
ENIGMAP: External-Memory Oblivious Map for Secure Enclaves

Afonso Tinoco
CMU

Sixiang Gao
CMU

Elaine Shi
CMU

Abstract
Imagine that a privacy-conscious client would like to query

a key-value store residing on an untrusted server equipped
with a secure processor. To protect the privacy of the client’s
queries as well as the database, one approach is to imple-
ment an oblivious map inside a secure enclave. Indeed, earlier
works demonstrated numerous applications of an enclaved-
based oblivious map, including private contact discovery, key
transparency, and secure outsourced databases.

Our work is motivated by the observation that the previ-
ous enclave implementations of oblivious algorithms are sub-
optimal both asymptotically and concretely. We make the key
observation that for enclave applications, the number of page
swaps should be a primary performance metric. We there-
fore adopt techniques from the external-memory algorithms
literature, and we are the first to implement such algorithms
inside hardware enclaves. We also devise asymptotically bet-
ter algorithms for ensuring a strong notion of obliviousness
that resists cache-timing attacks. We complement our algo-
rithmic improvements with various concrete optimizations
that save constant factors in practice. The resulting system,
called ENIGMAP, achieves 15× speedup over Signal’s linear
scan implementation, and 53× speedup over the prior best
oblivious algorithm implementation, at a realistic database
size of 256 million and a batch size of 1000. The speedup is
asymptotical in nature and will be even greater as Signal’s
user base grows.

1 Introduction

An oblivious map data structure [1–3] realizes a key-value
store while completely hiding the access patterns. Earlier
works such as Oblix [2] and ObliDB [3] showed that an
enclave-based oblivious map implementation has numerous
privacy-preserving applications, such as key transparency,
contact discovery, outsourced database. More generally, imag-
ine that a privacy-conscious client would like to issue (key,
value) queries to a database hosted by an untrusted server,

which is equipped with a trusted processor such as Intel SGX.
There are two important privacy goals, both of which are
provided by an oblivious map:

1. Query privacy. The client should not leak to the server
which keys it is querying; and

2. Database privacy. Additionally, depending on the appli-
cation, the database itself may be private, too.

All of the aforementioned applications desire query privacy,
while database privacy is demanded by the secure outsourced
database application, but not needed for the key transparency
application where the database is the list of public keys. As for
privacy contact discovery, database privacy may be a desirable
feature, but it is also meaningful to provide only query privacy
(e.g., Signal’s privacy contact discovery [4]).

Regarding oblivious maps, the state-of-the-art algorithm
is due to Wang et al. [1]. They showed how to leverage
techniques used to construct tree-based Oblivious RAM
(ORAM) [5–7] in a non-blackbox way to construct an obliv-
ious map, such that the resulting algorithm is a logarithmic
factor faster than generically simulating an insecure balanced
binary search tree using a state-of-the-art ORAM scheme
such as Path ORAM [6] or Circuit ORAM [7]. Indeed, Wang
et al.’s ingenious algorithm was optimized and implemented
in subsequent works such as ObliDB [3] and Oblix [2].

1.1 Sub-Optimality of Prior Work
Our key observation is that existing enclave-based oblivious
map implementations turn out to be sub-optimal both asymp-
totically and concretely. There are two main reasons that leads
to the sub-optimality — below we will use Oblix [2] as an
example since it is the state-of-the-art implementation.

Choice of metric. Most of the theoretical work on oblivious
algorithms [5,6,8,9] use the program’s computation overhead
(i.e., number of instructions) as a primary performance metric.
In particular, the theoretical literature on oblivious algorithms

1

typically measures cost by considering the blowup in terms
of the number of instructions when comparing the oblivious
version of the algorithm vs. the non-oblivious baseline. Not
surprisingly, the recent work Oblix adopted the computation
overhead as primary metric, too.

However, for an enclave-based setting, a more significant
performance bottleneck is actually the overhead of page swaps
between the enclave and insecure memory or disk. As we
know, the enclave has a limited amount of secure memory
(e.g., 128MB or 256GB [10] depending on the version of
the SGX) and the database may not fit within the enclave.
Therefore, the enclave must adopt a page swap mechanism
to swap a page from insecure memory outside the enclave to
secure memory. Sometimes, this page swap can involve a disk
swap if the database is too large to fit within the RAM. The
page swap is an expensive operation for a few reasons. First,
it incurs a context switch which is a heavy-weight operation
itself. Second, even if we only need query privacy and not
data privacy, the oblivious data structure must nonetheless
be encrypted. During this page swap, the enclave needs to
decrypt the data fetched from external memory or disk, and
re-encrypt it when writing it back. Last but not the least, if the
page swap also incurs a disk swap, then we must fetch data at
a granularity of 512B or 4KB pages even if we are interested
in reading only a single byte.

In summary, the combination of the context switch, page
transfer, and encryption/decryption overhead makes page
swap a major bottleneck for enclave applications. Oblix did
not optimize for this metric in their design.

Sub-optimal algorithm for strong obliviousness. The
original Path ORAM [6] and oblivious data structure [1] pa-
pers presented their algorithm in a client-server setting where
the ORAM client is fully trusted. By contrast, we are consid-
ering a setting where the client-side algorithm is executing
in the server’s hardware enclave. An important security con-
cern is cache-timing attacks [11–14]. By exploiting the fact
that the enclave shares the CPU caches with the untrusted
applications running on the same machine, the adversary can
potentially exploit cache-timing attacks to learn the access
patterns within the enclave.

To defend against cache-timing attacks, several works in
this space [15, 16], including Oblix [2] suggested a strong
notion of obliviousness, often referred to as strong oblivi-
ousness [15, 16] or double obliviousness [2]. With strong
obliviousness, we not only require that the page-level access
patterns be oblivious, but also that the access patterns within
the enclave be oblivious too. In other words, we want to make
the ORAM client itself oblivious too.

Although there exist known approaches for making even
the client-side algorithm oblivious [7, 17], Oblix [2] came up
with their own techniques for this purpose. In particular, to
perform the eviction algorithm along an ORAM tree path,
part of their algorithm performs a double-loop over the loga-

rithmically sized tree path, thus incurring O(log2 N) overhead.
This is asymptotically suboptimal in comparison with the best
known algorithm [7, 17].

1.2 Our Contributions

We revisit how to design and implement an efficient oblivi-
ous map for hardware enclaves. We design and implement
ENIGMAP, an enclave-assisted multi-map data structure that
can be used to perform key-value lookups, insertions, and
deletions.

ENIGMAP differentiates from prior work in this space in
the following senses: we adopt ideas from an elegant line
of work that originated in the algorithms community, called
external-memory algorithms [18, 19]. In external-memory
algorithms, we care about minimizing the number of cache
misses of a program. It turns out that the external-memory
model is a perfect fit for enclave applications where we can
think of the enclave memory as a cache, and think of page
swaps as cache misses. Although external-memory algorithms
are a well-known body of work in the algorithms commu-
nity [18, 19], to the best of our knowledge, we are among
the first to implement and evaluate such algorithms in the
hardware enclave context. We now explain our contributions
more concretely.

Locality friendly layout. An oblivious binary search tree
algorithm leverages a Path ORAM tree as an underlying data
structure [1]. Every search query in an oblivious binary search
tree requires visiting O(logN) paths in the underlying ORAM
tree (where each path travels from the root to some leaf).
Inspired by known external-memory algorithms [20, 21], we
adopt a locality-friendly layout for storing the (encrypted)
ORAM tree in external memory. This allows us to incur only
O(logB N) page swaps for visiting a path where B denotes the
page size. In comparison, prior work such as Oblix [2] uses a
simple heap layout for storing the ORAM tree, and they incur
O(logN) overhead for visiting a path. Thus, our improvement
over the state-of-the-art is asymptotical in nature.

Efficient initialization algorithm. We devise new algo-
rithms for initializing the oblivious data structure that achieve
asymptotical savings relative to Oblix’s approach. Our new
initialization algorithm also adopts ideas from the external-
memory algorithms literature such that we can optimize the
number of page swaps. As shown in Table 1, our initialization
algorithm incurs O(N

B log M
B

N
B) page swaps and O(N logN)

computation, where B is the page size and M is the enclave’s
resident memory size. In comparison, Oblix’s initialization
algorithm incurs O(N log2 N) page swaps and O(N log3 N)
computation. Concretely, for a database of size 256 million
entries, we can reduce the initialization time from 80.31 hours
to 9.5 hours.

2

Table 1: Asymptotical comparison. N is the maximum number of entries in the multimap, B denotes the page size (typically
4KB), M is the size of the enclave’s resident memory (up to 128MB), and β is the batch size. Õ(·) hides poly log log factors.

Scheme Cost per batch of operations Cost of initialization
page swaps compute page swaps compute

Signal [4] O(N/B) O(β2 +N) O(N/B) O(N)

Oblix [2] O(β log2 N) O(β log3 N) O(N
B log2 N) O(N log3 N)

ENIGMAP O(β logB N · logN) Õ(β log2 N) O(N
B log M

B

N
B) Õ(N logN)

Ensuring strong obliviousness. In comparison with Oblix,
we employ asymptotically more efficient algorithms [17] for
ensuring strong obliviousness that allows us to save a loga-
rithmic factor in computation (see Table 1).

We examined Oblix’s code and point out various subtleties
for ensuring strong obliviousness at an implementation level.
We rely on known techniques [22, 23] to avoid these pitfalls
and guarantee both data obliviousness and instruction-trace
obliviousness within the enclave.

Practical optimizations. We introduce various optimiza-
tions that would save us a constant factor in practice. We
adopt a multi-level cache design that involves a page-level
cache outside the enclave, a bucket-level cache inside the
enclave, and a binary-search-tree-level cache. Moreover, we
suggest a new optimization that saves a 2× to 3× factor for
the data structure’s insertion algorithm. Our locality-friendly
layout also achieves a constant-factor saving in comparison
with the standard Emde Boas layout [20,21] from the external-
memory algorithms literature.

Implementation and open source. We have implemented
ENIGMAP and open sourced the code at https://github.
com/odslib/EnigMap (the site has been anonymized for the
submission). Our implementation is general and not tightly
coupled with any specific trusted hardware technology. In
particular, our main enigmap_lib has 5000 lines of code
whereas integration with Intel SGX SDK has less than 100
lines of C++ code plus 10 lines of Enclave Description Lan-
guage (EDL) definitions. This means that it would be very
easy to integrate our code with other trusted hardware SDKs.

Evaluation. We evaluate the performance of ENIGMAP
and compare with the following two baselines:

1. Oblix [2], which is the state-of-the-art prior to our work;

2. Signal’s batched linear-scan algorithm for private contact
discovery.1

1Concurrent and independent to our work, Signal updated their private
contact discovery implementation to use Path ORAM [24]. Their new design
provides only query privacy but not database privacy. We will discuss their
concurrent work in more detail in Sections 1.3 and D.

Under a realistic database size of 256 million, we
achieve 15000×, 1500×, 150×, 15× speedup w.r.t. Signal’s
open source implementation, at a batch size of 1, 10, 100, and
1000, respectively. In comparison with Oblix, we achieve a
53× speedup regardless of the batch size. Our performance
gain is asymptotical in nature, so for larger (e.g., billion-sized)
databases, our speedup w.r.t. both Signal and Oblix will be
even greater.

At first sight, it may seem surprising that we can achieve
such a big speedup over Oblix despite the relative maturity
of this line of work — specifically, oblivious algorithms are
simple data structures that have been thoroughly explored in
numerous practical settings [3, 25–31]. Indeed, our savings
come not just from system-level optimizations but also from
asymptotical improvements (see Table 1).

1.3 Additional Related Work
Signal’s private contact discovery, version 1. In private
contact discovery, a client wants to find out which of its
friends have also signed up for the messenger service, but
without disclosing its friend list to the server. Signal, a privacy-
preserving messenger application with 40 million to billions
of users [4, 32, 33], is the first messenger app to provide pri-
vacy in their contact discovery mechanism.

Signal published a blog post [4] in 2017 that explains their
linear-scan algorithm that runs in an SGX enclave. In particu-
lar, in their first version, they simply linearly scans through
the database to hide the entry the client is interested in. To re-
duce overhead, they batch multiple queries and process them
in a single linear scan.

Signal’s 2017 blog post argues that their batched linear
scan outperforms oblivious algorithms. The initial motivation
of our work was to revisit the question whether batched linear
scan indeed has better concrete performance than efficient
oblivious algorithms as asserted by Signal. Our findings show
quite the opposite: at a database size of 256 million entries,
ENIGMAP outperforms Signal’s batched linear scan imple-
mentation by 5.5x to 5500x depending on the batch size.

Concurrent and independent work. We attempted to con-
tact Signal attaching a copy of our paper in April 2022, hop-

3

https://github.com/odslib/EnigMap
https://github.com/odslib/EnigMap

ing to convince them to change their implementation to Path
ORAM. In August 2022, Signal launched a new implemen-
tation indeed using Path ORAM. However, their approach
differs from ENIGMAP. In particular, they compile a hash
table generically using Path ORAM. If the queried element
has a collision, they retry hashing the element again until it is
found. To avoid the number of collisions leaking information,
even if the element is found early, they still pad the number of
accesses to the maximum number of collision among all the
elements. Because they reveal the actual maximum number of
collisions in the current execution (and not a worst case that is
guaranteed except with negligible probability over the choice
of the random execution), their algorithm provides only query
privacy and not database privacy. To additionally provide
database privacy, they would have to replace the actual max-
imum encountered with a worst-case value encountered in
all but 1−1/2λ fraction of the random executions, and this
change can cause their performance to degrade by one or
two orders of magnitude depending on the security parameter
desired.

ENIGMAP achieves comparable concrete performance to
Signal’s new implementation while additionally providing
database privacy. This makes ENIGMAP more broadly appli-
cable, e.g., it can be used in secure outsourced databases too
where database privacy is a first-class concern.

Oblivious RAM and oblivious algorithms. Oblivious
RAM was first proposed by Goldreich and Ostrovsky [8, 9]
who gave a hierarchical construction with O(log3 N) over-
head, assuming the existence of one-way functions. Several
subsequent works [34–39] made some further improvements
on top of the hierarchical framework. Shi et al. [5] first pro-
posed a new binary-tree based paradigm for constructing
ORAM, which removes the assumption on one-way func-
tions. The framework was improved in several subsequent
works [6, 7, 27], and Path ORAM [6] stands out as one of
the most practical algorithms for a secure processor or client-
server setting.

While ORAM allows us to compile any program into an
oblivious counterpart generically, a line of work has focused
on customized oblivious algorithms [1, 22, 40] such that we
can outperform generic compilation for specific (classes of)
computation tasks. Wang et al. [1] showed oblivious algo-
rithms for binary search trees that outperform generic ORAM
compilation by a logarithmic factor — both Oblix and our
work are based on their algorithm.

Oblivious algorithms meet hardware enclaves. Besides
the aforementioned works Oblix [2] and ObliDB [3],
Snoopy [25] also implements oblivious algorithms in a hard-
ware enclave context. Snoopy’s focus, however, is how to
parallelize multiple instances of oblivious data structures to
increase throughput. In their experiments, they used Oblix [2]
as one choice of a single instance. In this sense, ENIGMAP

is orthogonal and complementary to Snoopy, and it should
not be hard to replace Oblix with ENIGMAP in Snoopy’s
implementation which should lead to significantly better per-
formance.

Earlier, several works such as Raccoon [41], ZeroTrace [31]
and Kloski [42] also implemented variants of Path ORAM
inside an SGX enclave. However, they did not implement an
efficient oblivious binary search tree, and thus would not be
competitive for our application.

Ren et al. [28] briefly explored the idea of using a locality-
friendly layout in a somewhat different context, namely, in the
design of an ORAM-capable secure processor. They did not
provide details, so likely they did not employ our optimiza-
tions that achieve a 2x factor speedup over the standard Emde
Boas layout (see Section 4.1 for details). Tamrakar et al. [43]
provide oblivious membership test which is not sufficient to
realize a key-value store; further, their algorithm offers only
weak privacy: they do not guarantee the privacy of items that
are found during the membership test.

Intel’s new version of SGX, called SGX2, provides a larger
enclave memory than before, e.g., 256GB [10]. Even though
this is much larger than the previous 128MB, typical real-
world server-side databases easily exceed this capacity, and
thus can benefit from external-memory algorithms.

Oblivious algorithms in a client-server setting. Another
line of works, including Ring ORAM [27], Obladi [26] and
others [1, 34, 35, 44, 45] implemented oblivious algorithms
in a client-server setting. In a client-server setting, the main
performance bottleneck is the bandwidth, and the client-side
algorithm need not be implemented obliviously.

Other approaches for private contact discovery. Private
set intersection (PSI) [46] is a cryptographic protocol that
allows two parties to compute the intersection of their respec-
tive sets, without revealing additional information about their
private sets. PSI techniques can also be applied to private
contact discovery. Moreover, a line of works [47–52] have
focused on optimizing the asymptotical and concrete perfor-
mance of PSI. However, the recent work of Kales et al. [48]
pointed out that PSI is not ready yet to scale to billion-sized
databases such as in Signal’s scenario.

2 Problem Statement

2.1 Threat Model

We assume that the server is equipped with secure hard-
ware enclaves such as Intel’s SGX. Although recent works
have uncovered some attacks for off-the-shelf trusted hard-
ware [53, 54], it is outside the scope of this paper to consider
how to design provably secure trusted hardware — an orthog-
onal line of work focuses on this goal [55–57]. Although we

4

(a) Cost of each operation relative to MOV. A page swap is about 47
times more expensive than moving 4KB in memory within the enclave.

The costs are color-coded which shows the cost breakdown.

(b) Effect of page size. The cost of swapping a page
of size B can be viewed as a linear curve Cinit + γB

where Cinit is a startup cost of swapping even 0 bytes,
and γ�Cinit is the cost for swapping each extra byte.

Figure 1: Microbenchmarking results

use Intel’s SGX as a testbed to demonstrate our ideas, our
algorithmic constructions are generic and apply to known
hardware enclave technologies in general.

As our threat model, we assume that the server’s operating
system may be compromised, and there may be insiders in
the facilities hosting the server who can perform physical
attacks — we assume that the physical attacks cannot break
the tamper-resistance of the hardware enclave.

When the enclave’s secure memory is overcommitted rel-
ative to the physical memory available, a page swap mecha-
nism is needed for the enclave to fetch (encrypted) pages from
RAM as needed. As explained later in Section 2.2, the OS can
observe the page-level accesses during the page swap. Besides
observing page-level accesses, we also assume that the OS
can observe fine-grained memory accesses within the enclave,
e.g., through well-known cache-timing attacks [11, 58–60].

2.2 Background on SGX

We review some background on SGX especially mechanisms
related to memory protection.

EPC pages and page swapping. In SGX, the enclave’s
secure memory (i.e., EPC pages) are protected from the op-
erating system. The EPC pages are encrypted when they are
stored in memory — this encryption is enforced in hardware
by the SGX processor.

In our scenario, the size of the database can be much larger
than the enclave’s secure memory size. In these cases, part
of the encrypted database will reside either in insecure RAM
outside the enclave, or reside on disk. When the enclave wants
to read encrypted data that reside outside the enclave, we need
to employ an EPC page swapping mechanism, such that the

enclave can swap in and out EPC pages as needed.
In SGX, we have two available mechanisms for performing

EPC page swapping — with both mechanisms, the OS can
observe the address and content of the page being swapped.

• SGX-specific instructions. The first approach is to use
SGX-specific instructions. For example, the OS can call
the EWB instruction to invalidate an EPC page and write
an encrypted version of the page out to RAM. Using this
approach, encryption of the invalidated EPC page is en-
forced in hardware, and the page size is forced to be ex-
actly 4KB. The elegant work of Costan and Devadas [58]
gives a detailed description of the EWB-based page swap
mechanism.

• OCall. Another approach is to use ocall which is a call
from the enclave to the untrusted application. The ocall
supports transferring a(n encrypted) buffer between the
application and the enclave. Using this approach, the en-
clave’s code must encrypt the buffer written out to RAM,
and decrypt it when it is later fetched in and used. We
can use the processors AES-NI instructions for fast en-
cryption and decryption. Moreover, with the ocall-based
approach, it is not necessary to stick to a page size of
exactly 4KB, although it turns out that for our implemen-
tation, a page size of approximately 4KB is concretely
optimal — see Section 2.3 and Section 5 for more details.

The first approach (i.e., using SGX-specific instructions) re-
quires a deeper context switch than the second approach, and
thus the performance overhead is larger as reported in Ngoc et
al. [61] in a comprehensive SGX performance benchmarking
effort — this is also confirmed by our own microbenchmarks
described in Section 2.3. Specifically, as explained in detail
by Ngoc et al. [61], using SGX-specific instructions, the OS

5

will cause all CPUs executing inside the enclave to exit using
interprocessor interrupts to flush the TLB entries. Only then
can the OS call EWB to evict the page from EPC memory.
In comparison, with the ocall approach, we need not stop
processors executing inside the enclave — we only need to
transfer some encrypted buffer into the enclave, use it to re-
place some already existing EPC page, and transfer out an
encrypted version the old EPC page.

For this reason, in ENIGMAP, we use the ocall approach
to perform EPC page swaps, and the same approach was also
used in earlier works such as [2, 3, 62].

Finally, note also that a page swap may or may not be
accompanied by a disk swap, depending on whether the page
being requested resides in (insecure) physical memory or
not. If a disk swap is also incurred, it will introduce some
additional overhead — see Section 2.3 for more details.

SGX evolution. In SGXv1, the maximum EPC size is lim-
ited to 128MB. The second generation of SGX, henceforth
called SGXv2, removed this limitation, and increased the ca-
pacity of the EPC region to up to 512GB. For real-world
applications with with large datasets (e.g., Signal’s case), of-
ten times the database cannot fit within the physical memory
made available to the enclave. In these cases, page swaps are
still necessary even with SGXv2.

Since SGXv2 is relatively new, in comparison, SGXv1 is
still more available than SGXv2. Currently, only the last gener-
ation of server-grade Intel processors (released after 2021 Q2)
support SGXv2 – most have 64GB of EPC size, except very
few high-end processors (5318S, 8352S, 8368, 8380) with
512GB EPC. Therefore, in our work, we evaluate the perfor-
mance of ENIGMAP on both SGXv1 and SGXv2. The SGXv1
experiments are particularly meaningful for blockchain-type
applications. Specifically, SGX is used widely in blockchain
environments to support offchain privacy-preserving smart
contracts. In such scenarios, the computing platforms are dis-
tributed and likely consumer-grade machines without SGXv2
support.

2.3 Microbenchmarks and Motivation for
External-Memory Algorithms

To the best of our knowledge, almost all prior works [2, 31,
41, 42] that implement oblivious algorithms for hardware en-
claves focus on optimizing the computation overhead of the
algorithm. This works for the scenario when the encrypted
database is small and fits within the enclave’s physical mem-
ory. However, when the encrypted database cannot fit within
the enclave’s physical memory, the cost of EPC page swaps
become a significant overhead.

Page swap vs compute overhead. In Figure 1a, we plot
microbenchmarking results that compare the page swap over-
head vs. computation overhead. These microbenchmarking

results are collected on an Azure SGXv2 machine with 4GB
EPC, 8GB RAM, an SSD drive with 80000iops/1.2Gbps and
an Intel Sunny Cove 3rd generation Xeon processor.

Specifically, the figure compares the cost of performing
a 4KB EPC page swap vs. the cost of moving 4KB of data
within the enclave’s EPC memory. For performing a page
swap using ocall or EWB, we plot two cases depending on
whether the page swap is also accompanied by a disk swap.

The figure suggests that an EPC page swap using SGX’s
built-in EWB instruction is 53× or 72× more expensive than
moving 4KB of data within the enclave depending on whether
there is a disk swap, and an ocall-based EPC page swap is
46× or 66× more expensive than moving 4KB of data within
the enclave, depending on whether is a disk swap. The work
of Ngoc et al. [61] also showed very similar findings as us —
see Section 2.2.

Specifically for the ocall-based approach, the total cost
of the EPC page swap includes the following parts: the cost
of an ocall including the context switch and transferring
4KB of data (shown in blue), the encryption cost (shown in
orange), the decryption cost (shown in green), and optionally
the disk swap cost (shown in red) depending on whether the
page swap is accompanied by a disk swap. Recall that in our
implementation, the encryption and decryption are performed
by calling the processor’s AES-NI instructions from the en-
clave. Absent a disk swap, the ocall-cost is roughly 70% of
the total page swap cost, and the encryption and decryption
costs are roughly 30% of the total page swap cost.

SGXv1 vs. SGXv2. Figure 1 is collected from an SGXv2
machine. We also repeated the same microbenchmarking tests
on a SGXv1 machine with 28MB EPC, 4GB RAM, an SSD
drive with 80000iops/1.2gbps, and a Xeon E2200 processor.

The results are almost the same except that the MOVs
are about 2× slower on SGXv1 than SGXv2, and thus the
relative cost of other operations w.r.t. MOV are about twice
the amount shown in Figure 1a.

Effect of page size. With the ocall-based approach, we
have flexibility in deciding the page size. Our microbench-
marking results show that the block size should not be too
small due to the significant overhead of the ocall itself and
the cost of encryption/decryption. As shown in Figure 1b, the
cost of swapping a page of size B (without involving disk
swap) can be viewed as a linear function Cinit + γB where the
y-intercept Cinit is the “startup” cost of swapping a buffer of
size 0 (analogous to the network latency), and γ�Cinit is the
cost for swapping each extra byte (analogous to the inverse of
network bandwidth). Figure 1b does not take disk swap into
account — if additionally the page swap involves a disk swap,
then we want to choose a page size that is a multiple of the
inherent block size for the disk (typically 512B or 4KB).

In our work, the optimal page size B depends not only on
these micro-benchmarking results, but also on our algorithm

6

and the size of each data entry. Jumping ahead, we will show
that the optimal choice of B for us is approximately 4KB —
see Section 5 for details.

Why external-memory algorithms? As mentioned, due
to the overhead of ocall, encryption, and decrytion, it does
not make sense to use a page size that is too small. When
we choose a larger page size (e.g., 4KB), we also need to
redesign our algorithms such that whenever a page is fetched,
it can make maximal use of the page before evicting it from
the enclave. By contrast, algorithms access data in a scattered
and non-local manner would be undesirable in this context.

For this reason, external-memory algorithms are a perfect
fit for SGX enclaves. When the external-memory model was
first proposed [18], the desired application scenario was to
optimize the I/O cost of algorithms when data cannot all fit
within some fast cache, and has to be swapped out to slower
storage. Our work is the first to implement external-memory
algorithms within the context of SGX enclaves.

Terminology and notation: the literature and the SGX
context. The external memory model, first proposed Aggar-
wal and Vitter [18], considers an abstract machine where the
atomic unit of data for I/O, often called a block, is larger than
the unit of data that CPU instructions operate on. Even if the
CPU wants to read just one word from memory, it has to fetch
the entire block that the word resides in. Further, the CPU
has some cache of size M that can cache some blocks it has
recently fetched. Besides minimizing computation, external-
memory algorithms typically care about minimizing the num-
ber of cache misses or equivalently, the I/O cost (i.e., the num-
ber of blocks fetched from or written to memory). Asharov et
al. [63] explore locality-based ORAM; however, they propose
a different formulation of the locality notion. In the context
of hardware enclaves, the external-memory model is the best
fit..

In the context of hardware enclaves, the page size
corresponds to the block size B, and the enclave’s resi-
dent memory size corresponds to the cache size M. M
is typically 128MB for SGXv1, and can be as large as
min(physical memory size,512GB) for SGXv2. In our work,
the optimal page size is 4KB — see Section 5 for a more
detailed explanation.

In our paper, we simultaneously optimize the number of
page swaps which corresponds to the I/O cost of an external-
memory algorithm, as well as the computation overhead.

2.4 Definition: Oblivious Multimap

We want to implement an oblivious multimap data structure
that implements a key-value store. Just like in the Oblix [2]
paper, we define a slightly more expressive data structure, that
is, a multimap, whose abstraction is defined below:

• Init(I): on receiving an input array I containing key-value
pairs, initialize a multi-map data structure;

• Size(k): return the number of occurrences of the key k in
the data structure;

• Find(k, i, j): on receiving a key k, two indices i and j
where j≥ i, return the i-th to the j-th key-value pair whose
key matches k. If multiple entries exist with the same key
k, we order all the entries based on the value v and index
them based on this ordering. Note that the array output
by Find is of fixed length j− i+ 1, and if there are not
enough key-value pairs with the key k, we simply pad the
output array with filler entries of the form ⊥;

• Insert(k,v): insert a key-value pair of the form (k,v) into
the data structure;

• Delete(k,v): delete one occurrence of the key-value pair
(k,v).

Correctness is implied by the above definition of the ab-
straction. We now define obliviousness.

Strong obliviousness. Since all data that leaves the secure
hardware enclave will be encrypted, we may assume that
the adversary can only observe the access patterns but not
the data contents itself (since it is easy to encrypt the data
contents). We adopt the standard notion of strong oblivious-
ness [15, 16] (also called double obliviousness [2]). Strong
obliviousness intuitively says that the adversary cannot learn
any secret information (besides the types of the requests and
the lengths of inputs and outputs) by observing the access
patterns. We stress that our obliviousness notion is very strong
and inherently resists cache-timing-style attacks. Since we
require that even word-level (not just page-level) access pat-
terns be oblivious, it means that even if the adversary can
observe the memory accesses of the program inside the en-
clave (e.g., through cache-timing attacks), it cannot learn any
secret information. In a practical implementation, our notion
requires obliviousness not only on the data accesses, but also
the instruction trace, and we will discuss how we ensure
instruction-trace obliviousness in Appendix C.2.

Since strong obliviousness is a standard notion, we defer
the formal definition to Appendix C.2.

3 Background on Oblivious AVL Tree

In this section, we provide some background on oblivious data
structures [1]. We assume familiarity with Path ORAM [6],
and we provide a review on Path ORAM in Appendix A for
readers who need to refresh their minds.

7

Terminology. As mentioned, in this paper, we study algo-
rithms in the external-memory model. To avoid terminology
collision, we differentiate the terms entry and page. An entry
is an atomic unit that the data structure operates on, whereas
a page is the minimal unit of I/O between the enclave and
the outside world. Typically a page is 4KB in size, and it can
contain multiple entries.

In comparison, the standard literature on oblivious algo-
rithms adopts the RAM model, and thus does not differentiate
an entry and a page — both are referred to as a block [5, 6].
However, we must differentiate them since we are now in the
external-memory model.

Oblivious AVL tree: data structure. A multimap data
structure can be realized with an AVL tree, and our goal is
to make the AVL tree oblivious by relying on the ORAM
tree data structure introduced in Appendix A. We first give
some background on the AVL tree. An AVL tree is a balanced
binary search tree [64]. The logical data structure, henceforth
referred to as the AVL tree or the logical tree, imposes a bal-
ancing invariant: each node’s left subtree and right subtree can
have a height difference of at most 1. As such, the maximum
depth of an AVL tree with N nodes is 1.44log2 N [1, 64].

To make the AVL tree oblivious, we rely on the oblivious
data structure techniques of Wang et al. [1]. The idea is to
store the entries (i.e., nodes) of the AVL tree inside a single
physical ORAM tree. Henceforth, we refer to a pair ptr :=
(k,pos) as a pointer, which contains a key k and a position
identifier — as mentioned, for the time being, we assume that
each key in the multimap data structure is distinct and we
later remove this assumption in Section 3. Each entry (i.e.,
node) of the AVL tree, stored in the physical ORAM tree, is
of the following format:

(ptr, lptr, rptr,v)

where v denotes the value, and the fields ptr, lptr, and rptr
denote the pointers of the current node, its left child, and its
right child in the logical AVL tree. If a node does not have a
left or right child, the corresponding lptr or rptr is ⊥. Note
that the tuple (ptr, lptr, rptr,v) is viewed as the data field by
the ORAM data structure, and the ORAM data structure will
add some extra metadata to the entry.

Supporting the AVL tree operations. We now describe
how to support the AVL tree operations when the AVL tree
nodes are stored in an ORAM tree. Henceforth, we may as-
sume that the entry corresponding to the root of the AVL tree
is always stored at a fixed position. We first provide an expla-
nation ignoring the issue of padding, and then we explain the
padding that is necessary for hiding the lengths of each AVL
tree path and ensuring obliviousness.

Find(k) starts from the root node (stored at a fixed position)
and walks down a logical path in the AVL tree. To fetch each

node in the AVL tree, we need to read a path in the ORAM tree.
The key is how to discover its position identifier. This is easy
due to the way that each entry stores the position identifiers of
its two children. In this way, once we find the parent node, we
immediately learn the keys and position identifiers of the two
children. Now, depending on whether the logical path wants
to go left or right, we can look up the corresponding path in
the ORAM tree (i.e., ReadRm), and find the next node along
the logical path. After we call ReadRm for any entry looked
up, we assign it a random new path and add it back by calling
Add, and then perform an eviction by calling Evict(pos) on
the read path identified by pos.

We now describe how to perform Insert(k,data). Here we
use data to denote the entire payload string of an entry be-
sides the key, where the format of each entry was explained
above. To insert an element with the key k, we first perform a
lookup for k, which walks down some path in the logical AVL
tree. This identifies the right position in the logical tree to
insert the new entry. After inserting the entry into the logical
tree, we perform a rebalancing operation to maintain the bal-
ancing invariant of the AVL tree. The AVL tree’s rebalancing
operation touches exactly the same path that was looked up.
These nodes can be fetched using the same way as in Find —
recall that whenever we find a parent, we immediately know
the position identifiers of both its children. Rebalancing might
modify some of the nodes’ parent-children relationships. Dur-
ing the rebalancing operation, we assign a new random path
to all entries that are touched during by the rebalancing. Each
node modifies its children’s keys (if needed) and position
identifiers. Now, all of the modified entries will be added back
to the root bucket, and we perform eviction on every path that
was involved during the ReadRm phase.

Delete(k) can be supported in a similar manner as the inser-
tion, since it also walks down a logical path, and then performs
rebalancing involving the logical path just looked up, as well
as the sibling of each node on the path.

To realize the full multimap, we additionally have to sup-
port Size(k) and the more general version Find(k, i, j) which
take the multiplicity of each key into account, as well as
Init(I) — we will describe how to support these operations in
Section 3.

Padding. In the logical AVL tree, each path may have dif-
ferent length, and the maximum length is 1.44logN. Recall
that we store each node of the AVL tree in an ORAM tree. To
make the scheme fully oblivious, we need to hide the length
of the AVL tree paths visited. Therefore, we always pad the
number of requests to the ORAM tree to some worst-case
amount for every operation.

Supporting key multiplicity. So far, we have assumed that
all keys are distinct. In our final multimap abstraction, there
may be multiple entries sharing the same key. We can easily
support key multiplicity using standard techniques described

8

…

……

(a) ENIGMAP’s
locality-friendly layout

(b) Oblix’s heap layout

Figure 2: Layout of ORAM tree in external memory. Each
page contains roughly the same number of nodes (although

their area does may not appear equal in the drawing).

by Cormen et al. [65] — the same techniques were adopted
by Oblix [2]. We defer the details to Appendix B.1.

4 ENIGMAP Design

4.1 Locality-Friendly ORAM Tree Layout
As mentioned, for secure enclave programs, the primary per-
formance metric should be the number of page swaps in and
out of the enclave (also called the I/O cost). We now describe
a locality-friendly layout that allows us to accomplish each
AVL-tree operation with only O(logN · logB N) page swaps
where B denotes the page size. In comparison, earlier works
such as Oblix [2] and ObliDB [3] incur O(log2 N) page swaps,
and thus we achieve both asymptotical and concrete improve-
ment over prior works.

Our locality-friendly layout adopts an elegant idea that
originally comes from the algorithms community [20, 21].
Recall that in our oblivious AVL tree algorithm, all logical
operations eventually boil down to accessing paths in the
ORAM tree. Our goal is to minimize the page swaps necessary
whenever visiting a path in the ORAM tree. The most naïve
way to pack the ORAM tree in physical memory is to use a
standard heap layout: i.e., simply write the root node first, then
its two children, then the four nodes at the next level of the tree,
and so on (see Figure 2b). However, this approach requires
O(logN) page swaps for accessing a path. In ENIGMAP, we
pack each subtree (represented by a triangle in Figure 2a) of
depth L = blog2 Bc into a memory page of size B. This way,
accessing a path incurs only O(logB N) page swaps, which is
asymptotically better than the naïve scheme above.

An alternative but slightly different approach is to use the
standard Emde Boas layout [20, 21]. The Emde Boas lay-
out relies on a clever recursion to pack the tree nodes into
memory pages, with the advantage that the algorithm is cache-
agnostic [20, 21], i.e., it need not know the page size B and
the enclave’s resident memory size M. However, to achieve
the cache-agnostic property, the price is a factor of up to 2×

blowup in the number of page swaps (in comparison with
ENIGMAP). This up to 2× blowup comes from two main
factors 1) Emde Boas’s recursion may not stop at the con-
cretely optimal choice of L; and 2) if there is some remainder
empty space in a page after packing a triangle, the Emde Boas
layout would start to pack the next triangle into this remaining
space. While this saves space by a factor of at most 2, it may
increase the number of page swaps by a small constant factor
in practice.

Fortunately, in an enclave setting, we know the exact page
size B and the enclave resident memory size M. Therefore, it
is better to use a cache-aware (as opposed to cache-agnostic)
memory layout as shown in Figure 2a, which saves up to 2×
factor in the number of page swaps in comparison with the
standard Emde Boas layout.

4.2 Efficient Initialization Algorithm
We describe a new initialization algorithm that achieves signif-
icant asymptotical as well as concrete improvement over prior
works such as Oblix [2]. Our initialization algorithm can be
accomplished with O(N

B log M
B

N
B) page swaps and O(N logN)

computation. In comparison, the initialization algorithm of
Oblix [2] incurs O(N log3 N) computation and O(N log3 N)
page swaps.2

The task of initialization is the following: we are given an
initial array I containing (k,v) pairs stored in memory. We
want to obliviously initialize a data structure that would sup-
port the Size, Find, Insert and Delete operations mentioned
in Section 2.4.

Our new initialization algorithm proceeds in two stages:

• Stage 1: Stage 1 aims to accomplish the following: 1) pick
a random position identifier for each entry in the ORAM
tree; 2) assign all entries to a unique node in an AVL-tree;
and 3) construct AVL-tree nodes with the correct keys and
position identifiers for its two children.

• Stage 2: By the end of stage 1, we have created all entries
of the ORAM tree, and assigned them random position
identifiers. The goal of stage 2 is to insert all these entries
into the ORAM tree while packing them as close to the
leaf level as possible. At the end of stage 2, we should out-
put the ORAM tree in memory using the locality-friendly
layout mentioned in Section 4.1.

4.2.1 Algorithm for Stage 1

We devise the following algorithm to accomplish stage 1:

1. Sort the initial array I in increasing order of the key
field k, and let the resulting array be X. Since the ini-
tial database I is not secret, we can use a non-oblivious,

2It is possible to turn it into O(N logN) page swaps by using an external
memory optimized sort.

9

external-memory sorting algorithm. We recommend us-
ing a multi-way merge sort which achieves O(N

B log M
B

N
B)

page swaps and O(N logN) computation.

At this moment, we will encrypt the sorted array. Hence-
forth, although not explicitly noted, all memory is assumed
to be encrypted.

2. Each entry in the sorted array X is assigned a random
position identifier. Henceforth, we regard the sorted array
X as the in-order traversal of the logical AVL-tree. Given
each entry in position i of the sorted array X, we use left(i)
and right(i) to denote the indices of its two children.

3. Let root be the index of the root node of the AVL-tree. Call
the following recursive algorithm Propagate(root) such
that each parent learns the keys and position identifiers of
its two children.

Propagate(r)

a) if r is not leaf: let lptr = Propagate(left(r)), rptr =
Propagate(right(r)), and store (lptr, rptr) to X[r],

b) Return the key and position identifier in X[r].

Performance bounds. We now analyze the performance
of the above algorithm. The sorting step takes O(N

B log M
B

N
B)

number of page swaps and O(N logN) computation. Encrypt-
ing the entire memory array and assigning a random position
identifier to each element in the array takes only O(N/B) page
swaps and O(N) computation. For the third propagation step,
clearly its computation is O(N). Its number of page swaps
Q(N) can be analyzed through the following recurrence:

Q(n) =

{
2Q(n/2)+1 if n > B
2 o.w.

Thus, we conclude that the propagation step consumes at most
O(N/B) page swaps.

In summary, stage 1 costs O(N
B log M

B

N
B) number of page

swaps and O(N logN) computation.

4.2.2 Algorithm for Stage 2 (Warmup)

By the end of stage 1, we have prepared all entries to be
inserted into the ORAM tree, and each entry has been assigned
a random position identifier. Our goal is to place these entries
into the ORAM tree, and pack them as close to the leaf as
possible.

To achieve this, we compute the contents of each level
of the ORAM tree one by one, starting from the leaf level.
Initially, each level is stored in a contiguous memory region.
At the end of the algorithm, we need to convert the layout to
the locality-friendly layout mentioned in Section 4.1.

We shall employ an oblivious bin placement algorithm de-
noted BinPlace which obliviously places the real elements in
an input array into bins, and outputs the output bins as well as
a remainder array containing all overflowing elements — we
review oblivious bin placement in Appendix B.2. Our stage 2
algorithm is described below where level log2 N denotes the
leaf level, and level 0 denotes the root level. Intuitively, the
algorithm places elements in the ORAM true level by level.
For the larger levels, it leverages an oblivious bin placement
alorithm; for the smaller levels, it it uses a naïve quadratic-
time algorithm.

1. Let Y be the array output by stage 1, which contains
all N entries to be inserted into the ORAM tree, and
each entry stores its own randomly chosen position
identifier.

2. For `= log2 N, . . . , 1
3 · log2 N:

• scan Y and mark each (real) entry’s destination
as the bucket in level ` of the ORAM tree that it
can reside in;

• TreeLevel[`],Y← BinPlace(Y) where BinPlace
is parametrized with the bin size Z = 4, and the
total number of bins m = 2`;

• truncate Y and preserve only the first half.

3. For each level ` = 1
3 · log2 N − 1, . . . ,0, for each

bucket in level `, for each slot in the bucket:

linearly scan through Y and and fill the slot with
an entry that can reside in the bucket, replace the
chosen entry with a filler in Y.

4. Change the tree’s layout from level-by-level layout to
the locality-friendly layout described in Section 4.1.

The above stage 2 algorithm incurs O(N
B log M

B

N
B) page

swaps and O(N logN) computation. We defer its correctness
and performance analysis to Appendix B.2. In particular,
among other things, Appendix B.2 will show why truncat-
ing Y does not cause any elements to be dropped. Observe
also that because we always truncate Y by half, the algorithm
does not reveal how many elements go into each level of the
ORAM tree.

Remark 4.1. Oblix’s initialization algorithm [2] is similar
to our warmup algorithm. They used vanilla bitonic sort that
is not optimized for the number of page swaps, and their
paper states their algorithm’s computation overhead to be
O(N log3 N). Oblix also did not evaluate their initialization
algorithm.

10

4.2.3 Improved Algorithm for Stage 2

In Appendix B.3, we describe how to employ techniques
from Ramachandran and Shi [16] in a non-blackbox manner
to simplify the algorithm (in a practical implementation) and
improve its concrete performance by a constant factor.

4.3 Deferred Contents

In the interest of space, we defer the following contents to the
appendices:

• Multi-level caching. ENIGMAP employs a multi-level
caching scheme to optimize concrete performance. We
present the multi-level caching scheme in Appendix C.1.
In particular, it is important to ensure that the caching
does not harm privacy.

• Ensuring strong obliviousness. To resist cache-timing
attacks, we took extra care to achieve strong oblivious-
ness (also called double obliviousness). We want that
not only are the page-level access patterns revealed to
the OS oblivious, but also the memory accesses within
the enclave. For the latter, we want to ensure both data-
trace obliviousness and instruction-trace obliviousness.
Appendix C.2 discusses how we achieve strong oblivi-
ousness.

• Practical optimizations. We discuss several practical
optimizations in Appendices C.3 and C.4.

• Achieving integrity and freshness. To achieve integrity,
we use a special Merkle tree that is overlapped on top
of the ORAM tree. Our technique is inspired by several
prior works [28, 66, 67]. Our experiments show that the
additional overhead for achieving integrity and freshness
is only 1-2% — see Appendix C.5 for a more detailed
description.

5 Implementation and Experimental Results

Implementation. We implemented our oblivious multimap
as an extensible library enigmap_lib that can easily
be integrated with any enclave framework. The library
enigmap_lib consists of 5000 lines of C++ code (3500 lines
of code, 1500 lines of tests). In our experiments, we integrated
our library enigmap_lib with the Intel SGX SDK — inte-
gration takes less than 100 lines of C++ code plus 10 lines of
EDL definitions.

Open source. Our code has been open sourced and is pub-
licly available at https://github.com/odslib/EnigMap.

5.1 Experimental Setup and Baselines
We compare ENIGMAP with the following baselines:

• Signal’s private contact discovery. We downloaded Sig-
nal’s private contact discovery implementation [68], which
uses (batched) linear scans to answer queries.

• Oblix. Oblix’s code is not open source, but we were able
to obtain a copy of their code from the authors of Oblix [2].
We were not able to compile their code though, since their
code is compatible with only certain versions of Rust
packages. We could not find any information regarding
which version to use.

Fortunately, we are still able to compare with Oblix de-
spite not being able to compile their code. In the Oblix
paper, they reported the speedup/slowdown of Oblix over
Signal’s implementation running on the same machine
(i.e., their machine). By comparing our relative speedup
with their relative speedup both over Signal’s implemen-
tation, we are also able to compare with Oblix.

Besides Oblix [2], other implementations of oblivious mul-
timaps exist, e.g., ObliDB [3]. However, as acknowledged in
the ObliDB paper [3], their oblivious multimap performance
is not as good as the Oblix implementation since ObliDB
is geared towards general database queries. Therefore, we
conclude that Oblix and Signal’s implementation are the state-
of-the-art baselines of comparison.

We ran two sets of experiments for ENIGMAP and Signal’s
implementations, for SGXv1 and SGXv2, respectively. The
SGXv1 machine has an intel Xeon E2200 processor, and
the SGXv2 machine has an unspecifed Intel Ice Lake Xeon
processor (Azure DC32ds_v3). For the SGXv2 machine, the
maximum EPC size allowed is 192GB.

5.2 Experimental Results
Comparison with Signal’s linear-scan implementation.
Figure 3 (for SGXv1) and Figure 4 (for SGXv2) compare
ENIGMAP’s search performance against Signal. Signal can
support a batch of queries through through a single linear scan
of the database. To support a batch of β queries, their algo-
rithm incurs O(β2 +N) computation [2] and O(N/B) page
swaps. In our ENIGMAP implementation, we process the re-
quests in the batch one by one. In all of our results below, the
query times for batches are the total time for the entire batch
(not averaged over the batch size). In practice, the actual batch
size depends on the rate of the requests. Signal’s open source
code uses a maximum batch size of 8192, and their tests use
batch sizes of 1, and powers of 2 starting at 256 and ending
at 8192.

Signal’s number of monthly active users increased from
20 million at the end of 2020, to 40 million in 2021 (see also
Figure 13 in the appendices). In Signal’s blog post [4], they
stated that they want to support billion-sized databases.

11

https://github.com/odslib/EnigMap

Figure 3: Comparison of ENIGMAP and Signal on
SGXv1. Enclave memory size is 128MB, RAM size is 16GB.
The vertical lines mark when ENIGMAP and Signal start to

incur RAM swap and disk swap respectively. The largest
database in this plot is 1TB.

Figure 4: Comparison of ENIGMAP and Signal on
SGXv2. Enclave memory size is 192GB, RAM size is

256GB. The vertical lines mark when ENIGMAP and Signal
start to incur RAM and disk swaps, respectively. The largest

database in the plot is 2TB.

At a database size of 228 entries (i.e., 256 million), our
experiements on SGXv1 show a speedup of 15000×, 1500×,
150×, 15× at a batch size of 1, 10, 100, 1000, respectively.
At a batch size of 1, 100, and 1000, ENIGMAP starts to out-
perform Signal at a database size of 214, 222, and 225, re-
spectively. For our SGXv2 experiments, we used even larger
databases up to 232 entries (i.e., 2TB). At a database size
of 232 entries, our SGXv2 experiements show a speedup of
130000×,13000×,1300×,130×, at a batch size of 1, 10, 100,
1000, respectively.

Although the prior work Oblix [2] considered batch sizes
of 1, 10, 100, 1000 in their evaluation, we observe that Sig-
nal’s implementation actually supports a maximum batch size
of β = 8192. Even at β = 8192, our experiments show that
ENIGMAP starts to outperform Signal when the database size
is more than 512 million entries.

Comparison with Oblix. The Oblix paper [2] reported a
slowdown of 12× and 3.5× relative to Signal at a batch size

Figure 5: Cost breakdown and the effects of several
optimizations for N = 224. In this case, there is only RAM

swap but no disk swap.

Figure 6: Cost breakdown and the effects of several
optimizations for N = 228. In this case, there are both RAM

and disk swaps.

of 1000, and for a database size of 226 and 228 entries, re-
spectively. In comparison, at the same batch size, ENIGMAP
achieves a speedup of 2× and 15× and for a database of size
226 and 228 entries, respectively. This shows that our speedup
over Oblix is 24× and 53× at a database size of 226 and
228 entries, respectively. For this set of experiments, we ran
ENIGMAP and Signal on SGXv1, to match the experimental
platform of Oblix.

Cost breakdown. Figure 5 and Figure 6 show the break-
down of our costs into three categories: 1) computational
overhead, 2) the cost of page swaps (including encryption/de-
cryption and OCall overhead); and 3) disk I/O. In Figure 5,
everything fits in RAM whereas in Figure 6, the database does
not entirely fit in RAM, so disk swaps are needed on some
page swaps.

In both figures, the rightmost bar is with all of our optimiza-
tions turned on, whereas the leftmost bar named “Base” is
without any optimization. The y-axis plots the relative slow-
down over the rightmost bar. From the leftmost bar to the

12

Figure 7: Initialization cost of ENIGMAP

Figure 8: ENIGMAP: cost of different operations

rightmost bar, we turn on the following optimizations one by
one, which shows the effect of these optimizations: 1) locality-
friendly layout; 2) page-level caching; and 3) bucket-level
caching. The figure confirms that absent our optimizations,
the majority of the overhead comes from the page swap and
disk I/O overhead. These optimizations together significantly
reduce the page swap and disk I/O overhead, such that the
total performance is improved by a 2 to 5.1 factor.3

An interesting observation is that without the optimizations,
page swap cost (ocall, encryption, decryption, and possibly
disk IO) occupies 80% to 90% of the total cost. However,
with all of our optimizations turned on, page swap cost now
occupies only 50% to 60% of the total cost.

For the case without disk swap, Figure 5 also indirectly
shows that even our unoptimized base performance is roughly
2.5× faster than Oblix, since for a 224-sized database, our
final construction outperforms Oblix by 13×. This is because
even without the optimizations and the locality-friendly lay-
out, the computation overhead of our algorithm is asymptoti-
cally better than Oblix’s implementation (see Table 1).

3The computation in the base version looks slightly less than the rest, and
this is due to side effects of running the profiler.

Figure 9: ENIGMAP: Effect of page size.

Effect of different page sizes. Figure 9 shows the effect
of different page sizes. In this experiment, the enclave mem-
ory size is set to 4GB and the RAM size is set to 16GB. In
our scheme, the number of page swaps per query is d dlog2 Ne

dlog2 Be e
(where B is the page size measured in terms of how many en-
tries fit in a single page). Let cB be the cost of swapping a page
of size B. Roughly speaking, the total cost associated with
page swaps is minimized when cB · d dlog2 Ne

dlog2 Be e is minimized.
Our experiments show that absent disk swaps, a page size of
3992 bytes achieves the optimal concrete performance. On
the Azure machine we use, the disk adopts an inherent block
size of 4KB. Therefore, in all our experiments, we chose a
page size of 3992bytes when there is no disk swap, and this
size gets padded to 4KB when the page gets swapped to disk.
In the remaining experiments in this section, we always stick
to a page size of 3992 bytes.

Initialization cost. Figure 7 shows initialization cost of
ENIGMAP in comparion with the following two baselines:

1. Using ENIGMAP’s insertion algorithm to insert the entries
one by one (called “naïve" in the figure); and

2. Oblix’s initialization algorithm (we implemented their
initialization algorithm for comparison).

At a database of size 226, our initialization algorithm is 8.7×
faster than our own naïve initialization algorithm (a reduction
from 80.31 hours to 9.5 hours), and even our naïve algorithm
performs 2.1× faster than Oblix’s algorithm. At a database
size of roughly 32 million, Oblix’s initialization algorithm
starts to perform even worse than our naïve initialization —
this is the moment when the database does not fit in enclave
memory, and Oblix’s initialization algorithm is not efficient
in terms of page swaps.

Cost for different operations. Figure 8 shows the cost for
different operations w.r.t. the database size. As we can see,

13

insertion is about 1.5× to 2× more expensive than search,
and deletion is 5× more expensive than insertion. This is be-
cause insertion needs to perform rebalancing in one node, and
deletion needs to perform more rebalancing than insertion.

Comparison with Signal’s concurrent work. In Ap-
pendix D, we additionally compare with Signal’s new private
contact discovery [24], which is concurrent and independent
to our work.

Acknowledgments
This work is in part supported by a DARPA SIEVE grant, a
Packard Fellowship, NSF awards under the grant numbers
2128519 and 2044679, and a grant from ONR under the award
number N000142212064.

References

[1] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hu-
bert Chan, Elaine Shi, Emil Stefanov, and Yan Huang.
Oblivious Data Structures. In CCS, 2014.

[2] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessan-
dro Chiesa, and Raluca Ada Popa. Oblix: An efficient
oblivious search index. In IEEE S & P, 2018.

[3] Saba Eskandarian and Matei Zaharia. Oblidb: Oblivious
query processing for secure databases. VLDB, 2019.

[4] Technology preview: Private contact discov-
ery for signal. https://signal.org/blog/

private-contact-discovery/, 2017.

[5] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and
Mingfei Li. Oblivious RAM with O((logN)3) worst-
case cost. In ASIACRYPT, 2011.

[6] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path oram: An extremely simple oblivious ram protocol.
In CCS, 2013.

[7] Xiao Shaun Wang, T-H. Hubert Chan, and Elaine
Shi. Circuit ORAM: On Tightness of the Goldreich-
Ostrovsky Lower Bound. In CCS, 2015.

[8] Oded Goldreich and Rafail Ostrovsky. Software pro-
tection and simulation on oblivious RAMs. J. ACM,
1996.

[9] O. Goldreich. Towards a theory of software protection
and simulation by oblivious RAMs. In STOC, 1987.

[10] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang
Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. Scalable
memory protection in the PENGLAI enclave. In OSDI,
2021.

[11] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
ACM CCS, 2009.

[12] John Demme, Robert Martin, Adam Waksman, and
Simha Sethumadhavan. Side-channel vulnerability fac-
tor: A metric for measuring information leakage. In
ISCA, 2012.

[13] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-tenant side-channel attacks
in paas clouds. In CCS, 2014.

[14] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-VM side channels and their
use to extract private keys. In ACM CCS, 2012.

[15] T-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine
Shi. Cache-oblivious and data-oblivious sorting and
applications. In SODA, 2018.

[16] Vijaya Ramachandran and Elaine Shi. Data oblivious
algorithms for multicores. In SPAA, 2021.

[17] Xiao Shaun Wang, Yan Huang, T-H. Hubert Chan, Abhi
Shelat, and Elaine Shi. Scoram: Oblivious ram for se-
cure computation. In ACM CCS, 2014.

[18] Alok Aggarwal and S. Vitter, Jeffrey. The Input/Output
Complexity of Sorting and Related Problems. Commun.
ACM, 31(9):1116–1127, September 1988.

[19] Erik D. Demaine. Cache-oblivious algorithms and data
structures. In Lecture Notes from the EEF Summer
School on Massive Data Sets. 2002.

[20] Michael A. Bender, Erik D. Demaine, and Martin
Farach-Colton. Cache-oblivious b-trees. SIAM J. Com-
put., 35(2):341–358, 2005.

[21] Harald Prokop. Cache-oblivious algorithms. Master
thesis, MIT, 1999.

[22] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan
Huang, and Elaine Shi. ObliVM: A programming frame-
work for secure computation. In IEEE S & P, 2015.

[23] Chang Liu, Michael Hicks, and Elaine Shi. Memory
trace oblivious program execution. CSF ’13, pages 51–
65, 2013.

[24] Technology deep dive: Building a faster oram
layer for enclaves. https://signal.org/blog/

building-faster-oram/, 2022.

[25] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Nat-
acha Crooks, and Raluca Ada Popa. Snoopy: Surpassing
the scalability bottleneck of oblivious storage. In SOSP,
2021.

14

https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/building-faster-oram/
https://signal.org/blog/building-faster-oram/

[26] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar
Harel, Rachit Agarwal, and Lorenzo Alvisi. Obladi:
Oblivious serializable transactions in the cloud. In OSDI,
2018.

[27] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil
Stefanov, Elaine Shi, Marten van Dijk, and Srinivas De-
vadas. Constants count: Practical improvements to obliv-
ious RAM. In USENIX Security, 2015.

[28] Ling Ren, Xiangyao Yu, Christopher W. Fletcher,
Marten van Dijk, and Srinivas Devadas. Design space
exploration and optimization of path oblivious RAM in
secure processors. In ISCA, pages 571–582, 2013.

[29] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari,
Elaine Shi, Kriste Asanovic, John Kubiatowicz, and
Dawn Song. Phantom: Practical oblivious computation
in a secure processor. In ACM CCS, 2013.

[30] Chang Liu, Michael Hicks, Austin Harris, Mohit Tiwari,
Martin Maas, and Elaine Shi. Ghostrider: A hardware-
software system for memory trace oblivious computa-
tion. In ASPLOS, 2015.

[31] Sajin Sasy, Sergey Gorbunov, and Christopher W.
Fletcher. Zerotrace : Oblivious memory primitives from
intel SGX. In NDSS, 2018.

[32] Signal (software). https://en.wikipedia.org/

wiki/Signal_(software).

[33] Khushi Agrawal. Signal statistics: Usage, rev-
enue, & key facts. https://www.feedough.com/

signal-statistics-usage-revenue-key-facts/.

[34] Peter Williams and Radu Sion. Usable PIR. In NDSS,
2008.

[35] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs:
A parallel oblivious file system. In CCS, 2012.

[36] Michael T. Goodrich and Michael Mitzenmacher.
Privacy-preserving access of outsourced data via oblivi-
ous RAM simulation. In ICALP, 2011.

[37] Peter Williams, Radu Sion, and Bogdan Carbunar. Build-
ing castles out of mud: practical access pattern privacy
and correctness on untrusted storage. In CCS, 2008.

[38] Dan Boneh, David Mazieres, and Raluca Ada Popa. Re-
mote oblivious storage: Making oblivious RAM practi-
cal. Manuscript, 2011.

[39] Emil Stefanov, Elaine Shi, and Dawn Song. Towards
practical oblivious RAM. In NDSS, 2012.

[40] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi
Weinsberg, Nina Taft, and Elaine Shi. Graphsc: Parallel
secure computation made easy. In IEEE S&P, 2015.

[41] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon:
Closing digital side-channels through obfuscated execu-
tion. In USENIX Security, 2015.

[42] Pan Zhang, Chengyu Song, Heng Yin, Deqing Zou,
Elaine Shi, and Hai Jin. Klotski: Efficient obfuscated ex-
ecution against controlled-channel attacks. In ASPLOS,
2020.

[43] Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik
Ekberg, Benny Pinkas, and N. Asokan. The circle game:
Scalable private membership test using trusted hardware.
06 2016.

[44] Jacob R. Lorch, Bryan Parno, James Mickens, Mariana
Raykova, and Joshua Schiffman. Shroud: Ensuring pri-
vate access to Large-Scale data in the data center. In
FAST, 2013.

[45] Zhao Chang, Dong Xie, Feifei Li, Jeff M. Phillips, and
Rajeev Balasubramonian. Efficient oblivious query pro-
cessing for range and knn queries. IEEE TKDE, 2021.

[46] Lea Kissner and Dawn Xiaodong Song. Privacy-
preserving set operations. In CRYPTO, 2005.

[47] Yan Huang, Peter Chapman, and David Evans. Privacy-
preserving applications on smartphones. In HotSec,
2011.

[48] Daniel Kales, Christian Rechberger, Thomas Schneider,
Matthias Senker, and Christian Weinert. Mobile private
contact discovery at scale. In USENIX Security, 2019.

[49] Hao Chen, Kim Laine, and Peter Rindal. Fast private
set intersection from homomorphic encryption. In ACM
CCS, 2017.

[50] Daniel Demmler, Peter Rindal, Mike Rosulek, and
Ni Trieu. PIR-PSI: scaling private contact discovery.
Proc. Priv. Enhancing Technol., 2018.

[51] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Scalable private set intersection based on OT extension.
ACM Trans. Priv. Secur., 21(2):7:1–7:35, 2018.

[52] Carmit Hazay and Yehuda Lindell. Efficient protocols
for set intersection and pattern matching with security
against malicious and covert adversaries. In TCC, 2008.

[53] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. Commun. ACM, jun 2020.

[54] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

15

https://en.wikipedia.org/wiki/Signal_(software)
https://en.wikipedia.org/wiki/Signal_(software)
https://www.feedough.com/signal-statistics-usage-revenue-key-facts/
https://www.feedough.com/signal-statistics-usage-revenue-key-facts/

Foreshadow: Extracting the keys to the Intel SGX king-
dom with transient out-of-order execution. In USENIX
Security, 2018.

[55] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal hardware extensions for strong software
isolation. In USENIX Security, 2016.

[56] Thomas Bourgeat, Ilia A. Lebedev, Andrew Wright,
Sizhuo Zhang, Arvind, and Srinivas Devadas. MI6: se-
cure enclaves in a speculative out-of-order processor. In
MICRO, 2019.

[57] Danfeng Zhang, Yao Wang, G. Edward Suh, and An-
drew C. Myers. A hardware design language for timing-
sensitive information-flow security. In Özcan Özturk,
Kemal Ebcioglu, and Sandhya Dwarkadas, editors, AS-
PLOS, 2015.

[58] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. IACR Cryptol. ePrint Arch., page 86, 2016.

[59] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: SGX cache attacks
are practical. In WOOT 17, 2017.

[60] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache attacks on intel sgx. In EuroSec,
2017.

[61] Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana,
Valerio Schiavoni, Pascal Felber, and Daniel Hagimont.
Everything you should know about intel sgx perfor-
mance on virtualized systems. Proc. ACM Meas. Anal.
Comput. Syst., 3(1), mar 2019.

[62] Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song,
Danyang Zhuo, and Shumo Chu. Adore: Differentially
oblivious relational database operators. Proc. VLDB
Endow., 16(4):842–855, dec 2022.

[63] Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael
Pass, Ling Ren, and Elaine Shi. Locality-preserving
oblivious RAM. J. Cryptol., 35(2):6, 2022.

[64] Georgy Adelson-Velsky and Evgenii Landis. An algo-
rithm for the organization of information. In Proceed-
ings of the USSR Academy of Sciences, 1962.

[65] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms.
The MIT Press, 2001.

[66] Andrew Miller, Michael Hicks, Jonathan Katz, and
Elaine Shi. Authenticated data structures, generically.
In POPL, 2014.

[67] Ling Ren, Christopher W. Fletcher, Xiangyao Yu,
Marten van Dijk, and Srinivas Devadas. Integrity verifi-
cation for path oblivious-ram. In HPEC, 2013.

[68] Signal’s private contact discovery open-source im-
plementation. https://github.com/signalapp/

ContactDiscoveryService/.

[69] T.-H. Hubert Chan and Elaine Shi. Circuit OPRAM:
unifying statistically and computationally secure orams
and oprams. In TCC, 2017.

[70] Emil Stefanov, Marten van Dijk, Elaine Shi, T.-H. Hu-
bert Chan, Christopher W. Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path ORAM: an extremely
simple oblivious RAM protocol. J. ACM, 65(4):18:1–
18:26, 2018.

[71] Kenneth E. Batcher. Sorting networks and their applica-
tions. In AFIPS, 1968.

[72] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivi-
ous parallel ram. In TCC, 2015.

[73] T.-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine
Shi. Oblivious hashing revisited, and applications to
asymptotically efficient ORAM and OPRAM. In Asi-
acrypt, 2017.

Appendices

A Background: Non-Recursive Path ORAM

Path ORAM, proposed by Stefanov et al. [6], is an efficient
instantiation of the tree-based ORAM framework [5]. We
will actually use the Path ORAM data structure to realize an
oblivious AVL tree — to do this, we do not need the particular
recursion structure of Path ORAM [6] since we will override it
with the logical indexing structure of the AVL tree. Therefore,
below we introduce the background on the pre-recursion data
structure of Path ORAM.

Data structure. The primary data structure of Path ORAM
is a binary tree (henceforth called the ORAM tree) with N
leaves where N is the maximum number of elements in the
multimap. Each node in the tree is called a bucket. A bucket
can hold up to 4 entries, and an entry can either be real or a
filler. Filler entries do not store actual information, they are
just there for security. Jumping ahead, later in our oblivious
data structure application, each real entry will correspond to
a node in the logical AVL tree.

Additionally, there is also a stash whose size is super-
logarithmic in the security parameter for holding overflowing
entries. Henceforth, we simply assume that the stash is part
of the root node, i.e., the root node has somewhat larger size
than the remaining nodes in the ORAM tree.

16

https://github.com/signalapp/ContactDiscoveryService/
https://github.com/signalapp/ContactDiscoveryService/

Path invariant. Each entry is assigned to a random path
(i.e., from the root to some random leaf node) in the ORAM
tree. The entry can reside in any bucket along its designated
path. Henceforth, we use the term position identifier denoted
pos to refer to the path assigned to an entry. In particular, a
path can be fully identified by the leaf node that the path leads
to.

Operations on the ORAM tree. For the time being, we
make a simplifying assumption and assume that all entries in
the logical multimap have distinct keys. Later on in Section 3,
we shall discuss how to remove this assumption. We may
assume that each entry is of the form (k,data,pos), where k
denotes the key, data is a payload string, and pos is the posi-
tion identifier of the entry. The oblivious AVL tree application
requires a specific format for the data field which we shall
elaborate on in Section 3.

There are three types of operations on the ORAM tree:

• ReadRm(k,pos): Given a key k and a position identifier
pos, read the path identified by pos. If an entry with the
key k is found, remove the entry from the path and return
the fetched entry.

• Add(k,data,pos): Given a key k, some payload string
data, and a new position identifier pos, add the entry
(k,data,pos) to the root bucket.

• Evict(pos): Given a path identified by pos, perform an
eviction operation on the path (including the stash). An
eviction operation re-arranges the entries on the path such
that they are packed as close to the leaf level as possible,
while still respecting the path invariant.

If we want to read or write an entry identified by k in the
ORAM tree, we first need to find out its position identifier
pos — we will describe how to achieve this in an oblivious
AVL tree in Section 3. Once we know both k and pos, we
perform the following:

1. first call data← ReadRm(k,pos);

2. next call Add(k,data′,pos′) where data′ is the new data
to overwrite with or the same as the returned data if no
update is needed, and pos′ denotes a randomly selected
new path;

3. next call Evict(pos) where pos is the path which we have
just read from.

B Deferred Algorithmic Details

B.1 Support Key Multiplicity
To support key multiplicity, we need to following modifica-
tions to AVL-tree nodes: 1) Make the key of each AVL node

now be a triplet (original_key,value,uid) to ensure key
uniqueness where uid is a unique identifier (e.g., a monotonic
counter that counts the total number of insertions when the
entry is first inserted); and 2) add a counter field to each AVL
node that counts how many nodes with the same original_key
are on the left and right subtrees of that node. The former
modification makes sure that the new keys of all AVL tree
nodes are distinct. The latter modification makes it possible to
efficiently search for the i-th to the j-th occurrences of some
specified key; moreover, it allows us to efficiently support the
Size(k) operation. Using standard techniques, we can easily
modify the algorithm to always maintain correctness of the
counter fields during the insertion and rotation processes.

Recall that in our multimap definition earlier in Section 2.4,
we require that entries with the same key be sorted by their
value field. In many practical applications, we need not sort
entries with the same key by their values. For example, it
may also be ok to sort entries of the same key by the time
of insertion. In this case, we can make the new key simply
(original_key,uid). In this way, we can store the value
field in a separate data ORAM as an optimization when the
value field is large in size (see Appendix C.4).

B.2 Warmup Initialization Algorithm (Stage
2)

In this section, we give more details on the warmup stage 2
algorithm for initializing the data structure.

Preliminary: oblivious bin placement. Oblivious bin
placement [69] solves the following problem. Suppose we
are given an input array of length n containing real and filler
elements.4 Each real element in the input array wants to go to
some destination bin among a total of m destination bins, and
each destination bin has a maximum capacity of Z. We want
to output the following two arrays:

• a result array of length m ·Z representing the concatenation
of all destination bins, where each bin is packed with as
many elements destined for it as possible, subject to a
maximum capacity of Z. Moreover, any unfilled slots in a
destination bin is padded with fillers; and

• a remainder array of length n, which contains the elements
that cannot fit into its destined bin, padded with fillers at
the end to a length of n.

Chan and Shi [69] showed that the above task can be accom-
plished with O(1) number of oblivious sorts and linear scans
through arrays of length at most O(n+m ·Z) (see Appendix A
of their paper). Therefore, the algorithm costs O(N

B log M
B

N
B)

number of page swaps and O(N logN) computation, if we
use an external-memory oblivious sorting algorithm such as

4We often use n to denote the size of a problem instance, where N repre-
sents the size of the database globally.

17

the one by Ramachandran and Shi [16]. In practice, we use
bitonic sort rather than AKS to sort the poly-logarithmically
sized instances and there is an extra log logN factor in the
computation.

Correctness. For the warmup stage 2 algorithm to be cor-
rect, we need to argue that except with negligibly small prob-
ability, it must be that in Step 2, every level `= log2 N, . . . , 1

3 ·
log2 N can successfully pack at least half of the remaining
(real) entries. If so, then the truncation of the remainder array
Y does not drop any real element. To see this, observe that if
we throw n balls into n bins, the expected number of empty
bins is n/e for large n. Due to Azuma’s inequality, the prob-
ability that the number of empty bins exceeds n/2 is upper
bounded by exp(−Ω(n)). Observe also that the number of
elements that cannot be packed into the buckets in the current
tree level is upper bounded by the number of empty bins.

Performance bounds. In Step 2, each level ` costs
O(n

B log M
B

n
B) page swaps and O(n logn) computation where

n = 2`. Step 3 costs O(n1/3 ·n1/3/B) = O(n2/3

B) page swaps
and O(n2/3) computation.

It remains to analyze the performance bound for Step 4. Ob-
serve that we can have L = blog2 Bc outstanding readers that
scan through L levels of the tree, and have a writer that cre-
ates the pages (represented by the triangles in Figure 2a) for
these L levels along the way. As long as the enclave’s resident
memory M can fit at least L+1 pages, i.e., M≥ c ·B log2 B for
some suitable constant c, then, Step 4 can be accomplished
with O(N/B) page swaps and O(N) computation.

In summary, the entire stage 2 of the algorithm incurs
O(N

B log M
B

N
B) page swaps and O(N logN) computation.

B.3 Improved Initialization Algorithm (Stage
2)

We describe how to employ techniques from Ramachandran
and Shi [16] in a non-blackbox manner to simplify the algo-
rithm (in a practical implementation) and improve its concrete
performance by a constant factor.

In stage 2, roughly speaking, we want to sort elements into
the tree nodes they are destined for. Our key observation is
that the elements’ destinations are randomly chosen.

Building block: oblivious random bin assignment. We
will leverage the oblivious random bin assignment (ORBA)
algorithm which is a building block in Ramachandran and
Shi’s oblivious sorting algorithm [16]. Fix Z = ω(logN) to be
any super-logarithmic function in N. Suppose we have n/Z
bins each of capacity 2Z. Given an input array with a total of n
real or filler elements, suppose that each real element chooses
a random bin as a destination. An ORBA algorithm allows us

to route the real elements into their destination bins without
revealing their destinations. If a bin receives fewer than 2Z
elements, it will be padded with fillers to a capacity of 2Z.
The probability that any destination bin receives more than
2Z elements is negligibly small in N as long as Z = ω(logN).

Improved algorithm for stage 2. We assume that the en-
clave’s memory size M = ω(logN), commonly referred to as
the “tall-cache” assumption and also true in practice.

1. Let Z = M/C for a sufficiently large constant C > 1, and let
`∗ be a level in the tree with N/Z nodes, and let T1, . . . ,TN/Z
be the subtrees with roots in level `∗.

Imagine that each subtree is associated a super-bin of ca-
pacity 2Z, and each element’s position identifier determines
which super-bin it wants to go to. Use ORBA to route all
real entries into their destined super-bins.

2. For i = 1 to N/Z, do the following. Fetch the i-th super-bin
into the enclave. We know that this super-bin should be
packed into subtree Ti, and some elements may be leftover
afterwards. We can accomplish this packing through in-
voking an oblivious bin placement algorithm at each layer
(unlike the earlier stage 2 algorithm, we do not truncate
the remainder array at each layer). Since the entire subtree
and the super-bin fits within the enclave’s memory, we can
compute the subtree Ti and the leftover elements within the
enclave.

Let R1, . . . ,RN/Z be the leftover arrays at the end of this
step, one for each subtree. Fix any Z′ ≤ Z that is an arbi-
trarily small superlogarithnmic function in N, each array is
guaranteed to have size at most Z′ except with negligible
in N probability. We can make sure that R1, . . . ,RN/Z are
stored in a contiguous region in external memory.

3. Now, for layer j = `∗− 1 down to the root level, we will
compute layer j of the tree in the following manner:

• Let k be the number of tree nodes in the current layer,
this also means that we start with exactly 2k leftover
arrays. Group the leftover arrays into k pairs such that
each array is paired with its neighbor.
• The analysis in Stefanov et al. [6, 70] implies that the

total number of real elements in each pair is upper
bounded by Z′ except with negligible probability — see
Lemma 5 of their Section 5.6 [6]. We now merge each
pair and sort all the real elements to the front in the
merged array. We truncate each merged array from the
end to a size of Z′.
• Let R1, . . . ,Rk be the k merged arrays. The buckets in the

current tree level are defined as R1[1 : 4], . . . ,Rk[1 : 4].
• Replace the first four elements of each R1, . . . ,Rk with

fillers, and the resulting arrays are the new leftover ar-
rays to be input to the next iteration. If this is the root
level, the singleton leftover array is the stash.

18

4. Finally, use the same approach as the earlier stage 2 algo-
rithm to transform all levels j from `∗ down to the root to a
locality-friendly layout.

Performance bounds. Ramachandran and Shi [16] suggest
an ORBA algorithm that achieves O(N

B log M
B

N
B) page swaps

and O(N logN) computation. Step 1 takes only one ORBA
invocation on O(N) elements. Step 2 can be accomplished
with O(N/B) page swaps and O(N(log logN)3) computation
if we use bitonic sort to realize the oblivious bin placement.
In Step 3, for a level of the tree with k nodes, we consume
O(k · (log logN)2) computation and O(kZ′/B) page swaps.
Since even for the largest level, k = N/Z, the total number of
page swaps is at most O(N/B). Step 4 takes at most O(N/B)
page swaps and O(N) computation due to the same analysis
as before.

Summarizing all steps, the total page swaps is O(N
B log M

B

N
B)

and the total computation is O(N logN). We note that when
we instantiate Ramachandran and Shi’s ORBA algorithm, if
we use bitonic sort to sort poly-logarithmically sized arrays,
then there will be an extra log logN factor in the computation
overhead, but the number of page swaps is unaffected.

C ENIGMAP: Architecture and Practical Op-
timizations

C.1 Secure Multi-Level Caching
C.1.1 Caches for Physical Storage

ENIGMAP leverages multi-level caching for optimization.

• Page-level cache outside the enclave. Outside the secure
enclave, we implement a page-level LRU cache that stores
the most recently used, software-encrypted memory pages,
to reduce the disk I/O.

• Bucket-level cache inside the enclave. Inside the enclave,
we implement a bucket-level LRU cache that stores the
most recently used buckets (of the ORAM tree) to reduce
the number of page swaps in and out of the enclave.

Both of these caches are caching physical accesses — since
physical accesses are already made secure by our oblivious
algorithms, the caches here do not leak any information.

Observe that an LRU cache is a simple method for approx-
imating a “tree-top” cache. Since every access to the ORAM
tree always accesses the root bucket, and will more likely
access buckets near the root, earlier works in this space have
suggested the idea of tree-top caching [27,29,30], i.e., caching
a small number of levels near the root.

C.1.2 AVL-Level Cache

Observe that to insert an element into the AVL tree, we first
access a path in the AVL tree to find where to insert. We

then access exactly the same path to perform rebalancing.
Recall that accessing each node in the AVL tree translates to
accessing a path in the ORAM data structure; thus accessing a
path in the AVL tree translates to accessing O(logN) paths in
the ORAM tree. Now, since the second pass touches exactly
the same AVL tree nodes as the first pass, we would like to
save these nodes in a cache such that during the second pass,
we need not get them again from the ORAM data structure.

The most naïve approach is to cache all O(logN) ORAM
tree paths during the first pass. During the second pass, we
need not make additional accesses to the ORAM data struc-
ture. After the second pass, we make O(logN) evictions al-
together — roughly speaking, this is the approach taken by
Oblix [2]. The drawback is that we will need a O(log2 N)-
sized cache, which is costly in terms of enclave memory.
Recall that the enclave has limited resident memory, thus the
AVL-level cache is competing with other caches such as the
bucket-level cache mentioned earlier.

Our approach: sticky entries. We use a different approach
called sticky entries. During the first pass, we fetch O(logN)
ORAM-tree paths. Each time we fetch an ORAM-tree path,
1. We mark the entry of interest (i.e., the entry that stores

the AVL-tree node that we care about) as “sticky” in the
ORAM’s stash;

2. We then perform eviction on the read path, however, sticky
entries are pinned on the stash and will not get evicted.

Now, during the second pass, we simply fetch all the AVL-
tree nodes needed directly from the stash without having to
make any access request to the ORAM data structure. More
concretely, we make a linear scan over the stash for every
AVL-tree node needed during the second pass.5 At this mo-
ment, we also remove the sticky marks from the relevant
entries in the stash so they can get evicted in the future.

Thus, using sticky entries, we effectively implemented an
AVL-tree level cache. Below, we argue the following: i) the
ORAM’s stash size will be upper bounded by O(logN +R)
with probability 1− exp(−Ω(R)), a significant improvement
over the O(log2 N)-sized cache of the earlier naïve approach;
and ii) our “sticky entries” cache does not affect security.

Batched eviction and stash size bound. Using this ap-
proach, essentially, each time we add k = O(logN) elements
to the stash, we perform the same number of evictions. This
approach is equivalent to “batched evictions” in earlier works
on Oblivious Parallel RAM [69] — however earlier works
used batched evictions for a different purpose than us. Fur-
thermore, earlier works [69] showed a stochastic domination

5One optimization here is to obliviously sort the stash after the first
pass, and move all the sticky entries to the front. This way, we only need
to scan through the first 1.44log2 N entries of the stash to find each sticky
entry — this optimization, however, does not matter too much to the concrete
performance since most of the computation overhead comes from the ORAM-
tree’s eviction algorithm.

19

result: the number of blocks in heights log2(2k) or smaller of
the ORAM tree are stochastically dominated by non-batched
eviction — this stochastic domination result holds also for
Path ORAM. Thus, we can reuse the same stochastic analysis
as Path ORAM [6], and we conclude that the stash does not
exceed O(logN +R) except with exp(−Ω(R)) probability.

Security of sticky entries. Recall that earlier bucket-level
and page-level caches are caches for physical storage — in
this case security is automatically guaranteed by the oblivi-
ousness of the algorithm. By contrast, the sticky entries im-
plement a cache for the logical AVL-tree. It is not hard to
see that this optimization does not break security, since the
fact that the second pass of the AVL-tree’s Insert algorithm
touches the same path as the first pass is publicly known.

C.2 Ensuring Strong Obliviousness
Strong obliviousness [15, 16] (also called double oblivious-
ness [2]) requires that not only the page-level accesses are
hidden from the adversary, but also the memory accesses
within the enclave.

C.2.1 Definition of Strong Obliviousness

Let {op`}`∈[m] be a request sequence of length m where
each op` is of the form (Size,k), (Find,k, i, j), (Insert,k,v), or
(Delete,k,v). We say that two request sequences {op`}`∈[m]

and {op′`}`∈[m] are trace-equivalent, iff

1. they have the same length;

2. each op` and op′` have the same type of operation; and

3. if op` = (Find, i, j) and op′` = (Find, i′, j′) are both Find
operations, then it must be that j′− i′ = j− i.

Given some initial array I, let Accesses(I,{op`}`∈[m]) be
the access patterns observed when initializing the array with
Init(I) followed by executing the request sequence {op`}`∈[m].
Here the access patterns including the sequence of physi-
cal locations visited as well as whether each physical access
is a read or write operation. Moreover, the access patterns
include both the instruction fetches as well as the memory
requests made by the program. We say that a multi-map im-
plementation satisfies obliviousness, iff there exists a negli-
gible function negl(·), such that for any two input arrays I
and I′ of the same length, for any two trace-equivalent re-
quest sequences {op`}`∈[m] and {op′`}`∈[m], the random vari-
ables Accesses(I,{op`}`∈[m]) and Accesses(I′,{op′`}`∈[m])
have negl(λ) statistical distance, where λ is a security pa-
rameter, and we assume that the multi-map is invoked with
the security parameter λ.

To provably defend against cache-timing attacks, we want
the algorithm to have memory-trace obliviousness even within
the enclave. To achieve strong obliviousness, we make sure

that 1) the data accesses are oblivious even within the enclave;
and 2) the instruction traces are oblivious.

C.2.2 Data Obliviousness Within the Enclave

To ensure that the data trace is oblivious within the enclave,
we rely on 3 oblivious sorts on the path (including the stash) to
implement the Evict algorithm of Path ORAM. The algorithm
was described in the earlier work of Wang et al. [17] (see
Figure 2 in their paper), although they employ this idea for
a different setting: they want an ORAM suitable for secure
computation, and therefore they use the same idea to convert
the ORAM’s eviction algorithm to a circuit.

Combining the oblivious-sort-based eviction algorithm and
our locality-friendly ORAM tree layout, a ReadRm and an
Evict operation along an ORAM-tree path costs O(logB N)

number of page swaps and Õ(logN) computation, where Õ(·)
hides (log logN)2 factors (assuming that Bitonic sort [71] is
used as the oblivious sorting algorithm). For both metrics, we
achieve asymptotical improvement over Oblix [2]: Oblix’s
path read and eviction algorithm incurs O(logN) page swaps
and Ω(log2 N) computation. This is because they run a double
loop on the metadata of the path, and they do not use the
locality-friendly layout.

C.2.3 Instruction-Trace Obliviousness

We use standard techniques for ensuring instruction-trace
obliviousness [22, 23]. If there is a secret conditional (e.g.,
a if instruction with a condition that depends on a secret
variable), we must ensure that the two branches have the
same memory trace, including both the data trace and the
instruction trace — this also implies that the length of these
traces must also be identical for both branches. For example,
in the program below, we have an if statement conditioning
on a secret variable X .

1 if (X) { B = C; } ||| CMOV(X,B,C);

2 else { D = E; } ||| CMOV(!X,D,E);

To ensure that it is instruction-trace obliviousness, we im-
plement it as two CMOV instructions. A CMOV(X, U, V) in-
struction checks whether the bit X is set . If so, it assigns the
register V to the register U , and else it does nothing.

Function calls inside secret branches are a more complex
problem. We use the phantom function call idea from prior
work [22]. Specifically, we add an extra “phantom flag” to the
relevant function calls. If the phantom flag is set, the function
call would incur the same memory trace but effectively do
nothing and cause no side effect. Whenever convenient, we
simply hoist function calls outside secret ifs to avoid this
issue.

Example. As a concrete example, Figure 10 is Oblix [2]’s
code for searching the AVL tree. Their implementation is not
instruction-trace oblivious for several reasons:

20

1 fn find_helper(avl_key: &AVLKey<K> /.../) //...

2 {

3 let mut root_key = root_key.clone();

4 while let Some(r_key) = root_key {

5 let cur_node = self.ods_ref.borrow_mut().

access(Read(ActualOp, &r_key), server)? //

...

6 if cur_node.key() == avl_key {

7 return Ok(Some(cur_node));

8 } else if avl_key < cur_node.key() {

9 root_key = cur_node.left_key();

10 } else {

11 root_key = cur_node.right_key();

12 }

13 }

14 return Ok(None);

15 }

Figure 10: Oblix’s AVL tree search code violates
instruction-trace obliviousness.

1. Lines 7 and 8 check if the current key is what we are
searching for, and if so, immediately exit the while loop.
This leaks information about the structure of the AVL tree,
and thus breaks instruction-trace obliviousness.

2. Lines 7-14 are a secret if statement, however, different
branches incur different instruction traces.

In our implementation of the same algorithm, we always
make 1.44log2 N ORAM accesses regardless of when we
actually find the key. Further, we use the CMOV trick mentioned
earlier to ensure that the instruction traces are always identical
for all branches of secret ifs.

C.3 Optimizing the AVL-Tree Insertion Algo-
rithm

In the AVL-tree Insert algorithm, we rely on a new technique
that reduces the number of ORAM-tree accesses by a factor
of 2× to 3×.

In the earlier work of Wang et al. [1] as well as Oblix [2],
the AVL-tree insertion algorithm is implemented in a recur-
sive manner. Specifically, after first walking down a path and
finding a place to insert, the algorithm now makes a second
pass. It starts at the root, and compares the key to be inserted
with the current node. Depending on the comparison result,
it recursively calls the insertion algorithm on the left or right
subtree.

For example, Figure 11 is Oblix’s recursive implementa-
tion. The issue with this implementation is similar to that of
Figure 10, i.e., the implementation is not doubly oblivious.
Specifically, the big if-else statement in Lines 6-22 con-
ditions on a secret variable. However, depending on which
branch is taken, sometimes we perform a recursive call to
insert_helper and the balance operation, but sometimes

1 fn insert_helper(

2 node: AVLNode,

3 root_key: &Option<AVLKey>

4) -> AVLNode

5 {

6 if let &Some(ref r_key) = root_key {

7 let mut cur_node = self.ods_ref

8 .borrow_mut()

9 .access(Read(ActualOp, r_key), server)?

10 .expect("Node should be in the cache.")

;

11 if node.key() < cur_node.key() {

12 child = self.insert_helper(node, &

cur_node.left_key(), server)?;

13 cur_node.set_left_child(Some(child));

14 server.Write(ActualOp, cur_node);

15 self.balance(cur_node, server)

16 } else if (node.key() > cur_node.key())

{

17 // same as lines 15-18, but for right

subtree (...)

18 } else /*...*/

19 } else {

20 server.Write(ActualOp, node.clone());

21 self.root_size += 1;

22 Ok(node.into_child())

23 }

24 }

25

Figure 11: Oblix’s AVL tree insert code violates
instruction-trace obliviousness.

not. In other words, different branches exhibit different in-
struction traces. As a result, the total total number of recursive
calls also depends on the key that is being inserted.

To fix this problem, one can always make fake recursive
calls and balance operations as we walk down the path, even
when it is actually not needed. However, this would result in
a 2× to 3× blowup in computation (depending on whether
we adopt AVL-level caching tricks) since we will need to
access two additional sibling nodes for every node along the
path — indeed, the work of Wang et al. [1] incurs an extra
3× overhead for this reason.

We avoid this constant-factor blowup through the following
idea: during the first pass, we not only find where the insertion
point is, we also compute all the AVL-tree nodes that will
be involved in the rotation operation — there are at most 3
such nodes. At the end of the first pass, we can also compute
a rotation plan, including whether a rotation is needed, what
type of rotation it is, and the new parent-child relationships
of the nodes involved in the rotation. In the second pass, we
walk down the same path again. If the node is not involved in

21

the rotation, we make a fake update to its contents; otherwise
we make a real update based on the rotation plan we have
computed during the first pass. In both passes, we always
pad the length of the AVL-tree path to the worst case, i.e.,
1.44log2 N even if the actual length is shorter.

C.4 Data and Metadata ORAM Trees

Recall that our data structure stores key-value pairs. In some
applications, the value field can be large. For example, in
Signal’s application, the key corresponds to a user’s ID, and
the value field can store the user’s record, including email,
phone number, and location. In case that the value field is
large, we can rely on an idea from earlier works [1], and use
two separate ORAM trees: one metadata tree, and one data
tree. In the data ORAM tree, we store the value fields of all
entries. In the metadata ORAM tree, we store the AVL tree
nodes, and each entry is of the following modified format:

(ptr, lptr, rptr,vptr)

where ptr, lptr, and rptr are defined in the same way as Sec-
tion 3, and vptr stores the the position identifier of the value
field in the data ORAM tree. In this way, whenever we read
an AVL tree node (i.e., a metadata entry), we know exactly
which path to visit to retrieve its value field. Of course, at this
moment, the value field in the data ORAM tree will gain a
new position identifier, and the corresponding metadata en-
try is notified of this change. Note that this optimization is
applicable when we need not order entries of the same key
by the value field (see also the paragraph “supporting key
multiplicity” in Section 3). In Signal’s private contact discov-
ery application, the keys are distinct, so this optimization is
applicable.

C.5 Achieving Integrity and Freshness

In our implementation, we use AES-GCM mode to encrypt
and authenticate every block along with a nonce, which guar-
antees confidentiality and integrity of the page. There is a
simple modification of this that allows us to additionally get
freshness, that is, at the ORAM-tree level, we can store the
nonces of the two children in the parent, and the nonce of
the root is stored in the enclave’s cache. This can be viewed
as a “customized Merkle tree” specifically optimized for a
tree data structure. Our technique for getting freshness, i.e.,
overlapping the Merkle-tree structure with the ORAM tree, is
a slight modification of several earlier works [28, 66, 67]. The
difference is that we replaced their hash with MAC + nonces.

Our experiments show that the additional overhead of get-
ting freshness is only 1-2%.

Figure 12: Comparison of ENIGMAP (providing both query
and database privacy) and Signal’s concurrent work

(providing only query privacy but not database privacy)

Figure 13: Signal’s monthly active users [32]

D Comparison with Signal’s Concurrent
Work

As mentioned in Section 1.3, concurrent to our work, Signal
released a new design of private contact discovery in August
2022. Their new algorithm, henceforth denoted “Signal HT”,
uses Path ORAM to obliviously simulate a hash table. Their
algorithm guarantees only query privacy but not database pri-
vacy, so in this sense ENIGMAP provides stronger security
guarantees. We compare Signal HT with ENIGMAP in Fig-
ure 12. In this figure, for both ENIGMAP and Signal HT, the
enclave memory size is 192GB and the RAM size is 256GB.
Since Signal HT does not use batching like their previous im-
plementation, the batch size is 1 in this evaluation. In Signal
HT, the computation overhead of the algorithm is random-
ized — it depends on the maximum level of hash collisions
. Therefore, we compare with their average performance in
Figure 12. In summary ENIGMAP achieves 3x speedup over
Signal HT at a database size of 256 million, and mean-
while provides stronger security.

Note also that in Signal’s new design, they run several par-
allel instances of their Path-ORAM-based oblivious hash table
on multiple machines, using techniqiues similar to oblivious
parallel RAM [69,72] and Snoopy [25]. In our evaluation, we
are comparing with the performance of their single instance,
since ENIGMAP can also be used as a drop-in replacement of
a single instance in their parallel architecture.

22

E Additional Discussions

Upon receiving a batch of requests, Signal creates a hash table
for these requests using a strong oblivious algorithm. Due to
the need to be strong oblivious, their algorithm for initializing
the hash table takes O(β2) time [2]. A more efficient solution
is to employ the oblivious two-tier hash table suggested by
Chan et al. [73]. Although Chan et al. [73] pointed out that
such an oblivious hash table can only support non-recurrent
lookups, it is nonetheless safe to use it in Signal’s scenario,
even if the keys in the database may have multiplicity which
seemingly violates the non-recurrent property. This is because
in this particular scenario, the database itself is not private
and only the user’s queries are private.

Unfortunately, just improving the hash table initialization
will not help Signal too much, since from Figure 3, we can
see that after the database size exceeds roughly one million,
Signal’s overhead is strictly dominated by the linear scan
rather than the hash table initialization.

Supplemental figure. Figure 13 shows the rapid growth
of Signal’s active monthly users. Note that the number of
actively monthly users is a conservative lower bound on the
total number of registered users.

23

	Introduction
	Sub-Optimality of Prior Work
	Our Contributions
	Additional Related Work

	Problem Statement
	Threat Model
	Background on SGX
	Microbenchmarks and Motivation for External-Memory Algorithms
	Definition: Oblivious Multimap

	Background on Oblivious AVL Tree
	EnigMap Design
	Locality-Friendly ORAM Tree Layout
	Efficient Initialization Algorithm
	Algorithm for Stage 1
	Algorithm for Stage 2 (Warmup)
	Improved Algorithm for Stage 2

	Deferred Contents

	Implementation and Experimental Results
	Experimental Setup and Baselines
	Experimental Results

	Background: Non-Recursive Path ORAM
	Deferred Algorithmic Details
	Support Key Multiplicity
	Warmup Initialization Algorithm (Stage 2)
	Improved Initialization Algorithm (Stage 2)

	EnigMap: Architecture and Practical Optimizations
	Secure Multi-Level Caching
	Caches for Physical Storage
	AVL-Level Cache

	Ensuring Strong Obliviousness
	Definition of Strong Obliviousness
	Data Obliviousness Within the Enclave
	Instruction-Trace Obliviousness

	Optimizing the AVL-Tree Insertion Algorithm
	Data and Metadata ORAM Trees
	Achieving Integrity and Freshness

	Comparison with Signal's Concurrent Work
	Additional Discussions

