
Fast Fully Oblivious Compaction and Shuffling∗

Sajin Sasy
University of Waterloo
Waterloo, ON, Canada
ssasy@uwaterloo.ca

Aaron Johnson
U.S. Naval Research Laboratory

Washington, D.C., U.S.A.
aaron.m.johnson@nrl.navy.mil

Ian Goldberg
University of Waterloo
Waterloo, ON, Canada
iang@uwaterloo.ca

ABSTRACT

Several privacy-preserving analytics frameworks have been pro-
posed that use trusted execution environments (TEEs) like Intel
SGX. Such frameworks often use compaction and shuffling as core
primitives. However, due to advances in TEE side-channel attacks,
these primitives, and the applications that use them, should be fully
oblivious; that is, perform instruction sequences and memory ac-
cesses that do not depend on the secret inputs. Such obliviousness
would eliminate the threat of leaking private information through
memory or timing side channels, but achieving it naively can result
in a significant performance cost.

In this work, we present fast, fully oblivious algorithms for com-
paction and shuffling. We implement and evaluate our designs to
show that they are practical and outperform the state of the art.
Our oblivious compaction algorithm, ORCompact, is always faster
than the best alternative and can yield up to a 5× performance
improvement. For oblivious shuffling, we provide two novel algo-
rithms: ORShuffle and BORPStream. ORShuffle outperforms
prior fully oblivious shuffles in all experiments, and it provides the
largest speed increases—up to 1.8×—when shuffling a large num-
ber of small items. BORPStream outperforms all other algorithms
when shuffling a large number of large items, with a speedup of
up to 1.4× in such cases. It can obtain even larger performance im-
provements in application settings where the items to shuffle arrive
incrementally over time, obtaining a speedup of as much as 4.2×.
We additionally give parallel versions of all of our algorithms, prove
that they have low parallel step complexity, and experimentally
show a 5–6× speedup on an 8-core processor.

Finally, ours is the first work with the explicit goal of ensuring
full obliviousness of complex functionalities down to the implemen-
tation level. To this end, we design Fully Oblivious Assembly Veri-
fier (FOAV), a tool that verifies the binary has no secret-dependent
conditional branches.

1 INTRODUCTION

The recent advances and availability of trusted execution envi-
ronments (TEEs) have provided an opportunity to deploy privacy-
preserving data analytics with high utility. As long as the TEEs are
correctly designed and implemented, they can guarantee to a re-
mote party that a given set of instructions is correctly and privately
executed by an enclave (secure container) on the local server.

For instance, Bittau et al. [9] design the Prochlo system to sup-
port large-scale monitoring of software activities such as teleme-
try, error reporting, or demographic profiling. Prochlo uses TEEs
(namely Intel SGX [2]) to provide strong privacy guarantees to
user data. Similarly, the Private Sampling-based Query Framework

∗This is an extended version of our CCS 2022 paper. [49]

(PSQF) [50] uses TEEs to provide confidentiality and integrity guar-
antees to user data while performing differentially private queries
based on sampling [7].

Both of these frameworks make key use of shuffling; that is,
putting data items in a uniformly random order. Amajor component
of Prochlo is the Stash Shuffle algorithm, which is designed to
overcome performance limitations of SGX enclaves. Prochlo shuffles
data to logically separate incoming data items from the identities
of their contributors before the analysis is performed. In PSQF,
shuffling is used for random sampling. The privacy guarantees of
these shuffles rest heavily on their obliviousness; that is, the extent
to which their observable actions, such as memory accesses, are
independent of the data items and the random order they are put in.
However, the shuffling algorithms used in these systems are not in
fact oblivious with respect to state-of-the-art TEE adversaries [11,
30, 32, 38, 39]. Such adversaries can observe memory accesses in
supposedly “protected”memory and at high granularity (e.g., within
pages), which additionally allows them to observe conditional code
branching behaviour.

Therefore, in this work, we design and evaluate novel oblivious
shuffling algorithms that are fully oblivious in that all memory ac-
cesses and code branching are independent of the inputs and output
order. While it is always possible to make an existing algorithm
fully oblivious (e.g., by replacing memory accesses with linear scans
and executing all possible code branches), doing so can come at a
high performance cost. We present the Oblivious Recursive Shuf-
fling algorithm, ORShuffle, which experimentally outperforms
the classic (and still state-of-the-art, as explained by Asharov et
al. [3, §1]) method for oblivious shuffling using random labels and a
bitonic sorting network (Bitonic Shuffle). ORShuffle achieves the
greatest speedup when shuffling many small items. We also present
the BORPStream algorithm, which provides experimental perfor-
mance competitive to Bitonic Shuffle with notable performance
improvements when shuffling many large items. BORPStream is
based on the Bucket Oblivious Random Permutation (BORP) of
Asharov et al. [3], but includes significant modifications to BORP in
order to obtain obliviousness and efficiency. These changes further
enable significant speed increases in the incremental data setting,
where data items arrive sequentially over time. An example applica-
tion in this setting is Prochlo, as the data are submitted by clients in
an uncoordinated way, and to provide privacy enough items must
accumulate before shuffling and analysis.

A key component of our shuffling algorithms is a novel obliv-
ious algorithm for compaction; that is, the problem of permuting
items in an array so that a “marked” subset of them appears at the
beginning. Oblivious compaction is a generally useful tool for obliv-
ious algorithms, with one common use being to filter out “dummy”
items inserted earlier to mask conditional memory writes (e.g., in
an ORAM [5] or an oblivious database query [29]). Several oblivious

1

Sajin Sasy, Aaron Johnson, and Ian Goldberg

compaction algorithms have been given recently [5, 6, 18, 34], but
these algorithms have high constants, and practical improvements
have not been observed since Goodrich [22]. Our oblivious recur-
sive compaction algorithm, ORCompact, improves performance
in practice, which we demonstrate experimentally. Moreover, OR-
Compact is order-preserving; that is, it maintains the relative order
among marked items. This property, also provided by Goodrich
compaction, is useful when compaction is used as a subroutine and
later steps require that marked items stay in the same order [29].

It is also important that our algorithms be parallelizable because
many TEE systems, including Prochlo and PSQF, are designed to
process large amounts of data. We therefore give efficient paral-
lel versions of our shuffling and compaction algorithms, and we
implement and test them.We note that our parallel compaction algo-
rithm is the first practical such algorithm to be explicitly described,
and a straightforward parallelization of Goodrich compaction adds
significant overhead (see §7).

We summarize our contributions as follows:
1) We design and analyze the novel fully oblivious compaction
algorithm ORCompact (§3). We analytically show it is efficient and
give an efficient parallel version. Experiments show good practical
performance, for example compacting 223 items of 8 bytes each in
under 200ms. They also show a 2–5.2× performance improvement
over the state of the art, Goodrich’s tight compaction [22].
2) We design and analyze the fully oblivious shuffling algorithm
ORShuffle (§4).ORShuffle internally usesORCompact. Our anal-
yses show that it is practically efficient and parallelizes well. Exper-
imentally, it consistently outperforms prior fully oblivious shuffles,
achieving the most improvement when shuffling a large number of
small items. For example, ORShuffle shuffles 224 8-byte items in
9.56±0.05 s, while Bitonic Shuffle takes 16.78±0.03 s.
3) We design and analyze BORPStream. BORPStream internally
uses both ORShuffle and ORCompact. Our experiments show
that naively adapting BORP results in poor performance but that
BORPStream yields competitive performance overall and signifi-
cant improvements when shuffling a large number of large items.
For example, BORPStream shuffles 220 4 KiB items in 371.9±0.8 s,
while Bitonic Shuffle takes 523.9±0.2 s. Moreover, it can partially
shuffle data items individually as they arrive, reducing the time
needed to produce a shuffle after the last item is received. For ex-
ample, BORPStream finishes a shuffle of 220 4KiB items in just
124.7±0.1 s after the last item’s arrival.
4) We design Fully Oblivious Assembly Verifier (FOAV), a tool that
helps us ensure that the binaries produced after compilation are
indeed fully oblivious (§6). FOAV tracks all the conditional jumps in
the final binary and verifies that the operands of such jumps have
been marked safe by our code instrumentation. All of our code is
available at https://crysp.uwaterloo.ca/software/obliv/.

2 BACKGROUND

2.1 Trusted Execution Environments (TEEs)

Since their inception with Intel TXT [25] more than a decade ago,
TEEs have undergone several iterations of refinements. Recent
advances in hardware-aided TEEs such as Intel SGX [2], AMD
SEV [28], and their open-source sibling Keystone [31] can provably
execute programs securely in hardware-protected containers called

enclaves that provide strong confidentiality and integrity guarantees,
even if its host is malicious. Effectively they provide a small Trusted
Computing Base (TCB) on otherwise malicious servers. For ease
of exposition, we limit the discussion of how TEEs provide these
guarantees by just detailing how it is achieved in Intel SGX. Intel
SGX is the most mature TEE among the choices available today, and
we use it to implement and benchmark our algorithms. However,
the techniques used by other TEEs are similar to those of SGX,
making our work applicable to them as well.

In Intel SGX, the enclaves provide trusted execution environ-
ments by bootstrapping security from cryptographic keys that are
fused into the processor at manufacture time [2]. At boot time such
processors set aside a portion of their available DRAM as Processor
Reserved Memory (PRM). All accesses to memory pages in the PRM
occur through Intel’s Memory Encryption Engine (MEE), which
uses the processor-fused keys to encrypt these pages every time
they leave the system cache and return to the PRM. Similarly MEE
decrypts and integrity checks all pages loaded from the PRM be-
fore they are moved to the cache for use by the SGX-supported
processor; thus the contents of these pages are always protected.

The SGX threat model allows an adversary to control the soft-
ware stack of an SGX-supported server, including in particular the
OS. The adversary may have physical access to server but is as-
sumed to be incapable of physically tampering with the processor
chip, extracting the processor-fused keys, or snooping the state
of the processor registers, which would void the purported secu-
rity guarantees. Nonetheless, the adversary is formidable and can
observe all the shared resources and peripherals.

Researchers have identified several attacks on SGX [11, 30, 32,
38, 39, 53, 57, 58]. Most of these attacks break confidentiality by ex-
ploiting side channels or metadata that arise from secret-dependent
memory accesses or control-flow branching. These attacks motivate
designing the trusted code to be data-oblivious as a defense [43, 48].

2.2 Degrees of Obliviousness

Motivated by attacks on TEEs, we identify three independent ways
in which an enclave program can be oblivious to secret data.
1) External-memory oblivious: Memory accesses to data outside
of the PRM are independent of any secret data.
2) Protected-memory oblivious: Memory accesses to data within
the PRM are independent of any secret data. The literature has
provided two finer granularities of attack surfaces on protected
memory access patterns, namely:

i) Page oblivious: Several proposed attacks leverage the fact
that the untrusted OS is still responsible for page table management
of enclave programs. These attacks induce page faults on enclave
programs to extract the memory locations accessed by the program.
However, SGX masks the last 12 bits of a page fault address to the
untrusted OS, thus limiting the immediate memory access pattern
leakage to a malicious OS to page-level granularity (4 KiB) [53, 57].

ii) Cacheline oblivious: Advanced attacks [11, 30, 38] can ex-
tract the precise address of the (64 B) cacheline loaded during a
page fault.

iii) Subcacheline oblivious: There have been no side-channel
attacks at a finer granularity than cache level. Nonetheless it is
conceivable that future research might discover attacks that can

2

https://crysp.uwaterloo.ca/software/obliv/

Fast Fully Oblivious Compaction and Shuffling

extract the exact (8 B) word loaded from a cacheline to a register in
a memory fetch operation.
3) Control-Flow oblivious: Orthogonal to leakages from data
accesses induced by the execution of the trusted program, an-
other form of leakage arises with secret-dependent control flow
branches [32, 39]. These attacks can extract the exact branch chosen
in a secret-dependent control flow branch, thus leaking information
about the secret. We say a program is control-flow oblivious if it
has no control branches in its execution dependent on secret data.

We say that a program is fully oblivious if it satisfies all the above
definitions of obliviousness (see Appendix A for a formal definition).
While previous work using TEEs [9, 29, 36, 45, 59] has satisfied a few
of these definitions, none has targeted all of them. By providing full
obliviousness, we defend against all attacks that depend on memory
or control-flow side channels [11, 30, 32, 38, 39, 53, 57, 58]. Note that
we do not defend against hardware side channel attacks [12, 41, 56].
We provide more details on TEE attacks in Section 2.3.

An obstacle to obtaining full obliviousness is that even if source
code is control-flow oblivious, compilation may not preserve that
obliviousness. Compilers are notorious for optimizing away pro-
gramming logic that was intended to provide security guarantees
like constant-time code, or side-channel resilient memory access
patterns [54]. To address this, we design FOAV, a tool that helps
verify the control-flow obliviousness of the program binary. We
describe FOAV in Section 6.4.

Without fully oblivious algorithms a TEE adversary, in the worst
case, can distinguish the locations of real blocks in the array from
those of dummies in the compaction setting, and can infer the final
permutation of a shuffle. These algorithms are typically used as
building blocks for applications like Prochlo to provide an anonym-
ity set to users’ data by shuffling them before analysis, or for provid-
ing strong differential privacy guarantees for data in PSQF. Leakages
in the underlying oblivious shuffle hence either deanonymize users
or provide significantly weaker privacy properties than claimed.
Ours is the first work that designs compaction and shuffling algo-
rithms with the explicit goal of being fully oblivious, and the first
to provide a fully oblivious implementation.

2.3 TEE Attacks

The taxonomy of obliviousness we present above is informed by
various recent side-channel attacks on programs running in TEEs.
Page-granular attacks: Xu et al. [58] presented controlled-chan-
nel attacks, which allow a malicious OS to infer sensitive data when
the victim program has input-dependent control or data transfer.
Similarly, Shinde et al. [53] demonstrate that this page fault side
channel can be used to extract encryption keys from implementa-
tions of cryptographic routines. This led to defences that suppress
page faults during enclave execution [52, 53]. However, a malicious
OS observing side effects of the address translation process can still
extract this leakage without relying on page faults explicitly [57].
Cacheline-granular attacks: PRIME+PROBE [35, 44] and other
cache attacks have been demonstrated outside of the SGX setting
for more than a decade now. Several works [11, 23, 38] have demon-
strated that such attacks in fact translate well to the SGX setting.
However, these type of attacks are typically quite noisy and lossy,
from cache activities of other processes on the same system and the

probing process having non-negligible probability of missing the
victim’s access patterns. Hence they require several measurements
of the victim program executions to reliably extract cache access
patterns. Additionally, they require forcing interruptions of enclave
executions to precise the cache access patterns. This led to defense
mechanisms such as T-SGX [52] and Déjà vu [13] that detect fre-
quent interrupts as an indicator of the enclave program being under
attack. More recently, Lee et al. demonstrated Membuster [30], an
off-chip physical attack that snoops the memory addresses accessed
on the memory bus, which in conjunction with novel cache manip-
ulation tricks that force cache misses allows them to extract cache
usage patterns from the victim process with minimal overheads
and without inducing interrupts.
Control Flow Attacks: While several cache attacks can be used
to attack the control flow of programs executing in an enclave,
Lee et al. [32] demonstrated a precise technique of tracing control
flow execution by leveraging the branch prediction history, which
was not cleared while switching out of enclave mode. Moghimi et
al. [39] demonstrated a control flow attack, which precisely counts
the number of instructions executed within an enclave execution,
which when combined with the coarse-grained page-level leakages
can reconstruct the exact control flow taken by the enclave program.

Such side-channel attacks can be thwarted by designing the
enclave program to be fully oblivious, as it eliminates these vulner-
abilities at their introduction point. As more powerful attacks that
amplify a TEE adversary’s ability to violate the privacy guarantees
of programs running in an enclave become efficient and practical,
it becomes paramount to ensure that security and privacy critical
components of such programs be implemented in a fully oblivious
fashion. We note that obliviousness, including fully obliviousness,
only protects against software side channels. However, previous
work has shown microachitectural side channels like speculative
execution [12, 56] or the voltage scaling interface [41]. Attacks such
as these that violate the SGX, and indeed the processor, security
model, are mitigated with microcode patches from Intel [26, 27].
Importantly, the kinds of memory-access side channels described
above are not considered to violate the SGX security model—SGX
makes no claim to protect the addresses of accessed memory. There-
fore, these side channels must be addressed in software, using the
kinds of fully oblivious algorithms we propose.

3 RECURSIVE COMPACTION

We introduce the fully oblivious recursive compaction algorithm
ORCompact. Compaction is a fundamental primitive for ORAMs
and TEE systems, and we will also use it for oblivious shuffling
(see §4). ORCompact takes as input an array 𝐷 of 𝑛 data items
and a bit array 𝑀 of length 𝑛. The positions of 𝑀 with a 1 value
indicate “marked” items, and the positions with a 0 value indicate
“unmarked” items. ORCompact rearranges the items in 𝐷 such that
all marked items appear before all unmarked items. Furthermore, as
we will show, ORCompact is order-preserving; that is, it maintains
the relative order of the marked items. Note that the relative order
of the unmarked items may change, however.

This algorithm has time complexity𝑂 (𝑛 log𝑛), which is the same
as the algorithm of Goodrich [22] and which is higher asymptotic
complexity than the linear-time optimum [5, 18]. However, unlike

3

Sajin Sasy, Aaron Johnson, and Ian Goldberg

Figure 1: OROffCompact(𝐷,𝑀, 𝑧): Compact items in 𝐷 , as

marked in𝑀 , to an offset 𝑧. 𝐷 and𝑀 must have a power-of-

two length.

1: 𝑛 ← |𝐷 |,𝑚 ← ∑𝑛
2 −1
𝑖=0 𝑀𝑖

2: if 𝑛 = 2
3: OSwap(𝐷0, 𝐷1, ((1 −𝑀0)𝑀1) ⊕ 𝑧)
4: else if 𝑛 > 2
5: OROffCompact

(
𝐷0.. 𝑛2 −1, 𝑀0.. 𝑛2 −1, 𝑧 mod 𝑛

2

)
6: OROffCompact

(
𝐷 𝑛

2 ..𝑛−1, 𝑀
𝑛
2 ..𝑛−1, (𝑧 +𝑚) mod 𝑛

2

)
7: 𝑠 ←

[(
(𝑧 mod 𝑛

2) +𝑚
)
≥ 𝑛

2
]
⊕

[
𝑧 ≥ 𝑛

2
]

8: for 𝑖 ← 0 . . . 𝑛2 − 1
9: 𝑏 ← 𝑠 ⊕

[
𝑖 ≥

(
(𝑧 +𝑚) mod 𝑛

2
)]

10: OSwap(𝐷𝑖 , 𝐷𝑖+𝑛2 , 𝑏)

Figure 2: ORCompact(𝐷,𝑀): Compact items in 𝐷 as marked

in𝑀 . 𝐷 and𝑀 need not have a power-of-two length.

1: if |𝐷 | = 0 return
2: 𝑛 ← |𝐷 |, 𝑛1 ← 2⌊log2 (𝑛) ⌋ , 𝑛2 ← 𝑛 − 𝑛1,𝑚 ←

∑𝑛2−1
𝑖=0 𝑀𝑖

3: ORCompact(𝐷0..𝑛2−1,𝑀0..𝑛2−1)
4: OROffCompact(𝐷𝑛2 ..𝑛−1,𝑀𝑛2 ..𝑛−1, (𝑛1 − 𝑛2 +𝑚) mod 𝑛1)
5: for 𝑖 ← 0 . . . 𝑛2 − 1 do
6: 𝑏 ← [𝑖 ≥ 𝑚]
7: OSwap(𝐷𝑖 , 𝐷𝑖+𝑛1 , 𝑏)

the asymptotically optimal algorithms, ORCompact is practically
efficient for realistic values of 𝑛, and it is faster than the Goodrich
algorithm by a factor of at least 2. It is also more efficiently paral-
lelizable. See Section 7 for more details on these other algorithms.

3.1 Algorithm

We use 𝐷 𝑗 ..𝑘 to indicate the subarray (𝐷 𝑗 , . . . , 𝐷𝑘). We denote the
oblivious computation of the comparison 𝑐 as a boolean value
with [𝑐] (e.g., [𝑥 < 𝑦] has value 1 if 𝑥 < 𝑦 and 0 otherwise).
OSwap(𝐷𝑖 , 𝐷 𝑗 , 𝑏) refers to an oblivious swap subroutine that swaps
the 𝑖th and 𝑗 th values of 𝐷 if 𝑏 = 1 and leaves 𝐷 unchanged if 𝑏 = 0.
It can be efficiently implemented obliviously (cf. Section 3.3). Arith-
metic operations must also be implemented in an oblivious way.

The core compaction logic is contained in the subroutineOROff-
Compact(𝐷 ,𝑀 , 𝑧) (see Figure 1).OROffCompact compactsmarked
items to a region starting at an offset position 𝑧, with possible
wraparound. However, it can only be called on an array 𝐷 with
a length that is a power of two because it divides 𝐷 into halves
to perform pairwise OSwaps. OROffCompact is fully oblivious to
its input values (though not their sizes) including in particular the
offset 𝑧. Because |𝐷 | is a power of two, simple bitwise operators
can obliviously implement the division and modulo operations.

The full ORCompact(𝐷,𝑀) algorithm is given in Figure 2. Intu-
itively, ORCompact divides 𝐷 into a right side, which is the largest
suffix with size 𝑛1 a power of two, and a left side, which is the
remainder of size 𝑛2 = 𝑛 − 𝑛1. It then recursively compacts the 𝑛2
items on the left and also computes the number of selected items
𝑚 on that side. Finally, it compacts the right side with an offset

that is 𝑛2 −𝑚 items from the end, and the final 𝑛2 items on the
right are conditionally swapped pairwise with the 𝑛2 items on the
left. OROffCompact works similarly, although it also takes into
account that there may be an offset for the desired compaction.
Because it can assume its input is a power of two, items on the left
side and right side can be paired for potential swaps, which is why
it can produce an offset in any position obliviously.

3.2 Correctness

Theorem 1 shows that ORCompact compacts the marked items
and maintains their relative order. Its proof appears in Appendix B.

Theorem 1. Given 𝐷 and𝑀 , let (𝐷′0, . . . , 𝐷
′
𝑤−1) be the subsequence

of 𝐷 consisting of all𝑤 items marked in𝑀 . ORCompact(𝐷,𝑀) rear-
ranges the items in 𝐷 such that (𝐷0, . . . , 𝐷𝑤−1) = (𝐷′0, . . . , 𝐷

′
𝑤−1).

3.3 Obliviousness

We now explain how ORCompact is fully oblivious (cf. Section 2.2),
assuming an implementation that follows Figure 2 in the straightfor-
ward way. The result is fully oblivious with respect to the values of
its input arrays, although not to their size or location in memory. In
fact, not only are all instructions and memory accesses independent
of the input array values, as required for full obliviousness, they
are deterministic given the size and location of those arrays. See
Appendix A for a formal statement and proof of this obliviousness.

Prior work [14, 43] has shown how to efficiently implement
comparisons (e.g., [𝑖 ≥ 𝑚]) and swaps (OSwap) fully oblivously.
These implementations are deterministic and either use conditional
instructions such as SETB and CMOVZ or Boolean arithmetic. The
comparisons are oblivious to the compared values but not to the
comparison operator. OSwap is oblivious to the input values and
to the swap flag 𝑏. It is not oblivious to locations of the inputs.

We next argue that OROffCompact is fully oblivious. We can
see that the only conditional branching (i.e., the if/else and for) is
based on the length 𝑛 of the input arrays and not on their contents
or on the offset 𝑧. Thus, the instruction sequence is deterministic
given the input size. We then observe that all accesses to the inputs
are deterministic given 𝑛. As previously argued, the computation
of comparisons is fully and deterministically oblivious to the val-
ues of its inputs. Similarly, the calls to OSwap are oblivious to its
last argument, and we observe that the other arguments are de-
terministic locations given 𝑛. We can recursively assume that the
calls to OROffCompact are fully and deterministically oblivious.
Therefore, OROffCompact is fully oblivious, and its instruction
sequence and memory accesses are deterministic given the length
of its input arrays 𝐷 and𝑀 .

Finally, we argue that ORCompact (Figure 2) is fully oblivious.
We observe that its only conditional execution is a for loop (Line 5)
that executes a number of times that depends deterministically on
𝑛. We can also see that its variable accesses are all a deterministic
function of 𝑛. By our previous arguments, the comparisons and
OROffCompact call are fully oblivious. Similarly, each OSwap call
is fully oblivious to its last argument, and the other arguments are
deterministic functions of 𝑛. Finally, we can recursively assume that
the ORCompact call is fully oblivious. Therefore, ORCompact is
fully oblivious, and its instruction sequence and memory accesses
are deterministic given the input size.

4

Fast Fully Oblivious Compaction and Shuffling

3.4 Efficiency

We analyze the time and space efficiency of ORCompact as the
number and size of data items grow. Theorem 2 gives the asymptotic
runtime of ORCompact (see Appendix B for a proof). As previously
noted, this runtime is not the asymptotic optimal linear time, but,
as our experiments results will show, the constants are low enough
that it outperforms all other oblivious algorithms for realistic input
sizes.

Theorem 2. ORCompact runs in time 𝑂 (𝑛 log𝑛).

We next consider the number of oblivious swaps (i.e., calls to
OSwap) because the data items themselves are only accessed during
swaps. Each swap takes time linear in the item size, and so, for
large enough items, oblivious swaps will constitute an arbitrarily
large fraction of the runtime. We count the number of oblivious
swaps, which admits a concrete (rather than purely asymptotic)
estimate, thereby enabling a direct comparison to other swap-based
algorithms. Let 𝑛 be the length of the input arrays to ORCompact.
Theorem 3 provides upper and lower bounds on the exact number
of OSwap calls in ORCompact. Theorem 3 is proved in Appendix B.

Theorem 3. Let 𝑆1 (𝑛) count the OSwap calls in ORCompact. Then(
2⌊log2 𝑛⌋/2

)
⌊log2 𝑛⌋ ≤ 𝑆1 (𝑛) ≤ ⌊(𝑛/2) log2 𝑛⌋ .

Theorem 3 shows that ORCompact performs approximately
(𝑛/2) log2 𝑛 OSwaps. We can use this estimate to compare perfor-
mance to the tight oblivious compaction algorithm of Goodrich [22],
which appears to date to be the fastest algorithm in practice [29].
This algorithm can be adapted to perform compaction fully oblivi-
ously using OSwaps (the original algorithm description assumes
some private memory and does not require unmarked items to be
output). However, it uses more than (log2 𝑛 − 2)𝑛 OSwaps, which
suggests a runtime of about 2× that of ORCompactwhen item sizes
are large enough for swaps to constitute most of the runtime (for
small item sizes, we see in Section 6 that ORCompact outperforms
Goodrich by an even larger factor).

We note that ORCompact performs in-place compaction and
thus need not maintain extra copies of possibly large data items.
Moreover, the additional memory requirements are very small,
with a small constant amount of memory needed at each of the
⌈log2 𝑛⌉ levels of recursion. We also observe that the memory-
access patterns are highly regular (linear scans) and generally with
high locality (especially at the deeper levels of recursion), which
yields good practical performance due to caching and prefetching.

3.5 Parallelization

We describe how ORCompact can be parallelized by giving a ver-
sion of it in the EREW PRAM model [40]. In this model, multiple
processors proceed in synchronized steps, and they access shared
memory with exclusive read and write (i.e., only one processor can
read or write a given memory location in a given step). OROCPar,
given in Figure 3, performs parallel oblivious compaction to an
offset when 𝑛 is a power of two, and ORCPar, given in Figure 4,
performs parallel oblivious compaction for any 𝑛. We indicate par-
allel computations with a do in parallel block, in which each line
can be computed in parallel, and a parallel for block, in which
each loop iteration can be computed in parallel. This presentation

Figure 3:OROCPar(𝐷, 𝑆, 𝑧): Parallel compaction of𝐷 to offset

𝑧. 𝑆 is prefix sums ofmarked items.𝐷 must be a power-of-two

length.

1: 𝑛 ← |𝐷 |,𝑚 ← 𝑆 𝑛
2
− 𝑆0

2: if 𝑛 = 2 then
3: OSwap(𝐷0, 𝐷1, ((1 − (𝑆1 − 𝑆0)) (𝑆2 − 𝑆1)) ⊕ 𝑧)
4: else if 𝑛 > 2 then
5: do in parallel

6: OROCPar
(
𝐷0.. 𝑛2 −1, 𝑆0..

𝑛
2
, 𝑧 mod 𝑛

2

)
7: OROCPar

(
𝐷 𝑛

2 ..𝑛−1, 𝑆
𝑛
2 ..𝑛

, (𝑧 +𝑚) mod 𝑛
2

)
8: 𝑠 ← [

(
(𝑧 mod 𝑛

2) +𝑚
)
≥ 𝑛

2] ⊕ [𝑧 ≥
𝑛
2]

9: parallel for 𝑖 ← 0 . . . 𝑛2 − 1
10: 𝑏 ← 𝑠 ⊕ [𝑖 ≥ (𝑧 +𝑚) mod 𝑛

2]
11: OSwap(𝐷𝑖 , 𝐷𝑖+𝑛2 , 𝑏)

Figure 4: ORCPar(𝐷,𝑀, 𝑆): Parallel compaction of 𝐷 as

marked in 𝑀 . 𝐷 and 𝑀 need not be power-of-two lengths.

Pass empty 𝑆 in initial call.

1: if |𝐷 | = 0 then return

2: if |𝑆 | = 0 then 𝑆 ← PrefixSumPar(𝑀)
3: 𝑛 ← |𝐷 |, 𝑛1 ← 2⌊log2 (𝑛) ⌋ , 𝑛2 ← 𝑛 − 𝑛1
4: do in parallel

5: ORCPar(𝐷0..𝑛2−1, ∅, 𝑆0..𝑛2)
6: OROCPar(𝐷𝑛2 ..𝑛−1, 𝑆𝑛2 ..𝑛, (𝑛1 − 𝑛2 + 𝑆𝑛2) mod 𝑛1)
7: parallel for 𝑖 ← 0 . . . 𝑛2 − 1
8: 𝑏 ← [𝑖 ≥ 𝑆𝑛2]
9: OSwap(𝐷𝑖 , 𝐷𝑖+𝑛1 , 𝑏)

omits explicit assignment to processors. For our algorithms, we
consider thework (i.e., total computations across all processors) and
the number of parallel steps (i.e., longest sequence of operations
that any single processor might execute).

ORCPar uses the subroutine PrefixSumPar to compute the array
𝑆 containing the sums of prefixes of the boolean array𝑀 . 𝑆 is used
by both ORCPar and OROCPar to compute offsets in constant time.
Hillis and Steele [24] give an algorithm to compute the prefix sums
obliviously in ⌈log2 𝑛⌉ steps and 𝑂 (𝑛 log𝑛) total work. Note that
ORCPar takes 𝑆 as an extra argument, which should initially be
empty, and that 𝑆 is produced with a length of 𝑛 + 1, where each
element is the sum of the preceding positions in𝑀 (with 𝑆0 = 0). 𝑆
can thereby be used recursively to compute subsequence sums.

We observe that the parallelization does not significantly affect
the work. As with ORCompact, the work in ORCPar is 𝑂 (𝑛 log𝑛).
In addition, the total number of the OSwap calls remains the same
as in ORCompact (quantified in Theorem 3). At the same time, par-
allelization significantly improves step complexity, with 𝑂 (log𝑛)
parallel steps and ⌈log2 𝑛⌉ steps involving OSwap calls.

4 RECURSIVE SHUFFLING

Wenowpresent the fast fully oblivious recursive shuffling algorithm
ORShuffle, which uses ORCompact as a key subroutine. It takes

5

Sajin Sasy, Aaron Johnson, and Ian Goldberg

Figure 5: ORShuffle(𝐷): Put items in 𝐷 in uniformly ran-

dom order.

1: 𝑛 ← |𝐷 |
2: if 𝑛 = 2 then
3: Generate 𝑏 ∈ {0, 1} uniformly at random.
4: OSwap(𝐷0, 𝐷1, 𝑏)
5: else if 𝑛 > 2 then
6: 𝑀 ←MarkHalf(𝑛)
7: ORCompact(𝐷 ,𝑀)
8: ORShuffle(𝐷0..⌈𝑛/2⌉−1)
9: ORShuffle(𝐷 ⌈𝑛/2⌉ ..𝑛−1)

Figure 6:MarkHalf(𝑛): Mark random half of boolean array

of length 𝑛.

1: Create boolean array𝑀 of length 𝑛.
2: ℓ ← ⌈𝑛/2⌉
3: for 𝑖 ← 0 . . . 𝑛 − 1 do
4: Generate 𝑟 ∈ [0, 1) uniformly at random.
5: 𝑀𝑖 ← [𝑟 < ℓ/(𝑛 − 𝑖)]
6: ℓ ← ℓ −𝑀𝑖

7: return𝑀

as input an array 𝐷 of 𝑛 items and rearranges the items of 𝐷 so that
they appear in a uniformly random order.

This algorithm has time complexity 𝑂 (𝑛 log2 𝑛). This complex-
ity is the same as some efficient sorting networks [8], which can
themselves be used for shuffling by attaching random labels to
items before sorting based on those labels. However, ORShuffle
represents an efficiency improvement because it does not need to
attach labels and move them around with the data. The complexity
is also higher than the 𝑂 (𝑛 log𝑛) complexity achieved by other ap-
proaches [5]. The constants are low, though, and we will show that
the performance of ORShuffle exceeds that of other approaches.

4.1 Algorithm

ORShuffle follows the high-level approach of the PerfectORP
algorithm of Asharov et al. [4, Algorithm 6.8]. In that algorithm, the
array of items to shuffle is split into two halves, each is recursively
shuffled, and then the items in each half are randomly interleaved
with an Intersperse algorithm. Intersperse effectively performs
a “reverse” compaction, sometimes called “expansion” [22]. We
can therefore use ORCompact directly by reversing these steps
(alternatively, running ORCompact in reverse itself would yield an
expansion algorithm). That is, we randomly separate the items into
two halves using ORCompact and then recursively shuffle each
half. The result is the fully oblivious shuffle algorithm ORShuffle
(see Appendix A for a formal statement and proof of obliviousness).
Unlike PerfectORP, ORShuffle is a practically efficient algorithm
because of its use of ORCompact in place of Intersperse (see §7.1).

The ORShuffle algorithm is given in Figure 5. It uses the sub-
routine MarkHalf(𝑛) (Figure 6) to mark a random half of the 𝑛
positions, which is also essentially given by Asharov et al. [4, Algo-
rithm 6.1]. ORShuffle rearranges the items in 𝐷 into a uniformly

random order. It is fully oblivious to the values in 𝐷 , and it is also
fully oblivious to its random bits and therefore to the permutation
it applies. ORShuffle is not oblivious to the size or location of 𝐷 .
Its correctness and obliviousness follow from the correctness and
obliviousness of ORCompact, using arguments similar to those of
Asharov et al. [5] regarding PerfectORP.

4.2 Efficiency

The asymptotic runtime of ORShuffle is given in Theorem 4. A
proof of it appears in Appendix B.

Theorem 4. ORShuffle runs in time 𝑂 (𝑛 log2 𝑛).

While this runtime is not asymptotically optimal (oblivious shuf-
fling algorithms exist with runtime𝑂 (𝑛 log𝑛)), the constants make
it practically efficient. Theorem 5 gives an exact count of the num-
ber of OSwap calls. These oblivious swaps are relatively expensive
operations, and, as with ORCompact, the data items themselves
are only accessed via these swaps, and so the swaps dominate the
runtime for large enough items. Theorem 5 is proved in Appendix B.

Theorem 5. Let 𝑆2 (𝑛) count the number of OSwap calls performed

by ORShuffle(𝐷), with |𝐷 | = 𝑛. For 𝑛 = 2𝑘 , 𝑘 ∈ N, 𝑆2 (𝑛) =

(𝑛/4) (log2 𝑛 + 1) log2 𝑛. For all 𝑛, 𝑆2 (𝑛) < (𝑛/4) (log2 𝑛 + 1) log2 𝑛 +
𝑛/(6 ln 2), and 𝑆2 (𝑛) ≥

(
2⌊log2 𝑛⌋/4

)
(⌊log2 𝑛⌋ + 1) ⌊log2 𝑛⌋.

This shows that ORShuffle performs roughly (𝑛/4) ((log2 𝑛) +
1) log2 𝑛 oblivious swaps. We can compare this to the oblivious
swaps performed using a sorting network. A sorting network per-
forms pairwise compare-and-swap operations in a fixed sequence
and thus can be used for oblivious shuffling by attaching random
labels to items. Using the bitonic sorting network [8] is the com-
mon choice for existing TEE systems that require oblivious sort-
ing [1, 20, 29, 59]. The odd-even mergesort network [8] is slightly
smaller but experimentally performs worse due to poor memory
locality. The bitonic sorting network also requires (𝑛/4) ((log2 𝑛) +
1) log2 𝑛 oblivious swaps. Therefore, for large data items, we can
expect that ORShuffle will perform similarly to Bitonic Shuffle.
However, for smaller items, ORShuffle can yield an efficiency im-
provement because random labels need not be added and included
in the oblivious swaps. Indeed, for word-sized items, random labels
can approximately double the cost of the swaps.

The memory used by ORShuffle is little more than the memory
already occupied by the data items. The data items are swapped in
place. At most an additional𝑛 bits are created to mark items for com-
paction, and a small constant amount of memory is needed for each
of the ⌈log2 𝑛⌉ levels of recursion. We also note that the algorithm
can benefit significantly from memory caching and prefetching due
to its regular memory-access patterns and good locality.

4.3 Parallelization

We give a parallel version of ORShuffle in Figure 7, again in the
EREW PRAM model. This algorithm, ORSPar, is nearly identical
to the sequential version except that it calls parallel versions of
the subroutines, namely MarkPar and ORCPar, and makes its
recursive calls in parallel.

MarkPar, given in Figure 8, marks a random𝑚 of 𝑛 locations.
This algorithm is a variant of the algorithm given by Sanders et

6

Fast Fully Oblivious Compaction and Shuffling

Figure 7:ORSPar(𝐷): In parallel, put items in𝐷 in uniformly

random order.

1: 𝑛 ← |𝐷 |
2: if 𝑛 = 2 then
3: Generate 𝑏 ∈ {0, 1} uniformly at random.
4: OSwap(𝐷0, 𝐷1, 𝑏)
5: else if 𝑛 > 2 then
6: 𝑀 ←MarkPar(⌈𝑛/2⌉, 𝑛)
7: ORCPar(𝐷,𝑀, ∅)
8: do in parallel

9: ORSPar
(
𝐷0..⌈𝑛/2⌉−1

)
10: ORSPar

(
𝐷 ⌈𝑛/2⌉ ..𝑛−1

)

Figure 8: MarkPar(𝑚,𝑛): In parallel, mark a random𝑚 of 𝑛

positions.

1: if 𝑛 = 1 then
2: return𝑚

3: else if 𝑛 > 1
4: 𝑛1 ← ⌈𝑛/2⌉, 𝑛2 ← 𝑛 − 𝑛1
5: 𝑘 ← HyperGeomPar(𝑛, 𝑛1,𝑚)
6: do in parallel

7: 𝑀1 ← MarkPar(𝑘, 𝑛1)
8: 𝑀2 ← MarkPar(𝑚 − 𝑘, 𝑛2)
9: return𝑀1 | |𝑀2

al. [47, Algorithm P]. The differences from the original algorithm
are that it is fully specified (i.e., no unspecified “local sampler”)
and outputs a full boolean array of length 𝑛 (i.e., not only the
marked index values). These changes are needed to guarantee full
obliviousness with respect to𝑚 and to the random bits.

MarkPar uses HyperGeomPar for hypergeometric sampling.
HyperGeomPar(𝑛,𝑑,𝑚) samples the number of successes among 𝑑
random draws without replacement from a set of 𝑛 items that con-
tain𝑚 total successes. Following Sanders et al. [47], we perform hy-
pergeometric sampling with an algorithm of Stadlober [55]. We use
an oblivious implementation that uses theHRUE𝑡 variant, computes
ln(𝑥 !) with a Stirling approximation, omits the fast-acceptance op-
timization, and repeats the rejection sampling a constant number
of times to obtain a given failure probability.

The work of ORSPar is similar to that of ORShuffle. The only
difference in the operations executed is from calling ORCPar in-
stead of ORCompact and MarkPar instead of MarkHalf. As
discussed in Section 3, ORCPar has the same𝑂 (𝑛 log𝑛) complexity
as ORCompact and the same number of OSwap calls. MarkPar
has the same 𝑂 (𝑛) complexity asMarkHalf given a fixed failure
probability. Therefore, ORSPar has the same 𝑂 (𝑛 log2 𝑛) asymp-
totic runtime as ORShuffle. Moreover, the number of OSwap calls
is the same in both.

Parallelization does improve the step complexity of shuffling.
ORSPar takes 𝑂 (log2 𝑛) parallel steps, and it has (⌈log2 𝑛⌉ + 1)
⌈log2 (𝑛)⌉/2 parallel steps that include an OSwap call. These results

show that ORSPar is appropriate for large-scale private data analy-
sis, where many processors might be available for fast processing.

5 BUCKET OBLIVIOUS RANDOM

PERMUTATION (BORP)

We next introduce the BORPStream shuffling algorithm, which is
inspired by the Bucket Oblivious Random Permutation (BORP) of
Asharov et al. [3]; BORPStream leverages entirely different ma-
chinery than BORP to efficiently shuffle while attaining full oblivi-
ousness, and reuses just the underlying butterfly routing network
(BRN) used by BORP. BORP is a promising alternative to ORShuf-
fle because of its small constants, and indeed its authors present it
as a faster alternative to Bitonic Shuffle. However, it is given in a
client-server setting where the client has private memory. Oblivi-
ous sorting or compaction are suggested as ways to avoid needing
private memory, but using them increases the complexity in 𝑛, and,
as our experiments will show, this approach yields poor shuffling
performance (despite using the new and faster ORCompact).

At a high level, Asharov et al. [3] randomly permute items by
passing them through a well-parameterised BRN. First the algo-
rithm partitions the 𝑛 input items across B = 2𝑛

Z buckets, with
each bucket containing Z elements. The constant Z dictates the
correctness guarantee of BORP, and the authors recommend Z=512.
These initial-layer buckets contain exactly half real items and half
dummy items. Real items get assigned a random destination from
among the B output buckets, while the dummies are assigned ⊥
as their destination. The butterfly routing network of depth log2 B
is then used to route all the real items to their destination buckets
obliviously. In order to do so, the algorithm performs a MergeSplit

operation on the B/2 pairs of buckets that are 2𝑖 apart in layer 𝑖 .
The MergeSplit operation distributes the real items of both its input
buckets into two output buckets based on the 𝑖th bit of their destina-
tion label, and pads each output bucket with enough dummy items
to make exactly Z in each output bucket. These output buckets are
then locally shuffled by the client to randomize the order of items
before returning them to the server. Once the routing is completed,
the dummy items from each output bucket are discarded to obtain
the randomly permuted real items.

Executing BORP naively within a TEE would break its security
guarantees. During the MergeSplit operation or the final discard
of dummies, an adversary could use observations of the memory
access patterns to distinguish real and dummy items. The straight-
forward solution is to replace the private-memory computations
with oblivious variants (largely by changing MergeSplit to use
ORCompact). We call this algorithm BORPCompact, which we
present in Section 5.1. It is unfortunately not competitive with the
state of the art, as we will see in Section 6. We therefore design
BORPStream, which operates in a very different way: by pushing
items through the BORP BRN one by one. Not only does this yield
much better efficiency overall, it allows much of the work to happen
while items are being input in a streaming manner.

5.1 BORPCompact

BORPCompact is almost identical to the original BORP. The dif-
ference is that the MergeSplit operation is instantiated with our
ORCompact(𝐷,𝑀). To produce the correct bit array 𝑀 used by

7

Sajin Sasy, Aaron Johnson, and Ian Goldberg

Figure 9:MSN: MergeSplitNode class

1: Internal State Variables: c, buffer[], out_streams[]
2: Initialize(f, s, b, streams):
3: initializeBuffer(buffer, s, b)
4: c← 0 // c is the current eviction stream ∈ [0, f − 1]
5: out_streams← streams // MSNs this node connects to; or

final buckets if this is a last layer MSN

6: ProcessItem(p):
7: for i← 0 . . . s − 1 do
8: e← extractStream(p) // Assigns ⊥ if p is ⊥
9: z1 ← [extractStream(buffer[i])=c]
10: z2 ← isReal(p) ∧ [e ≠ c]
11: z← z1 ∨ z2
12: OSwap(p, buffer[i], z)
13: if self.isLastLayerNode then
14: Append(out_streams[c], p))
15: else

16: out_streams[c].ProcessItem(p)
17: c← (c + 1) mod f

ORCompact, the algorithm makes two linear passes over 𝐷 (the
concatentated two input buckets going into the ORCompact op-
eration, |𝐷 | = 2Z). In the first linear pass it obliviously counts the
number of real items going into each of the output buckets. In the
second linear pass it marks real items correctly in 𝑀 , while addi-
tionally also marking the right number of dummies by using the
counts from the first pass, such that the total number of marked
items will be exactly Z. Once all the items have been processed
through the BRN as described above, the final output buckets are
compacted to just the real items in each of them by leveraging OR-
Compact again. Furthermore, the real items in each bucket are then
obliviously shuffled using ORShuffle, to break any correlations in
relative ordering of items within an output bucket. Finally all these
items are concatenated together to produce the required output
array of randomly permuted items. The correctness argument for
this variant is identical to that of BORP [3], but our variant is fully
oblivious and can by design be safely run in a TEE.

5.2 BORPStream

BORPStream converts BORP into an algorithm processing “stream-
ing” data that arrives incrementally. At a high level, instead of pro-
cessing items layer by layer at a bucket-level granularity, we stream
each input item as it arrives through the entire butterfly routing
network. Each of the discrete MergeSplit operations are replaced
with a stateful processing node we call a MergeSplitNode (MSN),
described in Figure 9. Every MSN in a layer of the network is con-
nected directly to the appropriate MSN in the next layer that their
logical output bucket would have been connected to, effectively
building a butterfly routing network of purely MSNs, followed by a
layer of B output buckets. To uphold obliviousness in this streamed
model, items have to be processed in a deterministic fashion; i.e.,

Figure 10: BORPStream(𝑛,𝑏, 𝜆) where 𝑛 is the number of

elements to shuffle, 𝑏 is the size of each element, and 𝜆 is the

failure probability parameter.

1: Initialize(𝑛, b, 𝜆):
2: f, d, s← BORP_Optimizer(𝑛,𝑏, 𝜆)
3: B← fd // Number of buckets at start/end of BRN
4: m← fd−1 // Number of MSNs in each layer of BRN
5: 𝑐 ← 0 // Number of data elements processed so far
6: 𝐷′ ← [] // Output array to be populated
7: BRN← InitializeBRN(f, d, s, 𝑏) // InitializeBRN sets up the

BRN ofMSNs defined by the parameters f, d, s, and𝑏, returning
a 2D array of MSN nodes, BRN: MSN[d][fd−1]

8:
9: BORPStream_Phase1(p): // Call for each arriving packet p

10: entry_node← ⌊m𝑐/𝑛⌋
11: Generate label ∈ [0,B − 1] uniformly at random
12: p′ ← ⟨label, p⟩
13: BRN[0][entry_node].ProcessItem(p′)
14: BRN[0][entry_node].ProcessItem(⊥) // Send dummy item
15: 𝑐 ← 𝑐 + 1
16: if 𝑐 = 𝑛 then

17: return BORPStream_Phase2(BRN)
18:
19: BORPStream_Phase2(BRN):
20: FlushBuffers(BRN)
21: for i ∈ [0,B − 1] do
22: M,r ← MarkReal(buckets[i]) // M is a bit array; r ←∑

𝑀𝑖 ; buckets is the array of B buckets at the end of the BRN.
23: ORCompact(buckets[i],M)
24: ORShuffle(buckets[i]0..r−1)
25: Append(𝐷′, buckets[i]0..r−1)
26: return 𝐷′

routing decisions cannot be based on the destination of the item be-
ing routed. Therefore, all MSNs follow a strict round robin schedule
for routing data across all of its f output streams.

The schedule is clearly at odds with the requirement of routing
items to their correct destination. To ensure correctness, each MSN
is imbued with a local buffer of capacity s items. When an MSN
receives an item to process it scans across its local buffer and swaps
the incoming item with one destined for the current eviction stream
using oblivious swaps (Figure 9, lines 7–12). Figure 10 details BORP-
Stream in its entirety. BORPStream can be split into two phases: i)
Phase 1 processes input data packets as they arrive, assigning each
element a random destination label ∈ [0,B − 1] and then routing it
through the BRN (Lines 9–15); ii) Phase 2 starts once all input data
have been received and processed through the BRN.

In scenarios where data items are acquired over time, this two-
phase division takes advantage of time otherwise spent waiting
for all items to arrive. Several real world use-cases provide such
scenarios, including application telemetry, software profiling, or
error reporting. Typically such data accumulate over time as they
are generated by user activity, and shuffling is performed only after
enough users have provided inputs to yield a sufficiently large

8

Fast Fully Oblivious Compaction and Shuffling

anonymity set. Later in Section 6.2 we will illustrate the concrete
performance improvements obtained by this division by measuring
the time taken by Phase 2, which reflects the turnaround time for
the shuffle once all data items have arrived.

Given the number of items 𝑛 to shuffle, the size of each item b,
and the desired correctness parameter 𝜆, we design and leverage an
optimizer that returns the optimal choice of parameters (f: the fan of
the network, d: the depth of the network, and s: the internal buffer
size of each MSN) for the underlying BRN. The failure probability
of the returned set of parameters will be smaller than 2−𝜆 . In our
experiments we set 𝜆 = 80. Once the optimal parameters are known,
the enclave initializes and sets up the BRN by initializing a grid of
MSNs and connecting them appropriately. For every real item, we
also propagate a dummy item through the network. The dummy
elements are required in order to provide sufficient slack in the
internal buffers of the MSN, lest they overflow and trigger a failure.
Once all the real and dummy items have been processed through
the network, there may still be real items in the MSN local buffers.
We therefore additionally flush all the local buffers, one layer at a
time. To maintain obliviousness, during the flush operation, each
MSN performs s · f evictions, and there are fd−1 MSNs in each of the
d layers of the BRN, thus resulting in s ·d additional items in each of
the B = fd final buckets. We then use ORCompact on the buckets
to reduce the buckets down to just the real items. Finally, we shuffle
just the real items of each bucket using ORShuffle to reorder them,
as real items would otherwise arrive in the final bucket in the order
that they entered the network.

5.3 Correctness and Obliviousness

The use of MSNs for BORPStream changes its correctness argu-
ment significantly from the original BORP. We are no longer con-
cerned about the possibility of individual bucket overflows through
the network, but instead our correctness argument rests on the
union bound of the probability of buffer overflows of each of the
MSNs’ internal buffers, P. We empirically evaluate P via a failure
probability calculator that performs a Markov chain analysis; see
Appendix C for details.

The original BORP algorithm is fully oblivious from the server’s
perspective, since the algorithm retrieves and stores buckets in a de-
terministic fashion, but it requires unobservable client memory. For
BORPStream, obliviousness rests on the ProcessItem algorithm
(Figure 9) of MSN being oblivious. For every incoming item, MSNs
perform the same set of operations (Figure 9, Lines 7–17). An adver-
sary can only view the memory access patterns for these OSwap
operations, which are deterministic and secret independent. The
final operations of Phase 2 of BORPStream are ORCompact and
ORShuffle, and their obliviousness has already been established.
Note that revealing the number of real items in a bucket after the
ORCompact step does not violate obliviousness [3]. The number of
real items in these buckets is an artifact of the distribution of ran-
dom labels assigned, but it does not reveal any information about
which real item ends up in a given bucket. See Appendix A for a
formal statement and proof of the obliviousness of BORPStream.

5.4 Efficiency and Parallelization

The efficiency of BORPStream depends on some key parameter
choices for the BRN: the fan f, the depth d, and the buffer size s. We
use a numerical optimizer to set these as a function of the desired
failure probability 2−𝜆 . We can obtain an asymptotic upper bound
on the runtime of 𝑂 (𝑛 log2 𝑛) (see Appendix B).

Parallelization for BORPStream is not as immediate due to the
two phases. However, both phases in isolation lend themselves to
parallelization in a straightforward fashion. Phase 1 can be par-
allelized by viewing the entire network as a pipeline of OSwap
operations. For Phase 1, the number of OSwaps without paralleliza-
tion is 2 · 𝑛 · s · d, since each of the 2𝑛 items (𝑛 real and 𝑛 dummy)
have to perform an OSwap comparison against each item of the s
sized internal buffer of the d MSNs it passes through. Pipelining
this brings down the number of OSWAP steps to 2 · 𝑛 + s · d. While
the speedup from parallelization here is just a small factor s · d, we
additionally note that since Phase 1 only handles incoming data
items, and since we envision such packets to arrive haphazardly,
the notion of parallelism only arises in the case that items arrive
in rapid succession (or even simultaneously), in which case we get
the aforementioned step complexity reduction.

Phase 2 is innately more parallelizable; the FlushBuffers compo-
nent of Phase 2 requires s · fd · (1 + s · d· (d−1)2) OSwaps, which are
trivially parallelizable across the fd−1 MSNs at each layer of the
BRN, and can be pipelined along the depth of the network resulting
in a parallel step complexity of d · f · s + s(d− 1). For the remainder
of Phase 2 all the B = fd buckets can be individually computed
upon in parallel. Each ORCompact takes 𝑉

2 log𝑉 OSwaps where
𝑉 = 2𝑛

B + s · d is the number of items in each bucket at the end of
Phase 1, and each ORShuffle takes about r

4 log
2 r OSwaps, where

r = 𝑛
B is the expected number of real items in each bucket.

In addition, ORCPar can be leveraged to parallelize the com-
paction within each bucket, and the final counts of real items in
each bucket can be established after the PrefixSumPar function is
invoked within ORCPar each to ensure that writes are done to the
correct positions in the output array in parallel. This can be done by
executing PrefixSumPar on an array of B size, populated with the
sum of the outputs of PrefixSumPar of each individual bucket; i.e.,
the number of real items in each bucket. Additionally, the recursive
shuffles of real items in each of the B buckets are also completely
parallelizable, and even parallelizable within a bucket by leveraging
ORSPar. The final parallel step complexity of the compaction and
shuffle then boils down to 𝑂 (log𝑉 +max(logB, log2 r)).

The max term arises from the fact that depending on the un-
derlying BRN configuration, the dominant term could either be B
or log2 r, from running (in parallel) PrefixSumPar on the number
of real items in each bucket and ORSPar within each bucket. It is
safe to execute these operations in parallel because the locations
of where to write the real items in each bucket need to be known
only by the end of the shuffle itself.

6 IMPLEMENTATION

We implement and benchmark our algorithms on a server-grade
Intel Xeon E3-1270 running Ubuntu 20.04 with four physical cores,
64 GB of DDR4 RAM, and support for Intel SGX. The fundamental

9

Sajin Sasy, Aaron Johnson, and Ian Goldberg

(a) Number of OSwaps with b=8B (b) Computation time (in ms) with b=8B (c) Computation time (in s) against block size

Figure 11: Comparison of Goodrich compaction and ORCompact on number of OSwaps and computation time over varying

problem sizes. We also provide a zoomed-in version of Figure 11b as Figure 14 in Appendix D to clarify the gap between the

two algorithms for smaller values of 𝑛. The elbow for Goodrich compaction in Figure 11c corresponds to it incurring paging

overheads from exceeding the PRM limit.

building block of our algorithms are oblivious swaps (OSwaps).
Given two data elements and a swap_flag, OSwap swaps them if
swap_flag is true, while not leaking any side-channel information
about the contents or whether the swap was performed. Similar to
prior work [43, 46, 48], we develop these building blocks by leverag-
ing the x86 CMOV instruction. In our implementation we develop a
library of templated inline assembly functions that perform OSwap
on buffers. These functions are templated on the size of the buffer
so that we can measure performance across varying problem sizes.

Although the amount of PRM is limited, Intel SGX does allow
applications to use PRM beyond that limit via virtual memory. Using
more memory than the PRM limit does however incur additional
paging overheads of bringing the encrypted memory pages into the
PRM, since theMEE performs an integrity and freshness verification
on these pages via the Enclave Page Cache Map (EPCM) [15], which
is a portion of the PRM that is inaccessible to user space and set
aside to ensure SGX’s isolation guarantees.

6.1 Compaction Algorithms

In Figure 11a, we compare the performance of our ORCompact
algorithm against Goodrich’s compaction algorithm [22] in terms of
the number of OSwaps performed. As expected fromTheorem 3, our
ORCompact algorithm performs about half the number of OSwaps
as Goodrich’s compaction algorithm. Furthermore from Figure 11b,
we see that the performance gap can grow much larger than 2×
for larger choices of 𝑛 with a block size of 8 B. For instance, at the
largest value of 𝑛 = 223.33 that we see in Figure 11b, ORCompact
takes 243.1±0.3ms, while Goodrich compaction takes 1263±0.3ms;
i.e., a 5.2× speedup over the state of the art. The larger performance
gap is because Goodrich compaction must update a distance array
of size 𝑛 in each of its log𝑛 rounds, while ORCompact performs
a single linear-time computation to track the number of marked
items in every subarray of the given problem.

This additional cost becomes less significant as the block size
b increases, however. In Figure 11c, we plot how the computation
time varies for both of these compaction algorithms as b increases

using a fixed 𝑛 = 107. It shows that the timing gap persists even
across larger block sizes. As the block size increases, however, the
timing cost is dominated by OSwaps on those larger blocks, and so
the performance gap becomes closer to 2×.

6.2 Shuffling Algorithms

We implement and evaluate the performance of the three fully
oblivious shuffling algorithms presented in previous sections: OR-
Shuffle, BORPCompact, and BORPStream. We also implement
and evaluate fully oblivious versions of shuffling via OddEvenMerge
sort and Bitonic sort [8]. Figure 12a shows the performance results
for various problem sizes 𝑛, with a fixed block size of b = 8.

As mentioned in Section 4, shuffles based on sorting networks,
such as Bitonic Shuffle, require attaching additional random tags
to the data elements. In Figure 12a, we see the concrete overheads
of these approaches when compared to our ORShuffle algorithm.
For instance, with 𝑛 = 224 from Figure 12a we see that ORShuffle
takes 9.556±0.005 s, while Bitonic Shuffle takes 16.78±0.03 s, the
performance gap widening with increasing problem size. We note
that the stddevs for all our algorithm implementations are small,
by virtue of their oblivious design.

Figure 12a has four lines for BORPStream. The “V1” variants
correspond to the timings (total and just for Phase 2) when the
BORPStream optimizer is tuned to reduce the total time taken.
However, as we alluded in Section 5.2, in the context where the data
to be shuffled arrives intermittently, one could tune the optimizer to
reduce the Phase 2 time instead (“V2”), and this is in fact the setting
where BORPStream shines. For instance, with 𝑛 = 224 when tuned
to minimize total time (optimizer parameters f=4, d=1, s=48), we
see that it takes a total time of 19.37±0.03 s, of which 11.14±0.03s
is spent on Phase 2, implying a per-packet cost of approximately
0.49 𝜇s as packets arrive. When tuned to minimize the time taken in
Phase 2 (optimizer parameters f=4, d=5, s=49), BORPStream takes
a total time of 42.42±0.05s, however only requires 6.784±0.002 s for
Phase 2, implying a per packet cost of approximately 2.1 𝜇s. While
this is larger than that from the V1 variant, we note that this cost

10

Fast Fully Oblivious Compaction and Shuffling

(a) Computation time (in s) with b=8B (b) Computation time (in s) with varying block sizes for 𝑛 = 220

Figure 12: Comparison of shuffling algorithms in computation time (in s) over varying problem sizes. Error bars are plotted

in the graph, but are too small to be seen. We provide a version of Figure 12a covering smaller values of 𝑛 as Figure 15 in

Appendix D to demonstrate how even for smaller values of 𝑛 our proposed algorithms consistently perform well.

is still quite small in practice. In this example, if the server is likely
to have 2.1 𝜇s of otherwise idle time on average after each user
submits their data, it would behoove it to use the V2-optimized
BORPStream algorithm, so that once the final data arrives, the
shuffle can be completed more quickly in order to reduce the latency
of the overall protocol.

Finally, Figure 12b illustrates the overheads of the various obliv-
ious shuffling algorithms with increasing block sizes, while main-
taining a fixed problem size of 𝑛 = 220. The advantage of BORP-
Stream overall is clear here; for instance, for 𝑛 = 220 4 KiB blocks,
ORShuffle and Bitonic Shuffle cost 515.2±0.3s and 523.9±0.3 s re-
spectively, while BORPStream V1 (optimizer parameters f=4, d=3,
s=47) and V2 (optimizer parameters f=4, d=4, s=47) cost 371.8±0.8 s
and 494.7±0.8 s respectively, a 1.4× improvement over the state of
the art. Furthermore, BORPStream V2’s Phase 2 cost is 124.7±0.1 s
which is a 4.2× improvement over the state of the art and ORShuf-
fle. We observe performance benefits for BORPStream V1 even
though it requires about 3×more OSwaps than Bitonic Shuffle; this
is because BORPStream has significantly better memory locality
than Bitonic Shuffle, as all the memory required for the MSNs in
the first phase of BORPStream even at such large problem sizes can
fit within the 90MB PRM limit, avoiding expensive PRM paging
overheads for the majority of the algorithm. The second half of
BORPStream is also locality efficient as it handles items one bucket
at a time. BORPStream V2 has the same memory advantages as
mentioned earlier, although it incurs more than 4× the number of
OSwaps in total than Bitonic Shuffle. However in Phase 2 alone,
BORPStream V2 only incurs about half the number of OSwaps as
Bitonic Shuffle does in total, and these OSwaps again have better
locality than that of Bitonic Shuffle as the OSwaps are all contained
within a single bucket, while in Bitonic Shuffle they are distributed
over all the items in the entire problem. Additionally, in our eval-
uated range of block sizes the performance gap clearly widens as
the block sizes get larger. While comparing just the Phase 2 cost of

BORPStream with that of the entire ORShuffle/Bitonic Shuffle
may seem unfair, note that the latter shuffles can only be performed
once all the data elements are available. Therefore, ignoring the
per-item timing costs of BORPStream during Phase 1 may be a
fair comparison for scenarios in which data items trickle in over a
relatively long time period.

To summarize, our results show that ORShuffle consistently
outperforms the fastest existing fully oblivious shuffle, Bitonic Shuf-
fle, for all problem sizes. For small block sizes, ORShuffle provides
a 1.8× improvement, and BORPStream’s two-phase division pro-
vides a 2.5× improvement over Bitonic Shuffle once all the packets
have arrived. As block sizes get larger,ORShuffle gives only minor
performance improvements over Bitonic Shuffle, but BORPStream
provides a 1.4× speedup, and with the two-phase division it pro-
vides a 4.2× improvement once all the packets have arrived. Despite
recent work on practical oblivious shuffling, which has targeted
varying levels of partial obliviousness [3, 9, 42], this work demon-
strates the first practical improvements in fully oblivious shuffling
over the classic Bitonic Shuffle.

6.3 Parallel Implementation

We also implement and evaluate the parallel versions of our pro-
posed algorithms on an 8-core Intel Xeon Gold 6334. In Fig 13 we
present the speedup factor for these algorithms with increasing
numbers of threads that execute the algorithm in parallel. We ob-
serve that all our algorithms get 5-6× speedup when run with 8
threads, beyond which the effect saturates as there are only 8 phys-
ical cores on our processor. While processors with SGX support are
currently limited to ones with few physical cores, we envision that
in the future GPU-style high core count TEEs will be available, and
will benefit significantly from our algorithms.

11

Sajin Sasy, Aaron Johnson, and Ian Goldberg

Figure 13: Speedup factor for implementations of ORSPar,

ORCPar, and parallel BORPStream

6.4 Fully Oblivious Assembly Verifier (FOAV)

In order to ensure that the binary executed by the processor is
control-flow oblivious, we instrument our C/C++ source files to
insert assembly comments that state if a value in a register is “safe”
before any (possibly) conditional branch inducing instructions, us-
ing __asm__ macros. We then designed a tool that analyzes the
output assembly produced by the compiler, to verify control-flow
obliviousness. The tool tracks all the conditional jump instructions
in the final assembly, and the corresponding flag-manipulating

instruction (FMI) (such as test, cmp, dec, etc.) for each of these
conditional jumps, and parses the lines above them to check if the
operands of these FMIs have been marked as safe. Compiler op-
timizations make automating this process challenging since the
optimizations may move operands to different registers before per-
forming any FMI on them, which causes our registers marked safe
by the comments to mismatch with the ones used by the FMI. To
resolve this, our tool parses the assembly lines above each of the
conditional jump, tracking both the register operands of the FMI,
and the registers that were already marked explicitly safe from
source comments, to identify other registers that may be deemed
safe as well. This close analysis is performed up until it hits the
start of a function or a jump instruction, and if it still cannot resolve
a conditional branch as safe it marks it for closer human inspection.

Our tool automatically marks 638 out of the 660 conditional
branches in our code as safe, and we manually verified the oblivi-
ousness of the remaining 22 to ensure that they are all safe as well.
A majority of them arise from our use of try-catch blocks that
ensure that the enclave was able to allocate dynamic memory for its
execution, and hence these too are in fact safe conditional branches,
as they do not depend on secret data.

7 RELATEDWORK

7.1 Oblivious Compaction

Goodrich [22] defines compaction as outputting only the𝑚 marked
elements among 𝑛 total elements. Variants for tight and loose com-
paction are given where the output array is of size exactly𝑚 or
of size 𝑂 (𝑚). Goodrich gives an 𝑂 (𝑛 log𝑛) order-preserving tight
compaction algorithm. It can be implemented in a way that outputs
all 𝑛 elements, starting with the𝑚 marked items in their original
relative order (but possibly reordering the unmarked ones), using
as few as (log2 𝑛 − 2)𝑛 oblivious swaps. Note that this number is

roughly a factor two more swaps than in ORCompact. Goodrich
compaction can also be parallelized with log2 𝑛 rounds at the costs
of i) using a second array to move items into in parallel (otherwise
items would be read and written in the same step), and ii) perform-
ing compaction on both the marked and unmarked items separately
and then merging the result (otherwise the unmarked items would
be overwritten). This parallel form requires approximately double
the work and quadruple the memory cost of the sequential one, in
contrast to ORCompact, for which the total parallel and sequential
costs are about the same.

Asharov et al. [5] give a linear-time tight compaction algorithm.
Dittmer and Ostrovsky [18], however, show that the constant for
this compaction algorithm is more than 2228. They give a different
𝑂 (𝑛) tight compaction algorithm that runs in time at most 9405.73𝑛,
which, for realistic 𝑛, is much larger than the additional log𝑛 and
constant factor in Goodrich compaction. Similarly, Mitchell and
Zimmerman [37] give an 𝑂 (𝑛 log log𝑛) algorithm for compaction,
but the analysis by Falk and Ostrovsky [21] indicates that the al-
gorithm requires 4𝑛 log log𝑛 + 14𝑛 OSwaps (with a 2−40 failure
probability), which is more than in ORCompact unless 𝑛 > 278.

We also note that fully oblivious compaction is suitable for other
(non-TEE) secure computing technologies, such as secure multi-
party computation (MPC) and fully homomorphic encryption. For
example, Blanton and Aguiar [10] use Goodrich compaction to per-
form MPC set operations. They could instead use ORCompact and
reduce the expensive comparisons by a factor of two.

7.2 Oblivious Shuffling

Melbourne Shuffle [42] is a data-oblivious shuffle designed for cloud
storage with minimal client storage overheads. Its optimized (recur-
sive) variant requires 𝑂 (𝑐

√
𝑛) client or private memory to store and

permute items, and this private memory needs to be obscure to the
server. To instantiate Melbourne Shuffle in a TEE, one would have
to convert the computation that happens within this client memory
to be fully oblivious. This computation however is non-trivial to
convert into a fully oblivious variant; it requires obliviously dis-
tributing 𝑐

√
𝑛 items across 𝑐

√
𝑛 logical buckets (that reside on the

server), as well as padding them up to 𝑝 · 𝑐
√
𝑛 items for each of those

buckets, where the constant 𝑝 dictates the failure probability of the
algorithm. The algorithm fails if the shuffle permutation requires
moving more than 𝑝 · 𝑐

√
𝑛 items to any of the destination buckets.

The algorithm induces𝑂 ((𝑐 −1) (𝑛
𝑐−1
𝑐)) such client-side operations

over 𝑛1/𝑐 items. One could convert this into a fully oblivious variant
in quadratic time over the 𝑛1/𝑐 items it operates on, which leads
to an algorithm of 𝑂 ((𝑐 − 1) (𝑛

𝑐+1
𝑐)) complexity, asymptotically

worse than the ones we proposed. Additionally, there are constants
missing here that further blow up the cost of implementing this in
practice within a TEE.

Stash Shuffle, the shuffling algorithm in Prochlo [9], was de-
signed to be efficient for the TEE setting. The shuffle is similar to a
Melbourne shuffle without the recursion, but it also uses a stash
of size 𝑂 (

√
𝑛) to hold items that cannot be distributed in a given

round to their intended output buckets. Stash Shuffle is designed to
reduce the number of times a single item has to be processed by the
shuffler, which in classical oblivious shuffling algorithms is log2 𝑛;

12

Fast Fully Oblivious Compaction and Shuffling

their work reduces this down to a constant factor. Their construc-
tion succeeds in their desired efficiency goal only in the setting
where access patterns within PRM are safe from side channels, but
as we detail in Section 2.3, this is no longer a realistic assumption.

Sorting networks with random labels are a natural approach
for oblivious shuffling [3]. They are a common tool for oblivious
sorting inside TEE systems [1, 20, 29, 59]. The bitonic network [8]
is preferred because it performs better in practice [19], even though
the odd-even mergesort network [8] is slightly smaller. Probabilistic
sorting networks [33] can achieve smaller size at the cost of failing
to sort correctly with certain probability. They have not been eval-
uated for oblivious use in TEEs. Random sorting networks appear
to be asymptotically efficient [51], but their practical performance
has not been demonstrated [16].

7.3 Systems Using TEEs and Oblivious

Algorithms

Several privacy-preserving systems have been proposed that make
use of TEEs and oblivious algorithms.

The Oblix system [36] provides secure search of encrypted data
using a TEE. Oblix uses “doubly oblivious” algorithms, in which
memory accesses are oblivious to both protected memory and exter-
nal memory. The definition of double obliviousness does not include
the control flow, in contrast to full obliviousness. The authors note
that the Oblix implementation does not guarantee obliviousness
after compilation, an issue we address with FOAV.

Opaque [59] is a TEE-based platform for secure data analytics.
It performs SQL-type queries on tables, such as filter and join.
Opaque assumes the existence of some memory where accesses are
not observable to the adversary, and it does not provide control-
flow obliviousness. Opaque performs compaction to filter unwanted
records and to remove dummy records created during oblivious
processing, and it could benefit from our oblivious compaction
algorithm ORCompact.

Prochlo [9] provides privacy-preserving telemetry, for exam-
ple to collect information on how a web browser is used. The
Prochlo architecture includes shuffling as a major component to
help anonymize user data. Prochlo introduces the aforementioned
Stash Shuffle algorithm, which is external-memory oblivious. To
obtain security against memory and timing side channels, Prochlo
could instead use our ORShuffle algorithm. Alternatively, Prochlo
could replace the algorithms it uses to process data in protected
memory with oblivious versions. These algorithms accomplish shuf-
fling and compaction tasks, and so our algorithms could be used.

Krastnikov et al. [29] give oblivious algorithms for database
joins. A key operation uses a reverse compaction operation (called
“distribution”), for which they need order preservation. They use
Goodrich compaction in reverse, and ORCompact in reverse could
be used instead to improve performance.

Ohrimenko et al. [43] propose to use TEEs for privacy-preserving
machine learning. They give several machine-learning algorithms
in which all memory accesses are data-oblivious. Several of their al-
gorithms use shuffling as a key component, including to randomize
the training samples for SVMs and neural networks and to random-
ize initial clusters for k-means clustering. These algorithms could
use ORShuffle or BORPStream to improve performance.

Scramble-then-Compute (StC) [17] makes certain non-oblivious
algorithms oblivious by preceding them with an oblivious shuffle.
StC can eliminate memory side channels within TEEs for other-
wise non-oblivious algorithms for problems including compaction,
sorting, and selection. StC is described and evaluated using the Mel-
bourne shuffle [42], which only provides external-memory oblivi-
ousness. ORShuffle or BORPStream could be used instead in StC
to provide fully oblivious algorithms for the same problems.

8 CONCLUSION

TEE systems are gaining traction as a candidate to enable large-
scale applications and data analytics that maintain user privacy. In
parallel, however, we observe ever-growing side-channel attacks
against these systems. In this work we demonstrate fully oblivious
algorithm designs and implementations for the fundamental prim-
itives of tight compaction and shuffling, which serve as building
blocks for myriad applications that have been proposed in the TEE
setting. Our algorithms outperform the state of the art in concrete
timing benchmarks as illustrated by our experimental results. We
additionally verify that our implementations indeed achieve the
most elusive degree of obliviousness, control-flow obliviousness,
by instrumenting an assembly checker tool to this end. The more
recent side-channel attacks that precisely extract cache granular
memory access patterns or fine-grained control flow information of
programs executing in a TEE illustrate how much more powerful
such attack vectors are than previously understood. It is therefore
critical that we design applications that run in TEEs to be fully
oblivious lest they be susceptible to these side channels.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research. We
thank the Ontario Graduate Scholarships program, NSERC (CRDPJ-
534381), and the Royal Bank of Canada for supporting this work.
This research was undertaken, in part, thanks to funding from the
Canada Research Chairs program. This work benefited from the
use of the CrySP RIPPLE Facility at the University of Waterloo. We
thank Xian Wang for corrections to the compaction pseudocode.

REFERENCES

[1] A K MMubashwir Alam, Sagar Sharma, and Keke Chen. 2021. SGX-MR: Regulat-
ing Dataflows for Protecting Access Patterns of Data- Intensive SGXApplications.
Proceedings on Privacy Enhancing Technologies 2021, 1 (2021).

[2] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata.
2013. Innovative Technology for CPU Based Attestation and Sealing.
https://software.intel.com/content/www/us/en/develop/articles/innovative-
technology-for-cpu-based-attestation-and-sealing.html. Accessed December
2021.

[3] Gilad Asharov, TH Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and
Elaine Shi. 2020. Bucket oblivious sort: An extremely simple oblivious sort. In
Symposium on Simplicity in Algorithms.

[4] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico,
and Elaine Shi. 2018. OptORAMa: Optimal Oblivious RAM. Cryptology ePrint
Archive, Report 2018/892.

[5] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico,
Elaine Shi, and Yuval Ishai. 2020. OptORAMa: Optimal Oblivious RAM. In
Advances in Cryptology (EUROCRYPT).

[6] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi.
2020. Oblivious Parallel Tight Compaction. InConference on Information-Theoretic

Cryptography (ITC).
[7] Borja Balle, Gilles Barthe, and Marco Gaboardi. 2018. Privacy Amplification by

Subsampling: Tight Analyses via Couplings and Divergences. In Advances in

Neural Information Processing Systems (NeurIPS).

13

https://software.intel.com/content/www/us/en/develop/articles/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://software.intel.com/content/www/us/en/develop/articles/innovative-technology-for-cpu-based-attestation-and-sealing.html

Sajin Sasy, Aaron Johnson, and Ian Goldberg

[8] Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings

of the April 30–May 2, 1968, Spring Joint Computer Conference.
[9] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard
Seefeld. 2017. Prochlo: Strong Privacy for Analytics in the Crowd. In Symposium

on Operating Systems Principles (SOSP).
[10] Marina Blanton and Everaldo Aguiar. 2016. Private and oblivious set and multiset

operations. International Journal of Information Security 15, 5 (2016).
[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In USENIX Workshop on Offensive Technologies (WOOT).

[12] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via
Speculative Execution. In IEEE European Symposium on Security and Privacy

(EuroS&P). https://doi.org/10.1109/EuroSP.2019.00020
[13] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017.

Detecting Privileged Side-Channel Attacks in Shielded Execution with DéJà Vu.
In ACM Asia Conference on Computer and Communications Security (AsiaCCS).

[14] Scott D Constable and Steve Chapin. 2018. libOblivious: A C++ Library for Obliv-

ious Data Structures and Algorithms. Technical Report 184. Syracuse University
Electrical Engineering and Computer Science.

[15] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Technical Report
2016/086. IACR ePrint.

[16] Artur Czumaj. 2015. Random permutations using switching networks. In ACM

Symposium on Theory of Computing (STOC).
[17] Hung Dang, Tien Tuan Anh Dinh, Ee-Chien Chang, and Beng Chin Ooi. 2017.

Privacy-Preserving Computation with Trusted Computing via Scramble-then-
Compute. Proceedings on Priviacy Enhancing Technologies 2017, 3 (2017).

[18] Sam Dittmer and Rafail Ostrovsky. 2020. Oblivious tight compaction in O(n) time
with smaller constant. In Conference on Security and Cryptography for Networks

(SCN).
[19] Kris Vestergaard Ebbesen. 2015. On the Practicality of Data-oblivious Sorting.

Ph. D. Dissertation. Aarhus Universitet, Datalogisk Institut.
[20] Saba Eskandarian and Matei Zaharia. 2019. ObliDB: Oblivious Query Processing

for Secure Databases. Proceedings of the VLDB Endowment 13, 2 (2019).
[21] Brett Hemenway Falk and Rafail Ostrovsky. 2021. Secure Merge with O (n log

log n) Secure Operations. In Information-Theoretic Cryptography (ITC 2021).
[22] Michael T Goodrich. 2011. Data-oblivious external-memory algorithms for the

compaction, selection, and sorting of outsourced data. In ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA).
[23] J. Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017. Cache

Attacks on Intel SGX. European Workshop on Systems Security (EuroSec) (2017).
[24] W Daniel Hillis and Guy L Steele Jr. 1986. Data parallel algorithms. Commun.

ACM 29, 12 (1986).
[25] Intel. 2012. Intel Trusted Execution Technology. https://www.intel.

com/content/www/us/en/architecture-and-technology/trusted-execution-
technology/trusted-execution-technology-security-paper.html. Accessed
December 2021.

[26] Intel. 2018. Q3 2018 Speculative Execution Side Channel Update.
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-
00161.html. Accessed December 2021.

[27] Intel. 2019. Intel Processors Voltage Settings Modification Advisory.
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-
00289.html. Accessed December 2021.

[28] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory en-
cryption. https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_
Encryption_Whitepaper_v7-Public.pdf. Accessed December 2021.

[29] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. 2020. Efficient
Oblivious Database Joins. Proceedings of the VLDB Endowment 13, 12 (2020).

[30] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-Che Tsai, and Raluca Ada Popa.
2020. An Off-Chip Attack on Hardware Enclaves via the Memory Bus. In USENIX

Security Symposium.
[31] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn

Song. 2020. Keystone: An Open Framework for Architecting TEEs. In European

Conference on Computer Systems (EuroSys).
[32] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, andMarcus

Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In USENIX Security Symposium.

[33] Tom Leighton, Yuan Ma, and Torsten Suel. 1997. On probabilistic networks for
selection, merging, and sorting. Theory of Computing Systems 30, 6 (1997).

[34] Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. 2019. Can we overcome the n log n
barrier for oblivious sorting?. In ACM-SIAM Symposium on Discrete Algorithms

(SODA).
[35] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-

Level Cache Side-Channel Attacks are Practical. In IEEE Symposium on Security

and Privacy (S&P).

[36] PratyushMishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada
Popa. 2018. Oblix: An Efficient Oblivious Search Index. In IEEE Symposium on

Security and Privacy (S&P).
[37] John C Mitchell and Joe Zimmerman. 2014. Data-oblivious data structures. In

Symposium on Theoretical Aspects of Computer Science (STACS).
[38] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:

How SGX Amplifies the Power of Cache Attacks. In Cryptographic Hardware

and Embedded Systems (CHES).
[39] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar.

2020. CopyCat: Controlled Instruction-Level Attacks on Enclaves. In USENIX

Security Symposium.
[40] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized algorithms. Cam-

bridge University Press.
[41] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and

Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against
Intel SGX. In IEEE Symposium on Security and Privacy (S&P).

[42] Olga Ohrimenko, Michael T Goodrich, Roberto Tamassia, and Eli Upfal. 2014.
The Melbourne shuffle: Improving oblivious storage in the cloud. In International

Colloquium on Automata, Languages, and Programming (ICALP).
[43] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian

Nowozin, Kapil Vaswani, andManuel Costa. 2016. Oblivious multi-party machine
learning on trusted processors. In USENIX Security Symposium.

[44] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In RSA Conference (CT-RSA).

[45] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and
Raluca Ada Popa. 2020. Visor: Privacy-Preserving Video Analytics as a Cloud
Service. In USENIX Security Symposium.

[46] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital
Side-Channels through Obfuscated Execution. In USENIX Security Symposium.

[47] Peter Sanders, Sebastian Lamm, Lorenz Hübschle-Schneider, Emanuel Schrade,
and Carsten Dachsbacher. 2018. Efficient parallel random sampling—vectorized,
cache-efficient, and online. ACM Transactions on Mathematical Software (TOMS)

44, 3 (2018).
[48] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. 2018. ZeroTrace:

Oblivious Memory Primitives from Intel SGX. In Network and Distributed System

Security Symposium (NDSS).
[49] Sajin Sasy, Aaron Johnson, and Ian Goldberg. 2022. Fast Fully Oblivious Com-

paction and Shuffling. In 29th ACM Conference on Computer and Communications

Security.
[50] Sajin Sasy and Olga Ohrimenko. 2019. Oblivious Sampling Algorithms for Private

Data Analysis. In Advances in Neural Information Processing Systems (NeurIPS).
[51] Mingwei Shih. 2019. Securing Intel SGX against side-channel attacks via load-time

synthesis. Ph. D. Dissertation. Georgia Institute of Technology.
[52] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:

Eradicating Controlled-Channel Attacks Against Enclave Programs. In Network

and Distributed System Security Symposium (NDSS).
[53] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.

2016. Preventing Page Faults from Telling Your Secrets. In ACM Asia Conference

on Computer and Communications Security (AsiaCCS).
[54] Laurent Simon, David Chisnall, and Ross Anderson. 2018. What you get is what

you C: Controlling side effects in mainstream C compilers. In IEEE European

Symposium on Security and Privacy (EuroS&P).
[55] Ernst Stadlober. 1990. The ratio of uniforms approach for generating discrete

random variates. Journal of computational and applied mathematics 31, 1 (1990).
[56] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In USENIX Security Symposium.

[57] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-
Based Attacks on Enclaved Execution. In USENIX Security Symposium.

[58] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In IEEE

Symposium on Security and Privacy (S&P).
[59] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E

Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI).

A OBLIVIOUSNESS DEFINITION AND PROOFS

In order to define full obliviousness, we first describe relevant as-
pects of our computational model. We consider a RAM model in
which a set of instructions, a set of constant values, a set of regis-
ters, and a memory are available for computation. Each instruction

14

https://doi.org/10.1109/EuroSP.2019.00020
https://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
https://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
https://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

Fast Fully Oblivious Compaction and Shuffling

takes a fixed number of registers to read from and write to. A subset
of instructions reads from or writes to memory, the locations of
which are to be specified in registers, and a subset of instructions
can change the next instruction to be executed on the basis of a
register value. An algorithm𝐴 consists of a sequence of instructions
with registers given as arguments, which are executed sequentially
unless the flow is changed by an instruction.𝐴 terminates when the
address of the next instruction to be executed exceeds the length
of 𝐴. We write 𝐴(𝑥1, . . . , 𝑥𝑘) to indicate that 𝐴 operates on inputs
(𝑥1, . . . , 𝑥𝑘), where the inputs reside in memory starting at a fixed
location (e.g., at the beginning). 𝐴 also has access to a sequence of
random bytes by reading from a special memory region.

An execution of 𝐴 is the entire sequence of states during execu-
tion. It consists of the sequence of executed instructions, the register
values, and the memory contents. Let E(𝐴, 𝑥1, . . . , 𝑥𝑘) denote an
execution of 𝐴 on inputs (𝑥1, . . . , 𝑥𝑘). E is a random variable due
to the possibly random behavior of 𝐴.

The output of an execution indicates the final value produced
by the algorithm and returned to the caller. Given execution 𝐸 =

E(𝐴, 𝑥1, . . . , 𝑥𝑘), O(𝐸) denotes the output of 𝐸. O(𝐸) is a random
variable due to the randomness of 𝐸.

The instruction trace of an execution indicates the order in which
the instructions of an algorithm were executed. Given execution
𝐸 = E(𝐴, 𝑥1, . . . , 𝑥𝑘), I(𝐸) denotes the instruction trace of 𝐸, that
is, the sequence of indices (𝑖1, 𝑖2, . . .), 𝑖 𝑗 ∈ N+, pointing to each
instruction in 𝐸. By convention, 𝑖1 = 1, and, if the execution is of
finite length ℓ , then 𝑖ℓ > |𝐴|. Note that I(𝐸) is a random variable
due to the randomness of 𝐸.

We similarly define the memory trace of an execution to be the
sequence of memory locations that are accessed during execution,
along with a bit indicating if they are read or written. Let 𝐸 =

E(𝐴, 𝑥1, . . . , 𝑥𝑘). ThenM(𝐸) denotes the memory trace of 𝐸, that
is, the sequence of values (𝑡, 𝑥, ℓ), where 𝑡 ∈ N+ indicates that
memory was accessed during the 𝑡th instruction execution, 𝑥 ∈
{0, 1} indicates if the memory access was a read or write, and
ℓ ∈ N+ indicates the memory location accessed.M(𝐸) is a random
variable due to the randomness of 𝐸.

We use a simulation-based definition of full obliviousness. If
two random variables have identical distributions, we say that they
are perfectly indistinguishable. Let [𝑘] denote the set {1, . . . , 𝑘}. Let
𝐼 ⊆ [𝑘] indicate the secret inputs, {𝑥𝑖 }𝑖∈𝐼 , with the remaining inputs
considered non-secret inputs. The simulator will get the non-secret
inputs but only the lengths of the secret inputs.

We define fully oblivious algorithms as follows:

Definition 1. Let 𝐸 = E (𝐴, 𝑥1, . . . , 𝑥𝑘) be the execution of al-
gorithm 𝐴. For any 𝐼 ⊆ [𝑘], 𝐴 is fully oblivious with respect
to {𝑥𝑖 }𝑖∈𝐼 if there exists a simulator S such that for all inputs
(𝑥1, . . . , 𝑥𝑘),

(
O(𝐸),S

(
(𝑥𝑖)𝑖∈[𝑘]\𝐼 , (|𝑥𝑖 |)𝑖∈𝐼

))
is perfectly indistin-

guishable from (O(𝐸), (M(𝐸),I(𝐸))).

Observe that Definition 1 requires that, for any possible out-
put value O(𝐸) = 𝑜 , the joint distribution of the instruction and
memory traces, conditional on O(𝐸) = 𝑜 , is the same for both
S and 𝐴. Including the output in the definition ensures that the
traces do not reveal any additional information about that output
beyond what is implied by the inputs to S. A weaker version of this

definition, which we will use for BORPStream, is statistical full
obliviousness, which takes a parameter 𝜆 (also implictly given to
the target algorithm 𝐴 and the simulator S) and replaces “perfectly
indistinguishable from” with “within statistical distance 2−𝜆 of”.
An even weaker definition (which we will not use) is to require
only that the distributions are computationally indistinguishable
with security parameter 𝜆.

Note that this definition does not take into account the possibility
that some instructions might be variable-time, depending on their
input values, which could yield execution times that depend on
secret data even thought the instruction and memory traces are
identical. Our computational model abstracts away instruction-level
timing, but actual implementations must take this into account
and should only use constant-time instructions when operating
on sensitive data. We believe our implementation does satisfy this
additional requirement.

Finally, observe that the following primitive operations can be
implemented with full obliviousness due to deterministic traces:
arithmetic operations, OSwap, bitwise Boolean operators, and com-
parisons. We will prove the obliviousness of our algorithms assum-
ing they use oblivious implementations of these primitives.

A.1 Recursive Compaction

To prove the obliviousness of ORCompact, we first prove in Lemma 1
that OROffCompact is fully oblivious. Moreover, the memory and
instruction traces are deterministic functions of the input size.

Lemma 1. OROffCompact(𝐷,𝑀, 𝑧) is fully oblivious with respect

to 𝐷 , 𝑀 , and 𝑧, given that 𝑛 = |𝐷 | = |𝑀 | = 2𝑘 , 𝑘 ∈ N . In addition,

its instruction and memory traces are deterministic given 𝑛.

Proof. We describe a simulatorS that outputs the same instruc-
tions and memory accesses as OROffCompact(𝐷,𝑀, 𝑧), knowing
only 𝑛 = |𝐷 |.

In Line 1, the instructions and memory accesses are deterministic
and depend only on 𝑛, and S outputs them.

If 𝑛 < 2, OROffCompact returns after Line 1.
If 𝑛 = 2, then OSwap is called (note that executing this case de-

pends only on𝑛). The instructions andmemory accesses to compute
its swap bit are independent of the inputs and are deterministic. The
OSwap instructions and memory accesses are input-independent
and deterministic given the locations to swap, and those locations
are input-independent and deterministic (𝐷0 and 𝐷1). Therefore, if
𝑛 = 2, S outputs those instructions and memory accesses.

Otherwise, Lines 5–10 are executed (again, this conditional exe-
cution depends only on 𝑛). OROffCompact is called in Lines 5 and
6 with subarrays of 𝐷 and𝑀 that are deterministic functions of 𝑛,
and it is given offset values that can be computed obliviously and
deterministically (note that 𝑛/2 can be obliviously computed with a
bit shift, and (mod 𝑛/2) with an additional bit mask, as 𝑛 is a power
of two). The traces of these calls are produced by S recursively.
The intermediate swap flag 𝑠 can be computed in Line 7 with a
fixed sequence of instructions, given that comparisons are com-
puted obliviously. Finally, the pairwise swaps in Lines 8–10 occur
between fixed pairs in 𝐷 (viz., 𝐷𝑖 and 𝐷𝑖+𝑛/2), the swap bit 𝑏 can be
computed using a fixed instruction sequence, and the final OSwap
call is fully oblivious to the values of its arguments. S outputs

15

Sajin Sasy, Aaron Johnson, and Ian Goldberg

this deterministic sequence of memory accesses and instructions if
𝑛 > 2.
S thereby outputs memory and instruction traces identical to

those of OROffCompact, and they are deterministic given𝑛.OROf-
fCompact is therefore fully oblivious to all of its inputs. □

Theorem 6 proves that ORCompact is fully oblivious and that
its memory and instruction traces are deterministic functions of
the input size.

Theorem 6. ORCompact(𝐷,𝑀) is fully oblivious with respect to 𝐷

and𝑀 . In addition, its instruction andmemory traces are deterministic

given 𝑛 = |𝐷 | = |𝑀 |.

Proof. We describe a simulator S that outputs the same in-
structions and memory accesses as ORCompact(𝐷,𝑀), given only
𝑛.

Line 1 returns only if 𝑛 = 0, which S knows.
The values computed in Line 2 can be computed using determin-

istic memory accesses and instructions that are independent of the
input values. S outputs these traces.

Lines 3 and 4 call ORCompact and OROffCompact using ar-
guments that are subarrays of 𝐷 and 𝑀 depending only on 𝑛, as
well as offsets that can be computed with a fixed instruction se-
quence and input-independent memory accesses. S outputs the
memory and instruction traces used to compute these arguments,
and then it recursively produces the instruction and memory traces
of ORCompact and OROffCompact.

Finally, Lines 5–7 execute a loop that iterates 𝑛2 times, which
is a function of 𝑛. A swap bit 𝑏 is computed with an oblivious
comparison, for which S produces the memory and instruction
sequences. Then an OSwap call is performed on a fixed pair of
items in 𝐷 using 𝑏, and so S produces its traces as well, which are
deterministic and input-independent.
S thereby outputs memory and instruction traces identical to

those of ORCompact, and they are deterministic. ORCompact is
therefore fully oblivious to its inputs. □

A.2 Recursive Shuffling

Theorem 7 proves that ORShuffle is fully oblivious and that its
memory and instruction traces are deterministic functions of the
input size. We note that the implementation of MarkHalf can
use integer arithmetic instead of more complicated floating-point
arithmetic by instead generating a random integer 𝑟 ∈ [0, 𝑛 − 𝑖) in
Line 4 and performing the integer comparison [𝑟 < ℓ] in Line 5. In
addition, our model gives random bytes as inputs, but in practice
they are likely generated (e.g., by an RDRAND instruction), and such
generation must be oblivious to the value of those random bytes.

Theorem 7. ORShuffle(𝐷) is fully oblivious with respect to its

input array 𝐷 . In addition, its instruction and memory traces are

deterministic given 𝑛 = |𝐷 |.

Proof. We describe a simulator S that outputs the same in-
structions and memory accesses as ORShuffle(𝐷), knowing only
𝑛 = |𝐷 |.

First, we consider theMarkHalf(𝑛) subroutine. Lines 1 and 2
have a deterministic instruction and memory traces that depend
only on 𝑛, and S outputs them. Lines 3–6 implement a loop with

𝑛 iterations, where the 𝑖th iteration involves a fixed sequence of
instructions and memory locations. Note that in our model gener-
ating randomness is simply reading the next random bytes from
a designated memory location, and so to generate a random inte-
ger in [0, 𝑛) we obtain a uniformly random 𝛾-bit integer 𝜌 and let
𝑠 = (𝜌𝑛) ≫ 𝛾 , where≫ indicates a bit shift. Therefore, S can gen-
erate as a deterministic function of 𝑛 the memory and instruction
traces of the loop and ofMarkHalf(𝑛) overall.

Next, we consider ORShuffle(𝐷). The execution of Line 1 de-
pends only on 𝑛. If 𝑛 = 2, a condition depending only on 𝑛, then 𝑏
is obtained from the next byte of randomness and used in an OS-
wap of 𝐷0 and 𝐷1, all of which deterministically yield instruction
and memory traces. S outputs those traces in this case. If 𝑛 > 2,
MarkHalf(𝑛) is called, and so S produces its traces as just de-
scribed. Then a call is made to ORCompact(𝐷,𝑀) (Line 7), and by
Theorem 6, S can produce its traces knowing only 𝑛. Finally, calls
to ORShuffle are made with input subarrays of 𝐷 that depend
only on 𝑛. S recursively produces the traces for those calls, which
we recursively assume are deterministic functions of their input
lengths.
S thereby outputs memory and instruction traces identical to

those of ORShuffle, and they are deterministic. ORShuffle is
therefore fully oblivious to its inputs. □

A.3 Bucket Oblivious Random Permutation

To shuffle items with BORPStream (Figure 10), Initialize(𝑛,𝑏, 𝜆)
is first called to set up the parameters and routing network, and
then BORPStream_Phase1(𝑝) is called on each input item 𝑝 . Let
𝐷 be the set of input items. To express the obliviousness guarantee,
we use the extended function signature BORPStream(𝑛,𝑏, 𝜆, 𝐷),
with |𝐷 | = 𝑛 and 𝑏 the size of each item in 𝐷 . Note that 𝑏 is an
implicit input to ORCompact and ORShuffle, and they are not
oblivious with respect to it.

Theorem 8 proves that BORPStream is statistically fully oblivi-
ous with respect to 𝐷 . Note that its instruction and memory traces
are not deterministic because differing numbers of real items can be
revealed in the final-layer buckets, depending on the randomness.

Theorem 8. BORPStream(𝑛,𝑏, 𝜆, 𝐷) is statistically fully oblivious

with respect to 𝐷 .

Proof. We describe a simulator S with an output distribution
for instruction and memory traces that is statistically close to that
of BORPStream(𝑛,𝑏, 𝜆, 𝐷), aggregated across all possible BORP-
Stream outputs, knowing only 𝑛, 𝑏, and 𝜆.

Initialize(𝑛,𝑏, 𝜆) is not given𝐷 as input, and it is a deterministic
algorithm. Therefore, S simply runs and outputs its instruction and
memory traces.

For BORPStream_Phase1(𝑝), S deterministically assigns the
next item (𝑝) to an entry bucket (Line 10). It simply reads sufficient
random bytes to determine and assign a label (Lines 11–12), and
doing so is independent of the value of those bytes, and S produces
those instruction and memory accesses.

ProcessItem(𝑝) is next called on the labeled item and a dummy
item (Lines 13–14). This function is defined in the MergeSplitNode
class (Figure 9).S can therefore output these instructions. The initial
loop (Lines 7–12) to determine the item to forward executes s times,

16

Fast Fully Oblivious Compaction and Shuffling

a number which was produced by Initialize and is thus known
to S. Within each iteration the next item within the local buffer
(buffer[i]) is considered to replace the current one to be forwarded.
The output streams of both items are determined obliviously (Lines
8 and 9), via a deterministic sequence of bitwise operators (e.g.,
bit shifts, AND) on their labels, and the buffer item is compared
obliviously to the current output stream c (Line 9), and so S can
produce those instruction executions and memory accesses. Next,
oblivious comparisons are used to determine if 𝑝 is a dummy packet
and if its output stream is the current one (Line 10), and so S can
produce those instruction and memory traces as well. The last lines
of the iteration (Lines 11–12) obliviously determine a swap flag and
then obliviously swap the current buffer item and 𝑝 , andS produces
the traces for them. After the loop,S has the information to evaluate
the branch condition and determine which branch to execute (Line
13). It can produce the instruction and memory traces appending
𝑝 to the output bucket (Line 14), as the traces of that operation do
not depend on the value of 𝑝 . We can recursively assume that it can
produce the traces resulting from calling ProcessItem(𝑝) (Line 16).
Finally, S has the information to perform the final increment to c.

Thus the calls to ProcessItem(𝑝) in BORPStream_Phase1(𝑝)
can be simulated byS. Returning to BORPStream_Phase1(𝑝) (Fig-
ure 10),S has the information to perform the subsequent increment
to 𝑐 (Line 15), and it can also compute the comparison 𝑐 = 𝑛 and
thus when the next phase is to be executed.

In BORPStream_Phase2, FlushBuffers() is first executed (Line
20). This procedure simply calls ProcessItem(⊥) s · f times on each
MSN in order. Therefore, S can produce the traces for these calls, as
we have already shown that each individual call can be simulated.

BORPStream_Phase2 concludes with a loop repeated B times,
a value that S knows. S can simulate the traces produced during
MarkReal() (Line 22), as it performs a linear scan across the items
in each bucket, performs an oblivious test for dummy packets,
obliviously sets the next bit in 𝑀 , and increments a count. By
Theorem 6, S can produce the traces for the ORCompact call (Line
23).

To show obliviousness for the calls to ORShuffle and Append,
we first exclude executions in which a failure occurs due to the
buffer of some MSN becoming full and forcing a packet to be mis-
routed. For this obliviousness argument, we consider instead a
version of BORPStream in which the MSN buffers are sufficiently
large to prevent any misrouting (e.g., s = 𝑛). Considering this modi-
fied algorithm changes the distribution of executions (and therefore
the distribution of (O(𝐸), (M(𝐸),I(𝐸)))) by at most 2−𝜆 because
that is the maximum failure probability of BORPStream.

Assuming no failures, then, we examine the numbers of items
in the final output buckets (i.e., the B-length sequence of r values
computed in Line 22), which we here denote 𝑅. 𝑅 follows the multi-
nomial distribution with 𝑛 trials and B events because each of the
𝑛 items is routed to its label, which is chosen independently and
uniformly at random from [0,B − 1]. Moreover, for a given output
𝑜 (i.e., a permutation of the input items), obtaining a specific value
𝑅 = (r0, . . . , rB−1) requires that each successive r𝑖 -length subse-
quence of the output items receives label 𝑖 because the items in
each bucket will appear in the output after all items in previous
buckets and before items in subsequent buckets. Obtaining a given

value for 𝑅, conditional on 𝑜 , further requires that the final shuffle
of the 𝑖th bucket applies a single, specific permutation, and this
fact holds because, given the labels required for 𝑅 (as just argued),
BORPStream puts the items in each bucket in a deterministic order,
and so exactly one permutation will yield the order they appear
in 𝑜 . Observe that these arguments also show that there exists a
bijection between (1) the pairs consisting of each possible value of
the sequence of final-bucket real-item numbers and each possible
output permutation, and (2) pairs consisting of each possible value
of the item labelings and the sequence of final-bucket shuffle per-
mutations. Given a sequence of final-bucket real-item numbers, for
all possible outputs the labeling and sequence of final-bucket shuf-
fle permutations that are mapped to under this bijection have the
same joint probability, and so each output has the same probability.
Therefore,

𝑃𝑟 [𝑅 = (r1, . . . , rB) |O(𝐸) = 𝑜] = 𝑛!B−𝑛
B−1∏
𝑖=0

1/(r𝑖 !),

where the initial 𝑛! factor is a normalization constant because
𝑃𝑟 [O(𝐸) = 𝑜] = 1/𝑛!. Importantly, this probability does not vary
for different output values 𝑜 , and therefore 𝑅 conditioned on any
output 𝑜 also has as its probability distribution the multinomial
distribution with 𝑛 trials and B events. Thus, to produce memory
and instruction traces for the ORShuffle and Append calls, the
simulator S samples from that multinomial distribution to choose
a value for 𝑅, which by Theorem 7 allows it to produce the needed
traces.
S can thereby produce instruction and memory traces such that

their distribution, joint with the true output, is within statistical
distance 2−𝜆 of the joint output-trace distribution of BORPStream.
Thus, BORPStream is statistically fully oblivious. □

B PROOFS OF CORRECTNESS AND

EFFICIENCY

B.1 Correctness of ORCompact

Theorem 1 (from Section 3.2) states the correctness of ORCompact
(Figure 2). To prove it, we first prove Lemma 2, which states that
OROffCompact (Figure 1) compacts marked items and maintains
their relative order. Recall that OROffCompact only operates on
inputs with power-of-two size.

Lemma 2. Let 𝑤 =
∑
𝑖 𝑀𝑖 , 𝑛 = |𝐷 |, and (𝐷′0, . . . , 𝐷

′
𝑤−1) be the

subsequence of𝐷 consisting of all𝑤 items marked in𝑀 . When𝑛 = 2𝑘 ,
𝑘 ∈ N, OROffCompact(𝐷,𝑀, 𝑧) rearranges the items in 𝐷 such that

(𝐷𝑧 , . . . , 𝐷 (𝑧+𝑤−1) mod 𝑛) = (𝐷′0, . . . , 𝐷
′
𝑤−1).

Proof. If 𝑛 < 2, OROffCompact correctly does nothing to 𝐷 .
If 𝑛 = 2, then the only possible rearrangement of 𝐷 is to swap its
two items. By a case analysis of the possible values of 𝑧, 𝑀0, and
𝑀1, we can see that OROffCompact performs a swap iff doing so
would compact the marked items to offset 𝑧 and maintain their
relative order. (Line 3).

If𝑛 > 2,OROffCompact calls itself on the left and right halves of
its inputs. Because 𝑛 is a power of two, 𝑛/2 is also. We can therefore
recursively assume that these calls correctly compact each half to
the specified offsets while preserving order of marked items. We

17

Sajin Sasy, Aaron Johnson, and Ian Goldberg

can show the rest of the algorithm (Lines 7–10) yields a correct
output by a case analysis of 𝑧 and𝑚 =

∑𝑛/2−1
𝑖=0 𝑀𝑖 :

1) 𝑧 < 𝑛/2, 𝑧 +𝑚 < 𝑛/2: In this case, 𝑠 = 0 (Line 7). Swapping pairs
does not begin until position 𝑖 = 𝑧 +𝑚 (Line 9). Before then, the
𝑚 marked items in the left half have already been compacted in
order to the offset of 𝑧 with the first call to OROffCompact (Line 5).
Starting then, the marked items get swapped from the right to the
left side in order, up until 𝑖 = 𝑛/2 − 1, because those marked items
were compacted in order to the offset of 𝑧 +𝑚 with the second call
to OROffCompact (Line 6). Any marked items remaining on the
right side already wrapped to start at 𝑖 = 𝑛/2, which completes the
order-preserving compaction.
2) 𝑧 < 𝑛/2, 𝑧 +𝑚 ≥ 𝑛/2: In this case, 𝑠 = 1. Swapping pairs occurs
from positions 0 to (𝑧 +𝑚) mod (𝑛/2) − 1 inclusive. (Nothing is
swapped if (𝑧 +𝑚) mod (𝑛/2) = 0.) The marked items on the left
side were recursively compacted in order to position 𝑧 (Line 5). The
swapping moves the𝑚+𝑧−𝑛/2marked items that wrapped around
to position 0 to instead continue into position 𝑛/2, producing the
correct ordering. These are followed by the marked items in the
right side, which were already recursively compacted in order to
start at position 𝑧 +𝑚 (Line 6). Any marked items that wrapped
around during the right-side compaction, of which there were at
most the offset value of (𝑧 +𝑚) mod (𝑛/2), were moved to instead
wrap around the entire array (i.e., starting at position 0) during
the pairwise swaps of the first (𝑧 + 𝑚) mod (𝑛/2) items, which
completes the in-order compaction.
3) 𝑧 ≥ 𝑛/2, (𝑧 mod (𝑛/2)) +𝑚 < 𝑛/2: In this case, 𝑠 = 1. Swapping
pairs thus occurs from 𝑖 = 0 to 𝑖 = (𝑧 +𝑚) mod (𝑛/2) − 1. For
the 𝑚 positions starting at offset 𝑧, the swapping is active and
swaps marked items on the left to the right, preserving their order,
where the left items were marked due to the compaction to 𝑧 mod
(𝑛/2) (Line 5). For the subsequent positions from 𝑧 +𝑚 to 𝑛 − 1,
swapping does not act on them, and a prefix of in-order marked
items may exist due to the recursive right-side compaction. For the
next positions (wrapping around), 0 to 𝑧 mod (𝑛/2) − 1, swapping
is active, and a prefix of in-order marked items from the right
side is moved to the left only if the marked items on the right
side continued up to 𝑛 − 1. For the next positions 𝑧 mod (𝑛/2) to
(𝑧 mod (𝑛/2)) +𝑚−1, swapping was applied, and similarly a prefix
of in-order marked items from right side was moved to the left only
if the compacted marked items on the right side wrapped around
up to 𝑧. For the positions 𝑧 mod (𝑛/2) +𝑚 to 𝑛/2 − 1, the positions
are unmarked and were unswapped, and similarly the remaining
positions 𝑛/2 to 𝑧 − 1 are unmarked but were swapped from the
left side.
4) 𝑧 ≥ 𝑛/2, (𝑧 mod (𝑛/2)) +𝑚 ≥ 𝑛/2: In this case, 𝑠 = 0. Swapping
pairs does not begin until position 𝑖 = (𝑧 +𝑚) mod (𝑛/2). For the
positions from 𝑧 to 𝑛 − 1, a sequence of in-order marked items
is swapped in order from the left side due to its compaction to
offset 𝑧 mod (𝑛/2) (Line 5). For the subsequent (after wrapping
around) positions 0 to (𝑧 +𝑚) mod (𝑛/2) − 1, they all contain in-
orde marked items left over from the left side compaction, as the
swapping did not act in that region. The following items from
position (𝑧 +𝑚) mod (𝑛/2) to 𝑧 mod (𝑛/2) −1 (if any) may contain
a in-order prefix of marked items that were compacted on the
right side and then swapped in order. The next items from position

𝑧 mod (𝑛/2) to 𝑛/2 − 1 potentially continue this sequence of ino-
rder marked items as this region was also swapped in order from the
right side after it was compacted. The subsequent items from 𝑛/2 to
𝑛/2 + ((𝑧 +𝑚) mod (𝑛/2)) − 1 continue any preceding sequence of
marked items if the right-side compacted region wrapped around,
as this sequence was not swapped, which maintains the original
order of the right-side marked items. Finally, the positions from
𝑛/2+((𝑧+𝑚) mod (𝑛/2)) to 𝑧−1 (if any) must be unmarked because
they were swapped in from the left side and follow the sequence
of𝑚 marked items on the left (wrapping around) due to left-side
compaction to 𝑧 mod (𝑛/2). □

Using Lemma 2, we now prove Theorem 1.

Theorem 1. Given 𝐷 and 𝑀 , let (𝐷′0, . . . , 𝐷
′
𝑤−1) be the subse-

quence of𝐷 consisting of all𝑤 itemsmarked in𝑀 .ORCompact(𝐷,𝑀)
rearranges the items in𝐷 such that (𝐷0, . . . , 𝐷𝑤−1) = (𝐷′0, . . . , 𝐷

′
𝑤−1).

Proof. If𝑛 = 1 or𝑛 = 2, thenORCompact callsOROffCompact
with an offset of 0, which by Lemma 2 yields the correct result.

If 𝑛 > 2, then the input arrays are divided into a left side of
length 𝑛2 = 𝑛 − 2⌊log2 (𝑛) ⌋ and a right side of length 𝑛1 = 2⌊log2 (𝑛) ⌋ ,
which is the longest power-of-two-sized suffix. OROffCompact is
called on right side with an offset of (𝑛1 − 𝑛2 +𝑚) mod 𝑛1, where
𝑚 ← ∑𝑛2−1

𝑖=0 𝑀𝑖 (Line 4), and by Lemma 2 this call compacts the
marked items in that region to that offset while maintaining their
relative order. ORCompact is then called on the left side (Line 3),
and we can recursively assume that it compacts the marked items
in that region while mainting their order. Thus, after the pairwise
swaps of the last 𝑛2 −𝑚 items of each side (Lines 5–7), all marked
items on the right up to the (𝑛2 −𝑚)th one have been swapped
in order from into the positions following the 𝑚 marked items
compacted into the first𝑚 positions on the left. These marked items
are then followed by a prefix of marked items in order among the
next 𝑛1−𝑛2+𝑚 positions, due to the right-side compaction to offset
(𝑛1 − 𝑛2 +𝑚) mod 𝑛1, which are then followed by the unmarked
items. This process results in a compaction to the beginning of 𝐷 ,
it maintains the order within swapped subsequences, and it and
places the right-side items to follow in order of the left-side items,
proving the the theorem. □

B.2 Efficiency of ORCompact

Theorem 2 (from Section 3.4) shows the asymptotic runtime of
ORCompact (Figure 2).

Theorem 2. ORCompact runs in time 𝑂 (𝑛 log𝑛).

Proof. First, assume that 𝑛 = 2𝑘 , 𝑘 ∈ N. Let the execution time
of OROffCompact be 𝑇1 (𝑛). OROffCompact takes linear time to
perform all operations except for the two recursive calls. Those
recursive calls are each given half of the original input as input,
and recursion ends at 𝑛 = 2. Therefore there exists some 𝑐 such
that 𝑇1 (𝑛) ≤ 𝑐𝑛 + 2𝑇1 (𝑛/2) =

∑log2 𝑛
𝑖=1 𝑐𝑛 = 𝑐𝑛 log2 𝑛.

Next, consider arbitrary 𝑛. Let𝑇2 (𝑛) be the execution time of OR-
Compact. ORCompact first performs at most 𝑐′ (𝑛2 + 1) operations
for some 𝑐′, next calls OROffCompact on the first 𝑛1 items, and
finally calls itself on the remaining 𝑛2 items (if any). Therefore, for
𝑛 a power of two, by the previous argument for𝑇1 and the fact that
𝑛2 < 𝑛, we have that 𝑇2 (𝑛) ≤ 𝑐′𝑛 + 𝑐𝑛 log2 𝑛. For 𝑛 not a power of

18

Fast Fully Oblivious Compaction and Shuffling

two, inductively assume that, for 𝑛′ < 𝑛,𝑇2 (𝑛′) ≤ 𝑐′𝑛′ +𝑐𝑛′ log2 𝑛′.
Then

𝑇2 (𝑛) ≤ 𝑐′ (𝑛2 + 1) +𝑇1 (𝑛1) +𝑇2 (𝑛2) (1)
≤ 𝑐′ (2𝑛2 + 1) + 𝑐𝑛1 log2 (𝑛1) + 𝑐𝑛2 log2 (𝑛2) (2)
≤ 𝑐′ (2𝑛2 + 1) + 𝑐𝑛 log2 ((𝑛1/𝑛)𝑛1 + (𝑛2/𝑛)𝑛2) (3)
≤ 𝑐′𝑛 + 𝑐𝑛 log2 𝑛, (4)

where Line 2 follows from the inductive assumption because 𝑛 is
not a power of two; Line 3 follows by applying Jensen’s inequality
and using the concavity of log2, noting that 𝑛 = 𝑛1 + 𝑛2; and Line 4
holds because i) 2𝑛2 + 1 ≤ 𝑛, ii) (𝑛1/𝑛)𝑛1 + (𝑛2/𝑛)𝑛2 is a convex
combination of 𝑛1 and 𝑛2, iii) 𝑛2 < 𝑛1 ≤ 𝑛, and iv) log2 is an
increasing function. □

Theorem 3 (from Section 3.4) bounds the number of OSwap calls
made in ORCompact.

Theorem 3. Let 𝑆1 (𝑛) count theOSwap calls inORCompact. Then(
2⌊log2 𝑛⌋/2

)
⌊log2 𝑛⌋ ≤ 𝑆1 (𝑛) ≤ ⌊(𝑛/2) log2 𝑛⌋ .

Proof. Let 𝑏 (𝑛) ∈ {0, 1}∗ be the binary expansion of 𝑛: 𝑛 =∑⌊log2 (𝑛) ⌋
𝑖=0 𝑏 (𝑛)𝑖2𝑖 . We first prove that

𝑆1 (𝑛) =
⌊log2 𝑛⌋∑︁
𝑖=0

𝑏 (𝑛)𝑖
(
2𝑖−1𝑖 +

(
𝑛 mod 2𝑖

))
. (5)

This formula will lead to the desired lower bound, and also shows
that the upper bound is tight when 𝑛 is a power of two.

Let 𝑆 ′1 (𝑛) be the number of oblivious swaps in OROffCompact
given an item array of length 𝑛 = 2𝑘 , 𝑘 ∈ N. There are (𝑛/2)
OSwap calls (made in Line 3 or 10), and, for 𝑛 > 2, two recursive
calls on (𝑛/2) inputs each (Lines 5 and 6). Therefore, 𝑆 ′1 (2) = 1,
and 𝑆 ′1 (𝑛) = (𝑛/2) + 2𝑆

′
1 (𝑛/2). Solving this recurrence, we get that

𝑆 ′1 (𝑛) = (𝑛/2) log2 (𝑛).
When 𝑛 is a power of two, ORCompact simply calls OROff-

Compact on its entire input, and so 𝑆1 (𝑛) = 𝑆 ′1 (𝑛). However, for
arbitrary 𝑛, we need to take into account the fact that ORCompact
repeatedly reduces 𝑛 by the largest power of two not greater than
𝑛.

Let 𝑛1 (𝑛) be the largest power of two not greater than 𝑛, 𝑛 ∈ N:
𝑛1 (𝑛) = 2⌊log2 (𝑛) ⌋ , and let 𝑛2 (𝑛) be the remaining quantity of 𝑛:
𝑛2 (𝑛) = 𝑛 − 𝑛1 (𝑛). We denote by 𝑏 (𝑛) the binary expansion of 𝑛.
ORCompact calls OROffCompact on the first 𝑛1 (𝑛) items (Line 4),
calls itself on the remaining 𝑛2 (𝑛) items (Line 3), and then calls
OSwap 𝑛2 (𝑛) times (Line 7). Therefore,

𝑆1 (𝑛) =𝑛2 (𝑛) + 𝑆 ′1 (𝑛1 (𝑛)) + 𝑆1 (𝑛2 (𝑛)) (6)

=𝑛2 (𝑛) +
𝑛1 (𝑛)
2

log2 (𝑛1 (𝑛)) + 𝑆1 (𝑛2 (𝑛)) (7)

=
𝑛1 (𝑛)
2

log2 (𝑛1 (𝑛)) + 𝑛2 (𝑛)+ (8)

𝑛1 (𝑛2 (𝑛))
2

log2 (𝑛1 (𝑛2 (𝑛))) + 𝑛2 (𝑛2 (𝑛)) . . .

=

⌊log2 (𝑛) ⌋∑︁
𝑖=0

𝑏 (𝑛)𝑖
(
2𝑖−1𝑖 +

(
𝑛 mod 2𝑖

))
. (9)

Equation 7 follows from substituting the expression we derived for
𝑆 ′1 (𝑛). Equation 8 simply repeats this expansion for 𝑆1 (𝑛) until 𝑛2
returns 0, at which point 𝑆1 also returns 0. Equation 9 follows from
the facts that (1) the set of values returned by 𝑛1 is equal to the set
of values {𝑏 (𝑛)𝑖2𝑖 }𝑖:𝑏 (𝑛)𝑖=1, and (2) the set of values returned by
𝑛2 is equal to the set of values {𝑛 mod 2𝑖 }𝑖:𝑏 (𝑛)1=1. This derivation
proves the formula for 𝑆1 (𝑛) in Equation 5.

This formula leads easily to the stated lower bound. We simply
observe that 𝑛1 (𝑛) = 2⌊log2 (𝑛) ⌋ , and therefore the formula for 𝑆1 (𝑛)
contains the term (2⌊log (𝑛) ⌋/2) ⌊log2 (𝑛)⌋. All the other terms are
non-negative, and so that term is a lower bound on 𝑆1 (𝑛).

For𝑛 a power of 2, the upper bound (and indeed equality) trivially
holds because the sum has just a single term. Now suppose the
upper bound holds for all𝑚 < 𝑛. For 𝑛 not a power of 2, define
𝑛1 and 𝑛2 as above (and taking 𝑛 as the implicit argument), so
that 𝑛1 is a power of 2, 1 ≤ 𝑛2 < 𝑛1, and 𝑛 = 𝑛1 + 𝑛2. Note that
for 0 < 𝑥 < 1, 𝑥 < log2 (1 + 𝑥), and so since 0 < 𝑛2/𝑛1 < 1,
(log2 𝑛1) + 𝑛2/𝑛1 < (log2 𝑛1) + log2 (1 + 𝑛2/𝑛1) = log2 (𝑛1 + 𝑛2).
Also, 1 + log2 𝑛2 = log2 (2𝑛2) < log2 (𝑛1 + 𝑛2).

Then

𝑆1 (𝑛) =
𝑛1
2

log2 𝑛1 + 𝑛2 + 𝑆1 (𝑛2) (10)

≤ 𝑛1
2

log2 𝑛1 +
𝑛2
2
+ 𝑛2

2
+ 𝑛2

2
log2 𝑛2 (11)

=
𝑛1
2

(
(log2 𝑛1) +

𝑛2
𝑛1

)
+ 𝑛2

2
(1 + log2 𝑛2) (12)

<
𝑛1
2

log2 (𝑛1 + 𝑛2) +
𝑛2
2

log2 (𝑛1 + 𝑛2) (13)

=
𝑛

2
log2 𝑛, (14)

where Line 10 comes from the definition of ORCompact, Line 11
follows from the inductive assumption, and Line 13 is obtained from
the preceding arguments. Finally, 𝑆1 (𝑛) is integral, and so if 𝑆1 (𝑛) ≤
(𝑛/2) log2 𝑛 then it must also be that 𝑆1 (𝑛) ≤ ⌊(𝑛/2) log2 𝑛⌋.

□

B.3 Efficiency of ORShuffle

Theorem 4 (from Section 4.2) gives the asymptotic runtime of OR-
Shuffle (Figure 5).

Theorem 4. ORShuffle runs in time 𝑂 (𝑛 log2 𝑛).

Proof. Let 𝑇3 (𝑛) be the runtime of ORShuffle. MarkHalf
takes linear time, and by Theorem 2ORCompact takes time𝑂 (𝑛 log𝑛).
Therefore,𝑇3 (𝑛) ≤ 𝑐 (𝑛 log𝑛) +2𝑇3 (𝑛/2) for some 𝑐 > 0. By expand-
ing this recurrence and simplifying the arithmetic sum, we can see
that 𝑇3 (𝑛) ≤ 𝑐𝑛 log2 𝑛((log2 𝑛) + 1)/2 = 𝑂 (𝑛 log2 𝑛). □

Theorem 5 (from Section 4.2) bounds the number of OSwap calls
made in ORShuffle.

Theorem 5. Let 𝑆2 (𝑛) count the number ofOSwap calls performed

by ORShuffle(𝐷), with |𝐷 | = 𝑛. For 𝑛 = 2𝑘 , 𝑘 ∈ N, 𝑆2 (𝑛) =

(𝑛/4) (log2 𝑛 + 1) log2 𝑛. For all 𝑛, 𝑆2 (𝑛) < (𝑛/4) (log2 𝑛 + 1) log2 𝑛 +
𝑛/(6 ln 2), and 𝑆2 (𝑛) ≥

(
2⌊log2 𝑛⌋/4

)
(⌊log2 𝑛⌋ + 1) ⌊log2 𝑛⌋.

Proof. Let 𝑆1 (𝑛) be the number of OSwap calls forORCompact;
recall from Theorem 3 that 𝑆1 (𝑛) ≤ ⌊(𝑛/2) log2 𝑛⌋. The number of

19

Sajin Sasy, Aaron Johnson, and Ian Goldberg

OSwap calls satisfies the recurrence 𝑆2 (𝑛) = 𝑆1 (𝑛) + 𝑆2 (⌈𝑛/2⌉) +
𝑆2 (⌊𝑛/2⌋).

Suppose that 𝑛 = 2𝑘 , 𝑘 ∈ N. Inductively assume that, for all𝑚
that are powers of 2 less than 𝑛, 𝑆2 (𝑚) = (𝑚/4) (log2𝑚 + 1) log2𝑚.
Observe that this assumption holds for 𝑛 = 1 (𝑆2 (1) = 0) and 𝑛 = 2
(𝑆2 (2) = 1). Then it holds that

𝑆2 (𝑛) =
(𝑛
2

)
log2 𝑛 + 2𝑆2

(𝑛
2

)
(15)

=

(𝑛
2

)
log2 𝑛 +

𝑛

4
log2

(𝑛
2

) (
log2

(𝑛
2

)
+ 1

)
(16)

=

(𝑛
4

)
log2 𝑛(log2 𝑛 + 1), (17)

where Line 15 follows by replacing 𝑆1 (𝑛) using the formula given in
Theorem 3 (noting the upper and lower bounds match for powers
of 2), and Line 16 holds by the inductive assumption.

To prove the lower bound, note that by the preceding argument it
holdswith equality for𝑛 a power of two. For𝑛 not a power of two, in-
ductively assume that, for𝑚 < 𝑛, 𝑆2 (𝑚) ≥

(
2⌊log2𝑚⌋/4

)
(⌊log2𝑚⌋+

1) ⌊log2𝑚⌋. Let 𝑛1 = 2⌊log2 𝑛⌋ . Then it follows that

𝑆2 (𝑛) = 𝑆1 (𝑛) + 𝑆2 (⌈𝑛/2⌉) + 𝑆2 (⌊𝑛/2⌋) (18)
≥ (𝑛1/2) ⌊log2 𝑛1⌋ + 𝑆2 (⌈𝑛/2⌉) + 𝑆2 (⌊𝑛/2⌋) (19)
≥ (𝑛1/2) ⌊log2 𝑛1⌋+ (20)

2
(
2⌊log2 (𝑛1/2) ⌋/4

)
(⌊log2 (𝑛1/2)⌋ + 1) ⌊log2 (𝑛1/2)⌋

= (𝑛1/4) log2 𝑛1 (log2 𝑛1 + 1) (21)

=

(
2⌊log2 𝑛⌋/4

)
⌊log2 𝑛⌋ (⌊log2 𝑛⌋ + 1) (22)

where Line 19 follows from the lower bound of Theorem 3, Line 20
holds by the inductive assumption because ⌊𝑛/2⌋ ≤ ⌈𝑛/2⌉ < 𝑛 and
𝑛1 < 𝑛, and Line 21 holds by the arguments in Lines 15–17.

To prove the upper bound for 𝑛 not a power of 2, observe that,
by replacing 𝑆1 (𝑛) in the recurrence for 𝑆2 (𝑛) using Theorem 3,
𝑆2 (𝑛) ≤ (𝑛/2) log2 𝑛 + 𝑆 (⌈𝑛/2⌉) + 𝑆 (⌊𝑛/2⌋). We can repeatedly
expand the recurrence, where the 𝑘th expansion adds 2𝑘 terms
of the form (𝑥/2) log2 𝑥 . The 𝑖th term of the 𝑘th expansion is
(𝑡𝑘,𝑖/2) log2 𝑡𝑘,𝑖 , where 𝑡𝑘,𝑖 is the result of a sequence of 𝑘 applica-
tions to 𝑛 of the functions ⌊𝑦/2⌋ and ⌈𝑦/2⌉. Observe that we can
express the 𝑡𝑘,𝑖 as 𝑡𝑘,𝑖 = ⌊(𝑛 + 𝑖 − 1)/2𝑘 ⌋, that they only take the
values ⌊𝑛/2𝑘 ⌋ and ⌈𝑛/2𝑘 ⌉, and that

∑
𝑖 𝑡𝑘,𝑖 = 𝑛.

We first consider the sumof these terms, 𝑓 (𝑘) = ∑2𝑘
𝑖=1 (𝑡𝑘,𝑖/2) log2 𝑡𝑘,𝑖 .

We can bound it using the concavity of log(𝑥) and applying Jensen’s
inequality:

𝑓 (𝑘) ≤ 𝑛

2
log2

©«
2𝑘∑︁
𝑖=1

(
𝑡𝑘,𝑖

𝑛

)
𝑡𝑘,𝑖

ª®¬ (23)

Let 𝑐𝑘 = 𝑛 mod 2𝑘 , which counts the number 𝑡𝑘,𝑖 values with the
value ⌈𝑛/2𝑘 ⌉. Then we can simplify Line 23 as follows:

𝑓 (𝑘) ≤ 𝑛

2
log2

(⌊
𝑛

2𝑘

⌋
+

(𝑐𝑘
𝑛

) ⌈
𝑛

2𝑘

⌉)
(24)

We observe that ⌊
𝑛

2𝑘

⌋
= (𝑛 − 𝑐𝑘)/2𝑘 ,

and, when 𝑐𝑘 > 0, ⌈
𝑛

2𝑘

⌉
= (𝑛 + 2𝑘 − 𝑐𝑘)/2𝑘 .

These facts allows us to simplify the bound on 𝑓 (𝑘):

𝑓 (𝑘) ≤ 𝑛

2
log2

(
𝑛 − 𝑐𝑘
2𝑘

+
(𝑐𝑘
𝑛

) (
𝑛

2𝑘
+ 2𝑘 − 𝑐𝑘

2𝑘

))
(25)

=
𝑛

2
log2

(
𝑛

2𝑘
+

(𝑐𝑘
𝑛

) (
1 − 𝑐𝑘

2𝑘

))
. (26)

Note that that this bound is still valid when 𝑐𝑘 = 0 due to the
𝑐𝑘/𝑛 factor. Let 𝑔(𝑥) = (𝑥/𝑛) (1 − 𝑥/2𝑘). The first derivative is
𝑔′ (𝑥) = (1/𝑛) (1 − 𝑥/2𝑘−1), and therefore 𝑔(𝑥) is maximized at
𝑥 = 2𝑘−1. Using this fact and Line 26, we can conclude that

𝑓 (𝑘) ≤ 𝑛

2
log2

(
𝑛

2𝑘
+

(
2𝑘−1

𝑛

) (
1 − 1

2

))
(27)

=
𝑛

2
log2

(
𝑛

2𝑘
+ 2𝑘−2

𝑛

)
. (28)

Using the concavity of log2 𝑥 and its derivative of 1/((ln 2)𝑥), we
have that

𝑓 (𝑘) ≤ 𝑛

2
log2

(
𝑛

2𝑘

)
+

(𝑛
2

) (
2𝑘

(ln 2)𝑛

) (
2𝑘−2

𝑛

)
(29)

=
𝑛

2
log2

(
𝑛

2𝑘

)
+ 4𝑘−1

2(ln 2)𝑛 . (30)

We now return to the recurrence for 𝑆2 (𝑛), which we can bound
as

𝑆2 (𝑛) ≤
𝑛

2
log2 𝑛 +

⌈log2 𝑛⌉−1∑︁
𝑘=1

𝑓 (𝑘) (31)

≤ 𝑛

2
log2 𝑛 +

⌈log2 𝑛⌉−1∑︁
𝑘=1

𝑛

2
log2

(
𝑛

2𝑘

)
+ 4𝑘−1

2(ln 2)𝑛 (32)

≤
⌈log2 𝑛⌉−1∑︁

𝑘=0

𝑛

2
log2

(
𝑛

2𝑘

)
+
⌈log2 𝑛⌉−1∑︁

𝑘=1

4𝑘−1

2(ln 2)𝑛 (33)

≤ 𝑛

4
(log2 𝑛 + 1) log2 𝑛 +

4⌈log2 𝑛⌉−1 − 1
6(ln 2)𝑛 (34)

≤ 𝑛

4
(log2 𝑛 + 1) log2 𝑛 +

𝑛2 − 1
6(ln 2)𝑛 (35)

<
𝑛

4
(log2 𝑛 + 1) log2 𝑛 +

𝑛

6 ln 2
. (36)

□

B.4 Efficiency of BORPStream

BORPStream can always choose a trivial BRN, which makes its
runtime no worse than that of ORShuffle, as shown by Theorem 9.

Theorem 9. BORPStream runs in time 𝑂 (𝑛 log2 𝑛).

Proof. For a given number of items 𝑛, let 𝑝𝑛 = (f𝑛, d𝑛, s𝑛) be
some set of parameters for the BRN. Fix a block size and failure
probability, and consider the runtime 𝑇𝑛 of BORPStream given
𝑛 items when 𝑝𝑛 is used in place of the parameters produced by

20

Fast Fully Oblivious Compaction and Shuffling

BORP_Optimizer (Line 2, Figure 10). Suppose 𝑇𝑛 = 𝑂 (𝑓 (𝑛)) for
some function 𝑓 . Then the runtime of BORPStream is 𝑂 (𝑓 (𝑛))
because the optimizer outputs parameters that yield the smallest
predicted runtime using a cost model that is linear in the overall
number of operations performed.

A trivial setting of 𝑝𝑛 = (1, 1, 1) results in a BRN with only one
MSN. BORPStream then simply copies its input packets to a single
output bucket, runs ORCompact to remove dummy packets, and
then runs ORShuffle to shuffle the 𝑛 items. By Theorems 2 and 4,
the resulting runtime is 𝑂 (𝑛 log2 𝑛). □

Of course, BORPStream would not offer advantages if it simply
devolved into ORShuffle, and our optimizer does in fact return
non-trivial parameter settings (see Table 1). As described in Sec-
tion 5.4, the runtime of Phase 1 is𝑂 (𝑛sd), and in Phase 2 the runtime
of FlushBuffers() is 𝑂 (fds2d2), while cumulatively in Phase 2 the
ORCompact calls take time 𝑂 (fd log𝑉) and the ORShuffle calls
are 𝑂 (fd log2𝑉), with 𝑉 = 𝑂 (𝑛/fd + sd). If, for example, we con-
sider 2 ≤ f = 𝑂 (1) and d = logf (𝑛/𝑐) for some constant 𝑐 ≥ 1,
which is a parameterization used by BORP [3], then the overall
runtime becomes 𝑂 (𝑛s2 log2 𝑛), with FlushBuffers() contributing
the dominant term. This analysis indicates that (1) a “narrower”
parameterization (i.e., with smaller fd) is needed to outperform OR-
Shuffle; and (2) small buffer size s is crucial to good performance
in BORPStream.

C BORPSTREAM CORRECTNESS AND

OPTIMIZER

BORPStream fails in the event that any one of the MSNs incurs a
buffer overflow; let the probability of this event be P. We implement
a failure probability calculator to numerically bound P for a given
number of items 𝑛, and use it to produce various choices of (f, d, s)
that are below the desired failure probability threshold 2−𝜆 . In
our experiments we use 𝜆 = 80. Table 1 lists the BORPStream
parameters produced by our calculator for a few choices of 𝑛 and 𝑏.

The failure probability P is bounded by the union bound over
all individual MSN’s buffer overflow probability. For each individ-
ual MSN, we can bound this buffer overflow failure probability by
analyzing the underlying Markov process of how the buffer occu-
pancy changes as items are passed through it. Let an item entering
a given MSN be real with probability 1

2 and each MSN have f output
streams or “flavours”. We perform this analysis under a simplified
model where we consider the MSN receives a batch of f items at a
time, and then tries to evict one item of each flavour (if possible,
else it evicts a dummy); instead of the MSN evicting an item for
each item received.

For an MSN to fail in the above model, it is necessary that its
buffer has no items of at least one flavour; if the buffer has at
least one item of each flavour, even in the worst case when all
incoming f items are real, the buffer size does not change. Given
this observation, we consider the state of the MSN buffer at any
time as a sorted tuple of the number of items of each flavour, and
discard the smallest count in this tuple to reduce the state space
and arrive at an upper bound of the failure probability.

For a given s, we generate the transition matrix for one batch
of f items by starting with the tuple of all 0’s as the buffer state,

Table 1: BORPStream parameters produced by the optimizer

for V1 (minimize total time) and V2 (minimize phase 2 time)

modes across sample problem sizes 𝑛 and block sizes 𝑏.

Mode 𝑛 𝑏 f d s 𝜆

V1 220 8 2 1 32 81
V1 220 1024 4 3 47 82
V1 224 8 4 1 48 82
V2 220 8 4 4 47 80
V2 220 1024 4 4 47 80
V2 224 8 4 5 49 82

and then computing the probability distribution of all the possible
sequences of f items. We then repeat this process until a complete
transition matrix for a maximum buffer size of s is constructed. The
transition matrix also has a fail state which soaks all the events that
lead to a buffer overflow and provides an upper bound for failure.
Given n, the calculator selects the depth of the network d from a
range of candidate choices. We exponentiate the transition matrix
by 2𝑛

fd
(the number of f-item batches each MSN in a layer processes),

to arrive at the failure probability of each individual MSN.

21

Sajin Sasy, Aaron Johnson, and Ian Goldberg

D ADDITIONAL GRAPHS FOR SMALL VALUES

OF 𝑛

Figure 14: Comparison of Goodrich compaction and ORCom-

pact on computation time (inms) zoomed in from Figure 11b

on smaller values of 𝑛.

Figure 15: Comparison of shuffling algorithms on compu-

tation time (in ms) zoomed in from Figure 12a on smaller

values of 𝑛.

22

	Abstract
	1 Introduction
	2 Background
	2.1 Trusted Execution Environments (TEEs)
	2.2 Degrees of Obliviousness
	2.3 TEE Attacks

	3 Recursive Compaction
	3.1 Algorithm
	3.2 Correctness
	3.3 Obliviousness
	3.4 Efficiency
	3.5 Parallelization

	4 Recursive Shuffling
	4.1 Algorithm
	4.2 Efficiency
	4.3 Parallelization

	5 Bucket Oblivious Random Permutation (BORP)
	5.1 BORPCompact
	5.2 BORPStream
	5.3 Correctness and Obliviousness
	5.4 Efficiency and Parallelization

	6 Implementation
	6.1 Compaction Algorithms
	6.2 Shuffling Algorithms
	6.3 Parallel Implementation
	6.4 Fully Oblivious Assembly Verifier (FOAV)

	7 Related Work
	7.1 Oblivious Compaction
	7.2 Oblivious Shuffling
	7.3 Systems Using TEEs and Oblivious Algorithms

	8 Conclusion
	Acknowledgments
	References
	A Obliviousness Definition and Proofs
	A.1 Recursive Compaction
	A.2 Recursive Shuffling
	A.3 Bucket Oblivious Random Permutation

	B Proofs of Correctness and Efficiency
	B.1 Correctness of ORCompact
	B.2 Efficiency of ORCompact
	B.3 Efficiency of ORShuffle
	B.4 Efficiency of BORPStream

	C BORPStream Correctness and Optimizer
	D Additional Graphs for small values of n

