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Abstract. Stake-based multiparty cryptographic primitives operate in
a setting where participants are associated with their stake, security is ar-
gued against an adversary that is bounded by the total stake it possesses

—as opposed to number of parties— and we are interested in scalability,
i.e., the complexity of critical operations depends only logarithmically in
the number of participants (who are assumed to be numerous).
In this work we put forth a new stake-based primitive, stake-based thresh-
old multisignatures (STM, or “Mithril” signatures), which allows the ag-
gregation of individual signatures into a compact certificate provided the
stake that supports a given message exceeds a stake threshold. This is
achieved by having for each message a pseudorandomly sampled subset
of participants eligible to issue an individual signature; this ensures the
scalability of signing, communicating the signatures, aggregating them
to a certificate and verifying it.
We formalize the primitive in the universal composition setting and
propose efficient constructions for STMs in the unstructured reference
string model. We also showcase that STMs are eminently useful in the
blockchain setting by providing three applications: (i) stakeholder decision-
making for Proof of Work (PoW) blockchains, specifically, Bitcoin, (ii)
fast bootstrapping for Proof of Stake (PoS) blockchains, and (iii) proofs
of data availability for consensus scaling.

1 Introduction

A wide class of multiparty cryptographic protocols is currently considered in
the stake-based setting, where a public-key directory of N keys associates each
key mvki with a real number si, — the key’s stake. In the stake-based setting,
the adversary has a corruption bound which is expressed in terms of total stake
controlled — rather than number of keys or identities — and the complexity
metrics of the protocol aim to scale with logN rather than N .

While any standard “key-based” multiparty protocol can be trivially ported
to the stake-based setting by “flattening” out the stake distribution and associ-
ating each unit of stake (aka coin) to a distinct cryptographic key, the result-
ing constructions are typically extremely inefficient. Motivated by advances in



blockchain technology, an array of recent protocol design efforts have focused on
the topic of native stake-based design, with prominent examples in the area of
consensus protocols, e.g., Algorand [20] and the Ouroboros protocols [43, 41, 24],
and more recently secure multiparty computation [8, 21].

Pushing the state of the art forward in this direction, this work puts forth
stake-based threshold multisignatures (STM).

– In an STM, as in a threshold signature, a quorum of signers is required to
engage in order for a signature to be produced. However, the threshold is
expressed in terms of stake rather than a number of keys or identities.

– Second, in an STM, contrary to a multisignature, not all signers are eligible
to sign all messages — this is necessary in order to match the communication
scalability requirement. On the other hand, when they are eligible, similar
to a multisignature, they can act independently producing (pre-)signatures
that can be individually verified.

– Third, in an STM, in line with the scalability objective of the stake-based set-
ting, we want the operations of issuing a signature, aggregation of individual
signatures, verification as well as total communication to depend logarithmi-
cally in N . Furthermore, we allow for the verifier to operate using a concise
verification key.

STMs can have profound implications in the topic of blockchain governance,
(e.g., it is possible for all Bitcoin holders to ratify a particular software upgrade)
but also other applications such as fast blockchain bootstrapping of cryptocur-
rency wallets. Specifically, to articulate the latter application, in a proof-of-stake
blockchain like Cardano, Algorand or Tezos, using an STM, it is possible to cer-
tify the state of the ledger efficiently at regular intervals by creating certified
checkpoints. This can facilitate a fast bootstrapping process for a wallet appli-
cation joining the system: instead of the wallet acting as a “full node” and pro-
cessing all ledger transactions to sync up to the recent state, it can “hop” across
checkpoints from checkpoint to checkpoint starting from the genesis block (or
the most recently known trusted block) until the latest checkpoint is reached
from which point it can process transactions normally.

Our contributions. In more detail, our contributions are as follows:

– Formalization of the Stake-based Threshold Multisignature primitive. The
fundamental concept in achieving a scalable STM is to pseudorandomly as-
sociate with each message a sufficiently large committee drawn from the
stakeholder distribution. For this reason, we introduce the notion of an eli-
gibility check before signing. At the same time, we also use the notion of an
index, iterating over the available seats in the committee.
Thus, for any message msg, the STM functionality can be thought of as
initiating a lottery for each of the m available committee seats, and each
prospective signer can check to see if they win it (it is feasible for somebody
to win multiple seats). Here m is a security parameter of the primitive. Each

2



winning ticket can be seen as an eligibility credential allowing the party to
create a signature for msg. The probability of a ticket winning or not is
a function of the party’s stake, and it is calculated so that the party has
the same probability of winning irrespectively of how her stake is organized
(e.g., either aggregated in a single public-key or dispersed to many). Eligible
parties for a message msg are subsequently capable to create a signature.
Finally, once signatures from k different “seats” are produced, these can be
aggregated in a public manner.We present our modeling as an ideal function-
ality in the universal composition (UC) setting.

– A scalable instantiation. We describe two instantiations of our primitive:
one optimized for speed and simplicity of implementation, and one that is
optimized for space. We do so in a modular way, by building two proof sys-
tems around the same relation. Our relation directly uses batch verification
for efficiency and to also enable random oracle calls to be outsourced to the
verifier. In this way, it is simple to extend our current design in view of
different requirements or assumptions.

– Efficiency Considerations and Applications. We compare the space efficiency
of our construction with that of similar primitives and describe three poten-
tial applications in which our design is readily applicable. First, we describe
how STM functionality can be integrated into bitcoin by using pay-to-script-
hash p2sh to facilitate registration. Second, we describe how STMs can
facilitate bootstrapping in Proof of Stake (PoS) blockchains. Finally, we
comment on how STMs can play a role in the design of high performance
permissionless distributed ledger protocols.

1.1 System Overview and Design Challenges

The operation of our primitive, Stake-based Threshold Multisignatures (detailed
in Section 4) is as follows: the semantics are similar to those of a standard
threshold signature scheme, with the addition of an eligibility predicate based
on user stake. The purpose of the predicate is to pre-emptively filter the number
of users signing each message to a quantity independent of the number of total
users, and independent of the particulars of the stake distribution.

In typical stake-based blockchain constructions, blocks are produced by turn-
ing to a verifiable or distributed randomness generation to select the users re-
sponsible for block production, and then by having the selected users sign the
blocks. Our construction (Section 5) aims to instantiate our primitive by com-
bining this random selection with the signature. To extend the lottery analogy,
in our construction the individual signatures will also serve as eligibility tickets.
The odds of a ticket winning are proportional to the signer’s stake.

From stake to tickets. Potential signers can check eligibility locally leading
to clear efficiency gains: non-winning tickets incur no communication, storage or
aggregation costs. On top of this, we will also need a mechanism that checks that
a particular message is in fact supported by stakeholders of a sufficient amount of
stake — a form of signature aggregation. To accomplish this, we run m lotteries
(signing sessions) in parallel and require that at least k of them are won (produce
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a successful signature), for suitable choices of the parameters k,m. Subsequently
we facilitate signature aggregation by using them as witnesses in a properly
crafted aggregation relation. A particular challenge in our setting is to ensure
that the adversary cannot bias the lotteries to its advantage, especially given
the fact that our constructions cannot always rely fully on idealized abstractions
such as the random oracle model.

Verifying signatures in this system would require verifiers to know the public
keys and stake held by each user, which can often be cost-prohibitive in large
user sets. We formalize this requirement by requiring a key registration function-
ality that organizes the participants’ stake; to minimize the assumptions placed
on the setup of the primitive, we assume the functionality is aware of the stake
of participants and invites them to register their cryptographic keys. Upon ter-
mination of this phase, the parties can retrieve those keys and organize them
in a Merkle tree (note that this Merkle tree organization can take place as part
of setup and hence need not encumber the parties computationally). This way,
verifiers only need to be aware of the tree root rather than the contents.

In this way, verifiers only need to be made aware of the tree root rather than
the entirety of the contents. In turn, this implies that signatures need to contain
the path to their key and stake alongside their signature and session index(es)
for which they claim they are eligible. This is still a net gain, as the length of
the Merkle tree path is only logarithmic with regard to to the number of users.

A natural tool for concisely aggregating Merkle proofs as well as signatures,
are zero knowledge proofs. Interestingly, we only require compactness and not
secrecy. Even so, we face a number of design challenges: the hash function in the
Merkle tree needs to be optimized for use inside a proof system, as well as the
signature and mapping verification. Furthermore, we cannot directly encapsulate
a random oracle inside the proof system as that would swap the oracle for a
concrete function [3]; calls must be avoided or externalized. We lay out the
groundwork for a circuit-based approach by utilizing a modular approach for
our design, and elaborate on a Bulletproof based construction describing the
necessary components and an Elligator-based mapping function.

A particular challenge in this setting, is that independence of eligibility for
different keys does not hold (as, without random oracles, the adversary can po-
tentially craft adversarial keys that enjoy increased probability of being selected)
and hence we have to be able to ensure that this attack vector does not invalidate
the security of the construction.

Armed with the above design approach, we utilize bulletproofs [15] and an
efficient arithmetic hash such as Poseidon [37] to implement the Merkle tree
resulting in a space efficient STM with length independent of k, (Sect. 5.3). For
completeness we also present a simpler instantiation (Sect 5.2) where we just use
hashing, in the random oracle model, and as a proof system, we simply reveal the
witness. Note that in both cases, we use proofs of possession to ensure resistance
to rogue key attacks.

In Section 6.1 we evaluate the efficiency of our construction in terms of com-
mittee size, proof sizes and an estimate for constraints on the bulletproof-based

4



instantiation. The number of constraints that are needed for the circuit is approx-
imately 222, and aggregate proof sizes can be as small as 4KB using Bulleproofs.
Concatenation based proofs are ca. 100-350KB in size, but are faster to verify.

In terms of applications, in Section 8 we observe that our construction can be
readily integrated into standard Bitcoin script to equip all accounts with STM
functionality. In particular, using pay-to-script-hash p2sh it is possible to en-
tangle an STM public-key to one’s address and then use the Bitcoin blockchain
as the key-registration service for our construction as described above. Subse-
quently all enabled UTXOs can engage in STM generation.

We also examine the problem of bootstrapping light clients in Proof of Stake
(PoS) blockchains. The general challenge in this setting is that the client needs
to verify the ledger upon joining the network and that block verification funda-
mentally depends on stake (unlike an SPV client in the bitcoin setting, that can
simply count the blocks’ aggregate difficulty). As a result, a client bootstrapping
in the PoS setting needs to follow the stake as it moves between accounts to be
in sync over time with the stakeholder distribution and validate all the blocks.
The amount of work to be performed scales linearly with the number of trans-
actions in the ledger which can be extremely large. Using mithril, a different
approach can be followed: instead of verifying transactions, the stakeholders can
issue checkpoints at regular intervals using an STM signature. The client needs
only to verify all checkpoints till the most recent one after which individual
blocks and transactions can be verified sequentially. In this way the operation
becomes linear in the number of checkpoints instead of linear in the number
of transactions. The frequency of the checkpoints can be set to be at regular
intervals.

1.2 Comparisons to Related Work.

Multisignatures, introduced in [39] enable combining multiple signatures of the
same message into one. Note that the interesting case is the setting where veri-
fication complexity would be sublinear in the number of signers, otherwise one
can simply string all signatures together in order to obtain a multisignature. In
[53] Ristenpart and Yilek demonstrate how proofs of possession can enable more
efficient aggregation for BLS-based constructions while avoiding “rogue-key” at-
tacks, in which an adversary may create a malicious key related to an honest
one with the goal that the malicious key can be used to sign a multisignature
over both keys.

The related but distinct primitive of threshold signatures was introduced in
[25]. In a threshold signature, there is a threshold t so that a signature only can
be produced with respect to the group key as long as t shareholders engage. Many
threshold signature schemes require a key generation protocol that requires the
coordination of the signers over a number of rounds, e.g.,[34], [55], [18].Never-
theless it is desirable, especially in the blockchain setting, to have an ad-hoc key
generation where signers can post their keys in an asynchronous fashion and that
the subgroup which acts for a particular message is determined dynamically.
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Threshold signatures and multisignatures were combined in [45] highlighting
the properties of traceability in the context of threshold signatures. The concept
of accountability, i.e., that the subgroup involved in a multisignature needs to
be reliably identified by the verifier was formalized in this context in the form
of accountable subgroup multisignatures (AMS) [49]. Ad-hoc threshold multisig-
natures (ATMS) were put forth in [33]. ATMS is like a threshold signature, in
the sense that a quorum of signers need to issue “signature shares” that are sub-
sequently combined. Signature shares however are verifiable as signatures. Key
generation is ad-hoc without participant coordination. This allows a maximal
committee to be fixed ahead of time whilst allowing for individual members to
abstain or be unavailable. The multisignature-based construction in [33] operates
by first committing the verification keys of all users to a Merkle tree and also
producing an aggregate verification key for the entire user set. Signing operates
by producing a multisignature representing all the users who did participate, as
well as a list of all the verification keys of users who did not. The list is supported
by Merkle tree proofs verifying their membership in the set. This results in a size
linear to the number of abstaining users (regardless of their amount of stake).

In contrast, our notion of a “threshold” is predicated by the stake held by each
user and additionally involves random eligibility sampling to keep participation
requirements manageable. Essentially, whereas in an ATMS scheme selecting a
committee is an external operation, in STM it is (implicitly) performed internally.
This is beneficial to security (as there is no need to identify committee members)
as well as liveness: a (partly) inactive committee stops progress in an ATMS
scheme, but an STM scheme can recover by signing an alternative message (as
eligibility is pseudorandomly redistributed per message).

More recently, Micali et al. [50] introduced compact certificate schemes (CCCK)
which can be seen as the stake-based version of ATMS. Compared to our prim-
itive, they lack the concept of eligibility. As a result, depending on the stake-
holder distribution, a significant percentage of the user base needs to produce
and transmit their individual signatures in order for the protocol to succeed.
They do utilize sampling during aggregation however, something that enables
them to only reveal a small number of signatures as proof of a certificate’s valid-
ity. The construction of [50], uses a Merkle tree for registration, similar to ATMS
and Mithril. For signing, it first commits to the set of collected signatures, and
then uses random sampling to determine which of the committed signatures will
be revealed to the verifier.

Interestingly, in terms of efficiency, this adaptive sampling enables the use of
a more aggressive quorum parameter, producing certificates that are 2-3 times
smaller than our concatenation-based instantiation, with similar asymptotics.
However, this comes at the expense of a centralized aggregator that needs to
collect all signatures making the communication of the approach unattractive.

The contemporary work on the Telescope [19] family of protocols is also
applicable to our setting. Though the authors frame their design as a framework
to prove knowledge of elements satisfying a predicate, it is straightforward to
adapt it in a signature setting by means of a unique signature scheme. For
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a certain message m, an element satisfies the predicate iff it correctly verifies
against on of the verification keys in a fixed set. The authors offer a centralized
version where every signer needs to contact the aggregator, and a decentralized
version where eligibility sampling is performed beforehand, though the protocol
exhibits a very high lower bound in the number of transmitted signatures. This
is visible in Table 1 as the decentralized version tracks the centralized one even
for 220 users. To adapt their scheme to our setting, we need to enable certificate
recipients to verify signatures: in the Telescope setting this functionality is a
given. Towards this, we assume the set of verifier keys is stored in a Merkle
Tree, and include costs for the Merkle paths in the certificate size only. We also
provide costs were the signed message is split in two parts, (topic, body) which
are signed separately with only topic determining eligibility as in Sect 4.

Our construction instead is scalable in terms of communication costs and ag-
gregation effort as only a small subset of users is involved in signature production.
We can also implement STMs using bulletproofs for the proof system, something
that squashes the proof length (at the cost of higher computation). We note that

System logN = 10 logN = 13 logN = 20 logN = 30
comms size comms size comms size comms size

Baseline - Participation 64 42 512 335 64 MB 42 MB 64 GB 42 GB
ATMS [33] 48 .05 384 .05 48 MB .05 48 GB .05
CCCK [50] 64 34 512 49 64 MB 84 64 GB 134
Telescope, Cent. [19] 102 (54) 17 816 (432) 25 102 (54) MB 44.5 102 (54) GB 72
Telescope, Dec. [19] 102 (54) 18 816 (432) 26.5 102 (54) MB 47 179 (97) MB 76.5
PSC [Sec 5.2] 61 (32) 102 61 (32) 141 61 (32) 234 61 (32) 367
PSC CH [Sec 5.2, 6.1] 132 (70) 69 132 (70) 96 132 (70) 158 132 (70) 248
PSB [Sec 5.3] 70 (37) 4.5 70 (37) 4.7 70 (37) 5.1 70 (37) 5.6
PSB CH [Sec 5.3, 6.1] 153 (80) 4.3 153 (80) 4.4 153 (80) 4.6 153 (80) 4.9
Baseline - Abstention 43 42 341 335 43 MB 42 MB 43 GB 42 GB
ATMS [33] 32 64 256 512 32 MB 64 MB 32 GB 64 GB
CCCK [50] 43 46 341 70 43 MB 126 43 GB 206
Telescope, Cent. [19] 68 (36) 24 544 (288) 37.5 68 (36) MB 68 68 (36) GB 112
Telescope, Dec.. [19] 68 (36) 25.5 544 (288) 39.5 68 (36) MB 72.5 311 (165) MB 120
PSC [Sec 5.2] 88 (47) 102 88 (47) 141 88 (47) 234 88 (47) 367
PSC CH [Sec 5.2, 6.1] 92 (49) 161 92 (49) 232 92 (49) 401 92 (49) 641
PSB [Sec 5.3] 102 (54) 4.5 102 (54) 4.7 102 (54) 5.1 102 (54) 5.6
PSB CH [Sec 5.3, 6.1] 106 (56) 5.5 106 (56) 5.9 106 (56) 6.6 106 (56) 7.6

Table 1. Comparison to previous work for N users with sizes in kilobytes (KB) un-
less noted. Communication costs are the sum of all individual signatures produced
by signers. We assume a flat (uniform) stake distribution, 1

3
adversarial stake and

full adversarial abstention (bottom subtable) or participation (top). This leads to
numreveals = 128/80 for CCCK when the adversary is abstaining/participating. We
use k = 424 for PSB ,PSC . Signature and hash bit lengths are 512/256 for the base-
line and CCCK systems, 384/256 for ATMS, Telescope and PSC and 446/446 for PSB

respectively. In all cases aggregation must be performed by a full node, see Table 4.
CH indicates a concurrent hybrid of k = (286, 769),m = (1747, 6654), see Section 6.1.
For PSB we have included the cost to avoid complexity leveraging Sect. 5.5. For an
abstaining adversary, we calculate the expected communication cost including retries.
We optimize all Merkle tree proofs as in Section 6.2. The parenthesised values corre-
spond to the “empty body” variant in Section 6.5.
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the constructions of [50, 19] could possibly similarly be augmented with a more
compact proof system but has not been explored in the corresponding works.

We provide a comparison with concrete numbers between the schemes in
Table 1, showcasing the scalability of Mithril against a naive base scheme, the
ATMS construction of [33] the compact certificates of [50] and Telescope [19]. The
naive baseline system polls all users and produces a certificate by fully revealing
enough signatures to overtake the presumed adversarial stake, as described in
[50]. The PSB instantiations of Mithril make use of bulletproofs to reduce the
proof size. The security proof for the PSB instantiation requires an optional
leveraging argument. If we eschew leveraging, we will need to also add the leaf
index corresponding to each of the k contained signatures. This adds k · logN
bits to the proof size, and has no effect to the other metrics. In the most extreme
case, this will add 2.7KiB to CH proof sizes for 230 users, and as little as .6KiB
for 1024 users. For convenience, we include these costs in the table.

In short, ATMS is best-suited for a small number of parties, whereas Mithril,
CCCK and Telescope scale better. Mithril best “compresses” the signer set be-
fore transmission and thus wins on communication. On the other hand, CCCK
performs that compression after the fact, and Telescope at both ends, with both
revealing fewer signatures than the concatenation version of Mithril, PSC .

Blockchains and Proof of Stake. In terms of client bootstrapping, proof of Work
blockchains admit simple solutions like SPV, where bootstrapping can be per-
formed by verifying only the headers of the chain [51]. Further optimizations
such as Non-interactive proofs of proof-of-work (NIPoPoWs) [42] and flyclient
[16] drastically reduce the number of headers required by attaching additional
significance to blocks with a specific, rare property. This critically hinges on the
ability to verify headers without the need to establish a stakeholder distribution.

Turning to PoS blockchains, the works of [3, 31] are orthogonal to our work:
they describe how a single user can privately prove eligibility, whilst we tackle
eligibility over multiple users. Vault [44] uses a construction similar to ours as
a component in an efficient bootstrapping and storage solution for Algorand.
Their construction does not utilize multisignatures, as multisignatures alone do
eliminate the linear size dependency on committee size: the VRF and Merkle tree
checks need to be aggregated as well. We opt to use a dense mapping, a notion
similar to a VUF to make aggregation possible, which gives us greater flexibility
by means of size-time tradeoffs in choosing the appropriate proof system.

Plumo [29] uses a two layer solution tailored to blockchain bootstrapping,
where one layer proves epoch transitions and the other aggregates over multiple
epochs. Their system is highly efficient, but requires stronger setup assumptions
to utilize SNARKS. Similarly, the subsequent works of Das et al. [23] and Garg
et al. [32] make use of customized snarks to produce weighted threshold signa-
tures with a trusted setup. Agrawal et al. [1] introduce an efficient interactive
bootstrapping solution with some online requirements. It is orthogonal to (and
compatible with) our work: e.g. their solution can be applied to a chain of Mithril
certificates.
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Table 2. Notation used in this work

Numbering
N Number of users registered.
m Number of lotteries to be held.
k Number of lotteries to be won for a certificate to be accepted.

Registration
mvki Verification key of user i.
stakei Stake held by user i.
AVK Aggregate key of N users, defined as the root of a Merkle Tree with

regi = (mvki, stakei) as leaves.
Messages
mesg A message for the STM, in the form of mesg = (topic, body)
topic Part of a mesg, used to determine eligibility.
body Part of a mesg, not used to determine eligibility.
msg The message passed to the underlying unique signature primitive, as

a function of mesg and AVK.
Sampling
ϕ(stakei) A function mapping the stake stakei of an individual user, or set of

users to the probability of wining one of the lotteries.

2 Preliminaries

Notation We use λ as the security parameter. When S is a set, the assignment
operator x←S stands for x being sampled from the set S uniformly at random.
We use bold characters to denote vectors of variables i.e. b := (b1, . . . , bn). We
require the DL and co-CDH problems to be difficult in this setting.

Group Setting We require a pairing-friendly elliptic curve E on Fp, forming
groups G1,G2 of order q, with pairing function e : G1×G2 → GT . We use g1, g2
to refer to generators of G1,G2 respectively.

2.1 Group setting assumptions

Definition 1 (The Discrete log Problem). For a group G = ⟨g⟩ of order q,
and an adversary A we define AdvdlG as:

Pr [a← Zq;h← ga : a← A(h)]

Definition 2 (The Discrete log Assumption). We assume AdvdlG is negligi-
ble for all probabilistic polynomial time (PPT) A on GH , G1, G2.

Definition 3 (The co-Computational Diffie-Hellman Problem). For two
groups G1 = ⟨g1⟩,G2 = ⟨g2⟩ of order q, and an adversaryA we define Advco−CDHG1,G2

as:
Pr

[
a, b← Z2

q;h← ga1 ; t1 ← gb1; t2 ← gb2 : gab1 ← A(h, t1, t2)
]
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Definition 4 (The co-CDH Assumption). We assume Advco−CDHG1,G2
is negli-

gible for all PPT A on G1,G2.

We can strengthen the above assumption, by allowing A to run in super-
polynomial, but still sub-exponential time. This can allow for higher efficiency
in PSB , through the optional use of a complexity leveraging argument.

Definition 5 (The leveraged co-CDH Assumption). We assume Advco−CDHG1,G2

is negligible on G1,G2 for all adversaries A running in time O(λlog λ).

Common setup. We use Setup(1λ) to refer to the group generator function which
generates a group setting with the above requirements. Setup(1λ) generates
groups G1 = ⟨g1⟩,G2 = ⟨g2⟩ of order q, as well as e : G1 × G2 → GT , and
returns system parameters Param = (G1,G2, g1, g2, q, e,GT ).

We optionally require a group GH of order p so that E can be embed-
ded in GH , and additionally that the structure of E is compatible with the
Elligator [9] or Elligator squared [58] representation functions. We require E
to be pairing-friendly due to our choice of signature scheme. Compatibility
with Elligator depends on our choice of dense mapping. In that case, we set
Param = (G1,G2, g1, g2, q, e,GT ,GH , gh, p).

Hash functions We need hash functions HG1
: {0, 1}∗ → G1, Hq : {0, 1}∗ →

Zq modeled as random oracles, producing group elements in the corresponding
groups for use with our unique signature scheme and mapping. For batching, we
also use a truncated version of Hq, Hλ : {0, 1}∗ → Z2λ .

We also require a collision resistant hash functionHp on Fp to produce Merkle
trees. Depending on our choice of a proof system (see Sect. 5.1), we can opt to use
a prime p and an arithmetic friendly hash that is believed to be collision resistant,
such as Poseidon [37] to instantiate Hp when using an arithmetic proof system
that is efficient for Fp . If the proof system evaluates Hp only natively, we can
set p to a large power of 2 and opt to use any collision resistant hash.

Merkle trees A Merkle tree is a well-used data structure based on hash func-
tions that allows one to represent N items3 of arbitrary size by one hash value.
Beyond that, it is efficient to verify that a value v exists within a Merkle tree T ,
by providing a path p which consists of the position i of N in the tree, as well
as the hashes of the siblings of i and the siblings of its parents.

MT.Create(v): Parse v as a vector vi of length N . Create an empty binary tree
with N leaves. Label each leaf li with the hash of the corresponding value
Hp(vi). For each level of the tree, label each node z with the hash Hp(x, y)
of the labels of its children x, y. Return the label T of the root.

3 For ease of exposition, we assume N to be a power of 2.
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MT.Check(T,N, v, i,p): Parse p as a vector pj of length log2(N). Let ik be the
k-th least significant digit of i in binary. Let h0 ← Hp(vi). for k = 1 to
log2(N), let hk ← Hp(hk−1, pk−1) if ik is 0 and hk ← Hp(pk−1, hk−1) if it is
1. Return 1 if hlog2(N) = T and 0 otherwise.

For simplicity, we write that v ∈ T , for a fixed value of N if there exists an index
i and path p such that MT.Check(T,N, v, i,p) is 1.

In this work we will rely on the fact that Merkle trees are bindingin the
following sense:

Lemma 1. If for a Merkle tree T,N there exist i, v ̸= v′, and p, p′ such that
MT.Check(T,N, v, i,p) = MT.Check(T,N, v′, i,p′) = 1, we can extract a collision
for Hp.

Proof. Following the calculation of MT.Check, we have h0 ̸= h′0 unless v, v′ are
a collision. Furthermore, we know that hlog2(N) = h′log2(N). Thus, there must
exist a minimal k such that hk ̸= h′k but hk+1 = h′k+1. Thus, we find that
(hk, pk), (h

′
k, p

′
k) is a collision when ik is 0, and (pk, hk), (p

′
k, h

′
k) when it is not.

Weighting Function Looking forward, we will use the concept of weights to
randomly assign eligibility to participants. As we want eligibility to be calculated
independently, a simple linear weighting is not desirable. Take 2 parties of equal
weight w0, each with an assigned 10% probability of eligibility. Between them,
they will have a 19% probability of at least one of them being eligible, rather than
20% if they merge. Like Ouroboros [24], we use the function ϕ(w) = 1− (1−f)w
to assign success probabilities to weights w ∈ [0, 1]. The value ϕ(1) = f is a
tuning parameter, representing the success probability of the total weight.

The end result is to make the probability of success for a given party ir-
respective of the exact distribution in virtual identities: i.e. an adversary con-
trolling weight w has the same chance of success if she keeps the weight under
a single identity or splits it in various ways. More concretely, we have that
ϕ(a+ b) = 1− (1− ϕ(a)) · (1− ϕ(b)), that is, the probability of success assigned
to one party with stake a+ b is equal to the probability that at least one of two
independent parties with stakes a, b respectively achieves success.

Non Interactive Proof Systems In our construction, we use a proof system
to allow a prover to prove statement x is true by demonstrating she knows a
witness w such that R(x,w) is true.

Bulletproofs Bulletproofs [15] are an efficient proof system with transparent
setup where a relation is represented as an arithmetic circuit. For a fixed relation
R, and system parameters Param, we refer to the reference string setup, prover
and verifier algorithms as PSB .RS← PSB .S(Param) πC ← PSB .P(PSB .RS, x, w),
0/1← PSB .V(PSB .RS, x, πC), where x,w refer to the statement and witness re-
spectively. Bulletproofs are complete andknowledge sound via witness-extended
emulation.
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A concatenation based proof system

A concatenation based proof system The proof system PSC consists of releasing
the witness w and letting the verifier check if R(x,w) = 1. Looking forward, w
will be a concatenation of individual signatures, hence the name. Concretely, we
have:

PSC .S(1λ): Return PSC .RS := ⊥
PSC .P(PSC .RS, x, w): Return w
PSC .V(PSC .RS, x, π): Return R(x,w)

3 Unique Signature Scheme with Dense Mappings

Unique signature schemes [46, 26, 36] guarantee that for any given message m,
a user associated with a verification key vk is only able to produce exactly one
valid signature σ. This enables predicating eligibility by evaluating our dense
mapping on σ.

We use a variant of MSP-PoP, a multisignature based on Boneh Lynn Shacham
(BLS) signatures [12] with proofs of possession (PoPs) as described in [11, 53].

– MSP.Gen(Param): sk ← Zq;mvk ← gsk2 ;
κ1 ← HG1

(“PoP”∥mvk)sk;κ2 ← gsk1 . Return secret key sk, verification key
mvk and proof of possession κ = (κ1, κ2)

– MSP.Check(mvk,κ): If e(κ1, g2) = e(HG1
(“PoP”∥mvk),mvk) and e(g1,mvk) =

e(κ2, g2) are both true, return 1, otherwise return 0.
– MSP.Sig(sk,msg): Return σ ← HG1

(“M”∥msg)sk.
– MSP.Ver(msg,mvk, σ): Return 1 if e(σ, g2) = e(HG1(“M”∥msg),mvk). Oth-

erwise return 0.
– MSP.AKey(mvk): Takes a vector mvk of (previously checked) verification

keys and returns an intermediate aggregate public key ivk =
∏
mvki.

– MSP.ASig(σ): Takes as input a vector σ and returns µ←
∏d

1 σi.
– MSP.BKey(mvk, eσ): Takes a vector mvk of (previously checked) verifica-

tion keys and weighting seed eσ, and returns an intermediate aggregate
public key ivk =

∏
mvkeii , where ei ← Hλ(i, eσ).

– MSP.BSig(σ): Takes as input a vector of signatures σ and returns (µ, eσ)
where µ←

∏
σeii , where ei ← Hλ(i, eσ) and eσ ← Hp(σ).

The MSP scheme has been shown to be complete and unforgeable in [53]
and [12]. We will redo the unforgeability proof as a number of differences are
important for out application. First, in the definition of Boneh et al. [12], there
exists only a single honest user so there is no possibility of the adversary issuing
a singing query on the message targeted by the forgery: if a message has been
queried, it becomes ineligible for the adversary to win with. With multiple honest
users however, it becomes possible that the adversary has honest user a sign a
message and produces a forgery on account of honest user b. Second, instead of
the ψ isomorphism between G1 and G2 used by [53] and [12], we instead add
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a second element to the Proof of Possession. We present our security definition
and corresponding unforgeability proof for our variant of MSP in Section 3.1.

The MSP.Check function is used to verify that the proofs of possession κ
attached to a public key mvk are correct. The scheme operates as a standard
multisignature, aggregating keys via MSP.AKey and signatures via MSP.ASig.

We also use the MSP.BKey and MSP.BSig functions, which enforce more
stringent checking than that of standard multisignatures by utilizing the short
random exponent batching of Bellare et al. [5]. The difference from standard mul-
tisignature aggregation (via MSP.AKey and MSP.ASig), is that the randomized
check will fail with overwhelming probability if any of the individual signatures
is invalid, whereas standard aggregation allows for spurious individual signatures
as long as they sum up to the correct aggregate. Furthermore, MSP.BKey uses a
weighting seed eσ as input; in practice this is produced by the signature set to be
verified and cannot be run ahead of time. In our use case, this can be overcome
by having MSP.BKey be evaluated inside a proof system.

3.1 Security of MSP

Definition 6. We say that a signature scheme is unforgeable in aggregate if any
PPT adversary A wins the following game with only negligible probability.

– The Challenger runs Param = (G1,G2, g1, g2, q, e,GT )← Setup(1λ).
– The Adversary A selects a number of honest users n.
– The Challenger provides the verification keys mvki, for i ∈ [n] and proofs of

possession κi, for i ∈ [n] of the honest users to the adversary.
– The Challenger allows the adversary to issue (individual) singing queries on

any message and on the behalf of any user.
– The Adversary outputs a tuple (m∗, σ∗,mvk∗,κ∗).
– The Adversary wins if and only if:

1. The vectors mvk∗ and κ∗ have the same length, l.
2. MSP.Check(mvk∗i ,κ∗

i ) = 1 for i ∈ [l].
3. There exists at least one index j ∈ [l] such that mvkj corresponds to an

honest user, and the message m has not been queried w.r.t. mvkj in the
signing oracle.

4. MSP.Ver(m∗, ivk∗, σ∗) = 1, where ivk∗ ← MSP.AKey(mvk∗).

Theorem 1. Our unique signature scheme is unforgeable in aggregate assuming
the hardness of the co-CDH problem.

Proof. We will describe a simulator that uses a forger A for the signature scheme
in order to solve a co-CDH instance. The simulator works as follows:

We assume A issues a maximum of qmsg non-PoP queries to the oracle HG1
.

We select q∗ randomly between 1 and qmsg. The simulator receives a co-CDH
instance ga1 , gb1, gb2. We select one honest user index j∗ to “trap” at random.

We set the verification key of that user to vk∗ = (gb2, π
∗), where π∗ = (gb1, g

br
1 ),

and program the random oracle so that HG1
(“PoP”∥gb2) = gr1. For all other users,

we create and store their keys normally.
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Random Oracle queries We distinguish between two classes of queries:
PoP-related queries that we use to extract information about adversarial users,
and message queries that we use to enable use to forge signatures (except for
the q∗-th query).

For all queries “PoP”∥vk to the random oracle, we reply with gas1 for s← Zq
and save (vk, gas1 , s) to a list Lpop.

For other queries “M”∥msg to HG1
, if this is not the q∗-th query, we reply

with gt1 for t← Zq and save “M”∥msg, (gt1, t) to a list Lmsg. For the q∗-th query,
we reply with ga1 , and store (ga1 ,⊥) to Lmsg.

Signing queries This configuration enables the simulator to sign most mes-
sages on behalf on any user, with the exception that P ∗ cannot sign the q∗-th
message queried. To produce a signature on msg, under key vk = gx2 , (g

x
1 , g

s
1x)

we lookup “M”∥(msg, (gt1, t) on Lmsg. The signature is then σ = π1
t = gtx1 .

In the special case where t is ⊥ we retrieve s from (vk, gas1 , s) in Lpop, and
output σ = π2

1/s = g
(asx)/s
1 = gax1 . This is possible for all users apart from P ∗.

As the signature scheme is unique, the adversary cannot discern which way was
used to answer.

If the adversary wins, the simulator checks to see if P ∗ is included in mvk∗.
If it is, we are able to isolate σ∗

j∗ from the aggregate signature σ by calculating
the signature of every other user included in the key. The signature σ∗

j∗ must be
such that e(σ, g2) = e(ga1 , g

b
2) i.e. a solution to the co-CDH problem.

This contradicts our assumption for the difficulty of the co-CDH problem.

We note that the proof covers the case of standard single-signer forgery when
l = 1.

Lemma 2. Let mvk ∈ Gn2 , and σ ∈ Gn1 be two vectors of verification keys and
signatures. Then, for any message msg, the check

∏
i MSP.Ver(msg,mvki, σi)

is equivalent to MSP.Ver(msg,MSP.BKey(mvk, eσ),MSP.BSig(σ)) where eσ ←
Hp(σ), except with negligible probability, taken over the outputs of the random
oracle Hλ.

Proof. Let h ← HG1
(“M”∥msg). Without loss of generality, we assume h is

not the identity element of G1 (in which case the result holds trivially). Let
µi = logg2 mvki and ψi = logh σi. Then, the check

∏
i MSP.Ver(msg,mvki, σi)

can be rewritten as
∏
iEqCheck(µi, psii)). Where EqCheck(x, y) = 1 if x = y

mod q and 0 otherwise. The second check can be rewritten as EqCheck(
∑
i ei ·

µi,
∑
i ei · ψi) = EqCheck(

∑
i ei · (µi − ψi), 0).

We can consider
∑
i ei · (µi −ψi) as a degree 1 multivariate polynomial with

variables ei and coefficients (µi−ψi). Thus, by the Schwartz-Zippel lemma, unless
all the coefficients are 0, the equality test will pass with probability only 1

q .

3.2 Dense Mappings for Unique Signatures.

Being able to deterministically attach a regularly-sampled value to signatures
enables us to flag a small subset of signatures as eligible by requiring their values
under the mapping for a sequence of indexes to be under a given threshold.
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The works of [58, 9] show how one can map a point on an elliptic curve to
a string indistinguishable from uniformly random. Given such a mapping we
would be able to use a signature scheme with unique signatures as a regularly
distributed verifiable unpredictable function (VUF).

Definition 7. A deterministic function M : G1 → Zp∪{⊥} is a dense mapping
if, for some negligible ϵ, it holds that for any y ∈ Zp, |Pr[M(x) = y|M(x) ̸=
⊥]− 1/p| ≤ ϵ and Pr[M(x) ̸= ⊥] is non-negligible, when x is uniform over G1.

Given a family Mmsg,index of dense mappings indexed by index, we can add a
new operation to a unique signature scheme as follows.

– MSP.Eval(msg, index, σ): Return ev ←Mmsg,index(σ).

In Section 7 we show how to construct a dense mapping ME
msg,index(σ) based

on Elligator Squared, which avoids oracle calls on user-specific data i.e. we ex-
plicitly avoid hashing σ to sidestep soundness issues in circuit-based proofs.

For the concatenation proof system PSC in Section 5.2 we use a random oracle
H : {0, 1}∗ → Zp for the mapping as: MR

msg,index(σ) := H(“map”∥msg∥index∥σ).
In Section 7 we show how to construct a dense mapping ME

msg,index(σ) based
on Elligator Squared, which avoids oracle calls on witness-specific data.

4 Ideal Functionality for Stake Based Threshold
Multisignatures

The STM functionality FϕSTM(P,m, k). Initialisation phase

FϕSTM(P,m, k) initializes the variable Allow to 1, and table K to be empty and proceeds
as follows:

• Upon receiving (Register, sid) on behalf of party Pi:
1. If Allow is 0, Pi /∈ P, or K(Pi) is already defined, ignore the request.
2. Otherwise, set K(Pi) = 1 send (Registered, sid, Pi) to A and output

(Registered, sid) to Pi.
• Upon receiving (Start, sid) from the adversary A:

1. Set Allow to 0.

Fig. 1. The Stake Based Threshold Multisignature functionality FϕSTM(P,m, k) in the
Initialisation phase interacting with the adversary A.

We will now describe a stake based threshold multisignature functionality
similar to the PoS Anonymous Selection of [3]. The messages mesg to be signed
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are of the form mesg = (topic, body), where the eligibility of a signer is a function
of their stake and topic, but not body.

Separation of topic, and body. This distinction can be used to limit the
feasibility of an adversary trying to “grind” by trying different messages in the
hope they are indeed eligible for one. By prescribing that topic must follow a
narrowly defined format the adversary’s options are limited. Alternatively, body
may be left blank, simplifying the construction and also making it harder for
adversaries to leverage dynamic corruptions: a user who is eligible to sign for
(topic=President, body=Alice) can be corrupted to sign for (topic=President,
body=Bob) as eligibility will persist. By mandating that the body is blank, a
user who signs (topic=President,Alice) is not more or less likely to be able to
sign (topic=President,Bob). We revisit this distinction and tradeoffs in Section
6.5.

The functionality maintains a list L of signatures produced by itself, and a
list E storing the eligibility of the various parties. The functionality operates on a
fixed player list P = (Pi, stakei), where |P| = n, a scaling function ϕ(w), security
parameter m ≥ log2λ and quorum parameter k = m · ϕ( 12 ). The functionality
operates on a static corruption model where the adversary is allowed to corrupt
up to 1

2 − a of the total stake.
The functionality works by sampling eligibility overm indices. Users are made

eligible in proportion to their stake and independently of each other. Producing
an aggregate signature requires individual signatures over k different indices. The
functionality is split in two phases. It starts in the initialisation phase which we
present in Figure 1. The decision to move to the operation phase, presented in
Figure 2 is left to the adversary.

At a high level, the ideal functionality allows users to call EligibilityCheck and
CreateSig to check whether they are able to sign, and if so, produce signatures.
Both calls are parametrized by an index value representing which of the m par-
allel lotteries the user is referring to. In practice, users will check all lotteries.
Eligibility is decided by the adversary under the condition that corrupt users
cannot form a quorum (i.e eligibility over at least k indices). Since corruptions
are static, this implies that corrupt users can never succeed in producing an
aggregate signature. Aggregate will only produce an aggregate signature if there
exist k individual signatures for the same mesg over different index values, and
VerifyAggregate requires that an aggregate signature came from Aggregate, or
that enough individual signatures have or could have been produced to support
it. That is, we allow that aggregation can be performed by any party as there is
no private information required.

A trivial realization. If we assume uniform stake distribution, we can realize the
above using only signatures: we set m = N , and fix the eligibility function to
E(topic, Pi, index) = 1 iff i = index and 0 otherwise. CreateSig is implemented by
signing. Verification only accepts signatures for index i from user Pi. Aggregate is
implemented by concatenating signatures and signer identities. VerifyAggregate
then consists of parsing, and counting the number of valid signatures.
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While simple, the aggregate signatures have size linear in the number of users
which is cost-prohibitive in practice. Assuming uniform stake is also problematic
in general. One could argue that a user holding s units of stake could be simulated
by s users each holding 1 unit, but this only exacerbates the size issue. In the
next Section we expand our treatment to cover the more general case, and use
dense mappings as a form of lottery so that only a few stakeholders need to
participate at any one time.

Our notion of lottery based sampling alleviates both of these concerns: stake
is used to determine the odds of wining with no need of duplication. Additionally,
it operates as a filter, reducing both the number of signatures communicated to
the aggregator as well as the size of the certificate.
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The STM functionality FϕSTM(P,m, k), operation phase.

• Upon receiving (EligibilityCheck, sid,mesg, index) from a party Pi:
1. If K(Pi) is undefined, or Pi /∈ P ignore the request.
2. If flag(topic) is empty, send (EligibilityCheck, sid, topic,P) to A. Else, goto 5.
3. On receiving (Eligible, sid, topic,B, t) parse B as a n × m bit matrix and let
E(topic, Pi, index)← B(i, index), and let flag(topic)← 1.

4. If B assigns eligibility to corrupted users on k or more indices, abort.
5. Output (EligibilityCheck, sid, E(topic, Pi, index)) to Pi.

• Upon receiving (CreateSig, sid,mesg, index) from a party Pi:
1. If K(Pi) is undefined, ignore the request.
2. If flag(topic) is undefined, send (Declined, sid,mesg) to Pi. Otherwise, check
E(topic, Pi, index). If it is 0, send (Declined, sid,mesg) to Pi. Otherwise if it is 1,
send (Prove, sid, Pi,mesg, index) to A.

3. When receiving (Done, sid, Pi, π,mesg, index) from A, store (Pi, π,mesg, index)
in L. Send (Proof, sid, π,mesg, index) to Pi.

• Upon receiving (Verify, sid, Pi, π,mesg, index) from a party P ′:
1. If K(Pi) is undefined, ignore the request.
2. If (Pi, π,mesg, index)∈L send (Verified, sid, (Pi, π,mesg, index), 1) toP ′.
3. Else, if E(topic, Pi, index) is 0 or Pi is honest, send (Verified, sid,

(Pi, π,mesg, index), 0) to P ′.
4. Else, send (Verify, sid, (Pi, π,mesg)) toA, and wait for (Verified, sid, (π,mesg), v)

from A. If v is 1 store (Pi, π,mesg, index) in L and reply
(Verified, sid, (Pi, π,mesg, index), 1) to P ′.

5. Else, send (Verified, sid, (Pi, π,mesg, index), 0) to P ′.
• Upon receiving (Aggregate, sid,P ,π, index,mesg) from a party P ′ :

1. Parse P ,π, index as vectors of length k containing Pi, πi, indexi.
2. If K(Pi) is undefined for any i, ignore the request.

Run (Verify, sid, Pi, πi,mesg, indexi) for each i.
3. If any produce 0, or if indexi = indexj for i ̸= j, reply

(Aggregation, sid, (P ,π,mesg), 0).
4. Otherwise, send (Aggr, sid,P ,π, index,mesg) to A.
5. When (AggrDone, sid,P ,π, index, ρ,mesg) is received from A, let τ = ρ, store

(m, τ,mesg) in L.
6. Send (Aggr, τ,P ,π,mesg) to P ′.

• Upon receiving (VerifyAggregate, sid, τ ,mesg) from a party P ′ :

1. If (τ,mesg) exists in L, then send (Verified, sid,m, τ,mesg), 1) to P ′.
2. Else, send (AVerify, sid, (τ,mesg)) to A, and wait for (Verified, sid, (τ,mesg), v)

from A.
3. If v = 1, count the number of indexes with either (1) a previously produced

signature for (mesg) in L or (2) a corrupted player eligible to sign on topic. If the
total is k or more, store (τ,mesg) in L and output (Verified, sid, (m, τ,mesg), 1)
to P ′.

4. Else, send (Verified, sid, (m, τ,mesg), 0) to P ′.

Fig. 2. The Stake Based Threshold Multisignature functionality on the operation phase
FϕSTM(P,m, k) interacting with the adversary A.
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5 A Stake Based Threshold Multisignature Scheme

Protocol Π.STM. Initialisation phase

• Setup: Users start in the initialisation phase. Each user locally sets Reg ← ∅, and
sends (GetRS, sid) to FRS(P). Upon receiving (GetRS, sid,RS), store RS.

• Register: Each user Pi gets their keys by running (mski,mvki,κi) ←
MSP.Gen(Param). They set (vki, ski) := ((mvki,κi),mski, ). A user then sends
(Register, sid, vki) to Fψ0

Kr (P).
• Startup: When a user receives (RetrieveAll, sid,K), from Fψ0

Kr (P) it sets Reg :=
(K(Pi), stakei) for Pi ∈ P, and Reg is padded to length N , using null entries of
stake 0. Let AVK← MT.Create(Reg). The user moves to the operation phase.

Fig. 3. The STM Protocol Π.STM in the initialisation phase.

In Figures 3 and 6 we present a protocol Π.STM realizing FϕSTM(P,m, k) in
the FRS(P),Fψ0

Kr (P)-hybrid model. The functionality FRS(P) provides access to
a reference string, whereas Fψ0

Kr (P) provides key registration so that a key can
only be used by one party. Both hybrid functionalities we use are practical to
realize in common applications. For FRS, the group can be realistically hardcoded,
leaving only the proof system reference string. We present functionality FψKr(P)
in Figure 4. The parameter ψ is a function that checks public keys by calling
MSP.Check. Functionality FRS(P) is presented in Figure 5.

The Key Registration functionality FψKr(P).

FψKr(P) initializes the variable Allow to 1 and proceeds as follows:

• Upon receiving (Register, sid, vk) on behalf of party Pi:
1. If Allow is 0, Pi /∈ P, K(Pi) is already defined, or vk ∈ K, ignore the request.
2. If ψ(vk) = 1, let K(Pi)← vk, and output (RegKey, sid, 1) to Pi.

• Upon receiving (Retrieve, sid, Pi) on behalf of party Pj :
1. Pj /∈ P, or K(Pi) is not defined, output (Retrieve, sid, Pi,⊥) to Pj .
2. Otherwise, output (Retrieve, sid, P1,K(Pi)) to Pj

• Upon receiving (CloseRegistration, sid) on behalf of the adversary A:
1. Set Allow to 0.
2. For each Pi ∈ P, send (RetrieveAll, sid,K) to Pi.

Fig. 4. The Key Registration functionality FψKr(P), with key checking function ψ.
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The Reference String functionality FRS(P).

• Upon Initialization, let Param← Setup(1λ);PS.RS← PS.S(Param);
Set RS := (Param,PS.RS), and send (GetRS, sid,RS) to A.

• Upon receiving (GetRS, sid) on behalf of party Pi:
1. If P1 ∈ P Output (GetRS, sid,RS) to Pi.

Fig. 5. The Reference String functionality FRS(P) interacting with the adversary A.

For an unstructured reference string, we can use HG1 , and a random seed, as
we only require random elements in G1. The key registration functionality, FKr

can be realized by means of a broadcast channel which can be implemented via
a blockchain.

As with the ideal functionality, the protocol operates in two phases. The
initialisation phase is presented in Figure 3 and the operation phase in Figure
6. The protocol operates on a fixed player list P = (Pi, stakei), where |P| = n,
a scaling function ϕ(w), a lottery parameter m ≥ log2 λ and quorum parameter
k = m · ϕ( 12 + a), where ψ0(mvk,κ) := MSP.Check(mvk,κ).

Our scheme requires two main components: a unique signature scheme with
a dense mapping, and a proof system to produce proofs of multiple signatures
with specific mapping constraints, i.e each signature must map to a value smaller
than the target value implied by the signer’s stake.

The simplest option would be to construct aggregate proofs by simply con-
catenating individual signatures. This allows for simple and efficient choices in
the other parameters but produces a large aggregate proof. On the other hand,
we can use a circuit-based proof system such as Bulletproofs, which will pro-
duce much smaller proofs. However, this choice requires careful selection of the
other primitives, as we need to e.g avoid evaluating random oracles in the cir-
cuit. We will further explore the instantiation options in Sections 5.3 and 5.2,
and compare their efficiency in Section 6.1.

5.1 The Relation Ravk

Our proof systems operate on language Lavk, i.e we prove knowledge of a wit-
ness w such that statement x holds, i.e. Ravk(x,w) = 1. Concretely, state-
ments are x = (AVK, ivk, ivkbody, µ, eσ,mesg) and witnesses are of the form w =
(mvki, stakei,pi, evi, σi, indexi) for i ∈ {1 . . . k}. The relationRavk is parametrized
on N,m, k, ϕ(), which are public. Ravk(x,w) = 1 if and only if the following hold:

– ivk = MSP.BKey(mvk, eσ) and ivkbody = MSP.AKey(mvk).
– (µ, eσ) = MSP.BSig(σ).
– ∀i : indexi ≤ m and ∀i ̸= j : indexi ̸= indexj .
– For i ∈ {1 . . . k}: (mvki, stakei) lies in Merkle tree AVK, N following path pi.
– For i ∈ {1 . . . k}: MSP.Eval(topic, indexi, σi) = evi
– For i ∈ {1 . . . k}: evi ≤ ϕ(stakei)
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Contradictions for Ravk Due to the use of Merkle trees in the avk relation,
there may exist numerous “alternative” openings for given a root, enabling the
adversary to produce a proof by means of using such an opening as part of the
witness. Obviously, any such witness combined with our known opening of the
Merkle tree would contradict the collision resistance of Hp. However, it might
not be possible to extract that witness from a proof in the UC setting. For this
reason, we will define a class of statements to be contradictory if they are not
consistent with our known opening of the Merkle tree. We then need to show
for our proof system, that proofs of such statements can only be produced with
negligible probability.

Definition 8. ForRavk, given N,m, k, ϕ(), we say that statement x = (AVK, ivk, µ, eσ,msg)
is contradictory w.r.t. information (mvki, stakei) for i = 1 . . . N and (evi,k, σi), if
(1) AVK = MT.Create(mvki, stakei) for i = 1 . . . N , (2) evi,t = MSP.Eval(msg, t, σi)
for i = 1 . . . N , t = 1 . . .m , and (3) there exist no indexes pj , tj for j = 0 . . . k−1
such that:

– ivk = MSP.BKey(mvkpj ,σpj ).
– ∀i ̸= j : si ̸= sj.
– For i = 1..k: evpj ,tj ≤ ϕ(stakepj )

Utilizing Oracle calls As PSB relies on partly representing Ravk inside a circuit,
care must be taken to avoid oracle calls inside the circuit itself. In the PSC
instantiation however, there is no such restriction. As such, we are free to use
MR as the dense mapping in MSP.Eval.

We will propose two constructions: one based on bulletproofs which may also
be used as a template for other circuit-based systems, and a simpler system
based on releasing the witness. In the first case we let PS = PSB and M =ME ,
and in the second, PS = PSC and M =MR.

5.2 An Instantiation via Concatenation Proofs

The proof system PSC consists of releasing the witness w and letting the verifier
check if R(x,w) = 1. Looking forward, w will be a concatenation of individual
signatures, hence the name. Contradiction soundness is trivial for PSC , as the
full witness is present without rewinding. We use mapping M =MR for PSC .

Contradiction Soundness for PSC

Lemma 3 (Contradiction Soundness for PSC). For any N,m, k, ϕ(), any
polynomial time P∗, and given information (mvki, stakei) for i = 1 . . . N and
(evi,k, σi) such that evi,t = MSP.Eval(msg, t, σi) for i = 1 . . . N , t = 1 . . .m, we
have that for any contradictory statement x, the following probability is negligible:

Pr[AVK← MT.Create(mvki, stakei), (ivk∗, µ∗,msg∗, π)∗ ← P∗(σ,AVK) :
PSC .V(⊥, x, π∗) = 1 where x = (AVK, ivk∗, µ∗,msg∗), ]
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5.3 An instantiation based on Bulletproofs

We have ensured that the overall design is modular so that the proof system
can be changed with relatively few changes. Nonetheless, some issues require
attention. Specifically, for the bulletproof based system PSB , we need to (a) en-
sure performance by matching the arithmetic of the proof system to the curve
arithmetic of signatures, (b) ensure no oracle calls are required inside the circuit
and (c) establish contradiction soundness because standard soundness is inad-
equate (due to spurious hash preimages), and rewinding cannot be invoked by
the simulator.

Curve Choices In order to efficiently produce proofs about group elements of
G1,G2 which are based on a pairing friendly curve E on Fp, we additionally
require a group GH of order p so that E can be embedded in GH , and additionally
that the structure of E is compatible with the Elligator [9] or Elligator squared
[58] representation functions. The Pluto-Eris [38] cycle of curves satisfies these
properties.

Hash use inside Circuits We note that HG1 ,Hq are not evaluated inside the
circuit-based proof, allowing us to study the security of either construction under
the random oracle model [6] with no hindrance to the proof. This is relevant,
as Baldimtsi et al. [3] point out: if we concretely represent the hash (e.g. as a
circuit) to construct the appropriate statement proof system, we can no longer
invoke the random oracle model.

At the same time, we only require that our group structure is pairing friendly,
as that is required by the BLS based (multi-)signature scheme. BLS aggrega-
tion is somewhat underutilized as we require individual signatures to verify the
mapping. However, we are able to batch verify efficiently using short random
exponents.

Furthermore, we use a mappingME
msg,index(σ) := R(msg, σHq(msg,index), index),

based on Elligator squared [58]. We not that R is a deterministic representation
function, so that we do not need to call the random oracle with elements of the
witness. We provide a full description of the mapping in Section 7.

Contradiction Soundness for PSB We note our argument for proving contra-
diction soundness invokes rewinding to perform extraction, but said rewinding
is performed on the entire ensemble of the UC simulator and the environment.
I.e., if there exists an environment such that proofs of contradictory statements
are produced with non-negligible probability, we are able to produce collisions
for Hp . This external leveraging of rewinding is similar to that of Canetti et.
al. [17] who perform rewinding outside the UC proof to assert an indistinguisha-
bility property inside it. The rewinding is not performed by the simulator in
order to obtain information to continue execution (which would require that
any extraction is straightline i.e. without rewinding). Rather, the implication
that “there exists an efficient collision finder for Hp”, is leveraged to bound the
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probability that the simulator fails after receiving a proof that it recognised as
contradictory.

Using the witness extractors from [35, 2], we can prove that:

Lemma 4 (Contradiction Soundness for PSB). For any N,m, k, ϕ(), any
polynomial time P∗, and given information (mvki, stakei) for i = 1 . . . N and
(evi,k, σi) such that evi,t = MSP.Eval(msg, t, σi) for i = 1 . . . N , t = 1 . . .m, we
have that for any contradictory statement x, the following probability is negligible.

Pr[σ ← PSB .RS(1λ),AVK← MT.Create(mvki, stakei),
(ivk∗, µ∗,msg∗, π∗)← P∗(σ,AVK) :
PSB .V(σ, x, π∗) = 1 where x = (AVK, ivk∗, µ∗,msg∗)]

Proof (Sketch). If P∗ succeeds with non-negligible probability, we can use the
witness extractor to obtain a witness w with good probability in expected poly-
nomial time. Given our information (mvki, stakei), (evi,k, σi) and witness w, we
obtain a collision for Hp.

5.4 Adversarial Eligibility

A core component in the security argument is proving that the adversary has
a negligible probability of achieving eligibility across enough lotteries, and thus
any success by the adversary would involve breaking at least one of the other
underlying primitives. Towards that, we argue that if the adversary has proba-
bility p′ of winning a single lottery, he will win an average of m · p′ lotteries. We
therefore set k = mp high enough that the adversary will only win k lotteries
with negligible probability. Let the adversary’s stake be 1

2 − a. We now need to
calculate the probability p′ of the adversary wining a single lottery.

For honest parties, this would be simple to compute due to the properties of
the weighting function: take for example two parties A,B with stakes a,b, their
individual probability of wining a lottery will be by definition pa = ϕ(a) and
pb = ϕ(b). The probability that either party wins will then be 1−(1−pa) ·(1−pb)
which is 1− (1− ϕ(a)) · (1− ϕ(b)). However, the latter term is exactly equal to
ϕ(a+ b). A crucial requirement for this to hold is that the probabilities of A and
B wining the lottery are independent. For honest users, this is true as their keys
are independent, and their signatures are deterministic functions of the message
and their key.

Adversarial parties however, may try to produce correlated keys in the hope
of increasing the odds of an adversarial party wining the lottery (one winer per
lottery is sufficient so multiple wins are in effect “wasted”). For this reason, we
require that either the mapping function enforces independence even if the keys
are somehow correlated, or that the gain to the adversary is minimal.
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Adversarial Eligibility for Concatenation proofs For the concatenation
proof system PSC , our mapping of signatures to eligibility is a simple random
oracle, so the eligibility of different users is independent across the same lottery,
even if the adversarial keys themselves are related, so that p′ = ϕ( 12 − a).

Lemma 5. For the mapping MR
msg,index(σ) := H(“map”∥msg∥index∥σ), the eli-

gibility of each potential signer for any of the lotteries is independent of that of
others, as long as the public keys of users are not repeated.

Proof. The eligibility predicate for a potential signer with stake sa is calculated
by checking iff ϕ(sa) > H(“map”∥msg∥index∥σ). Due to the signature scheme
being unique, the signatures of different voters cannot be equal 4, the value
of each random oracle call is independent of all others, and thus the eligibility
predicates of different users are always independent.
4 Apart from a negligible fraction of pathological messages hashing to 1G1

Protocol Π.STM. Operation phase

• EligibilityCheck: On input (mesg, index), user Pi runs: Let topic ←
“0”||AVK||topic, σ ← MSP.Sig(msk, topic); ev ← MSP.Eval(topic, index, σ). Re-
turn 1 if ev < ϕ(stake), else return 0.

• CreateSig: On input (mesg, index): If EligibilityCheck(mesg, index) is 1,
then let topic ← “0”||AVK||topic;σ ← MSP.Sig(msk, topic);σbody ←
MSP.Sig(msk, “1”||topic||body) and produce an individual signature π =
(σ, σbody, regi, i,pi), where pi is the user’s path inside the Merkle tree AVK
and regi is (mvki, stakei).

• Verify: On input a party Pi, a signature π, index index, and message (mesg),
parse π = (σ, σbody, regi, i,pi). Parse regi as (mvki, stakei). Check that regi cor-
responds to party Pi, let topic← “0”||AVK||topic; ev ← MSP.Eval(topic, index, σ)
check that ev < ϕ(stakei) and check MT.Check(AVK, N, (vki, stakei), i,pi) =
1. If parsing or checking fails, return 0. Otherwise, return
MSP.Ver(topic,mvki, σ) ∧MSP.Ver(“1”||topic||body,mvki, σbody).

• Aggregate: On input vectors P ,π, index and message (mesg), parse P ,π and
index as a vector Pj , πj , indexj of size k, let topic ← “0”||AVK||topic and run
Verify(Pj , indexj ,mesg, πj).
If parsing or checking fails, return ⊥. If any indexj = indexi for j ̸=
i return 0. Otherwise, parse πj = (σj , σbody,j , regj , ij ,pj) and regj as
(mvkj , stakej). Let ivk ← MSP.BKey(mvk,σ),ivkbody ← MSP.AKey(mvk),
µ ← MSP.BSig(σ), µbody ← MSP.ASig(σbody), set x = (AVK, ivk, µ, eσ,mesg)
and w = (mvkj , stakej ,pj , evj , σj , indexj) for j ∈ {1 . . . k}. Then, πavk ←
PS.P(PS.RS, x,w). Return τ = (ivk, µ, eσ, ivkbody, µbody, πavk).

• VerifyAggregate: On input (τ,mesg), parse τ → (ivk, µ, eσ, ivkbody, µbody, πavk),
check that PS.V(PS.RS, (AVK, ivk, µ, eσ,mesg), πavk) is true. If parsing
and checking is successful, let topic ← “0”||AVK||topic and return
MSP.Ver(topic, ivk, µ) ∧MSP.Ver(“1”||topic||body, ivkbody, µbody).

Fig. 6. The STM Protocol Π.STM in the operation phase.
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Adversarial Eligibility for Bulletproofs For PSB , we show a weaker result:
evaluations are independent across lotteries (Lemma 6), but correlated keys (and
by extension, correlated signatures) may potentially produce correlated values.
The reason for this is that for PSB , the used mapping does not pass signatures
through a random oracle: we cannot instantiate the oracle inside a circuit, and
do not wish to send the signatures to the verifier. Instead, we pass Hq(msg, index)
through the oracle and use it as a “randomizer” for σ.

In theory, this allows the adversary to gain a slight advantage by stake split-
ting and exploiting the subadditivity of ϕ. However, in Lemma 7 we show that
we can bound the Adversary’s gain by a small value.

Lemma 6. For the mapping ME
msg,index(σ) := R(msg, σHq(msg,index), index), ad-

versarial eligibility is independent across lotteries.

Proof. We allow the adversary to control various parties each with stake si such
that the keys of adversarial users may somehow be correlated. We consider the
adversary to be eligible for a given index idx0 iff at least one of the parties
she controls is eligible for that index, i.e. R(msg, σHq(msg,index), index) < ϕ(si).
Consider a fixed message msg0, and also fix the set of adversarial keys and stakes
(the second restriction is implied in our application as the AVK of all public keys
is appended to the message).

The eligibility of each adversarial party (and therefore the eligibility of the ad-
versary in general) is then completely determined by the value ofHq(msg0, index),
its stake and public key. We also observe, that the eligibility of the adver-
sary in general can also be expressed as a (slightly more complex function) of
Hq(msg0, index) and the set of adversarial keys and corresponding stakes.

As Hq is modelled to be a random oracle, the distribution of Hq(msg0, index)
is independent across different values of index, therefore the adversary’s eligibility
is also independent across different values of index, as it is a fixed function of
Hq(msg0, index).

Lemma 7. For the mapping ME
msg,index(σ) := R(msg, σHq(msg,index), index), and

for fixed values of msg, idx, the probability of an adversary controlling a a fraction
of the stake winning the lottery is bounded by ϕ(a)·(1+c)), where c is f ·ln

(
1

1−f

)
−

1.

Proof. We know that the probability of a potential signer controlling a percent-
age s of stake is ϕ(s), where ϕ(s) = 1 − (1 − f)s and f = ϕ(1). An adversary
controlling a a share can therefore split into n parties of stake si such that∑n
i=1 si = a, so that party i succeeds with probability ϕ(si). We do not know

that probabilities of the adversarial parties are indeed independent, but we can
initially bound their joint probability by

∑n
i=1 ϕ(si). One difficulty here is that

the value of this bound depends on the exact split chosen by the adversary.
As ϕ is subadditive (i.e. ϕ(a + b) < ϕ(a) + ϕ(b)), we can further bound our

initial bound by the limit limn→∞ n·ϕ(a/n), which does not depend on the exact
split.
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We have that ϕ(x) = 1− (1− f)x. Let κ = (1− f)a. Then ϕ(a) = 1− κ and
ϕ(a/n) = 1− κ1/n. Our limit is thus

lim
n→∞

n · (1− κ1/n) = − ln(κ)

We know that ϕ(a) = 1−κ, so n·ϕ(a/n)
ϕ(a) is bounded by − ln (κ)

1−κ = −a ln(1−f)
ϕ(a) ≤

f · ln
(

1
1−f

)
as ϕ(x) ≥ x · f in (0, 1). Thus n·ϕ(a/n)

ϕ(a) is bounded by ϕ(a) · (1+ c)),

where c = f · ln
(

1
1−f

)
− 1.

In practical terms, the advantage of an adversary that can create correlations
amongst keys is not large. Let ϕmax(a) := a · ln

(
1

1−f

)
. Then, for f = .2 we

have that ϕmax(.3) ≈ ϕ(.31) and ϕmax(.4) ≈ ϕ(.419). For f = .1 we have that
ϕmax(.3) ≈ ϕ(.305) and ϕmax(.4) ≈ ϕ(.409). In plain terms, for f = .1 we can
replace a (potentially) corelating 40% adversary by a non-corelating 41% one.

Adversarial Eligibility over k Lotteries In the following lemma, we calculate
the probability that an adversary with probability p′ = ϕ( 12 − a) to win a single
lottery, manages to be eligible over enough lotteries to form a certificate by
winning at least k out of m different lotteries. Looking forward to Theorem 2,
this would cause our simulation to fail as the ideal functionality will abort.

Let ϕ( 12 ) = p. Then k = mp. First, we point out that for f ≤ 1
4 and a ≤

√
1− f , it holds that for p′ = ϕ( 12 − a) we have p

p′ =
ϕ(1/2)

ϕ(1/2−a) ≥ 1 + a.

Lemma 8. [Sampling Property] Let p′ be the probability that the adversary suc-
ceeds in any single lottery, and ϕ( 12 ) = p. When p

p′ ≥ 1+ a, the eligibility matrix
sampled by the simulator causes the functionality to abort with probability negli-
gible in m. Furthermore, for m = −(2 + a)/(a2 · ϕ( 12 − a)) ln(ς), the probability
of failure is at most ς.

Proof. Each of the m columns of the matrix represents an independent trial
in which the adversary has a probability p′ of being eligible via at least one
corrupted user. Thus, the expected number of successes is the mean, i.e. p′m ≤
k

1+a . The functionality will thus abort only if the actual number of successes, X
is greater than 1 + a times the mean.

By Chernoff bounds, the probability of aborting is: Pr[X > k] ≤ Pr[X >

p′m · (1 + a)] ≤ e
−a2·p′m

2+a . As p′ ̸= 0 by the definition of the ϕ function, the
chance of aborting is negligible in m.

For the second part, rewriting m as m = −(2+a)/(a2 ·ϕ( 12−a)) ln(ς), directly
produces the required bound.

Proof. Each of the m columns of the matrix represents an independent trial
in which the adversary has a probability p′ of being eligible via at least one
corrupted user. Thus, the expected number of successes is the mean, i.e. p′m ≤
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k
1+a . The functionality will thus abort only if the actual number of successes, X
is greater than 1 + a times the mean.

By Chernoff bounds, the probability of aborting is: Pr[X > k] ≤ Pr[X >

p′m · (1 + a)] ≤ e
−a2·p′m

2+a . As p′ ̸= 0 by the definition of the ϕ function, the
chance of aborting is negligible in m.

For the second part, rewriting m as m = −(2+a)/(a2 ·ϕ( 12−a)) ln(ς), directly
produces the required bound.

As a corollary, for m ≥ log2 λ, the above probability is negligible in λ.

5.5 Security Proof

In this section we show that our protocol realizes the ideal functionality of an
STM. A core property is that the adversary is unable to create a valid certificate.

In the previous section we showed that the probability of an adversary with
stake 1

2 − a to achieve a quorum is negligible for appropriate values of k,m.
To complete the proof we also need to show that the adversary cannot gain an
advantage by means of breaking one of the primitives used in the protocol, or
otherwise cause the simulation to fail.

Theorem 2. Let a < 1
2 , m ≥ log2 λ and quorum parameter k = m · ϕ( 12 + a).

The protocol Π.STM of Section 5 realizes FϕSTM(P,m, k) against adversaries with
stake at most 1

2 − a in the FRS(P),Fψ0

Kr (P)-hybrid model, under the leveraged5

co-CDH assumption, if Hp is collision resistant and HG1
: {0, 1}∗ → G1, Hq :

{0, 1}∗ → Zq are modeled as random oracles.

Proof. We first describe the operation of the simulator:

– Oracle Calls: The Simulator will always program the random oracle HG1

with uniformly sampled group elements gr1 with a known discrete logarithm
r ← Zq and stores their discrete log. This enables the simulator to produce
a signature on behalf of any user-message pair by utilizing κ1 = gxr1 for
a known r from the proof of possession of the user and the log r′ of the
messages hash hG1

(“M”∥msg) = gr
′ , by setting σ = k

(1/r)r′

1 .
– Register: The simulator runs the key generator MSP.Gen(Param) normally,

returns the verification key vki and stores the private key ski.
– RegKey: The simulator runs the key verification algorithm MSP.Check and

returns the output.
– EligibilityCheck: The simulator can evaluate eligibility for all participants,

by signing on behalf of each user and then sets ideal functionality accord-
ingly. This distribution is the same as in real world, apart from potentially
causing the functionality to abort, but that only occurs with only negligible
probability.

5 PSC does not require leveraging, we include the assumption for uniformity with PSB .
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– CreateSig: For honest users the simulator creates signatures normally. For
malicious ones, it uses random oracle programmability and the submitted
proof of possession to create signatures that areindistinguishable from stan-
dard ones. In both cases, the simulator keeps an internal list L of produced
signatures.

– Aggregate: Aggregation uses no private information, so the simulator can
simply evaluate it using only public information. Any signatures produced
this way are added to L

– Verify: The simulator checks if the submitted signature exists in L, and ac-
cepts if it is. Else, it verifies the signature and adds it to L. If a signature
belonging to an honest user is valid but was not in L, the simulator aborts
with output “MSP forgery”. If a signature verifies but the corresponding
user is not eligible, the simulator fails with output “individual signature ver-
ification failure” (this happens with negligible probability due to collision
resistance).

– VerifyAggregate: On VerifyAggregate queries, the simulator checks if the sub-
mitted aggregate signature exists in L, and accepts if it is. Else, it runs the
verification algorithm on the aggregate signature. If verification succeeds, it
counts the number of slots with either (1) previously produced single proofs
for (msg in L or (2) a corrupted player eligible to sign. If the total is k or
more, it accepts, otherwise it outputs “aggregate proof verification failure”.

Next, we will give a series of hybrid games between the interaction of the en-
vironment with the real protocol and between the environment and the simulator
interacting with the ideal functionality.

The first game, H0 represents the real protocol. We define H1 to be identical
to H0, but with calls to the random oracle HG1 being answered with elements
with known discrete logs. I.e on query x, the simulator checks if there exists an
entry (x, a, r) in table R. If so, it returns a. If not, it sets r ← Zq; a ← gr1. It
then stores (x, a, r) in table R. Game H1 is perfectly indistinguishable to H0, as
g1 is a generator.

We define H2 similar to H1, but with Eligibility requests answered by the
simulator. This is performed by the simulator evaluating the eligibility predicate
across all users in P and indexes index. This is possible for all users, because the
simulator can derive signatures via the proofs of possession. It is clear that H1

and H2 are also perfectly indistinguishable.
In H3, whenever Eligibility is queried for a message, the simulator calculates

eligibility for each user and index to produce B with which it initializes the
ideal functionality. If the Ideal Functionality aborts, the simulator also aborts.
Clearly, H3 only differs from H2 if the ideal functionality aborts. However, that
only happens with negligible probability (due to Lemma 8). Thus, H2 and H3

are also statistically indistinguishable.
In H4 the ideal functionality and simulator are used for CreateSig and Verify.

The simulator is able to produce signatures for any user by programming the
random oracle calls used for proofs of possession. Games H3 and H4 are indistin-
guishable unless the simulator outputs “MSP forgery” or “individual signature
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verification failure”. In Lemma 10 we show that “MSP forgery” reduces to the
co-CDH problem and in Lemma 9 we show that “individual signature verifica-
tion failure” reduces to unique provability and collision resistance. Thus, either
event only happens with negligible probability.

In H5 the simulator now answers calls to both Aggregate and VerifyAggregate.
The simulation fails when the simulator outputs “aggregate proof verification fail-
ure” but is otherwise identical to the previous execution. The output “aggregate
proof verification failure” happens with negligible probability due to Lemma11.
At this point, it suffices to point out that H5 is identical to the environment
interacting with the simulator and the ideal functionality.

Avoiding Complexity Leveraging. It is also possible to obtain the above
result without using complexity leveraging. We can simply modify the proof
system so that the user identities i are part of the statement instead of the
witness. As such, they are immediately available to the simulator without an
exhaustive search. This comes at a cost of k · logN extra bits in τ . We note
that the concatenation proof system does not require this change, as the user
identities are included.

5.6 Supporting Lemmas

Lemma 9. The simulator outputs “individual signature verification failure” with
negligible probability.

Proof. The simulator only outputs the above message if an adversarial signature
π = (σ∗, σbody∗, reg∗i , i,pi) where reg∗i as (mvk∗i , stake∗i ) is valid but belongs to
a user who is not eligible. The user being non-eligible implies that an honest
signature over the user’s registered keyset regi = (mvki, stakei) evaluates to a
non-eligible value. As both signing and evaluating is deterministic, it must be
that reg∗i ̸= regi This directly produces a collision for MT.Create and thus for
Hp.

Proof. The simulator only outputs the above message if an adversarial signature
π = (σ∗, σbody∗, reg∗i , i,pi) where reg∗i as (mvk∗i , stake∗i ) is valid but belongs to
a user who is not eligible. The user being non-eligible implies that an honest
signature over the user’s registered keyset regi = (mvki, stakei) evaluates to a
non-eligible value. As both signing and evaluating is deterministic, it must be
that reg∗i ̸= regi This directly produces a collision for MT.Create and thus for
Hp.

Lemma 10. The simulator outputs “MSP forgery” with negligible probability.

Proof. The simulator only outputs “MSP forgery” if the environment provides a
valid signature for an honest user without calling CreateSig. We observer that as
σbody must be a signature on topic||body, it is not possible for the environment to
maul σ, σbody from different topics into a new signature (except with negligible
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probability via a hash collision). Thus, at least one of the σ, σbody values provided
must be a “fresh” forgery. W.l.o.g we assume the forgery lies in σ.

We will show that we can adapt the simulation so that if “MSP forgery”
occurs with non-negligible probability, the simulator is able to solve a co-CDH
instance.

We carry out the reduction as follows. We assume the environment issues a
maximum of qmsg non-PoP queries to the oracle HG1

. We select q∗ randomly
between 1 and qmsg. The simulator receives a co-CDH instance ga1 , gb1, gb2. We
select one honest user P ∗ to “trap” at random. We set the verification key of
that user to vk∗ = (gb2, π

∗), where π∗ = (gb1, g
br
1 ), and program the random oracle

so that HG1(“PoP”∥gb2) = gr1. For all queries “PoP”∥vk to the random oracle, we
reply with gas1 for s ← Zq and save (vk, gas1 , s) to a list Lpop. For other queries
“M”∥msg to HG1

, if this is not the q∗-th query, we reply with gt1 for t← Zq and
save “M”∥msg, (gt1, t) to a list Lmsg. For the q∗-th query, we reply with ga1 , and
store (ga1 ,⊥) to Lmsg.

This configuration enables the simulator to sign most messages on behalf
on any user, with the exception that P ∗ cannot sign the q∗-th message quer-
ried. To produce a signature on msg, under key vk = gx2 , (g

x
1 , g

sx
1 ) we lookup

“M”∥msg, (gt1, t) on Lmsg. The signature is then σ = π1
t = gtx1 .

In the special case where t is ⊥ we retrieve s from (vk, gas1 , s) in Lpop, and
output σ = π2

(1/s) = g
(asx)/s
1 = gax1 . This is possible for all users apart from P ∗.

If the simulator is about to output “MSP forgery”, then the signature σ∗

must be such that e(σ, g2) = e(ga1 , g
b
2) i.e. a solution to the coCDH problem.

Proof. The simulator only outputs “MSP forgery” if the environment provides a
valid signature for an honest user without calling CreateSig. We observer that as
σbody must be a signature on topic||body, it is not possible for the environment to
maul σ, σbody from different topics into a new signature (except with negligible
probability via a hash collision). Thus, at least one of the σ, σbody values provided
must be a “fresh” forgery. W.l.o.g we assume the forgery lies in σ.

We will show that we can adapt the simulation so that if “MSP forgery”
occurs with non-negligible probability, the simulator is able to solve a co-CDH
instance.

We carry out the reduction as follows. We assume the environment issues a
maximum of qmsg non-PoP queries to the oracle HG1

. We select q∗ randomly
between 1 and qmsg. The simulator receives a co-CDH instance ga1 , gb1, gb2. We
select one honest user P ∗ to “trap” at random. We set the verification key of
that user to vk∗ = (gb2, π

∗), where π∗ = (gb1, g
br
1 ), and program the random oracle

so that HG1
(“PoP”∥gb2) = gr1. For all queries “PoP”∥vk to the random oracle, we

reply with gas1 for s ← Zq and save (vk, gas1 , s) to a list Lpop. For other queries
“M”∥msg to HG1

, if this is not the q∗-th query, we reply with gt1 for t← Zq and
save “M”∥msg, (gt1, t) to a list Lmsg. For the q∗-th query, we reply with ga1 , and
store (ga1 ,⊥) to Lmsg.

This configuration enables the simulator to sign most messages on behalf
on any user, with the exception that P ∗ cannot sign the q∗-th message quer-
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ried. To produce a signature on msg, under key vk = gx2 , (g
x
1 , g

sx
1 ) we lookup

“M”∥msg, (gt1, t) on Lmsg. The signature is then σ = π1
t = gtx1 .

In the special case where t is ⊥ we retrieve s from (vk, gas1 , s) in Lpop, and
output σ = π2

(1/s) = g
(asx)/s
1 = gax1 . This is possible for all users apart from P ∗.

If the simulator is about to output “MSP forgery”, then the signature σ∗

must be such that e(σ, g2) = e(ga1 , g
b
2) i.e. a solution to the coCDH problem.

Lemma 11. The simulator outputs “Aggregate proof verification failure” with
only negligible probability.

Proof. We distinguish between two cases:

– The statement x = (AVK, ivk, ivkbody, µ, eσ,msg) is contradictory w.r.t the
information the simulator holds. I.e ivk is not a eσ-weighted product of
eligible users’ verification keys or ivkbody is not an (unweighted) product of
the same keys, or both. This only happens with negligible probability due
to lemma 3.

– The ivk contained in the statement is ivk =
∏k
i=1 vk

ei
i where each vki be-

longs to a user eligible for index indexi, and indexi ̸= indexj when i ̸= j, and
ei ← Hλ(i, eσ) and ivkbody =

∏k
i=1 vki. In this case, the environment has

produced a signature forgery, so we can reduce to co-CDH, similar to “MSP
forgery”.

In the latter case, we carry out the reduction as follows.
First, the simulator determines the user keys used to construct ivk. This

can be done by performing an exhaustive search on the set of eligible users at
a cost of

(
m·ϕ(1)
k

)
≈

(
m
m/2

)
= O(2m). For m ≈ log2 λ, 2m is O(λlog λ) which is

super-polynomial, but not exponential in λ.
We assume the environment issues a maximum of qmsg non-PoP queries

to the oracle HG1 . We select q∗ randomly between 1 and qmsg. The simulator
receives a co-CDH instance ga1 , gb1, gb2. We select one honest user P ∗ to “trap” at
random, in proportion to their stake. We set the verification key of that user
to vk∗ = (gb2, π

∗), where π∗ = (gb1, g
br
1 ), and program the random oracle so

that HG1
(“PoP”∥gb2) = gr1. For all queries “PoP”∥vk to the random oracle, we

reply with gas1 for s ← Zq and save (vk, gas1 , s) to a list Lpop. For other queries
“M”∥msg to HG1 , if this is not the q∗-th query, we reply with gt1 for t← Zq and
save “M”∥msg, (gt1, t) to a list Lmsg. For the q∗-th query, we reply with ga1 , and
store (ga1 ,⊥) to Lmsg.

This configuration enables the simulator to sign most messages on behalf
on any user, with the exception that P ∗ cannot sign the q∗-th message quer-
ried. To produce a signature on msg, under key vk = gx2 , (g

x
1 , g

s
1x) we lookup

“M”∥(msg, (gt1, t) on Lmsg. The signature is then σ = π1
t = gtx1 .

In the special case where t is ⊥ we retrieve s from (vk, gas1 , s) in Lpop, and
output σ = π2

1/s = g
(asx)/s
1 = gax1 . This is possible for all users apart from P ∗.

Before the simulator outputs “aggregate proof verification failure”, on a cor-
rectly formed ivk, it checks to see if P ∗ is included in it. If it is, it is able to
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isolate σ∗ from the aggregate signature by calculating the signature of every
other user included in the key, as well as the ei cofactors using σ. The signature
σ∗ must be such that e(σ, g2) = e(ga1 , g

b
2) i.e. a solution to the co-CDH problem.

This contradicts assumption 5 which states that there is no O(λlog λ) time
solver for co-CDH.
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i=1 vki. In this case, the environment has

produced a signature forgery, so we can reduce to co-CDH, similar to “MSP
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In the latter case, we carry out the reduction as follows.
First, the simulator determines the user keys used to construct ivk. This

can be done by performing an exhaustive search on the set of eligible users at
a cost of

(
m·ϕ(1)
k

)
≈

(
m
m/2

)
= O(2m). For m ≈ log2 λ, 2m is O(λlog λ) which is

super-polynomial, but not exponential in λ.
We assume the environment issues a maximum of qmsg non-PoP queries

to the oracle HG1 . We select q∗ randomly between 1 and qmsg. The simulator
receives a co-CDH instance ga1 , gb1, gb2. We select one honest user P ∗ to “trap” at
random, in proportion to their stake. We set the verification key of that user
to vk∗ = (gb2, π

∗), where π∗ = (gb1, g
br
1 ), and program the random oracle so

that HG1(“PoP”∥gb2) = gr1. For all queries “PoP”∥vk to the random oracle, we
reply with gas1 for s ← Zq and save (vk, gas1 , s) to a list Lpop. For other queries
“M”∥msg to HG1

, if this is not the q∗-th query, we reply with gt1 for t← Zq and
save “M”∥msg, (gt1, t) to a list Lmsg. For the q∗-th query, we reply with ga1 , and
store (ga1 ,⊥) to Lmsg.

This configuration enables the simulator to sign most messages on behalf
on any user, with the exception that P ∗ cannot sign the q∗-th message quer-
ried. To produce a signature on msg, under key vk = gx2 , (g

x
1 , g

s
1x) we lookup

“M”∥(msg, (gt1, t) on Lmsg. The signature is then σ = π1
t = gtx1 .

In the special case where t is ⊥ we retrieve s from (vk, gas1 , s) in Lpop, and
output σ = π2

1/s = g
(asx)/s
1 = gax1 . This is possible for all users apart from P ∗.

Before the simulator outputs “aggregate proof verification failure”, on a cor-
rectly formed ivk, it checks to see if P ∗ is included in it. If it is, it is able to
isolate σ∗ from the aggregate signature by calculating the signature of every
other user included in the key, as well as the ei cofactors using σ. The signature
σ∗ must be such that e(σ, g2) = e(ga1 , g

b
2) i.e. a solution to the co-CDH problem.

This contradicts assumption 5 which states that there is no O(λlog λ) time
solver for co-CDH.
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6 Parameter Selection and Implementation
Considerations

In the following, we investigate the effects of different parameter selections to
the size of certificates. We also suggest a method of using multiple parameter
sets concurrently (concurrent hybrids) so that the best feasible set is used by the
aggregator. We also investigate the costs of producing, transmitting and verify-
ing individual as well as aggregate signatures. We also investigate the tradeoffs
between controlling eligibility by means of either the entirety of a message or a
(potentially structured) segment of it.

6.1 Parameter Choices

Quorum parameters Due to Lemma 8, the probability of an adversarial mi-
nority achieving a quorum is negligible, while the probability of the honest ma-
jority forming one is overwhelming. For a probability of an adversarial quorum
bounded by 2−128, we use the lemma to obtain initial values of k,m and reduce
them until they are tight, whilst maintaining k = m · ϕ( 12 ). However, we are
able to perform additional fine tuning: in many applications a forgery may be
catastrophic whilst an isolated failure to sign may be recoverable (via retries, or
redundancy in the application using the primitive). Towards this, we may vary
the relation between k and m. Intuitively, k = m · ϕ( 12 ) implies that a group
holding 1

2 fraction of the stake has a significant probability of signing with that
probability quickly rising (or respectivelly falling) if the amount of stake held is
more (or less) than 1

2 . By setting k = m · ϕ( 1
2+β ) for a positive safety margin

β ≤ 1
2 , we are able to sacrifice liveness in favor of smaller parameters. Following

Adversarial Stake
40% 33%

k
m

k m L-Abs L-Par k m L-Abs L-Par
ϕ(.50) 3684 34891 99.99 % ≈ 1 1129 10690 1− 2−30 ≈ 1

ϕ(.55) 1865 16144 99.99 % ≈ 1 769 6654 1− 2−30 ≈ 1

ϕ(.60) 1182 1182 48.67 % ≈ 1 576 4593 99.59 % ≈ 1

ϕ(.67) 755 5434 LL ≈ 1 414 3050 47.75 % ≈ 1

ϕ(.75) 526 3411 LL 1−3·10−12 326 2113 1.98% 1−3 ·10−8

ϕ(.80) 441 2695 LL 1−7 ·10−7 286 1747 LL 99.99%

Table 3. Required values of k,m so that an adversarial quorum is formed with prob-
ability at most 2−128. L-Abs and L-Par represent the probabilities to form a quorum
(before any retries) when the adversarial stake abstains or participates respectively. LL
describes probabilities < 1%. The parameters can be meaningfully used in conjunction
with an incentive scheme or as an auxiliary opportunistic parametrization where a less
aggressive parametrization is used as a fallback. Values of ≈ 1 indicate a chance of
failure < 10−30.
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the above intuition, when we set β > α, the honest majority cannot reliably sign
without the adversary being involved: the honestly held stake is ( 12 +α) whereas
the baseline is ( 12 + β) which is higher.

In Table 3, we calculate values for combinations of adversarial stake and
quorum percentage k

m and fixed ϕ(1) = 1
5 . Reducing ϕ(1) would allow one to

very slightly decrease k for a significant increase in m.
From the table, liveness can be challenging in certain parametrizations. This

can be addressed in a number of ways: First, the probability of an honest quorum
can be boosted by allowing retries (e.g. by attaching a short counter to the
message). Second, if an incentive structure is in place, rational adversaries who
cannot directly subvert the protocol will choose to participate in signing honest
messages. Ideally, we would like to be able to use the more compact parameters
until such time as liveness is at risk, and then fall back to higher (k,m) values.
In the following paragraph, we describe a way to achieve this :

Concurrent Hybrids Our protocol is amenable to running parametrizations
of multiple (k,m) concurrently with minimal impact to the adversary’s chance
of success. All other protocol parameters and data are shared.Thus, individual
signatures are produced according to the maximal pair of (k,m) values, and
aggregation chooses the smallest ones that form a quorum. This will increase
communication costs by transmitting potentially unneeded individual signatures,
but will choose the smallest feasible quorum size.

For ease of presentation, we present our findings for ϕ(1) = 1
5 . Decreasing

this value slightly reduces k while increasing m.

6.2 Signature and Proof Efficiency
Here, we investigate the costs of producing, transmitting and verifying individual
as well as aggregate signatures.

Individual signatures For producing an individual signature, a user needs
to produce: (σ, regi, i,pi). Producing pi, requires logN evaluations of Hp which
can be amortised over multiple signatures on the same AVK. The signature it-
self, consists of one evaluation of HG1

and one exponentiation. The cost of the
mapping evaluation is a factor, as a user needs to evaluate the representation
function over all m possible indexes. The total cost is thus one exponentiation
plus m representation evaluations. The length of individual signatures consists
of is 2 group elements (one in G2), 3 bitstings for the stake, path, & index , and
logN hashes, and is thus dominated by the hashes in pi. For concreteness, we
assume that the 3 bit strings can be packed in 176 bits: path needs log k bits,
index needs logm and stake can be limited to 128 bit precision.When assum-
ing verifiers have the contents of AVK in memory, signatures can be reduced to
2 elements for σ, σbody plus logN bits for i and logm for index, as ev can be
computed from σ, index, topic.

The costs of the verifier are logN evaluations of Hp, a pairing check and
one verification of the mapping function. We note that a verifier who holds the
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(public) contents of AVK in memory can replace the hash evaluations with a
lookup.

PSCaggregate signatures. In Concatenation based aggregate signatures we
batch the signatures on topic and aggregate the signatures on body. This replaces
2k pairing checks with k short exponentiations in G1 and G2, k multiplications
in G1 and G2 and 2 pairing checks combinable to 3 pairings.

It is also possible to compress proofs. For k = 424 leaves, revealing the
entirety of the 8th level of the tree can be accomplished by publishing 256 hashes.
In turn, this reduces the length for each individual inclusion proof by 7 “steps”:
rather than giving a path to the root, inclusion proofs can terminate 7 levels early.
This brings down the cost to the equivalent of 3k G1 elements and k(logN−6.38)
hashes. Furthermore, as we don’t need an embedded curve setting, we can opt
for a 384 bit curve following [4], and use a symmetric 256 bit hash functions for
the Merkle tree and the mapping.This produces a proof size of ca. 374 KiB.

6.3 Efficiency of PSB aggregate signatures.

For aggregate signatures in this settingthe dominating factor is the bulletproof.
The circuit needs to verify the following operations:

– k(logN + 3) Hp evaluations for Merkle Tree lookups.
– k Hash evaluations for eσ.
– k short exponentiations in G2 to produce ivk.
– k short exponentiations in G1 to produce µ.
– 2k range checks with bound m (for index bounds, and index uniqueness).
– k Comparisons between ev and ϕ(stake).

Proof Asymptotic k=424 k=576 k=769
Single PSB 2G1 +G2 +H logN + S +M 1.9 KiB 1.9 KiB 1.9 KiB
Single PSB (FN) 2G1 +M 118 B 118 B 118 B
Single PSC 2G1 +G2 +H logN + S +M 1.1 KiB 1.1 KiB 1.1 KiB
Single PSC (FN) 2G1 +M 102 B 102 B 102 B
Aggregate PSB G1 + 2G2 +O(log (k log q)) ·GH 4.1 KiB 4.6 KiB 4.6 KiB
Aggregate PSC k(G1 +G2 + S +M) +G1 +

k(logN − log k + 1) ·H
366 KiB 480 KiB 641 KiB

Aggregate PSC(FN) k(G1 +M) +G1 22 KiB 30 KiB 41 KiB

Table 4. Proof sizes for the PSB and PSC proof systems. We represent Gi elements by
Gi, hash outputs by H, stake by S and path & index metadata by M . Concrete values
are based on the parameters on the text: logN = 30, 446 bit base elements and hashes
for the PSB setting, 384 and 256 bits for elements and hashes in the PSC setting, 128
bit stake and 48 bit metadata. Single PSB are over an arity-8 tree. The k values were
derived from Table 3. The indication (FN) is the setting where the verifier is a full
node and hence certain metadata can be eliminated from the signature.
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– k Mapping evaluations for ev.
– k ϕ evaluations.

We note that most of the above checks can be performed efficiently as they
involve group operations in G1,G2 or field operations in GH for which our proof
system is more efficient. The main outlier is the evaluation of ϕ. Fortunately,
we don’t actually need to evaluate ϕ in the proof: we can replace stake in the
tree with ϕ(stake) and proceed with the comparison directly. This gives us a
circuit size of O(k log q), and verifier complexity of O

(
k log4 q

log (k log q)

)
as verification

is dominated by a multiexponentiation based on the circuit size.

Mapping Efficiency Verifying the elligator-based mapping ME is somewhat
involved. We point out that the function selects one of many possible pre-images
based on the index, which implies that the entire set f−1(Q) of pre-images needs
to be verified. Fortunately, in the analysis of Section 7, the pre-image set has a
size6 of either 4 or 2, depending on the quadratic character of an intermediate
value. A square can be verified by providing its “root” as a witness, while a non-
square can be verified by multiplying with a fixed, pre-determined non-square
and providing a root for the product. This way, we can allow for exactly 4
pre-images r1, r2, r3, r4 where r2 < r3, with the additional condition that either
r1 < r2, r3 < r4 or r1 = r2, r3 = r4 depending on the characteristic. The checking
of characteristics, verification of roots and isogeny evaluation can be performed
very efficient as verifying the value of a characteristic is much cheaper than
calculating it: i.e for any y and a known non-square d, it is enough to produce a
“root” r and a bit χ such that: r · r = y ·χ+ y · d · (1−χ). Enforcing uniqueness
and correct ordering of the roots is the most expensive operation, requiring 3
range checks as we verify that ri+1 − ri is positive in the integers. Given that,
the cost of verifying a ME evaluation is dominated by the range checks enforcing
the correct ordering of pre-images.

Estimate for constraints We now give an estimation on the number of
constraints required for our scheme, with a k value of 414, m = 2980, and
log p = log q = 446 and N = 230. We assume G1 operations to require 12
6 The case of size 0 is also possible, but we will never be called to verify it.

Proof Operations
Single PSB log8NHp + 2Hs + 400F +M1 +MT + 3P

Single PSC (logN + 1)Hs +M1 +MT + 3P

Aggregate PSB O(k log q)EH +M1 +MT + 3P

Aggregate PSC k · (M2 + E1 + E2) +M1 +MT + 3P

Table 5. Verification complexity for the dominant operations and terms. Mx represent
Gx multiplications, F field operations, P represent pairings and Ex represent Gx multi
exponentiations. Hs and Hp represent symmetric and Poseidon hashes respectively.
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constraints, G2 operations 4 times as much, range checks from 0 to 2b − 1: b
constraints, Merkle tree lookups approximately cost 7290 constraints, but can
be brought down to 4050 by changing the arity of the tree to 8:1. This estimates
the cost of performing the lookups individually. Given that we are doing multiple
lookups, we can perform an additional optimization. The top layers of the tree
are evaluated once for each user which is redundant: the root hash is checked
k = 414 times whereas it should be checked only once. The lower levels are more
dense, but still provide benefits: the second level can be exhaustively checked
with only 8 evaluations and the third with 64. This implies that the amortized
cost per lookup is ca 3009 constraints. Hp evaluations for the leave contents can
be performed at 4 : 1 compression at a cost of 300 constraints. Comparisons
between values cost 2b, 3b constraints, amortized to 2b when values are used
twice. Mapping representations involve 60 constraints plus 3 range checks.

In total we have:

– k · (3009 + 300) constraints for Merkle Tree lookups.
– k · 100 constraints for eσ.
– (k + 1) · 48 · 100 constraints for multiplications in G2 for ivk.
– (k + 1) · 12 · 100 constraints for multiplications in G1 for µ.
– 4k · logm for range checks and comparisons with bound m.
– 3k log q + 60k for representation function evaluations.

In total, we obtain 3k log q+4k logm+9329k ≈ 222 constraints. Extrapolating
from [15, 37, 38], for k=414 this gives us a proof size of under 4KB with a batched
verification time of ca. 100sec. Due to the incremental nature of signature and
public key aggregation it is simple to split it into a constant number of steps and
use a recursive proof system like Halo [14] to obtain a constant-time improvement
in verification speed as well as a (small) improvement to proof size. As we only
perform a constant number of recursion steps we are able to sidestep potential
soundness issues with regard to extraction efficiency.

6.4 Further PS Options

Our protocol is modular with regards to the proof system. The complexities
in using a different system are using a dense mapping that does not pass user
data through a random oracle (such as the Elligator-based one in Section 7)
and any potential trust requirements on the reference string. There exists a
number of alternative circuit-based proof systems. SNARKs, such as Plonk [30]
and Sonic [48] offer constant verifier complexity with the main drawback of a
trusted setup string.

Our approximation of the circuit complexity should be representative of per-
formance with such systems, though significant optimizations may be possible,
e.g with custom Plonk gates for Poseidon. STARKs, such as Redshift [40] and
Aurora [7] offer similar verifier performance at the cost of large proofs. As zero
knowledge is not a requirement, the size required makes them less attractive.
Finally, recursive proof systems such as Halo [14] or Plonky2 [52] can also be
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explored: constant depth recursion can reduce proof sizes and verifier load. Un-
bounded recursion may also be possible depending on the application, though
technical complexities with oracle calls and extraction depth make such an adap-
tion less than straightforward.

6.5 Dynamic Adversaries and Forward Security

We have modeled our functionality and scheme in a static corruption model. In
proof of Stake applications, dynamic corruption greatly enhances the power of
the adversary: the adversary waits to see which users are eligible for an action
(e.g. to produce the next block) and then corrupts them. In our functionality,
it is possible to make a tradeoff between security against dynamic adversaries
and grinding: mandating the body field of each message to be empty (and the
entire message be used as the topic) implies that eligibility is predicated on the
message, and is independently distributed across different messages. That is, user
P1 being eligible for message mesg1 is independent of user P1 being eligible for
message mesg2. This defeats the strategy of corrupting a user after they have
performed a particular action.

Nevertheless, in the ideal world, the adversary is able to set eligibility before
performing corruptions, and would thus be able to assign eligibility to users
before corrupting them.

In the real world, it is hard for the adversary to determine a user’s ev values
for any message the user has not signed due to the unforgeability of the signature
scheme and regularity of the mapping. If a user signs a particular message for
a single lottery with index index0, then the adversary can determine that user’s
evaluation for every other index, but it is reasonable to assume that in most
applications users will elect to either sign over all indices they are able to, or not
at all. What a real-world adversary might do however is calculate the eligibility
predicate over some indices without calculating ev (or equivalently,the CDH term
σ). A line of research [13, 10, 27, 54] on the bit-security of CDH supports the
assumption that guessing even partial information about the CDH term is hard.
With this assumption in place, dynamic corruptions only allow the adversary
to take hold of a user who is known to be able to sign message msg, after she
has already signed it. A second item of discussion is that the stake distribution
may naturally drift over time. While this depends on the application, a natural
solution would be to have users periodically register fresh keys to produce a
new aggregate key in a regular basis. This further reduces the relative power of
adaptivity.

Forward Security A different issue, that exists beyond our modeling is that the
stake distribution used by the functionality might lose relevance with time: that
may be due to inflation or users selling their stake after the functionality has
started. This implies that after a long period of time, the adversary might be
able to acquire more than 1

2 − a of the stake (potentially over an old stake
distribution). This of course directly violates our model’s assumptions, but it is
an important real-world issue. As such, honest users should be assumed to delete
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their keys after a set of conditions has taken place (e.g an aggregate message
has successfully been produced, containing an updated stake distribution or X
amount of time has passed). Alternatively, generic constructions [47] can be
used to add forward security while also maintaining the uniqueness property for
a fixed point in time.

7 A Dense Mapping from Elligator Squared

In this Section we propose a dense mappings based on Elligator Squared with a
representation function compatible with the Pluto/Eris [38] BN curves. While
constructions based on Elligator squared can be used with a very broad family
of elliptic curves, efficiency can be lacking if the mapping used inside the rep-
resentation function cannot be evaluated and inverted efficiently. Tailoring the
representation function to a specific curve or curve family is thus necessary to
arrive at meaningful efficiency estimates. The Ouroboros Crypsinous MUPRF
[41] uses a similar technique, but the additional requirements on group structure
do not provide us with curves compatible with the original Elligator [9] construc-
tion. Elligator squared [58] uses a general technique that is compatible with a
greater range of curves, but provides an efficient encoding function only for a
subset of curves.

Boneh and Wahby [59] show how one can bridge this gap by using isoge-
nies to tranfer points to a curve that is more efficient to represent. Their work
focuses on the task of hashing into a curve as opposed to representing points
as random-looking bitstrings, but the isogeny can be evaluated in reverse at a
similar computational cost. A final obstacle is that Elligator squared uses ran-
domness in the calculation of the representation which can be problematic to
reason about inside a zero knowledge proof. We overcome this by pre-setting
this randomness via a random oracle, and accepting a significant probability of
evaluation failure. This is not a problem for our application, as we can account
for the probability of failure by adjusting the weighting function.

The representation function R : G1 × {0, 1}l → {0, 1}l is specified below,
adjusted from [58]. We modify it so that it always terminates after a single iter-
ration with the caveat that it can fail (i.e produce ⊥ as output) with significant
probability. R is parametrised by the curve modulus p, and a a d-well bounded
encoding f for d = 4.

The encoding f , is adapted from [59]. It is parametrized by a curve EI ,
isogenous to E, where G1 ∈ E, with an isogeny µ : E → EI of degree 3 [38].

To evaluate f(Q), we let Q2 ← µ(Q), and then evaluate the simplified SWU
encoding on Q2 ∈ EI . To calculate the inverse, we raise to the inverse of 3
mod q, apply the dual of µ, and calculate the inverse encoding in EI as in [58].
A key observation from the investigation of [58, 59] into this calculation is that
f−1(Q) consists of the roots of a bicubic equation and is thus efficient to both
calculate as well as prove.
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Algorithm 1 Elligator Squared Representation
procedure Function R(y,x,t)

Q← y − hG1(x||t)
n← #f−1(Q)
j ← Hq(x||t) mod 4
if n < j then return ⊥
end if
{z0, . . . , zn} ← f−1(Q)
return Return zx, where zj = (zx, zy)

end procedure

To calculate the success probability of Algorithm 1 we invoke Lemma 5 of
[58], which we restate for the reader’s convenience. Let P (y) = Pr[R(y, x, t) ̸= ⊥]
and N(y) = 1

P (y) .

Lemma 12 (Lemma 5,[58]). For all y, let ϵT (y) = N(y)/d− 1, where d is the
bound of the encoding function f . Then, for all points y except possibly a fraction
of ≤ p−1/2 of them, we have:

ϵT (y) ≤ O(p−1/4)

Corollary 1. Algorithm 1 terminates with an output other than ⊥ with proba-
bility at least 1

5 .

Proof. From lemma 12, and for d = 4 we know that for all but a fraction of
≤ p−1/2 y, N(y) ≤ 4 + O(p−1/4), thus P (y) ≥ 1

4+O(p−1/4)
. Thus, for all y, we

have P (y) ≥ 1
5 .

The regularity of the output is a direct consequence of applying Elligator
Squared to a uniformly random point Q. The only difference is that we choose
to abort early, and allow for a significant probability of returning ⊥.

Theorem 3 ([58]). The non-⊥ outputs of Algorithm 1 are ϵ-close to uniform
for ϵ = O(p−1/2).

We are now ready to show the main result of this Section. Let R(·) be the
representation function described in Algorithm 1. We can prove the following
lemma as an immediate outcome of Corollary 1 and Theorem 3.

Lemma 13. For all msg ∈ {0, 1}∗, and all index ∈ Z, the function ME
msg,index(y)

:= R(msg, yHq(msg,index), index) is a dense mapping with Pr[M(y) ̸= ⊥] < 1
5 .
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8 Applications

In this section we delve into some applications of Mithril (STM) signatures in the
blockchain setting. In general, STMs could be applied in any setting where we can
associate an amount of stake to a set of public-keys. Given such arrangement,
stakeholders can produce certificates for any given message mesg of interest.
Before we proceed, we remark that some care needs to be applied to ensure
the integrity of STM sampling based on our security model, namely that user
public-keys are fixed prior to messages being proposed for signing. Even though
grinding attacks have a negligible probability to produce a forgery, cf. Lemma 8,
an attacker who knows topic prior to the keys being finalized, can attempt to
grind the probability of signing topic by trying multiple keys. In this way the
attacker will boost somewhat the number of lottery tickets it wins, something
undesirable in practice (since e.g., we would need to take this opportunity into
account when selecting the number of lotteries m).

In a blockchain setting, this attack can be averted by storing the public-
keys on chain and then including an unpredictable fresh nonce drawn from the
blockchain itself as part of the message while also verifying this nonce during
verification. In practice, it will be sufficient to verify that any msg considered
for certification is unpredictable during the pubic-key generation stage (in the
blockchain setting, this can be done by e.g., including an unpredictable fresh
nonce drawn from the blockchain itself as part of the message). For simplicity,
we assume this is implemented by default.
Bitcoin Referendums. We first consider using Mithril in the context of a
proof-of-work cryptocurrency such as Bitcoin as a decision-making tool. Using
STM it is possible to probe the population of Bitcoin holders (as opposed to,
say, the miners) regarding a particular topic or action.

In Bitcoin, balances are sent to a ScriptPubKey and are spendable by re-
vealing a corresponding ScriptSig. The ScriptPubKey value can be either
of the form pay to public-key (p2pk) or pay-to-script-hash (p2sh). Payments
of the latter form are made to ScriptPubKey = OP_HASH160 <scripthash>
OP_EQUAL where <scripthash> is the hash of a “redeem script” that needs to be
provided when the UTXO is spent. Using p2sh it is possible to receive payments
and associate the resulting UTXO with an STM public-key. Specifically we can
use the following redeem script: OP_HASH160 <STMpkhash> OP_EQUALVERIFY
OP_HASH160 <pkhash> OP_EQUALVERIFY OP_CHECKSIG which contains the hashes
of the STM public-key and of the ECDSA key controlling the balance; spending
requires opening both keys & a signature for the ECDSA key. Such a p2sh can
be spent with the following ScriptSig <Sig> <pk> <STMpk> <RedeemScript>.
Evaluating this script by itself, will verify <STMpkhash>, <pk> and the ECDSA
signature. Subsequently it is also checked that <RedeemScript> verifies cor-
rectly with regard to <scripthash>.

We observe that the above mechanism achieves the following objectives: the
STMpk value is hashed into ScriptPubKey as well as <RedeemScript>. Reveal-
ing the latter, enables anyone offchain to verify, but not spend, the stake of STMpk
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–spending would also require the ECDSA signature <Sig>. Thus, individual STM
signatures can be verified and matched to the stake they correspond to.

Based on the above, it is straightforward to use our STM construction as a
decision-making tool for Bitcoin holders. A proposal mesg will be announced to-
gether with a threshold. Interested bitcoin owners reveal their <RedeemScript>
values and issue an individual signature on mesg. The entirety of the above pro-
cess can happen off-chain as a layer 2 type of coordination. When a sufficient
number of those individual signatures are collected on mesg, they can be aggre-
gated to issue an aggregate signature on behalf of Bitcoin holders collectively.
Fast bootstrapping in PoS Blockchains. In this scenario we want to facil-
itate the expedient synchronization of a client for a proof of Stake blockchain.
The problem is similar to the problem of simplified payment verification (SPV)
as in [51], with the challenge that in a PoS blockchain, e.g., [43], there is no
way to verify blocks just by looking at the headers (as in the case of a PoW-
based blockchain); some transactional information is essential to establish the
stakeholder distribution that is eligible to issue blocks.

In order to facilitate the use of Mithril in this setting, we first have to ex-
pand the blockchain accounting model so that each account is also associated
with an STM key—in addition to any other cryptographic keys necessary for
spending the balance or other operations such as delegating stake to other ac-
counts. We assume a synchronous system operation and divide time into periods;
the length of each period is sufficient to allow ledger settlement. Let SDi be a
settled stakeholder distribution (i.e. all honest parties agree on it) during period
i. SD0 is the stakeholder distribution embedded at genesis; we assume parties
are in agreement regarding SD0.

When the distribution SDi is derived from the blockchain, the message mesgi =
(i, Ci) is formed where Ci is a Merkle tree commitment to SDi. Subsequently the
stakeholders in SDi−1 attempt to issue an STM on mesgi. Whenever a stake-
holder is eligible, they release the individual signature over the peer-2-peer net-
work. If sufficient individual signatures are collected with respect to the given
stake threshold, the resulting signature, denoted by chpi can be computed and
disseminated. The triple (i, Ci, chpi) is the i-th checkpoint of the blockchain.

In this way, the system continuously issues checkpoints. When a new client
joins for the first time with only knowledge of the genesis block, it queries and
verifies the sequence of checkpoints starting from the genesis block and arriving
up to the most recent one SDn. Subsequently individual blocks can be verified
with respect to SDn.
Proofs of data availability. High performance consensus protocol design in the
permissioned setting (e.g., [28, 22, 57]) heavily exploits a decoupling between the
data that are to be agreed on and the consensus protocol itself which is running
on short references to that data. Such decoupling naturally carries a potential
risk: running consensus on references for which the corresponding data does not
exist. It follows that proving such optimizations secure may require resolving this
data availability consideration. Even though this problem is easy to tackle in the
permissioned setting (as e.g., we may require a sufficient number of signatures so
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we ensure at least one honest party has seen the data) it is much more challenging
to solve in the permissionless setting [56]. Mithril provides an immediate solution:
if the underlying consensus protocol is run on references for which a Mithril
signature exists, data availability is (cryptographically) guaranteed.
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