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Abstract. In ASIACRYPT 2016, Bellare, Fuchsbauer, and Scafuro stud-
ied the security of NIZK arguments under subverted Structured Refer-
ence String (SRS) and presented some positive and negative results. In
their best positive result, they showed that by defining an SRS as a tuple
of knowledge assumption in bilinear groups (e.g. ga, gb, gab), and then us-
ing a Non-Interactive (NI) zap to prove that either there is a witness for
the statement x or one knows the trapdoor of SRS (e.g. a or b), one can
build NIZK arguments that can achieve soundness and subversion zero-
knowledge (zero-knowledge without trusting a third party; Sub-ZK). In
this paper, we expand their idea and use NI zaps (of knowledge) to build
NIZK arguments (of knowledge) with updatable, universal, and succinct
SRS. To this end, we first show that their proposed sound and Sub-ZK
NIZK argument can also achieve updatable soundness, which is a more
desired notion than the plain soundness. Updatable soundness allows the
verifier to update the SRS one time and bypass the need for a trusted
third party. Then, we show that using a similar OR language, given a
NI zap (of knowledge) and a key-updatable signature scheme, one can
build NIZK arguments that can achieve Sub-ZK and updatable simula-
tion soundness (resp. updatable simulation extractability). The proposed
constructions are the first NIZK arguments that have updatable and suc-
cinct SRS, and do not require a random oracle. Our instantiations show
that in the resulting NIZK arguments the computational cost for the
parties to verify/update the SRS is negligible, namely, a few exponenti-
ations and pairing checks. The run times of the prover and verifier, as
well as the size of the proof, are asymptotically the same as those of the
underlying NI zap.

Keywords: Non-interactive Zaps, Non-interactive Zap of Knowledge,
NIZK, Subversion ZK, Updatable SRS Model, Simulation Extractability

1 Introduction

Let RL be an NP relation which defines the language L of all statements x
for which there exists a witness w s.t. (x,w) ∈ RL. A Non-Interactive Zero-
Knowledge (NIZK) argument [24, 10] for RL allows a party P (called prover),
knowing w, to non-interactively prove the truth of a statement x without leak-
ing extra information about the witness w. As the basic requirements, a NIZK
argument is expected to satisfy, (i) Completeness, guaranteeing that an honest



P will convince an honest V with probability 1. (ii) Soundness (SND), ensuring
that no malicious P can convince (honest) V of a false statement, except with
negligible probability. (iii) Zero-Knowledge (ZK), guaranteeing that the verifier
V learns nothing beyond the truth of statement x from the proof. In [18], Feige
and Shamir proposed (iv) Witness Indistinguishability (WI), as a relaxation of
ZK, which only guarantees that V cannot distinguish which witness was used by
the prover to generate the proof.

To achieve SND and ZK at the same time, NIZK arguments [10] rely on the
existence of a common reference string. The later and more efficient constructions
need a Structured Reference String (SRS) which is supposed to be generated by a
Trusted Third Party (TTP) and shared with P and V. Finding a TTP to generate
the SRS can be a serious concern in practical applications where parties mutually
distrust each other. In [17], Dwork and Naor presented a two-round proof system
for NP, so called zap, that does not require a TTP while achieves WI and SND. A
zap is a two-round protocol which starts by sending a message from V to the P,
and finishes by sending the proof from P to V. Later in [29], Groth, Ostrovsky and
Sahai presented a Non-Interactive (NI) zap under standard assumptions, where P
sends the proof in one round to V. In comparison with NIZK arguments, NI zaps
come with a weaker security guarantee, namely WI and SND, while they do not
need a trusted setup phase. Recently, in [20], Fuchsbauer and Orru showed that
under knowledge of exponent assumption [14, 7], the NI zap of Groth, Ostrovsky
and Sahai, can be extended to achieve WI and (v) Knowledge Soundness (KS),
which guarantees that no malicious P can convince (honest) V, unless he knows a
witness w for the statement x, s.t. (x,w) ∈ RL. Their construction is the first NI
Zap of Knowledge (NI-ZoK). Zaps and NI zaps for NP are shown to be extremely
useful in the design of various cryptographic primitives.

Subversion-Resistant and Updatable NIZK Arguments. In 2016, Bel-
lare, Fuchsbauer and Scafuro [7] studied achievable security in NIZK arguments
in the face of a subverted SRS. They first presented a stronger variation of
standard notions, so called Subversion-SND (Sub-SND), Subversion-WI (Sub-
WI), Subversion-ZK (Sub-ZK), that respectively imply SND, WI, ZK even if
the SRS is generated by an adversary A. For instance, (vi) Sub-ZK implies
that the NIZK argument guarantees ZK even if A sets up the SRS. Given the
new definitions, they presented some negative and positive results for building
subversion-resistant NIZK arguments. As the best positive result, they showed
that using an OR-based language one can use a NI zap (e.g. [29]) along with an
SRS (e.g. a tuple of a knowledge assumption in bilinear groups [14, 7], which can
be verified publicly) and build a NIZK argument that satisfies SND and Sub-ZK.
The resulting NIZK argument will have a universal and succinct SRS. A uni-
versal and succinct SRS allows one to prove knowledge of a witness for different
languages, and it additionally enables more efficient SRS verification to achieve
Sub-ZK. Two follow-up works [1, 19] studied achieving Sub-ZK in zero-knowledge
Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) [31, 9, 26]. In
Sub-ZK NIZK arguments (of knowledge), the prover does not need to trust
a third party, while the verifier still has to trust the SRS generator. In 2018,
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Groth et al. [27] introduced updatable SRS model that allows both P and V to
update a universal SRS and bypass the need for a TTP. Unlike a language-
dependent SRS, a universal SRS can be used for various languages. They de-
fined new notions (vii) Updatable KS, (U-KS), (viii) Updatable SND, (U-SND),
and (ix) Updatable ZK, (U-ZK), which each implies the standard notion, as long
as the initial SRS generation or one of (the follow up) SRS updates is done
by an honest party. Then, Groth et al. [27] presented the first zk-SNARK that
can achieve Sub-ZK and U-KS. In such zk-SNARKs, the prover verifies the final
SRS, and the verifier one-time updates the SRS and they avoid trusting a third
party. The follow-up works in this direction [13, 12, 33] are more efficient. In
2019, Baghery [4] showed that Sub-ZK and KS SNARKs can be lifted to achieve
Sub-ZK and (x) Simulation Extractability (SE) (a.k.a. Simulation Knowledge
Soundness), which implies an A cannot convince (honest) V, even if he has
seen polynomially many simulated proofs, unless he knows a witness w for the
statement x. Recent studies achieve Sub-ZK and SE in quasi-adaptive NIZK
arguments [3] and ad-hoc construction of zk-SNARKs [5]. A follow-up work [2]
showed that Sub-ZK and U-KS zk-SNARKs can be lifted to achieve Sub-ZK and
(xi) Updatable SE (U-SE) which ensures that the protocol satisfy SE as long as
the initial SRS generation or one of the SRS updates is done honestly. A re-
cent study [22], shows that some of the zk-SNARKs with updatable SRS, can
also achieve U-SE [30, 21, 13]. Tiramisu allows one to lift such constructions to
achieve black-box extractability [6], in the updatable SRS model.

Our Contribution. The core of our contribution is to show that the technique
used by Bellare et al. [7] for building a Sub-ZK and NIZK argument, can also be
expanded to build NIZK arguments with updatable SRS. Namely, one can use
NI zap (resp. NI-ZoK) arguments along with an OR language and build Sub-ZK
NIZK arguments (resp. of knowledge) with an updatable SRS, that can satisfy
U-X, where X ∈ {SND,KS,Simulation Soundness,SE}.

To this end, we first propose an SRS updating and an SRS verification al-
gorithms for the Sub-ZK and SND NIZK argument of Bellare et al. [7], and
then show that under the same assumptions used in the security proof of their
scheme, namely, the Diffie-Hellman Knowledge-of-Exponent (DH-KE) [7], the
Computational Diffie-Hellman (CDH), and the Decision Linear (DLin) [11] as-
sumptions, their scheme can also achieve U-SND. This results in the first NIZK
argument with updatable, universal, and succinct SRS that does not exploit a
random oracle. By instantiating Bellare et al.’s [7] construction with Fuchsbauer
and Orru’s NI-ZoK [20], our results lead to a universal and updatable NIZK
argument of knowledge that can satisfy Sub-ZK and U-KS.

After that, we generalize Bellare et al.’s idea and show that given a NI zap
argument (resp. NI-ZoK) and a key-updatable signature scheme [2], one can
define an OR language, namely,

((x,w) ∈ RL) ∪ (I know the sk associated with the signature’s updatable pk),

where (sk, pk) are a pair of secret and public keys, and build NIZK arguments
that can achieve Sub-ZK and Updatable Simulation Soundness, U-SS, (resp. U-
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SE). Our resulting Sub-ZK and U-SS NIZK arguments are the first constructions
that can achieve these notions. But, Abdolmaleki et al. [2] also built Sub-ZK
and U-SE zk-SNARKs using a similar OR language. However, as stated in [[2],
theorems 2, and 3], they require a NIZK argument that satisfies Sub-ZK and (U-
)KS, which are stronger security requirements than what a NI zap (or NI-ZoK)
achieves. In nutshell, we require weaker security guarantees from the input proof
system, but, on the other side, we obtain Sub-ZK and U-SE NIZK arguments
with succinct SRS and linear proofs.

Key Insights. Our key insights to generalize the OR-based technique of Bellare
et al. that uses NI zaps have been the following: First, since NI zap (or NI-ZoK)
arguments do not have an SRS, therefore once we define an OR-based language
based on them, the SRS of the resulting NIZK argument only contains the ele-
ments that are added from the second clause in the OR language. Consequently,
to simulate the proofs in the resulting NIZK argument, one uses the trapdoors
of the SRS that come from the second clause of the OR relation. The second key
point is that by using an updatable SRS in the second clause, one can construct
NIZK arguments with universal and updatable SRS. This allows us to build the
first NIZK arguments with succinct (constant group elements), updatable and
universal SRS. The third insight is that if the updatable SRS in the second clause
of the OR language be the public key of a (key-updatable) signature scheme [2],
then we can construct Sub-ZK NIZK arguments that can achieve U-SS or U-SE.

It is worth mentioning that we mainly used the NI zap of Groth, Ostrovsky
and Sahai [29], and the NI-ZoK of Fuchsbauer and Orru [20]. However, our
constructions and techniques can be instantiated and adapted with other NI
zaps, e.g. [32]. As we discuss later, in all the resulting NIZK arguments, to
bypass the need for a TTP, the computational cost for the prover/verifier is a
few numbers of exponentiation and pairing operations.

The rest of the paper is organized as follows; Sec. 2 presents necessary pre-
liminaries for the paper. In Sec. 3, we show that the Sub-ZK and SND NIZK
argument of Bellare, Fuchsbauer and Scafuro [7], can also achieve U-SND. In
Sec. 4, we show how one can build NIZK arguments with updatable, universal,
and succinct SRS using NI zaps and key-updatable signature schemes. Finally,
we conclude the paper in Sec. 5.

2 Preliminaries

Let λ be the security parameter and negl(λ) denotes a negligible function. We
use x ←$ X to denote x sampled uniformly according to the distribution X.
PPT stands for probabilistic polynomial-time. All adversaries are assumed to
be state-full. For an algorithm A, let im(A) be the image of A, i.e., the set of
valid outputs of A. Moreover, assume RND(A) denotes the random tape of A,
and r ←$ RND(A) denotes sampling of a randomizer r of sufficient length for
A’s needs. By y ← A(x; r) we mean given an input x and a randomizer r, A
outputs y. For algorithms A and ExtA, we write (y ∥ y′)← (A∥ExtA)(x; r) as a
shorthand for ”y ← A(x; r), y′ ← ExtA(x; r)”.
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In pairing-based groups, we use additive notation together with the bracket
notation, i.e., in group Gµ, [a]µ = a [1]µ, where [1]µ is a fixed generator of Gµ. A

bilinear group generator BGgen(1λ) returns (p,G1,G2,GT , ê, [1]1 , [1]2), where p
(a large prime) is the order of cyclic abelian groups G1, G2, and GT . Finally, ê :
G1 ×G2 → GT is an efficient non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) =
[ab]T . Denote [a]1 • [b]2 = ê([a]1 , [b]2).

We adopt the definition of NI zap and NI-ZoK arguments from [29, 20], and
the definition of standard, subversion-resistant and updatable NIZK arguments
from [26, 7, 1, 27, 2], and in few cases we define a natural extension of cur-
rent definitions that we achieve in our proposed schemes. Let R be a relation
generator, such that R(1λ) returns a polynomial-time decidable binary relation
R = {(x,w)}, where x is the statement and w is the corresponding witness. Let
LR = {x : ∃ w | (x,w) ∈ R} be an NP-language including all the statements
which there exist corresponding witnesses in relation R.

2.1 NI Zap and NI-ZoK Arguments

Definition 1 (NI Zap). A pair of PPT algorithms (P,V) is a non-interactive
zap (a.k.a. NIWI) for an NP relation R if it satisfies,

1. Completeness: For all (x,w) ∈ R, Pr[π ← P(R, x,w) : V(R, x, π) = 1] = 1.
2. Soundness: there exists a negligible function negl(λ), such that for every x ̸∈

LR and π ∈ {0, 1}⋆: Pr[V(R, x, π) = 1] ≤ negl(λ).
3. Witness Indistinguishable (WI): for any sequence I = {(x,w1,w2) : (x,w1) ∈

R ∧ (x,w2) ∈ R}:

{π1 ← P(R, x,w1) : π1}(x,w1,w2)∈I ≈c {π2 ← P(R, x,w2) : π2}(x,w1,w2)∈I .

NI-ZoK arguments are NI zaps that additionally satisfy KS, defined as bellow:

Definition 2 (Knowledge Soundness (KS)). A NI argument ΨNIZK is KS
for R, if for any PPT A, there exists a PPT ExtA s.t. for all λ,

Pr

[
R← R(1λ), srs← Ksrs(R), r ←$ RND(A), ((x, π) ∥w)← ...

...(A∥ExtA)(R, srs; r) : (x,w) ̸∈ R ∧ V(R, srs, x, π) = 1

]
= negl(λ),

2.2 NIZKs with Trusted, Subverted, and Updatable SRS

A NIZK argument ΨNIZK with updatable SRS for R consists of PPT algorithms
(Ksrs,SU,SV,P,V,Sim), such that:

– (srs0, Πsrs0) ← Ksrs(R): Given R, Ksrs sample the trapdoor ts and then use
it to generate srs0 along with Πsrs0 as a proof of its well-formedness.

– (srsi, Πsrsi) ← SU(R, srsi−1, {Πsrsj}i−1
j=0): SU return the pair of (srsi, Πsrsi),

where srsi is the updated SRS and Πsrsi is a proof for correct updating.
– (⊥/1)← SV(R, srsi, {Πsrsj}ij=0): Given a potentially updated srsi, and {Πsrsj}ij=0,

SV return either ⊥ (if srsi is incorrectly formed or updated) or 1.
– (π/⊥)← P(R, srsi, x,w): Given the tuple of (R, srsi, x,w), such that (x,w) ∈

R, P output an argument π. Otherwise, it returns ⊥.
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– (0/1)← V(R, srsi, x, π): Given (R, srsi, x, π), V verify the proof π and return
either 0 (reject) or 1 (accept).

– π ← Sim(R, srsi, tsi, x): Given (R, srsi, tsi, x), where tsi is the (simulation)
trapdoor of the updated SRS, namely srsi, Sim output a simulated π.

In the standard SRS model, a NIZK argument forR has a tuple of algorithms
(Ksrs,P,V,Sim) (and Ksrs does not return the Πsrs0), while subversion-resistant
constructions [7, 1] additionally have an SV algorithm which is used to verify the
well-formedness of the SRS elements to achieve Sub-ZK [7]. But as listed above,
in the updatable SRS model, a NIZK argument additionally has an SU algorithm
that allows the parties to update the SRS and add their own private shares to
the SRS generation. Note that in the latest case, the algorithms Ksrs,SU and SV
do not necessarily need R, and they just deduce 1λ and the length of the SRS
from it. In the standard case, ΨNIZK is expected to satisfy completeness, ZK and
soundness, while in the case of subverted setup, ΨNIZK is expected to achieve
Sub-WI, Sub-ZK and Sub-SND. Finally, in the updatable SRS model, ΨNIZK can
achieve updatable completeness, U-ZK, U-SND, U-SE, U-SS, and U-SE.

Next, we recall the security definitions of Sub-WI, Sub-ZK, U-SND, U-SS
and U-SE used or achieved by our presented constructions, and refer to App. A
for the definitions for NIZK arguments in the trusted SRS model.

Definition 3 (Sub-WI). A NI argument Ψ is Sub-WI for R, if for any PPT
Sub, for all λ, all R ∈ im(R(1λ)), and for any PPT A, one has ε0 ≈λ ε1, where

εb = Pr

[
r ←$ RND(Sub), (srs, ξSub)← Sub(R; r) :

AOb(·,·)(R, srs, ξSub) = 1

]
.

Here, ξSub is auxiliary information generated by subvertor Sub, and the oracle
Ob(x,wb) returns ⊥ (reject) if (x,wb) ̸∈ R, and otherwise it returns P(R, srs, x,wb).

Definition 4 (Sub-ZK). A NI argument Ψ is computationally Sub-ZK for R,
if for any PPT subvertor Sub there exists a PPT extractor ExtSub, s.t. for all λ,
all R ∈ im(R(1λ)), and for any PPT A, one has ε0 ≈λ ε1, where

εb = Pr

[
r ←$ RND(Sub), ((srs, Πsrs, ξSub) ∥ ts)← (Sub ∥ExtSub)(R; r) :

SV(R, srs, Πsrs) = 1 ∧ AOb(·,·)(R, srs, ts, ξSub) = 1

]
.

Here, ξSub is auxiliary information generated by subvertor Sub, and the oracle
O0(x,w) returns ⊥ (reject) if (x,w) ̸∈ R, and otherwise it returns P(R, srs, x,w).
Similarly, O1(x,w) returns ⊥ (reject) if (x,w) ̸∈ R, and otherwise it returns
Sim(R, srs, ts, x). Ψ is perfectly Sub-ZK for R if one requires that ε0 = ε1.

Definition 5 (U-SND). A NI argument ΨNIZK is updatable sound for R, if
for every PPT A, any PPT Sub, for all R ∈ im(R(1λ)), and for all λ,

Pr

[
(srs0, Πsrs0)← Ksrs(R), ({srsj , Πsrsj}ij=1, ξSub)← Sub(srs0, Πsrs0),

SV(srsi, {Πsrsj}ij=0) = 1, (x, π)← A(R, srsi, ξSub) : x ̸∈ L ∧ V(R, srsi, x, π) = 1

]
≈λ 0 .
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Here RND(A) = RND(Sub), and Πsrs is a proof for correctness of SRS gener-
ation or updating process. In the definition, ξSub can be seen as an auxiliary
information provided by Sub to A.

Definition 6 (U-SS). A NI argument ΨNIZK is updatable simulation soundness
for R, if for all R ∈ im(R(1λ)), for any PPT Sub, and every PPT A, for all λ,

Pr


((srs0, Πsrs0) ∥ ts0 := ts′0)← Ksrs(R), rs ←$ RND(Sub),

(({srsj , Πsrsj}ij=1, ξSub) ∥ {ts′j}ij=1)← (Sub ∥ExtSub)(srs0, Πsrs0 , rs),

SV(srsi, {Πsrsj}ij=0) = 1, (x, π)← AO(tsi,...)(R, srsi, ξSub) :

(x, π) ̸∈ Q ∧ x ̸∈ L ∧ V(R, srsi, x, π) = 1

 = negl(λ),

where Πsrs is a proof for correctness of SRS generation/updating, tsi is the simu-
lation trapdoor associated with the final SRS that can be computed using {ts′j}ij=0,
and Q is the set of simulated statement-proof pairs returned by O(.).

Definition 7 (U-SE). A NI argument ΨNIZK is updatable simulation-extractable
(with non-black-box extraction) for R, if for every PPT A and Sub, for all
R ∈ im(R(1λ)), the following probability is negl(λ),

Pr


((srs0, Πsrs0) ∥ ts0 := ts′0)← Ksrs(R), rs ←$ RND(Sub),

(({srsj , Πsrsj}ij=1, ξSub) ∥ {ts′j}ij=1)← (Sub ∥ExtSub)(srs0, Πsrs0 , rs),

SV(srsi, {Πsrsj}ij=0) = 1, rA ←$ RND(A), (x, π)← AO(tsi,...)(R, srsi, ξSub; rA),

w← ExtA(R, srsi,ExtSub, π) : (x, π) ̸∈ Q ∧ (x,w) ̸∈ R ∧ V(R, srsi, x, π) = 1

 ,

where ExtSub in a PPT extractor, Πsrs is a proof for correctness of SRS gener-
ation/updating, and tsi is the simulation trapdoor associated with the final SRS
that can be computed using {ts′j}ij=0. Here, RND(A) = RND(Sub) and Q is the
set of the statement and simulated proofs returned by O(.).

2.3 Assumptions

Definition 8 (Diffie-Hellman Knowledge of Exponent Assumption (DH-
KEA) [7]). We say that a bilinear group generator BGGen is DH-KE secure
for relation set R if for any λ, R ∈ im(R(1λ)), and PPT adversary A there
exists a PPT extractor ExtA, such that, the following probability is negl(λ),

Pr

[
(p,G,GT , ê, [1]1)← BGGen(1λ), r ←$ RND(A), ([k]1 , [l]1)← G, ([s]1 , [t]1 , [st]1
∥x, y)← (A∥ExtA)(R, [k]1 , [l]1 ; r) : [s]1 • [t]1 = [1]1 • [st]1 ∧ x ̸= s ∧ y ̸= t

]
.

Definition 9 (Computational Diffie-Hellman (CDH) Assumption). We
say that the decisional Diffie-Hellman assumption holds for a group generator
GGen if for any PPT adversary A the following probability is negl(λ),

Pr
[
(p,G, g)← GGen(1λ), x, y ← Zp, h← A(λ, gx, gy) : h = gxy

]
.
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Definition 10 (Decisional Linear (dLin) Assumption [11]). We say that
the decisional linear assumption holds for a group generator GGen if for any
PPT adversary A the following probability is negl(λ),

Pr

[
(p,G, g)← GGen(1λ), u, v, s, t, ξ ← Zp, b← {0, 1}
b′ ← A(1λ, gu, gv, gus, gvt, gs+t+bξ) : b = b′

]
.

Definition 11 (Bilinear Diffie-Hellman Knowledge of Exponent (BDH-
KE) Assumption [1]). We say BGgen is BDH-KE secure for relation set R if
for any λ, R ∈ im(R(1λ)), and PPT adversary A, there exists a PPT extractor
ExtA, such that, the following probability is negl(λ),

Pr

[
(p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ), r ←$ RND(A), ([α1]1 , [α2]2
∥ a)← (A∥ExtA)(R, r) : [α1]1 • [1]2 = [1]1 • [α2]2 ∧ a ̸= α1

]
.

2.4 Key Updatable, One-time, and Key Homomorphic Signatures

Some of our constructions exploit key-updatable signature schemes that allow
parties to update the secret and public keys and inject their shares into the keys.
We adopt their definition from [2], which we review next.

An updatable signature schemeΣ is a tupleΣ = (KG,Upk,Vpk,Sign,SigVerify)
of PPT algorithms, which are defined as follows.

– KG(1λ): Given 1λ, return a signing key sk and a verification key pk with
associated message spaceM.

– Upk(pki−1): Given a pki−1, output an updated verification key pki with the
associated secret updating key s̄ki, and a proof Πi.

– Vpk(pki, pki−1, Πi): Given a verification key pki−1, an updated verification
key pki, and the proof Πi, check if pki has been updated correctly.

– Sign(ski,m): Given ski and a message m ∈M, output a signature σi.
– SigVerify(pki,m, σi): Given a verification key pki, a message m ∈ M, and a

signature σi, output a bit b ∈ {0, 1}.

Definition 12 (Updatable Correctness). An updatable signature scheme Σ
is correct, if

Pr

(ski−1, pki−1, Πi−1)← KG(1λ), (s̄ki, pki, Πi)← Upk(pki−1),

Vpk(pki, pki−1, Πi) = 1 : SigVerify(pki−1,m,Sign(ski−1,m)) = 1

∧ SigVerify(pki,m,Sign(ski−1 + s̄ki,m)) = 1

 = 1 .

Definition 13 (Updatable EUF-CMA). A signature scheme Σ is updatable
EUF-CMA secure, if for all PPT subverter Sub, there exists a PPT extractor
ExtSub such that for all λ, and all PPT adversaries A

Pr


(ski−1, pki−1, Πi−1)← KG(1λ), wSub ←$ RND(Sub),

(pki, Πi, ξSub)← Sub(pki−1;wSub), s̄ki ← ExtSub(pki−1;wSub)

(m∗, σ∗)← ASign(ski−1+s̄ki,.)(pki, ξSub) : Vpk(pki, pki−1, Πi) = 1

∧ pki = pki−1 · µ(s̄ki) ∧ SigVerify(pk,m∗, σ∗) = 1 ∧m∗ /∈ QSign

 = negl(λ),
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where µ is an efficiently computable map from the secret key to the public key
space, and QSign is the list of queries and responses to the signing oracle.

We also require one-time signature schemes in our construction.

Definition 14 (Strong One-Time Signature Scheme). A strong one-time
signature scheme ΣOT is a signature scheme Σ which satisfies the following
unforgeability notion: for all PPT adversaries A

Pr

[
(sk, pk)← KG(1λ), (m∗, σ∗)← ASign(sk,.)(pk)

SigVerify(pk,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ QSign

]
= negl(λ),

where the oracle Sign(sk;m) := Σ.Sign(sk,m) can only be called once.

We now recall the notion of key-homomorphic signatures [16]. We assume
that the secret key space H and the public key space E are groups with two
operations that we will denote by + and · respectively, by convention.

Definition 15 (Secret Key to Public Key Homomorphism). A signature
scheme Σ = (KG,Sign,SigVerify) provides a secret key to public key homomor-
phism if there is an efficiently computable homomorphism µ : H → E such that
for all key pairs (sk, pk)← KG

(
1λ

)
one has pk = µ(sk).

Definition 16 (Key-Homomorphic Signatures). A signature scheme is called
key-homomorphic, if it provides a secret key to public key homomorphism and
an additional PPT algorithm Adapt, defined as:
Adapt(pk,m, σ,∆): Given a public key pk, a message m, a signature σ, and a
shift amount ∆ outputs a public key pk′ and a signature σ′, such that for all
∆ ∈ H and all (sk, pk)← KG(1λ), all messages m ∈M and all σ ← Sign(sk,m)
and (pk′, σ′)← Adapt(pk,m,Sign(sk,m) it holds that

Pr[SigVerify(pk′,m, σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk.

Definition 17 (Adaptability of Signatures). A key-homomorphic signature
scheme provides adaptability of signatures, if for every λ ∈ N and every message
m ∈ M, it holds that [(sk, pk),Adapt(pk,m,Sign(sk,m), ∆)], where (sk, pk) ←
KG(1λ), ∆ ← H, and [(sk, µ(sk)), (µ(sk) · µ(∆),Sign(sk + ∆,m))], where sk ←
H, ∆← H, are identically distributed.

3 Bellare et al.’s Sub-ZK NIZK Can Achieve U-SND

In this section, we show that the technique proposed by Bellare, Fuchsbauer and
Scafuro [7] to build Sub-ZK NIZK arguments can be expanded to build NIZK
arguments with updatable and universal SRS. In order to build a Sub-ZK and
sound NIZK argument from NI zaps, they defined an SRS as a tuple of knowledge
assumption, namely ([x]1 , [y]1 , [xy]1), and let a proof for a statement x prove
that either there is a witness for x or one knows x or y. They proved knowledge
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by adding a ciphertext C (of linear encryption) and using a perfectly sound NI
zap to prove that either x ∈ L or C encrypts x or y. Their construction uses NI
zap of Groth, Ostrovsky and Sahai [29].

In the resulting NIZK argument, ZK is achieved since by encrypting the
trapdoor x (or y) proofs can be simulated, and by IND-CPA of C and WI of
the NI zap, they are indistinguishable from the real ones. Soundness is achieved
since by soundness of the NI zap, a proof for a wrong statement must contain
encryption of x or y, which is hard to obtain from an honestly generated SRS.
They defined the SRS, as a tuple of a knowledge assumption in bilinear groups,
which is publicly verifiable by paring, such that they can extract either x or y
from an SRS subverter, and simulate the proofs without the need for a trusted
third party, consequently achieving Sub-ZK. Nowadays, the mentioned technique
is used in all Sub-ZK NIZK arguments, e.g. [1, 19, 27, 4, 2]. In nutshell, to
achieve Sub-ZK, one first check the well-formedness of SRS elements by pairing
equations, and then relying on a knowledge assumption extracts the simulation
trapdoors from the SRS subverter and provides to the simulation algorithm
constructed in the proof of (standard) ZK. In Bellare, Fuchsbauer and Scafuro’s
construction [7], another important point to achieve Sub-ZK was that the keys of
the encryption scheme were generated with the prover, rather than the subverter.
Therefore a subverter or verifier does not have access to the secret key to decrypt
C and learn the witness, but the reduction allows non-black-box extraction under
a knowledge assumption. We refer to the original work for further details [7].

Expanding Bellare, Fuchsbauer and Scafuro’s OR Technique to Achieve U-SND.
The folklore OR technique, introduced by [8], is shown to be a prominent tech-
nique for designing various cryptographic primitives. As reviewed above, Bellare,
Fuchsbauer and Scafuro [7] showed that using such techniques with a NI zap and
a trapdoor-extractable SRS, e.g. tuple of a knowledge assumption, one can build
NIZK argument that can achieve Sub-ZK and SND. As a part of our contribu-
tion, we noticed that using NI zaps (resp. NI-ZoKs) with a similar OR language
but with an updatable and trapdoor-extractable SRS, we can build Sub-ZK NIZK
arguments (of knowledge) with universal and updatable SRS.

The universality of the resulting NIZK argument is inherited from the in-
put NI zap. Particular about their construction [7], one can see that given the
SRS, which includes the tuple of DH-KE assumption, namely ([x]1 , [y]1 , [xy]1),
a prover needs to prove that either there is a witness for x or he knows x or
y, by sending a ciphertext C that encrypts x or y. In other words, the SRS is
generated independently of the statement to be proved, and the same SRS can
be used to prove different statements defined in the first clause. Note that in the
resulting NIZK argument [ti]1 is used to prove the soundness of scheme under
CDH assumption, and to achieve Sub-ZK, we only need to extract one of the
simulation trapdoors xi or yi from the Sub (a malicious SRS generator).

For updatability, next we describe an updating algorithm for the Sub-ZK
NIZK argument of Bellare, Fuchsbauer and Scafuro [7] that allows one (e.g. a
verifier) to update the SRS and bypass the need for a trusted setup by injecting
his share to the generation of SRS. After updating the SRS, the updater needs
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SRS Generator, Ksrs(RL): (p,G1,GT , ê, [1]1) ← BGgen(1λ); Sample
x0, y0, t0 ←$ Zp, where x0, y0 are the simulation trapdoors; Set the
string srs0 := ([t0]1, [x0]1, [y0]1, [x0y0]1) and the well-formedness proof
π0 := (([x0]1, [y0]1, [x0y0]1), ([x0]1, [y0]1, [x0y0]1)); Return (srs0, π0).

SRS Update, SU(RL, srsi−1, {πj}i−1
j=0): Given (a potentially updated) srsi−1,

parse srsi−1 := ([ti−1]1, [xi−1]1, [yi−1]1, [xi−1yi−1]1); Sample t′i, x
′
i, y

′
i ←$ Zp;

Set [ti]1 := t′i[ti−1]1, [xi]1 := x′
i[xi−1]1, [yi]1 := y′

i[yi−1]1, [xiyi]1 :=
x′
iy

′
i[xi−1yi−1]1; Set the string srsi := ([ti]1, [xi]1, [yi]1, [xiyi]1) and the proof

πi := (([xi]1, [yi]1, [xiyi]1), ([x
′
i]1, [y

′
i]1, [x

′
iy

′
i]1)); Return (srsi, πi).

SRS Verification, SV(srsi, {πj}ij=0): Given (srsi, {πj}ij=0), in order to verify
the well-formedness of srsi, act as follows:
– If i = 0: parse srs0 := ([t0]1, [x0]1, [y0]1, [x0y0]1) and π0 :=

(([x0]1, [y0]1, [x0y0]1), ([x0]1, [y0]1, [x0y0]1)) and do the following:
1. Check if [x0]1 • [y0]1 = [1]1 • [x0y0]1;
2. Check if ([t0]1 ̸= 1) ∩ ([t0]1 ∈ G1);

– If i ≥ 1: parse srsi := ([ti]1, [xi]1, [yi]1, [xiyi]1) and {πj :=
(([xj ]1, [yj ]1, [xjyj ]1), ([x

′
j ]1, [y

′
j ]1, [x

′
jy

′
j ]1))}ij=0 and do the following:

1. Check if [x0]1 = [x′
0]1 , [y0]1 = [y′

0]1, and [x0y0]1 = [x′
0y

′
0]1;

2. Check if
[
x′
j

]
1
•
[
y′
j

]
1
=

[
x′
jy

′
j

]
1
• [1]1 for j = 0, 1, · · · , i;

3. Check if [xj ]1 • [1]1 = [xj−1]1 •
[
x′
j

]
1
for j = 1, 2, · · · , i;

4. Check if [yj ]1 • [1]1 = [yj−1]1 •
[
y′
j

]
1
for j = 1, 2, · · · , i;

5. Check if [xjyj ]1 • [1]1 = [xj−1yj−1]1 •
[
x′
jy

′
j

]
1
for j = 1, 2, · · · , i;

6. Check if [xi]1 • [yi]1 = [1]1 • [xiyi]1;
7. Check if ([ti]1 ̸= 1) ∩ ([ti]1 ∈ G1);

return 1 if all the checks pass (srsi is well-formed), otherwise ⊥.

Fig. 1. The SRS generation Ksrs, SRS updating SU, and SRS verification SV algorithms
for the Sub-ZK NIZK argument of Bellare, Fuchsbauer and Scafuro [7].

to return a proof to show that the SRS updating was done honestly and the
updated SRS is well-formed. As we discuss later, verifying this proof is necessary
to achieve Sub-ZK and U-SND. Fig. 1 describes the SRS generation Ksrs, SRS
verification SV, and our proposed SRS updating SU algorithms for the Sub-ZK
NIZK argument of [7]. For the description of the proof generation and proof
verification algorithms we refer to the original paper [7].

Efficiency. From the description of algorithms (in Fig. 1) one can see that the
SRS generation algorithm requires 4 exponentiations in G1. Similarly, to update
an SRS the SU algorithm requires 4 exponentiations in G1. The SU algorithm
also requires 3 additional exponentiations in G1 to generate a well-formedness
proof πi. Finally, to verify an i-time updated SRS srsi, i ≥ 1, the SRS verification
algorithm SV needs to compute 8i+ 4 pairings, which mostly are batchable.

Security Proof. Bellare, Fuchsbauer and Scafuro [7], showed that their NIZK
argument satisfies SND under DH-KE and Computational Diffie-Hellman (CDH)
assumptions; and Sub-ZK under DH-KEA and DLin assumption. Next, we show
that their construction can also achieve U-SND. To this end, first, we recall a
corollary from [23, Lemma 6], and then give a lemma which is used in the
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security proof. The lemma proves that in their construction even when given an
honestly generated SRS as input, updaters need to know their injected share to
the (simulation) trapdoor. In this way security against the updater is linked to
an honest SRS.

Corollary 1. In the updatable SRS model, single adversarial updates imply full
updatable security [23, Lemma 6].

Lemma 1 (Trapdoor Extraction from Updated SRS). Considering the
algorithms in Fig. 1, suppose that there exists a PPT adversary A such that given
(srs0, π0)← Ksrs(RL), A returns the updated SRS (srsi, πi), where SV(srsi, {πj}1j=0) =
1 with non-negligible probability. Then, the DH-KE assumption implies that there
exists a PPT extractor ExtA that, given the randomness of A as input, outputs
x′
1 or y′1 such that [x1]1 = x′

1[x0], [y1]1 = y′1[y0], and [x1y1]1 = x′
1y

′
1[x0y0].

Proof. Considering Corollary 1, we consider the case that A makes only one up-
date to the SRS, but similar to [23, Lemma 6], it can be generalized. Parse π0 as
containing ([x0]1, [y0]1, [x0y0]1) and parse srs0 as containing srs0 := ([t0]1, [x0]1, [y0]1,
[x0y0]1). We consider an adversary A, that given srs0 returns an updated SRS,
srs1, where it contains ([t1]1, [x1]1, [y1]1, [x1y1]1) and its well-formedness proof π1

contains (([t1]1, [x1]1, [y1]1, [x1y1]1), ([x
′
1]1, [y

′
1]1, [x

′
1y

′
1]1)). If the SRS verification

accepts the updated SRS, namely if SV(srsi, {πj}1j=0) = 1, then the following
equations hold,

[x′
0]1•[y

′
0]1 = [1]1•[x

′
0y

′
0]1 , [x′

1]1•[y
′
1]1 = [1]1•[x

′
1y

′
1]1 , [x1]1•[1]1 = [x0]1•[x

′
1]1 ,

[y1]1•[1]1 = [y0]1•[y
′
1]1 , [x1y1]1•[1]1 = [x0y0]1•[x

′
1y

′
1]1 , [x1]1•[y1]1 = [1]1•[x1y1]1 ,

By the equations, [x′
0]1 • [y′0]1 = [1]1 • [x′

0y
′
0]1, under the DH-KE assumption,

there exists an extraction algorithm that can extract either x′
0 or y′0. Similarly,

by the equations [x′
1]1 • [y′1]1 = [1]1 • [x′

1y
′
1]1, and [x1]1 • [y1]1 = [x1y1]1 • [1]1

under the DH-KE assumption, there exists an extraction algorithm ExtA that
given the randomness of A, can extract x0 or y0, x

′
1 or y′1, and x1 or y1. The

other equations check the consistency and the well-formedness of SRS and imply
that x1 = x0x

′
1 = x′

0x
′
1 and y1 = y0y

′
1 = y′0y

′
1. ⊓⊔

Given the constructed SU and SV algorithms (in Fig. 1), the following the-
orem shows that their construction can also achieve U-SND under the same
assumption used in the security proof of the protocol.

Theorem 1. Given the SU and SV algorithms described in Fig. 1, the Sub-
ZK and SND NIZK argument proposed by Bellare, Fuchsbauer and Scafuro [7]
additionally satisfies U-SND assuming the DH-KE and CDH assumptions hold.

Proof. Considering Corollary 1, to prove this it suffices to prove security in the
case thatAmakes only one update to the SRS. Imagine we have a PPT adversary
A that given honestly sampled (srs0, π0) ← Ksrs(RL, 1

λ), returns an updated
SRS (srsi, πi) (along with a well-formedness proof) and a pair of (x, π) that get
accepted; i.e., such that SV(srsi, {πj}ij=0) = 1, and also the verifier of NIZK
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argument accepts π as a valid proof for the statement x, V(RL, srsi, x, π) = 1.
By Lemma 1, because the updated SRS verifies, there exists an extractor ExtA
that outputs the SRS trapdoors τ , such that running the SU algorithm with
trapdoors τ returns (srsi, πi).

The rest of proof is the same as the proof of soundness, which is given in [7].
⊓⊔

Remark 1. The above theorem showed that the Sub-ZK NIZK argument of Bel-
lare, Fuchsbauer and Scafuro [7] can also achieve U-SND. It is worth mentioning
that their original construction was instantiated with the NI zap of Groth, Os-
trovsky and Sahai [29] that is proven to achieve (Sub-)WI and (Sub-)SND. By
instantiating their construction with the NI-ZoK of Fuchsbauer and Orru [20],
which is a variant of [29], one can obtain a Sub-ZK NIZK argument of knowledge
that can satisfy KS. Then, using our proposed SU and SV algorithms, one will
obtain a NIZK argument that will satisfy Sub-ZK and U-KS.

4 Sub-ZK and U-{SS, SE} NIZKs from NI Zaps

In Sec. 3, we showed that the Sub-ZK NIZK argument of Bellare, Fuchsbauer
and Scafuro [7], built with a NI zap argument and a trapdoor-extractable SRS,
can also achieve U-SND. Moreover, it can be instantiated with a NI-ZoK [20]
to build a Sub-ZK and U-KS NIZK argument. The resulting NIZK arguments
are universal and have a succinct updatable SRS, which allows both the prover
and verifier to efficiently update and bypass the need for a TTP. However, in
practice one may require updatable NIZK arguments with even stronger security
guarantees than U-SND and U-KS, so-called Updatable Simulation Soundness
(U-SS) [6] and U-SE [2]. SS and SE imply SND and KS, respectively, even if the
adversary sees a polynomial number of simulated proofs. Both notions guarantee
the non-malleability of proofs [15] which is necessary for various applications.
As in U-SND and U-KS, in the U-SS and U-SE, the adversary is also allowed to
update the SRS, while the notions ensure that SS and SE are achieved as long
as the initial SRS generation or one of SRS updates is done by an honest party.

As mentioned in the introduction, one of our key insights is that once we
use NI zaps and define an OR language, then the NI zap does not have an SRS,
and if the SRS of the second clause be the public key of a key-updatable signa-
ture scheme, then we can achieve even stronger security notions in the resulting
Sub-ZK NIZK argument. In this section, we show that Bellare, Fuchsbauer and
Scafuro’s approach can be expanded to build an OR-based compiler that uses
NI zaps and allows one to build Sub-ZK NIZK arguments with succinct, uni-
versal and updatable SRS that can satisfy U-SS or U-SE. To this end, we revise
the OR-based compiler of Derler and Slamanig [16], which is presented to build
SE NIZK arguments with black-box extractability, and present a new variant
that can be used to build Sub-ZK NIZK arguments with succinct, universal and
updatable SRS that can achieve U-SS or U-SE with non-black-box extraction.
In [2], Abdolmaleki, Ramacher and Slamanig also presented a new variant of
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Derler and Slamanig’s compiler [16], so-called Lamassu, that allows one to lift
any Sub-ZK and U-KS zk-SNARK to a Sub-ZK and U-SE one. Lamassu is par-
ticularly designed for updatable zk-SNARKs, and as discussed in ([2], Theorem
4), it requires the input zk-SNARK to satisfy U-ZK which is a stronger require-
ment than (sub-)WI that NI zaps achieve, and we require it in the new compiler.
Considering the negative result that Sub-ZK and black-box extractability can-
not be achieved at the same time [7, 6], Sub-ZK and U-SE with non-black-box
extraction is the best achievable if we aim to retain Sub-ZK [6].

In Derler and Slamanig’s OR-based construction [16], they use a EUF-CMA
secure adaptable key-homomorphic signature scheme Σ and a strongly unforge-
able one-time signature (sOTS) scheme ΣOT to achieve non-malleability in the
input KS NIZK argument Π, which results in a SE NIZK argument, but under
a trusted setup. A key point about their construction is that the prover does not
need to prove that a signature verifies under the verification key given in the
SRS, as done in Groth’s constructions [25]. Instead, the prover needs to prove
that he knows the secret key of the public key given in the SRS, which he has
used to adapt signatures produced with ΣOT , to the ones valid under the public
key given in the SRS. Next, we present a variant of their construction that given
a NI zap, an sOTS scheme, and a key-updatable signature scheme allows one to
build NIZK arguments with universal and updatable SRS. Key-updatable signa-
ture schemes are an extension of key-homomorphic signatures, where their keys
are updatable, and they can guarantee unforgeability as long as at least one of
the key updates or the key generation will be done honestly [2].

For the compiler, let L be an arbitrary NP-language L = {x | ∃w : RL(x,w) =
1}, for which we aim to construct a Sub-ZK and U-SS (or U-SE) NIZK, and let
L′ be the language for lifted construction, such that, ((x, cpk, pk), (w, csk−sk)) ∈
RL′ , iff:

(x,w) ∈ RL ∨ cpk = pk · µ(csk− sk),

where µ is an efficiently computable map, (cpk, csk) is a key pair for a key-
updatable signature scheme, (sk, pk) is a key pair for an sOTS scheme. Let
ΣOT = (KG,Sign,SigVerify) be an sOTS scheme,Σ = (KG,Upk,Vpk,Sign,SigVerify)
be a key-updatable signature scheme, and Ψ := (P,V) be a NI zap (or NI-ZoK)
arguments. Then, Fig. 2 presents the resulting NIZK argument for L with PPT
algorithms (K′

srs,SU
′,SV′,P′,V′,Sim′), where we later show that it can achieve

Sub-ZK and U-SS or U-SE, depending on the input NI zap.

As it can be seen in Fig. 2, every time P′ uses Σ to certify the public key of a
fresh key pair (sk, pk) of theΣOT sOTS scheme. It uses skOT to sign the proof and
achieve non-malleability. By adaptability of the key-updatable signature scheme
Σ, the prover can use fresh keys of Σ for each proof. Due to OR construction of
RL′ , one needs to know the secret key csk to shift such signatures to the valid
ones under cpk given in the SRS. On the other side, honest P can use his witness
w to generate valid proof, without knowledge of the csk. However, given csk, one
can simulate the proofs and pass the verification using the second clause of OR
relation. Next, we show how one can exploit NI zaps along with the described
construction (in Fig. 2) and build universal and updatable NIZK arguments.
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SRS Generation, (srs′0, Π
′
srs0)← K′

srs(RL): Run the key generator of the key-
updatable signature scheme (csk0, cpk0, Πcpk0)← Σ.KG(1λ); Set srs′0 := cpk0,
Π ′

srs0 := Πcpk0 , and ts0 = csk0; Return (srs′0, Π
′
srs0).

SRS Updating, (srs′i, Π
′
srsi)← SU′(RL, srs

′
i−1, {Π ′

srsj}
i−1
j=0): Parse srs′i−1 :=

cpki−1; Run (cski, cpki, Πcpki) ← Σ.KU(cpki−1); Set (srs′i ∥Π ′
srsi) :=

(cpki ∥Πcpki), where Π ′
srsi is the well-formedness proof; Return (srs′i, Π

′
srsi).

SRS Verify, (⊥/1)← SV′(RL, srs
′
i, {Π ′

srsj}
i
j=0): Given srs′i := (⊥, cpki), and

{Π ′
srsj := Πcpkj}

i
j=0 act as follows: if {Σ.KV(cpkj−1, cpkj , Πcpkj ) = 1}ij=1

return 1 (i.e., the srs′i is well-formed), otherwise ⊥.
Prover, (π′/⊥)← P′(RL, srs

′
i, x,w): Parse srs′i := cpki; Return ⊥ if (x,w) /∈ RL;

generate (sk, pk) ← Σ.KG(1λ) and (skOT , pkOT ) ← ΣOT .KG(1
λ); generate

π ← P(RL,⊥, (x, cpki, pk), (w,⊥)); sign σ ← Σ.Sign(sk, pkOT ) and σOT ←
ΣOT .Sign(skOT , (x, pk, π, σ)); and return π′ := (π, pk, σ, pkOT , σOT ).

Verifier, (0/1)← V′(RL, srs
′
i, x, π

′): Parse srs′i := cpki and π′ :=
(π, pk, σ, pkOT , σOT ); return 1 if the following holds and 0 other-
wise: V(RL,⊥, (x, cpki, pk), π) = 1 ∧ Σ.SigVerify(pk, pkOT , σOT ) =
1 ∧ΣOT .SigVerify(pkOT , (x, pk, π, σ), σOT ) = 1.

Simulator, (π′)← Sim′(RL, srs
′
i, x, ts

′
i): Parse srs′i := cpki and ts′i := tsi; gen-

erate (sk, pk) ← Σ.KG(1λ) and (skOT , pkOT ) ← ΣOT .KG(1
λ); generate

π ← P(RL,⊥, (x, cpki, pk), (⊥, cski − sk)); sign σ ← Σ.Sign(sk, pkOT ) and
σOT ← ΣOT .Sign(skOT , (x, pk, π, σ)); and return π′ := (π, pk, σ, pkOT , σOT ).

Fig. 2. A construction for building Sub-ZK and U-SE (or U-SS) NIZK arguments from
a NI zap (or NI-ZoK) with PPT algorithms (P,V).

Theorem 2. Let Ψ be a NI-ZoK, which satisfies completeness, (Sub-)KS and
(Sub)-WI. Let Σ be a EUF-CMA secure key-updatable and adaptable signature
scheme, and ΣOT be a strongly unforgeable one-time signature scheme. Then,
the universal and updatable NIZK argument constructed in Fig. 2 satisfies (i)
completeness, (ii) Sub-ZK, and (iii) U-SE.

Proof. The completeness is straight forward from the description of the resulting
NIZK argument given in Fig. 2.

Subversion Zero-Knowledge (Sub-ZK). Considering the fact that NI zap argu-
ments do not have an SRS, the SRS of the resulting NIZK argument is just the
public key of the key-updatable signature scheme σ. Suppose that there exists a
PPT subvertor A that outputs a srs′ and Πsrs′ such that {SV′(RL, srs

′
i, Π

′
srsj ) =

1}ij=0. From the definition of key-updatable signatures, it then implies that there
exists a PPT extractor ExtA that given the source code of the adversary and
under a proper knowledge assumption (e.g. BDH-KE in our case, Def. 11), it
can extract the simulation trapdoor tsi := cski associated with the updated SRS
srs′i. Then, given the SRS trapdoor tsi, we can run the simulator algorithm Sim′

described in Fig. 2, and simulate the proofs. This concludes the proof of Sub-ZK.

Updatable Simulation Extractability (U-SE). The proof of U-SE is a modified
version of the proof of Theorem 4 in [2], where for each game change based
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on the ZK property of the zk-SNARK, we now exploit the (Sub-)WI property
of the NI-ZoK argument. For the steps relying on the knowledge soundness of
zk-SNARK, we rely on the knowledge soundness of NI-ZoK. For the sake of
completeness, we present the proof below.

Considering Corollary 1, we prove the theorem in the case that Sub makes
only a single update to the SRS after an honest setup. One could also consider
the case that Sub generate the SRS, and then we do a single honest update on
it. From the definition of a secure key updatable signature, Def. 13, it is possible
to use ExtSub and extract the subverter’s contribution to the trapdoor when it
updates the SRS. Note that in order to collapse all the honest updates into an
honest setup, we assume that the trapdoor contributions of setup and update
commute. Due to this fact, we use a chain of honest updates, and a single honest
setup interchangeably. As we mentioned earlier, NI zaps, do not have an SRS,
and we use cski of Σ to simulate the proofs.

Relying on the updatable EUF-CMA of Σ, if Sub (or A) return an updated
SRS srsi := cpki and the corresponding proof Πi, then (relying on a knowledge
assumption, e.g. BDH-KE in our case, given in Def. 11) there exists a PPT ex-
tractor ExtSub, that given the randomness of Sub as input, outputs tsi := cski. It
is important to note that in the U-SE (given in Def. 7), in addition to accessing
the simulation oracle O(tsi, ...) that returns simulated proofs, an adversary A
(or subverter Sub) is allowed to update or generate the initial SRS, which is ex-
amined below in experiment Exp. 2. Following the Def. 13, we use the subverter
Sub for updating the SRS and the adversary A against SE. However, Sub and
A can communicate and RND(Sub) = RND(A), or can be the same entity. The
definition of U-SE and the simulation oracle are presented in Def. 7 and Fig. 2,
respectively. Next, we write some consecutive games, starting from the real ex-
periment, and highlight the changes, and show that they all are indistinguishable
from each other.
Exp. 0. This is the original experiment given in Def. 7 and Fig. 2.
Exp. 1. This experiment is the same as Exp. 0., but Sim′ uses the simulation
trapdoor tsi := cski, which is extracted by ExtSub, and generate the simulated
proof π as π ← P(RL,⊥, (x, cpki, pk), (⊥, cski − sk)) (shown in Fig. 2).

Winning Condition. Let Q be the set of (x, π) pairs, and let T be the set of
verification keys generated by O(.). The experiment returns 1 iff: (x, π) /∈ Q ∧
V(RL, srsi, x, π) = 1 ∧ pkOT /∈ T ∧ cpki = pk · µ(csk− sk).
Exp. 0. → Exp. 1.: If the underlying OT signature is strongly unforgeable,
and that the underlying NI-ZoK is knowledge sound and WI, then we have
Pr[Exp. 0.] ≤ Pr[Exp. 1.] + negl(λ). The reason is that if (x, π) /∈ Q and pkOT

has been generated by O(.), then the (x, π, pk) is a valid message/signature pair.
Hence by the unforgeability of the σOT , we know that the case (x, π) /∈ Q and
pkOT generated by O(.), happens with probability negl(λ), which allows us to
focus on pkOT /∈ T .

The extracted w is unique for all valid witnesses. Further, if some witness is
valid for L and that (x,w) /∈ RL, we know it must be the case that due to the
WI property of the NI-ZoK and the property of the updating procedure that if
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SV′ outputs 1, then there exists an extractor that extracts the tsi := cski (i.e.,
the trapdoor extraction for the key-updatable signature scheme implies that it
is possible to extract the trapdoor when the adversary generates the srsi := cpki
itself). Given, tsi := cski, one can use Sim′ (given in Fig. 2) and simulate the
proofs in a way that no PPT adversary can distinguish them.
Exp. 2. This experiment is the same as Exp. 1., but the only difference is that
Sub generates the srs and then we have an honest update.
Exp. 1.→ Exp. 2.: From the property of the updating procedure in key-updatable
signature schemes, we know that if SV′ outputs 1, then there exists an ExtSub
that can extract the tsi := cski ( relying on a knowledge assumption). Con-
sidering that and also from the WI property of the NI-ZoK argument we have
Pr[Exp. 0.] ≤ Pr[Exp. 1.] + negl(λ).
Exp. 3. This experiment is the same as Exp. 2., but the ∆ ←$ H is replaced in
cpk = µ(∆) · pk, where ∆←$ H and srsi := (cpk · µ(∆)) and tsi := cski.

Winning Condition. Let Q be the set of (x, π) pairs, and let T be the set of
verification keys generated by the O(.). The experiment returns 1 iff: (x, π) /∈
Q∧V(RL, srsi, x, π) = 1∧pkOT /∈ T ∧ cpki ·µ(∆) = pk ·µ(∆) ·µ(cski− sk), where
relying on the adaptable and updatable EUF-CMA property of the underlying
key-updatable signature scheme Σ, it is negl(λ). ⊓⊔

Theorem 3. Let Ψ be a NI zap, which satisfies (Sub-)SND and (Sub)-WI. Let
Σ be a EUF-CMA secure key-updatable and adaptable signature scheme, and
ΣOT be a strongly unforgeable one-time signature scheme. Then, the universal
and updatable NIZK argument constructed in Fig. 2 satisfies (i) completeness,
(ii) Sub-ZK, and (iii) U-SS.

Proof. The proofs of completeness and Sub-ZK are the same as in the proof of
Theorem 2. The proof of U-SS is analogous to the proof of U-SE in the same
theorem, which again can be considered as a minimally modified version of the
proof of Theorem 4 in [2], where for each game change based on the ZK property
of the zk-SNARK, we now use the (Sub-)WI property of the NI zap, and for the
steps relying on the knowledge soundness of the zk-SNARK, we rely on the
soundness of NI zap, but only achieve U-SS instead of U-SE. ⊓⊔

Instantiations. Next, we instantiate the construction presented in Fig. 2 and
obtain Sub-ZK NIZK arguments (resp. of knowledge) with an updatable SRS,
that can satisfy U-SS and U-SE.

Considering Theorem 2, to obtain a Sub-ZK and U-SE NIZK argument of
knowledge, we instantiate the NI-ZoK Ψ with the one proposed in [20], and the
key-updatable signature scheme Σ with the one proposed in [2], and the strongly
unforgeable one-time signature scheme ΣOT with Groth’s scheme [25].

Similarly, considering Theorem 3, to build a Sub-ZK and U-SS NIZK argu-
ment, we instantiate the NI zap Ψ with the one proposed in [29], and again the
key-updatable signature scheme Σ from [2], and the one-time signature scheme
ΣOT from [25]. In both cases, the resulting NIZK argument will have an updat-
able SRS containing only two group elements, which are the public key of the
key-updatable signature scheme, which can be updated and verified efficiently.
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5 Conclusion

In this paper, we first showed that the Sub-ZK NIZK argument proposed by
Bellare et al. [7], can also satisfy U-SND, which reduces the trust in the third
parties even more. By using our proposed SRS updating algorithm, the verifier
can update the SRS one time and then bypass the need for a TTP.

Then, we show that one can expand their idea and construct a general con-
struction based on NI zaps that can be used to build universal and updatable
NIZK arguments in a modular way. To this end, we presented a compiler based
on the construction of Derler and Slamanig [16], which allows one to use NI
zaps and build NIZK arguments with succinct, universal, and updatable SRS,
that can achieve Sub-ZK, U-SND, U-KS, U-SS, and U-SE. We instantiated our
compiler with some NI zaps [29, 20] and presented some universal and updatable
NIZK arguments that all have succinct SRS.

Due to the currently available options, we instantiated our scheme with the
DL-based NI zaps, key-updatable signatures, and one-time secure signatures.
Building the mentioned primitives from Post-Quantum (PQ) secure assump-
tions can be an interesting future research question, as they would allow for the
building of universal and updatable NIZK arguments from the PQ assumptions.
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5. K. Baghery, Z. Pindado, and C. Ràfols. Simulation extractable versions of groth’s
zk-SNARK revisited. In S. Krenn, H. Shulman, and S. Vaudenay, editors, CANS
20, volume 12579 of LNCS, pages 453–461. Springer, Heidelberg, Dec. 2020. 3

6. K. Baghery and M. Sedaghat. Tiramisu: Black-box simulation extractable nizks in
the updatable CRS model. In M. Conti, M. Stevens, and S. Krenn, editors, Cryptol-
ogy and Network Security - 20th International Conference, CANS 2021, Vienna,
Austria, December 13-15, 2021, Proceedings, volume 13099 of Lecture Notes in
Computer Science, pages 531–551. Springer, 2021. 3, 13, 14

7. M. Bellare, G. Fuchsbauer, and A. Scafuro. NIZKs with an untrusted CRS: Secu-
rity in the face of parameter subversion. In J. H. Cheon and T. Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804. Springer, Hei-
delberg, Dec. 2016. 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 18

8. M. Bellare and S. Goldwasser. New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In G. Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 194–211. Springer, Heidelberg,
Aug. 1990. 10

9. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive
arguments for a von neumann architecture. Cryptology ePrint Archive, Report
2013/879, 2013. https://eprint.iacr.org/2013/879. 2

10. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its ap-
plications. In Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 103–112. ACM, 1988. 1, 2

11. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg,
Aug. 2004. 3, 8

12. M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodŕıguez. Lunar: A tool-
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A Security Requirements of NIZK Arguments

In the standard SRS model, a NIZK argument ΨNIZK for R can satisfy the fol-
lowing security definitions. Note that in the security requirements of standard
NIZK argument, where the setup phase is trusted.

Definition 18 (Perfect Completeness [26]). A non-interactive argument
ΨNIZK is perfectly complete forR, if for all λ, all R ∈ im(R(1λ)), and (x,w) ∈ R,

Pr [srs← Ksrs(R) : V(R, srs, x,P(R, srs, x,w)) = 1] = 1 .

Definition 19 (Statistically Zero-Knowledge [26]). A non-interactive ar-
gument ΨNIZK is statistically ZK for R, if for all λ, all R ∈ im(R(1λ)), and for
all NUPPT A, εunb0 ≈λ εunb1 , where

εb = Pr[(srs ∥ ts)← Ksrs(R) : AOb(·,·)(R, srs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) ̸∈ R, and otherwise it re-
turns P(R, srsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) ̸∈ R, and
otherwise it returns Sim(R, srs, x, ts). ΨNIZK is perfect ZK for R if one requires
that ε0 = ε1.

Definition 20 (Soundness). A non-interactive argument ΨNIZK is computa-
tionally (adaptively) sound for R, if for every NUPPT A, for all λ,

Pr

[
R← R(1λ), (srs ∥ ts)← Ksrs(R),

(x, π)← A(R, srs) : x ̸∈ L ∧ V(R, srsV, x, π) = 1

]
≈λ 0 .

Next, we recall some stronger notions of NIZK arguments that usually are
needed in the case one requires a stronger security guarantees.

Definition 21 (Simulation Soundness [25]). A non-interactive argument
ΨNIZK is simulation sound for R if for all NUPPT A, and all λ,

Pr

[
R← R(1λ), (srs ∥ ts)← Ksrs(R), (x, π)← AO(.)(R, srs) :

(x, π) ̸∈ Q ∧ x ̸∈ L ∧ V(R, srsV, x, π) = 1

]
≈λ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary’s
queries to O, that returns simulated proofs.

Definition 22 (Non-Black-Box Simulation Extractability [28]). A non-
interactive argument ΨNIZK is non-black-box simulation-extractable for R, if for
any NUPPT A, there exists a NUPPT extractor ExtA s.t. for all λ,

Pr

R← R(1
λ), (srs ∥ ts)← Ksrs(R),

r ←$ RND(A), ((x, π) ∥w)← (AO(.) ∥ExtA)(R, srs; r) :

(x, π) ̸∈ Q ∧ (x,w) ̸∈ R ∧ V(R, srsV, x, π) = 1

 ≈λ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary’s
queries to O that returns simulated proofs. One may notice that non-black-box
simulation extractability implies simulation soundness (given in Def. 21) [25].
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