APP and one by another party: the signing facilitator.
The facilitator will only perform this cryptographic operation if the signature
sent by S-APP was correct, implicitly implying that the PIN entered was correct.
To this end, the signing facilitator maintains a PIN-counter; which is incremented
with each incorrect signature sent by S-APP. When the PIN-counter exceeds
a certain threshold, the signing facilitator accepts no further signing requests
from the user. In Lines 18-26 of Protocol 2 we specify how the signing facilitator
produces the SECDSA signatures in their final form.

In the following protocols we let, as before, H(.) be a secure hash function
with output length equal to |q| bytes. We also assume that the certificate issuer
and signing facilitator have securely agreed a ZKP private key a ∈R F∗q and
published the ZKP public key G′ = a·G. This public key could be wrapped in
a separate certificate or could be part of the certificate holding the certificate
verification public key of the certificate issuer. We further assume there is a
suitable encrypted connection setup, e.g. based on HTTPS, between the partners
in the protocol.

Protocol 1 specifies issuance of a certificate on a raw SECDSA public key.
The certificate holds the raw key in a homomorphically encrypted form, allowing
for convenient SECDSA signature verification as shown in Protocols 2 and 8.

Protocol 1 Certificate issuance to User/S-APP by Certificate Issuer (CI)

1: User/S-APP requests CI for certificate

2: CI establishes secure session and establishes user identity Id
3: User chooses PIN, S-APP generates SECDSA key-pair Y using Algorithm 7

4: S-APP sends Y and Proof-of-Possession of y to CI
5: CI verifies the Proof-of-Possession of y, on failure protocol ends

6: CI generates an array of |q| random bytes CId (certificate identifier)

7: CI computes Y′ = a·Y. // encryption of Y
8: CI generate ZKP DT = DT (Y

a→ Y′ |G′ = a·G) // G′ is ZKP-public key

9: CI generates certificate C based on Id,Y′,H(CId)
10: CI sends CId, C, DT , to User

11: User/S-APP verify C and DT , if successful S-APP stores CId, C
12: S-APP and CI delete Y and DT // sensitive data

21

3. SECDSA

The certificate in Line 9 of Protocol 1 can be based on the X.509 standard [37].
This consists of registering a SECDSA “SubjectPublicKeyInfo” ASN.1 structure
holding G′,Y′ at standardisation organisations. In this way issuing and revoc-
ation of SECDSA certificates can also benefit from standard mechanisms, like
Certificate Revocation Lists (CRLs) and the Online Certificate Status Protocol
(OCSP), cf. [30].

One can base the identity verification in Line 2 on an existing means of au-
thentication, i.e. earlier issued to the user. This is also allowed by the eIDAS regu-
lation, cf. [23, Section 2.1.2]. The personal data that the means of authentication
can provide to the certificate issuer can also be placed in the issued certificate.
In some cases the means of authentication is a separate eID-application placed
on an electronic passport/identity card conforming to the ICAO specifications4.
In this situation the personal data residing on the electronic passport/identity
card includes a facial image of the user and is signed by the issuing government.
When the certificate issuer can securely link this personal data to the identity
provided by the means of authentication, the certificate issued could include the
personal data residing on the electronic passport/identity card. In many situ-
ations, e.g. in the Netherlands, this linking can be done based on the user social
security number that is contained in both data.

The zero-knowledge proof DT in Line 8 allows the user/S-APP to validate
that Y′ is correctly formed, i.e. as in Line 6. Using this zero-knowledge proof is
optional as the certificate issuer is trusted by the user. It is essential that Y,DT
are deleted in Line 12 by both S-APP/User as the CI as these can be used to
check if a guess of Y (based on a guess of the PIN) is correct. That is, with
Y,DT an attacker can brute-force the PIN if he has access to the SCE, which
we want to avoid. At the expense of an extra round (three instead of two) we
can avoid that the certificate issuer gets knowledge of the raw public key further
enhancing security/sole control. This is shown in Protocol 3 in Section 3.4.

We remark that the hash value H(CId) in Line 9 could be used as the
certificate serial number. Theoretically there could be two certificates then with
the same serial number but the probability is about 2−|q|, thus negligible in
practice.

We also envision the use of Protocol 1 when the user wants to change his
PIN. In this application the verification in Line 2 is then handled by letting the
certificate issuer act as relying party in Protocol 2. The user signs his request for
a PIN-change (and certificate re-issuance) using his existing SECDSA certificate
(and PIN). After issuance of the new certificate, the existing certificate is directly
revoked by the certificate issuer. In Section 3.5 we sketch an alterative giving
the users the ability to change their PIN without changing their SECDSA public
key (and certificate). As is indicated in ths section this is of only limited value
and also introduces a (limited) security risk.

4 https://www.icao.int/publications/pages/publication.aspx?docnum=9303

22

https://www.icao.int/publications/pages/publication.aspx?docnum=9303

3. SECDSA

When the user is issued a certificate by Protocol 1 he can use S-APP to
generate SECDSA based signatures on messages for relying parties. As explained
in the above heuristics the generated SECDSA signatures must be encrypted and
S-APP and a signing facilitator. SECDSA signing by S-APP for a relying party
(RP) is specified in the following protocol which includes assistance by a signing
facilitator (SF).

Protocol 2 SECDSA signature generation by S-APP for RP assisted by SF
Input: message M
Output: SECDSA signature SigRP

1: User opens S-APP and indicates he wants to sign a message.

2: S-APP retrieves CId and certificate C from local storage

3: S-APP sets up session with SF by sending CId and C
4: SF verifies certificate C // correctly signed not revoked

5: SF computes H(CId) and verifies that certificate C is based on it

6: SF looks up PIN-counter for certificate C, on failure initialises one

7: SF checks if PIN-counter exceeds threshold, if so returns Error to S-APP

8: SF validates C, on success sends random nonce N to S-APP

9: S-APP retrieves Y′ from certificate C
10: S-APP requests user to enter PIN

11: S-APP calls SCE to compute σ = P(KP , PIN). // inside SCE

12: S-APP computes H = H(M), H ′ = H(H||N) and converts H ′ to integer e.
13: S-APP computes e′ = σ−1·e mod q
14: S-APP calls SCE to compute raw signature (r, s0) on e′ with SCE-key u

// inside SCE

15: S-APP computes s = σ·s0 mod q.
16: S-APP transforms (r, s) to full form (R, s) using Proposition 2.1.
17: S-APP computes w = s−1 mod q
18: S-APP computes S′ = w·G′, S′′ = w·Y′ // G′ is ZKP-public key

19: S-APP Generates ZKP DT1 = DT (G′
w→ S′ |S′′ = w·Y′)

20: S-APP sends SigSF = {H, (R,S′, S′′), N,DT1} to SF

21: S-APP deletes all transient data

22: SF verifies DT1 on S′, S′′, G′,Y′, N on failure returns Error to S-APP

// also check nonce N from Line 8

23: SF converts the x-coordinate of R to integer r̄; computes r = r̄ mod q
24: SF computes H ′ = H(H||N) and converts H ′ to integer e
25: SF computes R′ = a·R // ZKP-key a
26: Verify if R′ = e·S′ + r·S′′

On failure, SF increments PIN-counter with 1, returns Error to S-APP

On success, SF resets PIN-counter to 0

27: SF generates ZKP DT2 = DT (R
a→ R′ |G′ = a·G)

28: SF sends signature SigRP = {SigSF, R
′,DT2} to RP

// mechanism depends on use case, cf. Sections 4, 5

Note that Lines 1-20 of Protocol 2 always results in an ECDSA signature sent to
the signing facilitator. Depending on whether the user has entered the right PIN
it will be correct or not. By including the nonce N sent by the SF in Line 8 in
the SECDSA signature, it is impossible for an adversary to successfully replay

23

3. SECDSA

the output of Line 16 in Protocol 2 to reset the PIN-counter. This is particulary
important as this output is part of the final signature sent to relying parties.

The concatenation in Line 12 of Protocol 2 corresponds with a very basic
implementation. Many variations exist to incorporate the message M and nonce
N in the core SECDSA signature. To prevent potential subtle security issues, it
is best not to use the concatenation of H,N but a suitable injective function.
For instance, one can encode H,N as a DER (Distinguished Encoding Rules,
[38]) encoded SEQUENCE and take that as input for the hash function.

We remark that the implicit PIN validation by the Signing Facilitator in
Line 26 of Protocol 2 can valuable as part of security monitoring. It allows, for
instance, to detect PIN guessing by monitoring the number of invalid PIN entries
and when they appear. This is actually an advantage of SECDSA over a PIN
used in a regular PKI smartcard.

We did not specify in Protocol 2 how the SECDSA signature is sent to a
relying party. In Sections 4 (respectively 5) we discuss various setups arranging
for that in a decentralized (respectively centralized) way. Regardless of how the
relying party receives it, Algorithm 8 specifies how it can be verified.

Algorithm 8 Encrypted SECDSA signature verification by Relying Party
Input: message M , User certificate C, SigRP

Output: True of False

1: Parse SigRP = {SigSF, R
′,DT2} on failure return False // inputcheck

2: Parse SigSF = {H, (R,S′, S′′), N,DT1} on failure return False// inputcheck

3: Verify certificate C, on failure return False // signed, not revocated

4: Retrieve Y′ from certificate C
5: Verify DT2 on R′, R,G′, G on failure return False // Algorithm 5

6: Converts the x-coordinate of R to an integer r̄; compute r = r̄ mod q
7: Verify H(M) = H on failure return False

8: Compute H ′ = H(H||N) and converts H ′ to integer e
9: Verify if R′ = e·S′ + r·S′′ on failure return False

10: Verify DT1 on S′, S′′, G′,Y′ on failure return False // Algorithm 5

11: Return True

In the heuristics developed at the begin of this section we concluded it is essental
that the raw SECDSA signature appearing in Line 16 is suitable encrypted to
prevent the SECDSA public key Y can be decuded from it allowing a PIN
brute-force with access to the user SCE. This encryption takes place in Lines
17-18 of Protocol 2 where the encrypted raw SECDSA signature takes the form
(R,S′, S′′). Note that the proof of knowledge DT1 on this encryption is zero-
knowledge implying that this leaks no information on the raw SECDA signature.
The following result proves that a PIN brute-force is not succesfully possible for
an attacker even with valid SECDSA signatures and access to the user SCE.
For simplicity we only provide an informal formulation and proof which can be
further formalized.

24

3. SECDSA

Proposition 3.3 In the context of Protocol 2 the following hold.

1. An attacker that can verify if a candidate SECDSA public Γ is correct (i.e.
equal to Y) based on the SECDSA signatures provided by Protocol 2, can
also solve the Decision Diffie-Hellman (DDH) problem in 〈G〉.

2. As we assumed the DDH problem to be intractable in 〈G〉, an attacker can-
not successfully mount a brute-force attack on the user PIN based on valid
SECDSA signatures even with access to the user SCE.

Proof: This follows as the verification indicated coincides with the verification
if the quadruple (G,Γ, S′, S′′) is a DDH-quadruple, cf. Section 2.1. �

The following result proves that SECDSA delivers sole control and end-to-end
security from the user to the relying party.

Proposition 3.4 In the context of Protocol 2 the following hold under the as-
sumption that SCE keys are not extractable from the SCE.

1. A SECDSA signature on a message M implies the existence of an ECDSA
signature created by the user’s SECDSA private key in S-APP.

2. Only through S-APP the user is able to generate a SECDSA signature on
a message M . No party, even the signing facilitator, is able to impersonate
the user in the context of SECDSA.

Proof: This first result follows from the construction of the SECDSA signature
SigRP on a message M which proves the existence of an ECDSA signature (r, s)
generated with the plain SECDSA private key y. Indeed, the verification of ZKP
DT2 in Line 5 of Algorithm 8 proves that R′ = a·R where a is the ZKP private
key. Moreover the verification of ZKP DT1 in Line 10 of Algorithm 8 proves
that S′ = θ·G′ and S′′ = θ·Y′ for some θ ∈ F∗q . By construction G′ = a·G and
Y′ = a·Y. We conclude that S′ = θ·a·G and S′′ = θ·a·Y. From the verification
R′ = e·S′ + r·S′′ in Line 9 of Algorithm 8 it thus follows that

a·R = e·θ·a·G+ r·θ·a·Y = a(e·θ·G+ r·θ·Y).

It thus follows that
R = e·θ·G+ r·θ·Y.

It thus follows that (R, θ−1) is a plain SECDSA signature on message M based
on private key y. This signature can only be generated by the user. The second
result now easily follows. �

As a proof of concept we implemented Protocol 2 and Algorithm 8 completely
in one Android Application, i.e. S-APP but also the Signing Facilitator and the
verification of a relying party. The PIN-binder was based on RSA in line with
Algorithm 10 as illustrated in Figure 8 below. This indicates that SECDSA is
easily implementable.

25

3. SECDSA

Figure 8. Output of proof of concept SECDSA APP

3.4 SECDSA security enhancements

By encrypting of both the public key and signatures in SECDSA, an attacker is
not able retrieve the user PIN from the user platform/SCE, cf. Proposition 3.3.
An attacker could therefore try to compromise the ZKP private key a stored
at either the certificate issuer or signing facilitator allowing him decrypting
SECDSA public keys. With such keys and access to the user platform/SCE,
the attacker would be able to brute-force the user PIN if he has also access to
the user platform/SCE. In these notes following Algorithm 7 we have motivated
that this risk seems manageable as it is comparable with that of handling of
so-called PUK codes in the context of PKI-smartcards. We discuss two specific
mitigating controls on this risk in this section. One control deals with making
the brute-force attack itself less feasible and the other deals with protecting the
ZKP private key a in Hardware Security Modules (HSM).

Controlling the PIN-key SCE computation time
We can control the SCE computation time for the PIN-key σ. That is, we can
control the computation time in Line 4 of the SECDSA key generation algorithm
(Algorithm 7) and in Line 11 of the SECDSA signature generation (Protocol
2). This can be simply achieved by letting this computation consist of several
recursive calls to the SCE and the PIN-binder key, i.e. letting the output of one
call be the input to the next. For instance, if we base the PIN-key on a recursive
hundred RSA decryption operations (see Appendix A) then the computation

26

3. SECDSA

time of a PIN-key will take about 3 seconds on a Samsung S10 mobile phone.
Then a five digit PIN will then take 3 days to brute-force. A PIN consisting of
five alphanumeric characters will take over 80 years to brute-force. Controlling
the computation time can be beneficial in increasing attack potential resistance
required in [23] as it increases the time to execute the attack, one of the attack
factors, cf. [36]. If the execution time takes longer than the SECDSA certificate
validity one could argue an attack is not practical.

Deploying cryptographic key and mobile application attestation
The SCEs of both Apple [2] and Android [4] provide support for key attesta-
tion. Key attestation allows the SCE to convey to outside parties that a gen-
erated (ECDSA) public key is actually generated inside a (trusted) SCE in a
non-exportable fashion. The inner workings of Apple’s key attestation are not
completely clear from [2]. Android’s attestation works by letting the SCE wrap
an SCE generated public key inside a certificate signed with private key inside
the SCE certified by Google. This private key is placed inside the SCE as part
of the device manufacturing process. This key is certified by Google by issuing
a certificate on the corresponding public. To mitigate linkability issues Google
deploys private keys that are shared among batches of devices. Also, by allow-
ing the generated certificate to include a challenge sent by an external party,
freshness of the public key can also be guaranteed to the external party.

Attestation on the SCE public key could be implemented as part of the
certificate issuance process in Protocol 1. In case of Android based devices this
could be implemented as an alternative to Step 3 of Protocol 1. There are various
ways to achieve this and we sketch one example. Here the user/S-APP sends
the SECDSA public key Y, the public SCE key U and the Google certificate
attesting the public SCE key U to the certificate issuer. From the attestation
certificate the certificate issuer can conclude U is bound to the SCE. Then the
certificate issuer would then send a random challenge RC to the S-APP. Next
the user/S-APP would perform a proof-of-possession of the private keys u and
σ = P(KP ,PIN) by sending two signatures on challenge RC. The signature
related to u would be based on ECDSA related to the public key U = u·G using
the SCE. ECDSA could also be used for private key y, i.e. an ECDSA signature
on challenge RC related to the public key Y = σ·U . Alternatively one could also
use a Schnorr signature for the latter. From these two proofs the certificate issuer
can also conclude that the user/S-APP has possession of y = u·σ as specified in
the original Step 3 of Protocol 1.

In this way assurance on the binding of the SCE key to the device, i.e. the
possession factor, is provided to the certificate issuer as part of the issuance
process. We remark that key attestation can be considered part of attestation
of a mobile application as a whole. Here relying parties can assess that a mobile
application is not tampered with, i.e. “rooted” or “jailbroken”. Both Apple’s
devicecheck [2] as Google’s Safetynet [4] provide such attestation. In SECDSA
this could be deployed by both the certificate issuer as the signing facilitator in
further risk mitigation.

27

3. SECDSA

Implementing SECDSA PIN reset
The provisioning of the SCE public key U indicated above as part of attestation
could also form the basis for convenient SECDSA “PIN reset”. The context here
is a SECDSA user that has forgotten his PIN (or has even locked it at the
signing facilitator). Issuers of PKI smartcards typically remedy this situation by
providing users with a PIN Unlocking Key (PUK) allowing them to reset the
PIN. In SECDSA PIN reset could be remedied by introducing some extra steps
in Protocol 1 we now sketch.

First of all, the user/S-APP registers the SCE public key U as part of Protocol
1, extending its attestation use indicated. S-APP represents the PIN code as a
byte array P of size L (the length of the PIN code), cf. the end of Section 2.1.
Next S-APP generates a random byte array R of size L and registers this at
the certificate issuer as part of Protocol 1. S-APP also provides the user with
P ′ = P ⊕R in a printable form, e.g. in hexadecimal format. Here “⊕” represents
the byte-wise Exclusive OR (XOR) operation. The user is urged by S-APP to
store P ′ in a safe location (outside the device).

When the user wants to reset his PIN, he invokes a special function of S-
APP. This function contacts the certificate issuer referring to CId. Then S-APP
proves possession of the private key u corresponding to SCE key U after which
the certificate issuer provides R. Next S-APP asks the user to enter P ′ enabling
S-APP to reconstruct the PIN P as P ′ ⊕ R. This allows S-APP performing a
SECDSA authentication to the certificate issuer triggering a PIN change. This
PIN change could be formed by rerunning Protocol 1 as indicated in the notes
following this protocol or by following Section 3.5.

We remark that typically P ′ would be supplemented with some check bytes/di-
gits remedying user typing errors. Additional to P ′ the certificate issuer could
also send an additional code to the user. The user would need to provide this
code to the certificate issuer after the SCE key possession proof as additional
access control before R is provided to S-APP by the certificate issuer.

Using HSMs for protecting the ZKP private key
A certificate issuer or signing facilitator could manage the ZKP private key a in
a Hardware Security Modules (HSM). The usage of ZKP private key a in the
verification in Line 25 of Protocol 2 corresponds with a so-called Diffie-Hellman
operation. This operation is commonly supported in HSM through the PKCS
#11 standard [51], through the call CKM ECDH1 DERIVE.

The generation of the zero-knowledge proof DT2 in Line 27 of Protocol 2 is
not supported in the PKCS #11 standard or otherwise commonly supported in
HSMs. So for this support one would need to develop a separate HSM module.
However, HSMs do have support for ECDSA through the PKCS #11 standard
also with respect to non-standard base points. This can used for an alternative
knowledge proof based on the assumption that one can only generate ECDSA
signatures on (pseudo)random messages if one has access to the corresponding

28

3. SECDSA

private key. This assumption is an implicit requirement for all digital signature
schemes. Although this is assumed to hold for ECDSA it not formally proven. So
using ECDSA instead of Schnorr proofs of knowledge is theoretically less secure.

We only sketch the ECDSA based alternative for DT2. It takes the form of
three ECDSA signatures on the signature SigSF sent by S-APP in Line 18 of
Protocol 2. These are based three different public-private key pairs, correspond-
ing to G′ = a·G, R′ = a·R (base point R), and G′ + R′ = a·(G + R) (base
point G+R). From the assumption it follows that the signing facilitator knows
α, β, γ ∈ F∗q such that G′ = α·G, R′ = β·R and G′ + R′ = γ·(G + R). First, it
follows that α = a by definition of the ZPK public key G′. Next, as we have

α·G+ β·R = γ(G+R)

it follows that (β − γ)·R = (γ − α)G. Now suppose that α, β, γ are not all equal
then it follows β 6= γ and

R =

(
γ − α
β − γ

)
G.

Recall that R is the commitment of the original SCE signature, i.e. the point
k·G generated in Line 3 of the ECDSA signature generation, cf. Algorithm 1.
It follows that k = γ−α

β−γ is known by the signing facilitator. As is well-known

(and easily seen) one can compute the private SCE-key from the scalar k and a
valid signature. So the signing facilitator can compute the private SCE-key. Now
observe that Protocol 2 only uses SCE signatures so we arrive at a method for
computing the private ECDSA key on basis of its signatures. This contradicts
the assumed security of ECDSA. We conclude that γ = β = α = a as required.

By similar reasoning one could also replace the proof DT1 in Line 17 of Pro-
tocol 2 by three ECDSA signatures. The relying party would then only need to
verify ECDSA signatures (six in total, three generated by S-APP and three by
the signing facilitator). This could simplify implementation as ECDSA signa-
ture verification with non-standard base points is commonly supported in cryp-
tographic libraries. The only relying party verification requiring explicit ECC
arithmetic would then be Line 9 of Protocol 8.

Avoiding that the issuer gets knowledge of raw SECDSA public key
Certificate issuing Protocol 3 below is an extension of issuing Protocol 1 avoiding
that the issuer gets knowledge of the raw SECDSA public key. In the extended
protocol, the issuer does not process information outside his HSM allowing for
PIN bruteforce, even with access to the SCE. This is a further strengthening
of the security and “sole control” property of as the design. This strengthening
comes with the moderate cost of an extra round between the S-APP/User and
the issuer: three instead of two rounds. In Protocol 3 we have also deployed key
attestation on the SCE-key U (Lines 3 and 8) as discussed on page 27. For ease
of presentation we denote P(KP ,PIN) from Algorithm 7 by P.

29

3. SECDSA

Protocol 3
Blinded certificate issuance to User/S-APP by Certificate Issuer (CI)

1: User/S-APP requests CI for certificate

2: CI establishes secure session and establishes user identity Id
3: User/S-APP generate attested SCE-key U = u·G // in key attestation

4: User chooses PIN, S-APP generates SECDSA key Y = P·U // Algorithm 7

5: S-APP chooses T ∈R F∗q, forms Ybl = T ·Y = T ·P·U // Y is blinded by T
6: S-APP generates proofs of possession of u and of T ·P (i.e. of DLU (Ybl))
7: S-APP sendsYbl, U and proofs of possession (PoPs)

8: CI verifies attestation on U and PoPs, on failure protocol ends

9: CI computes Y′bl = a·Ybl

10: CI generates ZKP DT = DT (Ybl
a→ Y′bl |G′ = a·G)

11: CI sends Y′bl and DT to User/S-APP

12: User/S-APP verifies DT , on failure protocol ends

13: User/S-APP computes Y′ = T−1.Y′bl // Y′ = a·Y
14: User/S-APP generates proof of possession (PoP) of T−1, i.e. of DLY′

bl
(Y′)

15: User/S-APP sends Y′ and PoP to CI

16: CI verifies PoP, on failure protocol ends

17: CI generates an array of |q| random bytes CId (certificate identifier)

18: CI generates certificate C based on Id,Y′,H(CId)
19: CI sends CId, C to User/S-APP

20: User/S-APP verify C, if successful S-APP stores CId, C
21: S-APP deletes Y, T and DT // sensitive data

3.5 An alternative SECDSA PIN change protocol

As indicated after Protocol 1 we envision that when users want to change
their PIN, they simply get issued a new SECDSA certificate. In this section
we sketch an alternative allowing users to change their PIN without changing
their SECDSA public key and certificate. Instead of deriving the PIN-key from
the user PIN and a key inside the SCE, one can also generate a random PIN-key
and encrypt this with a symmetric key KPIN derived from the user PIN and a
key residing in the SCE. The encrypted PIN-key is then locally stored. As part
of signature generation the symmetric key is re-derived from the PIN provided
by the user and the key residing in the SCE. This encrypted PIN-key is then
decrypted and used as part of the SECDSA signature process. The idea is that
this decryption allways results in a PIN-key and depending on whether the cor-
rect PIN is provided, the correct PIN-key and SECDSA signature is formed. An
advantage of this setup is that it allows changing the PIN without changing the
user public key and certificate. The user then presents S-APP both the original
as a new PIN. S-APP then decrypts the encrypted PIN-key with the original
KPIN and re-encrypts it with the new one resulting in a newly encrypted PIN-key.

As S-APP cannot validate if the original PIN was correctly entered this best
involves the verification of a (“PIN-reset”) signature by the signing facilitator,
i.e. using Protocol 2. It thus follows that from the user perspective this altern-
ative does not seem the have many benefits from the envisioned PIN change
mechanism by issuing a new SECDSA certificate. However, this alternative does

30

3. SECDSA

introduce a new attack scenario. The scenario consists of an attacker that has
deep access to S-APP/SCE in two different time periods: during the period the
old and the new PIN are active. This access should allow the attacker running
a brute-force on all possible PINs, resulting in a list of all possible PIN-keys on
both occasions. The correct PIN-key then presents itself as the one on both lists.
This type of attack resembles the well-known evil housekeeper attack, where an
attacker with (physical) access alters a device in some undetectable way so that
they can later access the device, or the data on it. One might argue that this
risk is acceptable/controllable: an attacker might be able having this kind of
access once but not twice without alarming S-APP or the user, cf. Section 3.4.
More importantly, any mobile authenticator PIN, even the archetype based on
a separate (contactless) PKI smartcard, is susceptible to such attacks. Indeed,
the attacker could place a key-logger on the mobile device.

Note that the sketched setup might also facilitate the usage of biometric
factors as an alternative to knowledge factors (PINs). Indeed, one could encrypt
the random PIN-key with a key in the cryptographic hardware that is under
(local) biometric access control. It seems that Apple and Android support such
functionality. However, as indicated in Section 1.5 the usage of biometrics in
mobile authentication seems to be conflicting with the eIDAS High assurance
level. Perhaps the usage of biometrics is reconcilable with the eIDAS Substantial
assurance level. In this case one could let S-APP support two SECDSA private
keys/certificates: one meeting eIDAS Substantial supporting both biometrics and
a PIN and one for eIDAS High solely based on a PIN.

We finally sketch a technical design for the alternative setup. Let the PIN-key
σ be based on a random byte array S of size |q| + 8 bytes. It is essential that
S does not hold certain (trailing) bytes indicating for instance it is an unsigned
integer. Consides S as a non-negative integer S̄ and let the PIN-key be equal
to 1 + (S̄ mod (q − 1)). See Appendix A for the rationale behind this. Any byte
array S will result in a non-zero element in F∗q . The various techniques from
Appendix A can also be used in deriving a pseudorandom AES key from a PIN
and a key inside the SCE. Now use the byte oriented stream cipher AES-CTR
[45] with the zero initialisation vector to encrypt/decrypt byte array S.

31

4. DECENTRALIZED SECDSA USE CASES (EU-ID WALLET)

4 Decentralized SECDSA use cases (EU-ID Wallet)

In this section we apply SECDSA to three example use cases in a decentralized
setting. These use cases coincide with those indicated in the European Digital
Identity Wallet (EU-ID wallet) proposed by European parliament and the council
as part of an amendment of the eIDAS regulation [20]. The envisioned EU-ID
wallet is a mobile application for users (European citizens) of which we have
outlined the ten most prominent requirements in SECDSA context in Table 1.

Requirements for the European Digital Identity Wallet [20,26]

1. Allows users to securely request, obtain and store personal attributes (Article 6a
paragraph 3a).

2. Allows users to authenticate and thereby selectively disclose and combine their
personal attributes (Article 6a paragraph 3a).

3. Allows users to legally sign documents (qualified signing) in an easily accessible
way throughout Europe (Article 6a paragraph 3b).

4. Meets the eIDAS assurance level High on authentication (Article 6a paragraph
4c).

5. Provides a “common interface” between wallet and relying parties specified on a
European level (Article 6a paragraph 4a).

6. Allows relying parties to verify the authenticity of the user attributes (Article 6a
paragraph 4b).

7. Ensures that issuers of wallet attributes cannot receive information about the use
of these attributes (Article 6a paragraph 4b).

8. Is usable in both on-line as off-line environments (Article 6a paragraph 3a).

9. Issued attributes should be revocable within 24 hours. (Amendment (25)) Note:
this amendment lets attributes be treated as certificates.

10. Should be based on open standards.

Table 1. Prominent European Digital Identity Wallet requirements

The last requirement is implicitly posed in [26] as a conditio sine qua non for
an effective European Digital Identity Framework. It forms a middle ground
between the current deployment of proprietary/closed authenticaton solutions
and requiring that such solutions are fully ”open source” for which there is strong
societal interest too.

We note that EU-ID wallet closely resembles the “digital base identity”
(Dutch “digitale bron identiteit”) envisioned by the Dutch State Secretary for
the Interior and Kingdom Relations in his report to Dutch parliament5. In this
section we outline how a EU-ID Wallet can be based on SECDSA. The basic
idea is that we let the EU-ID attributes be formed by the SECDSA certificates
as discussed in Section 3. In Section 4.4 we show that a SECDSA based EU-ID
Wallet can meet all the EU-ID requirements from Table 1 with .

5 https://www.rijksoverheid.nl/documenten/kamerstukken/2021/02/11/

kamerbrief-over-visie-digitale-identiteit

32

https://www.rijksoverheid.nl/documenten/kamerstukken/2021/02/11/kamerbrief-over-visie-digitale-identiteit
https://www.rijksoverheid.nl/documenten/kamerstukken/2021/02/11/kamerbrief-over-visie-digitale-identiteit

4. DECENTRALIZED SECDSA USE CASES (EU-ID WALLET)

In Sections 4.1, 4.2 we assume an on-line context: both the EU-ID wallet and
service provider are on-line. In Section 4.1 we sketch how the first use case can be
supported and in Section 4.2 the second use case. One of the more challenging EI-
ID Wallet requirements is that the EU-ID wallet use case should also support off-
line usage. In Section 4.3 we sketch two ways to accomplish this with SECDSA.

In all use cases we assume the user has been issued a SECDSA certificate,
i.e. Protocol 1 has been successfully executed. We note that, due to the usage
of (X.509) digital certificates in SECDSA, the “common interface” the EU-ID
wallet and service provider that needs specified by the European Commission
can be based on an extension of the Transport Layer Security (TLS) protocol
[33] and its use of X.509 client certificates.

4.1 EU-ID wallet authentication and selective disclosure
In this use case the service provider directly communicates with the user’s EU-
ID wallet. The service provider requires the user to sign a challenge C as part of
an authentication. This challenge will be similarly handled as the message M in
protocol 2, i.e its hash will be part of SigSF et cetera. If this signing is successful
the service provider then associates the user to the attributes (personal data)
in his certificate. In line with the EU-ID wallet requirements, users should be
to selectively disclose attributes based on eIDAS High level authentication. The
SECDSA based use case indicated in Figure 9 can conveniently cater for such a
EU-ID wallet using the S-APP from Section 3. Steps 2-7 are handled by Protocol
2; we have only outlined this protocol in Figure 9. By Proposition 3.4 this setup
provides sole control and end-to-end security between the user/EU-ID wallet
and the service provider.

Figure 9. Authentication with selective disclosure

SECDSA also allows for selective disclosure of attributes by letting the certificate
issuer only store hash values of attributes in the certificates as part of certificate
issuance, i.e. Protocol 1. The attributes themselves are locally stored inside the
EU-ID wallet in encrypted form. The keys giving access to the attributes are
managed by the signing facilitator. As part of this use case the user first decides
which of the attributes in the certificates he wants to reveal to the service pro-
vider. Next the user does not only ask the signing facilitator in Step 2 to help

33

4. DECENTRALIZED SECDSA USE CASES (EU-ID WALLET)

producing a SECDSA signature SigSP but also to provide him with the required
keys. That is, the keys giving access to the attributes the user wants to reveal to
the service provider. This request is also part of the signature in Step 5. If this
signature is correct the signing facilitator also provides the required keys in Step
7. The user can next decrypt the attributes, inspect them and send them to the
service provider in Step 8. The service provider then computes the hash values
of these attributes and checks that they are present in the SECDSA signature.
If so, the service provider accepts the attributes. The keys allowing attribute
decryption should be deleted by the EU-ID wallet after the authentication is
completed.

By simply placing hash values of attributes in SECDSA certificates makes
this setup vulnerable to brute-forcing of attributes. This issue can simply be
addressed by pre-pending a random byte array of fixed length, say 16 bytes, to
the attribute before hashing it. The hash value H is then placed in the certific-
ate, compare Figure 11. This byte array then also makes part of the encrypted
attributes locally stored in the EU-ID wallet.

Note that by this basic attribute hashing construction, the signing facilitator
does not have access to the attributes. We can also arrange that the certificate
issuer does not have access to the attributes either. This can be accomplished
by letting him accept attribute hash values of other issuing parties. During the
issuance process, these parties are then provided with the appropriate keys to
encrypt the attributes and send them to the user/EU-ID wallet to locally store
them. We remark the keys controlling the attributes can be conveniently derived
by the signing facilitator from the certificate serial number.

The flexibility and simplicity of using SECDSA certificates can be further
improved by issuing certificates on a shared SECDSA public key as indicated in
Figure 10. The basis is a “digital base identity” issued by the government holding
basic identifying personal data as a conventional passport. This could correspond
with the eIDAS minimum data set as specified in [22]. In this setup there are then
several eIDAS UniquenessIDs corresponding to the different member states. The
digital base identity would then be used by the user to authenticate to certificate
issuers that then issue additional certificates based on the same SECDSA public
key the digital base identity is based. This setup resembles the “digitale bron
identiteit” (Dutch) envisioned by the Dutch State Secretary for the Interior and
Kingdom Relations in his report to Dutch parliament. See Footnote 5.

34

4. DECENTRALIZED SECDSA USE CASES (EU-ID WALLET)

Figure 10. Flexible SECDSA certificates by shared public key use

Unlike, for instance, Camenisch–Lysyanskaya (CL) signatures [8] used in the
Dutch IRMA APP6, SECDSA does not provide for multi-show unlinkability.
That is, users can be recognized/linked by service providers through their SECDSA
public key and certificate. This can be considered a privacy weakness when at-
tributes are not directly identifying themselves, e.g. only indicating age over 18
years. We remark that although multi-show unlinkability is theoretically valu-
able, it is only practically effective when supplemented with anonymous com-
munications mechanisms which are not commonly used. Although this weakness
can be mitigated (see below) it can be considered a trade-off between secur-
ity, privacy and user-friendliness. Indeed, CL private keys are not supported
in the limited hardware of standard mobile devices, hampering a solid posses-
sion authentication factor and thus security and eIDAS compliance, cf. Footnote
1. Moreover, authenticators with multi-show unlinkability are not recognizable
by service providers complicating authenticator revocation further complicat-
ing eIDAS compliance. By contrast SECDSA certficates can use standard X.509
certificate revocation mechanisms (OCSP, CLRs), cf. [28,37].

SECDSA linkability can be mitigated by letting the user regularly (or even
automatically) renew their certificate based on the existing one. That is, by
the same mechanism envisioned for PIN change. Compare the notes following
Protocol 1. To avoid linkability in this setup through the attribute hash values in
the new certificate, one can deploy a two step approach. The idea is not to place
the attribute hash value H in the certificate but a second hash value H2. This
is similarly formed as H using a second random byte array RBA2 as indicated
in Figure 11. As part of the attribute disclosure to the service provider, the

6 www.irma.app

35

www.irma.app

4. DECENTRALIZED SECDSA USE CASES (EU-ID WALLET)

user/EU-ID wallet do not only send the attribute value including the random
byte array but also RBA2. This allows the service provider to recompute H2 and
to verify that that is in the SECDSA certificate. During the initial certificate
issuance the certificate issuer provides the EU-ID wallet the second random byte
array RBA2 and uses that to compute hash value H2 as indicated. This value
H2 is then placed in the certificate instead of H. During certificate re-issuance,
the wallet sends RBA2 and H to the certificate issuer allowing him to verify H
is indeed inside the certificate. During re-issuance the certificate issuer generates
a new RBA2 that is sent to the EU-ID wallet and used to compute a new hash
value H2 placed in the new certificate.

Figure 11. Attribute hashing

4.2 EU-ID wallet signing

In this use case the service provider directly communicates with the user’s EU-ID
wallet. The service provider requires the user to sign a certain message M , e.g.
a contract. The SECDSA based interactions for this use case are indicated in
Figure 12. Here Steps 2-7 are handled by Protocol 2; we have only outlined this
protocol in Figure 12. If successful, this protocol will result in a SECDSA sig-
nature SigSP on message M . By Proposition 3.4 this setup provides sole control
and end-to-end security between the user/EU-ID wallet and the service provider.

Figure 12. Qualified signing with additional SECDSA evidence

36

4. DECENTRALIZED SECDSA USE CASES (EU-ID WALLET)

An interesting question is how this setup could allow for legally binding, i.e.
qualified, signatures. A straightforward setup for this would be to only use the
EU-ID wallet as a means of authentication to the Signing Facilitator and let-
ting that implement a ‘conventional’ qualified remote SCD in the sense of the
second paragraph of Article 1 in the 2016 European Commission decision [24].
This qualified remote SCD would then need to be certified against a national
scheme where conformance to European standards EN 419221-5 [11] and EN
419241-2 [13] seems to be most future proof. The first standard regulates the
Cryptographic Module (Hardware Security Module) holding the user private
signing keys and the second standard regulates the Signature Activation Mod-
ule (SAM) which handles user authentication and instructs the Cryptographic
Module to sign on behalf of the user. Also compare Section 1.3. Formally, the
EU-ID wallet would then only need meeting the authentication to the SAM on
eIDAS assurance level Substantial. We think this is easily feasible as we argued
in Section 1.5 one can achieve the eIDAS assurance level High. In such setup the
Signing Facilitator could be implemented as part of the SAM, i.e. steps 23-28
of Protocol 2. In an extra step 29 the Signing Facilitator would then instruct
the Cryptographic Module to generate a completely new signature QSig on the
hash of message M as indicated in Figure 12. Note that SigSP includes the nonce
N sent by the signing facilitator in Step 3 in Figure 12 of implying it can be
considered an authentication as well.

One could also leave out the SECDSA signature all together (allowing the
remote signing service to act as a conventional one) and allow relying parties
retrieving it from an online registration, e.g. on basis of QSig. Compare Figure
13. In this way one obtains a regular signing service based on eIDAS sole con-
trol that can provide classical sole control on the demand of the relying party.
The signature SigSP would also be archived at the signing service allowing for
evidence in dispute handling with either the user or service provider. This re-
gistration could be part of a trust service providing long-term preservation of
digital signatures, cf. [29]. Archiving the SECDSA signatures as part of this ser-
vice would allow provide evidence on the actual signing by the user catering for
optimal non-repudiation.

The setup indicated in Figure 13 is also beneficial in implementing Strong
Customer Authentication (SCA) as required in the financial sector by the European
Payment Service Directive (PSD2), cf. [19,21]. In this context the financial in-
stitution, e.g. bank, takes the role of the certificate issuer, signing facilitator
and the service provider; the user is the client of the financial institution. The
strong non-repudiation properties of SECDSA are useful in dispute handling on
(large) financial transactions. Indeed, the archived, publicly verifiable SECDSA
signatures, i.e. those of type SigSP in the above setup, can irrefutable prove ta a
certain client has authorized a certain transaction. For strongest non-repudiation
it is best to place the certificate issuer role at a separate trusted third party, i.e.
not at the financial institution itself.

37

4. DECENTRALIZED SECDSA USE CASES (EU-ID WALLET)

Figure 13. Qualified signing with SECDSA dispute handling

A more legally challenging approach for achieving qualified signatures is letting
SECDSA signatures be certified as qualified signatures by themselves by having
SECDSA included in the approved signature algorithm list [28]. Also compare
Figure 14. The basis for a SECDSA signature is an ECDSA signature (gener-
ated by the EU-ID wallet) and two Schnorr signatures (one by the wallet, one
by the Signing Facilitator). If we follow the alternative approach indicated at
the end of Section 3.4 a SECDSA signature consists of 7 ECDSA signatures
(four by the EU-ID wallet and three by the Signing Facilitator). Both of which
are EU approved signature algorithms, cf. [28]. It seems there is no category
in the European Commission decision [24] fitting SECDSA. Indeed, SECDSA
does not fit the first paragraph of the European Commission decision as the
indicated wallet does not store a PIN (as stipulated in the referenced European
standard EN 419241-2 [13]). SECDSA does not fit the second paragraph either
as the Signing Facilitator does not manage the SECDSA signing key. However,
if the indicated wallet meets the requirements of an eIDAS assurance level High
authenticator then common sense suggests that the SECDSA signatures it pro-
duces most be qualified. Indeed, these signatures form the basis of the qualified
signatures in the conventional qualified remote SCD discussed above. If these
can reach qualified status then a fortiori the SECDSA signatures they are based
upon as a chain can never be stronger than its weakest link.

38

4. DECENTRALIZED SECDSA USE CASES (EU-ID WALLET)

Figure 14. Qualified signing with SECDSA only

4.3 Off-line decentralized authentication and selective disclosure

In this section we sketch two approaches for letting the EU-ID wallet outlined in
Section 4.1 be used in an off-line context. In the first approach one could argue we
cheat a little; we do not require that the EU-ID wallet is on-line but we do require
the service provider is. We thus allow the EI-ID wallet to connect to the Signing
Facilitator using the service provider effectively as proxy. We have sketched this
in Figure 15 below based on a variant of Protocol 2. Here ENC(CId, N) is an
asymmetric encryption of the certificate identifier CId and nonce N under a
public key of the Signing Facilitator. Without the inclusion of N an adversary
could perform a replay attack, allowing him to block the EU-ID wallet of the user.
To this end, the encryption scheme should be “plaintext” aware, i.e. an adversary
should not be able to form the encryption without knowing both CId and N . For
this one could use RSA with Optimal Asymmetric Encryption Padding (OAEP)
[6]. Using the certificate identifier in this way allows the modified execution of
Protocol 2, whereas the We assume that the data the user wants to disclose to
the service provider is already available in the EU-ID wallet, e.g. by “loading”
these in the wallet earlier when the wallet was on-line. As illustrated in the
figure, the EU-ID wallet and service provider could for instance communicate
through QR-codes.

39

4. DECENTRALIZED SECDSA USE CASES (EU-ID WALLET)

Figure 15. Off-line authentication with selective disclosure using a proxy

In the second approach we let the user/EU-ID wallet be issued short-lived cer-
tificates based on public keys based on a possession factor only, i.e. the corres-
ponding private keys are managed in the cryptographic hardware of the device.
These certificates are on-line issued to the user/EU-ID wallet based on the full
SECDSA setup authenticating the user. The usage of such certificates is sim-
ilar to the first approach with the only difference that the user is not required
to present a knowledge factor (PIN) but only needs to consent. Of course, the
usage of the short-lived certificates could be secured with a local (system) PIN
or biometrically. The life-time of the short-lived certificates can be compared
with the session time of a web session. This setup is indicated in Figure 16. We
note that the service provider could implement further controls based on the
user data disclosed, e.g., compare the disclosed facial image with the user or the
disclosed user name with a regular identity document.

Figure 16. Off-line authentication with selective disclosure

40

4. DECENTRALIZED SECDSA USE CASES (EU-ID WALLET)

4.4 Comparison between SECDSA and EU-ID Wallet requirements

In Table 2 below we have indicated how the requirements on the European digital
identity wallet from Section 4 can be met with it SECDSA implementation
outlined in Sections 4.1, 4.2 and 4.3.

EU-ID Wallet requirements [20,26] SECDSA support

1. Allows users to securely request, obtain
and store personal attributes (Article 6a
paragraph 3a).

Attributes are stored encrypted in the
SECDSA wallet with keys managed by
Signing Facilitator and access controlled by
SECDSA, cf. Figure 9. See Section 4.1.

2. Allows users to authenticate and thereby
selectively disclose and combine their per-
sonal attributes (Article 6a paragraph 3a).

Attributes are attested through SECDSA
certificates based on the X.509 standard
[37]. Only attribute hashes are stored in-
side SECDSA certificates allowing select-
ive disclosure. SECDSA certificates can
also be based on a shared SECDSA public
key, cf. Figures 10, 11.

3. Allows users to legally sign documents
(qualified signing) in an easily accessible
way throughout Europe (Article 6a para-
graph 3b).

Explained in Section 4.2. This can be based
conventional remote signing (Figures 12,
13) or on conventional signing (Figure 14)
by having SECDSA included in the ap-
proved signature algorithm list [28].

4. Meets the eIDAS assurance level High on
authentication (Article 6a paragraph 4c).

As argued in Section 1.5, SECDSA can
form the basis for eIDAS assurance level
High.

5. Provides a “common interface” between
wallet and relying parties specified on a
European level (Article 6a paragraph 4a).

This can be based on an extension of the
Transport Layer Security (TLS) protocol
[33] and its use of X.509 client certificates.

6. Allows relying parties to verify the au-
thenticity of the user attributes (Article 6a
paragraph 4b).

This can be based on using the X.509
standard [37] for the user certificates hold-
ing the attributes.

7. Ensures that issuers of wallet attributes
cannot receive information about the use
of these attributes (Article 6a paragraph
4b).

This is the regular situation when using
X.509 certificates. The revocation status
service (CRL, OCSP) should be placed at
an other party than the issuer which is
quite common. See [28].

8. Is usable in both on-line as off-line envir-
onments (Article 6a paragraph 3a).

Explained in Section 4.3.

9. Issued attributes should be revocable
within 24 hours. (Amendment (25))

This can be based on existing X.509 mech-
anisms for this (CRL, OCSP), cf. [28,37].

10. Should be based on open standards. SECDSA is openly specified in this docu-
ment which is made public.

Table 2. Comparison between SECDSA and EU-ID Wallet requirements

41

5. CENTRALIZED SECDSA USE CASES

5 Centralized SECDSA use cases

In this section we apply the S-APP designed in Section 3 in example SECDSA use
cases in a centralized approach where a party sits between the S-APP/user and
the relying party we refer to as service provider. Compare Section 1. Section 5.1
deals with authentication and Section 5.2 with signing. We assume the user has
been issued a SECDSA certificate, i.e. Protocol 1 has been successfully executed.

5.1 Centralized SECDSA authentication

In this use case the service provider does not directly communicate with the
user’s S-APP but through an intermediary party. The SECDSA based interac-
tions for this use case are indicated in Figure 17. Such intermediary party is
usually called an authentication provider and authentication protocols as SAML
[50] or OpenID Connect [5] are deployed. As in the use case of Section 4.1 the
service provider requires the user to sign a challenge C as part of an authentica-
tion. If this is successful the attributes revealed in the SECDSA certificate then
allow the service provider authenticate the actual user. Steps 2-7 in Figure 17
are handled by Protocol 2 with this difference that the final SECDSA signature
SigSP is not sent to S-APP but to the Service Provider. We have only outlined
this protocol in Figure 17. It follows from Proposition 3.4 that despite the inter-
mediary party, this setup provides sole control and end-to-end security between
the user/S-APP and the service provider.

Figure 17. Centralized SECDSA authentication

In our setup we somehow place a challenge C in the authentication request
of the service provider and place a SECDSA certificate and signature on C in
the authentication response. Although cryptographically obvious, integration of
such a “challenge-response” in authentication protocols like SAML and OpenID
Connect is remarkably not common practice. However it seems this can be nat-
ively supported in OpenID connect but requires some tweaking in SAML. With
respect to the latter, one could use the SAML session-id (ID) in the authentic-
ation request as this is typically generated as a pseudorandom number by the
service provider. We also remark that this setup can nicely provide the “holder

42

5. CENTRALIZED SECDSA USE CASES

of key assertion” required in the NIST guidelines on strong authentication [48]
for its highest assurance level (FAL3).

We finally remark that in the context of centralized authentication, one could
also only let the authentication provider use SECDSA. That is, the user through
his S-APP sign an authentication provider challenge and letting the SECDSA
signature SigSP not be part of the authentication response to the service provider.
The SECDSA signature should then be archived at the authentication provider
as evidence for dispute handling with either the user or service provider.

5.2 Centralized SECDSA signing

In this use case the service provider does not directly communicate with the
user’s S-APP but through an intermediary party called Signing Service. As in
the use case of Section 4.2 the service provider requires the user to sign a certain
message M , e.g. a contract. The SECDSA based interactions for this use case
are indicated in Figure 18. Here Steps 2-7 are handled by Protocol 2, with this
difference that the final SECDSA signature SigSP is not sent to S-APP but to
the Service Provider. We have only outlined this protocol in Figure 18. It follows
from Proposition 3.4 that despite the intermediary party, this setup provides for
sole control and end-to-end security between the user/S-APP and the service
provider.

Figure 18. Centralized SECDSA signing

In Figure 18 we send both the SECDSA signature SigSP and a conventional
qualifed remote signature QSig to most conveniently meet the formal require-
ments on qualified signing. Compare the SCD certification discussion in Section
4.2, where also options are discussed of only sending one of these two signatures.
In case only signature QSig is sent, the SECDSA signature SigSP could also
be archived at the signing service and online accessible for relying parties based
on QSig. The SECDSA signature could then be used as evidence for dispute
handling with either the user or service provider. This registration could be part
of a trust service providing long-term preservation of digital signatures, cf. [29].
Archiving the SECDSA signatures as part of this service would allow provide
evidence on the actual signing by the user catering for optimal non-repudiation.

43

6. REFERENCES

6 References
1. https://support.apple.com/nl-nl/guide/security.
2. https://developer.apple.com/documentation/devicecheck
3. https://source.android.com/security/keystore.
4. https://developer.android.com/training/articles/

security-key-attestation, https://developer.android.com/training/

safetynet
5. https://openid.net.
6. M. Bellare, P. Rogaway, Optimal Asymmetric Encryption - How to Encrypt with

RSA, Eurocrypt, Lecture Notes in Computer Science, Volume 950, November 1995.
7. Bundesamt für Sicherheit in der Informationstechnik (BSI), Elliptic Curve Cryp-

tography, TR-03111, version 2.10, 2018-06-01, 2018.
8. J. Camenisch, A. Lysyanskaya, An Efficient System for Non-transferable Anonym-

ous Credentials with Optional Anonymity Revocation, EUROCRYPT 2001. Lec-
ture Notes in Computer Science, vol 2045. Springer, 2001.

9. Certicom Research, SEC 1: Elliptic Curve Cryptography, Version 2.0, May 21,
2009. See https://www.secg.org/sec1-v2.pdf. Modules - Part 5: Cryptographic
Module for Trust Services, 2018.

10. Committee for Standardization (CEN), Protection profiles for secure signature
creation device, EN 419211 (six parts), 2013-2014.

11. CEN, Protection Profiles for TSP Cryptographic Modules - Part 5: Cryptographic
Module for Trust Services, EN 419221-5, 2018.

12. Committee for Standardization (CEN), Trustworthy Systems Supporting Server
Signing - Part 1: General System Security Requirements, EN 419241-1, July 2018.

13. Committee for Standardization (CEN), European Trustworthy Systems Support-
ing Server Signing - Part 2: Protection profile for QSCD for Server Signing, EN
419241-2, February 2019.

14. Cooperation Network, Opinion No. 03/2019 on the Dutch Trust Framework for
Electronic Identification, see https://ec.europa.eu/cefdigital/wiki/pages/

viewpage.action?pageId=105382177
15. Cooperation Network, Opinion No. 07/2019 on on the Latvian eID scheme, https:

//ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=148898039
16. Cooperation Network, Opinion No. 8 of the Cooperation Network on the Belgian

eID scheme FAS/itsme, see https://ec.europa.eu/cefdigital/wiki/pages/

viewpage.action?pageId=148898042
17. European Parliament and the Council of the European Union, on the protection

of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protec-
tion Regulation), regulation 2016/679, 27 April 2016.

18. European Parliament and the Council of the European Union, Electronic identi-
fication and trust services for electronic transactions in the internal market and
repealing Directive 1999/93/EC, regulation 910/2014, 23 July 2014.

19. European Parliament and the Council of the European Union, Directive (EU)
2015/2366 (Payment Service Directive 2), 25 November 2015.

20. European Parliament and the Council of the European Union, amending Regula-
tion (EU) No 910/2014 as regards establishing a framework for a European Digital
Identity, 3 June 2021.

21. European Commission, Regulatory technical standards for strong customer authen-
tication and common and secure open standards of communication, Commission
delegated regulation (EU) 2018/389 of 27 November 2017 supplementing Directive
(EU) 2015/2366.

44

https://support.apple.com/nl-nl/guide/security
https://developer.apple.com/documentation/devicecheck
https://source.android.com/security/keystore
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/safetynet
https://developer.android.com/training/safetynet
https://openid.net
https://www.secg.org/sec1-v2.pdf
https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=105382177
https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=105382177
https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=148898039
https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=148898039
https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=148898042
https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=148898042

6. REFERENCES

22. European Commission, eIDAS implementing regulation 2015/1501, 8 September
2015.

23. European Commission, eIDAS implementing regulation 2015/1502, 8 September
2015.

24. European Commission, Commission Implementing Decision (EU) 2016/650 of 25
April 2016 laying down standards for the security assessment of qualified signature
and seal creation devices pursuant to Articles 30(3) and 39(2) of Regulation (EU)
No 910/2014, 2016.

25. European Commission, List of alternative processes notified to the Commission
in accordance with Article 30.3(b) and 39.2 of the eIDAS Regulation (EU) No
910/2014, version of 27/03/2020.

26. European Commission, on a common Union Toolbox for a coordinated approach
towards a European Digital Identity Framework, C(2021) 3968 final, 03/06/2021.

27. Guidance for the application of the levels of assurance which support the eIDAS
Regulation. See https://ec.europa.eu.

28. European Telecommunications Standards Institute (ETSI), Electronic Signatures
and Infrastructures (ESI); Cryptographic Suites, TS 119312, V1.2.1, 2017-05.

29. ETSI, Policy and security requirements for trust service providers providing long-
term preservation of digital signatures or general data using digital signature tech-
niques, TS119511, V1.1.1, 2019-06.

30. ETSI, Policy and security requirements for Trust Service Providers issuing certi-
ficates, ETSI EN 319 411 (two parts). See http://www.etsi.org.

31. A. Fiat, A. Shamir, How To Prove Yourself: Practical Solutions to Identification
and Signature Problems, Crypto ’86, Lecture Notes in Computer Science, Volume
263, Springer, 1986.

32. D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography,
Springer, 2004.

33. Internet Engineering Task Force, The Transport Layer Security (TLS) Protocol,
RFC 5426, 2008.

34. International Organization for Standardization (ISO), Information technology -
Security techniques - Digital signatures with appendix - Part 3: Discrete logarithm
based mechanisms, ISO/IEC 14888-3, fourth edition, 2018.

35. ISO, Personal identification - ISO-compliant driving licence - Part 5: Mobile driving
licence (mDL) application, ISO 18013-5, February 2020, draft.

36. ISO, Information technology - Security techniques - Methodology for IT security
evaluation, ISO/IEC 18045, version 2014-01-15.

37. International Telecommunication Union (ITU), X.509, Public-key and attribute
certificate frameworks. See https://www.itu.int.

38. ITU-T, Information technology – ASN.1 encoding rules: Specification of Basic En-
coding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encod-
ing Rules (DER), X.690, 08/2015.

39. J. Katz, Y. Lindell, Introduction to Modern Cryptography, CRC PRESS, 2008.
40. H. Leitold, D. Konrad Qualified Remote Signatures – Solutions, its Certification,

and Use, Proceedings of 29th SmartCard Workshop, 20-21 February 2019, Darm-
stadt, Germany.

41. Y. Lindell, Fast Secure Two-Party ECDSA Signing, Crypto 2017, Lecture Notes
in Computer Science, vol 10402. Springer, 2017.

42. National Institute for Standards and Technology (NIST), Advanced Encryption
Standard (AES), FIPS PUB 197, November 2001.

43. NIST, Secure Hash Standard (SHS), FIPS PUB 180-4, August 2015.

45

https://ec.europa.eu
http://www.etsi.org

6. REFERENCES

44. NIST, Digital signature standard, FIPS PUB 186-4. July 2013 .
45. NIST, Recommendation for Block Cipher Modes of Operation, Special Publication

800-38A, December 2001.
46. NIST, Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC, Special Publication 800-38D, November, 2007.
47. NIST, The Keyed-Hash Message Authentication Code (HMAC), FIPS PUB 198-1,

July 2008.
48. NIST, Digital Authentication Guidelines, SP 800-63, June 2017.
49. NIST, Recommendation for Key Derivation Using Pseudorandom Functions, SP

800-108, October 2009.
50. OASIS, Security Assertion Markup Language (SAML), 2005.
51. OASIS, PKCS #11 Cryptographic Token Interface Base Specification, version 2.4,

14 April 2015.
52. C. P. Schnorr, Efficient signature generation for smart cards. Journal of Cryptology,

4(3):239-252, 1991.
53. D.G. Stinson, Cryptography: theory and practice, CRC press, 1995.

46

A. EXAMPLES OF PIN-BINDER CONSTRUCTIONS

A Examples of PIN-binder constructions

In this appendix we present PIN-binder constructions deriving PIN-keys from
the user PIN and a cryptographic key. For security assurance and ease of im-
plementation we use standardized algorithms: the recommendations [49] of the
US National Institute of Standards and Technology (NIST) combined with the
recommendations of the German Bundesamt für Sicherheit in der Information-
stechnik (BSI) [7]. As a building block we first define a key derivation function
deriving a key K(K,D,L) in the form of a byte array of size L bits based on
master key K and derivation byte array D. For this we deploy the NIST key de-
rivation function construction from [49, Section 5.1] in Counter Mode whereby
using the HMAC function [47] based on a secure hash function H(.) as pseu-
dorandom function. This hash function can for instance be the SHA-256 hash
function [43] as this is commonly supported in platforms. We further make the
following choices in the NIST construction:
• the Context string is equal to D,
• the Label is the empty string, i.e. we do not use a Label string,
• the zero byte separates the Label from the output size L in binary repres-

entation, i.e. [L]2, in the construction,
• the length r of the binary representation of the counter is chosen as 8.

We can now specify the first PIN-binder construction.

Algorithm 9 PIN-binder based on HMAC
Input: user PIN P , PIN-binder key: HMAC key K in SCE
Output: PIN-key σ

1: Compute K(K,P, 8 ∗ |q|+ 64) and convert to integer x // in SCE

2: Return σ = 1 + (x mod (q − 1))

We generate 64 more bits in Line 1 than the length 8·|q| of q in bits. If we would
generate precisely 8·|q| bits then a small bias would arise. By generating 64 more
bits we still do not produce a formally uniform distribution modulo q − 1 but
the deviation is believed not to be exploitable following [7]. By the addition of
1 in Line 2 we ensure that the output is always a non-zero element in Fq.

It is convenient to base a PIN-binder on the textbook RSA decryption cap-
abilities of the SCE. See [53]. In the RSA cryptosystem the public key con-
sists of the product n of two large prime number p, q and the public exponent
e usually taken as 216 + 1 = 65537, The private key consists of the integer
d = e−1 mod (p− 1)(q− 1). Textbook RSA encryption, respectively decryption,
consists of the functions x → xe mod n, respectively x → xd mod n. Textbook
RSA is not normally used in practice as it is not resistant against so-called
chosen ciphertext attacks. To remedy against this kind of attacks redundancy
(“padding”) needs to be added to plaintext prior to encryption; that padding is
then checked again as part of decryption.

Most cryptographic libraries/APIs for RSA allow the configuration of a
“PADDING NONE” mode facilitating textbook RSA. In this way flexible sup-
port for various kinds of other padding is provided to developers. The Android

47

A. EXAMPLES OF PIN-BINDER CONSTRUCTIONS

SCE (hardware backed keystore) also allows for this. We can then construct a
PIN-binder as sketched below. This starts with the generation of an RSA public-
private key pair in the SCE of appropriate size, e.g. a modulus n with bit length
|n| = 2048 bits, i.e. 256 byte. We assume that |n| > |q| + 64 which is naturally
the case. We do not assume that the HMAC key K in Algorithm 10 necessarily
resides in the SCE; it can also be stored in a keystore in the local storage of
S-APP.

Algorithm 10 PIN-binder based on textbook RSA
Input: user PIN P , PIN-binder key: HMAC key K, RSA private key d in SCE
Output: PIN-key σ

1: Compute K(K,P, 8 ∗ |n|) and convert to integer x0
2: Let x1 = x mod n
3: Let x2 = xd1 mod n // in SCE

4: Return σ = 1 + (x2 mod (q − 1))

Note that we can iterate Line 3 of Algorithm 10, i.e. let x2 be subject to a further
RSA textbook decryption and so on. As RSA decryption is a time consuming
process this allows control of PIN-key computing time. This can be beneficial in
mitigating PIN brute-force attacks. See Section 3.4.

As Android based devices provide for HMAC and textbook RSA in their SCE
they allow for various PIN-binding mechanisms. However, Apple based devices,
do not provide for either of those algorithms in their SCE. Apart from ECDSA
signatures, Apple based devices typically only support the Elliptic Curve In-
tegrated Encryption Scheme (ECIES) see [32]. ECIES yields public key based
encryption allowing any party encrypting data for a user with his public key.
ECIES is based on authenticated encryption meaning that ECIES decryption
will only return plaintext if the ciphertext is authenticated (see below). This
means that feeding the ECIES decryption function in the SCE with arbitrary
ciphertext will typically result in errors and not in useful data. Despite this we
show one can still base a PIN-binder on ECIES decryption. The construction
presented focusses on the Apple implementation of ECIES as this is most rel-
evant. We also outline how this construction can be extended to other ECIES
implementations.

ECIES is also based on elliptic curve group G = (〈G〉,+). A user has a private
key d ∈ F∗q and a public key D = d·G, i.e. similar to ECDSA. In our context the
ECIES private key d resides in the SCE, i.e. the Secure Enclave of Apple. ECIES
uses the Diffie-Hellman key exchange protocol for sending a symmetric key to the
recipient user which is then used in a symmetric encryption algorithm. Apple’s
ECIES implementation is based on three modes of the Advanced Encryption
Standard (AES) [42]. We first describe the working of these and then Apple’s
ECIES implementation in Algorithms 11 and 12.

The first mode used is the basic AES mode, also known as Electronic Code
Book (ECB). It allows encrypting a 16 byte plaintext block M using a key K
resulting in a ciphertext block C = EECB(K,M) that is also of size 16 byte. The

48

A. EXAMPLES OF PIN-BINDER CONSTRUCTIONS

key K can be chosen either 128, 192 or 256 bits in length. Similarly one can
decrypt the ciphertext C using key K which we denote by M = DECB(K,C).
The second mode used is so-called Galois/Counter Mode (AES-GCM) mode [46],
which is actually based on two other AES modes. The input of the AES-GCM
encryption algorithm consists of an AES key K, an initialisation vector (byte
array of certain length) IV , plaintext data D and optional authenticated data
A. As our constructions do not use authenticated data we leave A out of the
further description.

The AES-GCM encryption algorithm first derives a so-called hash-key H
from K by AES encrypting the zero-block 016 (array of 16 zero bytes) with
K. That is i.e. H = EAES(K, 016). Next, the AES-GCM algorithm first en-
crypts the data D deploying AES in so-called Counter mode (AES-CTR, cf.
[45]) using key K and initialisation vector IV resulting in a ciphertext C of
the same length as M . We denote this by C = ECTR(IV,K,M) and the de-
cryption by M = DCTR(IV,K,C). Next, AES-GCM runs the encrypted data
through an AES based Message Authentication Code function called GMAC
using the hash-key H. This results in an authentication tag T . We denote this
by T = GMACAES(H,C). The output of the AES-GCM encryption algorithm
consists of the encrypted data C and the authentication tag T . The input of
the AES-GCM decryption algorithm consists of a key K, an initialisation vector
IV , the ciphertext data C and authentication tag T . The AES-GCM decryption
algorithm first derives the hash-key H from K by AES encrypting the zero-block
with K. Then it first checks the authenticity of the ciphertext C by running this
through GMAC using the hash-key H. If this does not result in the authen-
tication tag T , then the decryption returns an error. Otherwise the AES-GCM
decryption algorithm decrypts C based on AES-CTR using the initialisation
vector IV and K and returns the result.

In Algorithms 11 and 12 we further formalize the working of AES-GCM based
ECIES as used in Apple devices.7 We let H[x, y] denote the byte range x, y (in-
cluding boundaries) of a byte array H where byte 0 refers to the most significant
byte. We also let SHA256(.) represent the SHA-256 secure hash function, cf. [43].

7 The details of the Apple ECIES specification is hard to find, we base our description
on https://darthnull.org/security/2018/05/31/secure-enclave-ecies/.

49

https://darthnull.org/security/2018/05/31/secure-enclave-ecies/

A. EXAMPLES OF PIN-BINDER CONSTRUCTIONS

Algorithm 11 ECIES encryption based on AES-GCM
Input: Message M , recipient public key D.
Output: Ephemeral key R, AES-GCM ciphertext (C, T)

1: Select random k ∈ {1, ..., q − 1}.
2: Compute R = k·G and Z = k·D // ephemeral key R
3: Convert Z to byte array Z̄ and compute H = SHA256(Z̄)
4: Choose Initialisation Vector IV = H[0, 15] and AES-GCM key K = H[16, 31]
5: Compute hash-key H = EAES(K, 016) // AES-GCM

6: Compute C = ECTR(IV,K,M) // AES-GCM

7: Compute T = GMAC(H,C) // AES-GCM

8: Return R, (C, T)

Algorithm 12 ECIES decryption based on AES-GCM
Input: Ephemeral key R, AES-GCM encrypted message (C, T), recipient private
key d.
Output: Message M or rejection of the encrypted message

1: Compute Z = d·R.
2: Convert Z to byte array Z̄ and compute H = SHA256(Z̄)
3: Choose Initialisation Vector IV = H[0, 15] and AES-GCM key K = H[16, 31]
4: Compute hash-key H = EAES(K, 016)
5: Compute T ′ = GMAC(H,C) // AES-GCM

6: If T ′ 6= T reject message // AES-GCM

7: Compute M = DCTR(IV,K,C) // AES-GCM

8: Return M

The idea behind basing a PIN-binder on ECIES is the observation that with only
possession of the ephemeral key R and the corresponding hash-key H one can
generate authentication tag T on any byte array P . One can then successively
feed R, (P, T) to Algorithm 12 resulting in output, namely DCTR(IV,K, P). We
further formalize this in two algorithms performed by S-APP: generating the
PIN-binder key and generating the PIN-key based on that.

Algorithm 13 Generation of an ECIES-AES PIN-binder key in SCE

1: S-APP requests SCE to generate ECIES private key d ∈R F∗q // d in SCE

2: S-APP exports public key D = d·G from SCE

3: S-APP selects random k ∈ {1, ..., q − 1}.
4: S-APP computes Z = k·D
5: S-APP converts Z to byte array Z̄ and compute H = SHA-256(Z̄)
6: S-APP computes AES-GCM key K = H[16, 31]
7: S-APP computes hash-key H = EAES(K, 016) // AES-GCM

8: S-APP locally stores R and H and deletes Z and K

50

A. EXAMPLES OF PIN-BINDER CONSTRUCTIONS

Algorithm 14 PIN-binder based on ECIES-AES
Input: user PIN P , PIN-binder key: HMAC key K, R, H, ECIES private key d
(in SCE)
Output: PIN-key σ

1: Compute P = K(K,P, 8 ∗ |q|+ 64)
2: Compute authentication tag T = GMAC(H,P)
3: Feed R, (P, T) to Algorithm 12 resulting in P ′ // ECIES decrypt

4: Convert P ′ to integer x // same byte length 8 ∗ |q|+ 64
5: Return σ = 1 + (x mod (q − 1))

As in Algorithm 10 we can iterate Lines 2-3, i.e. reusing P ′ of Line 3 in Line 2.
As ECIES decryption is a time consuming process this allows control of PIN-key
computing time. This can be beneficial in mitigating PIN brute-force attacks.
See Section 3.4. As part of our PIN-binder construction R, H = EAES(K, 016) are
locally stored by S-APP. It a basic requirement from ECIES that K can only be
computed with access to the private key d. This accomplished by the hardness
of the Diffie-Hellman problem, cf. Section 2.1. It is also a basic requirement of
a blockcipher that K cannot be derived from H. In other words, locally storing
R and H does not introduce a security vulnerability.

In Algorithms 11, 12 above we have elaborated on Apple’s ECIES implement-
ation as this is most relevant for this paper. In the general ECIES setup, one
derives from Z and R an encryption key KENC and an(H)MAC key from KENC.
As part of ECIES encryption one then applies key KENC to encrypt the message
and key KMAC to compute an authentication tag on the result. During ECIES
decryption one first validates the authentication tag and when successful com-
mence with decryption. The ECIES PIN-binder method discussed above clearly
extends to the general ECIES setup by storing R and KMAC in S-APP.

51

	Introduction
	Background and motivation
	Role of public key cryptography and certificates
	Classical versus eIDAS ``sole control''
	Link with the eIDAS assurance levels
	Cryptographic objectives of this paper

	Cryptographic primitives, notation and conversions
	Mathematical context and notation
	The Digital Signature Algorithm (DSA)
	Schnorr proofs of knowledge

	SECDSA
	SECDSA context
	Idea behind SECDSA
	Full SECDSA description
	SECDSA security enhancements
	An alternative SECDSA PIN change protocol

	Decentralized SECDSA use cases (EU-ID Wallet)
	EU-ID wallet authentication and selective disclosure
	EU-ID wallet signing
	Off-line decentralized authentication and selective disclosure
	Comparison between SECDSA and EU-ID Wallet requirements

	Centralized SECDSA use cases
	Centralized SECDSA authentication
	Centralized SECDSA signing

	References
	Examples of PIN-binder constructions

