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Abstract—Differential privacy (DP) is a key tool in privacy-
preserving data analysis. Yet it remains challenging for non-
privacy-experts to prove the DP of their algorithms. We
propose a methodology for domain experts with limited data
privacy background to empirically estimate the privacy of an
arbitrary mechanism. Our Eureka moment is a new link—
which we prove—between the problems of DP parameter-
estimation and Bayes optimal classifiers in ML, which we
believe can be of independent interest. Our estimator uses this
link to achieve two desirable properties: (1) black-box, i.e.,
it does not require knowledge of the underlying mechanism,
and (2) it has a theoretically-proven accuracy, depending on
the underlying classifier used, allowing plug-and-play use of
different classifiers.

More concretely, motivated by the impossibility of the
above task for unrestricted input domains (which we prove),
we introduce a natural, application-inspired relaxation of DP
which we term relative DP. Intuitively, relative DP defines a
mechanism’s privacy relative to an input set T , circumventing
the above impossibility when T is finite. Importantly, it pre-
serves the key intuitive privacy guarantee of DP while enjoying
a number of desirable DP properties—scalability, composition,
and robustness to post-processing. We then devise a black-box
poly-time (ε, δ)-relative DP estimator for any poly-size T—
the first privacy estimator to support mechanisms with large
output spaces while having tight accuracy bounds. As a result
of independent interest, we generalize our theory to develop
the first Distributional Differential Privacy (DDP) estimator.

We benchmark our estimator in a proof-of-concept im-
plementation. First, using kNN as the classifier we show
that our method (1) produces a tight, analytically computed
(ε, δ)-DP trade-off of low-dimensional Laplace and Gaussian
mechanisms—the first to do so, (2) accurately estimates the
privacy spectrum of DDP mechanisms, and (3) can verify a DP
mechanism’s implementations, e.g., Sparse Vector Technique,
Noisy Histogram, and Noisy max. Our implementation and
experiments demonstrate the potential of our framework, and
highlight its computational bottlenecks in estimating DP, e.g.,
in terms of the size of δ and the data dimensionality. Our
second, neural-network-based instantiation makes a first step
in showing that our method can be extended to mechanisms
with high-dimensional outputs.

Corresponding author: yuwei@purdue.edu

1. Introduction

As big-data e.g., machine learning (ML) algorithms be-
come more sophisticated and ubiquitous, the need to protect
sensitive data becomes ever more prominent. Differential
privacy (DP) is a broadly accepted privacy notion. Yet, the
need to prove DP for these often complex algorithms limits
the accessibility of DP to application domain experts who
are not trained in security.

Informally, a mechanism M is (ε, δ)-DP if for any pair
of neighboring databases D,D′, the output distributions
of M(D) and M(D′) are (ε, δ)-close. Parameters ε and
δ quantify the DP of M, smaller is better. Intuitively, ε
quantifies the privacy of each individual record, and δ is
the probability that all privacy guarantees are given up. The
desired δ is as small as possible, but in most applications—
and for most mechanisms—there is an inherent trade-off
between ε and δ–typically, tiny δ comes at the cost of large
ε. Hence, knowing just a single pair of privacy parameters
(ε, δ) for a mechanism may be insufficient to understand
its privacy guarantees. It does not answer, for example, the
question “What happens to δ (resp. ε) if I claim a smaller
ε (resp. δ) for the same mechanism?".

Charting the above trade-off gives an important insight
in deciding whether or not a mechanism is a good fit for
some given application. Consider for example the use of
DP for privacy-preserving release of surveys from the US
census bureau. According to [1], a DP budget of ε = 17.14
was used to ensure that δ = 10−10. The above price (in
terms of ε and/or utility) paid for maintaining such tiny δs
is high and offers debatable DP guarantees. Thus, one may
ask: “Is this necessary, and what are reasonable alternative
(ε, δ) pairs”? Our work is motivated by our thesis that the
privacy spectrum gives valuable insight into this question. In
fact, this principle proves to be effective for getting insights
on DP mechanisms as is demonstrated by our results on
Section 8 and our prior work [2].1

In this work we define the (differential) privacy spectrum
(DP spectrum) of a mechanism M, denoted as δM(ε),2 to be
the (function plotting the) minimum δ achievable for a given

1. We remark that [3] uses the notion of privacy profile for a quantity
highly related to the privacy spectrum.

2. To avoid clutter, when the context is clear, we drop M from the
notation, e.g., δ(ε) instead of δM(ε).



ε. We propose an ML-based method for estimating the pri-
vacy spectrum of any given M, while using M in a black-
box manner. We prove accuracy guarantees of the estimated
privacy spectrum using results from ML theory. The estima-
tion error diminishes with the number of samples (runtime)
that the estimator uses. We empirically demonstrate that
the asymptotically-predicted behavior kicks-in already for
a small number of samples. Our experiments demonstrate
the potential of the proposed methodology for practical use,
but also highlight the bottlenecks of the current proof-of-
concept implementation, most relevantly, that estimating the
spectrum for small values of δ, e.g., less than 10−7 requires a
combination of excessive amount of storage and parallelism
that is unavailable even in a modern supercomputer. We
conjecture that the performance can be drastically improved
by a combination of algorithmic, machine learning, and
engineering optimizations, and view such improvements as
an interesting research direction.

Our results in context. Before describing our contribution,
we put our results in context with the state of the art in DP
property-testing. (A more detailed discussion is included in
Section 2.) Recent literature includes several instances of
such DP testers, typically parameter estimators or detec-
tors of privacy violations. Roughly speaking, the desirable
properties of such methods are accuracy, generality, and
efficiency, as discussed below. Our main impossibility result
(Theorem 3) shows that a poly-time black-box (ε, δ)-DP
estimator is impossible when the input domain is super-
polynomial (or even unbounded, as is the case in the clas-
sical DP definition). Thus, the above work would typically
discount on at least one of the above goals, e.g., on gener-
ality, by requiring white-box access to the mechanism [4],
[5], [6], [7], or, on accuracy by testing a limited set (in order
to preserve efficiency) of input databases to detect privacy
violation [8], [9], [10] or to estimate (ε, δ)-DP [11]. In the
following we discuss each of these properties, and how our
Eureka framework approaches them.

Accuracy requires that the estimated DP-spectrum of M
match its true DP-spectrum. There are two modes in which
one can empirically analyze the DP spectrum. (1) Verify
if a mechanism satisfies a given (ε, δ)-DP requirement.
Typically one estimates bounds on the DP parameter(s) [8],
[9], [10] to decide if the privacy is violated. The bounds
can be loose, and so the verification may not be conclusive.
(2) A stronger and more useful statement is to estimate the
full DP-spectrum of the mechanism using tight (upper and
lower) bounds on the privacy parameters. This is the task
we tackle in this work. To our knowledge, the only other
work which attempted such a tight estimation is the ADP-
Estimator [11] which only applies to mechanisms with a
small output space. (See Sec. 2 for a detailed comparison.)

The aforementioned prior work primarily offers heuristic
empirical estimates of the privacy parameters. In contrast,
we develop a framework for theoretical guarantees on the
estimated privacy. Importantly, we demonstrate the con-
crete accuracy and efficiency of our estimator via proof-
of-concept implementations in Sec. 8.

Generality mandates that the estimator should work for any
mechanism. Our estimator achieves this by using the mecha-
nism as a black-box, only interacting with the mechanism in
an input/output manner. In contrast, a white-box estimator
needs the (pseudo-code) of the mechanism whose privacy
is to be estimated. An orthogonal feature of estimators
regarding generality is whether they estimate only the ε
parameter (aiming for the less flexible ε-DP) or, as we do
in this work, estimate the full DP-spectrum which quantifies
the ε-δ trade-off. The latter is more general, as ε-DP is the
same as (ε, 0)-DP (setting δ = 0).
Efficiency is necessary for the practicality of an estimator.
Methodologies that exhaustively process the output space,
such as [8], [9], [11], quickly become impractical, especially
for large output spaces. Eureka puts forth several ideas to
rectify this, e.g., by introducing the notion of relative DP
(see below). As we discuss, at a technical level, relative
DP allows us to bring the dependence of a mechanisms
complexity on the universe of possible datasets from ex-
ponential down to linear. And on an intuitive level, the
notion makes our methodology a fit for the prototypical
scenarios of DP which include queries on large, static or
slow evolving datasets, e.g., medical studies or census data
processing. In fact, to our knowledge, our work proposes
first tight, black-box, and theory-backed (ε, δ)-DP estimator
that can handle mechanisms with a large (even uncountable)
output space. Notwithstanding, the current instantiation of
the Eureka framework, still has a efficiency bottleneck with
respect to the size of δ as discussed above, which one
needs to overcome to use it in practice. (Comprehensive
comparisons of our estimator with existing methods are
included in Section 2, cf Table 1.)

1.1. Our Contributions

We propose a general framework for constructing and
analyzing black-box DP estimators. We analyze and bench-
mark a concrete instance of our framework. Our main insight
is that a black-box DP-spectrum estimator can be re-cast as
a specially-crafted classification problem, which can then
be analyzed using ML techniques. In particular, given a
data set and a (black-box) mechanism, we devise a new
classification task whose optimal classifier can be directly
linked to the DP-spectrum of the mechanism. Thus we can
employ the results of this optimal classifier and estimate
(theoretically and empirically) the DP-spectrum of the given
mechanism. Concretely, using tools from statistical learning
theory, we obtain tight bounds on the performance of this
optimal classifier, and thus the DP-spectrum of the black-
box mechanism. In the following, we elaborate on some
of the main points and techniques and give pointers to the
paper sections that include the detailed treatment.
Relative Differential Privacy (Section 4) First, we ask if
it is even possible to estimate the (ε, δ)-DP-spectrum of an
arbitrary mechanism. We prove that there are no efficient
general black-box DP estimators, even if one allows an error
probability β and an approximation factor α. As we show
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in Theorem 3, for general input domains, an estimator with
reasonable α and β is impossible. In fact, one can verify that
the proof idea of our impossibility theorem applies even to
relaxed definitions of DP from the literature, such as Renyi
DP [12] and (Zero-)Concentrated DP [13], [14].

The core issue—one faced by all previous black-box
DP estimators—is that by comparing every database with
all its neighbors (databases resulting from removing or
adding records), we get a universe infeasible to handle by
an efficient estimator. The obvious way to circumvent the
above issue is to limit the set of databases in a meaningful
way. For example, a prototypical scenario where privacy is
required (often by law) is research on medical data. It is
well known that much of such research is done on just a
handful of well-calibrated datasets. This leads us to propose
relative DP, a relaxation of the DP definition.

Relative differential privacy (relative DP, Sec. 4.1) cir-
cumvents the above impossibility by limiting the input
databases set: informally, an (ε, δ, T )-relative DP mecha-
nism is one which satisfies (ε, δ)-DP for databases in a
given set T . Observe that even with such a restriction, if
we use the classical DP definition of neighboring databases,
we can end up with an unmanageable universe of potential
neighbors—since there may be an unlimited number of
possible neighbors that add a database record/row. Instead,
we use a refinement of the neighboring condition, namely
for each database in T its neighbors are derived by removing
any one record. An inspection of Def. 3 shows this yields
an equivalent definition for DP, but now the number of
neighbors for a database is simply the database’s size, and
thereby manageable for our estimator.

Further demonstrating the usefulness of our relaxation,
we prove that relative DP has many of the desirable proper-
ties of DP that make it useful in a wide range of applications.
In a nutshell, we prove in a sequence of results (Proposi-
tion 2-5) that relative DP is reasonably robust to adding new
databases to the set T , preserves privacy under mechanism
composition, and is robust to post-processing.
(Relative) DP Estimator (Section 5, 6). Armed with rel-
ative DP, we devise and analyze a relative DP(-spectrum)
estimator. To build intuition for our approach, we start
(Sec. 5) with a toy case of estimating the smallest δ privacy
parameter (given ε) for which two neighboring databases
can satisfy inequality in the DP definition (Def. 3). We show
how to convert the risk of the Bayes/optimal classifier to
this minimum δ (Theorem 4). Intuitively, this conversion
relies on writing δ as a statistical distance between two
distributions, then using a well-known relationship between
Bayes classifier risk and statistical distance. This leads to
Lem. 1 for estimating the privacy for a single pair of
neighboring databases. Then, we generalize our domain and
extend T to be any polynomial-sized set of databases, using
the scalability property (Prop. 2) of relative DP (Thm. 5).
Note, our method works with any classifier whose risk
converges to the Bayes/optimal risk.

In Sec. 6, we instantiate the general results above with
the k-Nearest-Neighbor (kNN) [15] classifier. Utilizing the
rich theory behind kNN (cf. Thm 2), we prove for this

estimator the corresponding result for a single pair of neigh-
boring databases: Cor. 2 as corollary to Lem. 1, and the
general relative DP result: Cor. 3 as a corollary to Thm. 5.
Distributional Differential Privacy (Section 7) Assump-
tions on the data distribution can be used to replace the
“relative” (to a specific T ) restriction of our treatment. This
makes our framework applicable to “noiseless” versions
of DP such as the well known Distributional Differential
Privacy (DDP) notion [16]. In a nutshell, these notions take
advantage of the inherent entropy in common datasets to
reduce the amount of noise needed to achieve DP (see
Section 3.1 for an overview.) We show that, under the
assumption of independently distributed database rows, our
relative DP estimator framework can be employed to esti-
mate the DDP parameters of a mechanism. To our knowl-
edge, this yields the first black-box DDP estimator. We
believe that both the general paradigm and the estimator
itself are of independent interest to ML research, where
noiseless algorithms may achieve much better utility.
Empirical Validation and Benchmarks (see Section 8).
Last but not least, we devise proof-of-concept implementa-
tions of our estimator, where we instantiated the classifier
both with the well-studied and theory-backed kNN, and
with a more efficient neural network. Our benchmarks and
experiments serve the following three purposes:
1. Validate our theory by showing the accuracy of our esti-
mator: (i) For mechanisms where we can analytically com-
pute the (ε, δ) spectrum (e.g., Laplace, Gaussian, and expo-
nential mechanisms3), our estimator output closely matches
the analytically computed spectrum. This holds both for
low-dimensional inputs (kNN-based estimator) and high-
dimensional inputs (neural-network-based estimator). To our
knowledge, our work is the first to enjoy this property. (ii)
Our (kNN-based) estimator’s concrete accuracy matches our
proven theoretic (i.e., asymptotic) accuracy.4

We remark that Theorem 2 theoretically bounds the
number of samples needed to guarantee a desired error for
kNN.5 As demonstated by our experiments, however, the
above theoretical lower bound is overly pessimistic, and
in practice, far fewer samples are sufficient. Our algorithm
runs in O(qn), where q = number of neighboring databases
tested (this is necessary dependency since a mechanism’s
behavior can vary drastically with database) and n = num-
ber of samples. Achieving cryptographically small error in
δ is feasible: 10−5 error needs just 226 samples which takes
∼10 minutes on the textbook implementation of kNN.

3. Due to the nature of the exponential mechanism, we can only compute
the (ε, δ) spectrum analytically for a given database, but this experiment
serves as demonstration that our estimator works also for mechanisms with
discrete output.

4. We mention that Antos et al. [17] proved there is no fixed finite
sample-size beyond which one can universally bound the convergence rate
of a Bayes risk estimator. Hence, empirical validation is the only way to
demonstrate that the asymptotic predictions kick in for moderately-sized
samples. (Such an empirical validation of asymptotic theory is common in
both the cryptography/privacy and the ML literature).

5. Note that the dataset size and the number of samples the mechanism
needs are distinct concepts. Domain experts do not need to be concerned
about the latter, which is generated as part of the DP estimator process.
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2. Demonstrate applications of our estimator to: (i) Compare
the privacy spectrums of different mechanisms. (ii) Estimate
the spectrum of more complex mechanisms for which we
do not have tight analytically computed privacy bounds; for
this we use the Sparse Vector Technique (SVT) mechanism
for which we show that our estimator produces results that
match the state of the art [11]. (iii) Test the correctness
of mechanism implementations, a popular task studied in
recent literature [4], [5], [6], [7], [8], [9], [10], [11]. We test
buggy implementations of SVT, noisy histogram, and noisy
max, that were used as benchmarks in the literature.
Lastly, 3. The first demonstration for estimating Distribu-
tional Differential Privacy (DDP).

2. Related Work

Programming Language-based methods. This line of
work uses language-based methods to automatically verify a
mechanism’s privacy level [4], [5], [6], [7]. These methods
require white-box access to the mechanism. They are partic-
ularly useful in formally verifying if the implementation of
some known mechanisms is correct or buggy. In particular,
these estimators automatically search and infer proof of the
DP property for the tested mechanism, hence the result (sat-
isfying DP or not) is accurate if they do succeed. However,
automated verification may fail. For example, [7] reports
that LightDP [4] is unable to disprove faulty variants of
PrivTree [19], because the variants have a probabilistic main
loop with an unbounded number of iterations. Our work
applies to general black-box mechanisms, e.g., proprietary
software or heuristic attempts by ML researchers.

Probabilistic testing methods. This line of work uses
statistical tools and is based on sampling the mechanism’s
inputs/outputs [8], [9], [10], [11], [18]. Specifically, they fo-
cus on lower-bounding the DP parameter of a mechanism—
that is, asserting that the tested mechanism cannot achieve
(beyond a) certain level of differential privacy. The core
challenge is to find a witness of the DP violation for the
given privacy parameters. StatDP [8] requires semi-black-
box access to the mechanism to run the mechanism on
input data without any noise. DP-Finder [9] requires the
mechanism’s algorithm (white-box access) to be differen-
tiable, so that excludes common operations such as arbi-
trary loops or hash functions. This requirement considerably
limits the class of mechanisms the method applies to, and
excludes common DP techniques such as SVT [20] and
Randomized Response [21]. DP-Sniper [10] and the more
recent DPL [18] use the black-box approach and are general.
DPL [18] improves upon DP-Sniper [10] by avoiding “event
selection”—a major obstacle to finding a privacy violation
witness. This is achieved via kernel density estimation. All
these methods, including DP-Sniper and DPL test for ε-DP
by only finding a lower bound of the privacy parameter ε
on neighboring databases. In comparison, our work gives a
tight characterization (i.e., both upper and lower bounds) on
both the ε and δ privacy parameters.

ADP-Estimator [11] tests the (ε, δ)-DP property for a
mechanism, and discusses the relationship between accuracy

and number of samples required. While our goals align
with [11], our approach is vastly different. ADP-Estimator
empirically estimates the output distributions for a single
pair of neighboring databases. In comparison, we develop a
general framework that gives a formal treatment of the DP
parameter-estimation problem and links it to the rich ML
theory on classification algorithms, hence our method can
derive a family of privacy estimators by plugging in different
classifiers. In addition, the ADP-Estimator [11] is limited:
by enumerating the tested mechanism’s output space, their
algorithm requires this space to be a finite (and small). In
contrast, our estimator that uses the kNN classifier does not
have such limitations. As further evidence of our method’s
advantage, we estimate the Gaussian mechanism (Section 8),
which hadn’t been reported by either DP-Sniper and DPL
(they only consider ε-DP) or ADP-estimator (can’t handle
uncountable output space).

Machine Learning for DP The connection between ma-
chine learning and DP estimation has recently attracted at-
tention in the ML/AI literature. A recent line of works [22],
[23], [24], [25] investigated a connection between DP and
empirically estimatable statistical distance. In a nutshell,
these works bound the distinguishing advantage between
distributions M(D) and M(D′) (which relates to their
statistical distance) for mechanism M and neighboring
database D and D′. Specifically, given a (ε, δ)-DP mech-
anism, these works upper bound the statistical distance
between M(D) and M(D′), which lower bounds δ as a
function of ε. In contrast, our results use a pair of carefully
crafted distributions (not M(D) and M(D′)) which allows
us to build an exact link between the DP-spectrum and a
Bayes optimal risk. By then estimating this risk nonpara-
metrically, we get tight upper and lower bounds on the
achievable δ as a function of ε, accurately characterizing
the entire DP-spectrum. Devising and analyzing these new
distributions—and the connection to the DP-spectrum—is a
key novelty here and can be seen as a non-trivial extension
of Le Cam’s (lower-only) bound [26]: we present equality
rather than just a lower bound, which we use to tightly
(upper and lower) bound the accuracy of our estimated δ.

Gilbert and McMillan [27] discuss the sample complex-
ity lower bound of verifying whether specific (ε, δ)-DP is
satisfied. Their work is useful to answer what type of privacy
parameter verification task is feasible. In contrast, our work
devises a concrete method of tightly estimating privacy. To
achieve this, we also develop sample complexity results that
are orthogonal to [27].

Lastly, in the study of quantifying how much a sys-
tem reveals about its secret inputs, there is a body of
work [28], [29], [30] that connects leakage measurement
to Bayes optimal risk. The information leakage considered
in this context includes min-entropy leakage [31] and g-
leakage [32]. In contrast, we establish an exact link between
the DP-spectrum and Bayes optimal risk.
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Access to M M with large
output space Accuracy Methods

StatDP [8] Semi-black-box No Lower bounds Hypothesis testing
DP-Finder [9] White-box No Lower bounds Sampling and optimzation
DP-Sniper [10] Black-box Yes Lower bounds Classifier

DPL [18] Black-box Yes Lower bounds Kernel Density estimator
ADP-Estimator [11] Black-box No Upper and lower bounds Distribution estimator

Our Work Black-box Yes Upper and lower bounds Classifier (e.g., kNN)

TABLE 1: Summary of comparisons between our work and previous works.

3. Preliminaries

Due to the nature of our work lying in the intersection
between privacy and ML, we provide the following prelim-
inaries for both (1) privacy definitions and (2) background
on ML classifiers, especially kNN.

3.1. Privacy Definitions

Informally, differential privacy (DP) [33] is defined via
an experiment between a query party Q and a curator C,
who has access to a database D. Q wishes to make a query
on the database, and C wants to answer this query in a
way that protects the privacy of any individual record. This
property is achieved by C using a randomized algorithm,
aka mechanism, to answer Q’s queries, in a way that does
not destroy accuracy (the outcome of the mechanism is not
too far from the true answer to the query)—while respecting
the privacy of any individual record X ∈ D (informally, Q
has only a small chance in telling whether or not X was
used in answering the query). To make this formal, we state
here the definition of DP (cf. [34] for an excellent treatment
of DP and its properties.)

Definition 1 (Mechanism). Let U be the set of all possible
database records. Let X = U∗ be the set of all databases
where each database row is from U . Let O be the set of all
possible output strings. Then a mechanism M := X 7→ O
is a (randomized) algorithm that takes as input a database
from the input space X , and produces an output from the
output space O.

In DP, we are interested in whether our mechanism
reveals information on individual database records/rows.
Thus, we consider the output of our mechanism on pairs
of databases called neighbors, where one neighbor contains
a particular row, and the other does not.

Definition 2 (Neighboring Databases). A pair of databases
D,D′ ∈ X is neighboring, denoted D ≃ D′ if D′ can be
obtained from D by removing one row6

A mechanism is DP if its output given any D is similar
to its output given any of D’s neighbors.

Definition 3 (Differential Privacy (DP) [33]). A mecha-
nism M := X 7→ O is (ε, δ)-differentially private if for all

6. See Sec. 1.1 for why we choose this definition of ‘neighbors’ instead
of having D′ be obtained either by removing or adding a row.

subset S ⊆ O and for all neighboring databases D ≃ D′,
D,D′ ∈ X :

Pr[M(D) ∈ S] ⩽ eεPr[M(D′) ∈ S] + δ,

and

Pr[M(D′) ∈ S] ⩽ eεPr[M(D) ∈ S] + δ.

where the probability space is over the coin flips of the
mechanism M. If δ = 0, we say that M is ε-differentially
private.

Distributional Differential Privacy (DDP). The above DP
definition is broadly used, but may be inapplicable in cases
where utility degrades rapidly even with small noise, such as
machine learning with deep networks, whose performance
is sensitive to noise in the data. Distributional differential
privacy (DDP) [16].7 was suggested as an alternative to DP
for such cases. The idea is that we might often be willing
to make an assumption about the entropy (inherent random-
ness) of the database. Thus, instead of adding (too much)
extra randomness/noise in the mechanism, we rely on this
inherent randomness to achieve similar privacy guarantees as
DP with less hit on the output’s accuracy. Informally, DDP is
defined via a similar inequality as DP, except instead of fixed
pairs of neighboring databases, we consider databases as
random variables (r.v.’s) from a distribution π, and condition
each probability on a row i being set to some x or x′8. As
the first demonstration of a DDP estimator, we consider the
simple, special case of distributions π with independently
distributed rows, where DDP can be reduced to the simpler
definition below.

Definition 4 (Simplified DDP [38]). Let ∆ be a set of
distributions on databases where each row is independently
distributed. For any ε > 0 and δ > 0, a mechanism M is
(ε, δ,∆)-DDP if for every π ∈ ∆, i ⩽ n, x, x′ ∈ U , and
S ⊆ Range(M), the following inequality holds.

PrD∼π(M(D) ∈ S|Di = x)

⩽eε PrD∼π(M(D) ∈ S|Di = x′) + δ,

3.2. Machine Learning Classifiers

Our treatment uses concepts and results from machine
learning (ML) theory to construct our privacy estimator

7. We focus here on DDP but we believe our approach applies also to
alternative type of noiseless privacy [35], [36], [37].

8. For readers familiar with DDP, we note there is also auxiliary infor-
mation Z, and a ‘simulator’ h. However, in the special case of Z = ∅
and independently distributed database rows, Def. 4 is shown [38] to be
equivalent to DDP.
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and prove (tight) bounds on its accuracy, i.e., how well it
estimates optimal pairs (ε, δ) for the (D)DP definitions.

Let O denote the observation space, and let the label
(or prediction) space be Y = {0, 1} (e.g., outputting 0
means the classifier predicts the observation is from one
distribution and outputting 1 means the classifier predicts
the other distribution). Let P be a joint distribution with the
support of O×Y, where O×Y := {(o, b) : o ∈ O, b ∈ Y} is
a concatenation set. Let I(b, y) be the inequality predicate,
i.e., the indicator function outputs 1 if b is not equal to y,
otherwise 0.

A classifier h : O 7→ Y (also called a classification
algorithm) is a function from the observation space O to
the prediction space Y . For every observation o ∈ O, h
outputs a bit b ∈ Y indicating that h predicts o has label b.

A risk function R is defined with respect to a distribution
P on observables—in fact, it is easier to think of P as a
joint distribution of pairs of the type (x, y) where x is an
observation and y is its label. R takes a classifier h as input,
and computes the probability that a sample drawn from P
is mistakenly classified—i.e., assigned the wrong label—by
h; equivalently, R computes the expectation of the above
inequality predicate. Formally:

R(h) = Pr
(x,y)∼P

[I(h(x), y) = 1] = E
(x,y)∼P

[I(h(x), y)].

We note that in a given application context, the risk R(h)
is typically impossible to compute, as the distribution P is
unknown. However, viewing risk R(h) as the expectation
of the random variable I(h(x), y), allows us to derive a
good estimator for it: the testing risk R̂m(h) which is
defined as the average on a set of independent samples
((x1, y1), · · · , (xm, ym)) ∼ Pm. (We make the sampling
process ((x1, y1), · · · , (xm, ym)) ∼ Pm implicit when it is
clear from context). Formally:

R̂m(h) =
1

m

m∑
i=1

I(h(xi), yi),

In particular, a well-known result using Hoeffding’s
inequality allows us to gauge, up to an error probability
γ, how close R̂m(h) is to the true risk R(h):

Theorem 1 (Hoeffding’s Inequality [39]). With probability
1− γ,

|R̂m(h)−R(h)| ⩽
√

1

2m
ln

2

γ
.

Bayes (optimal) classifiers. A Bayes (optimal) classifier h∗

with respect to P is a classifier that has the minimal risk
R(h∗) among all the classifiers (with respect to the same
P.)

The kNN Classifier Unfortunately, for the same reason
we can not compute R—i.e., because P is typically un-
known9—we can also not construct the Bayes classifier h∗.
Nonetheless, ML theory provides us with several “reason-
able” classifiers that achieve both good performance, and

9. In a typical ML classification experiment, one is able to observe values
sampled from P but does not know the actual distribution.

are close to optimal. One such classifier which is well
understood and thoroughly studied in the field of pattern
recognition is the k-Nearest Neighbor (kNN) classifier—
which we use in our paper as a concrete instantiation of
our framework. To construct a kNN classifier hNNk,n with
n samples, we simply sample and store n training points
((x1, y1), · · · , (xn, yn)) ∼ Pn. To predict the label of an
observation o ∈ O, hNNk,n returns the label taking a majority
vote of the class labels of its k nearest neighbors (according
to the distance function defined on the space) in the stored
training points:

hNN
k,n(o) =

 1

k

∑
i∈[k]

bi

 ,

where bi is the label of the i-th nearest neighbor of o, and
⌊·⌉ is an operator rounding to nearest integer.

The following convergence result for kNN gauges how
close the true risk R(hNNk,n) of the kNN classifier hNNk,n is to
the risk of the optimal classifier, R(h∗).

Theorem 2 (Convergence of k-Nearest Neighbor Classi-
fier [15]). Let P be a joint distribution with support O×Y.
If the conditional distribution P|Y has a density, O ⊆ Rd,
and k =

√
n, then for every α > 0 there is an n0 such that

for n > n0,

Pr[|R(hNN
k,n)−R(h∗)| > α] ⩽ 2e−nα2/(72c2d),

where cd
10 is the minimal number of cones centered at the

origin of angle π/6 that cover Rd. Note that if the number
of dimensions d is constant, then cd is also a constant.

4. Privacy Estimation and Relative DP

In this section, we describe the problem of (black-box)
privacy estimation, and its limitations, which will motivate
our new notion of relative DP.

At a high level, a privacy estimator is an algorithm
which, given a mechanism M and an ε value, outputs the
optimal (smallest) δ for which M is (ε, δ)-DP (symmet-
rically, it can also be given δ and be asked to estimate
ε). As we will show, the above task is impossible without
relaxing the requirements on the accuracy of the estimator.
More concretely, we say that an estimator achieves accuracy
bounds (α, β) when, on inputs these two parameters, its
output δ is at most α-far from the correct answer with
probability at least 1− β.

Below, we first define the notion of optimal δ given any
ε and mechanism M. Note that this optimal δ is a point on
the DP-spectrum (curve) discussed in the introduction. We
also define the quantity δD,D′ which is the optimal δ with
respect to a single, fixed pair of (neighboring) databases
D,D′. Looking ahead in the next section, we will first
tackle the easier problem of estimating δD,D′ (Section 5.1),
before tackling the harder problem of estimating δ itself
(Section 5.2).

10. By Lemma 5.5 of [15], cd satisfies cd ⩽ (1 + 2/
√

2−
√
3)d − 1.
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Definition 5 (Optimal δ). The privacy parameter δD,D′ is
optimal (minimal) with respect to the tuple (M, D,D′, ε) if

δD,D′ = max(max
S⊆O

Pr[M(D) ∈ S]− eε Pr[M(D′) ∈ S], 0).

The privacy parameter δ is optimal (minimal) with re-
spect to the tuple (M, ε) if

δ = max
D≃D′

{
max(δD,D′ , δD′,D)

}
.

Then, we define a (perfect) DP estimator, which, given
any mechanism M ∈ C from a set of mechanisms C and
one of the privacy parameters ε, outputs the optimal δ such
that M is (ε, δ)-DP.

Definition 6 (Perfect DP Estimator). An algorithm is a
Perfect DP Estimator for C, if for every M ∈ C and ε ∈
R⩾0, with black-box access to M, the algorithm outputs the
optimal δ with respect to the tuple (M, ε).

Unfortunately, a perfect DP estimator does not exist.
In fact, we can show something even stronger—even an
approximate version of a DP estimator (Def. 8) still does
not exist (Theorem 3). Intuitively, this is because a general
estimator would need to test the DP property for all pairs of
databases—an impossible task for a polynomial-time algo-
rithm if the number of databases in the mechanism’s domain
is super-polynomial. The proof of the theorem follows the
above intuition and can be found in Appendix B.

Definition 7 (α-tight bound). The estimate δ′D,D′ is a α-
tight bound with respect to (M, D,D′, ε) if

|δ′D,D′ − δD,D′ | ⩽ α,

where δD,D′ is optimal with respect to (M, D,D′, ε).
Similarly, we say δ′ is a α-tight bound with respect to

(M, ε) if

|δ′ − δ| ⩽ α,

where δ is optimal with respect to (M, ε).

Definition 8 (Approximate DP Estimator). An algorithm
is a (α, β)-Approximate DP Estimator for C, if for every
M ∈ C and ε ∈ R⩾0, with black-box access to M, with
probability at least 1 − β, it provides α-tight bound with
respect to the tuple (M, ε), where α, β ∈ [0, 1).

Theorem 3 (Impossibility of even an approximate DP
estimator, Proof in Appendix B). Let α ∈ [0, 1

2 ) and
β ⩾ 1

2 + ν(n), where ν is a non-negligible function. Let
C = {0, 1}n 7→ O be the set of poly(n)-time mechanisms.
There doesn’t exist a poly(n)-time (α, β)-Approximate DP
Estimator for C.

Remark 1 (On the generality of the impossibility result).
One can verify that the above impossibility also applies
to common relaxations of DP from the literature, such as
Renyi DP [12] and (Zero-) Concentrated DP [13], [14].
Intuitively, the core reason for Theorem 3—the need to test
all pairs of neighbors to in general have accurate privacy
estimates—applies also to the above variants. This points
to the idea that in order to circumvent our impossibility, it

seems necessary to bound the size of the mechanism’s input
space, which motivates the relative-DP relaxation detailed
in the following.

4.1. Relative Differential Privacy

In view of the impossibility stated in Theorem 3, we
ask: “Is there a meaningful/useful relaxation to differential
privacy that allows us to circumvent it?" To answer the
above question in affirmative, we introduce relative differ-
ential privacy, which we believe is both minimal (in terms
of intuitive distance from DP) and useful in typical privacy-
requiring applications, such as medical research and census-
data statistics release, as discussed below and on Section 1.
Relative DP considers the privacy of a mechanism relative
to a set of databases. Informally, a mechanism is (ε, δ, T )-
relative DP if on domain restricted to T , the mechanism is
(ε, δ)-DP.

Recall, we defined “neighboring” (Def. 2) as “remove
one row” rather than “remove-or-add one row”, so that the
number of neighbors of a database does not depend on
the domain size of each database row (i.e., the number of
possible “add-one-row” neighbors). This modification did
not change the original DP definition, but allows our Thm 5
to circumvent impossibility Thm 3 for superpolynomial-
size domains in our relative DP definition. Indeed, using
relative DP instead of (classical) DP reduces the complexity
dependence of a privacy estimator on the number of possible
records in our dataset from exponential down to linear. We
note in passing that the use of relative DP also allows
is “consumers” to focus their estimation on the (classes)
of databases relevant for their problem/experiments, which,
we believe, makes the task more approachable for domain
experts, e.g. medical researchers, who are only interested on
specific classes (or even specific sets) of data.

Definition 9 (ε, δ, T -relative Differential Privacy). A
mechanism M := X 7→ O is (ε, δ, T )-relative differentially
private if T ⊆ X and for all subset S ⊆ O and all
neighboring databases D ≃ D′ : D ∈ T :

Pr[M(D) ∈ S] ⩽ eεPr[M(D′) ∈ S] + δ,

and

Pr[M(D′) ∈ S] ⩽ eεPr[M(D) ∈ S] + δ.

where the probability space is over the coin flips of mech-
anism M.

Remark 2 (Relative DP vs. concrete DP). An arguably
simpler-to-define DP-relaxation that circumvents our im-
possibility would be to limit the domain in the classical
DP definition to a given finite set X (for the sake of
this explanation we refer to this relaxation as concrete
differential privacy)11, and require that the mechanism gives
indistinguishable answers for any two databases in X . This
would in fact yield a more general definition—relative DP
is an instance of the above when the X includes T and the

11. In classical DP, X is the set of all databases and their neighbors.
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neighbours of databases in T . However, as discussed below,
this would result in a less intuitive definition which would
be harder to use by non-domain-experts. Indeed, a definition
which specifies the domain X in such an arbitrary manner
leaves it to the “consumer" of the definition (e.g., non-
privacy-expert) to instantiate it with the right X . Instead,
relative DP removes this responsibility from the consumer
and automatically specifies a natural set (of neighbors) for
any given set of databases, so that the intuitive privacy
requirement (i.e., hiding any record’s participation in the
mechanisms’s output) is guaranteed.

Adding to the above, we next show that relative DP
satisfies a very useful notion of T -scalability (Prop. 2),
which is not satisfied if we simply limit domain X (as in
concrete DP), and enjoys several useful properties of DP:
composition (Prop. 3, and 4) and post-processing (Prop. 5))
(see Section C for proofs). In fact, as we show next, relative
DP and DP are the same, if T is defined as the (DP) domain
of the mechanism.

Proposition 1. If the mechanism M is (ε, δ, T )-relative
differentially private and T = X , then the mechanism M
is (ε, δ)-differentially private.

One might be worried that by providing such a relative
version of DP, we might be creating a privacy notion that
melts down once new databases are added to the mix. The
following proposition shows that this is not the case for
relative DP, as long as the mechanism behaves well on the
new database.

Proposition 2. [T Scalable] If the mechanism M
is (ε1, δ1, T1)-relative differentially private, · · · , and
(εk, δk, Tk)-relative differentially private, then the mecha-

nism is also

(
max
i∈[k]

εi,max
i∈[k]

δi,
⋃

i∈[k]

Ti

)
- relative DP.

Relative DP also enjoys the same convenient guarantees
as DP: parallel composition, sequential composition, as well
as post-processing.

Proposition 3. [Parallel Composition] Let T1 × T2 be
the concatenation of set T1 and T2, that is, T1 ×
T2 = {(D1, D2) : D1 ∈ T1 ∧ D2 ∈ T2}. If
M1, · · · ,Mk are k mechanisms, where Mi satisfies
(εi, δi, Ti)-relative differential privacy, then the mecha-
nism M taking database (D1, · · · , Dk) ∈ T1 × · · · ×
Tk as inputs and outputting (M1(D1), · · · ,Mk(Dk)) is(
max
i∈[k]

εi,max
i∈[k]

δi, T1 × · · · × Tk

)
-relative DP.

Proposition 4. [Sequential Composition] If M1, · · · ,Mk

are k mechanisms, where Mi satisfies (εi, δi, T )- rel-
ative differentially privacy, then the mechanism M :=

(M1, · · · ,Mk) is

( ∑
i∈[k]

εi,
∑
i∈[k]

δi, T

)
- relative DP.

Proposition 5. [Post-processing] If M1 is a mechanism
that satisfies (ε, δ, T )-relative differential privacy, then for

any (randomized) algorithm f, the mechanism M :=
f(M1) is (ε, δ, T )-relative differentially private.

5. (Relative) DP Estimator

In this section, we define and analyze our (relative) pri-
vacy estimator, which can be instantiated with any classifier.
Looking ahead, in Sec. 6, we will analyze our estimator
instantiated with the well-studied k-nearest neighbor (kNN)
classifier.

As discussed in the introduction, we start (in Section 5.1)
with estimating the optimal delta for one pair of (neighbor-
ing) databases, i.e., δD,D′ (Def. 5). Although this is clearly
not particularly relevant for a general privacy definition, it
allows us to introduce our main ideas (namely, constructing
a DP estimator out of classifiers—see Sec. 5.1.2), and allows
us a smooth transition to our general estimator which is
described and analyzed in Section 5.2.

5.1. Estimating δ for a pair of databases

As the first step in defining our privacy estimator, we
narrow the definition of a privacy estimator to define a
privacy estimator for a single pair of neighboring databases.
We construct a class of concrete privacy estimator algo-
rithms AB

C by relating the privacy parameter δ to the risk
(or error) of a classification algorithm B (Theorem 4). We
apply Thm. 4 to prove Lemma 1, which constructs a δD,D′-
estimator for a pair of neighboring databases.

Our results in this section show that, despite the im-
possibility of general DP estimators and the lack of tight
bounds in previous work, it is indeed possible to construct
relative DP estimators with tight accuracy bounds. In the
next subsection, we will extend algorithm AB

C of this section
to construct a privacy estimator for any (ε, δ, T )-relative DP
mechanism.

5.1.1. Privacy Estimator for a Pair of Databases. First,
we define a perfect δ estimator for a pair of databases.
Informally, this estimator must always output the optimal
δ (see Def. 5).

Definition 10 (Perfect δ-Estimator for a Pair of
Databases). An algorithm is a Perfect δ-Estimator for a
Pair of Databases for C if for every M ∈ C, a pair of
databases D,D′ and ε ∈ R⩾0, with black-box access to
M, the algorithm outputs the optimal δD,D′ with respect to
the tuple (M, D,D′, ε).

Unfortunately, a perfect estimator, even for just a pair
of (neighboring) databases, does not exist—by Theorem 4,
a perfect estimator would imply the existence of an optimal
classifier achievable with limited training samples. Thus, we
define below an approximate estimator Def. 11, with similar
approximation parameters α and β as for the approximate
DP privacy estimator Def. 8.

Definition 11 (Approximate δ-Estimator for a Pair
of Databases). An algorithm is a (α, β)-Approximate δ-
Estimator for a Pair of Databases for C if for every M ∈ C,
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a pair of databases D,D′ and ε ∈ R⩾0, with black-box
access to M, with probability at least 1− β, it provides α-
tight bound with respect to the tuple (M, D,D′, ε), where
α, β ∈ [0, 1).

5.1.2. Relating Privacy Parameter δ to Risk of the Bayes
Classifier. We now turn to construct the approximate privacy
estimator with respect to a pair of databases (defined in
Def. 11). The basis of our estimator is a connection between
the definition of DP and the risk of a Bayes Classifier,
described in Theorem 4 below.

For a mechanism M, a database D, and privacy param-
eter ε, let

[
M(D)

]
ε

denote the random variable obtained
by tossing a biased coin c where Pr[c = 1] = e−ε, and
receiving value M(D) if c = 1 or receiving value ⊥ (a null
value not in the range of M) if c = 0.

Definition 12 (The distribution P(M,D,D′,ε)). Let
P(M,D,D′,ε) denote the distribution of a random variable,
which is obtained by tossing a fair coin b, and receiving
tuple (M(D′), 1) if b = 1 or receiving value (

[
M(D)

]
ε
, 0)

otherwise.

The proof of the theorem below (App. D) is based on the
fact that δ in (ε, δ)-(relative) DP can be re-written in terms of
a statistical distance12 between two random variables. The
difference between the DP definition and statistical distance
is that in DP, one of the probabilities is scaled by eε. This
means we can re-write δD,D′ in terms of the statistical
distance between two r.v.’s M(D′) and

[
M(D)

]
ε

(which,
intuitively, “scales” the distribution of M(D) by 1/eε).
Then, the theorem follows from the connection between
statistical distance and the accuracy (or risk) of the optimal
(or Bayes) classifier.

Theorem 4 (Mechanism Privacy as Bayes Classifier Risk,
Proof in Appendix D). Let h∗

D,D′ be the Bayes classifier for
P(M,D,D′,ε) (Def. 12, abbreviated as P below). The optimal
delta δD,D′ with respect to the tuple (M, D,D′, ε) satisfies
the following equality

δD,D′ = max
(
1− 2eεR(h∗

D,D′), 0
)
.

Corollary 1 states the relationship between finding the opti-
mal δ and the risk of optimal Bayes classifiers. This implies
that accuracy of any ML-based DP estimator is inherently
tied to the accuracy of its underlying classifier.

Corollary 1. The optimal δ with respect to the tuple (M, ε)
satisfies the equality

δ = max
D≃D′

{
max(1− 2eεR(h∗

D,D′), 1− 2eεR(h∗
D′,D), 0)} .

5.1.3. Privacy Estimator for Neighboring Databases with
Tight Accuracy Bounds. In this section, we take advantage
of the connection between DP and the risk of the Bayes
classifier (Theorem 4), to construct an approximate DP
estimator for a single pair of databases (see Def. 11). Our
algorithm AB

C , Fig. 1, is parameterized by any classifier B,

12. Statistical distance between two r.v. X,Y is defined as ∆(X,Y ) =
maxS |Pr(X ∈ S)− Pr(Y ∈ S)|.

and generates a privacy estimate via the computed risk of
this classifier.

Lemma 1 (δ-Estimator for a Pair of Databases Given
Any Classifier, Proof in Appendix E). Let h∗

D,D′ be the
Bayes classifier for P and hBn a classifier for P pro-
duced by classification algorithm B with n samples. hBn
is consistent with h∗

D,D′: there is a function g(X , n, β) of
input space X , sample size n and β ∈ (0, 1) such that
|R(hBn)−R(h∗

D,D′)| ⩽ g(X , n, β).
Then, the algorithm AB

C with n samples, shown in Fig-
ure 1 , is a (α, β)-Approximate δ-Estimator for a Pair
of Databases for C, for any α = 2eεg(X , n/2, β/2) +
2eε
√

ln(4/β)/n, β ∈ (0, 1).

In other words, the estimator’s error diminishes quickly
if the classifier achieves close-to-optimal risk quickly as the
number of samples n grows (i.e., g diminishes quickly). The
lemma also shows that the error α grows proportionally with
eε; however, since usually ε is a small constant < 1, the
effect of ε is small.

5.2. Estimating Approximate Relative DP

In this section, we extend our algorithm from our previ-
ous section, to construct a privacy estimator for relative DP
(Def. 9). We begin with a formal definition for a relative
DP estimator with tight bounds (Def. 14). Then, we present
our privacy estimator which builds upon algorithm AB

C from
Section 5.1.3. Given any classification algorithm B, our
privacy estimator AB

C,t outputs the privacy parameter for any
mechanism in class C and set of databases of size t.

5.2.1. Our Approximate Relative DP Estimator. Before
describing our DP estimator, we first define the guarantees
such a (α, β)-approximate relative DP estimator should sat-
isfy. Intuitively, these are the same as for an approximate DP
estimator, except we restrict the domain of our mechanism
to the set T , relative to which we define privacy.

Definition 13. Let T ⊆ X be a set of databases. We say the
privacy parameter δT is optimal with respect to (M, T , ε),
if

δT = max
D∈T :
D≃D′

{
max(δD,D′ , δD′,D)

}
,

where δD,D′ is optimal with respect to (M, D,D′, ε). We
say δ′T is an α-tight bound with respect to (M, T , ε), if
|δ′T − δT | ⩽ α.

Definition 14 (Approximate Relative DP Estimator). An
algorithm is a (α, β)-Approximate Relative DP Estimator
for C if for every M ∈ C, set T ⊆ X such that the size of
|T | is finite and ε ∈ R⩾0, with black-box access to M with
probability at least 1 − β, it provides α-tight bound with
respect to the tuple (M, T , ε) for any α, β ∈ [0, 1).

We are now ready to formally define and analyze our
Algorithm, denoted as AB

C,t (see Fig. 2 for a detailed de-
scription). AB

C,t uses our estimator for pairs of neighboring
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Input: A binary classification algorithm B with n samples. A mechanismM∈ C, a pair of databases D,D′ ∈ X , privacy parameter
ε ∈ R⩾0.
Output: δ′D,D′ , the estimate of the optimal delta δD,D′ with respect to the tuple (M, D,D′, ε).
Recall P(M,D,D′,ε) (Def. 12, abbreviated below as P) denotes the distribution of a random variable, which is obtained by tossing
a fair coin b, and receiving tuple (M(D′), 1) if b = 1 or receiving value (

[
M(D)

]
ε
, 0) a otherwise.

1) Initialize n1 ← n/2, n2 ← n/2, and r ← 0.
2) Sample n1 training points (o1, b1), · · · , (on1 , bn1) according to joint distribution P.
3) Taking the n1 training points as inputs, classification algorithm B outputs a classifier hB

n1
.

4) Repeat the process n2 times: ▷ Estimate risk function of classifier hB
n1

with n2 testing samples.

a) Sample a testing point (o, b) according to joint distribution P.
b) Predict the sample o’s label using the trained classifier: b′ = hB

n1
(o). If b′ ̸= b, r ← r + 1/n2.

5) Output δ′D,D′ ← max(1− 2eεr, 0).

a. Recall
[
M(D)

]
ε

is a distribution for tossing a coin c where Pr[c = 1] = e−ε, outputting M(D) if c = 1 or ⊥ (a null value) otherwise.

Figure 1: AB
C , an algorithm for estimating the optimal delta with respect to the tuple (M, D,D′, ε)

databases (see Fig. 1) and runs it for all neighbors for set
T . Intuitively, by union bound, our accuracy degrades mul-
tiplicatively with the total number of neighboring databases.

Theorem 5 ((Relative) DP Estimator Given Any Classifier,
Proof in Appendix F). Let h∗

D,D′ be the Bayes classifier for
P and hBn a classifier for P produced by classification algo-
rithm B with n samples. Let hBn be consistent with h∗

D,D′:
there is a function g(X , n, β) of input space X , sample
size n and β ∈ (0, 1) such that |R(hBn) − R(h∗

D,D′)| ⩽
g(X , n, β). Let T ⊆ X be any set of databases in relative
DP, |T | ⩽ t; m be the maximum number of rows in a
database.

Then, the algorithm AB
C,t, shown in Figure 2, is a (α, β)-

Approximate Relative DP Estimator for C, where α =
2eεg(X , n/2, β/4tm) + 2eε

√
ln(8tm/β)/n, β ∈ (0, 1).

We observe that Theorem 5 implies that the accuracy of
our (black-box) estimator methodology is inherently depen-
dent on |T |. (In fact, Theorem 3 implies that the problem
is intractable for superpolynomial |T |.) To our knowledge,
such a dependence is implicit in all previous works on
privacy estimators [8], [9], [11].

It is also worth noting that it follows from Proposition 2
that modifying a subset of databases in T does not require
re-running the estimator on the whole set T . Instead we only
need to run it on the subset T ′ ⊂ T of modified databases
and adopt the larger δ (from the ones corresponding to sets
T and T ′). This overhead becomes even less relevant for our
motivating scenarios of statistics on medical or census data,
where the databases are mostly static and updated rarely
(new records are batched).

6. (Relative) DP Estimator based on kNN

Our results in Section 5 prove the theoretical accuracy
bounds of our estimator, with respect to any classifier. In this
section, we demonstrate how to apply our general results
to the case when the classifier is kNN. Informally, the
corollaries below hold since kNN satisfies the consistency

requirement in Lemma 1 and Theorem 5 via Theorem 2 [15].
The proofs can be found in Section H.

Note that since Theorem 2 is asymptotic, our tight
accuracy bounds are asymptotic as well.

The first corollary establishes the accuracy of our kNN-
based estimator for a single pair of databases (i.e., some
D ∈ T and one of its neighbors). The statement in Corol-
lary 2 uses as black box Thm 11.1 in Devroye et al. [15]
to give convergence which is asymptotic (in n). To get
more concrete convergence rates such as fixing n0 would
require further assumptions beyond just the existence of a
density. Note that such assumptions are necessary due to
the impossibility result of Antos et al. [17] which implies
the non-existence of a Bayes error estimate with universal
convergence rate. Indeed our Theorem 4 links DP-estimation
to Bayes error rates, so Antos et al. [17] implies there is
no DP-estimator with a universal convergence rate. This
means any DP-estimator with provable convergence rate
must makes such assumptions.

Corollary 2 (δ-Estimator for a Pair of Databases Given
kNN Classifier, Proof in Appendix G). Consider the set of
mechanisms C = X 7→ Rd whose output distributions have
a density. kNN is the kNN classification algorithm with n
samples where k =

√
n. Then there exists a n0 such that

for all n > n0, the algorithm AkNN
C (Fig. 1) is a (α, β)-

Approximate δ-Estimator for a Pair of Databases for C, for
any α = 24eεcd

√
ln(4β)/n+ 2eε

√
ln(4/β)/n, β ∈ (0, 1),

where cd ⩽ (1 + 2/
√

2−
√
3)d − 1 ⩽ 4.86371d (Lemma

5.5, [15]).

Below, Corollary 3 shows the accuracy of our privacy
estimator based on the kNN classifier.

Corollary 3 ((α, β)-Approximate Relative DP Estimator,
using kNN, Proof in Appendix H). Consider the set of
mechanisms C = Um 7→ Rd whose output distribution
has a density. Let T ⊆ X be any set of databases in
relative DP, |T | ⩽ t. Let the algorithm B be AkNN

C with
n samples, shown in Figure 1. Then there exists a n0 such
that for all n > n0, the algorithm AB

C,t (Fig. 2) is a (α, β)-
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Input: An algorithm B with n samples, which estimates the optimal δT with respect to the tuple (M, D,D′, ε) for mechanism family
C. A mechanism M∈ C, a set of databases T , privacy parameter ε ∈ R⩾0.
Output: δ′T , the estimate of the optimal delta δT with respect to the tuple (M, T , ε).

1) For each pair of neighbors D ≃ D′ where D ∈ T , use algorithm B with n samples compute the estimate of δD,D′ and the
estimate of δD′,D . Denote the maximum among these estimates as δ′T .

2) Output δ′T .

Figure 2: AB
C,t, an algorithm for estimating the optimal delta with respect to the tuple (M, T , ε)

Approximate Relative DP Estimator for C, where α =
24eεcd

√
ln(8tm/β)/n+ 2eε

√
ln(8tm/β)/n, β ∈ (0, 1).

From Corollary 3 we see that using the kNN classifier, our
privacy estimator does the best when dimension is very low
(as error increases exponentially with dimension), and that
sample size n reduces error by a

√
n factor. The estimator

error also increases by
√

log(tm), where tm computes the
maximum number of neighbors of T on which to test the
DP inequality (Def. 3).

Note on the use of kNN. kNN is a convenient choice
for estimating Bayes error in our Eureka framework due
to the rich literature on the topic which allows us to prove
accuracy guarantees. However kNN is by no means the only
estimator that could be used. The literature on kNN and a
discussion of the flexibility within the Eureka framework to
choose other Bayes error estimators is given in Section 3.2.

DENSITY ASSUMPTION AND DISCRETE OBSERVABLES.
Our results as stated require the technical assumption that
a mechanism’s (random) output possess a density. This
is a standard assumption in the ML literature and essen-
tially amounts to the observable being smoothly varying.
In fact, common mechanisms that noise their output via
a distribution with density (e.g., Laplace, Gaussian), au-
tomatically satisfy the above smoothness condition on the
density. One can easily generalize this to a discrete observ-
able because a discrete distribution can be approximated
arbitrarily closely by a smooth one-dimensional density.
This means the Bayes/optimal risk between the two discrete
distributions is arbitrarily close to the Bayes risk between
the two arbitrarily close smooth approximations.

NOTE ON THE CURSE OF DIMENSIONALITY: The constant
cd in the kNN convergence theorem (Thm.2) is exponential
in the dimension of the output, often dubbed “the curse
of dimensionality” in the ML literature. In the context
of our use of kNN, this implies that our kNN-based pri-
vacy estimator requires more samples to maintain the same
accuracy as dimension increases. By utilizing a classifier
that aims to improve the dependency on dimension, e.g., a
neural-network, one can lower the sample requirements, as
demonstrated in Section 8.

NOTE ON CHOOSING A DISTANCE FUNCTION: One has the
flexibility to choose the distance metric in a kNN classifier.
Hence, the kNN-based estimator is very general and can be
applied to a wide range of mechanisms. Choosing the best
distance metric may not be obvious and may depend on
the mechanism. For example, in our use cases, we used the

Euclidean distance for mechanisms with real and continuous
outputs (like the Laplacian and Gaussian) and the hamming
distance for (a variant of) sparse vector technique (SVT)
that outputs a bit-vector. Automating (and optimizing) the
choice of the distance metric is an interesting avenue for
future research.

7. Distributional Differential Privacy

As an extension of our results, we present the first
privacy estimator for (ε, δ,∆)-distributional differential pri-
vacy (Def. 4), given ∆ contains database distributions where
each entry is independently distributed. Of importance, by
considering databases as random variables that model a
level of adversarial uncertainty about the data, DDP—unlike
DP—can formally measure the privacy of even deterministic
mechanisms. This means, for the first time, we have shown a
method to heuristically estimate the privacy of deterministic
mechanisms (under independently distributed data).

First, we observe that DDP under the independence
assumption (Def. 4) is very similar to DP. This allows us to
define an approximate privacy estimator in a similar manner.

Definition 15. Let ∆ be a set of distributions on size-m
databases where each row is independently distributed. We
say the privacy parameter δDDP is optimal with respect to
the tuple (M,∆, ε) if

δDDP = max
(

max
π∈∆,i∈[m],x,x′∈U,S⊆O

Pr
D∼π

[M(D) ∈ S|Di = x]

− eε Pr
D∼π

[M(D) ∈ S|Di = x′], 0
)
.

We say δ′DDP is a α-tight bound with respect to (M,∆, ε),
if

|δ′DDP − δDDP| ⩽ α.

Definition 16 (Approximate DDP Estimator). An algo-
rithm is a (α, β)-Approximate DDP Estimator for C if for
every M ∈ C, a set of distributions ∆ and ε ∈ R⩾0, with
black-box access to M, with probability at least 1 − β, it
provides α-tight bound with respect to the tuple (M,∆, ε),
where α, β ∈ [0, 1), and |∆| ⩽ t for some t ∈ N+.

Our DDP estimator AB
C,∆, described formally in Fig. 3,

is essentially the same as our relative DP estimator, except it
is even simpler—here, we only need to run our estimator on
the distributions in ∆, rather than enumerating all databases
in T . The accuracy of AB

C,∆ is thus a corollary that can
be derived similarly as that of Corollary 3 if we instantiate
AB

C,∆ based on the kNN classifier.
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Input: A binary classification algorithm B with n samples, mechanismM∈ C, privacy parameter ε ∈ R⩾0, and set of distributions ∆.
Output: δ′DDP, the estimate of the optimal delta δDDP with respect to the tuple (M,∆, ε).
Let Xx,i,π denote the random variable outputting by the following experiment: sample a database D according to distribution π. Set
the i-th row of D to records x. Return M(D).

Let [Xx,i,π]ε denote the random variable obtained by tossing a biased coin c where Pr[c = 1] = e−ε, and receiving value Xx,i,π if
c = 1 or receiving value ⊥ (a null value not in the range of M) otherwise.
Let P denote the distribution of a random variable, which is obtained by tossing a fair coin b, and receiving tuple (Xx′,i,π, 1) if b = 1
or receiving value ([Xx,i,π]ε , 0) otherwise.

1) Initialize n1 ← n/2, n2 ← n/2, and δ′DDP ← 0.
2) For all π ∈ ∆, i ∈ [m], x, x′ ∈ U

a) Initialize r ← 0.
b) Sample n1 training points (o1, b1), · · · , (on1 , bn1) according to joint distribution P.
c) Taking the n1 training points as inputs, classification algorithm B outputs a classifier hB

n1
.

d) Repeat the process n2 times: ▷ Estimate risk function of classifier hB
n1

with n2 testing samples.

i) Sample a testing point (o, b) according to joint distribution P.
ii) Predict the sample o’s label using the trained classifier: b′ = hB

n1
(o). If b′ ̸= b, r ← r + 1/n2.

e) Update δ′DDP ← max
(
δ′DDP, 1− 2eεr

)
.

3) Output δ′D,D′ .

Figure 3: AB
C,∆, an algorithm for estimating the optimal delta δDDP with respect to the tuple (M,∆, ε)

Corollary 4. Consider the set of mechanisms C = Um 7→
Rd whose output distribution has a density. Let the algorithm
B be AkNN

C with n samples, shown in Fig. 2. The algorithm
AB

C,∆, shown in Figure 3, is a (α, β)-Approximate DDP
Estimator for C, where α = 24eεcd

√
ln(4mt|U|2/β)/n +

2eε
√

ln(4mt|U|2/β)/n, β ∈ (0, 1). 13

8. Validation and Benchmarking

We demonstrate the applicability and accuracy of our
theoretical framework in proof-of-concept implementations
of our estimator on a Dell compute node with two 64-core
AMD Epyc 7662 “Rome" processors and 256 GB memory.
We instantiate our estimator with two different classifiers:
kNN and a neural network. These implementations (1)
validate our theory and benchmark/stress-test our estimator,
(2) showcase our estimator in application scenarios, and (3)
demonstrate using our estimator for DDP.

8.1. Benchmarking and Validating our Theory

Our first two sets of experiments (see Figures 4a and 4b)
compute the privacy spectrum of the simple Laplace and
Gaussian mechanisms, denoted as ML,ε and MG,ε,δ re-
spectively (We recall these mechanisms in Definitions 17
and 18 in appendix I.) The figures show that our em-
pirically estimated spectrum is a near exact match with
the analytically computed optimal δ for these mechanisms
(see Lemma 2 and Lemma 3). It is worth noting that to

13. Recall that U is the space of values each entry in the database can
take (see Def. 1).

our knowledge previous theoretical δ given (by well-known
bounds [34]) for Gaussian is loose14, unlike our Lem. 3.

We further note that (besides analytically computing
the above privacy spectrum curves) the experiments do not
prove something new about the Laplacian and Gaussian
mechanism themselves; but they do serve as empirical ev-
idence of our estimator’s accuracy, and using such mech-
anisms with known theoretical behavior is the best and
only way to demonstrate that our estimator does deliver
on its (theoretically predicted) accuracy. Looking ahead, in
Section 8.2.2 we show how our estimator can be used to
estimate the spectrum of more complex (and/or heuristic)
mechanisms.

The next set of experiments (Figure 4c and 4d) demon-
strates that the accuracy achieved empirically by our (kNN-
based) estimator outperforms the theoretical accuracy α
of the kNN-based estimator even for a small number of
samples. This demonstrates that the asymptotic accuracy of
the estimator kicks in already for small size experiments.
Such experiments are common in ML theory to validate use
of asymptotic behavior to justify practice. (We only show
results of the Laplacian mechanism; we have verified the
same behavior for the Gaussian mechanism as well.)

Testing discrete and high-dimensional output. Our esti-
mator also applies to mechanisms with discrete15 or high-
dimensional output. First, we test our estimator on the
exponential mechanism with the counting query [40], which
has discrete output. For demonstration purposes, we use a
simple 3-row database {0, 1, 1}. We set ε = 2. The results
(see Figure 5a) show that our estimator empirically pro-

14. Since Gaussian standard deviation is
√

N (0,
2 log(1.25/δ)

ε2
), the δ

as the function of ε (the top green curve in Figure 6a,) is very loose.
15. See also the discussion on kNN on Page 11.
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(a) Analytical computed optimal
δ compared with estimated δ for
ML,ε

(b) Analytical computed optimal
δ compared with estimated δ for
MG,ε,δ

(c) Theoretical accuracy α of es-
timated δ vs. number of samples
(Theorem 2).

(d) Empirical accuracy α of esti-
mated δ vs. number of samples (for
ML,ε).

Figure 4: Accuracy check for our DP estimator using kNN classifier

(a) Estimated δ for Exponential mechanism
with counting query on a database. Our esti-
mator using kNN can estimate mechanism with
discrete outputs.

(b) Analytical computed optimal δ com-
pared with estimated δ for MG,ε,δ with 50-
dimensions input

(c) Estimated δ for ML,ε with 50-dimensions
input

Figure 5: Efficacy check for our DP estimators: Handling High Dimensional and Discrete Outputs

duces almost identical privacy spectrum as the analytically
computed one for the above mechanism.

Second, we extend our initial two experiments (low-
dimensional Laplacian and Gaussian) to high-dimension,
to estimate the privacy spectrum of the Laplacian and the
Gaussian when the input and output are vectors. Here, the
kNN classifier becomes inefficient due to the exponential
dependence of theoretically required sample size on dimen-
sion. Therefore, we used a neural-network classifier. The
results (see Figures 5b and 5c) demonstrate that even in
high-dimension, our methodology recovers the analytically
computed privacy spectrum.

8.2. Applications of our Estimator

Now we showcase three useful applications of our pri-
vacy estimation framework: (1) Comparing the (differential)
privacy spectrum (i.e., the tradeoff between ε and δ) of two
mechanisms, (2) Estimating the privacy of more complex
mechanisms, and (3) Verifying mechanism implementations.

8.2.1. Comparing Mechanisms. The (ε, δ) privacy-
spectrum generated by our privacy estimator can be used for
in-depth comparison of two mechanisms. Let us consider
the following example: ML,ε and MG,ε,δ are two algo-
rithms whose output is noised so that they give the privacy
guarantees of (ε, δ) = (1, 0) via Laplace mechanism and
(ε, δ) = (1, 0.00001) via Gaussian mechanism, respectively.

(a) Loose theoretical (top
curve) [34, Theorem A.1] vs.
actual (analytically computed and
estimated) (ε, δ)-privacy spectrum
of MG,ε,δ Lemma 3

(b) Estimated (ε, δ)-privacy spec-
trum of MG,ε,δ and ML,ε. We see
MG,ε,δ (bottom curve) achieves
better (smaller) δ.

Figure 6: Application 1: Comparing mechanism privacy

Typically, one would consider ML,ε an overall better mech-
anism. However, as we argue below, this is not always the
case, and the (ε, δ) spectrum of these mechanisms leads to
a more informed comparison. To demonstrate this, we ana-
lytically computed the spectrum for the Laplacian and the
Gaussian mechanisms16 In Figure 6, we compared the ana-
lytical bound of the Gaussian to (a) its standard loose bound
from [34] and (b) to our new bound on the Laplacian.17 Our
results demonstrate that the superiority of the Laplacian is

16. In fact, for the Gaussian mechanism, [41] already includes an alter-
native way to analytically compute it.

17. For the Laplacian, existing analytic computation do not incorporate
δ and only apply to ε-DP.
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Figure 7: Estimated (ε, δ)-spectrum of MSVT,ε parameterized
with ε = 0.5, δ = 0 (same parameters as in [11]).

not absolute—MG,ε,δ provides a stronger (smaller δ) DP
guarantee for most settings of ε, something which is not
immediate from the much looser bounds from [34]. The
above demonstrates that deeper insight on the privacy of a
mechanism we can obtain by looking at its privacy spectrum
(rather than a single (ε, δ) pair).

Importantly, since we already demonstrated that our esti-
mator’s output matches the analytically computed spectrum
(Figure 4b and 4a), one can use it to arrive at the same
conclusions empirically without the need to analytically
compute the mechaninsms’ privacy specreum which can be
hectic, or even infeasible for more complicated mechanisms,
such as the SVT discussed below, or more complicated ML
tasks. This reinforces our belief that an estimator like Eureka
with theory-backed accuracy can be an important tool in the
hands of domain-experts.

8.2.2. Empirically Estimating Privacy of Complex Mech-
anisms. A major application of our method is for estimating
the privacy of more heuristic approaches. Offering further
evidence of our estimator’s quality and applicability, we
compute the DP spectrum computed for SVT for which
analytical tight privacy bounds are not known. Our experi-
ment (see Figure 7) demonstrate that the privacy (spectrum)
computed by our estimator is similar to the state of the
art computation by [11]. We view applying our estimator
to privatizing more complex mechanisms, e.g., randomized
machine learning algorithms, as a very promising research
direction, albeit beyond the scope of this work which aims
at introducing, analyzing, and validating the theory of our
framework, showing the tractability of our estimator, and
demonstrating its competitiveness for common privacy esti-
mator applications.

8.2.3. Verifying Mechanism Implementation. A common
use of privacy estimators has been in verifying (claims
about) the privacy of DP mechanisms (e.g., [10], [8]).
One common benchmark for this task is to detect buggy
implementations of SVT. We compare our implementation
with the state-of-the-art tailored for the task, by comparing
the estimated privacy of the correct mechanism MSVT,ε

(discussed above) versus the buggy ones MSVT2,ε [20, Alg.
4] and MSVT3,ε [20, Alg. 5]18. Fig. 9a shows that we can

18. In our experiments, we use k = 40 queries, and for simplicity
consider integer-output queries and thresholds that are no more than 2
away from the true query output

Figure 8: Estimated (ε, δ)-spectrum of DDP histogram [38].

detect the worse (higher δ) privacy of the buggy implementa-
tions, with estimated δ comparable to [10]. We further used
our estimator on the buggy-implementation benchmarks for
noisy histogram and noisy max, proposed in [8]. The results
in Fig. 9b and Fig. 9c show that our estimator can detect the
bug as effectively as the state of the art [10]. We have also
tested buggy versions of Laplacian and Gaussian that lead to
the same conclusion, that our estimator can detect bugs there
too. The relevant figures are shown in Appendix, Section J.
We believe that these experiments provide credible evidence
of our claim that our estimator is appropriate for non-experts
to deploy in complex applications while producing quality
privacy estimates.

8.3. Applying to DDP

We demonstrate the applicability of our methods to DDP
by presenting the first estimator for the (noiseless) histogram
mechanism. Using the setting from [38] (databases with
uniform, i.i.d. rows with records in {0, 1} and ε = 0),
our estimates (Fig. 8) follows closely with the theoretical
δ = O(1/

√
n) curve [38] (which can be made concrete in

the simple case of each row being ∈ {0, 1}) between δ and
the number of database rows. We note that this last bench-
mark only scratches the surface of what can be obtained by
applying our estimator to the design of DDP mechanisms
which we consider an excellent question for future research.
Our goal here was to introduce the theoretical framework
and validate it in a wide range of use cases.

9. Conclusion/Future Work

We presented a methodology for black-box privacy es-
timators that combines DP with ML (classifiers) and allows
plug-and-play use of different classifiers to achieve desirable
guarantees. We introduced the privacy spectrum as a more
intuitive way to quantify the privacy guarantee of a given
mechanism and devised, using our methodology, the first
general estimator for the ε, δ privacy spectrum with tight the-
oretical accuracy bounds. We proved an impossibility result
of (ε, δ)-DP estimators when the input space is unlimited,
then circumvented it with relative DP, an intuitive relaxation
that formalizes a limitation on input space. We believe this
limitation can be of independent interest for application
of DP in complex machine learning algorithms, especially
when the available datasets are limited, e.g., genomic or
medical research. Building on our first step in applying our
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methods to estimate DDP, an interesting open problem is to
take this further to other non-standard DP definitions. Lastly,
we show that a kNN-based version of our estimator achieves
high experimental and theoretical accuracy testing mech-
anisms with low dimensional output, whereas the neural
network-based estimator preserves high efficiency even on
high dimensions. This demonstrates promise in alternative
instantiations that selectively plug in different classifiers to
our estimator based on desired properties. Our experiments
provide first proof of concept implementations and highlight
computational bottlenecks, in particular in relation to the
size of δ, of the current state of affairs. Improving on this
bottleneck via ML, algorithmic, and optimized engineering
techniques in an interesting future direction.
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Appendix A.
Additional Figures for Section 8

We include some of the figures referenced in Section 8:
Figures 9a, 9b, and 9c show that our estimator can be used to
distinguish buggy implementations of SVT, noisy histogram,
and noisy max mechanisms, respectively.

Appendix B.
Proof of Impossibility of Approximate DP Es-
timator

Proof of Theorem 3. We will prove the theorem by

1) constructing two mechanisms M and MD, where
MD is a mechanism parameterized with a database
D.

2) showing that there does not exist a polynomial time
algorithm P that can distinguish between M and
MD if D is randomly chosen.

3) proving by contradiction that if the algorithm Eε

defined in the lemma exists, then we can turn it into
a distinguisher P (which was proven impossible).

We start by constructing two mechanisms M and MD.
Let M : {0, 1}n 7→ {0, 1} and MD : {0, 1}n 7→ {0, 1} be
two randomized mechanisms. Let D ∈ {0, 1}n. We define
M as the following: no matter what input in the domain it
takes, M outputs 0 with probability 1

2 otherwise outputs 1
with probability 1

2 . We define MD as the following: given
any input x not equal to D it outputs M(x) otherwise MD

outputs 0 with probability 0 and 1 with probability 1.
We know that M is (0, 0)-differential private, because

its output is independent of its input. Also, we know that
MD is (0, 1)-differential private, because its output is de-
terministic when given D.

Then, we define the following game for algorithm P :
Choose database D uniformly at random from {0, 1}n. Toss
a fair coin b, and give the algorithm P black-box access to
either M or MD based on b. The algorithm P wins if it
can correctly decide whether it was given M or MD.

Since P is running in polynomial time, and has only
black-box access to the mechanism, this means we can
consider P ’s output as a randomized function of its poly(n)
queries D1, D2, · · · (made possibly adaptively) to the mech-
anism. Since M’s and MD’s outputs only differ on input
D, and D is chosen uniformly at random, it means the prob-
ability that P queries D is negligible in n. In other words,
P can only win with at best negligibly better probability
than guessing (1/2).

We now prove by contradiction that Eε defined in the
lemma does not exist. Suppose for contradiction that Eε

does indeed exist. Then, let P do the following: given a
mechanism (one of M or MD), feed this mechanism and
ε = 0 to Eε. If Eε says an estimate δ′ ⩽ α, P guesses
that it was given M. Else, it guesses that it was given MD.
Since, with probability 1

2 + ν(n), Eε should always give
some estimate δ′ ∈ [0, α] given M, and some estimate δ′ ∈

16
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(a) Estimated (ε, δ) spectrum of
MSVT,ε [20, Alg.1] and its two variants.
MSVT2,ε [20, Alg.4] and MSVT3,ε [20,
Alg.5] are not (ε = 1, δ = 0)-DP.

(b) Estimated (ε, δ) spectrum of Noisy his-
togram [8, Alg.9] and its buggy variant. The
buggy version [8, Alg.10] is not (ε = 0.1, δ =
0)-DP.

(c) Estimated (ε, δ) spectrum of four variants
of Noisy max. NM1 and NM3 [8, Alg.5, 6]
satisfy (ε = 0.3, δ = 0)-DP while NM2 and
NM4 [8, Alg.7, 8] do not.

Figure 9: DP-spectrum of variants SVT, Noisy histogram and Noisy max

[1 − α, 1] given MD, it means P should be correct with
probability at least 1

2+ν(n). This contradicts the conclusion
of (2), meaning Eε does not exist.

Appendix C.
Proof of Properties of Relative DP

Proof of Prop. 1, relative DP-to-DP. This proposition
holds by definition of (relative) differential privacy.

Proof of Prop. 2, T -scalability. By the relative DP defini-
tion and the proposition’s condition, the mechanism M
satisfies that, for every pair of neighboring databases D ≃
D′ and D′ ≃ D : D ∈ T and subset S ⊆ Range(M),

Pr[M(D) ∈ S] ⩽ eεi Pr[M(D′) ∈ S] + δi

⩽ emaxi∈[k] εi Pr[M(D′) ∈ S] + max
i∈[k]

δi,

which completes the proof.

Proof of Prop. 3, Parallel composition. Let D =
(D1, · · · , Dk) be a arbitrary database from the set
T1 × · · · × Tk. Let D′ = (D′

1, · · · , D′
k) be a arbitrary

neighbor of D. Without loss of generality, let Dj , j ∈ [k], to
be the database such that Dj ̸= D′

j , and we have Di = D′
i

for i ∈ [k] and i ̸= j. For every subset S ⊆ Range(M), we
have

Pr[M(D) ∈ S]
= Pr[(M1(D1), · · · ,Mk(Dk)) ∈ (S1, · · · ,Sk)]

=
∏
i∈[k]

Pr[Mi(Di) ∈ Si]

= Pr[Mj(Dj) ∈ Sj ]
∏

i∈[k]\{j}

Pr[Mi(Di) ∈ Si]

⩽ (eεj Pr[Mj(D
′
j) ∈ Sj ] + δj)

∏
i∈[k]\{j}

Pr[Mi(D
′
i) ∈ Si]

⩽ eεj Pr[Mj(D
′
j) ∈ Sj ]

∏
i∈[k]\{j}

Pr[Mi(D
′
i) ∈ Si] + δj

= eεj Pr[M(D′) ∈ S] + δj

⩽ (max
i∈[k]

eεi ) Pr[M(D′) ∈ S] + (max
i∈[k]

δi),

which completes the proof.

Proof of Prop. 4, Sequential composition. Let D ∈ T be
any pair of neighbors, D′ ≃ D. For every subset S ⊆
Range(M), we have

Pr[M(D) ∈ S]
= Pr[(M1(D), · · · ,Mk(D)) ∈ (S1, · · · ,Sk)]

=
∏
i∈[k]

Pr[Mi(D) ∈ Si]

=
∏

i∈[k−1]

Pr[Mi(D) ∈ Si]) Pr[Mk(D) ∈ Sk]

⩽
∏

i∈[k−1]

Pr[Mi(D) ∈ Si]
(
eεk Pr[Mk(D

′) ∈ Sk] + δk
)

⩽ eεk (
∏

i∈[k−1]

Pr[Mi(D) ∈ Si]) Pr[Mk(D
′) ∈ Sk] + δk

⩽ e

∑
i∈[k]

εi

Pr[M(D′) ∈ S] +
∑
i∈[k]

δi,

which completes the proof.

Proof of Prop. 5. Let D ∈ T be any pair of neighbors,
D′ ≃ D. For every subset S ⊆ Range(M), define set T =
{t ∈ Range(M1) : f(t) ∈ S}. We have

Pr[M(D) ∈ S] = Pr[f(M1(D)) ∈ S]
=

∑
t∈T

Pr[M1(D) = t]

= Pr[M1(D) ∈ T ]

⩽ eε Pr[M1(D
′) ∈ T ] + δ,

= eε Pr[M(D′) ∈ S] + δ.

which completes the proof.

Appendix D.
Proof: Connecting δ in (ε, δ)-DP with Risk of
Bayes Classifier

Proof of Theorem 4. Let ∆
([

M(D)
]
ε
,M(D′)

)
be the

statistical distance between
[
M(D)

]
ε

and M(D′). Our
plan of proof is the following. We first show the equiva-
lence between the optimal δD,D′ and the statistical distance
∆
([

M(D)
]
ε
,M(D′)

)
.
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Claim 1. The following equation between the optimal δD,D′

with respect to the tuple (M, D,D′, ε) and the statistical
distance ∆

([
M(D)

]
ε
,M(D′)

)
holds:

δD,D′ = max
(
eε
(
∆
([

M(D)
]
ε
,M(D′)

)
− (1− e−ε)

)
, 0
)
.

Proof of Claim 1 By definition of optimal δD,D′ in Defi-
nition 5, we have

δD,D′ = max
(
max
S⊆O

Pr[M(D) ∈ S]− eε Pr[M(D′) ∈ S], 0
)

= max
(
eε max

S⊆O

(
e−ε Pr[M(D) ∈ S]− Pr[M(D′) ∈ S]

)
, 0
)
.

(1)

We first check that the distribution
[
M(D)

]
ε

has the
following property, for all S ∈ O (support of mechanism
M),

Pr
[[
M(D)

]
ε
∈ S

]
= e−ε Pr[M(D) ∈ S].

This is because, for all S ∈ O,
Pr[
[
M(D)

]
ε
∈ S] = Pr[c = 1 ∧M(D) ∈ S]

= Pr[c = 1]Pr[M(D) ∈ S]
(c and M(D) are independent)

= e−ε Pr[M(D) ∈ S].

We are given a method to find the statistical distance
between two distributions by sampling them. The statistical
distance between distributions

[
M(D)

]
ε

and M(D′) is
defined as follows:

∆
( [

M(D)
]
ε
,M(D′)

)
≡ max

S⊆O

(
Pr
[ [

M(D)
]
ε
∈ S

]
− Pr[M(D′) ∈ S]

)
.

By construction,
[
M(D)

]
ε

outputs ⊥ with probability
1 − e−ε, whereas M(D′) outputs ⊥ with probability zero.
Thus, ⊥ can always be included in the set that maximizes
the statistical distance.

∆(
[
M(D)

]
ε
,M(D′))

= max
S∈O

(
Pr[
[
M(D)

]
ε
∈ S]− Pr[M(D′) ∈ S]

)
+
(
(Pr[

[
M(D)

]
ε
= ⊥]− Pr[M(D′) = ⊥]

)
= max

S∈O

(
e−ε Pr[M(D) ∈ S]− Pr(M(D′) ∈ S)

)
+ (1− e−ε)

Then, plug the above equation into the equation 1, we have

δD,D′ = max(eε
(
∆
([

M(D)
]
ε
,M(D′)

)
− (1− e−ε)

)
, 0),

which completes the proof.
Secondly, we show the equivalence between risk of the

the Bayes classifier R(h∗
D,D′) and the statistical distance

∆
([

M(D)
]
ε
,M(D′)

)
.

Claim 2.

∆
([

M(D)
]
ε
,M(D′)

)
= 2 ·

(
1

2
−R(h∗

D,D′ )

)
.

Proof of Claim 2 The statistical distance can be alternatively
defined as

∆
([

M(D)
]
ε
,M(D′)

)
=max

h

∣∣∣ Pr
x∼M(D′)

[h(x) = 1]− Pr
x∼[M(D)]ε

[h(x) = 1]
∣∣∣,

where h is any classifier for the distribution P. Then,

∆
([

M(D)
]
ε
,M(D′)

)
= 2

(
1

2
max
h

∣∣∣ Pr
x∼M(D′)

[h(x) = 1]−
(
1− Pr

x∼[M(D)]ε
[h(x) = 0]

)∣∣∣)

= 2

(
max
h

∣∣∣∣∣12( Pr
x∼M(D′)

[h(x) = 1] + Pr
x∼[M(D)]

ε

[h(x) = 0]
)
−

1

2

∣∣∣∣∣
)

= 2
(
max
h

∣∣∣ Pr
(x,y)∼P

[h(x) = 1, y = 1] + Pr
(x,y)∼P

[h(x) = 0, y = 0]−
1

2

∣∣∣)
= 2
(
max
h

∣∣∣ Pr
(x,y)∼P

[h(x) = y]−
1

2

∣∣∣)
= 2
(
max
h

∣∣∣1− Pr
(x,y)∼P

[h(x) ̸= y]−
1

2

∣∣∣)
= 2
(
max
h

∣∣∣1
2
−R(h)

∣∣∣)
= 2
(1
2
−R(h∗

D,D′ )
)
.

Show the equivalence between the optimal δD,D′ and
the risk of the the Bayes classifier R(h∗). Combining the
Claim 1 and the Claim 2, it is easy to show that

δD,D′ = max
(
1− 2eεR(h∗

D,D′), 0
)
.

which completes the proof.

Appendix E.
Proof: General Estimator

Proof of Lemma 1. For every (M, D,D′, ε), and its corre-
sponding distribution P , we have the following. Recall the
random variable r as computed in Step 4, Figure 1, is the
testing risk for classifier hBn1

with n2 testing samples. We
could show that r is a good approximate of the risk of the
Bayes classifier R(h∗

D,D′).

Claim 3. With probability at least 1− β,

|r −R(h∗
D,D′)| ⩽ g(X , n/2, β/2) +

√
ln(4/β)/n.

Proof of Claim 3 Recall n1 = n/2, defined in Step 1,
Fig. 1. By the condition in the Lemma, when the sample size
parameter n1 is large enough, we have that, with probability
at least 1− β/2,

|R(hBn1
)−R(h∗

D,D′ )| ⩽ g(X , n1, β/2) = g(X , n/2, β/2).

By Theorem 1, plug in n2 = n/2 (defined in Step 1,
Fig. 1), with probability at least 1− β/2, we have

|r −R(hB
n1

)| ⩽
√

ln(4/β)/n.

Apply union bound and triangular inequality to the
above two inequalities, with probability at least 1 − β, we
have

|r −R(h∗)| ⩽ |r −R(hB
n1

)|+ |R(hB
n1

)−R(h∗
D,D′)|

⩽ g(X , n/2, β/2) +
√

ln(4/β)/n,

which completes the proof. Using Claim 3, we could show
that δ′D,D′ (defined in Step 5, Fig. 1) is a good approximate
of δD,D′ with respect to (M, D,D′, ε).
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Claim 4. With probability at least 1− β,

|δ′D,D′ − δD,D′ | = 2eεg(X , n/2, β/2) + 2eε
√

ln(4/β)/n.

Proof of Claim 4∣∣δ′D,D′ − δD,D′
∣∣

=
∣∣∣max

(
1− 2eεr, 0

)
− δD,D′

∣∣∣ (By Fig. 1, Step 5,)

=
∣∣∣max

(
1− 2eεr, 0

)
−max

(
1− 2eεR

(
h∗
D.D′

)
, 0
) ∣∣∣

(By Theorem 4)

⩽
∣∣∣((1− 2eεr

)
−

(
1− 2eεR

(
h∗
D.D′

)) ∣∣∣
= 2eεg(X , n/2, β/2) + 2eε

√
ln(4/β)/n. (By Claim 3)

By Claim 4, we have that for every tuple (M, D,D′, ε)
the algorithm AB

C provides a α = 2eεg(X , n/2, β/2) +
2eε
√

ln(4/β)/n tight bound with probability 1 − β. Thus
concludes the proof that AB

C is a (α, β)-Approximate δ-
Estimator for a Pair of Databases for C.

Appendix F.
Proof: General relative-DP Estimator

Proof of Theorem 5. Let q be the number of neighboring
databases D ≃ D′ where D ∈ T . Let {δ1, · · · , δ2q} be
the set of optimal δD,D′ (and δD′,D) for each neighboring
databases, {δ′1, · · · , δ′2q} (computed in Step 1, Fig. 2) be the
set of estimate for {δ1, · · · , δ2q}. δ′1 is the estimate of δ1,
etc.

By Lemma 1, we could say that for each i ∈ [2q], with
probability at least 1− β/2q,

|δ′i − δi| ⩽ 2eεg(X , n/2, β/4q) + 2eε
√

ln(8q/β)/n,

By a union bound, with probability at least 1− β,

max
i∈[2q]

|δ′i − δi| ⩽ 2eεg(X , n/2, β/4q) + 2eε
√

ln(8q/β)/n. (2)

Denote the index of δT in set {δ1, · · · , δ2q} as a. That
is δT = δa = max

i∈[2q]
δi. Denote the index of the maximum

estimate in set {δ′1, · · · , δ′2q} as b. That is δ′b = max
i∈[2q]

δ′i. The

algorithm AB
C,t outputs δ′b as the estimate of δT . Then, with

probability at least 1− β,

|δ′b − δT | = |δ′b − δa|
⩽ max

(
|δ′b − δb|, |δ′a − δa|

)
⩽ max

i∈[2q]
|δ′i − δi|.

(3)

We bound the total number of neighboring databases q.
Because the size of the databases set T is smaller than t,
there must exist at most tm (where m is the (maximum)
number of database rows) neighbours of databases in T .
That is, q ⩽ tm.

Combining Inequalities 2 and 3, with probability at least
1− β,

|δ′b − δT | ⩽ 2eεg(X , n/2, β/4tm) + 2eε
√

ln(8tm/β)/n,

which completes the proof.

Appendix G.
Proof: Estimator using kNN

Proof of Corollary 2. The algorithm AkNN
C with the clas-

sification algorithm kNN is a concrete instantiation of
AB

C , shown in Figure 1. To prove that AkNN
C is a (α, β)-

Approximate δ-Estimator for a Pair of Databases for C, we
could directly plug in the convergence results of kNN into
Lemma 1 and then complete the proof.

For every tuple (M, D,D′, ε), where M ∈ C, we have
two random variables: M(D′) and

[
M(D)

]
ε
. We also

have a corresponding distribution P(M,D,D′,ε) (Def. 12,
abbreviated below as P). Recall that the experiment of
generating P is following: Toss a fair coin b. If b = 0
the experiment outputs a sample o according to distribution[
M(D)

]
ε
, or otherwise outputs a sample o according to

distribution M(D′).
Let h∗ and R(h∗) be the Bayes classifier and the risk

of the Bayes classifier for the distribution P , respectively.
Step 3 of algorithm AkNN

C (Figure 1) computes a kNN clas-
sifier hNNk,n1

for distribution P. Step 4 computes R̂n2
(hNNk,n1

),
the testing risk of hNNk,n1

with n2 testing samples.
Because M ∈ C, the distribution of M(D′) has density.

Moreover, the distribution
[
M(D)

]
ε

almost has a density
except at point ⊥. By Chapter 11.2 of [15], the density
assumption was needed to avoid problems caused by training
points having equal distances to testing points (i.e., so that
each point has exactly k-nearest neighbors). For the point
⊥, we could define the distance from it to any other points
as infinity, so at point ⊥ the distance tie problem does not
appear even without the density assumption. This means we
could still use the result from Theorem 2. Thus, Theorem 2’s
condition suffices. By Theorem 2, when the sample size
parameter n1 is large enough, we have that

Pr[|R(hNN
k,n1

)−R(h∗)| > α] ⩽ 2e−n1α
2/(72c2d).

Recall n1 = n/2, defined in Step 1, Fig. 1. Set
2e−n1α

2/(72c2d) = β/2. Rearranging the inequality, with
probability at least 1− β/2,

|R(hNN
k,n1

)−R(h∗)| ⩽ 12cd
√

ln(4β)/n (4)

Plug the above inequality into Lemma 1, we have that
for every δD,D′ with respect to the (M, D,D′, ε) and its
estimate δ′D,D′ (defined in Step 5, Fig. 1)

|δ′D,D′ − δD,D′ | ⩽ 24eεcd
√

ln(4β)/n+ 2eε
√

ln(4/β)/n,

which completes the proof.

Appendix H.
Proof: relative-DP Estimator using kNN

Proof of Corollary 3. The proof is just to plug in Corol-
lary 2 into the Theorem 5. So we have, with probability at
least 1− β,

α ⩽ 24eεcd
√

ln(8tm/β)/n+ 2eε
√

ln(8tm/β)/n.
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Appendix I.
Analytical Computed Privacy of Laplacian and
Gaussian Mechanism

Definition 17 (The Laplacian vector query mechanism
ML,ε). Let ML,ε denote the DP vector query using Lapla-
cian mechanism, which takes a d-dimensions real vector
x ∈ Rd as input, samples a d-dimensions noise vector
v ∼ Lap(ε)d according to Laplace distribution, and then
returns x + v as the mechanism’s output. ML,ε is (ε, 0)-
differential private [33] if the L1 distance between any input
x and any of its neighbor is 1.

Definition 18 (The Gaussian vector query mechanism
MG,ε,δ). Let MG,ε,δ denote the DP vector query using
Gaussian mechanism, which takes a d-dimensions real vec-
tor x ∈ Rd as input, samples a d-dimensions noise vector
v ∼ N (0, 2ε−2log(1.25/δ))d according to Gaussian distri-
bution, and then returns x + v as the mechanism’s output.
MG,ε,δ is (ε, δ)-differential private [33] if the L2 distance
between any input x and any of its neighbor is 1.

Lemma 2. Let ML,ε be the vector query mechanism defined
in Definition 17 with dimension d = 1. Let δ(ε′) be the
optimal δ (Def. 5) with respect to the tuple (ML,ε, ε

′). δ(ε′)
satisfies the following equality

δ′(ε′) =

{
1− e−

1
2
(ε−ε′) ε′ ∈ [0, ε]

0 ε′ ⩾ ε.
(5)

Proof. Note that for a given ε, the optimal δ of ML,ε is the
maximum optimal δ among all neighboring pair given such
ε. It only depends on the L1 distance between its input x and
x’s neighbor but not depends on what x is. The larger the L1
distance between x and its neighbor, the larger the optimal
delta with respect to such neighboring pair. For ML,ε with
dimension d = 1, it is obvious the the DP-spectrum with
respect to (D,D′) = (0, 1) equals to the DP-spectrum of
ML,ε. So we only computed the optimal δ with respect to
the tuple (ML,ε, ε, 0, 1).

By Definition 5, we have

δ(ε′) = max(max
S⊆O

Pr[ML,ε(D) ∈ S]− eε
′
Pr[ML,ε(D

′) ∈ S], 0),

where O = Range(ML,ε).
For ε′ ⩾ ε, by the differential privacy definition shown

in Definition 3, we know

max
S⊆O

Pr[ML,ε(D) ∈ S]− eε
′
Pr[ML,ε(D

′) ∈ S] ⩽ 0,

so that

δ(ε′) = 0.

Now we turn to the case ε′ < ε. We first recall the
probability density function of ML,ε(D)

Pr[ML,ε(D) = x] =
ε

2
e−ε|x|,

where x ∈ R. Similarly, the probability density function of
ML,ε(D

′) is

Pr[ML,ε(D
′) = x] =

ε

2
e−ε|x−1|,

where x ∈ R.
For ε′ < ε,

δ(ε′) = max(max
S⊆O

Pr[ML,ε(D) ∈ S]− eε
′
Pr[ML,ε(D

′) ∈ S], 0)

= max
S⊆O

Pr[ML,ε(D) ∈ S]− eε
′
Pr[ML,ε(D

′) ∈ S]

=

∞∫
−∞

max(0,Pr[ML,ε(D) = x]− eε
′
Pr[ML,ε(D

′) = x])dx

(6)

Denote x+ ∈ R such that e−ε|x+| − eε
′
e−ε|x+−1| = 0.

The function Pr[ML,ε(D) = x] − eε
′
Pr[ML,ε(D

′) =
x] has only one zero, that is x+. For all x ⩽ x+,
Pr[ML,ε(D) = x]− eε

′
Pr[ML,ε(D

′) = x] ⩾ 0, otherwise
Pr[ML,ε(D) = x] − eε

′
Pr[ML,ε(D

′) = x] < 0. One can
show

x+ =
1

2
(1− ε′

ε
).

Plug in the equation 6, we have

δ(ε′) =

x+∫
−∞

Pr[ML,ε(D) = x]− eε
′
Pr[ML,ε(D

′) = x]dx

=

x+∫
−∞

ε

2
(e−ε|x| − eε

′
e−ε|x−1|)dx

= 1− e−
1
2
(ε−ε′),

where the last step is by integration.

Lemma 3. Let MG,ε,δ be the vector query mechanism
defined in Definition 18 with dimension d = 1. Let δ(ε′)
be the optimal δ (defined in Def. 5) with respect to the tuple
(MG,ε,δ, ε

′). δ(ε′) satisfies the following equality

δ(ε′) =
1

2
[1 + erf(

x+

σ
√
2
)− eε

′
(1 + erf(

x+ − 1

σ
√
2

)),

where σ2 = 2 log(1.25/δ)
ε2 , ε′ > 0, x+ = 1

2 (1 − 2σ2ε′) and
erf(x) = 2√

π

∫ x

0
e−s2ds (the standard error function.)

Proof. Due to the same reason as we explained in the
proof of Lemma 2, since the DP-spectrum with respect to
(D,D′) = (0, 1) equals to the DP-spectrum of MG,ε,δ ,
we only computed the optimal δ with respect to the tuple
(ML,ε, ε, 0, 1).

By Definition 5, we have

δ(ε′) = max(max
S⊆O

Pr[MG,ε,δ(D) ∈ S]−eε
′
Pr[MG,ε,δ(D

′) ∈ S], 0),

where O = Range(MG,ε,δ).
We then recall the probability density function of

MG,ε,δ(D)

Pr[MG,ε,δ(D) = x] =
1√
2πσ2

e
− x2

2σ2 ,

where x ∈ R. Similarly, the probability density function of
MG,ε,δ(D

′) is

Pr[MG,ε,δ(D
′) = x] =

1√
2πσ2

e
− (x−1)2

2σ2 ,
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Figure 10: Application 2: verify implementation of ML,ε mecha-
nism, by checking which ε, δ trade-off curve the implementation
falls under. Different curves representML,ε with different amount
of added noise.

Figure 11: Application 2: verify the mechanism MG,ε,δ(ε =
1, δ = 0.00001) is correctly implemented

where x ∈ R.

x+ = 1
2 (1 − 2σ2ε′) is the value such that

Pr[MG,ε,δ(D) = x+] − eε
′
Pr[MG,ε,δ(D

′) = x+] = 0.
The function Pr[MG,ε,δ(D) = x] − eε

′
Pr[MG,ε,δ(D

′) =
x] has only one zero, that is x+. For all x ⩽ x+,
Pr[MG,ε,δ(D) = x]− eε

′
Pr[MG,ε,δ(D

′) = x] ⩾ 0, other-
wise Pr[MG,ε,δ(D) = x]− eε

′
Pr[MG,ε,δ(D

′) = x] < 0.

Now we have, for all ε′ > 0,

δ(ε′) = max(max
S⊆O

Pr[MG,ε,δ(D) ∈ S]− eε
′
Pr[MG,ε,δ(D

′) ∈ S], 0)

= max
S⊆O

Pr[MG,ε,δ(D) ∈ S]− eε
′
Pr[MG,ε,δ(D

′) ∈ S]

=

∞∫
−∞

max(0,Pr[MG,ε,δ(D) = x]− eε
′
Pr[MG,ε,δ(D

′) = x])dx

=

x+∫
−∞

Pr[MG,ε,δ(D) = x]− eε
′
Pr[MG,ε,δ(D

′) = x]dx

=

x+∫
−∞

Pr[MG,ε,δ(D) = x]− eε
′

x+∫
−∞

Pr[MG,ε,δ(D
′) = x]

= (
1

2
+

1

2
erf(

x+

σ
√
2
))− eε

′
(
1

2
+

1

2
erf(

x+ − 1

σ
√
2

))

=
1

2
[1 + erf(

x+

σ
√
2
)− eε

′
(1 + erf(

x+ − 1

σ
√
2

)),

which completes the proof.

Appendix J.
More Experiments on Verifying Mechanism
Implementation

Finally, for mechanisms for which the privacy spectrum
can be analytically computed, e.g., Laplace (Lemma 2)
and Gaussian (Lemma3) our verification can be even more
accurate. To do so, we first generate several analytically
computed (ε, δ) curves for ML,ε, w.r.t. added noise that
guarantees at least (ε, δ = 0)-DP, for ε = 0.999, 1, 1.001.
We see (Fig. 10) that the ε, δ trade-off of the implementation
is the closest to the analytically computed curve generated
by mechanism ML,ε with noise according to ε = 1, which
is a good indication that in fact our implementation satisfies
ε = 1. This same technique also applies to, e.g., the
Gaussian mechanism (Fig. 11).
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