
On the Security of KOS

Benjamin E. Diamond∗

Irreducible

benediamond@gmail.com

Abstract

We study the security of the random oblivious transfer extension protocol of Keller, Orsini, and Scholl
(CRYPTO ’15), whose security proof was recently invalidated by Roy (CRYPTO ’22). We show that KOS
is asymptotically secure. Our proof involves a subtle analysis of the protocol’s “correlation check”, and
introduces several new techniques. We also study the protocol’s concrete security. We establish concrete
security for security parameter values on the order of 5,000. We present evidence that a stronger result
than ours—if possible—is likely to require radically new ideas.

1 Introduction

The oblivious transfer extension protocol of Keller, Orsini and Scholl [KOS15, Fig. 7] (henceforth “KOS”)
is widely known. Key to that protocol is a certain “correlation check”, in which a number of extension OTs
are “sacrificed” in a linear combination. This check is very difficult to analyze. In recent work, Roy [Roy22,
§ 4.1] disproves a certain key lemma [KOS15, Lem. 1] upon which KOS’s security analysis relies. Roy’s work
invalidates the security proof [KOS15, Thm. 1] as originally written.

In a recent update to their work, Keller, Orsini and Scholl propose an adjusted variant of their protocol
[KOS22, Fig. 10]; essentially, they suggest a special case of Roy’s construction. Though the efficiency of the
updated protocol is comparable to the original, it is more complex, and uses different ideas. Indeed, we note
that the analysis of [Roy22] is very theoretically involved. It is of interest to prove the security of KOS, as
originally written; this open problem is noted explicitly by Roy [Roy22, § 1.1], for example.

We show that, asymptotically, KOS is secure. Our proof begins by introducing a certain numerical metric,
which captures the extent of the corrupt receiver’s compliance with the protocol. We moreover introduce
a new simulation strategy, based on this metric, and show that—as this degree of compliance varies—the
receiver must choose between facing negligible odds in the correlation check, on the one hand, and handing
the distinguisher a negligible advantage, on the other. Our proof’s key step has a coding-theoretic flavor;
we show that a binary matrix with sufficiently many random columns is unlikely to reside near the matrix
representation of any field element (in the space of matrices, where distance is measured in rank).

We also extract effective bounds from our proof. We show that, in order to achieve statistical security of
2−40 against an adversary making up to 280 hash evaluations, the security parameter κ = 5,122 suffices (see
Example 3.27). More abstractly, we show that KOS, instantiated with security parameter κ, withstands an

attacker making up to 1
2 ·
√
κ · 2 1

2 ·
√
κ hash evaluations with statistical security 2−

1
2 ·
√
κ (see Corollary 3.29).

Obviously, this sort of κ results in a barely-practical protocol. On the other hand, we demonstrate that
this limitation is intrinsic to our proof strategy. As it turns out, our proof applies equally well to the security
of Patra, Sarkar and Suresh [PSS17] (henceforth “PSS”), another protocol attacked by Roy [Roy22, § 4.1].
(Indeed, our proof invokes only properties of KOS which are shared by PSS; we discuss this fact further
below.) Interestingly, our lower-bound tightly matches—up to the factor of 1

2 present in both exponents—the
upper-bound achieved by Roy [Roy22, § 4.1] on PSS. Our proof thus definitively settles the question of PSS’s
security, up to these constants. (As we explain in Remark 3.30 below, these constants may in fact be taken
as high as 1√

2
− ε, for ε > 0 arbitrarily small.) It also shows that a sharper analysis of KOS—if possible at

all—will have to rely on features of KOS’s correlation check more delicate than those our proof considers.

∗I would like to sincerely thank a handful of anonymous referees for extremely valuable feedback.

1

mailto:benediamond@gmail.com

1.1 Summary of KOS

We recall the details of KOS. We fix a security parameter κ and a problem size l. In the random oblivious
transfer paradigm [KOS15, § 2.2], the receiver inputs a vector of choice bits (xi)

l−1
i=0 and the sender inputs

nothing. The functionality Fκ,lROT (see also our Functionality 2.5 below) samples, for each i ∈ {0, . . . , l − 1},
random κ-bit pads vi,0 and vi,1. It outputs (vi,0,vi,1)

l−1
i=0 to the sender and (vi,xi)

l−1
i=0 to the receiver. By

the aid of a standard derandomization procedure, random oblivious transfer itself suffices to yield traditional
oblivious transfer; this reduction is given in [KOS15, § 3.4].

KOS introduces a key protocol [KOS15, Fig. 7] for random OT (we reproduce KOS as our Protocol 2.7
below). That protocol, internally, invokes a further ideal, hybrid functionality, which KOS calls correlated
OT with errors. The correlated OT with errors functionality serves precisely to abstract away the role played
the seminal subprotocol of Ishai, Kilian, Nissim and Petrank [IKNP03, Fig. 1] (henceforth, “IKNP”); that
protocol itself appears, in a slightly adjusted guise, as [KOS15, Fig. 3] (we refer also to Nielsen [Nie07, § 2],
which proposes a similar formalism). We reproduce—and slightly amend—KOS’s correlated OT with errors

functionality as our Functionality 2.3 below (see also Remark 2.4). That functionality, which we call Fκ,l
′

COTe,
formalizes the scope for cheating which IKNP admits. In other words, though IKNP is not maliciously secure

as a random OT protocol in its own right, it nonetheless does securely instantiate the functionality Fκ,l
′

COTe

(essentially by design).

The internal functionality Fκ,l
′

COTe allows the receiver to input an arbitrary l′ × κ binary matrix (xi)
l′−1
i=0 ;

the sender moreover submits a single, secret choice vector ∆ ∈ {0, 1}κ. By definition, for each row-index
i ∈ {0, . . . , l′ − 1}, that functionality samples a random κ-bit pad ti ← {0, 1}κ and sets qi := ti + xi ∗ ∆;

here, we write ∗ for the bitwise AND operation. It finally returns (ti)
l′−1
i=0 to the receiver and (qi)

l′−1
i=0 to the

sender. In short, that functionality outputs to the parties random matrices (ti)
l′−1
i=0 and (qi)

l′−1
i=0 which differ

by the secret matrix (xi ∗∆)
l′−1
i=0 ; here, (xi)

l′−1
i=0 is chosen by the receiver and ∆ ∈ {0, 1}κ by the sender.

If the receiver is honest, with input choice vector (xi)
l−1
i=0 say, then Fκ,lCOTe—here, we temporarily specialize

l′ := l—suffices to effect an l-fold random OT of κ-bit strings, as we now explain. (Indeed, this fact
underlies IKNP’s suitability as a random OT protocol secure against semi-honest adversaries.) Indeed, R
may simply, for each i ∈ {0, . . . , l − 1}, set its vector xi := xi · (1, . . . , 1) monochromatically ; that is, for
each i ∈ {0, . . . , l − 1}, R sets as xi the κ-fold repetition of its choice bit xi. This behavior on the part

of R induces Fκ,lCOTe to send S the pad qi := ti + xi ∗ ∆ = ti + xi · ∆, for each i ∈ {0, . . . , l − 1}. Having
begun in this way, R may output vi,xi := H(i ‖ ti) for each i ∈ {0, . . . , l − 1}; S, for its part, may output
vi,0 := H(i ‖ qi) and vi,1 := H(i ‖ qi + ∆) for each i ∈ {0, . . . , l− 1}. In Remark 2.8 below, we demonstrate
that this procedure yields a correct random OT (again, assuming honest behavior by R).

If R is dishonest, on the other hand, it may submit an arbitrary l′ × κ binary matrix (xi)
l′−1
i=0 (its rows

not necessarily monochromatic). In this way, R may introduce a subtle sort of leakage into the protocol
transcript, perceptible to the distinguisher D (we discuss this fact further in Subsection 1.2 below, as well
as in Subsection 3.2). KOS seeks to establish malicious security against R, in the above setting, by adding
to IKNP a correlation check. That is, the parties begin by fixing a field structure on the set of κ-bit
strings; that is, they introduce the field F2κ . Since this object is isomorphic as an F2-vector space to Fκ2 ,
the parties may freely interpret their respective elements ti and qi of Fκ2 , for each i ∈ {0, . . . , l′ − 1}, as
F2κ -elements. Using a coin-tossing functionality, the parties jointly sample l′ further random field elements
χi ← F2κ , for i ∈ {0, . . . , l′−1}. Finally, the sender and receiver jointly F2κ-linearly combine their respective

equalities qi = ti + xi · ∆, for i ∈ {0, . . . , l′ − 1}, using the scalars (χi)
l′−1
i=0 . That is, the sender computes

q :=
∑l′−1
i=0 χi · qi; the receiver computes both t :=

∑l′−1
i=0 χi · ti and x :=

∑l′−1
i=0 χi · xi (here, we use · to

denote field multiplication). The receiver sends t and x to the sender, who finally checks q
?
= t+ x ·∆.

On its face, this check may leak information about R’s secret vector (xi)
l−1
i=0 to S. Fortunately, KOS

[KOS15, Thm. 1] shows that, by setting l′ ≥ l sufficiently large—and prescribing that the receiver sample its

further choice bits (xi)
l′−1
i=l randomly—the parties may guarantee that, with high probability over (χi)

l′−1
i=0 ,

no leakage occurs (specifically, it suffices to set l′ := l + κ + s, where s is a statistical security parameter).
The correlated OTs indexed i ∈ {l, . . . , l′− 1}, then, serve rather to protect the receiver, and not the sender;
in this sense, these OTs are “sacrificed”.

We turn to the impact of the correlation check on the corrupt receiver R.

2

1.2 Our Proof

In Subsection 3.1 below, we thoroughly treat, for the sake of completeness, the case in which the sender S
is corrupt; in this endeavor, we largely follow [KOS15, § 3.2]. In Subsection 3.2, we turn to the difficult
case in which the receiver is corrupt. In that subsection, we present a much-more-rigorous rendition of this
subsection’s content. For now, we sketch our approach informally.

As we note below, it is not difficult for S to simulate a perfectly indistinguishable view to the adversary A.
On the other hand, provided that A passes the correlation check, our distinguisher encounters real and ideal
worlds which subtly differ; specifically, these worlds’ respective random oracles remain in slightly different
states. If A fails the correlation check, on the other hand, then the sender (in the real world) and simulator
(in the ideal world) both abort, thereby excising from both the real and ideal transcripts the honest party’s
outputs. Deprived of this critical resource, D becomes powerless; in those executions for which A fails the
check, our simulation thus becomes perfectly secure. Our proof, then, proceeds in the inevitable way; that
is, it considers simultaneously D’s probability of distinguishing (conditioned on A passing) and A’s chance
of passing in the first place. Ultimately, we are able to show that at least one of these quantities—i.e.,
depending on A’s behavior—is necessarily bounded from above by a negligible function in κ.

We begin by characterizing in detail the discrepancies—in D’s view—between the real and ideal worlds,
conditioned on A passing the check. This characterization itself seems largely new, though it contains echoes
of Nielsen [Nie07, § 4]. Below, we express D’s object in terms of a certain “game”, which we presently sketch
(see also Definition 3.4, as well as the following lemmas, for a rigorous treatment). D’s game takes place on

a “board” consisting of an l × κ binary matrix. The adversary A begins by submitting (xi)
l−1
i=0 (we ignore

this matrix’s lower part (xi)
l′−1
i=l , since it can’t help D). S, for its part, is granted the privilege of flipping

(i.e., inverting all the bits of) any among this matrix’s rows. We write (ei)
l−1
i=0 for the resulting matrix (i.e.,

after S’s intervention). D finally plays on the board (ei)
l−1
i=0. D’s goal is to “control” as many of the matrix’s

columns j ∈ {0, . . . , κ− 1} as possible. More precisely, D’s goal is to control—for some (i.e., any) particular
row index i ∈ {0, . . . , l− 1}—all of the columns j ∈ {0, . . . , κ− 1} at which ei,j = 0. Each time D “plays” a
row i ∈ {0, . . . , l− 1}, it thereby “gains control” of those column indices j ∈ {0, . . . , κ− 1} at which ei,j = 1.
Critically, however, D seeks to win in such a way that each particular row it plays seizes as few new columns
as possible. We say that the game is easy for D if it can win even by seizing but few new columns at each
successive step. If D may win only by seizing—at some point during its execution—many new columns in a
single step, then we say that the game is hard for D. S’s goal is to make the game as hard as possible for
D to win; A’s goal is to make it easy for D (even modulo S’s best efforts to the contrary).

Fascinatingly, this game captures both D’s distinguishing probability and A’s passing probability, as we
now explain. On the one hand, as the game gets “harder” for D to win, D’s probability of distinguishing
the two worlds decreases (this fact is made precise in Proposition 3.18). On the other hand, as A submits
board states which—notwithstanding S’s best efforts to the contrary—make D’s task easier, A’s chance of
passing the correlation check in the first place becomes smaller (this fact is proved in Proposition 3.15).
In Definition 3.4 below, we rigorously define this game. That definition moreover serves to “score” the
difficulty of each given matrix submitted by A; that is, it assigns to each matrix (xi)

l−1
i=0 a numerical score

m ∈ {1, . . . , κ}, which we call (xi)
l−1
i=0’s modesty. That definition also produces S’s bit assignment (xi)

l−1
i=0

(i.e., it tells S which rows to “flip”). We note that each monochromatic matrix (xi)
l−1
i=0—i.e., submitted by

an honest receiver—has the maximal possible modesty, namely κ (we explain this in Example 3.6 below).
In the most technically difficult part of our proof, we show that an adversary A who submits an immodest

matrix—i.e., one which is easy for D—is unlikely to pass the correlation check. To do this, we analyze in
detail KOS’s correlation check (and for that matter, PSS’s). Crucially, A gets to choose its final messages

x and t adaptively, after seeing the combination coefficients (χi)
l′−1
i=0 . (Indeed, a failure to account for this

fact underlies the flaw in KOS’s original proof [KOS15, Lem. 1]; we refer to Roy [Roy22, § 4.1.3] for further
details.) Roughly, we show that—again, for (xi)

l−1
i=0 immodest—A’s task amounts to finding, given a binary,

κ × κ matrix X many of whose columns are uniformly random, a field element x ∈ F2κ for which X +
[
x
]

is of low rank; here, we denote by
[
x
]

the binary, κ × κ matrix which captures x’s action on Fκ2 by field

multiplication. As we argue in Proposition 3.15 below, since the space Fκ×κ2 of binary matrices is enormous,
while the number of field elements x ∈ Fκ2 is relatively “small”, a random matrix X ∈ Fκ×κ2 is unlikely even
to fall “near” a field-element matrix

[
x
]
—i.e., in the sense that rank(X+

[
x
]
) is low—let alone to equal one.

3

2 Background and Notation

We identify {0, 1} ∼= F2 as sets. We occasionally identify vectors in {0, 1}κ ∼= Fκ2 with subsets of {0, . . . , κ−1},
in the standard way; that is, for each vector d ∈ {0, 1}κ, corresponding to the map d̂ : {0, . . . , κ−1} → {0, 1},
say, we identify d with the subset d̂−1(1) ⊂ {0, . . . , κ − 1} (i.e., with the set of components at which d is
1). We use the symbol ∗ to denote bitwise AND in Fκ2 . We use the symbol \ to denote set subtraction. We
fix a field structure on F2κ—that is, an irreducible polynomial of degree κ in F2[X]—and identify F2κ with
the F2-vector space Fκ2 , by means of the F2-basis (1, X, . . . ,Xκ−1). We write · for field multiplication. In
what follows, we make use of linear and affine-linear algebra over F2, without further comment; for this, we
suggest the reference Cohn [Coh82, § 5].

Following [KOS15, § 2], we write κ for a security parameter. We write λ and s for desired levels of

computational and statistical security, respectively. We understand each expression of the form (xi)
l′−1
i=0 as

an l′× κ matrix, with entries in F2; i.e., for each i ∈ {0, . . . , l′− 1}, the element xi ∈ Fκ2 is a row-vector. We
write xi for the bitwise complement of the row-vector xi ∈ Fκ2 , and xi for the complement of the bit xi ∈ F2.
We write w(xi) for the Hamming weight of the vector xi.

2.1 Secure computation

Given two probability distributions Y0 and Y1 on {0, 1}κ, the statistical distance between Y0 and Y1 is defined
to be 1

2 ·
∑

y∈{0,1}κ |Pr[Y0 = y]− Pr[Y1 = y]|. We say that two distribution ensembles {Y0(a, κ)}a∈{0,1}∗,κ∈N
and {Y1(a, κ)}a∈{0,1}∗,κ∈N are statistically indistinguishable if there is a negligible function µ such that for

each a ∈ {0, 1}∗ and each κ ∈ N, the statistical distance between Y0(a, κ) and Y1(a, κ) is at most µ(κ). We
say that two distribution ensembles {Y0(a, κ)}a∈{0,1}∗,κ∈N and {Y1(a, κ)}a∈{0,1}∗,κ∈N are computationally
indistinguishable if, for each probabilistic, polynomial-time distinguisher D, the distributions ensembles
{D(Y0(a, κ))}a∈{0,1}∗,κ∈N and {D(Y1(a, κ))}a∈{0,1}∗,κ∈N on {0, 1} are statistically indistinguishable.

We define maliciously secure two-party computation, following Lindell [Lin17, § 6.6.2]. Our use of the
random oracle induces various subtleties, which we pause to explain. We operate in the nonprogrammable
random oracle model, due apparently to Nielsen [Nie02], and discussed explicitly in both Ishai, Kilian, Nissim
and Petrank [IKNP03, § 2.1] and Lindell [Lin17, § 6.10.2]. In the nonprogrammable random oracle model,
the random oracle exists externally in both in the real and ideal worlds; in particular, the simulator S
can’t “program” it. Finally, the distinguisher D—upon being fed a transcript, drawn from either of the
two worlds—inherits the state of the oracle. Critically, D may attempt to distinguish the two worlds by
correlating its oracle’s behavior with its on-hand execution transcript.

We finally allow real-world protocols which make use of hybrid sub-functionalities; we follow Lindell
[Lin17, § 6.6.3]’s treatment of this matter. That is, we fix ideal sub-functionalities F0, . . . ,Fp−1. We require,
as Lindell does, that each protocol Π call these ideal functionalities strictly sequentially, as well as that no
protocol messages intervene between the respective stages of any multi-stage (or reactive) functionality.

Definition 2.1. For each functionality F , sub-functionalities F0, . . . ,Fp−1, protocol Π, real-world adversary
A, simulator S, and corrupt party C ∈ {0, 1}, we have the distributions:

• Hybrid
F0,...,Fp−1

Π,A,C ((x0,x1), κ): Run Π with security parameter κ, where the honest party P1−C uses the
input x1−C , and A controls the messages of the corrupt party. Return the outputs of A and P1−C .

• IdealF,S,C((x0,x1), κ): Run S(1κ, C,xC) until it outputs a value x′C , or else outputs (abort) to F , who
halts. Give x1−C and x′C to F , and obtain outputs (v0, v1). Give vC to S; if S outputs (abort), then
F outputs (abort) to P1−C ; otherwise, F gives v1−C to P1−C . Return the outputs of S and P1−C .

We say that Π securely computes F in the presence of one static malicious corruption with abort in the
nonprogrammable random oracle and F0, . . . ,Fp−1-hybrid model, or that Π securely computes F in the
F0, . . . ,Fp−1-hybrid model, if, for each corrupt party C ∈ {0, 1} and each probabilistic polynomial-time
adversary A corrupting PC , there is a probabilistic polynomial-time simulator S corrupting PC in the ideal

world such that the distributions
{
Hybrid

F0,...,Fp−1

Π,A,C ((x0,x1), κ)
}

(x0,x1),κ
and

{
IdealF,S,C((x0,x1), κ)

}
(x0,x1),κ

are computationally indistinguishable, where we require x0 and x1 throughout to have equal lengths.

4

Comparison with the fully programmable model. In the fully programmable random oracle model
(see [Nie02, § 3]), S emulates internally the random oracle to A, just as it does the various other hybrid
functionalities Π makes use of. This model differs from the nonprogrammable model, firstly, in that it
allows S to program its oracle arbitrarily (i.e., subject to the usual requirement whereby it simulate an
indistinguishable view to A). More importantly, the random oracle is “wiped” or “destroyed” before D
begins its execution. This latter model is much weaker than that which we consider. That is, it more readily
deems protocols “secure” than ours does [Nie02]; it also fails to guarantee sequential composition [Lin17,
§ 6.10.2].

Interestingly, a clear separation between these models is exhibited by KOS itself, or rather by its prede-
cessor work Ishai, Kilian, Nissim, and Petrank [IKNP03] (IKNP). IKNP differs from KOS (reproduced as
our Protocol 2.7 below) in that lacks the correlation check entirely; it moreover makes possible the choice
l′ := l. IKNP certainly fails to be maliciously secure in the nonprogrammable model (we explain this fact in
Example 3.22 below and in its succeeding remarks). In the fully programmable random oracle model, on the
other hand, IKNP becomes maliciously “secure”, with the concrete security parameter just κ := 2 · λ+ 2 · s,
no less, and under a straightforward simulation strategy which opts simply to extract xi := Maj(xi) for each
i ∈ {0, . . . , l− 1} (here, Maj : {0, 1}κ → {0, 1} is the standard majority function on κ bits). We discuss this
separation result—which we believe may be of independent interest—in Remark 3.23 below.

2.2 Oblivious transfer

We recall background material on oblivious transfer, following [KOS15].

FUNCTIONALITY 2.2 (FκRand—coin-flipping functionality [KOS15, Fig. 5]).
The security parameter κ and players S and R are fixed.

• Upon receiving (random, i) from both players, FκRand samples χi ← Fκ2 , and outputs (random, i, χi)
to both players.

FUNCTIONALITY 2.3 (Fκ,l
′

COTe—correlated OT with errors [KOS15, Fig. 2]).
The security parameter κ, the number l of resulting OTs, and players S and R are fixed.

• S sends (initialize,∆) to Fκ,l
′

COTe, where ∆ ∈ Fκ2 .

• R sends
(
input, (xi)

l′−1
i=0

)
to Fκ,l

′

COTe. If both parties are honest, then, for each i ∈ {0, . . . , l′ − 1},

Fκ,l
′

COTe samples ti ← Fκ2 randomly and sets qi := ti + xi ∗∆.

• If R is corrupt, then R sends the further input
(
pads, (ti)

l′−1
i=0

)
to Fκ,l

′

COTe, which computes (qi)
l′−1
i=0

in the usual way.

• If S is corrupt, then S submits
(
pads, (qi)

l′−1
i=0

)
to Fκ,l

′

COTe, which, for each i ∈ {0, . . . , l′ − 1},
instead sets ti := qi + xi ∗∆.

• In each case, Fκ,l
′

COTe outputs
(
output, (ti)

l′−1
i=0

)
to R and

(
output, (qi)

l′−1
i=0

)
to S.

We note that Fκ,l
′

COTe can be securely instantiated by the protocol of [KOS15, Fig. 3].

Remark 2.4. We slightly alter the treatment of [KOS15, Fig. 2], in that we permit the corrupt sender S to

choose its values (qi)
l′−1
i=0 . This technical amendment is in fact necessary; the protocol [KOS15, Fig. 3] does

not securely instantiate the functionality [KOS15, Fig. 2], but does—exactly as written—securely instantiate
our Functionality 2.3 (i.e., in the FκOT-hybrid model). This error apparently goes back to Nielsen [Nie07,
§ 2], to whose treatment [KOS15, § 2.2] defers. As it happens, [Nie07, § 2.1] itself offers very little in the
way of proof, and in fact neglects entirely to treat the case of corrupt S.

5

We moreover recall the random OT functionality:

FUNCTIONALITY 2.5 (Fκ,lROT—random OT functionality [KOS15, Fig. 6]).
The security parameter κ, the number l of resulting OTs, and players S and R are fixed.

• If both parties are honest, R submits
(
input, (xi)

l−1
i=0

)
to Fκ,lROT, which, for each i ∈ {0, . . . , l− 1},

samples (vi,0,vi,1)← {0, 1}κ × {0, 1}κ.

• If R is corrupt, R submits both
(
input, (xi)

l−1
i=0

)
and

(
pads, (vi,xi)

l−1
i=0

)
to Fκ,lROT, which, for each

i ∈ {0, . . . , l − 1}, samples vi,xi ← {0, 1}κ.

• If S is corrupt, then S submits
(
pads, (vi,0,vi,1)

l−1
i=0

)
to Fκ,lROT.

• In each case, Fκ,lROT outputs
(
output, (vi,0,vi,1)

l−1
i=0

)
to S and

(
output, (vi,xi)

l−1
i=0

)
to R.

Remark 2.6. We likewise give the adversary slightly more power than does [KOS15, Fig. 6], in that we

let the corrupt receiver choose (vi,xi)
l−1
i=0. This concession appears necessary; indeed—aside from its other

issues—the simulator [KOS15, Fig. 8] programs H(i ‖ qi + xi ·∆) := vi,xi only after receiving ti from A. A
can easily arrange to make this query before this programming step occurs, thereby breaking the simulation.
We note that issue, as well as further discussion, appears in Masny and Rindal’s Endemic OT [MR19, § 5.1].

For self-containedness, we finally recall the full protocol for Fκ,lROT, exactly as in [KOS15, Fig. 7].

PROTOCOL 2.7 (Πκ,l
ROT—random OT protocol [KOS15, Fig. 7]).

The parameters κ and l, and players S and R, are fixed. R has input bits (x0, . . . , xl−1).

• The parties write l′ := l + κ+ s. S samples ∆← Fκ2 , and sends (intialize,∆) to Fκ,l
′

COTe.

• R samples further random bits xi ← F2, for i ∈ {l, . . . , l′ − 1}. For each i ∈ {0, . . . , l′ − 1}, R
constructs the monochromatic vector xi := xi · (1, . . . , 1). R sends

(
input, (xi)

l′−1
i=0

)
to Fκ,l

′

COTe. S

and R receive
(
output, (qi)

l′−1
i=0

)
and

(
output, (ti)

l′−1
i=0

)
, respectively, from Fκ,l

′

COTe.

• For each i ∈ {0, . . . , l′−1}, both parties submit (random, i) to FκRand, and receive (random, i, χi). R

sends S x :=
∑l′−1
i=0 χi ·xi and t :=

∑l′−1
i=0 χi · ti. S sets q :=

∑l′−1
i=0 χi ·qi, and checks q

?
= t+x ·∆.

• For each i ∈ {0, . . . , l − 1}, R sets vi,xi := H(i ‖ ti), and outputs (vi,xi)
l−1
i=0. For each i ∈

{0, . . . , l − 1}, S sets vi,0 := H(i ‖ qi) and vi,1 := H(i ‖ qi + ∆), and outputs (vi,0,vi,1)
l−1
i=0.

Remark 2.8. We informally explain the correctness of Protocol 2.7 as follows. If both parties are honest,

then, for each i ∈ {0, . . . , l′−1}, by definition of Fκ,l
′

COTe, qi = ti+xi∗∆ = ti+xi ·∆ holds (here, we use the fact
that xi = xi · (1, . . . , 1) is monochromatic). By linearly combining the l′ instances of this equation using the

coefficients (χi)
l′−1
i=0 , we obtain q =

∑l′−1
i=0 χi ·qi =

∑l′−1
i=0 χi ·(ti + xi ·∆) =

∑l′−1
i=0 χi ·ti+

(∑l′−1
i=0 χi · xi

)
·∆ =

t+ x ·∆, which is exactly the consistency check S runs. Finally, we note that S’s outputs vi,0 := H(i ‖ qi)
and vi,1 := H(i ‖ qi + ∆) themselves equal vi,0 = H(i ‖ ti + xi ·∆) and vi,1 = H(i ‖ ti + xi ·∆ + ∆). We
see that for each b ∈ {0, 1}, S’s output satisfies vi,b = H(i ‖ ti + xi ·∆ + b ·∆); in particular S’s output
vi,xi = H(i ‖ ti + xi ·∆ + xi ·∆) = H(i ‖ ti), which is exactly what R outputs. We discuss the randomness

of S’s other outputs (vi,xi)
l−1
i=0—i.e., in the case of honest R—in Example 3.21 below.

3 Security proof

We now prove the security of Protocol 2.7.

6

3.1 Corrupt Sender

We first treat the case in which S is corrupt. Our treatment of this case is similar to that of [KOS15, Thm. 1].

The simulator’s mandate. We begin by informally explaining S’s mandate. Upon intercepting A’s

messages ∆ and (qi)
l′−1
i=0 intended for Fκ,l

′

COTe, S must first extract from A ideal inputs (vi,0,vi,1)
l−1
i=0 for

Fκ,lROT, which, in particular, induce Fκ,lROT to send R ideal outputs (vi,xi)
l−1
i=0 which exactly match its real-

world counterparts. In the real world, for each i ∈ {0, . . . , l′ − 1}, R sends Fκ,l
′

COTe the monochromatic vector
xi := xi · (1, . . . , 1), and receives in response ti := qi + xi ∗∆ = qi + xi ·∆. We conclude that R’s real-world
outputs satisfy vi,xi := H(i ‖ ti) = H(i ‖ qi + xi ·∆), for each i ∈ {0, . . . , l − 1}. S, therefore, may simply

submit to Fκ,lROT the ideal-world inputs vi,0 := H(i ‖ qi) and vi,1 := H(i ‖ qi + ∆). Though S doesn’t know

R’s secret bits (xi)
l−1
i=0, this construction guarantees that vi,xi = H(i ‖ qi + b ·∆) holds for both possible bits

b ∈ {0, 1}, so that Fκ,lROT’s ideal output vi,xi too equals H(i ‖ qi + xi ·∆) (i.e., regardless of xi ∈ {0, 1}).
It remains for S to simulate R’s messages x and t to A. S’s essential obstacle is that it doesn’t know R’s

choice bits (xi)
l−1
i=0; the distinguisher D does get access to these bits. On the other hand, S is critically aided

by the further random bits (xi)
l′−1
i=l sampled by R during the protocol. Since these bits are internal values,

independent of R’s inputs, neither S nor D knows them. We argue below that these bits randomize x in the

real world, so that S—knowing neither (xi)
l−1
i=0 nor (xi)

l′−1
i=l —can nonetheless simulate x convincingly to D,

who knows (xi)
l−1
i=0 but not (xi)

l′−1
i=l . Finally, though S doesn’t know (ti)

l′−1
i=0 either, it does know (qi)

l′−1
i=0 , x,

∆ and (χi)
l′−1
i=0 ; these values exhaustively determine t, from the respective perspectives both of A and of D.

Why sacrificing is needed. As a warmup, we note that the hypothetical variant of Πκ,l
ROT which opted to

set l′ := l would be—though correct—insecure. To show this, we write χ : Fl2 → Fκ2 for the F2-linear map
defined by the κ× l matrix: χ0 · · · χl−1

;

here, we interpret each χi ∈ F2κ as a column vector by identifying F2κ
∼= Fκ2 . In this hypothetical protocol

variant, the quantity x :=
∑l−1
i=0 χi · xi sent by R to S would equal the image of (xi)

l−1
i=0 under χ. In

particular, R’s message x = χ · (xi)l−1
i=0 would leak information to S about (xi)

l−1
i=0; that is, it would leak

the membership of R’s secret choice vector (xi)
l−1
i=0 in the fiber χ−1(x) ⊂ Fl2 (a proper affine subspace of

Fl2, except in the vanishingly improbable case in which χi = 0 for each i ∈ {0, . . . , l − 1}). Equivalently,
the simulator S—who, we repeat, doesn’t know (xi)

l−1
i=0—would become unable to simulate x to A, since it

wouldn’t know (xi)
l−1
i=0’s image under χ. (If S simply randomly sampled x ← Fκ2 , or better yet x ← im(χ),

then the distinguisher D—who does know (xi)
l−1
i=0—could reliably identify the real-world distribution as that

within which x
?
=
∑l−1
i=0 χi · xi held.)

When l′ > l instead holds, R’s quantity x rather satisfies x = χ · (xi)l−1
i=0 + χ′ · (xi)l

′−1
i=l ; here, we write

χ′ : Fl
′−l

2 → Fκ2 for the further κ× l′ − l matrix:χl · · · χl′−1

.
Since the real-world honest party R’s high bits (xi)

l′−1
i=l are random and independent of its choice vector

(xi)
l−1
i=0, x’s right-hand summand χ′ ·(xi)l

′−1
i=l masks its sensitive left-hand summand χ·(xi)l−1

i=0. More precisely,

R’s message x reveals to S merely that (xi)
l−1
i=0 resides in χ−1(x′) ⊂ Fκ2 , for some unknown element x′ ∈ im(χ)

which differs from x by a secret—and random—element of im(χ′). In particular, as soon as im(χ) ⊂ im(χ′)
holds, x comes to reveal, information-theoretically, no information whatsoever about (xi)

l−1
i=0; in this latter

case, in the real world, x is uniform in im(χ′). In the further special case in which im(χ′) = Fκ2 in fact holds,
we conclude that x is uniform in Fκ2 in the real world. In our proof below, we argue that, if l′ ≥ l is chosen

high enough—in fact, l′ := l+κ+s suffices—then, with high probability over (χi)
l′−1
i=l , χ′ is in fact surjective.

7

The proof. We proceed with our proof of security in the presence of a corrupt sender.

Theorem 3.1. In the FκRand,F
κ,l′

COTe-hybrid model, Protocol 2.7 securely computes Functionality 2.5 in the
presence of a corrupt sender.

Proof. We define an appropriate simulator S. Given a real-world adversary A corrupting S, S operates as
follows.

1. S intercepts A’s messages (initialize,∆) and
(
pads, (qi)

l′−1
i=0

)
to Fκ,l

′

COTe. For each i ∈ {0, . . . , l− 1},

S computes vi,0 := H(i ‖ qi) and vi,1 := H(i ‖ qi + ∆). S submits
(
pads, (vi,0,vi,1)

l−1
i=0

)
to Fκ,lROT.

2. S receives
(
output, (vi,0,vi,1)

l−1
i=0

)
from Fκ,lROT, and simulates Fκ,l

′

COTe sending
(
output, (qi)

l′−1
i=0

)
to A.

3. For each i ∈ {0, . . . , l′ − 1}, S intercepts A’s message (random, i) intended for FκRand, samples χi ← Fκ2
randomly, and simulates FκRand sending A (random, i, χi). S samples x ← Fκ2 randomly, computes

q :=
∑l′−1
i=0 χi · qi, and sets t := q + x ·∆. S simulates R sending t and x to A.

We assert the suitability of S in the following way. For each i ∈ {0, . . . , l − 1}, R’s real-world output equals
vi,xi := H(i‖ti) = H(i‖qi+xi ·∆) = H(i‖qi+xi ·∆). On the other hand, by construction, S’s ideal-world
inputs respectively equal vi,0 := H(i ‖ qi) and vi,1 := H(i ‖ qi + ∆). We conclude that R’s ideal-world
output too equals vi,xi = H(i ‖ qi + xi ·∆), as required.

We turn to the view simulated by S to A. The following lemma appears as [KOS15, Lem. 2]; for
self-containedness, we include a proof.

Lemma 3.2. Given a random κ×κ+s matrix χ′ with entries in F2, where s ≥ 0, Pr[rank(χ′) = κ] ≥ 1−2−s.

Proof. The probability that χ′’s κ rows are independent is equal to the probability that each of its successive
rows resides outside of the linear subspace spanned by its previous rows. This probability is given by product
expression below, which we manipulate as follows:

(1− 2−s−1) · · · · · (1− 2−s−κ) ≥ 1−
(
2−s−1 + · · ·+ 2−s−κ

)
= 1− 2−s ·

(
2−1 + · · ·+ 2−κ

)
≥ 1− 2−s.

The first inequality follows from a simple union bound, which we now explain. The expression 1−
∏κ−1
i=0 (1−

2−s−1−i) gives the probability that a certain product of Bernoulli distributions resides away from the origin in

{0, 1}κ. By the union bound, this probability is bounded from above by the sum of faces
∑κ−1
i=0 2−s−1−i.

Lemma 3.2 shows that, in both the real and ideal worlds, χ′ fails to be surjective with probability at
most 1

2s . On the other hand, if χ′ is surjective, then S sampling strategy—whereby it picks x ← Fκ2
uniformly—perfectly matches x’s real-world distribution.

We turn finally to R’s quantity t. Though S doesn’t know (xi)
l′−1
i=0 or R’s Fκ,l

′

COTe-responses (ti)
l′−1
i=0 , it

does know A’s local quantities ∆ and (qi)
l′−1
i=0 . Since each honest receiver R’s quantities x and t necessarily

cause S’s correlation check q
?
= t+ x ·∆ to pass, S assignment strategy t := q+ x ·∆ exactly characterizes t,

conditioned on A’s available data ∆,(qi)
l′−1
i=0 , and x. This completes our treatment of the corrupt sender.

Remark 3.3. As the above proof makes evident, a slightly subtler simulation strategy would stipulate
that S instead sample x ← im(χ′). This strategy would yield a perfectly correct simulation even in those
rare executions in which, though im(χ′) (Fκ2 , im(χ) ⊂ im(χ′) nonetheless holds. Since the strict inclusion
im(χ′) (Fκ2 itself occurs only with negligible chance, this scenario isn’t worth accounting for. Of course, when

im(χ) 6⊂ im(χ′) instead holds, S can proceed at best only by “guessing” (xi)
l−1
i=0 and setting x :=

∑l′−1
i=0 χi ·xi,

for (xi)
l′−1
i=l random. The distinguisher D—given a transcript created in this way—may check whether

x −
∑l−1
i=0 χi · xi

?
∈ im(χ′). This inclusion will hold for each real-world execution, but will hold in the ideal

world only when S manages to guess a string (xi)
l−1
i=0 for which

∑l−1
i=0 χi · xi differs from its true value by an

element of im(χ) ∩ im(χ′), an F2-linear subspace of im(χ) which is proper whenever im(χ) 6⊂ im(χ′).

8

3.2 Corrupt Receiver

We now handle the case in which the receiver R is corrupt.

The simulator’s mandate. We informally explain S’s mandate in the following way. By generating

its own secret choice vector ∆ ← Fκ2 and mimicking the role of S and of Fκ,l
′

COTe internally to A, S may
simulate a view to A which perfectly matches A’s real-world view. S must then, further, extract from
A input choice bits (xi)

l−1
i=0, as well as pads (vi,xi)

l−1
i=0, for which S’s resulting ideal outputs (vi,0,vi,1)

l−1
i=0

become indistinguishable from their real-world counterparts. In the real world, S, for each i ∈ {0, . . . , l− 1},
simply computes vi,0 := H(i ‖ qi) and vi,1 := H(i ‖ qi + ∆); these quantities themselves respectively equal
vi,0 = H(i ‖ ti + xi ∗∆) and vi,1 = H(i ‖ ti + xi ∗∆) (this is an immediate consequence of the definition of

Fκ,l
′

COTe, and of the fact that qi + ∆ = ti + xi ∗∆ + ∆ = ti + xi ∗∆). Since S has A’s vectors (xi)
l′−1
i=0 and

(ti)
l′−1
i=0 , S may easily run Fκ,l

′

COTe in its own head, thereby anticipating S’s hypothetical real-world outputs
vi,0 = H(i ‖ ti + xi ∗∆) and vi,1 = H(i ‖ ti + xi ∗∆). S’s critical obstacle is that, for each i ∈ {0, . . . , l−1},
it may send only one choice bit xi and one output pad vi,xi to the functionality Fκ,lROT, which, for its part,
demands the right to sample the other pad vi,xi ← {0, 1}κ randomly. (If S could supply both, then it
could generate a perfect simulation.) S thus must opt instead to compute either vi,0 = H(i ‖ ti + xi ∗∆)

or vi,1 = H(i ‖ ti + xi ∗∆) exactly as S would, and to relinquish control of the other quantity to Fκ,lROT.

The distinguisher D, finally, sees A’s full internal view, and in particular knows (ti)
l′−1
i=0 , (xi)

l′−1
i=0 ,

and (xi)
l−1
i=0. Moreover, if the correlation check passes, then D also obtains the honest sender’s outputs

(vi,0,vi,1)
l−1
i=0. Critically, D doesn’t know the sender’s (or simulator’s) choice vector ∆ ∈ Fκ2 , a secret and

internal value. For each i ∈ {0, . . . , l − 1}, D may attempt to compute either or both of the quantities
H(i ‖ ti + xi ∗∆) and H(i ‖ ti + xi ∗∆). In general, however, one of these will be vastly easier for D to
compute than the other will. That is, among the vectors xi and xi, one will generally have lower Hamming
weight. The Hamming weights of xi and of xi respectively control the computational costs to D of computing
H(i ‖ ti + xi ∗∆) and H(i ‖ ti + xi ∗∆). In these respective cases, D—which, we repeat, knows all of the
quantities at hand except ∆—must submit 2w(xi) and 2w(xi) queries to the random oracle, in the worst case,
in order to be assured of “hitting” the relevant query. (The unknown quantities xi ∗∆ and xi ∗∆ capture
the “restrictions” or “projections” of the unknown vector ∆ onto the bit-positions which are respectively on
in xi and in xi; there are 2w(xi) and 2w(xi) possible such projections.)

The simulator S, then—which gets to ensure only one of the equalities vi,0 = H(i ‖ ti + xi ∗∆) and
vi,1 = H(i ‖ ti + xi ∗∆)—should choose xi ∈ {0, 1} in such a way that vi,xi is easy for D to query and vi,xi
is hard for D to query. To express this phenomenon in a more notationally convenient form, we abbreviate
ei := xi · (1, . . . , 1) + xi and ei := xi · (1, . . . , 1) + xi, for each i ∈ {0, . . . , l − 1}; here, we write (xi)

l−1
i=0 for

the bits extracted by S. We moreover call these vectors on-vectors and off-vectors, respectively. In the real
world, both vi,0 = H(i ‖ ti + xi ∗∆) and vi,1 = H(i ‖ ti + xi ∗∆) hold. On the other hand, in the ideal

world—and provided S submits the choice vector (xi)
l−1
i=0 to Fκ,lROT—then only vi,xi = H(i ‖ ti + ei ∗∆) holds,

while vi,xi is random. We conclude that D can win if and only if it manages to query H(i ‖ ti + ei ∗∆). S’s
mandate is to choose the bits (xi)

l−1
i=0 in such a way as to make this task as hard as possible for D.

The distinguisher’s attack strategy. To build intuition, we begin with the simplest possible case.
If R is honest, then each of its vectors xi = xi · (1, . . . , 1) is monochromatic. It seems obvious that S
should extract from each monochromatic vector xi · (1, . . . , 1) the bit xi. The discussion above explains this
phenomenon. If S were to submit the “wrong” bit, then we would have ei = (1, . . . , 1) and ei = (0, . . . , 0).
We’d thus obtain the equality vi,xi = H(i ‖ ti + ei ∗∆) = H(i ‖ ti + ∆) in both worlds; on the other hand,
vi,xi = H(i ‖ ti + ei ∗∆) = H(i ‖ ti) would hold only in the real world. By making just a single query, D

could thus check vi,xi
?
= H(i ‖ ti), thereby distinguishing the two worlds.

A similar phenomenon applies to those vectors xi which are “mostly monochromatic”, in that most of
their bits equal xi ∈ {0, 1}, say. In this case, S should again extract the bit xi ∈ {0, 1} which agrees with
most of xi’s components. If it didn’t, then ei would become of low Hamming weight. The distinguisher D

could, then, brute-force all 2w(ei) queries vi,xi
?
= H(i ‖ ti + ei ∗∆). Upon finding a match—or else failing

to—D could once again detect whether the transcript represented a real-world or an ideal-world execution.

9

We thus see, as a first conclusion, that S should heuristically choose each xi so that ei has high Hamming
weight, for example by setting xi := Maj(xi); this measure would guarantee that each i ∈ {0, . . . , l − 1}
satisfied w(ei) ≥ κ

2 . (This phenomenon reappears in Remark 3.23 below.)
However, D has a further, subtler attack strategy, as we now explain. D may also test on-vectors, by

brute-forcing all 2w(ei) queries of the form vi,xi
?
= H(i ‖ ti + ei ∗∆), for some i ∈ {0, . . . , l − 1}. Indeed, in

both worlds, this equality holds precisely when D queries the “right” projection ei ∗∆. If ei is of sufficiently
low Hamming weight, then D may in this way learn the projection ei ∗ ∆ (i.e., the restriction of ∆ to
the bit-positions on in ei). Of course, this feat alone doesn’t solve D’s problem. On the other hand, D
may attempt to repeat this process across various i ∈ {0, . . . , l − 1}, accumulating knowledge all the while.
Importantly, once D has learned the projection ei ∗∆ for some particular i ∈ {0, . . . , l − 1}, it may “fix” in
place the corresponding bits of ∆ during each of its subsequent executions of the same brute-force procedure.
Thus, the complexity of learning some further projection ei′ ∗∆ is not 2w(ei′), but rather 2w(ei′∧¬ei) (i.e., it
depends only on the number of new on-bits of ei′). By proceeding in this way, D may attempt to learn so
many bits of ∆ that an off-vector ei comes to fall within reach (though its Hamming weight be large). At

this point, D may try as before to brute-force the off-vector vi,xi
?
= H(i ‖ ti + ei ∗∆).

D thus has a complicated—and path-dependent—space of attack strategies. Roughly, D may approach
in arbitrary order the various on-vectors ei, for i ∈ {0, . . . , l − 1}—seeking, in each case, to minimize the

number of new on-bits—and performing repeatedly the brute-force search vi,xi
?
= H(i ‖ ti + ei ∗∆). D, in

this way, might attempt to learn so many bits of ∆ that it becomes capable of brute-forcing an off-vector.
S’s best hope, then, is more subtle than simply maximizing the Hamming weight of the vectors ei. Rather,
S must seek to lengthen the “chain” of segments which D must brute-force, if it is to reach an off-vector.

The correlation check. As the above explanation makes clear, the adversary A—by submitting patho-

logically formed matrices (xi)
l′−1
i=0 —may attempt to aid the distinguisher. Specifically, A may elect to

submit matrices which contain multiple short segments of on-bits, hoping, in this way, to build a traversable
“bridge”—culminating in an off-vector—for future use by the distinguisher.

On the other hand, A must also pass its correlation check. In each execution in which A’s quantities

x and t fail the sender’s correlation check q
?
= t + x ·∆, either the honest party (in the real world) or the

simulator (in the ideal world), as the case may be, aborts. A’s failure to pass this check, then, has the

effect of depriving the distinguisher D of its most critical resource, the honest party’s outputs (vi,0,vi,1)
l−1
i=0.

Indeed, if A fails the correlation check, then the simulation becomes perfectly secure (regardless of which
bits (xi)

l−1
i=0 S extracts and of which pads it submits).

A, therefore, is caught between conflicting aims. On the one hand, it must submit a rather pathological
matrix, in order to aid the distinguisher. On the other hand, it must pass the correlation check, if is to
vouchsafe the distinguisher any chance at all. As we argue below, these aims are at odds. Indeed, as A’s
matrix becomes more pathological, A’s correlation check simultaneously becomes harder to pass.

Modesty. We begin the proof with one of this paper’s main contributions. As it turns out, we are able
to write down a measure of “compliance”—which assigns a numerical score m ∈ {1, . . . , κ} to each matrix

(xi)
l′−1
i=0 submitted by A—which simultaneously captures both of A’s conflicting aims. We define this metric,

which we call A’s matrix’s modesty, in Definition 3.4 below. Indeed, as (xi)
l′−1
i=0 ’s modesty decreases, A’s

correlation check becomes steadily harder to pass, a fact we formalize in Proposition 3.15 below. On the

other hand, as (xi)
l′−1
i=0 ’s modesty increases, D must work progressively harder to distinguish the two worlds,

as we show in Proposition 3.18. In fact, these aims work so strongly against each other that—as it turns
out—D’s chance of succeeding grows at best negligibly in κ, regardless of how modestly A constructs its
matrix. This fact underlies our main security result, which appears as Theorem 3.14 below.

For now, we rigorously define the modesty of (xi)
l′−1
i=0 , or rather of its upper part (xi)

l−1
i=0 (by submitting

a non-monochromatic lower submatrix (xi)
l′−1
i=l , A can only hurt itself, and can’t help D). In Definition

3.4—and throughout our entire proof below—we identify vectors d ∈ Fκ2 with subsets d ⊂ {0, . . . , κ− 1}, by
associating to each vector its set of on-positions in {0, . . . , κ− 1} (see also Section 2). The cardinality |d| of
a vector is nothing other than its Hamming weight w(d). The union of vectors d ∪ ei is nothing other than
the bitwise OR d ∨ ei. Finally, the set difference xi \ d is xi ∧ ¬d; its cardinality |xi \ d| is w(xi ∧ ¬d).

10

Definition 3.4. The modesty of (xi)
l−1
i=0 is the largest m ∈ {1, . . . , κ} for which Modest

(
(xi)

l−1
i=0,m

)
?
= false:

1: function Modest
(

(xi)
l−1
i=0,m

)
2: set d := ∅, initialize (xi)

l−1
i=0 arbitrarily, and mark each row-index i ∈ {0, . . . , l − 1} white.

3: for l repetitions do
4: for i ∈ {0, . . . , l − 1} do
5: if i is white and either |xi \ d| < m or |xi \ d| < m then
6: overwrite xi ∈ {0, 1} so that, writing ei := xi · (1, . . . , 1) + xi we get |ei \ d| < m.
7: if ei ⊂ d then mark the index i ∈ {0, . . . , l − 1} grey.
8: else update d ∪= ei and mark the index i ∈ {0, . . . , l − 1} black.

9: if |ei \ d| < m then return true.

10: break the inner loop 4.

11: return false.

We note that, though only the white–non-white distinction figures explicitly within Definition 3.4, the
grey–black distinction itself becomes important throughout our proof below.

Example 3.5. We note first that, for (xi)
l−1
i=0 arbitrary, Modest

(
(xi)

l−1
i=0, 1

)
= false necessarily holds.

Indeed, we claim by induction that, during the course of that algorithm, d = ∅ will hold throughout. That
algorithm’s condition 5 will hold only when at least one of the cardinalities |xi \ d| or |xi \ d| equals 0 < 1.
Under our hypothesis d = ∅, this latter condition entails precisely that xi is monochromatic. We conclude
that the algorithm will reach line 6 only on monochromatic xi, at which point it will set xi ∈ {0, 1} so that
ei = (0, . . . , 0) and ei = (1, . . . , 1) both hold. On each execution of line 7, we will thus have ei = ∅, so that i
will be marked grey, and our inductive hypothesis d = ∅ will be preserved. Finally, in each execution of line

9, we will have |ei \ d| = κ ≥ 1, so that the algorithm won’t exit. We conclude that Modest
(

(xi)
l−1
i=0, 1

)
will mark each monochromatic row grey and leave the rest of the rows white, and finally will return false.

In particular, Example 3.5 shows that the modesty m ∈ {1, . . . , κ} of each matrix (xi)
l−1
i=0 is well-defined.

Example 3.6. We examine the operation of Modest
(

(xi)
l−1
i=0,m

)
in the monochromatic case, which rep-

resents the behavior of an honest receiver. Indeed, we claim that the modesty of each monochromatic
matrix (xi)

l−1
i=0 is κ. It suffices to show that, for (xi)

l−1
i=0 monochromatic and m ∈ {1, . . . , κ} arbitrary,

Modest
(

(xi)
l−1
i=0,m

)
= false. We proceed essentially as in Example 3.5. For each execution of the test 5,

|xi \ d| and |xi \ d| will equal 0 and κ in some order ; in particular, the condition 5 will be fulfilled. In line
6, the algorithm will choose xi so that ei = (0, . . . , 0) and ei = (1, . . . , 1) both hold. On line 7, we will have
ei = ∅, so that ei ⊂ d will hold and i will be marked grey. By induction, we see again that d = ∅ will hold
throughout. Finally, in line 9, we will have |ei \ d| = κ ≥ m, so that the condition 9 will fail to be fulfilled.

After marking each vector ei grey in this way, Modest
(

(xi)
l−1
i=0,m

)
will finally return false on line 11.

Example 3.7. We examine the execution of Modest
(

(xi)
l−1
i=0,m

)
on the matrix (xi)

l−1
i=0 consisting of a

κ×κ identity submatrix (xi)
κ−1
i=0 , followed by a number of identically zero rows (xi)

l−1
i=κ (we assume here that

l ≥ κ). In a sense, this matrix is as “pathological” as possible. We claim that its modesty is 1. By Example

3.5, we know already that Modest
(

(xi)
l−1
i=0, 1

)
= false. We argue that Modest

(
(xi)

l−1
i=0,m

)
= true for

each m > 1. To show this, we fix a candidate modesty m ∈ {2, . . . , κ − 1}. We note first that the
algorithm, upon considering each successive row indexed i ∈ {0, . . . , κ − m}, will find |xi \ d| = 1 < m,
and so will set xi := 0, mark i black, and update d ∪= ei. By induction, we conclude that, for each
i ∈ {0, . . . , κ − m}, in the ith iteration of the main outer loop, immediately following the update step 8,
we will have d = {0, . . . , i}. As for line 9, in the ith iteration of the main outer loop, we will thus have
in turn |ei \ d| = |{0, . . . , i− 1, i+ 1, . . . , κ− 1} \ {0, . . . , i}| = |{i+ 1, . . . , κ− 1}| = κ − i − 1, which is at
least m so long as i ∈ {0, . . . , κ −m − 1}. During the κ −mth iteration, on the other hand, |eκ−m \ d| =
|{κ−m+ 1, . . . , κ− 1}| = m− 1 < m will hold, so that the algorithm will finally return true.

11

As we will see in Example 3.22 below, if Amanages to pass the correlation check despite having submitted
the matrix (xi)

l−1
i=0 of Example 3.7, then D will obtain an immediate O(κ)-time attack (even under our

carefully chosen extraction strategy). The point, of course, is that, upon submitting this matrix, A’s chance
of passing will become vanishingly small.

We now examine more formally the behavior of Definition 3.4. In the following two lemmas, we fix
arbitrary inputs (xi)

l−1
i=0 and m ∈ {1, . . . , κ}. We moreover write d ⊂ {0, . . . , κ − 1} and (xi)

l−1
i=0 for the

respective states ultimately taken by these values as of the end of the execution of Modest
(

(xi)
l−1
i=0,m

)
.

We give meaning to the vectors (ei)
l−1
i=0 using the bit assignment (xi)

l−1
i=0.

Lemma 3.8. If Modest
(

(xi)
l−1
i=0,m

)
= false, then, for each white index i ∈ {0, . . . , l − 1}, we have both

|xi \ d| ≥ m and |xi \ d| ≥ m.

Proof. Each iteration of Modest
(

(xi)
l−1
i=0,m

)
’s outer loop 3 either marks exactly one row non-white, or else

does nothing (in which case each further iteration also does nothing). On the other hand, our assumption

whereby Modest
(

(xi)
l−1
i=0,m

)
= false implies that the algorithm actually ran for all l iterations. Combining

these facts, we see that the mere existence of white rows as of the end of the algorithm’s execution implies
that the outer loop 3’s last iteration did nothing. Since each iteration of the outer loop which does nothing
subjects to each row i ∈ {0, . . . , l− 1} the test 5, we conclude that each row i ∈ {0, . . . , l− 1} which remains
white as of the algorithm’s end was subjected to that condition during the algorithm’s last iteration (and of
course failed to fulfill it, or else it would have been marked non-white). We conclude that—again for each
i ∈ {0, . . . , l− 1} which remains white to the end—both |xi \ d| ≥ m and |xi \ d| ≥ m hold, as required.

Lemma 3.9. If Modest
(

(xi)
l−1
i=0,m

)
= false, then, for each index i ∈ {0, . . . , l − 1}, we have |ei \ d| ≥ m.

Proof. For each index i ∈ {0, . . . , l − 1} which remains white as of the algorithm’s termination, Lemma 3.8
immediately implies the lemma’s conclusion (and, in fact, that |ei \ d| ≥ m and |ei \ d| ≥ m both hold). We
thus fix an arbitrary non-white row i ∈ {0, . . . , l− 1}; we moreover write i∗ ∈ {0, . . . , l− 1} for the last index
marked non-white by the algorithm. Since ei ⊂ d, d = ei∩d. We conclude that ei∗∩d = ei∗∩ei∩d ⊂ ei∩d,
so that ei∗ \d ⊂ ei \d in fact holds. If |ei \ d| < m held, then we’d thus conclude in turn that |ei∗ \ d| < m
also held, and hence that the escape condition 9 was fulfilled just after ei∗ was marked non-white. This

would imply that Modest
(

(xi)
l−1
i=0,m

)
= true, contradicting the lemma’s hypothesis.

Remark 3.10. Lemma 3.9 suggests the following further interpretation of the algorithm

Modest
(

(xi)
l−1
i=0,m

)
. Indeed, that lemma shows that it is an algorithmic invariant of Modest

(
(xi)

l−1
i=0,m

)
that either every non-white row i ∈ {0, . . . , l − 1} simultaneously satisfies |ei \ d| < m or else no non-
white row does. To show this, we fix a non-white index i∗ ∈ {0, . . . , l − 1} and consider the state of
d immediately after the update step d ∪= ei∗ . Certainly, ei∗ ⊂ d holds. If |ei∗ \ d| < m moreover
holds—that is, if the condition 9 is fulfilled—then, since ei∗ and ei∗ partition {0, . . . , κ − 1}, we see that
|{0, . . . , κ− 1} \ d| = |ei∗ \ d| + |ei∗ \ d| < 0 + m, so that each i ∈ {0, . . . , l − 1} (in fact regardless of
color) satisfies |ei \ d| ≤ |{0, . . . , κ− 1} \ d| < m. Conversely, if |ei∗ \ d| ≥ m instead holds, then the
proof of Lemma 3.9 shows that each row i ∈ {0, . . . , l − 1} marked non-white before i∗ in fact satisfies
ei∗ \ d ⊂ ei \ d, so that |ei \ d| ≥ |ei∗ \ d| ≥ m in turn necessarily holds. This fact is surprising; it seems a
priori conceivable that the set d, upon being made to include the contents of some set ei∗ , could—though
|ei∗ \ d| ≥ m—nonetheless cause the inequality |ei \ d| < m to hold, for some other i ∈ {0, . . . , l − 1}
previously marked non-white by the algorithm. The proof of Lemma 3.9 shows that this can’t happen.

Were Lemma 3.9 unproven, or even false, we could apparently compensate, at least for the purposes of
our proof below, by appending to the routine of Definition 3.4 an artificial “check”, which—before returning

false—tested the inequalities |ei \ d|
?
< m for each i ∈ {0, . . . , l − 1} (returning true upon detecting a

fulfillment). This “remedy”, of course, would leave unanswered whether this check was effectual (i.e., whether
it was actually capable of inducing the algorithm to return true). More generally, it would leave unaccounted
for an important aspect of the operation of the algorithm, and hence of our proof below.

12

The following results are, as it turns out, not necessary to establish the proof of our main result. Nonethe-
less, they collectively establish the “well-behavedness” of Definition 3.4. We defer their proofs to Appendix
A.

Lemma 3.11. For each (xi)
l−1
i=0 and each m ∈ {1, . . . , κ}, the boolean return value of Modest

(
(xi)

l−1
i=0,m

)
is independent of the order in which the indices i ∈ {0, . . . , l− 1} are tested by that algorithm’s inner loop 4.

Proof. Deferred to Appendix A.

Exploiting Lemma 3.11, we obtain a simple proof of the following result. It is interesting that the easiest
proof of this result seems to be that—given below—which proceeds via the aid of the more-complicated
Lemma 3.11. Though a direct proof would be interesting, and is probably possible, we have restricted
ourselves, for the sake of brevity, to the approach presented below.

Corollary 3.12. For each input matrix (xi)
l−1
i=0, the function Modest

(
(xi)

l−1
i=0,m

)
is monotone on its do-

main {1, . . . , κ}; i.e., for each pair of arguments m ≤ m′, Modest
(

(xi)
l−1
i=0,m

)
=⇒ Modest

(
(xi)

l−1
i=0,m

′
)

.

Proof. Deferred to Appendix A.

Remark 3.13. We record without proof the following further consequences of Lemma 3.11, all valid only

when Modest
(

(xi)
l−1
i=0,m

)
= false, which we presently assume. That result, for one, implies that the vector

d ⊂ {0, . . . , κ− 1} ultimately constructed during the course of Modest
(

(xi)
l−1
i=0,m

)
is likewise independent

of the order in which that algorithm treats its rows. Finally, Lemma 3.11 implies that the subset consisting
of those rows i ∈ {0, . . . , l − 1} marked non-white during the algorithm is likewise order-independent, as is,

for each non-white row i ∈ {0, . . . , l − 1}, the bit assignment xi. If Modest
(

(xi)
l−1
i=0,m

)
= true, then none

of these quantities are, in general, independent of the algorithm’s row-treatment order.

The proof. We now proceed with our main security theorem.

Theorem 3.14. In the FκRand,F
κ,l′

COTe-hybrid model, Protocol 2.7 securely computes Functionality 2.5 in the
presence of a corrupt receiver.

Proof. We define our simulator S. Given a real-world adversary A corrupting the receiver R, S operates as
follows.

1. S simulates the existence of Fκ,l
′

COTe, including S’s role. S begins by sampling ∆← Fκ2 , as S would.

2. Upon intercepting A’s messages
(
input, (xi)

l′−1
i=0

)
and

(
pads, (ti)

l′−1
i=0

)
intended for Fκ,l

′

COTe, S extracts

the assignment (xi)
l−1
i=0 constructed during the course of Modest

(
(xi)

l−1
i=0,m

)
, where m ∈ {1, . . . , κ}

is the modesty of (xi)
l−1
i=0. For each i ∈ {0, . . . , l − 1}, S moreover writes qi := ti + xi ∗ ∆, and sets

vi,xi := H(i ‖ qi + xi ·∆). S submits
(
input, (xi)

l−1
i=0

)
and

(
pads, (vi,xi)

l−1
i=0

)
to Fκ,lROT.

3. S receives
(
output, (vi,xi)

l−1
i=0

)
from Fκ,lROT, and simulates Fκ,l

′

COTe returning
(
output, (ti)

l′−1
i=0

)
to A.

4. For each i ∈ {0, . . . , l′ − 1}, S intercepts A’s message (random, i) intended for FκRand, samples χi ← Fκ2
randomly, and simulates FκRand sending A (rand, i, χi). Upon receiving x and t from A, S independently

computes q :=
∑l′−1
i=0 χi · qi, and runs the correlation check q

?
= t+ x ·∆. If the check fails, S submits

(abort) to Fκ,lROT; otherwise, S proceeds, and Fκ,lROT releases the output to the ideal honest party S.

We claim that the resulting real and ideal distributions are computationally indistinguishable. More precisely,
these distributions are statistically indistinguishable to any computationally unbounded distinguisher which
makes only polynomially many queries to the random oracle. We fix a distinguisher D attacking these
distributions.

13

The view simulated by S to A identically matches A’s real-world view. In particular, S simulates the

machines S and Fκ,l
′

COTe perfectly, and runs the same correlation check q
?
= t+ x ·∆ that S does.

We turn to the output received by the honest party. If the correlation check fails, then the sender (in
the real world) and the simulator (in the ideal world) both abort. If this happens, then the honest party
(real or ideal) receives no output at all, and the simulation is perfect. Otherwise, for each i ∈ {0, . . . , l− 1},
S in the real world outputs vi,0 := H(i ‖ qi) and vi,1 := H(i ‖ qi + ∆); these quantities respectively equal
vi,0 = H(i ‖ ti + xi ∗∆) and vi,1 = H(i ‖ ti + xi ∗∆) (as was already explained above). The simulator S
may itself calculate both of these quantities; on the other hand, it must choose just one bit xi ∈ {0, 1} and

one pad vi,xi to submit to Fκ,lROT (which insists on sampling vi,xi ← {0, 1}κ randomly). In the ideal world,
therefore, for each i ∈ {0, . . . , l − 1}, S outputs vi,xi = H(i ‖ ti + ei ∗∆) exactly as in the real world, while
its output vi,xi ← {0, 1}κ is independently random. If D never queries H(i ‖ ti + ei ∗∆), then the real and
ideal distributions are identical. Here, we again write ei := xi · (1, . . . , 1) + xi and ei := xi · (1, . . . , 1) + xi
for each i ∈ {0, . . . , l − 1}, where the bits (xi)

l−1
i=0 are as extracted by S.

We introduce a convenient notational device, which captures the adequacy of A’s messages x and t to

S. We fix A’s local quantities (xi)
l′−1
i=0 and (ti)

l′−1
i=0 ; we moreover fix the elements (χi)

l′−1
i=0 of F2κ , which

we view for now as fixed constants. For each pair of further elements x and t of F2κ , we define the map
Fx,t : Fκ2 → Fκ2 as follows:

Fx,t : ∆ 7→
l′−1∑
i=0

χi · (ti + xi ∗∆) + x ·∆ + t.

Since qi = ti + xi ∗∆ holds for each i ∈ {0, . . . , l′− 1}, this map exactly reflects the correlation check which
the sender applies to its secret correlation vector ∆ ∈ Fκ2 . In other words, its check passes if and only if A
sends elements x and t which cause Fx,t(∆)

?
= 0 to hold.

Clearly, the map Fx,t : Fκ2 → Fκ2 is affine F2-linear, for each fixed (χi)
l′−1
i=0 and for each x and t. We argue

that we may assume once and for all that A submits an “honest” value t =
∑l′−1
i=0 χi · ti. Indeed, for each

fixed candidate x ∈ F2κ and for t ∈ F2κ varying, the resulting maps (Fx,t)t∈F2κ
are all affine translates of

each other. For those t 6∈ im(Fx,0), we have that 0 6∈ im(Fx,t), so that the null set {∆ ∈ Fκ2 | Fx,t(∆) = 0} is
empty and the correlation check is guaranteed to fail (i.e., regardless of ∆ ∈ Fκ2). We may thus ignore these
candidates t. On the other hand, for t ∈ im(Fx,0) varying, the resulting null sets {∆ ∈ Fκ2 | Fx,t(∆) = 0}
yield a family of parallel affine subspaces in Fκ2 of identical dimension. Since our below arguments depend
only on the dimension of the affine subspace {∆ ∈ Fκ2 | Fx,t(∆) = 0} and not on its contents, we may freely
fix t ∈ im(Fx,0) arbitrarily throughout the course of our treatment below (i.e., for each candidate x ∈ F2κ).

We thus set t :=
∑l′−1
i=0 χi · ti, the image of 0 itself under Fx,0. (This choice t ∈ F2κ is in fact a posteriori

independent of x ∈ F2κ .) For each x ∈ F2κ , the resulting map Fx,t : Fκ2 → Fκ2 is in fact linear. We write
below the map which results from this simplifying assumption, in which all affine constants are omitted:

F ′x : ∆ 7→
l′−1∑
i=0

χi · (xi ∗∆) + x ·∆.

In particular, we refer to rank(F ′x) and ker(F ′x) throughout.
We note that those x ∈ F2κ for which rank(F ′x) is small yield larger kernels ker(F ′x), which in turn make

A’s correlation check easier to pass (over the secret and random vector ∆). In particular, A’s goal is to
submit an element x ∈ F2κ which makes rank(F ′x) is as small as possible. We denote by r the minimal rank
achieved across all maps (F ′x)x∈F2κ

; in other words:

r := min
x∈F2κ

rank(F ′x). (1)

The minimal rank r depends exhaustively on (xi)
l′−1
i=0 and on the random coefficients (χi)

l′−1
i=0 . In our proof

below, we understand the minimal rank r as a function of the random mixing scalars (χi)
l′−1
i=0 (i.e., for (xi)

l′−1
i=0

implicitly fixed). In other words, for each list (χi)
l′−1
i=0 sampled by FκRand (in the real world) or S (in the ideal

world), we obtain a resulting minimum rank r; in this way, we view r as a random variable (i.e., depending

on the random quantities (χi)
l′−1
i=0).

14

We pause to sketch the details of our proof. We consider the protocol in steps, corresponding, respectively,

toA’s choice of (xi)
l′−1
i=0 (and hence of modesty), to the random sampling of (χi)

l′−1
i=0 (which causes the minimal

rank r to be defined), to whether A passes the correlation check, and, finally, to whether the distinguisher
succeeds. The resulting structure is depicted in the Figure 1 below, which should be understood as a
probability tree, in which each edge represents a conditional probability. The distinguishing advantage of
any distinguisher D is given by a recursive traversal of this tree, in which the probability of each node is
calculated as the weighted average of those of its children (where each child’s probability is multiplied by its
edge weight).

A sends (xi)
l′−1
i=0 ; modesty m is fixed.

(χi)
l′−1
i=0 gets sampled; r is determined.

A passes or fails the correlation check.

D succeeds or fails to distinguish.

1 . . .

fails

fails to distinguish distinguishes

passes

low min-rank r < r∗

fails passes

high min-rank r ≥ r∗

m . . . κ

Figure 1: A depiction of the case structure considered by our proof.

We analyze an instance of the above tree for each execution (i.e., for each modesty m). We may immedi-
ately ignore those executions in which A fails the correlation check, since the real and ideal distributions are
identical in each such execution. Beyond this, we set a rank cutoff r∗. If we choose for our cutoff r∗ = r∗(κ)
a superlogarithmic function of κ, then we may likewise ignore the subtree in which r ≥ r∗ and A passes the
correlation check. Indeed, A’s chance of passing the correlation check is exactly 2−rank(F ′x). If the minimal
rank r ≥ r∗, then rank(F ′x) ≥ r∗ certainly holds (i.e., regardless of which x ∈ F2κ A chooses). We see in this
case that A’s chance of passing is at most 2−r

∗ ≤ 2−ω(log(κ)), which is negligible. (We discuss our specific
choice of r∗ below.) We are thus left with one relevant path through the tree. Our proof hinges on analyzing
the two edges bolded in the diagram above. Roughly, we show that as A’s matrix’s modesty varies, either
the lowermost bolded edge or the uppermost bolded edge (or both) must be negligible in κ (these cases
happen when A’s matrix is and isn’t modest, respectively). This suffices to demonstrate the result.

We first study the probability that the minimal rank r of (1) is low. Instead of precisely describing
the distribution of r as a random variable, we instead fix a cutoff r∗ ∈ {1, . . . , κ}, and upper-bound the
probability that r < r∗. Our main result is as follows.

Proposition 3.15. For each rank cutoff r∗ ∈ {1, . . . , κ}, and each initial matrix (xi)
l′−1
i=0 , of modesty

m ∈ {1, . . . , κ}, say, the probability—over the choice of (χi)
l′−1
i=0 —that r < r∗ is at most 2κ·(r

∗+1)−κ·κ−r
∗+1
m .

Proof. We run the procedure Modest
(

(xi)
l−1
i=0,m+ 1

)
on A’s matrix (xi)

l−1
i=0, where m is (xi)

l−1
i=0’s modesty;

we note immediately that Modest
(

(xi)
l−1
i=0,m+ 1

)
= true, by definition of m. We write (x′i)

l−1
i=0 for the

vector of bit assignments ultimately assembled internally during Modest
(

(xi)
l−1
i=0,m+ 1

)
. (Even when

m = κ, Modest
(

(xi)
l−1
i=0, κ+ 1

)
nonetheless makes sense; this procedure will trivially return true on its

first iteration, and will assign the entire vector (xi)
l−1
i=0 arbitrarily.) We finally assign the further components

(x′i)
l′−1
i=l arbitrarily. For each i ∈ {0, . . . , l′ − 1}, we write e′i := x′i · (1, . . . , 1) + xi.

15

We begin by further simplifying F ′x. Concretely, we perform the following procedure. We define:

F ′′x : ∆ 7→
l′−1∑
i=0

χi · (e′i ∗∆) + x ·∆,

where the vectors (e′i)
l′−1
i=0 are as defined above. We note that, for each x ∈ Fκ2 and each ∆ ∈ Fκ2 , we have

the identity:

F ′′x (∆) =

l′−1∑
i=0

χi · (xi ∗∆) +

l′−1∑
i=0

χi · x′i ·∆ + x ·∆ =

l′−1∑
i=0

χi · (xi ∗∆) + (x+ x∗) ·∆ = F ′x+x∗(∆),

where we abbreviate x∗ :=
∑l′−1
i=0 χi · x′i. In the first step, we use the definition of the vectors (e′i)

l′−1
i=0 and

the distributive law; we moreover use the identity (x′i · (1, . . . , 1)) ∗∆ = x′i ·∆. We conclude that:

r = min
x∈F2κ

rank(F ′x) = min
x∈F2κ

rank(F ′′x−x∗) = min
x∈F2κ

rank(F ′′x);

in the last step, we exploit the fact that subtraction by x∗ acts as a permutation on the set F2κ . We conclude
that, to prove the proposition, we may instead bound the probability that minx∈F2κ

rank(F ′′x) < r∗.

We further write (e′′i)
l′−1
i=0 for the reduced row-echelon form over F2 of (e′i)

l′−1
i=0 , and define:

F ′′′x : ∆ 7→
l′−1∑
i=0

χi · (e′′i ∗∆) + x ·∆.

Clearly, the l′ × κ matrices (e′′i)
l′−1
i=0 and (e′i)

l′−1
i=0 differ by left-multiplication by an l′ × l′ invertible matrix

M with entries in F2. We thus obtain the following matrix relationship over F2:

l′




e′′0

...

e′′l′−1

 =

l′︷ ︸︸ ︷ M

 ·

κ︷ ︸︸ ︷
e′0

...

e′l′−1

 .

Interpreting, for each i ∈ {0, . . . , l′ − 1}, the elements e′i and e′′i of Fκ2 as elements of F2κ , we obtain the
following equivalent matrix identity, now defined over F2κ :

l′




e′′0

...

e′′l′−1

 =

l′︷ ︸︸ ︷ M

 ·

1︷ ︸︸ ︷
e′0

...

e′l′−1

 .

Viewed as an F2κ -matrix in the natural way, M of course remains invertible. We argue that the further
matrix identity below—which we again understand over F2κ—likewise holds:

l′




e′′0 ∗∆

...

e′′l′−1 ∗∆

 =

l′︷ ︸︸ ︷ M

 ·

1︷ ︸︸ ︷
e′0 ∗∆

...

e′l′−1 ∗∆

 . (2)

16

To justify this claim, we pick an arbitrary row i ∈ {0, . . . , l′ − 1}. From the previous equality above, we see

that e′′i =
∑l′−1
j=0 Mi,j · e′j holds. Using this guarantee, we obtain in turn the equality

∑l′−1
j=0 Mi,j ·

(
e′j ∗∆

)
=∑l′−1

j=0

((
Mi,j · e′j

)
∗∆
)

=
(∑l′−1

j=0 Mi,j · e′j
)
∗ ∆ = e′′i ∗ ∆, as required. Here, we again use the fact that

Mi,j · (e′j ∗∆) = (Mi,j · e′j) ∗∆ holds for each bit Mi,j ∈ {0, 1}.
Using the final matrix identity (2) above, we finally reëxpress F ′′′x (∆) in the following way, for parameters

x ∈ Fκ2 and ∆ ∈ Fκ2 arbitrary. We understand all matrix expressions below over F2κ .

F ′′′x (∆) =

[
χ0 · · · χl′−1

]
·


e′′0 ∗∆

...

e′′l′−1 ∗∆

+x ·∆ =

[
χ0 · · · χl′−1

]
·

 M

 ·


e′0 ∗∆

...

e′l′−1 ∗∆

+x ·∆.

The first equality is simply the definition of F ′′′x (∆); in the second, we use (2). On the other hand, the

right-hand quantity above is simply a variant of F ′′x (∆) in which the F2κ-elements (χi)
l′−1
i=0 are replaced by

(χMi)l
′−1
i=0 , where we write:

[
χM0 · · · χMl′−1

]
:=

[
χ0 · · · χl′−1

]
·

 M

·

Using this observation, we claim that the distribution of the variable quantity r = minx∈F2κ
rank(F ′′x), viewed

as a function of the random scalars (χi)
l′−1
i=0 , is identical to that of minx∈F2κ

rank(F ′′′x) over (χi)
l′−1
i=0 . To prove

this, we simply note that the random vectors (χi)
l′−1
i=0 and (χMi)l

′−1
i=0 = (χi)

l′−1
i=0 ·M are identically distributed

in Fl′2κ . This fact is an immediate consequence of the invertibility of M (as an F2κ-matrix). To prove the
proposition, it thus further suffices to instead bound the probability that minx∈F2κ

rank(F ′′′x) < r∗.

Lemma 3.16. The reduced row-echelon form (e′′i)
l′−1
i=0 of the binary matrix (e′i)

l′−1
i=0 has at least κ

m −1 pivots.

Proof. As each matrix’s number of pivots depends only on its rank, it suffices to prove the lemma after

arbitrarily permuting (e′i)
l′−1
i=0 ’s rows and columns. We thus freely sort the rows (e′i)

l′−1
i=0 in the order in

which they are marked black by the procedure Modest(m+ 1) (deferring all white and grey rows, as well as
rows indexed i ∈ {l, . . . , l′ − 1}). Moreover, we apply the following modification to the Gaussian elimination
algorithm. By construction, each row marked black introduces a 1 to some column which thus far has lacked
one. Upon each such row’s treatment by the Gaussian elimination algorithm, after possibly transposing the
column being considered for a pivot with some column strictly to its right, we may assume that this 1 resides
precisely at the column being considered for a pivot, and thus becomes a pivot. This transposition preserves
the invariant whereby each further black row introduces a 1 at some new column. (Indeed, each row which
admits some cell containing the highest 1 in its column will continue to do so, even after this transposition,
albeit possibly at a new column-index.) Likewise, using the new pivot row to clear the pivot column also
preserves this invariant. (Indeed, for each black row strictly beneath the one being treated, which, by the
invariant, necessarily features some cell containing its column’s highest 1, the clearing process will have no
effect on that particular column, since the row containing the newly minted pivot necessarily features a 0 at
that column.) We thus conclude that there are at least as many pivots as there are black rows.

Finally, we note that Modest(m+1) must mark at least κ−m
m = κ

m −1 rows black. Indeed, by our choice
of m, Modest(m + 1) = true, so that the vector d′ (say) assembled during the course of Modest(m + 1)

simultaneously satisfies e′i∗ ⊂ d′ and
∣∣∣e′i∗ \ d′

∣∣∣ ≤ m, where i∗ ∈ {0, . . . , l−1}, say, is the last row marked grey

or black by the algorithm (for which the condition 9 was necessarily fulfilled). The first inclusion directly
implies that d′ ⊂ e′i∗ \d′; applying the second inequality, we see that

∣∣d′∣∣ ≤ m, so that |d′| ≥ κ−m. Finally,
each index i ∈ {0, . . . , l − 1} marked black within Modest(m+ 1) can only increase |d′| by at most m.

17

We continue our study of the maps F ′′′x : ∆ 7→
∑l′−1
i=0 χi · (e′′i ∗∆) +x ·∆. For each i ∈ {0, . . . , l′− 1}, the

field element χi ∈ F2κ induces an F2-isomorphism on Fκ2 , by multiplication. We thus naturally associate to
each χi a κ×κ matrix, which we call

[
χi
]
. Finally, we write

[
χ′i
]

for the κ×κ matrix which we obtain upon

striking from
[
χi
]

those columns j ∈ {0, . . . , κ− 1} for which e′′i,j = 0. In other words, for i ∈ {0, . . . , l′ − 1}

and each j ∈ {0, . . . , κ− 1},
[
χ′i
]
’s jth column

([
χ′i
]
k,j

)κ−1

k=0
is
([
χi
]
k,j

)κ−1

k=0
if e′′i,j = 1 and (0)κ−1

k=0 otherwise.

We note immediately that, for each i ∈ {0, . . . , l′− 1}, χi · (e′′i ∗∆) =
[
χ′i
]
·∆ holds. To prove this claim, we

let i ∈ {0, . . . , l′ − 1} be arbitrary, and observe the following matrix identity over F2:

χi ·(e′′i ∗∆) =

 [
χi
] ·

e′′i ∗∆

 =

 [
χi
] ·

 diag(e′′i)

·
∆

 =

 [
χ′i
] ·

∆

,
which is exactly what we wanted to show.

We thus obtain the equivalent expression F ′′′x : ∆ 7→
(∑l′−1

i=0

[
χ′i
]

+
[
x
])
·∆; here, we interpret the left-

hand sum as a sum of matrices, and moreover write
[
x
]

for x’s associated κ× κ F2-matrix. We depict this
latter expression for F ′′′x in Figure 2 below.

F ′′′x : ∆ 7→

 . . .
[
χ′0
]

+ · · ·+ . . .
[
χ′l′−1

]
+ . . .

[
x
]


 · ∆




Figure 2: A depiction of the linear map F ′′′x .

In Figure 2, we highlight the columns of the matrices
([
χ′i
])l′−1

i=0
either lightly or darkly, in order to convey

that these matrices’ columns are either preserved from or stricken from those of
([
χi
])l′−1

i=0
.

Because the matrix (e′′i)
l′−1
i=0 is row-reduced, we see that each of (e′′i)

l′−1
i=0 ’s pivots contributes an indepen-

dent random column to the matrix expression
∑l′−1
i=0

[
χ′i
]
. We argue that we may, conservatively, consider

the pivot columns alone in our study of F ′′′x . We write p ⊂ {0, . . . , κ − 1} for the subset consisting of

those column indices at which (e′′i)
l′−1
i=0 has a pivot. Finally, we write P for the diagonal, κ × κ matrix for

which, for each j ∈ {0, . . . , κ − 1}, Pj,j = 1 if j ∈ p and Pj,j = 0 otherwise (in slightly fancier terms, we

have P := diag(p)). Clearly, right-multiplying the κ × κ matrix
∑l′−1
i=0

[
χ′i
]

+
[
x
]

by P can only decrease

its rank; that is, we have the rank inequality rank
((∑l′−1

i=0

[
χ′i
]

+
[
x
])
· P
)
≤ rank

(∑l′−1
i=0

[
χ′i
]

+
[
x
])

. We

abbreviate X :=
∑l′−1
i=0

[
χ′i
]
, and define the final linear map:

F ′′′′x : ∆ 7→
((
X +

[
x
])
· P
)
·∆.

In particular, F ′′′′x ’s matrix differs from F ′′′x ’s simply by right-multiplication by P . In words, it replaces those
among that matrix’s columns corresponding to the non-pivot indices j ∈ {0, . . . , κ− 1} \ p with identically
zero columns. We depict the map F ′′′′x in Figure 3 below.

F ′′′′x : ∆ 7→

 . . .X


+ . . .

[
x
]


 · ∆


,

Figure 3: A depiction of our linear map F ′′′′x .

Again, we shade the columns of Figure 3’s matrices lightly or darkly. We note that precisely the pivot
columns p ⊂ {0, . . . , κ − 1} are shaded lightly; moreover, the same set of columns is preserved in both X
and

[
x
]
.

18

We recall again that rank(F ′′′′x) ≤ rank(F ′′′x) holds for each pair of parameters (χi)
l′−1
i=0 and x. In

particular, if rank(F ′′′x) < r∗, holds, then rank(F ′′′′x) < r∗ also does. We see that, for each vector (χi)
l′−1
i=0 ∈

Fl′2κ for which at least one x ∈ F2κ satisfies rank(F ′′′x) < r∗, certainly at least one x ∈ F2κ also satisfies
rank(F ′′′′x) < r∗ (and in fact the same x can be chosen). We see that our replacement of F ′′′x with F ′′′′x serves

only to expand the set of vectors (χi)
l′−1
i=0 ∈ F2κ under consideration; that is,

Pr
(χi)

l′−1
i=0 ←Fl′

2κ

[
min
x∈F2κ

rank(F ′′′x) < r∗
]
≤ Pr

(χi)
l′−1
i=0 ←Fl′

2κ

[
min
x∈F2κ

rank(F ′′′′x) < r∗
]
.

To prove the proposition, it thus suffices to bound the probability Pr
(χi)

l′−1
i=0 ←Fl′

2κ
[minx∈F2κ

rank(F ′′′′x) < r∗].

We undertake this task now.
We write κ̂ := |p| for the number of pivots in the matrix (e′′i)

l′−1
i=0 . As a notational aid, we work in the

space of matrices Fκ×κ̂2 , instead of in Fκ×κ2 . For each κ × κ matrix X as above, we write X ′ for the κ × κ̂
restriction of X to those columns j ∈ p (i.e., for the non-stricken columns of X · P). Similarly, for each
x ∈ F2κ , we write

[
x′
]

for the κ× κ̂ restriction of
[
x
]

to the pivot columns j ∈ p. For each X as above and

each x ∈ F2κ , the matrices
(
X +

[
x
])
· P ∈ Fκ×κ2 and X ′ +

[
x′
]
∈ Fκ×κ̂2 clearly have identical ranks (the

former matrix differs from the latter only by the augmentation of κ− κ̂ identically zero columns). We thus
restate our task as follows. For X ′ ∈ Fκ×κ̂2 uniformly random, we must bound the probability with which
there exists a field element x ∈ F2κ for which rank

(
X ′ +

[
x′
])
< r∗.

We make use of a counting argument in Fκ×κ̂2 . There are exactly 2κ distinct field elements x ∈ F2κ ,
and hence at most 2κ distinct corresponding matrices

[
x′
]
. On the other hand, for each matrix X ′ ∈ Fκ×κ̂2

for which, for some x ∈ F2κ , rank
(
X ′ +

[
x′
])

< r∗ holds, we necessarily have that X ′ +
[
x′
]

= Y—or,

equivalently, X ′ =
[
x′
]

+ Y—where the matrix Y ∈ Fκ×κ̂2 is of rank less than r∗. In the following lemma,
we bound the number of such matrices Y .

Lemma 3.17. For each rank r∗ ∈ {1, . . . , κ}, at most 2(κ+κ̂)·(r∗−1) matrices Y ∈ Fκ×κ̂2 satisfy rank(Y) < r∗.

Proof. Each matrix Y ∈ Fκ×κ̂2 of rank less than r∗ can be written (possibly non-uniquely) as the product of
a κ× (r∗ − 1) matrix and an (r∗ − 1)× κ̂ matrix.

The set of matrices X ′ ∈ Fκ×κ̂2 for which minx∈F2κ
rank

(
X ′ +

[
x′
])
< r∗ is exactly the union, taken over

x ∈ F2κ , of the subsets
{[
x′
]

+ Y
∣∣ rank(Y) < r∗

}
⊂ Fκ×κ̂2 . In light of Lemma 3.17, we conclude that the car-

dinality of this union is at most 2κ ·2(κ+κ̂)·(r∗−1) = 2(κ+κ̂)·(r∗−1)+κ. Finally, the total number of κ×κ̂ matrices

X ′ is obviously 2κ·κ̂. The probability, over the random coefficients (χi)
l′−1
i=0 , that minx∈F2κ

rank(F ′′′′x) < r∗

is thus at most
2(κ+κ̂)·(r∗−1)+κ−κ·κ̂. (3)

We reëxpress the exponent of (3) as:

(κ+ κ̂) · (r∗ − 1) + κ− κ · κ̂ = κ · (r∗ − 1) + κ+ κ̂ · (r∗ − 1− κ);

since r∗−1−κ < 0 necessarily holds (a consequence of r∗ ≤ κ), we see that the above exponent is decreasing
as the number of pivots κ̂ ∈ {0, . . . , κ} increases. On the other hand, by Lemma 3.16, we have the guarantee
κ̂ ≥ κ

m − 1. We thus conclude that we may freely substitute κ̂ = κ
m − 1 into the expression (3); doing this,

we bound that quantity further by:

2(κ+ κ
m−1)·(r∗−1)+κ−κ·(κm−1) = 2κ·(r

∗−1)−κ·κ−r
∗+1
m −(r∗−1)+2·κ ≤ 2κ·(r

∗+1)−κ·κ−r
∗+1
m ,

which is exactly the desired expression. This completes the proof of the proposition.

We now consider the distinguisher’s advantage. We recall that the real and ideal distributions are identical
unless A passes the correlation check and D queries H(i ‖ ti + ei ∗∆), for some i ∈ {0, . . . , l − 1}. On the
other hand—provided A passes the correlation check—D may learn information about ∆ ∈ Fκ2 by the means

of brute-force queries of the form vi,xi
?
= H(i ‖ ti + ei ∗∆), where i ∈ {0, . . . , l − 1}. Finally, D has one

further source of information. That is, D may make use of the very fact that A passed the correlation check.
This datum tells D precisely that ∆ ∈ ker(F ′x). As rank(F ′x) grows, this fact—provided A passes—comes to
reveal more information to D.

19

Proposition 3.18. For each computationally unbounded distinguisher D, which makes at most Q(κ) oracle
queries, say, D’s advantage, conditioned on A passing the correlation check, is at most Q(κ) · 2−m+rank(F ′x).

Proof. We must bound the probability with which D—or, for that matter, A—makes any query of the form
H(i ‖ ti + ei ∗ ∆), where i ∈ {0, . . . , l − 1}. We write d for the vector constructed during the course of

Modest
(

(xi)
l−1
i=0,m

)
, and w := d ∗∆ for the projection of the sender’s or simulator’s secret choice vector

∆ onto d. It suffices to prove the result after giving D w, since this information can only make D more
effective. We likewise give A w after it submits x and t and passes the correlation check.

Having given A and D the projection w, we observe that the only information that remains privileged
these machines is the collective set of oracle inputs positions ti + ei ∗∆ for which ei 6⊂ d (queried either by
S or S) and ti + ei ∗∆ (queried only by S). Indeed, these positions—alongside those of the form ti + ei ∗∆
for ei ⊂ d, which A and D, given w, already know—represent precisely those possibly ever queried by
any entity other than A and D. If neither A nor D queries any of these positions during their respective
executions, then D’s real-world and ideal-world views clearly become identical; indeed, in this case, D could
just as well simulate the random oracle itself. Throughout the remainder of the proof, we refer only to D,
for succinctness. (We further compare A’s and D’s views in Remark 3.23 below.)

We thus bound the probability with which D submits any query of the form H(i ‖ ti + r), where i ∈
{0, . . . , l − 1}, and where the offset r ∈ Fκ2 is such that either of the following two conditions hold:{

ei 6⊂ d and r = ei ∗∆.

r = ei ∗∆.

We write Y := {∆ ∈ Fκ2 | d ∗∆ = w ∧∆ ∈ ker(F ′x)}. Upon just beginning to run—and in possession of w—
D, for all it knows, views ∆ as uniform in Y . We use the symbol f ∈ Fκ2 to denote some vector of the form
f = ei (where we require moreover that ei 6⊂ d) or f = ei, for i ∈ {0, . . . , l − 1} arbitrary. For each such
f , we write Yf := {f ∗∆ |∆ ∈ Y } for the projection of Y onto f . Slightly abusing notation, we moreover
write f : Y → Yf for the natural projection map. For each f , as the image point r ∈ Yf varies, the fibers
f−1(r) ⊂ Y partition Y into equally-sized, parallel affine subspaces.

Definition 3.19. If D queries H(i ‖ ti + r), where r ∈ Yf , then we say D has checked the fiber f−1(r) ⊂ Y .

Reëxpressing our above discussion linear-algebraically, we see that that our goal is precisely to bound the
probability with which D checks a fiber containing ∆ (i.e., with which, for some fiber f−1(r) ⊂ Y checked by
D, where f is of the above form, ∆ ∈ f−1(r) holds). In the following key lemma, we bound the proportion of
candidates ∆ ∈ Y which each among D’s individual queries serves to check. The tricky part is to handle the
interaction between the bit-positions tested by D, on the one hand, and the hint ∆ ∈ ker(F ′x), on the other.

Lemma 3.20. For each f of the above form and each r ∈ Yf , we have dim(Y)−dim(f−1(r)) ≥ m−rank(F ′x).

Proof. We first claim that dim(Y) ≥
∣∣d∣∣ − rank(F ′x). Indeed, by definition, Y is the intersection in Fκ2

between ker(F ′x) and the subspace {∆ ∈ Fκ2 | d ∗∆ = w}. These subspaces are of codimension rank(F ′x) and
|d|, respectively, in Fκ2 . By the subadditivity of codimension under intersection, we conclude that Y is of
codimension at most rank(F ′x) + |d| in Fκ2 ; in other words, Y is of dimension at least κ− |d| − rank(F ′x) =∣∣d∣∣− rank(F ′x), as desired. Finally, each f−1(r) ⊂ Y is the intersection in Fκ2 between ker(F ′x) and the affine
subspace {∆ ∈ Fκ2 | d ∗∆ = w ∧ f ∗∆ = r}, and so is of dimension at most that of this latter space, which
is
∣∣d ∪ f

∣∣ =
∣∣d ∩ f

∣∣. Combining these facts, we obtain:

dim(Y)− dim
(
f−1(r)

)
≥
∣∣d∣∣− ∣∣d ∩ f

∣∣− rank(F ′x) = |f \ d| − rank(F ′x).

If f = ei holds (where again ei 6⊂ d), then the index i ∈ {0, . . . , l−1} is certainly white (or else ei ⊂ d would
hold); by Lemma 3.8, we conclude in this case that |f \ d| = |ei \ d| ≥ m. If on the other hand f = ei, then
by Lemma 3.9, we again obtain |f \ d| = |ei \ d| ≥ m. In any case, we conclude that |f \ d| ≥ m, so that,
by the above calculation, dim(Y)− dim

(
f−1(r)

)
≥ m− rank(F ′x) holds, as required.

Applying Lemma 3.20, we see that each fiber f−1(r) ⊂ Y checked by D covers a proportion of at most
2−m+rank(F ′x) of Y ’s points. We conclude that, provided it makes at most Q(κ) queries, D can check in total a
proportion of at most Q(κ) ·2−m+rank(F ′x) among Y ’s points. This completes the proof of the proposition.

20

We are now in a position to prove the theorem. Traversing the tree of Figure 1, and invoking Propositions
3.15 and 3.18, we see that for each distinguisher D as above, each modesty m ∈ {1, . . . , κ}, and each rank
cutoff r∗ ∈ {1, . . . , κ}, D’s advantage is at most:

min
(

1, 2κ·(r
∗+1)−κ·κ−r

∗+1
m

)
· 2−rank(F ′x) ·min

(
1, Q(κ) · 2−m+rank(F ′x)

)
+ 2−r

∗
. (4)

The left-hand summand of (4) represents, in descending order, the lowermost three edges of the main path

of Figure 1. That is, its first factor represents the probability (over (χi)
l′−1
i=0) that the minimal rank r < r∗

is low, and leverages Proposition 3.15. Its middle factor 2−rank(F ′x) is exactly the probability that A passes
the correlation check. Its final factor represents D’s advantage, and corresponds to Proposition 3.18. The
right-hand summand 2−r

∗
of (4) represents the probability that r ≥ r∗ and A passes the correlation check.

For notational convenience, we absorb the middle term 2−rank(F ′x) of (4)’s left-hand summand into its

right-hand term. Since 2−rank(F ′x) ≤ 1, 2−rank(F ′x) ·min
(

1, Q(κ) · 2−m+rank(F ′x)
)
≤ min(1, Q(κ) · 2−m) neces-

sarily holds; we thus further upper-bound (4) by:

min
(

1, 2κ·(r
∗+1)−κ·κ−r

∗+1
m

)
·min

(
1, Q(κ) · 2−m

)
+ 2−r

∗
. (5)

We set r∗ :=
√
κ for the rest of the proof. The exponent of the right-hand term 2−r

∗
of (5) is −

√
κ, which is

−Ω(
√
κ); we conclude immediately that that term is negligible. As for (5)’s left-hand term, we handle two

cases, corresponding to whether m < 1
2 ·
√
κ or not. If m < 1

2 ·
√
κ, then this left-hand term’s first factor’s

exponent is bounded from above by κ
3/2+κ− κ2−κ3/2+κ

m < κ
3/2+κ−2·κ3/2+2·κ−2·

√
κ = −κ3/2+3·κ−2·

√
κ,

which is in −Ω(κ
3/2), so that this term is likewise negligible, and the result is proved. If m ≥ 1

2 ·
√
κ instead

holds, then (5)’s left-hand term’s second factor’s exponent is at most − 1
2 ·
√
κ, which is in −Ω(

√
κ), so that

the left-hand term of (5) is again negligible (here, we use our assumption whereby Q(κ) is polynomial). This
completes the proof of the theorem.

Intuition and examples. In order to further explain our proof strategy above, we discuss its treatment
of various special cases. As a side effect, we also compare KOS to its predecessor work Ishai, Kilian, Nissim,
and Petrank [IKNP03], in which the correlation check is absent (see Protocol 2.7 above).

Example 3.21. If A behaves honestly—that is, if it submits a monochromatic matrix, as in Example 3.6—
then, as we’ve already seen, our simulator S above will extract the bit xi for each vector xi = xi · (1, . . . , 1).
In this case, vi,xi = H(i ‖ ti + ei ∗∆) = H(i ‖ ti) will hold for each i ∈ {0, . . . , l− 1}; by querying on-vectors,
D will thus learn nothing about ∆. D will thus win only if it queries H(i ‖ ti + ei ∗ ∆) = H(i ‖ ti + ∆)
for some i ∈ {0, . . . , l − 1}. Each attempt to do so on the part of D will succeed with probability 1

2κ . D’s
advantage, provided that it makes at most 2λ queries, will thus be 2λ−κ. We see that, in this case, in order
to attain s bits of statistical security, the security parameter κ := λ+ s would suffice. In particular, against
a semi-honest adversary, KOS (and so also IKNP) is secure, with security parameter just κ = λ+ s no less.

Example 3.22. If A submits the pathological matrix (xi)
l′−1
i=0 of Example 3.7 and manages to pass the

correlation check, then D will attain a O(κ)-time attack, as we now explain. Indeed, we note that S will
assign its bits (xi)

κ−1
i=0 arbitrarily. If, for any i ∈ {0, . . . , κ − 1}, S extracts xi = 1, then, by checking

vi,xi
?
= H(i ‖ ti + ei ∗∆) = H(i ‖ ti + xi ∗∆) for both possible values of xi ∗∆ (we recall that w(xi) = 1), D

will immediately distinguish the two worlds. We thus assume that xi = 0 for each i ∈ {0, . . . , κ− 1}. In this

case, for each i ∈ {0, . . . , l − 1}, by checking vi,xi
?
= H(i ‖ ti + ei ∗∆) = H(i ‖ ti + xi ∗∆) for both possible

values of xi ∗∆, D will immediately learn the bit ∆i. After doing this for each i ∈ {0, . . . , l−1}, D will learn

∆ in its entirety; D may at this point explicitly check vi,xi
?
= H(i ‖ ti + ei ∗∆) for any i ∈ {0, . . . , l− 1}. On

the other hand, if A submits this matrix (xi)
l′−1
i=0 , then its chance of passing the correlation check will become

vanishingly small. Indeed, in the language of our proof above, A’s matrix (e′i)
l′−1
i=0 —i.e., corresponding to

Modest
(

(xi)
l−1
i=0, 2

)
—will begin exactly as (xi)

l−1
i=0 does (i.e., with a κ × κ identity submatrix), as will its

row-reduced variant (e′′i)
l′−1
i=0 . We see that A’s task will amount to finding, given a uniformly random binary

matrix X ∈ Fκ×κ2 , a field element x ∈ F2κ for which rank(X +
[
x
]
) becomes low. As our proof above shows,

the mere existence of such an x ∈ F2κ will become extremely improbable over X (leave aside A’s finding it).

21

Example 3.22 also shows that IKNP fails to be maliciously secure in the nonprogrammable random oracle
model. Indeed, if the correlation check were absent, then A could simply proceed exactly as in Example 3.22
at its leisure. That example shows that, in the face of this strategy, S—regardless of how it extracts its bits
(xi)

κ−1
i=0 —necessarily hands to the distinguisher D an efficient attack strategy. This attack in fact dates to

Nielsen [Nie07, § 4].
Interestingly, in the fully programmable random oracle model—an excessively weak model, of essentially

theoretical interest (see Subsection 2.1 above)—IKNP becomes maliciously “secure”, as we explain below.

Remark 3.23. We claim that in the fully programmable random oracle model, IKNP becomes maliciously
“secure”, with κ := 2 · λ+ 2 · s no less. In the fully programmable model, D can’t further query the random
oracle during its execution (or rather, its queries are independent of its protocol transcript, and so useless).
Instead, D must hope that A itself makes the winning query (i.e., during its execution of the protocol).

Since A lacks access to the honest party’s outputs (vi,0,vi,1)
l−1
i=0, its position is much weaker than D’s.

Critically, A can’t use the “incremental” attack strategy at the heart of our Theorem 3.14 above. Rather,
A must hope—seeing neither ∆ ∈ Fκ2 nor (vi,0,vi,1)

l−1
i=0—nonetheless to query H(i ‖ ti + ei ∗∆), for some

i ∈ {0, . . . , l − 1}. By comparing A’s queries, after the fact, to the honest party’s outputs (vi,0,vi,1)
l−1
i=0, D

may hope to find one for which vi,xi
?
= H(i‖ti+ei ∗∆) holds. We thus see that S should opt simply to make

the off-vectors ei as high-weight as possible. That is, S should use the majority rule extraction strategy,
whereby, for each i ∈ {0, . . . , l − 1}, it sets xi := Maj(xi) (as well as vi,xi := H(i ‖ qi + xi ·∆) as usual).
This strategy guarantees that w(ei) ≥ κ

2 holds for each i ∈ {0, . . . , l − 1}. In particular, each of A’s query
attempts H(i ‖ ti + ei ∗∆) will succeed with probability at most 1

2κ/2
; A’s overall probability of success will

thus be 2λ−
κ/2. We see that by setting κ := 2 ·λ+2 ·s, we obtain the security bound 2λ−

κ/2 = 2λ−(λ+s) = 2−s.

We believe that this separation result may be of independent interest.

Concrete security. We now extract effective bounds from our proof. Our proof can be made to yield
concrete values κ at which KOS achieves prescribed security guarantees.

Theorem 3.24. For given computational and statistical security parameters λ and s, respectively, in order

for it to be the case that

∣∣∣∣Pr

[
D

(
Hybrid

FκRand,F
κ,l′
COTe,A,R

Πκ,lROT

(κ)

)
= 1

]
− Pr

[
D
(
IdealFκ,lROT,S,R

(κ)
)

= 1
]∣∣∣∣ ≤ 2−s holds

for each distinguisher D making at most 2λ hash evaluations, it suffices that κ ≥ s2 + s · λ+ 4 · s+ 2 · λ+ 2.

Proof. We set r∗ := s+ 1 once and for all. We also fix Q(κ) := 2λ, and moreover substitute this expression
into (5). We describe a selection procedure for κ which serves to bound (5) from above by 2−s (i.e., for each
possible m ∈ {1, . . . , κ}).

Indeed, we set κ so large that κ · (r∗ + 1) − κ · κ−r
∗+1

λ+r∗ ≤ 0 holds. As a simple algebraic manipulation

demonstrates, this inequality occurs precisely when κ ≥ r∗2 + r∗ · λ+ 2 · r∗ + λ− 1; substituting r∗ = s+ 1,
we obtain the expression κ ≥ s2 + s · λ+ 4 · s+ 2 · λ+ 2. For each fixed κ, λ, and r∗, we view the exponent
expressions κ · (r∗ + 1)− κ · κ−r

∗+1
m and λ−m of (5)’s left-hand term as functions of the rational variable

m ∈ (0, κ]. We note that these functions are increasing and decreasing, respectively, over the interval
m ∈ (0, κ]. For κ chosen as above, we write m∗ ∈ (0, κ] for the (generally non-integral) intersection point for
which κ · (r∗ + 1)− κ · κ−r

∗+1
m∗ = 0 holds (i.e., where the first, increasing function crosses 0). Since we chose

κ so as to guarantee that κ · (r∗ + 1)− κ · κ−r
∗+1

λ+r∗ ≤ 0 holds, and since κ · (r∗ + 1)− κ · κ−r
∗+1
m is increasing

in m (i.e., regardless of κ), our intersection point m∗ certainly satisfies m∗ ≥ λ+ r∗, so that λ−m∗ ≤ −r∗
in turn holds. We conclude that (5) is bounded from above by 2−r

∗
+ 2−r

∗
= 2−s at the point m∗ ∈ Q. It

thus suffices to show that—for λ and r∗ fixed, and for κ as selected above—the rational modesty m∗ in fact
maximizes (5).

Since, by our choice of m∗, κ ·(r∗+1)−κ · κ−r
∗+1
m ≥ 0 whenever m ≥ m∗, and because λ−m is decreasing,

we conclude that (5) is decreasing over the interval [m∗, κ]. It thus suffices to show that the sum of the two
exponent expressions is itself increasing over the interval (0,m∗].

To this end, we show that the upward slope of κ · (r∗+1)−κ · κ−r
∗+1
m is steeper than the downward slope

of λ−m throughout the interval (0,m∗]. The derivative in m of the former expression is κ·(κ−r∗+1)
m2 , which

is at least κ·(κ−r∗+1)
m∗2 whenever m ≤ m∗. Since m∗ = κ−r∗+1

r∗+1 , this derivative is thus at least κ·(r∗+1)2

κ−r∗+1 ≥
(r∗ + 1)2 ≥ 1, as desired. This completes the proof of the theorem.

22

Remark 3.25. Theorem 3.24 can be viewed as a precise variant of the final argument of Theorem 3.14,
in which s and λ are prescribed, and where we moreover select the modesty cutoff optimally (i.e., in such
a way as to make (5) decay as quickly as possible). Indeed, for κ chosen as in Theorem 3.24, the optimal

cutoff—and the most effective attack strategy for the adversary—appears at the modesty dm∗e =
⌈
κ−r∗+1
r∗+1

⌉
.

Example 3.26. For s := 30, and λ := 60, Theorem 3.24 guarantees security as long as κ ≥ 2,942.

Example 3.27. For s := 40 and λ := 80, Theorem 3.24 guarantees security as long as κ ≥ 5,122.

Example 3.28. For s := 80 and λ := 128, Theorem 3.24 guarantees security as long as κ ≥ 17,218.

A matching upper-bound. Theorem 3.24 yields parameter sizes which are barely practicable, if at all.
It is, of course, possible that our proof could be strengthened (or another proof found), so as to yield stronger
bounds, and security under more reasonable parameter sizes. On the other hand, an improvement to our
result seems out of reach, barring the introduction of new techniques. We explain this as follows.

Corollary 3.29. For κ large enough, for each distinguisher D making at most 1
2 ·
√
κ·2 1

2 ·
√
κ hash evaluations,

the probability of success

∣∣∣∣Pr

[
D

(
Hybrid

FκRand,F
κ,l′
COTe,A,R

Πκ,lROT

(κ)

)
= 1

]
− Pr

[
D
(
IdealFκ,lROT,S,R

(κ)
)

= 1
]∣∣∣∣ ≤ 2−

1
2 ·
√
κ.

Proof. For arbitrary κ, we set s := 1
2 ·
√
κ and λ := 1

2 ·
√
κ+ 1

2 · log(κ)−1. We observe that for s and λ chosen
this way—at least if κ ≥ 93—we have κ ≥ s2 + s · λ+ 4 · s+ 2 · λ+ 2. Theorem 3.24 thus implies that any
attack using at most 2λ = 1

2 ·
√
κ · 2 1

2 ·
√
κ hashes must succeed with probability at most 2−s = 2−

1
2 ·
√
κ.

In other words, there does not exist an attack on KOS which uses only 1
2 ·
√
κ · 2 1

2 ·
√
κ hash evaluations

and succeeds with probability greater than 2−
1
2 ·
√
κ.

Remark 3.30. In Corollary 3.29, the constant of 1
2 present in both exponents can be improved to 1√

2
−ε—for

ε arbitrarily small—at the cost of increasing the implicit cutoff κ at which the corollary becomes effective.

Roy [Roy22, § 4.1] describes a “subfield attack” on KOS, which requires 2
1
5 ·κ oracle queries and succeeds

with probability 2−
3
5 ·κ. This attack is significantly more costly and unlikely to succeed than those which our

proof rules out; the analysis of KOS thus still contains a gap. (Of course, the attack is nonetheless stronger
than those which KOS’s original proof sought to rule out.) On the other hand, Roy [Roy22, § 4.1] describes a
further attack on a different protocol—namely, “PSS”, for Patra, Sarkar and Suresh [PSS17]—which is much
more devastating; that attack requires 1

2 ·
√
κ · 2

√
κ hash evaluations and succeeds with probability 2−

√
κ. As

it turns out, our proof serves equally well—without change—to describe the security of PSS. Indeed, we use

only the property of the field elements (χi)
l′−1
i=0 whereby, for each random χi ← F2κ , each individual column([

χi
]
k,j

)κ−1

k=0
of
[
χi
]
, for j ∈ {0, . . . , κ − 1}, is itself uniformly random in {0, 1}κ. (Of course, the columns,

considered jointly, are not independently random.) This property holds also for PSS, though they construct
their matrices differently (with a single random column repeated).

The lower-bound established by our Corollary 3.29, which applies to both KOS and PSS, exactly
matches—up to the constant 1

2 appearing in the expressions’ exponents—the upper-bound achieved by
Roy [Roy22, § 4.1] on PSS. Our proof thus definitively settles the question of PSS’s security (up to the
constant). Moreover, it demonstrates that any better security argument for KOS—if one exists—would have

to rely in some special way on the structure of the field elements (χi)
l′−1
i=0 , and on the nature of their role in

the correlation check. We emphasize that Roy’s attack on PSS is not known to apply to KOS. Rather, the
opposite is true; our defense of KOS applies to PSS. The security of KOS thus resides somewhere between
the lower-bound established by our Theorem 3.24 and the upper-bound achieved by Roy’s subfield attack. In
any case, our result furnishes the only currently-known lower-bound for KOS, and its only proof of security.

Sources of loss. Our proof makes a number of loose approximations. In light of these, the fact of our
proof’s having nonetheless managed to closely approach Roy’s upper-bound is fairly impressive. We discuss
now these sources of loss, with a view towards future attempts to sharpen our proof (and possibly to bypass
the PSS upper-bound).

23

In Proposition 3.15 above, our replacements of Fx,t by F ′x, of F ′x by F ′′x , and finally of F ′′x by F ′′′x are
entirely lossless. On the other hand, our replacement of F ′′′x by F ′′′′x introduces a plausibly significant source
of loss, as we now explain. Indeed, right-multiplying F ′′′x ’s matrix by P serves, in general, to reduce that
map’s rank. In the following example, we discuss an extreme instance of this phenomenon.

Example 3.31. We fix κ even, and suppose that A submits the matrix (xi)
l−1
i=0 whose first two rows equal

x0 := (1, . . . , 1︸ ︷︷ ︸
κ/2 ones

, 0, . . . , 0︸ ︷︷ ︸
κ/2 zeros

) and x1 := (0, . . . , 0︸ ︷︷ ︸
κ/2 zeros

, 1, . . . , 1︸ ︷︷ ︸
κ/2 ones

), and which elsewhere satisfies xi := (0, . . . , 0) (i.e., for

each i ∈ {2, . . . , l−1}). We claim without proof that the modesty of this matrix (xi)
l−1
i=0 ism = κ

2 . Our proof of

Proposition 3.15, upon running Modest
(

(xi)
l−1
i=0,

κ
2 + 1

)
, will assign each bit (x′i)

l−1
i=0 arbitrarily. The matrix

(e′i)
l−1
i=0 will thus have rows e′0 and e′1 individually equal either to (1, . . . , 1, 0, . . . , 0) or to (0, . . . , 0, 1, . . . , 1);

each further row e′i, for i ∈ {2, . . . , l − 1}, will be either (0, . . . , 0) or (1, . . . , 1). Upon row-reducing (e′i)
l−1
i=0,

our proof will thus obtain a matrix (e′′i)
l−1
i=0 beginning with either one or two distinct half-and-half rows,

and identically zero elsewhere. For simplicity, we fix e′′0 = (1, . . . , 1, 0, . . . , 0) and e′′1 = (0, . . . , 0, 1, . . . , 1)

(similar analyses apply to the other possibilities). We see that the matrix X :=
∑l′−1
i=0

[
χ′i
]

of our proof will

be a “chimera”, equal to
[
χ0

]
on its left half and to

[
χ1

]
on its right (we refer also to Figure 2). It seems

implausible that there should exist a field element x ∈ F2κ for which rank
(
X +

[
x
])

is low (say, strictly less

than κ
2). Indeed, for each x ∈ F2κ , X +

[
x
]

will equal
[
χ0 + x

]
on its left half and

[
χ1 + x

]
on its right.

(We note that the elements χ0 and χ1 will be distinct, except with probability 1
2κ .) On the other hand, our

proof above will proceed ultimately by right-multiplying X +
[
x
]

by the matrix P , which—since (e′′i)
l−1
i=0 has

just two pivots (namely, at p = {0, κ2 })—will be of extremely low rank (i.e., 2). We conclude that our proof

has almost nothing to say about the matrix (xi)
l−1
i=0, even though it will plausibly render A unable to pass.

The loss exhibited by Example 3.31 stems from our proof’s inability to handle dependently random

columns. More generally, the matrix X :=
∑l′−1
i=0

[
χ′i
]

of our proof will represent a complicated mix of the

matrices
([
χi
])l′−1

i=0
. Indeed, for each non-pivot column j ∈ {0, . . . , κ − 1}, exactly those elements χi for

which e′′i,j = 1 will contribute to
([
X
]
k,j

)κ−1

k=0
. (It was exactly to remove—as much as possible—this sort of

cross-dependency that we row-reduced (e′i)
l′−1
i=0 in our proof above.) It seems difficult to “keep track of” this

information in such a way that serves to meaningfully diminish A’s position.
It seems straightforward that any sharpening of Proposition 3.15 along these lines would serve to directly

improve the upper-bound κ of Theorem 3.24. The ideal outcome, of course, would eliminate the quadratic
dependency of κ on s and λ.

We mention briefly a further source of loss. Indeed, we have left completely untouched the computational
task of finding, for X ∈ Fκ×κ2 given, a field element x ∈ F2κ for which rank

(
X +

[
x
])

is low. Rather, our
proof proceeds solely statistically (concerning itself only with whether a suitable x exists). Though we have
given the matter little thought, it seems plausible that this computational problem could be hard (or at least
hard enough to sharpen our proof).

In Proposition 3.18 above, we ignored the cost to D of obtaining w = d ∗ ∆. We also assumed, con-
servatively, that the subspaces ker(F ′x) and {∆ ∈ Fκ2 | d ∗∆ = w} intersected transversely in Fκ2 , thereby
lower-bounding dim(Y) ≥

∣∣d∣∣−rank(F ′x). In general, dim(Y) will rather be as high as min(|d|,dim(ker(F ′x)))

(which is likely to equal |d| in the cases of interest to us).

References

[Coh82] P. M. Cohn. Algebra, volume 1. John Wiley & Sons, second edition, 1982.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 145–161, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

24

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal
overhead. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology – CRYPTO
2015, volume 9215 of Lecture Notes in Computer Science, pages 724–741, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[KOS22] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal
overhead. Unpublished update, https://eprint.iacr.org/2015/546.pdf, September 2022.

[Lin17] Yehuda Lindell. Tutorials on the Foundations of Cryptography: Dedicated to Oded Goldreich,
chapter How to Simulate It – A Tutorial on the Simulation Proof Technique, pages 277–346.
Information Security and Cryptography. Springer International Publishing, 2017.

[MR19] Daniel Mansy and Peter Rindal. Endemic oblivious transfer. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 309–326, New York, NY,
USA, 2019. Association for Computing Machinery.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The
non-committing encryption case. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 111–126, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[Nie07] Jesper Buus Nielsen. Extending oblivious transfers efficiently - how to get robustness almost for
free. Cryptology ePrint Archive, Paper 2007/215, 2007. https://eprint.iacr.org/2007/215.

[PSS17] Arpita Patra, Pratik Sarkar, and Ajith Suresh. Fast actively secure OT extension for short secrets.
In Network and Distributed System Security Symposium. Internet Society, 2017.

[Roy22] Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the
Minicrypt model. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology
– CRYPTO 2022, volume 13507 of Lecture Notes in Computer Science, pages 657–687, Cham,
2022. Springer Nature Switzerland.

A Deferred Proofs

Proof of Lemma 3.11. We fix inputs (xi)
l−1
i=0 and m ∈ {1, . . . , κ}, and suppose that Modest

(
(xi)

l−1
i=0,m

)
=

false. We fix an arbitrary permutation σ ∈ Sl, and write Modest′
(

(xi)
l−1
i=0,m

)
for the alternate execution of

that algorithm which instead traverses the inner loop 4 in the order i ∈ {σ(0), . . . , σ(l−1)}. For contradiction,

we suppose that Modest′
(

(xi)
l−1
i=0,m

)
= true. We write (xi)

l−1
i=0 and d for the internal values ultimately

assembled during Modest
(

(xi)
l−1
i=0,m

)
, and (x′i)

l−1
i=0 and d′ for the corresponding values assembled during

Modest′
(

(xi)
l−1
i=0,m

)
. We moreover write (ci)

l−1
i=0 for the colors respectively assigned to the vectors (xi)

l−1
i=0

during Modest
(

(xi)
l−1
i=0,m

)
. Throughout, we give meaning to the symbols (e′i)

l−1
i=0 by means the bit assign-

ment (x′i)
l−1
i=0. Finally, we write (i0, . . . , ir−1) for the ordered sequence of indices i ∈ {0, . . . , l − 1} marked

black during the course of Modest′
(

(xi)
l−1
i=0,m

)
, and ∅ = d′i0 ⊂ · · · ⊂ d′ir−1

for the sequence of values taken

by d′ immediately before the respective updates d′ ∪= e′ij , for j ∈ {0, . . . , r − 1}.

Since Modest
(

(xi)
l−1
i=0,m

)
= false, Lemma 3.9 applies to that execution. Applying that lemma, we

see that, if x′ir−1
6= xir−1 , then

∣∣∣e′ir−1
\ d
∣∣∣ ≥ m; on the other hand, if x′ir−1

= xir−1 , then
∣∣∣e′ir−1

\ d
∣∣∣ ≥ m.

If d′ ⊂ d held, then these two possibilities would, respectively, contradict the inequalities e′ir−1
⊂ d′ and∣∣∣e′ir−1

\ d′
∣∣∣ < m, themselves immediate consequences of our assumption whereby Modest′

(
(xi)

l−1
i=0,m

)
=

true. We thus see that, regardless of x′ir−1
, d′ 6⊂ d.

25

https://eprint.iacr.org/2015/546.pdf
https://eprint.iacr.org/2007/215

We select an element α0 ∈ d′ \ d, and write j0 ∈ {i0, . . . , ir−1} for the index for which the update
d′ ∪= e′j0 first caused the inclusion α0 ∈ d′ to become true. Immediately before this update was performed,∣∣e′j0 \ d′j0

∣∣ < m held. On other hand, we claim that
∣∣e′j0 \ d

∣∣ ≥ m. If cj0 = white, then Lemma 3.8
immediately implies the result. We thus assume that cj0 6= white. In this case, if x′j0 = xj0 held, then we
would obtain e′j0 ⊂ d, which would contradict α0 6∈ d. We conclude that x′j0 6= xj0 . In this setting, Lemma

3.9 again implies that
∣∣e′j0 \ d

∣∣ ≥ m, as desired. Since
∣∣e′j0 \ d′j0

∣∣ < m and
∣∣e′j0 \ d

∣∣ ≥ m both hold, we
conclude that d′j0 6⊂ d.

We iteratively repeat this process as follows. We select an element α1 ∈ d′j0 \ d, and write j1 ∈
{i0, . . . , ir−1} for the index for which the update d′ ∪= e′j1 first caused α1 ∈ d′ to become true. We
note that j1 < j0, since, by definition of d′j0 , α1 ∈ d′ held before the update d′ ∪= e′j0 was applied. As
above, if cj1 = white, then |ej1 \ d| ≥ m necessarily holds, by Lemma 3.8. Otherwise, since x′j1 = xj1 would
imply e′j1 ⊂ d, contradicting α1 6∈ d, we conclude that x′j1 6= xj1 , and that, by Lemma 3.9, |ej1 \ d| ≥ m

holds in any case. This conclusion, in light of our guarantee
∣∣e′j1 \ d′j1

∣∣ < m, implies that d′j1 6⊂ d.
Iteratively proceeding in this way, we obtain a descending sequence of indices j0 > · · · > js−1 in

{i0, . . . , ir−1}, each satisfying d′jk 6⊂ d, for k ∈ {0, . . . , s − 1}. This sequence must eventually termi-
nate, so that js−1 = i0. Since d′i0 = ∅, we see finally that ∅ 6⊂ d, an absurdity. We conclude

that Modest′
(

(xi)
l−1
i=0,m

)
= false, as required. Arguing symmetrically, we conclude similarly that if

Modest
(

(xi)
l−1
i=0,m

)
= true, then each permuted execution Modest′

(
(xi)

l−1
i=0,m

)
likewise returns true.

Proof of Corollary 3.12. We fix (xi)
l−1
i=0, m and m′ as in the hypothesis of the corollary; we suppose that

Modest
(

(xi)
l−1
i=0,m

)
= true. Informally, by Lemma 3.11, we may, during Modest

(
(xi)

l−1
i=0,m

′
)

, opt freely

to treat (xi)
l−1
i=0’s rows instead in the order in which they are marked black during Modest

(
(xi)

l−1
i=0,m

)
,

thereby guaranteeing the outcome Modest
(

(xi)
l−1
i=0,m

′
)

= true. We present a detailed proof below.

We give meaning to the symbols (ei)
l−1
i=0 by means of the bit assignment (xi)

l−1
i=0 extracted during

Modest
(

(xi)
l−1
i=0,m

)
. We write (i0, . . . , ir−1) for the ordered sequence of indices i ∈ {0, . . . , l − 1} marked

black during the course of Modest
(

(xi)
l−1
i=0,m

)
, and ∅ ⊂ di0 ⊂ · · · ⊂ dir−1

for the sequence of values respec-

tively taken by d immediately before the updates d ∪= eij , for j ∈ {0, . . . , r − 1}. Clearly, dij ∪ eij = dij+1

holds for each j ∈ {0, . . . , r−2}. We note moreover that
∣∣eij \ dij

∣∣ < m holds for each j ∈ {0, . . . , r−1}. We
fix a permutation σ ∈ Sl for which, for each j ∈ {0, . . . r−1}, σ(j) = ij , and which maps each j ∈ {r, . . . , l−1}
otherwise arbitrarily. We write Modest′

(
(xi)

l−1
i=0,m

′
)

for the alternate execution of Modest
(

(xi)
l−1
i=0,m

′
)

which treats its rows in the order given by σ, and d′ for the vector assembled internally during that execution.

We claim that Modest′
(

(xi)
l−1
i=0,m

′
)

= true. By Lemma 3.11, this claim suffices to establish the result.

For each j ∈ {0, . . . , r − 1}, as of the beginning of the jth iteration of the outer loop of

Modest′
(

(xi)
l−1
i=0,m

′
)

, if that algorithm hasn’t already terminated (in which case we’re done), then, by

induction, we will have the inductive hypothesis d′ = dij . In this iteration, the inner loop 4 will pass over the
already-black indices (σ(0), . . . , σ(j−1)), before coming to test the still-white index σ(j) = ij . Since m ≤ m′,
our guarantee

∣∣eij \ dij
∣∣ < m above implies a fortiori that at least one of the inequalities

∣∣xij \ d′
∣∣ < m′

and
∣∣xij \ d′

∣∣ < m′ will hold, so that the condition 5 will be fulfilled, and Modest′
(

(xi)
l−1
i=0,m

′
)

will mark

ij black. If these inequalities in fact both hold, then the condition
∣∣eij \ d′

∣∣ < m′ of line 9 will moreover

be fulfilled, so that Modest′
(

(xi)
l−1
i=0,m

′
)

will return true in the jth iteration (in which case our proof is

complete). Otherwise, we claim that the bit assignment xij ∈ {0, 1} selected by Modest′
(

(xi)
l−1
i=0,m

′
)

on

line 6 necessarily will match that selected during Modest
(

(xi)
l−1
i=0,m

)
. Indeed, again using our guarantee∣∣eij \ dij

∣∣ < m, we see that
∣∣eij \ d′

∣∣ < m′ will necessarily hold (and that
∣∣eij \ d′

∣∣ < m′ moreover won’t, by

what we just assumed). We conclude that Modest′
(

(xi)
l−1
i=0,m

′
)

will perform the update step d′ ∪= eij

on line 8, thereby setting d′ := dij ∪ eij = dij+1
and preserving our inductive hypothesis.

26

This process must terminate during or before the r−1th iteration. Indeed, if the algorithm hasn’t already
terminated before the r − 1th iteration, then, as of the beginning of that iteration, by induction, we will

have d′ = dir−1
; moreover, because Modest

(
(xi)

l−1
i=0,m

)
= true, we will necessarily have both inequalities∣∣xij \ dir−1

∣∣ < m and
∣∣xij \ dir−1

∣∣ < m. We conclude again a fortiori that
∣∣xij \ d′

∣∣ < m′ and
∣∣xij \ d′

∣∣ < m′

themselves will both hold, so that Modest′
(

(xi)
l−1
i=0,m

′
)

will return true upon testing line 9, as required.

27

	Introduction
	Summary of KOS
	Our Proof

	Background and Notation
	Secure computation
	Oblivious transfer

	Security proof
	Corrupt Sender
	Corrupt Receiver

	Deferred Proofs

