
Small MACs from Small Permutations

Maria Eichlseder, Ahmet Can Mert, Christian Rechberger, and
Markus Schofnegger

IAIK, Graz University of Technology (Austria)
firstname.lastname@iaik.tugraz.at

Abstract. The concept of lightweight cryptography has gained in pop-
ularity recently, also due to various competitions and standardization ef-
forts specifically targeting more efficient algorithms, which are also easier
to implement.
One of the important properties of lightweight constructions is the area
of a hardware implementation, or in other words, the size of the imple-
mentation in a particular environment. Reducing the area usually has
multiple advantages like decreased production cost or lower power con-
sumption.
In this paper, we focus on MAC functions and on ASIC implementations
in hardware, and our goal is to minimize the area requirements in this
setting. For this purpose, we design a new MAC scheme based on the
well-known Pelican MAC function. However, in an effort to reduce the
size of the implementation, we make use of smaller internal permuta-
tions. While this certainly leads to a higher internal collision probability,
effectively reducing the allowed data, we show that the full security is
still maintained with respect to other attacks, in particular forgery and
key recovery attacks. This is useful in scenarios which do not require
large amounts of data.
Our detailed estimates, comparisons, and concrete benchmark results
show that our new MAC scheme has the lowest area requirements and
offers competitive performance. Indeed, we observe an area advantage of
up to 30% in our estimated comparisons, and an advantage of around
13% compared to the closest competitor in a concrete implementation.

Keywords: MAC, lightweight, symmetric cryptography, permutation

1 Introduction

Lightweight cryptography is a prominent topic in modern cryptography, and
some of the recent competitions in this area have focused partially or even com-
pletely on the design and analysis of lightweight cryptographic primitives. This
includes the now finished CAESAR competition [12] (with Ascon [17] having
been selected as the primary choice in its lightweight category) and the ongoing
NIST lightweight competition [28].

Indeed, while the computing power of modern desktop CPUs is constantly
increasing, the design of algorithms which have a small area footprint is espe-
cially interesting when considering hardware implementations like ASICs. In this

scenario, the area of the resulting construction can often be directly related to
the production cost of the device or its power consumption.

Maximizing the efficiency of cryptographic constructions should however not
result in a security loss, which is the main factor contributing to the difficulty of
designing efficient algorithms. While this security is usually achieved by keeping
both the time and data costs of the best-known attacks as close to the claimed
security level (e.g., key size) as possible, in this paper we explore quite a dif-
ferent direction: We show how to retain an otherwise high security level when
deliberately losing security against attacks which use more than a certain limited
amount of data. One existing example of such an approach is the low-latency
design PRINCE [11], based on the FX construction [21]. In other words, when
limiting the attacker to D data, the computational complexity of key-recovery
attacks and other approaches should still be exponential in κ for a κ-bit key and
independent of D. This is related to the fact that in many scenarios the possibil-
ity to encrypt or authenticate a (very) large amount of data is not needed, which
can be the case for a device which is used only several times. Hence, protecting a
certain algorithm against attackers having access to, for example, 232 transcripts
or even more may not be necessary.

This strategy is motivated by hardware efficiency reasons. Indeed, crypto-
graphic primitives with a smaller state size tend to have a reduced area footprint
on hardware, and have otherwise beneficial properties.

This strategy allows us to use cryptographic primitives which are more effi-
cient for both software and hardware implementations. In our approach, we focus
on a MAC construction built from smaller permutations (e.g., 64 or 32 bits), and
we reach GE numbers of around 1000 for the entire construction, depending on
the primitive being used, while still providing reasonable performance. Hence,
our new construction is competitive against other currently used algorithms in
terms of gate area and latency.

A comparison of our design LDMAC1 and various other constructions is given
in Fig. 1. In this presentation, we can see that for a fixed building block (in
that case Skinny), our mode allows for the smallest area and a slightly better
number of cycles. This is also similar when instantiating the modes with different
primitives, as will be shown in more detail in Section 5. We emphasize that these
are estimations based on the logic gates of the underlying primitive and on the
additional operations necessary for our design.

1.1 Related Work

MAC functions are widely used in the area of authentication, and there are
multiple proposals which focus on specific optimizations. In this section, we
briefly highlight some of the related work in this area.

1 The name “LDMAC” suggests that this construction is used in a low-data scenario, i.e.,
when the total number of authenticated message blocks is small.

2

103 103.2 103.4 103.6

102

103

104

Area (estimate)

C
yc
le
s
(e
st
im

at
e) LDMAC, t = 2, Skinny-128-64

Pelican, Skinny-128-128
CBC-MAC, Skinny-128-128
CBC-MAC, AES-128
OKS, r = 100, Keccak-f [200]

Fig. 1: LDMAC and other constructions when authenticating 512-bit messages.

Lightweight MAC Functions. Lightweight MAC functions can be built by
combining established approaches, such as CBC-MAC and various sponge con-
structions, with lightweight primitives. However, besides these well-known com-
binations, which we mainly focus on later in our comparisons, there also exist
designs which are specifically tailored towards certain use cases.

For example, MergeMAC [3] is a MAC design that aims to be used in scenar-
ios with strict time requirements and on devices which only support a limited
amount of bandwidth. Other functions like Chaskey [26] and SipHash [4] are
more software-oriented and focus on devices with code size or speed limitations
and on the authentication of small messages, respectively. Further, a MAC mode
called LightMAC [23] was presented in 2016, to be used together with an (ideally
lightweight) block cipher. It is built for quite a different target, namely to make
the security bounds independent of the message length. The mode itself has
only small requirements, making the whole construction not much larger than
the used block cipher itself. As is the case in e.g. CBC-MAC, it uses one encryp-
tion call per message block. Another example is TuLP, a family of lightweight
MACs presented in 2014 [18]. The authors of this paper design lightweight mes-
sage authentication codes for hardware-constrained devices based on the Alred
[15] construction and the lightweight Present block cipher [9]. They consider
two versions, one producing a 64-bit tag and one producing a 128-bit tag for
increased collision security. In particular TuLP-128 is similar to our proposal
in that it also uses parallel evaluations of a block cipher. However, in order to
decrease the collision probability, there are various mixing steps taking place in
the construction, essentially increasing the cost.

Finally, there exist various designs recently submitted to the NIST lightweight
cryptography competition. These are targeted towards authenticated encryption
purposes, but of course they can also serve as (nonce-based) MAC functions by
using only the authenticated data field. However, many of the NIST submissions
make use of sponge functions, which naturally need larger state sizes (and hence
more registers) in order to achieve their security properties.

3

Double-Block-Length Hash Functions. Our new construction bears similar-
ities to double-block-length hash constructions. These functions use small-state
components (for example block ciphers) in a construction providing a larger
output. The goal of this approach is to achieve a security higher than that of
the individual component. This can have advantages in hardware, since reusing
existing building blocks while providing higher security levels becomes possible.

Double-block-length hash functions have been proposed already, and the gen-
eral idea to use small-state building blocks for large-state outputs is well-known
in the literature [25,19,27,20]. However, these proposals focus on offering a higher
security against collisions w.r.t the small state of the building block. In our spe-
cific scenario, we do not require this property and can hence design a more
efficient construction.

1.2 Contribution

We describe a new MAC construction called LDMAC, which we conjecture to
provide a computational security level larger than the size of its underlying
permutations. However, we limit the attacker to a small amount of queries, which
allows us to be comparatively efficient in terms of hardware area and latency.

We do this by essentially splitting the full state into smaller substates, and
applying the smaller permutation to each of these substates when processing the
message. Additionally, we present a security analysis for this new construction
and a comparison with similar approaches.

1.3 Organization

In the next section, we will give an overview of the properties of lightweight
algorithms. We will also describe MAC functions in general and discuss the
Pelican MAC function and its security, as our proposal will be closely related to
it. Then, we will describe our new construction in detail, and also highlight both
the similarities and differences with Pelican. After that, we will also analyze the
security of our construction. Finally, we conclude with a performance comparison
between our design and various other MAC functions.

2 Preliminaries

2.1 Algorithms for Constrained Devices

When evaluating a cryptographic primitive for use on a constrained device, mul-
tiple characteristics need to be considered. These include the security and the
hardware performance of the algorithm. The latter is usually measured using
properties like the resulting gate area, the power or energy consumption, and
the latency and the throughput. Designing an algorithm which simultaneously
optimizes all of these criteria is usually not possible. Therefore, tradeoffs have
to be made in order to find a cryptographic primitive and mode of operation

4

suitable for a specific use case. For our scenario, we focus on an implementation
which provides a good tradeoff between the gate area and the latency, empha-
sizing that our primary goal is a low gate area number.

2.2 Message Authentication Codes

A message authentication code (MAC), sometimes also referred to as a tag, is
a numerical value used to authenticate the origin of the corresponding message.
Assuming that the same symmetric key is known only to the sender and to the
receiver, a MAC provides both authenticity and data integrity.

More formally, a MAC signing function S(·) takes as input a message m and
a key k, and produces a tag T :

S(m, k) = T.

The MAC verification function V (·) takes as input a message m, a key k, and a
tag T , and produces the result R ∈ {True,False}:

V (m, k, T) = R.

The key k has to be chosen randomly and shared between both parties. However,
this process is out of the scope of this paper, and hence in our scenario we assume
this issue has already been taken care of before.

A MAC function is considered secure if no attack is faster than exhaustively
trying each possible key, and if the probability of generating a new valid tag
for an arbitrary message (without requesting it) is not higher than that for just
guessing the correct tag (assuming a uniform distribution of all tag values).
These security notions are given in [24], and we adopt them for our proposal.

2.3 The Pelican MAC Function

The Pelican MAC function, proposed in 2005 [16] and based on Alred [15], can
be seen as a predecessor of modern sponge constructions, with the rate (outer)
part covering the whole state. It is built using two different permutations, a keyed
one and an unkeyed one. The keyed permutation is essentially a block cipher
applied right at the beginning and just before the tag output. The unkeyed
permutation is used in the so-called chaining phase, which is reminiscent of
the absorption step in sponge constructions. Note that both permutations may
be based on the same round functions. Moreover, the permutation used in this
chaining phase does not need to be indistinguishable from a random permutation.
We will discuss this in more detail in the following.

More formally, let Ek(x) denote the encryption of x using the block cipher
E : (FN2 × FN2) → FN2 and the key k. Further, let P : FN2 → FN2 denote the
unkeyed permutation and IV the initialization input used for Pelican. Then,
the tag Pelican(m, k) for a u-block message m is defined as

Pelican(m, k) = Ek(P(· · · (P(Ek(IV)⊕m1)⊕m2) · · ·)⊕mu).

A graphical representation of Pelican is given in Fig. 2. Pelican has also been
used as a building block for other algorithms in the literature, such as ALE [10].

5

EkIV

m1

P

m2

P

m3

P · · · Ek T

Fig. 2: The Pelican MAC construction (slightly simplified).

Security Reasoning for Pelican. The first component is a full block ci-
pher evaluation. If we omit it, an attacker can locally prepare a forgery by just
changing arbitrary message blocks, computing the corresponding permutations
locally, and finally altering the last message block in order to cancel the dif-
ference. The resulting tag will then be equal to the tag of a previously queried
message. The last component of Pelican (ignoring the potential truncation)
is another full evaluation of a block cipher. Without this last block cipher call,
an attacker could simply compute backward and thus forge tags for arbitrarily
chosen messages.

The main component of Pelican is the chaining phase. Four AES [14]
rounds are used in the original description, which is due to the maximum prob-
ability a differential characteristic can achieve over these four rounds. Indeed,
the probability that an attacker guesses the correct difference in a block after
inserting any difference into a previous block is about 2−128, because in four
AES rounds the 25 active S-boxes ensure that any differential characteristic has
a maximum probability of 2−6·25 = 2−150 < 2−128. This is the security property
which has to be fulfilled by the unkeyed permutation, i.e., for an N -bit unkeyed
permutation, the probability for any characteristic has to be at most 2−N .2

2.4 Notation

Following the description of Pelican in the previous section, we briefly give the
notation used throughout the paper. First, N will specificy the total size of the
state in bits (for example, N = 128 for Pelican with AES). We will later use t
smaller permutations with a size of n bits each, for a total state size of N = nt.

To denote keys, we will generally use k, and we will use k(i) to specify a key
for some instance i. We use ki to denote different parts of a key k (for example,
the first part may be denoted by k1). Message parts will be denoted by mi and
tag parts by Ti. Moreover, we use ⊕ to denote the XOR operation in Fn2 , and we
use || to denote concatenation. We further use [1, t] to denote the set of integers
{1, 2, . . . , t}. Finally, we denote the different instances of various primitives as
Instance-κ-n, where κ denotes the key size and n denotes the block size.

2 We note that in the specific case of Pelican, this requirement is not sufficient,
and indeed impossible differential attacks using less then 2N data are possible [30].
However, the attacks presented in this work do not apply to our case, because we
do not allow a data complexity higher than 2N/2.

6

3 Specification of LDMAC

Here we present an alternative construction, using similar ideas but providing
better performance characteristics in certain scenarios. In particular, we will
modify the chaining phase, and we will also make slight changes to the block
cipher evaluations. The resulting mode will then be similar to a “parallelized”
version of smaller Pelican instances, with a few additional properties in order
to retain the higher security level against various attacks.

The New Chaining Phase. Recall that the large-state permutation calls
in Pelican are needed in order to get a sufficiently low probability for any
differential characteristic. However, in the scenario we focus on in this paper, we
try to build a more efficient construction at the cost of reducing the amount of
data that can be authenticated.

We hence propose a new chaining phase. Instead of using large-state per-
mutation calls, we use several smaller-state permutation calls in parallel. This is
similar to what is done in double-block-length constructions. However, compared
to double-block-length constructions which try to maintain a certain (optimal)
level of collision resistance, we do not require collision resistance of up to 2N/2

for a total state width of N bits. Hence, while double-block-length constructions
introduce some form of mixing between the parallel evaluations, we omit these
and argue that while losing collision resistance, the security is otherwise (e.g.,
key-recovery attacks) not affected.

More formally, let N be the total state size in bits (e.g., N = 128 for Pelican
with the AES), and let the total state size be split into t equally large parts of
N/t = n ∈ N bits. Then, we use n-bit permutations in the chaining phase, each
ensuring that any differential characteristic has a probability of 2−n.

Let us denote the full N -bit state after the first block cipher call by v. This
state is split into t equally sized parts vi ∈ (F2)

n, where i ∈ [1, t], i.e., v = v1 ||
v2 || · · · || vt. Let us further denote the fullN -bit state after the chaining phase by
w. Again, we split it into t equally sized parts and obtain w = w1 || w2 || · · · || wt.
Next, we split the message m into n-bit parts and obtain m = m1 || m2 || · · · ||
mu. Now, with our modified chaining phase, we define

wi = P(P(· · · P(P(vi ⊕m1)⊕m2) · · ·)⊕mu−1),

where i ∈ {1, 2, . . . , t} and P : Fn2 → Fn2 is a permutation. Finally, the N -bit
state w after this step is again feeded to the last block cipher call. Note that this
class of chaining phases contains the Pelican chaining phase for t = 1. Hence,
we will focus on constructions where t > 1.

Rate Reduction. A disadvantage of this method is the reduced rate for t > 1.
Indeed, every bit of the message has to be processed t times, which is not the
case when using Pelican. This naturally increases the latency of the resulting
construction. However, as we will show in our theoretical evaluation, small-state
permutations tend to need fewer rounds and also less area.

7

Omitting the Full Block Cipher Evaluations. A similar approach can also
be applied to the two block cipher evaluations. Indeed, since in our scenario we
consider a device which is only used a few times before rekeying, we assume that
the preparation of the initial state is part of this rekeying process. Hence, the
first N -bit state consists of secret bits and is reinitialized when the number of
authentications reaches its limit. Since this is similar to a keyed block cipher
evaluation3 of a known state from a security point of view, we can omit the first
block cipher evaluation entirely and directly start with the chaining phase.

Moreover, similar to the chaining phase, we can split the N -bit state w after
this step into t equally sized n-bit parts and use t different n-bit block cipher
calls in parallel. It is crucial that each of these block cipher evaluations provides
a computational security of N bits. In other words, it should take no less than
2N local operations to “decrypt” an n-bit tag part and obtain the n-bit part wi
of the state w.4 For example, when setting N = 128, t = 2, and n = 64, one may
use Skinny-128-64 with a block size of 64 bits and a key size of 128 bits.

3.1 Detailed Specification

In total, each n-bit part Ti of the tag is computed by

Ti = Ek(i)(P((· · · P(P(si ⊕m1)⊕m2) · · ·)⊕mu−1)⊕mu),

where k(i) is the N -bit key used for the i-th block cipher call. We recommend
all keys k(1), k(2), . . . , k(t) to be pairwise distinct (see Section 4.2). A detailed
graphical overview of the construction is shown in Fig. 3. Our MAC does not
require any nonces, but we assume that the initial state is freshly initialized after
a predefined fixed amount of authenticated blocks.

s1

m1

P

m2

P

m3

st

m1

P

m2

P

m3

P

P

· · ·

· · ·

Ek(1)

Ek(t)

T1

Tt

...
...

...
...

Fig. 3: The LDMAC construction.

3 In our security analysis, we assume that the initial states are independent of the
keys used for the final block cipher calls.

4 Note that the attacker cannot easily obtain the state before the block cipher call,
and hence building the full code book is not possible in a straightforward way.

8

Minimum Message Length and Padding Rule. We require a minimum
message length of one block (i.e., n bits). Regarding the padding, we specify
two versions, namely one without a padding rule (and only accepting messages
whose sizes are multiples of n) and one with a simple padding rule. First, when
using no padding, LDMAC only accepts zn-bit messages, where z ∈ N>0. This
is the most efficient version in a scenario where only messages with complete
message blocks are used. For example, it makes sense in protocols which only
need to authenticate fixed-sized messages. On the other hand, for messages of
arbitrary size, we suggest a simple one-zero padding rule. In particular, we first
add 0b1 to the message (i.e., a single bit equal to 1), and then as many zero bits
as needed to fill the last block.

For simplicity and ease of comparison, in this paper we only focus on message
lengths which are multiples of the block size. Indeed, such a limitation makes
sense in many real-world scenarios where only fixed-sized messages are authen-
ticated, and we therefore omit any padding. However, also with a padding rule
our MAC construction has an advantage compared to competitors, because on
average fewer bits have to be added due to the smaller block size.

Key Sizes and an Alternative Version. Given our construction, both the
initial state and the keys of the final block cipher calls are secret. In total, this
results in 2N bits of secret material (e.g., 256 bits for a 128-bit security level).
In most practical implementations, this will not be an issue.

However, we conjecture that the security does not decrease when fixing the
block cipher keys and reusing them even after having exhausted the allowed
number of authentications. In other words, after around 2n/2 authentications,
we could potentially only change the initial N -bit state and keep the same block
cipher keys. With this approach, only N secret bits would need to be changed
regularly for an N -bit security level.

Reference Implementation and Test Vectors. Together with the theoret-
ical specification, we also provide a reference implementation of LDMAC as sup-
plementary material. To instantiate the MAC function, we used the 28-round
Gift-128-64 block cipher for the final block cipher evaluations, and the 16-
round permutation (with round keys set to 0) for the permutation calls in the
chaining phase (i.e., we set N = 128 and t = 2).5 For Gift-128-64, we used
the reference implementation provided online and also used in [1].6 In our im-
plementation, both the internal permutation and final block cipher can easily be
replaced by any other 64-bit primitive.

An overview of the files provided as supplementary material can be found in
Supplementary Material A. Test vectors are given in Supplementary Material B.
5 Note that 14 rounds of Gift-128-64 are sufficient to meet the required security
level [5], but the reference implementation of Gift-128-64 encrypts in blocks of 4
rounds and hence we chose to increase the number of rounds to 16 for our reference
implementation.

6 https://github.com/aadomn/gift

9

https://github.com/aadomn/gift

4 Security of LDMAC

In this section, we evaluate the security of the resulting construction, in particu-
lar when compared to the original Pelican MAC function. We assume that the
first N -bit state is pseudorandomly generated and unknown to an attacker, and
that all of its n-bit parts are pairwise distinct (note that this is a very plausible
assumption, especially for reasonably sized n).

We further emphasize that we do not focus on PRF security. As we will
also make clear in our analysis below, our construction is always vulnerable to
collisions in the smaller inner states. Since these states have a size of only n < N
bits, and since we do not introduce any further mixing between these states, we
cannot reach an N -bit PRF security. Indeed, the probability of collisions Pcoll
in all of the t branches is bounded by

Pcoll ≤
(
1− e

−q(q−1)

2n+1

)t
after q queries. Note that we count collisions whether they occur or not, inde-
pendently of the number of authenticated blocks.

Hence, instead we focus on the MAC security of our mode. In particular,
we will focus on the difficulty of key-recovery and forgery attacks which do not
exploit the collision probability in the inner states. For these attacks, we argue
that the mode provides a MAC security level of N bits (i.e., a security level
equal to the total state size).

4.1 Security Arguments

Compared to Pelican, one may ask if the parallel version of it introduces oth-
erwise nonexistent weaknesses. To answer this question, we first show that com-
puting multiple secure MAC functions in parallel has no negative effect, i.e., it
does not decrease the security when compared to a MAC computation. Then, we
show that key-recovery attacks against LDMAC can be converted into key-recovery
attacks against the set of t underlying block ciphers, and that forgery attacks
against LDMAC not involving internal collisions can be converted into ciphertext
recovery attacks against the set of t underlying block ciphers. Our proofs follow
the strategy used for the proofs provided in [15], but are adapted to our specific
construction, in particular to the chaining phase using t parallel evaluations. We
also assume that all instances of the underlying block cipher are equally secure.7

Computing Multiple MAC Instances in Parallel. Our mode is similar to
a construction consisting of multiple MAC computations. Indeed, consider

F (m, k(1), k(2), . . . , k(t)) = f (1)(m, k(1)) || f (2)(m, k(2)) || · · · || f (t)(m, k(t)),
7 We emphasize that this is a reasonable requirement assuming that no weak-key
instances exist.

10

where f (i)(m, k(i)) ∈ Fn2 . We argue that the security level of F is not lower than
the security level of any of the f (i). Indeed, this means that any attack against F
can be transformed into an attack against any of the f (i). Focusing on an attack
using ` chosen messages and breaking the unforgeability of F , the transformation
works as follows.

1. Let f (j) denote the attacked instance.
2. Locally construct t− 1 instances f (1), . . . , f (j−1), f (j+1), . . . , f (t).
3. Forge a tag T ? for the resulting MAC function F using ` oracle queries for
f (j) and `(t− 1) local computations for f (i), where i ∈ {1, . . . , t} \ {j}.

4. A forged tag for f (j) is part of T ?.

Security of LDMAC Against Key-Recovery Attacks. Every key-recovery at-
tack against LDMAC using `messages and the corresponding tag values can be con-
verted into key-recovery attacks against the t underlying block ciphers, requiring
` chosen plaintexts each. Indeed, let A be a key-recovery attack against LDMAC
requiring ` messages and the corresponding tag values (m(1), T (1)), (m(2), T (2)),
. . ., (m(t), T (t)), and yielding the keys k(1), k(2), . . . , k(t). The attack against the
block ciphers proceeds as follows, where i ∈ [1, t] and j ∈ [1, `] in all steps.

1. Sample random initial states si.8

2. Compute w(j)
i locally by using m(j) and the unkeyed permutation P.

3. Request T (j)
i = Ek(i)(w

(j)
i), where w(j)

i are the chosen plaintexts.
4. Input the tag values T (j) = T

(j)
1 || T (j)

2 || · · · || T (j)
t to A and obtain the

secret key(s).

Security of LDMAC Against Forgery Attacks. Every forgery attack against
LDMAC not involving internal collisions and requiring ` chosen messages can be
converted into ciphertext guessing attacks with probability 1 against the un-
derlying block ciphers, requiring ` chosen plaintexts each. Indeed, let B be a
forgery attack against LDMAC not involving internal collisions, requiring ` mes-
sages and the corresponding tag values (m(1), T (1)), (m(2), T (2)), . . ., (m(t), T (t))
and yielding the correct tag T ? for the message m?. The ciphertext-recovery at-
tacks against the block ciphers proceeds as follows, where i ∈ [1, t] and j ∈ [1, `]
in all steps.

1. Sample random initial states si.
2. Compute w(j)

i locally by using m(j) and the unkeyed permutation P.
3. Request T (j)

i = Ek(i)(w
(j)
i), where w(j)

i are the chosen plaintexts.
4. Input (m(j), T (j)) to B and obtain T ?.
5. Compute w?i locally by using m? and the unkeyed permutation P.

8 Note that sampling random initial states is sufficient, since this will represent a valid
instantiation of LDMAC.

11

6. If there is a j for which w(j)
i = w?i , there was an internal collision, which is

a contradiction to the assumption on B. If no such collision exists, T ?i is the
ciphertext of w?i when using the key k(i), i.e., T ?i = Ek(i)(w?i).

Note that the above result is not applicable in the case of internal collisions.
However, as further described later, we limit the data complexity such that with
high probability no collisions take place. Moreover, if B is a universal forgery
attack, then any message can be chosen for the attack, and hence the ciphertext
recovery of any plaintext is possible by first choosing w(j)

a for a fixed a, computing
backwards, and generating the last blocks of the messages accordingly. In this
case, a determines the block cipher instance which is attacked.

4.2 Attacks against LDMAC

We refer to Supplementary Material C for an evaluation of concrete attack vec-
tors on LDMAC, including differential characteristics, key-recovery attacks, attacks
based on the generation of code books, collisions in the chaining phase, and
generic guessing attacks. In all these approaches, we assume that the keys used
for the final block cipher calls are not the same. For example, for an N -bit master
key k = k1 || k2 || · · · || kt, where ki ∈ Fn2 , we suggest that the t final N -bit keys
k(1), k(2), . . . , k(t) fulfill k(i) = rot(i−1)n(k), where rots(·) denotes the rotation to
the left by s bits. Indeed, if the keys for the last block cipher evaluations are the
same, the n-bit tag outputs have to be different since the permutation inputs
are different. This would slightly reduce the entropy of the scheme.

4.3 Summary and Security Claims

We provide our security claims in Table 1. We recommend using a limit of� 2n/2

t
for the number of authenticated message blocks.

Attack Success Probability Time Data

Key recovery ≈ 1 2N 2

Tag forgery > 0.3 2n/2

t
2n/2

t

Tag guessing 2−N 1 0

Table 1: The security claims for our construction, where N is the full state size
(and key size) and n is the state size of each of the t smaller evaluations.

5 Performance Evaluation

We now compare the performance of LDMAC with various other primitives by
using detailed estimates and concrete hardware implementation numbers. We

12

emphasize that limiting the data complexity is beneficial in our setting, but
other constructions in our comparison provide a higher security in that regard.

5.1 Implementation Details

Apart from the specification of the design, various additional properties are
needed in a practical (hardware) implementation. The following properties are
considered both in the theoretical estimation in Section 5.2 and in our concrete
implementation in Section 5.3.

Registers for Received Message Parts. In the cell library we consider, we
use 5.33 GE for each of the registers, which results in significant areas even when
only taking into account the state size. It is therefore important to not increase
the state or the number of temporary registers unnecessarily.

Therefore, we consider a model in which each of the message parts is thrown
away after being processed. Given the representation in Fig. 3, we suggest to first
finish the computation of each message block before moving to the next block.
Formally, this means first computing P(s1⊕m1),P(s2⊕m1), . . . ,P(st⊕m1), and
only then beginning to process m2. The advantage of this approach is that all
computations involving mi can be finalized before receiving mi+1, and therefore
mi can be discarded after each of these steps.

In this case, we add the received message part directly to our state registers
and hence avoid temporarily storing it somewhere else. If this method is not
applicable for some hardware or implementation reason, we note that the disad-
vantage with respect to e.g. CBC-MAC is still smaller. Indeed, larger message
parts would have to be stored temporarily for constructions with a larger rate.

Storing the Initial State. Each MAC computation of our scheme starts from
the same secret initial state. However, after computing a single MAC and using
only N registers, the initial state is overwritten and thus a new MAC compu-
tation cannot start from it any more. Further, resuming from the “new” initial
state would immediately result in attacks, since the observed tag reveals the new
starting state and makes forgeries easily possible.

We therefore have to either store the initial state somewhere, or compute
a new secret and pseudo-random state after every MAC computation. We take
the first approach and note that storing this initial state does not need any
additional registers. Indeed, it can be stored in slower memory on the device,
since reading from it is sufficient for our design and we never need to write to
this memory during an authentication.

5.2 Estimated Comparison with Various Primitives

We use the estimations given in Table 4 in Supplementary Material D, which
are taken from the UMCL18G212T3 library [29]. We consider both round-based
implementations (i.e., implementations where a full round is implemented in

13

hardware) and partially round-based implementations such as versions where the
S-boxes are computed separately. To illustrate how we estimate the gate area,
we provide an example using the Keccak-f [8] permutation in Supplementary
Material D.1. There we also show how we estimate the latency and the final
performance numbers for a specific LDMAC instance.

We focus on the case of a 128-bit key and an initial (secret) state of 128
bits. Further, we use t = 2, which implies n = 64. We therefore use two 64-
bit block cipher calls. To give concrete numbers, we chose various 64-bit block
ciphers such as Skinny-128-64 [7], a 64-bit block cipher using a 128-bit key.
For the permutation in the chaining phase, we need a sufficiently low differential
characteristic probability. In the case of Skinny-128-64, this means using 8
rounds [7, Table 5]. Hence, for example, to authenticate a 128-bit message, we
need (2 − 1) · 2 · 8 = 16 unkeyed Skinny-128-64 rounds9 and then two full
36-round evaluations of Skinny-128-64.

We further focus on Pelican since it is similar to our mode, and on CBC-
MAC and OKS since they are well-known and can easily be generalized to be
used together with different internal building blocks. In general, we focus on
constructions where this generalization is easily possible – i.e., we focus more on
a mode level rather than on specific instances.

The comparison of LDMAC with other approaches in the literature is shown in
Table 2, where “OKS” denotes the outer-keyed sponge construction [2]. In this
table (and the following tables), we count the cycles c of the resulting construc-
tion, each of which has a logic circuit depth d. In the last column, we multiply
the area a by the number of cycles c to give an idea of the final efficiency (lower
is better). Further, we denote the different instances as Instance-κ-n, where κ
denotes the key size and n denotes the block size.

Note that we do not include the depth in the efficiency value. First, the
critical path is usually shorter than what the clock frequency allows for power
reasons. Therefore, the number of cycles is the dominating property. Secondly,
the tendency in low-area constructions goes to round-based (or even smaller)
implementations, where naturally the resulting depth is less crucial.

A graphical overview of the area-latency tradeoff when comparing LDMAC to
other constructions is shown in Fig. 4 for short 128-bit messages and in Fig. 6
in Supplementary Material E for 512-bit messages. In this graph (and similar
graphs in the paper), we connect concrete instances with lines to better illustrate
the tradeoff graph for a specific combination.

Regarding the round numbers against differential attacks, we use 20 rounds
for Simon-128-64 [6,22] and 14 rounds for Gift-128-64 [5]. We apply the same
approach to the larger 128-bit versions of the primitives, and hence we always use
a round number which provides security specifically against differential attacks.

Further, since we focus on small area requirements, we do not show instanti-
ations which may result in a very low latency, but need significantly more area.

9 Note that u − 1 unkeyed permutation calls are needed in each of the t evaluations
when authenticating a u-block message.

14

103 103.2 103.4 103.6

102

103

104

Area (estimate)

C
yc
le
s
(e
st
im

at
e)

LDMAC, t = 2, Skinny-128-64
LDMAC, t = 2, Simon-128-64
LDMAC, t = 2, Gift-128-64
Pelican, Skinny-128-128
Pelican, Simon-128-128
Pelican, Gift-128-128
CBC-MAC, Skinny-128-128
CBC-MAC, Simon-128-128
CBC-MAC, AES-128
OKS, r = 100, Keccak-f [200]
OKS, r = 128, Ascon-320
OKS, r = 32, Present-π-128

Fig. 4: Comparison of LDMAC with various other constructions when authenticat-
ing 128-bit messages.

For the sake of this comparison, we therefore ignore any instantations with an
estimated area requirement of 104 or more.

Results of the Comparison. We see that LDMAC is competitive in terms of
hardware area and latency. In Table 2, we have highlighted the lowest area
number and also the best efficiency indicator. Both are achieved by LDMAC con-
structions using Gift-128-64 and Skinny-128-64, respectively.

In particular, we highlight the following observations. LDMAC offers the lowest
area (1120 GE with Gift-128-64), and it also achieves the best efficiency value
(200, also with Gift-128-64). Further, our design offers the lowest number of
cycles when limiting the area requirements to various fixed values. This advan-
tage is visible for various area limits, particularly when fosusing on low-area
designs. A more detailed comparison of this behavior is shown in Fig. 5. In this
graph, the black line illustrates the “best” LDMAC instance in terms of the lowest
number of cycles up to a specific area limit, and the gray line illustrates the best
such instance from all other instances in our comparison.

Hence, comparing on a mode level, we can see that LDMAC achieves its goal
of reducing the total amount of area while at the same time offering a similar
latency. Moreover, in the case of LDMAC with Gift-128-64 and Pelican with
Gift-128-128, we can even observe both an area and a latency advantage when
considering the low-area versions of these instances. These advantages are more
clearly visible in Fig. 7, where we limit both the GE and the amount of cycles to
1500. In this graph, we have highlighted the points where LDMAC is more efficient
than a comparable Pelican instance instantiated with the same primitive.

15

Algorithm Config Area a (GE) Latency (512-bit message) a×c
103

Cycles c Depth d

LDMAC, t = 2
Skinny-128-64

1 S-box 1263 2944 7 3719
2 S-boxes 1278 1472 7 1882
16 S-boxes 1483 184 7 273
2 rounds 2305 92 14 213

LDMAC, t = 2
Simon-128-64

1 round 1302 368 4 480
2 rounds 1942 184 8 358
4 rounds 3222 92 16 297

LDMAC, t = 2
Gift-128-64

1 S-box 1120 4032 8 4516
8 S-boxes 1232 504 8 621
16 S-boxes 1360 252 8 343
2 rounds 2059 126 16 260
7 rounds 5552 36 56 200

Pelican
Skinny-128-128

1 S-box 1583 2000 10 3166
4 S-boxes 1671 500 10 836
8 S-boxes 1788 250 10 447
16 S-boxes 2023 125 10 253
2 rounds 3704 63 20 234

Pelican
Simon-128-128

1 round 1622 250 4 406
2 rounds 2902 125 8 363
4 rounds 5462 63 16 345

Pelican
Gift-128-128

1 S-box 1227 5056 8 6204
8 S-boxes 1339 632 8 847
16 S-boxes 1467 316 8 464
32 S-boxes 1723 158 8 273
2 rounds 3105 79 16 246

TuLP
Skinny-128-64

1 S-box 1604 4096 7 6570
2 S-boxes 1619 2048 7 3316
16 S-boxes 1824 256 7 467

TuLP
Simon-128-64

1 round 1557 456 4 710
2 rounds 2112 228 8 482
4 rounds 3221 114 16 368

TuLP
Gift-128-64

1 S-box 1461 4928 8 7200
8 S-boxes 1573 616 8 969
16 S-boxes 1701 308 8 524

OKS, c = 100, r = 100
Keccak-f [200]

1 S-box 2446 5040 6 12328
40 S-boxes 3357 126 6 423
2 rounds 6446 63 12 407

OKS, c = 192, r = 128
Ascon-320

1 S-box 3830 1920 15 7354
8 S-boxes 4194 240 15 1007
64 S-boxes 7109 30 15 214

OKS, c = 96, r = 32
Present-π-128

32 S-boxes 2855 1190 8 3398
2 rounds 5624 595 16 3347

CBC-MAC
Skinny-128-128

1 S-box 1583 2560 10 4053
16 S-boxes 2023 160 10 324
2 rounds 3704 80 20 297

CBC-MAC
Simon-128-128

1 round 1622 272 4 442
4 rounds 5462 68 16 372

CBC-MAC
AES-128

1 S-box 2637 640 41 1688
16 S-boxes 6960 40 41 279

Table 2: Estimates for the area and latency of LDMAC and other modes. The last
column gives an idea of the total efficiency including area and latency (lower is
better). We also highlight the best numbers in terms of area and total efficiency.
The different instances are denoted as Instance-κ-n, where κ denotes the key
size and n denotes the block size.

16

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

102

103

Area (estimate)

C
yc
le
s
(e
st
im

at
e)

LDMAC, t = 2, Skinny-128-64
LDMAC, t = 2, Simon-128-64
LDMAC, t = 2, Gift-128-64
Pelican, Skinny-128-128
Pelican, Simon-128-128
Pelican, Gift-128-128
CBC-MAC, Skinny-128-128
CBC-MAC, Simon-128-128
CBC-MAC, AES-128
OKS, r = 100, Keccak-f [200]
OKS, r = 128, Ascon-320
OKS, r = 32, Present-π-128
LDMAC (best)
Other (best)

Fig. 5: Comparison of LDMAC with other constructions at various fixed points for
the area when authenticating 512-bit messages. The black line illustrates the
“best” LDMAC instance in terms of the lowest number of cycles up to a specific
area limit, and the gray line illustrates the best such instance from all other
instances in our comparison.

5.3 Hardware Implementation Results

Besides our theoretical estimation, we provide results for proof-of-concept ASIC
implementations of the proposed LDMAC and Pelican MAC functions. Both im-
plementations use Gift-128-64 and Gift-128-128, respectively, for keyed and
unkeyed permutations. Specifically, the LDMAC implementation uses 28 rounds
for cipher evaluation and 14 rounds for chaining phase. The Pelican MAC im-
plementation uses 40 rounds for cipher evaluation and 26 rounds for chaining
phase. Both MAC implementations follow a round-based approach and process
512-bit long message inputs. The proposed LDMAC and Pelican MAC imple-
mentations are synthesized for ASIC using a 65nm standard cell library. Area
and performance results of ASIC implementations of the LDMAC and Pelican
MAC functions are shown in Table 3. The LDMAC implementation uses around
13% less area compared to the Pelican MAC implementation.

5.4 Additional Considerations

LDMAC becomes increasingly efficient with longer messages, since the full block
cipher calls at the end are only ever called t times, independently of the length of
the message. The latency differences become more apparent when increasing the
message size, since the effect of the reduced-round permutation calls in LDMAC
and Pelican is then more obvious.

17

Design Latency Cell count NAND2-based area

LDMAC 271 944 4.18
Pelican 167 1218 4.79

Table 3: Area and performance results (ASIC) for a 512-bit message.

Further, LDMAC is sufficiently generic to be used together with smaller prim-
itives. For example, in order to still allow around 216 (block) authentications10,
one may want to use 32-bit permutations. We illustrate this idea briefly in Sup-
plementary Material E.1, where we conclude that the area can further be de-
creased, albeit at the cost of an increased latency.

Finally, in order to highlight the differences between our construction and
other modes using small permutations, let us have a look at the CBC-MAC
mode using Skinny-128-64. While a security against key-recovery attacks of
128 bits may still be provided, guessing the final tag is possible with a probabil-
ity of 2−64, while the probability for guessing the correct tag in LDMAC (even with
intermediate guesses) is 2−128 � 2−64. The same can be said about sponge func-
tions, where (depending on the specifics) guessing the full 64-bit intermediate
state right before tag squeezing is sufficient in order to also derive the tag.

6 Conclusion

In this paper, we propose a MAC mode which allows the designer to reduce the
size of internal permutations, while still providing a security level equal to the
total state size w.r.t. attacks which do not focus on internal collisions. This is
beneficial in settings where the needed number of authenticated blocks is lower
than in more traditional scenarios.

Moreover, our MAC function motivates an new topic for future work, namely
the design and analysis of permutations and block ciphers with very small block
sizes. Indeed, this often immediately leads to attacks in all other modes we are
aware of, but it may result in further performance advantages (in particular even
lower area requirements) when used together with our proposal.

10 The probability of collisions is already significant after 216 block authentications,
and hence a lot less (e.g., 214) should be the limit in practice.

18

References

1. Adomnicai, A., Najm, Z., Peyrin, T.: Fixslicing: A new GIFT representation fast
constant-time implementations of GIFT and GIFT-COFB on ARM cortex-m.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 402–427 (2020)

2. Andreeva, E., Daemen, J., Mennink, B., Assche, G.V.: Security of keyed sponge
constructions using a modular proof approach. In: FSE. LNCS, vol. 9054, pp. 364–
384. Springer (2015)

3. Ankele, R., Böhl, F., Friedberger, S.: Mergemac: A MAC for authentication with
strict time constraints and limited bandwidth. In: ACNS. LNCS, vol. 10892, pp.
381–399. Springer (2018)

4. Aumasson, J., Bernstein, D.J.: Siphash: A fast short-input PRF. In: INDOCRYPT.
LNCS, vol. 7668, pp. 489–508. Springer (2012)

5. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A small
present - towards reaching the limit of lightweight encryption. In: CHES. LNCS,
vol. 10529, pp. 321–345. Springer (2017)

6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK lightweight block ciphers. In: DAC. pp. 175:1–175:6. ACM
(2015)

7. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: CRYPTO (2). LNCS, vol. 9815, pp. 123–153. Springer (2016)

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak. In: EUROCRYPT.
LNCS, vol. 7881, pp. 313–314. Springer (2013)

9. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: CHES. LNCS, vol. 4727, pp. 450–466. Springer (2007)

10. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: aes-
based lightweight authenticated encryption. In: FSE. LNCS, vol. 8424, pp. 447–466.
Springer (2013)

11. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In: ASIACRYPT. LNCS, vol. 7658, pp. 208–225.
Springer (2012)

12. CAESAR Competition: Caesar: Competition for authenticated encryption: Se-
curity, applicability, and robustness (2018), http://competitions.cr.yp.to/
caesar.html

13. Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A family
of small and efficient hardware-oriented block ciphers. In: CHES. LNCS, vol. 5747,
pp. 272–288. Springer (2009)

14. Daemen, J., Rijmen, V.: The block cipher rijndael. In: CARDIS. LNCS, vol. 1820,
pp. 277–284. Springer (1998)

15. Daemen, J., Rijmen, V.: A new MAC construction ALRED and a specific instance
ALPHA-MAC. In: FSE. LNCS, vol. 3557, pp. 1–17. Springer (2005)

16. Daemen, J., Rijmen, V.: The pelican MAC function. IACR Cryptology ePrint
Archive 2005, 88 (2005)

17. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission to
NIST: https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf (2019), http:
//ascon.iaik.tugraz.at

19

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf
http://ascon.iaik.tugraz.at
http://ascon.iaik.tugraz.at

18. Gong, Z., Hartel, P.H., Nikova, S., Tang, S., Zhu, B.: Tulp: A family of lightweight
message authentication codes for body sensor networks. J. Comput. Sci. Technol.
29(1), 53–68 (2014)

19. Hirose, S.: Provably secure double-block-length hash functions in a black-box
model. In: ICISC. LNCS, vol. 3506, pp. 330–342. Springer (2004)

20. Hirose, S.: Some plausible constructions of double-block-length hash functions. In:
FSE. LNCS, vol. 4047, pp. 210–225. Springer (2006)

21. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search. In:
CRYPTO. LNCS, vol. 1109, pp. 252–267. Springer (1996)

22. Liu, Z., Li, Y., Wang, M.: Optimal differential trails in simon-like ciphers. IACR
Trans. Symmetric Cryptol. 2017(1), 358–379 (2017)

23. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight
block ciphers. In: FSE. LNCS, vol. 9783, pp. 43–59. Springer (2016)

24. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

25. Merkle, R.C.: One way hash functions and DES. In: CRYPTO. LNCS, vol. 435,
pp. 428–446. Springer (1989)

26. Mouha, N., Mennink, B., Herrewege, A.V., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: An efficient MAC algorithm for 32-bit microcontrollers. In:
Selected Areas in Cryptography. LNCS, vol. 8781, pp. 306–323. Springer (2014)

27. Nandi, M.: Towards optimal double-length hash functions. In: INDOCRYPT.
LNCS, vol. 3797, pp. 77–89. Springer (2005)

28. National Institute of Standards and Technology: Submission requirements and
evaluation criteria for the lightweight cryptography standardization process (2018),
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/final-lwc-submission-requirements-august2018.pdf

29. Virtual Silicon Inc.: 0.18µm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18µm Generic II Technology:
0.18µm (2004)

30. Yuan, Z., Wang, W., Jia, K., Xu, G., Wang, X.: New birthday attacks on some
macs based on block ciphers. In: CRYPTO. Lecture Notes in Computer Science,
vol. 5677, pp. 209–230. Springer (2009)

20

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

A Supplementary Material

We provide the following files as supplementary material:

– code_hw/*
– gift/*
– ldmac.cpp

The folder code_hw contains the code used for the hardware implementation.
The folder gift contains the reference implementation of Gift-128-64, with
some additions such as a 64-bit permutation of the primitive with a modified
round number and the round keys set to 0. The file ldmac.cpp contains the
reference implementation of LDMAC using Gift-128-64, where the state N is
128 bits large. We provide all files online.11

B Test Vectors

In the following representation, the message and the tag value are denoted by
m(·) and T (·), respectively. The initial state is set to 0x12...1234...34 ∈ (F2)

128

and the key is set to 0xAB...AB ∈ (F2)
128 in all tests. Note that, for the sake

of simplicity, we did not sample the initial state at random for our test vectors.
The resulting test vectors are

m(1) = 0x00000000000000000000000000000000,

T (1) = 0x117c50b5bfb88c2384f1e778f6264d25,

m(2) = 0x42424242424242424242424242424242,

T (2) = 0xe8bc31ce41fe58b828322883e174e772,

m(3) = 0xffffffffffffffffffffffffffffffff,

T (3) = 0xe7019dd3ded4f28d709f077171431468.

C Attacks on LDMAC

Differential Characteristics. The “best” probability for any differential char-
acteristic (from a designer’s point of view) an n-bit permutation can achieve is
2−n. However, observe that any difference injected into the message is simul-
taneously injected into every of the t branches due to the shared absorption
phase. Hence, assuming a cryptographically strong permutation P, the differen-
tial probability is 2−nt = 2−N .

11 https://github.com/mschof/ldmac

21

https://github.com/mschof/ldmac

Key-Recovery Attacks. For simplicity, we first focus on t = 1. Note that the
initial state is not known by the attacker in our scenario, hence a trivial approach
using a single (message, tag) pair will not work. However, the attacker can use
two different (message, tag) pairs and then, for each possible key, compute back-
wards by using both tags and messages. If the initial state is the same for both
computations, the attacker can conclude that the current key candidate is cor-
rect with high probability. This approach needs 2N operations and is essentially
equal to exhaustive search.

Let us assume t > 1 now. Recall that we require each of the t final n-bit block
ciphers to provide a security against key-recovery attacks of N bits. Focusing on
one single evaluation, this means that key-recovery attacks have a complexity in
Θ
(
2N
)
. Since all evaluations are independent of each other, and only the added

constant part is shared, the complexity of recovering the key is still an element
in Θ

(
2N
)
, or strictly speaking Θ

(
2N/t

)
when making t trials in parallel.

Generating a Code Book for the Last Keyed Part. Given n-bit block
cipher evaluations in the final step, we can make 2n queries with altering last
message blocks to obtain a lookup table with a size of 2n · 2n bits, containing
the translations

c⊕mu
(i) → o(i),

where i ∈ [1, 2n]. Now, we can modify the second to last message block and
request a tag for this message. The output will be an entry o(i) of the table,
giving us the corresponding mu

(i). We can now add an arbitrary difference to
the last message block and forge the resulting tag offline using our lookup table.
The same method can be applied to any of the t evaluations.

This simple approach needs at least 2n + 1 queries. However, note that this
attack can be parallelized by using the t different evaluations. If the keys are the
same for all t evaluations, we can exploit this fact. When applying this method,
we only need 2n

t queries in order to build the lookup table, which results in a
data limit of 2n

t . Hence, reducing n and increasing t significantly may quickly
result in data limits which are far too low. Again, we therefore recommend to
use different keys for the final block cipher calls, or different permutations of the
same key bits.

Note that a tradeoff version of this attack is also possible. In particular,
consider using 2c < 2n data for the attack (and a table of respective size). Now,
when following the same approach, the probability for a table entry to exist
is 2−(n−c), which reduces the probability of the attack while also reducing the
needed amount of data. We emphasize that this tradeoff does not extend to all
of the t branches. Indeed, while we can produce tables of size 2c for all branches
in parallel, first the final probability is 2−t(n−c) for all entries, and secondly
we need the single change in the last block to satisfy the needed outputs in
all branches, which is again only the case with small probability (2−n(t−1), the
same as simply guessing the remaining tag parts). In conclusion, if D denotes

22

the amount of data used and if P denotes the success probability of the attack,
we claim that log2(DP−1) = N .12

Collisions in the Chaining Phase. When using arbitrarily sized messages
and n-bit permutations, collisions in the chaining phase are to be expected after
around 2n/2 queries. An attacker can detect a collision when using different
messages and observing the same output for two different messages in any of the
tag parts.

Let us assume the attacker has found such a collision and knows where this
collisions occurred (i.e., where precisely in the chaining phase). Let us further
assume t = 2 for simplicity. Now, the attacker can modify the block in the first
message where the collision took place (which is not necessarily the same in both
of the messages) by adding a constant. The attacker now requests the tag for this
modified message, knowing that adding the same constant to the same position
in the second message will yield the same tag part with a probability of 1. They
can now simply guess the second tag part, which leads to a successful forgery
with a probability of 2−64 when knowing where exactly a collision has occurred.

In general, when knowing where the collision has occurred in t′ evaluations,
the success probability of the attack by guessing the remaining tag parts is
2−(N−(t

′n)). Knowing where the collision happened (or guessing the position with
high probability) is possible when using only a few message blocks. Moreover,
a collision can happen in every of the t branches, and this can be evaluated in
parallel. This can be (approximately) accounted for by dividing the number of
allowed message blocks by t. We therefore further decrease the allowed data limit
to � 2n/2

t authenticated message blocks.

Guessing Attacks. Let us for simplicity assume t = 1. The construction is
now similar to Pelican. Having a state size of n = N bits, guessing the tag is
successful with a probability of 2−N .

Now, let us assume t > 1. The state is now N = nt bits large, and each of the
t evaluations has an n-bit state. Note that the t evaluations (and in particular
the t n-bit initial states) are independent of each other. They only share the
chaining phase with the same message blocks. Hence, guessing the output of one
of the t evaluations (i.e., one single tag part) does not yield any information
about the other t−1 evaluations. Therefore, guessing the entire tag is successful
with a probability of 2−nt = 2−N , and is equally efficient as in the classical
(one-branch) Pelican construction.

For completeness, we also evaluate the possibility of guessing intermediate
states. Assume we guess one of the intermediate states (or even one of the initial
states) correctly. This happens with a probability of 2−n, which may be non-
negligible for small n. We can now easily adjust adjacent message parts in order
to provoke a collision in the chaining phase, and the output of this single evalu-
ation will then be equal to the output of a previously queried message. However,
12 Note that this claim is reminiscent of claims regarding Even–Mansour constructions.

23

this also affects all other t − 1 evaluations. We would therefore need to guess
the states of the t− 1 other evaluations as well, which again results in a success
probability of 2−nt = 2−N .

D Estimation Details

NOT NAND AND NOR OR XOR MUX D flip-flop

0.67 1 1.33 1 1.33 2.67 2.33 5.33

Table 4: Gate equivalents for various logic gates and registers.

D.1 Concrete Calculation

Keccak-f Gate Area. Keccak-f uses five main operations: χ, θ, ι, π, and
ρ. The latter two use no gates and can be accomplished with simple wiring. χ is
the nonlinear 5-bit S-box operation using one XOR gate, one AND gate, and one
NOT gate per state bit (i.e., five XOR gates, five AND gates, and five NOT gates
per S-box). θ is the main diffusion operation using two XOR gates per state bit.
Finally, ι denotes the round constant addition, needing one XOR gates for each
lane of Keccak-f . Hence, the estimated GE number for Keccak-f [N] when
focusing on rounds implemented fully in parallel is given by

N · 5.33︸ ︷︷ ︸
Registers

+

(
3N +

N

25

)
· 2.67︸ ︷︷ ︸

XOR gates

+N · (0.67 + 1.33)︸ ︷︷ ︸
NOT and AND gates

.

Estimations for LDMAC Instance. To better illustrate how we arrive at the
final numbers, let us consider 128-bit LDMAC instantiated with Simon-128-64,
i.e., we have n = 64 and t = 2. First, we compute the area requirements of
Simon-128-64. Following the method given above, we use three 32-bit adders,
one for each branch, resulting in 64 XOR gates. We also need 32 AND gates for the
nonlinar operation, and finally 64 registers. This results in an area (GE) of

64 · 5.33︸ ︷︷ ︸
Registers

+96 · 2.67︸ ︷︷ ︸
XOR gates

+32 · 1.33︸ ︷︷ ︸
AND gates

= 640.

We further add 64 registers to meet the total state size of 128 bits, and we also
add 64 XOR gates for the absorption. Finally, we add 64 multiplexers, and we note
that this is done for every LDMAC instance in our comparison. We then arrive at

d640 + (64 · 5.33) + (64 · 2.67) + (64 · 2.33)e = 1302

24

GE for a round-based implementation, which can also be found in Table 2.
Regarding the number of cycles, we consider a round-based implementation

for the sake of simplicity. Then, we use 20 rounds for Simon-128-64 [6,22], and
we need

t ·
(⌈
|m|
n

⌉
− 1

)
· 20 + (t · 44)

rounds in total, where 44 is the number of rounds of the final block cipher calls.
For t = 2 and |m| = 512, this leads to a total number of 368, as can also be
found in Table 2.

In this estimation, we ignore the effect of control logic, since it is hard to
derive a meaningful number without an actual hardware implementation. We
apply the same approach to every other construction, noting that a constant
overhead due to the control logic would get added similarly to all constructions.

E Additional Comparisons

103 103.2 103.4 103.6

102

103

104

Area (estimate)

C
yc
le
s
(e
st
im

at
e)

LDMAC, t = 2, Skinny-128-64
LDMAC, t = 2, Simon-128-64
LDMAC, t = 2, Gift-128-64
Pelican, Skinny-128-128
Pelican, Simon-128-128
Pelican, Gift-128-128
CBC-MAC, Skinny-128-128
CBC-MAC, Simon-128-128
CBC-MAC, AES-128
OKS, r = 100, Keccak-f [200]
OKS, r = 128, Ascon-320
OKS, r = 32, Present-π-128

Fig. 6: LDMAC and other constructions when authenticating 512-bit messages.

E.1 Using 32-Bit KATAN32 with LDMAC

KATAN32 [13] provides a security level of 80 bits. This is below the recommended
security level by NIST, and also below the security level of constructions in our
comparison, but we use it to illustrate how LDMAC could scale to 32-bit primitives.

KATAN32 works by splitting the 32-bit state into two unbalanced parts, and
then applying two nonlinear functions in each round. These use 8 XOR gates

25

1,000 1,100 1,200 1,300 1,400 1,500
0

500

1,000

1,500

(1232, 504)

(1360, 252)

(1275, 1264)

(1339, 632)

Area (estimate)

C
yc
le
s
(e
st
im

at
e)

LDMAC, t = 2, Skinny-128-64
LDMAC, t = 2, Simon-128-64
LDMAC, t = 2, Gift-128-64
Pelican, Gift-128-128

Fig. 7: LDMAC and other constructions when authenticating 512-bit messages and
limiting both the area and the number of cycles to 1500.

and 4 AND gates. Following designers’ analysis, 126 rounds are needed in order to
achieve security against differential attacks. Hence, we use an 126-round unkeyed
version of KATAN32 in the absorption phase, and we generate our final tag parts
by using 4 calls to the full 254-round block cipher.

The results of this approach are shown in Table 5. We can see that the
area can further be decreased, albeit at the cost of an increased latency. For an
additional comparison, we also include our mode together with Simon-64-32.
However, we strongly emphasize that the security level of this instance is only
64 bits (because Simon-64-32 itself provides only 64 bits of security against
key-recovery attacks), and hence we do not encourage to instantiate LDMAC with
Simon-64-32.

26

Algorithm Config Area a (GE) Latency (512-bit message) a×c
103

Cycles c Depth d

LDMAC, t = 2
Gift-128-64

1 S-box 1120 4032 8 4516
7 rounds 5552 36 56 200

LDMAC
KATAN32, t = 4

1 round 869 8576 3 7453
2 rounds 1067 4288 6 4576
10 rounds 2645 858 30 2270
20 rounds 4617 429 60 1981

LDMAC
Simon-64-32, t = 4

1 round 992 1448 4 1437
2 rounds 1312 724 8 950
4 rounds 1952 362 16 707

Table 5: Estimates for the area and latency of LDMAC using 32-bit permutations
and a 80-bit security level (KATAN32), a 64-bit security level (Simon-64-32),
and the previous instance using Skinny-128-64.

27

	Small MACs from Small Permutations

