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Abstract. Cloud storage and computing offers significant convenience and management ef-
ficiency in the information era. Privacy protection is a major challenge in cloud computing.
Public key encryption with keyword search (PEKS) is an ingenious tool for ensuring privacy
and functionality in certain scenario, such as ensuring privacy for data retrieval appearing
in the cloud computing. Despite many attentions received, PEKS schemes still face several
challenges in practical applications, such as low computational efficiency, high end-to-end
delay, vulnerability to inside keyword guessing attacks(IKGA) and key management defects
in the multi-user environment.
In this work, we introduce three Ring-LWE/ISIS based PEKS schemes: (1) Our basic PEKS
scheme achieves high level security in the standard model. (2) Our PAEKS scheme utilizes
the sender’s private key to generate an authentication when encrypting, which can resist
IKGA. (3) Our IB-PAEKS scheme not only can resist IKGA, but also significantly reduces
the complexity of key management in practical applications. Experimental results indicate
that the first scheme provides lower end-to-end delay and higher computational efficiency
compared to similar ones, and that our last two schemes can provide more secure properties
with little additional overhead.

Keywords: Cloud computing, Searchable encryption, Authentication, Keyword guessing at-
tacks, Ring-LWE/ISIS

1 Introduction

Cloud computing allows users to access unlimited resources via the network while being unrestricted
by time and space. It is a new innovation in the information era after the Internet and computers,
and has driven the development of Big Data, Internet of Things (IoT), Artificial Intelligence (AI)
and other fields. Because of its emergence, the social working mode and business model are changing
dramatically. Cloud computing is popular among enterprises and users for its many advantages such
as virtualization, large scale, high scalability and flexibility. It has been integrated into all aspects
of society, such as the healthcare industry. It not only provides convenient information storage, but
also enables easy access and sharing of data. However, there are still many security threats and
challenges associated with outsourcing data to cloud servers, such as data privacy and security,
access control, virus and hacker attacks, etc. Privacy protection is a major challenge in cloud
computing, which is related to the fact that enterprises and users can safely deliver their data to
the cloud. To assure the privacy and security of stored data, users usually encrypt and store it in



the cloud. However, in this environment, users will encounter the problem of being unable to search
keywords in massive data, limiting the flexibility of file sharing in the cloud environment.

Searchable encryption can effectively support users to retrieve encrypted data in the cloud. In
the symmetric setting, users can effectively retrieve encrypted data in the cloud through search-
able encryption (SE) scheme proposed by Song et al. [28]. In the asymmetric setting, Boneh et
al. [9] proposed a new variant called Public-key Encryption with Keyword Search(PEKS). PEKS
aims to retrieve target encrypted data by searching specific keywords. It endorses any sender to
dispatch encrypted data to the server, which comprises searchable ciphertext related to keywords.
The receiver can search the encrypted data of the desired keyword.

PEKS is an ingenious mechanism to ensure privacy and functionality simultaneously for many
applications in the cloud. Unfortunately, the widespread adoption of the PEKS scheme in practice
has been hampered by some obstacles described below.

1. Lack of Trapdoor Privacy. PEKS cannot guarantee trapdoor privacy, i.e., an adversary can
guess the information of keywords by initiating inside keyword guessing attack (IKGA) [11,
32]. Specifically, the malicious server can utilize the receiver’s key to generate a ciphertext
with arbitrary keywords. Thus, when a trapdoor is gained, the Test algorithm can verify the
relationship between the trapdoor and the keyword.

2. High End-to-End Delay. Despite their strengths, most existing PEKS schemes incorporate
high end-to-end delays, which may hamper their deployment in practice.

3. Low Computational Efficiency. One of the most challenging problems in practice is probably
the efficiency of PEKS, including end-to-end delay and computational efficiency. In the PEKS
scheme, the critical factor that affects the efficiency is the Test algorithm, because it needs to
be executed for each keyword-file pair.

4. Key Management Defects. In a multi-user environment, the user’s keys are randomly gen-
erated by the system, obviously increasing the complexity of key management.

To prevent trapdoor privacy leakage, Huang and Li [17] proposed public-key authenticated en-
cryption with keyword search (PAEKS). This means encryption requires the sender’s private key
to generate authentication. This scheme fulfills both Ciphertext Indistinguishability(CI) and Trap-
door Privacy(TP) security. Later, Qin et al. [26] and Pan and Li [24] introduced Multi-Ciphertext
Indistinguishability(MCI) and MTP(Multi-Trapdoor Privacy) to ensure ciphertext indistinguisha-
bility and trapdoor privacy in a multi keyword environment. With their pioneering work, numerous
PAEKS programs have been presented. On the downside, some of them are deficient in meeting both
MCI and MTP security. Since the introduction of the PEKS scheme in [9], many PEKS schemes
have been constructed using bilinear maps (e.g., [17, 27, 34]) and other classical number theory tools
(e.g., [5, 13]). However, with the emergence of quantum computers, most of them are vulnerable
to quantum attacks. Therefore, there are some PEKS schemes based on hard problems believed
to be quantum-resistant (e.g., [15, 18, 22, 30, 31, 35, 36]). Especially, Behnia et al. [6] presented two
lattice-based PEKS schemes, which provide high computational efficiency and high level of security.
But, these two PEKS schemes do not meet MTP. Zhang et al. [36] proposed a LWE-based PAEKS
scheme to achieve higher security. Later, Liu et al. [19] indicated that Zhang et al.’s scheme is still
susceptible to IKGA. They also proposed an LWE-based PAEKS to meet both MCI and MTP
security. However, this requires some additional storage and efficiency overhead.
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1.1 Our Contributions

This work introduces three lattice-based PEKS schemes which can not only provide high level
security, but also achieve high computational efficiency both in theory and in practice. First, we use
the transformation in [1] to transform Bert et al. IBE [8], and propose a PEKS scheme based on
Ring-LWE/ISIS. Then we propose two extension schemes to achieve trapdoor privacy and predigest
key management. More specifically, the main results are as follows.

1. PEKS. We propose an IND-CPA-secure and computationally consistent PEKS. Our PEKS is
based on Ring-LWE/ISIS, which provides post-quantum security. The security is proved in the
standard model, which is preferable to random oracle model.

2. PAEKS. To resist IKGA, we propose a PAEKS scheme. The security proof indicates that the
scheme meets both MCI and MTP security.

3. IB-PAEKS. We propose an extended PAEKS scheme (IB-PAEKS) to predigest key manage-
ment. We have modified the PAEKS scheme to encrypt keywords by identity. This scheme not
only meets both MCI and MTP security, but also significantly reduces the complexity of key
management in practical applications.

To compare our scheme with similar ones, we conduct experiments in terms of computational
efficiency, storage requirements and end-to-end delay. The results show that the main performance
advantages of our PEKS scheme is higher computational efficiency and lower end-to-end delay. Also,
the experimental results indicate that our last two schemes can provide more secure properties with
little additional overhead.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 provides some definitions and theorems
utilized in our scheme. Sections 3 describes our PEKS scheme and two extended schemes. Sections 4
describes parameters selection of our schemes and proves the security proof. Section 5 shows and
analyzes the experimental results. Section 6 concludes the paper.

2 Preliminaries

Notations a,b,x, ... and A,T, ... represent column vectors and matrices, respectively. ‖T‖ means
the norm of matrix T. t ← D denotes t is sampled from distribution D, and t ← U(S) denotes t
is sampled from uniform distribution S. Λ(B) represents the full-rank lattice generated by B. The
polynomial ring is Rq = R/qR = Zq[x]/(xn + 1), where n is a power of two and q ≡ 1 mod 2n.

2.1 Tools and Definitions

Below, we describe some definitions and algorithms utilized in this work.

Definition 1 (Discrete Gaussian Distribution) The discrete Gaussian distribution with the
center y ∈ Rn and ς ∈ R over the lattice Λ is defined as follows: DΛ,ς,y = ρς,y(x)/ρς,y(Λ), where
ρς,y(x) = exp(−π‖x− y‖2/ς2) for all x ∈ Rn, and ρς,y(Λ) = Σx∈Λρς,y(x).
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Definition 2 (Decision Ring-LWE Problem [21, 29]) A Decision Ring-LWEq,m,DRm,ξ prob-

lem instance is given x = (x1, · · · , xm)T ∈ Rmq and y = xs + e where s ← U(Rq), e ← DRm,ξ

and ξ ∈ R, no PPT distinguisher can tell (x,y = xs + e) from (x,y) in the uniform distribution
over Rmq ×Rmq .

Definition 3 (Ring-ISIS [20, 25]) A Ring-ISISq,m,ε problem instance is given x = (x1, · · · , xm)T ∈
Rmq and y ∈ Rq, discover a non-zero vector s = (s1, · · · , sm)T ∈ Rm satisfy xT s ≡ y mod q,
0 < ‖s‖ ≤ ε, where ε ∈ R.

Definition 4 (Encoding with Full-Rank Differences (FRD) [2]) Given integer n > 0 and
prime q. A function H : Znq → Rq is a FRD if:

1. The element H(w)−H(t) ∈ Rq is invertible, for all distinct w, t ∈ Znq ;
2. H is computed in polynomial time.

The following lemmas give the lattice algorithm utilized in our schemes.

Lemma 1 (TrapGen [14, 23]) Taking the Gaussian parameter σ, modulus q, and h ∈ Rq as
inputs, TrapGen(q, σ, h) algorithm chooses a uniformly random polynomial x ∈ Rm−kq and out-

puts y = (xT , hgT − xTD)T ∈ Rmq with D ∈ R(m−k)×k, which hides the structured vector g =

(1, 2, 4, · · · , 2k−1)T ∈ Rkq .

Lemma 2 (SamplePre [8]) Taking a ∈ Rmq , a basis D ∈ R(m−k)×k, Gaussian parameter µ, η, ς
and h, u ∈ Rq as inputs, SamplePre (D,a, h, µ, η, ς, u) algorithm outputs x ∈ Rmq which fulfills

aTx = u.

Lemma 3 (DelTrap [23]) Taking a ∈ Rmq , a basis D ∈ R(m−k)×k, a real number s ∈ R and

h ∈ Rq as inputs, DelTrap(a, h,D, s) algorithm computes a′ = (aT , hgT ) and outputs D′ which
fulfills a′[D′ I] = hgT .

2.2 System Model

Below, we introduce the PEKS system (see Fig. 1) in the cloud computing environment. There are
three entities: sender, receiver and cloud server,.

1. The sender extracts keywords from each file, encrypts the keywords with PEKS scheme, and
encrypts the files utilizing the receiver’s public key. Then the sender upload the searchable
ciphertext and the encrypted file to the cloud.

2. To retrieve a file containing specific keywords in the cloud, the receiver compute a trapdoor,
and upload it to the cloud server.

3. The cloud server detects each ciphertexts and decides whether it matches the trapdoors. If it
matches, the cloud returns the associated file to the receiver.

Definition 5 (Public key Encryption with Keyword Search) A PEKS scheme comprises four
algorithms:

– KeyGen(1λ) → (pk, sk): This algorithm takes as input the security parameter λ, and outputs
the public key pk, the private key sk.
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Fig. 1. The framework of PEKS, where it contains 6 steps, which are extracting keywords, encrypting
keywords, sending ciphertext, generating trapdoor, sending trapdoor, and sending the results.

– Trapdoor(w, sk, pk)→ tw: This algorithm takes as input a keyword w, pk and sk, and outputs
a trapdoor tw.

– Encrypt(w, pk)→ sw: This algorithm takes as input pk, and w, outputs a searchable ciphertext
sw.

– Test(sw, tw)→ d: This algorithm takes as input sw ←Encrypt(w, pk) and tw ←Trapdoor
(w′, sk, pk), and outputs d, which equal 1 if w = w′, and 0 otherwise.

Recall that the transformation in [1] requires that the underlying IBE should be anonymous.
Agrawal et al. [2] defined a strong privacy property that is stronger than anonymity in [1, 7], which
is called indistinguishable from random(INDr-sID-CPA). This property requires that the challenge
ciphertext cannot be distinguished from the random ciphertext, which means that anonymity and
semantic security are satisfied.

Definition 6 (INDr-sID-CPA Security [2]) INDr-sID-CPA security utilize a security game be-
tween a challenger P and an adversary Q (as shown in Table 1). Q’s advantage in this game is
defined as AdvIBE(1λ) = |Pr[t′ = t]− 1/2|. If AdvIBE(1λ) is negligible for all PPT adversaries Q,
then IBE scheme satisfies INDr-sID-CPA security (see [2] for more details).

CI(Ciphertext Indistinguishability) and Trapdoor Privacy(TP) are defined in the single challenge
setting. CI means that if an adversary does not gain the trapdoors of w0 and w1, it is difficult for
the adversary to distinguish the encryption of the keyword w0 from that of w1 (see [17] for more
details). TP means that it is difficult for the adversary to distinguish the trapdoor of w0 from
that of w1 (see [17] for more details). MCI and MTP are defined in the multi-challenge setting.
If the adversary does not gain the trapdoor of these keywords, it is difficult for the adversary to
distinguish the encryption of w0 = (w0,1, ..., w0,n) from that of w1 = (w1,1, ..., w1,n). MTP(Multi-
Trapdoor Privacy) assures that it is difficult for the adversary to distinguish the trapdoor of w0 =
(w0,1, ..., w0,n) from that of w1 = (w1,1, ..., w1,n). The following theorem is a property of MCI and
MTP security we utilize. It is not difficult to deduce that this theorem is equally valid for the
IB-PAEKS scheme.
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Table 1. INDr-sID-CPA security game.

Phase Adversary Q Challenger P
Init 1) Pick the challenged identity

id∗.
Setup 2) Run Setup(1λ)→ (mpk,msk).←−−−−−

mpk
Query phase 1 3) Dispatch private key queries

to C on identity id 6= id∗.
4) Run Extract(id,msk,mpk)→ sk.

←−−−
sk

Challenge 5) Pick the challenge plaintext
m∗ ∈ M, where M is the plain-
text space.

6) Select a random bit t ∈ {0, 1} and
a random ciphertext c ∈ C, where
C is the ciphertext space. If t = 1,
let the challenge ciphertext be C∗ :=
Enc(m∗, id∗,mpk). If t = 0, let the
challenge ciphertext be C∗ := c.←−−−

C∗

Query phase 2 7) Dispatch additional private
key queries on identity id 6= id∗.

8) Respond as in Query phase 1.

Guess 9) Output t′ ∈ {0, 1}, and wins
if t′ = t.

Theorem 1 (MCI and MTP of PAEKS [19]) If the PAEKS satisfies CI(TP, respectively) and
its Encrypt(Trapdoor) algorithm is probabilistic, then this scheme meets MCI(MTP) security.

Theorem 2 (Transformation [1]) If the IBE scheme is anonymous, then it can be converted to
a PEKS scheme, which is computationally consistent and satisfies IND-CPA security.

2.3 Threat Model

We treat the sender and receiver as trusted entities and the cloud as “honest-but-curious”. In our
settings, the cloud performs the Test algorithm honestly and delivers the results to the receiver
correctly. However, it cannot be excluded that the cloud server uses other methods to capture the
plaintext information of the data. We consider the two threat models that have been used in [12,
16, 37].

– Known ciphertext model. The cloud server does not know other information except en-
crypting files, retrieving trapdoors and keyword ciphertext.

– Known background model. Compared to the known ciphertext model, the cloud server
knows additional background information, such as information about dataset. Therefore, the
server can launch keyword guessing attacks by exhausting keywords.

3 Concrete Constructions

In this section, we propose three Ring-LWE/ISIS based PEKS schemes. The first scheme is a basic
scheme. To resist IKGA, the second scheme is a PAEKS scheme. To predigest key management,
the third scheme is an extended PAEKS scheme (IB-PAEKS).
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3.1 Construction of PEKS

In this subsection, we use the transformation in [1] to transform Bert et al. IBE [8], thus attain a
PEKS based on Ring-LWE/ISIS. Recall that Theorem 2 requires that the IBE we utilized should be
anonymous. We prove the anonymity of Bert et al. IBE [8] by Theorem 3. Our PEKS scheme includes
the following four algorithms. The parameters of our PEKS scheme are q, k, n,m, µ, α, β, τ, ζ, and
chosen as described later.

– KeyGen(1λ)→ (pk, sk). The receiver executes this algorithm to obtain its public and private
key.
1. Run TrapGen(q, µ, h = 0)→ (a,T), which fulfills a = (a′T ,−a′TT)T ∈ Rmq ;
2. Sample u← U(Rq);
3. Return pk = (a, u) ∈ Rm+1

q , sk = T ∈ R(m−k)×k.
– Trapdoor(w ∈ W, sk = T, pk = (a, u)) → tw. The receiver executes this algorithm to obtain

a retrieval trapdoor based on a predetermined keyword w, then uploads it to the server.
1. Compute hw = H(w) ∈ Rq, where H(·) is the FRD function mentioned above;
2. Compute aw = aT+(0, hwgT )T = (a′T , hwgT−a′TT)T ∈ Rmq , where g = (1, 2, 4, · · · , 2k−1)T ∈
Rkq ;

3. Run SamplePre(T,aw, hw, ζ, µ, α, u)→ x ∈ Rm, which satisfies aTwx = u;
4. Return tw = x ∈ Rm.

– Encrypt(w ∈W, pk = (a, u))→ sw. The sender performs this algorithm to obtain a searchable
ciphertext utilizing their private key, and uploads it along with the ciphertext file.
1. Compute hw = H(w) ∈ Rq, where H(·) is the FRD function mentioned above;
2. Compute aw = aT+(0, hwgT )T = (a′T , hwgT−a′TT)T ∈ Rmq , where g = (1, 2, 4, · · · , 2k−1)T ∈
Rkq ;

3. Select s← U(Rq), e0 ← DRm−k,τ , e1 ← DRk,β , e
′ ← DR,τ , c1 ∈ R2;

4. Compute b = aws+ (eT0 , e
T
1 )T ∈ Rmq , and c2 = u · s+ e′ + bq/2cc1 ∈ Rq;

5. Return sw = (b, c2, c1) ∈ Rm+2
q .

– Test(sw = (b, c2, c1), tw = x)→ d. The server runs this algorithm to retrieve the searchable
ciphertext matching the trapdoor, and sends all matching ciphertext files to the receiver.
1. Compute y = c2 − bT tw = e′ − (eT0 , e

T
1 )x + bq/2cc1 ∈ Rq;

2. For each yi, if yi is closer to bq/2c than to 0, yi = 1, otherwise yi = 0;
3. If y = c1, d = 1, otherwise d = 0;
4. Return d.

Correctness. Set the trapdoor be tw = x = (xT0 ,x
T
1 )T and the ciphertext be sw = (b, c2, c1).

For the Test algorithm, we have y = c2−bT tw = e′−eT0 x0−eT1 x1 + bq/2cc1. To decrypt correctly,
the error term e′ − eT0 x0 − eT1 x1 should satisfy ‖e′ − eT0 x0 − eT1 x1‖ < bq/4c. See Section 4.1 for
parameter selection.

3.2 Extension to Resist IKGA

To resist IKGA, we propose a PAEKS scheme. This requires the sender to utilize its private key
to generate an authentication when encrypting. An overview of PAEKS is shown in Fig. 2. Our
PAEKS scheme includes the following five algorithms.

– Setup(1λ)→ sp. The system runs this algorithm by inputting a security parameter λ, and
initializes the global parameters sp.
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Fig. 2. The framework of PAEKS, where it contains 6 steps, which are extracting keywords, encrypting
keywords, sending ciphertext, generating trapdoor, sending trapdoor, and sending the results.

1. Choose some security parameters q, k, n,m ∈ Z, σ, α, γ, τ, ζ ∈ R;
2. Sample u← U(Rq);
3. Return sp = (q, k, n,m, µ, α, β, τ, ζ, u).

– KeyGen(1λ)→ (pk, sk). The sender and receiver run this algorithm separately to obtain their
own key pairs.
1. Run TrapGen(q, µ, h = 0)→ (a,T), which fulfills a = (a′T ,−a′TT)T ∈ Rmq ;

2. Return pk = a ∈ Rmq , sk = T ∈ R(m−k)×k.
– Trapdoor(w ∈ W, skr = T, pkr = a) → tw. The receiver executes this algorithm to obtain a

retrieval trapdoor based on a predetermined keyword w, then uploads it to the server.
1. Compute hw = H(w) ∈ Rq, where H(·) is the FRD function mentioned above;
2. Compute aw = aT+(0, hwgT )T = (a′T , hwgT−a′TT)T ∈ Rmq , where g = (1, 2, 4, · · · , 2k−1)T ∈
Rkq ;

3. Run SamplePre(T,aw, hw, ζ, µ, α, u)→ x ∈ Rm, which satisfies aTwx = u;
4. Return tw = x ∈ Rm.

– Encrypt(w ∈ W, pkr = a, sks = Ts) → sw. The sender performs this algorithm to obtain a
searchable ciphertext utilizing their private key, and uploads it along with the ciphertext file.
1. Compute hw = H(w) ∈ Rq and aw = aT +(0, hwgT )T = (a′T , hwgT −a′TT)T ∈ Rmq , where

g = (1, 2, 4, · · · , 2k−1)T ∈ Rkq ;
2. Select s← U(Rq), e0 ← DRm−k,τ , e1 ← DRk,β , e

′ ← DR,τ , c1 ∈ R2;
3. Compute b = aws+ (eT0 , e

T
1 )T ∈ Rmq , and c2 = u · s+ e′ + bq/2cc1 ∈ Rq;

4. Compute hc1 = H(c1) ∈ Rq, as′ = aTs + (0, hc1g
T )T ;

5. Run SamplePre(Ts,as′ , hc1 , ζ, σ, α, 0)→ c ∈ Rmq , which satisfies aTs′c = 0.
6. Return sw = (b, c2, c) ∈ R2m+1

q .
– Test (sw = (b, c2, c), tw = x) → d. The server runs this algorithm to retrieve the searchable

ciphertext matching the trapdoor, and sends all matching ciphertext files to the receiver.
1. Compute y = c2 − bT tw = e′ − (eT0 , e

T
1 )x + bq/2cc1 ∈ Rq;

2. For each yi, if yi is closer to bq/2c than to 0, yi = 1, otherwise yi = 0;
3. Compute h = H(y) and as′ = aTs + (0, hgT )T ;
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4. If aTs c = 0, d = 1, otherwise d = 0;
5. Return d.

Correctness. This is as same as the basic PEKS scheme.

3.3 Extension to Predigest Key

In the PAEKS scheme, we observe that the user’s key is randomly generated, which contains large-
sized polynomials and matrices. This definitely increases the complexity of key management. To
facilitate key management, we propose an extended PAEKS scheme (IB-PAEKS), which permits
users to encrypt data utilizing their own identity. This scheme adds a Key Generator Center(KGC),
which generates the user’s private key according to their identity. In our settings, We presume that
KGC is a trusted entity that transmits a valid private key to the user through a secure channel.

Fig. 3. The framework of IB-PAEKS, where it contains 7 steps, which are generating keys, extracting
keywords, encrypting keywords, sending ciphertext, generating trapdoor, sending trapdoor, and sending
the results.

An overview of IB-PAEKS is shown in Fig. 3. Our IB-PAEKS scheme includes the following five
algorithms.

– Setup(1λ)→ (mpk,msk). The KGC runs this algorithm by entering security parameter λ to
attain its public key and private key.
1. Sample u← U(Rq);
2. Run TrapGen(q, σ, h = 0)→ (a,T), which fulfills a = (a′T ,−a′TT)T ;
3. Return mpk = a ∈ Rmq ,msk = T ∈ R(m−k)×k.

– Derive(mpk,msk, id)→ ski. The sender and receiver send their identity id to the KGC, and
KGC executes this algorithm to generate their private key.
1. Compute hid = H(id) ∈ Rq,ai = (a, hidg)T ∈ Rm+k;
2. Run DelTrap(a, hid,T, s)→ Ti ∈ Rmq ;
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3. Return ski = Ti ∈ Rmq .

– Trapdoor(w ∈ W, skr = Tr, idr) → tw. The receiver executes this algorithm to generate a
retrieval trapdoor based on a predetermined keyword w, and uploads it to the server.

1. Compute hid = H(idr),ar = (a, hidg)T = (a′T ,−a′TT, hidg)T ;

2. Compute hw = H(w) and arw = aTr + (0, hwg)T = (a, hwg + hidg)T ;

3. Run SamplePre(Tr,arw , hw + hid, ζ, σ, α, u)→ x, which satisfies aTrwx = u;

4. Return tw = x ∈ Rm+k
q .

– Encrypt(w ∈ W, idr, ids, sks = Ts)→ sw. The sender executes this algorithm to generate a
searchable ciphertext utilizing their private key, and uploads it along with the ciphertext file.

1. Compute hids = H(ids),as = (a, hidsg)T ;

2. Compute hidr = H(idr),ar = (a, hidrg)T ;

3. Compute hw = H(w) and arw = aTr + (0, hwg)T = (a, hwg + hidrg)T ;

4. Select s← U(Rq), e0 ← DRm−k,τ , e1 ← DRk,γ , e2 ← DRk,γ , e
′ ← DR,τ , c1 ∈ R2;

5. Compute b = arws+ (eT0 , e
T
1 , e

T
2 )T ∈ Rm+k

q , and c2 = u · s+ e′ + bq/2cc1 ∈ Rq;
6. Compute hc1 = H(c1) ∈ Rq and as′ = aTs + (0, hc1g

T )T ;

7. Run SamplePre(Ts,as′ , hids + hc1 , ζ, σ, α, 0)→ c ∈ Rm+k
q , which satisfies aTs′c = 0;

8. Return sw = (b, c2, c) ∈ R2m+2k+1
q .

– Test(sw = (b, c2, c), tw = x, ids)→ d. The server runs this algorithm to retrieve the searchable
ciphertext matching the trapdoor, and sends all matching ciphertext files to the receiver.

1. Compute y = c2 − bT tw = e′ − (eT0 , e
T
1 , e

T
2 )x + bq/2cc1 ∈ Rq;

2. For each yi, if yi is closer to bq/2c than to 0, yi = 1, otherwise yi = 0;

3. Compute h = H(y) and hids = H(ids),as = (a, hidsg)T ;

4. Compute as′ = aTs + (0, hgT )T ;

5. If aTs c = 0, d = 1, otherwise d = 0;

6. Return d.

Correctness. Set the trapdoor be tw = x = (xT0 ,x
T
1 ,x

T
2 )T and the ciphertext be sw = (b, c2, c).

For the Test algorithm, we have y = c2 − bT tw = e′ − eT0 x0 − eT1 x1 − eT2 x2 + bq/2cc1. To decrypt
correctly, the error term e′−eT0 x0−eT1 x1−eT2 x2 should satisfy ‖e′−eT0 x0−eT1 x1−eT2 x2‖ < bq/4c.
See Section 4.1 for parameter selection.

4 Parameters Selection and Security Proof

4.1 Parameters Selection

To decrypt the IB-PAEKS scheme correctly, we modified the parameters. Table 2 shows the pa-
rameters set of IB-PAEKS scheme when λ = 80, which is also applicable to PEKS and PAEKS
scheme. We utilize the BKZ lattice reduction algorithm cost model in [4, 10] to evaluate the core
SVP hardness, where the time complexity of BKZ is T = 2tb, where t = 0.292 is classical security,
t = 0.265 is quantum security, t = 0.2075 is paranoid security, and b is the block size of BKZ. We
utilize the LWE estimator1 in [3] combined with our specified BKZ cost model to obtain our results.

1 https://bitbucket.org/malb/lwe-estimator/src/master/, commit a2a6e84.

10



Table 2. Parameters set of our schemes for λ = 80.

Parameters n k log q m σ α τ γ ζ

Classic 512 62 62 64 6.5 14.5 6.5 22944.2 8373.5
Quantum 1024 62 62 64 3 6.7 3 6912.0 2482.6
Paranoid 1024 62 62 64 4.2 9.4 4.2 13547.52 4866.0

4.2 Security Proof of PEKS

According to the transformation of Abdalla et al. [1] , the anonymity of the IBE scheme necessitates
to be proved. Below, we prove that Bert et al. IBE [8] satisfies INDr-sID-CPA security.

Theorem 3 The IBE of Bert et al. [8] satisfies INDr-sID-CPA security supposing the Ring-LWE
problem is hard.

Proof. We describe three games to prove the INDr-sID-CPA security. Subsequently, by proving the
indistinguishability between these games, we prove this theorem.

Game 0: The Game 0 is a game in Definition 6. In the Setup phase, P calls TrapGen(q, µ, h =
0)→ (a,T).

Game 1: Except for the Setup phase, Game 1 is equal to Game 0. In the Setup phase, by adding
challenge identity id∗, the generation of a is changed. P calls TrapGen(q, µ,a′,−hid∗) → (a,T),
where a′ ← U(Rm−kq ). a and T satisfy a = (a′T ,−hid∗gT − a′TT)T . In Query phase 1, Q sends
private key queries to P on id 6= id∗. P responds by calling Extract (id,msk,mpk) algorithm.
More specifically, P computes aid = aT + (0, hidg

T ) = (a′T , (hid − hid∗)gT − a′TT)T . Then P calls
SamplePre(T,aid, hid − hid∗ , ζ, µ, α, u) → x, which fulfills aTidx = u. Recall that when id = id∗,
aid = (a′T ,−a′TT)T , P stops responding Q’s queries.

Indistinguishability between Game 0 and Game 1. The public parameter a consists of
two parts: the first part a′T is selected from Rm−kq ; and the last part, based on our chosen trapdoor

instantiation, a′TT = (Σm−k
i=1 aiti,1, Σ

m−k
i=1 aiti,1, · · · , Σm−k

i=1 aiti,k) and uniform distribution are at
least computationally indistinguishable. In the view of Q, it cannot distinguish whether a comes
from Game 0 or Game 1.

Game 2: Except for the ciphertext’s selection, Game 2 is equal to Game 1. In Challenge
phase, C∗ is randomly selected from Rmq × Rq. Next, we prove that Game 1 is computationally
indistinguishable from Game 2 by giving a reduction from Ring-LWE.

Indistinguishability between Game 1 and Game 2. Assuming that Q can differentiate
Game 1 and Game 2, where the advantage of Q cannot be neglected, we can utilize an algorithm
P to solve Ring-LWE. P does the following processes:

– Init: P obtains m−k+1 samples of decisional Ring-LWE instances (ai, bi), where 0 ≤ i ≤ m−k.
P obtains the challenge identity id∗ sent by Q.

– Setup: Set a′ = (a1, · · · , am−k)T ∈ Rm−kq , b′ = (b1, · · · , bm−k)T ∈ Rm−kq and u = a0. Due to

the Ring-LWE assumption, a′ follows a uniform distribution. Then P runs Setup(1λ) algorithm
as in Game 1, where (a,T)← TrapGen(q, µ,a′,−hid∗). P sends mpk = (a, u) to Q.

– Query phase 1: Q sends private key queries, P responds Q’s queries.
– Challenge: Q selects plaintext m ∈ {0, 1} as the challenge plaintext. P randomly chooses
t ∈ {0, 1} and sets C∗ = (b∗, c∗), where b∗ = (b′T ,−b′TT + e′T )T , e′ ← DRk,ρ, ρ ∈ R, and
c∗ = b0 + bq/2cmt. Then P returns C∗ to Q.
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– Query phase 2: Q performs other queries, P answers queries which is identical to Query phase
1.

– Guess: Q guesses whether he interacts with the challenger of Game 1 or Game 2. P takes Q’s
guess as a reply to solve Ring-LWE problem.

If m−k+1 samples of decisional Ring-LWE instances (ai, bi) stem from Ring-LWE distribution,
we get b0 = a0s + e0,b

′ = a′s + r, where s ∈ Rq, r ← DRm−k,τ , and e0 ← DR,τ , τ ∈ R. Then, we
have b∗ = aTid∗s+ (rT ,−rTT + e′T )T , c∗ = a0s+ e0 + bq/2cmt = us+ e0 + bq/2cmt.

First, we cannot distinguish the error term −rTT + e′T from sample in the distribution DRk,γ

for fixed e, where γ2 = (µ‖r‖)2 + ρ2, ρ ∈ R. Hence, b∗ is actually the first part b of C∗ in Game 1.
In addition, c∗ is the second part c of C∗ in Game 1. Therefore, the distribution of C∗ is exactly
equal to that in Game 1.

If m − k + 1 samples of decisional Ring-LWE instances (ai, bi) stem from uniform distribution
Rmq ×Rq, then the distribution of C∗ is exactly equal to that in Game 2.

Therefore, if the adversary Q can differentiate Game 1 and Game 2 whose advantage cannot be
neglected, P can utilize Q to solve Ring-LWE with a non-negligible advantage.

4.3 Security Proof of PAEKS

Theorem 4 Supposing the Ring-LWE problem is hard, our PAEKS scheme satisfies multi-ciphertext
indistinguishability.

Proof. The ciphertext indistinguishability of our PAEKS scheme relies on the basic PEKS scheme.
In addition, Theorem 1 of [8] proved that the underlying IBE satisfied ciphertext indistinguisha-
bility under the hardness of Ring-LWE problem, and the encryption algorithm of our PAEKS
scheme is probabilistic. Therefore, based on Theorem 1, our PAEKS scheme meets multi-ciphertext
indistinguishability.

Theorem 5 Supposing the Ring-ISIS problem is hard, our scheme satisfies multi-trapdoor privacy.

Proof. First, we need to prove the trapdoor privacy of our scheme. Assuming that the PPT ad-
versary Q can break trapdoor privacy of PAEKS, there is a challenger P to solve the Ring-ISIS
problem.

– Init: P obtainsm−k samples of decisional Ring-ISIS instances (a′, u) where a′ = (a1, · · · , am−k)T ∈
Rm−kq . Q sets w∗ as challenge keyword.

– Setup: P inputs the security parameter λ, calls KeyGens(mpk) → (pks, sks) and Key-
Genr(mpk) → (pkr, skr) separately. In detail, P executes TrapGen(q, σ,a′,−hw∗) → (a,T),
and returns pk = a, sk = T. Finally, P sends mpk, pks, pkr to Q.

– Query phase: Q sends trapdoor or ciphertext queries to P for the keyword w 6= w∗.

1. Trapdoor query: P calls Trapdoor(w, skr, pkr) → tw to reply Q’s queries. Specifically, P
computes hw = H(w) and aw = aT +(0, hwgT )T = (a′T , (hw−hw∗)gT −a′TT)T , then runs
SamplePre(T,aw, hw − hw∗ , ζ, σ, α, u)→ x, which satisfies aTwx = u.

2. Ciphertext query: P randomly selects c1 ∈ {0, 1}, computes hw = H(w) and aw = aT +
(0, hwgT )T . P sets C∗ = (b∗, c∗2, e

∗), where b∗ = aws+(eT0 , e
T
1 )T , c∗2 = u ·s+e′+bq/2cc1 ∈

Rq and e∗ ∈ DRmq ,ζ
by running SamplePre algorithm.
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– Forge phase: Q forges x∗ for challenge keyword w∗, which satisfies aTw∗x
∗ = u. Then we have

a′T (Im−k,−T)x∗ = u. Set y = (Im−k,−T)x∗, then we note that ‖T‖ ≤ tσ
√

(n− k)n, therefore

‖y‖ ≤ (1 + tσ
√

(n− k)n)tζ
√
mn = β. Hence, y is a solution for Ring-ISIS instances (a, u).

Therefore, if Q can break trapdoor privacy of PAEKS, there is a challenger P to solve the Ring-
ISIS. Besides, the trapdoor algorithm of our PAEKS scheme is probabilistic. Thus, our scheme
satisfies multi-trapdoor privacy.

4.4 Security Proof of IB-PAEKS

Theorem 6 Supposing the Ring-LWE problem is hard, our IB-PAEKS scheme satisfies multi-
ciphertext indistinguishability.

Proof. First, we necessitate to prove the CI security of our IB-PAEKS scheme. The proof is similar
to the proof in Theorem 1 in [8], except that Game 3 is added between Game 1 and Game 2. Except
for the Setup phase, Game 3 is equal to Game 1. In the Setup phase, by adding challenge keyword
w∗, the generation of a is changed. the challenger P calls TrapGen(q, σ,a′,−hw∗ −hid∗)→ (a,T),
where a′ ← U(Rm−kq ). a and T satisfy a = (a′T , (−hw∗ − hid∗)gT − a′TT)T . If the adversary Q
can distinguish between Game 1 and Game 3, then there exists an algorithm P can distinguish
between a and a random vector from uniform distribution Rmq . In Q’s perspective, a and uniform
distribution are at least computationally indistinguishable. Therefore, Q cannot distinguish whether
a comes from Game 1 or Game 3. Next, the indistinguishability between Game 2 and game 3 is
similar to the proof of Theorem 1 in [8], which will not be repeated here.

Besides, the Encrypt algorithm of our IB-PAEKS scheme is a probability algorithm. Therefore,
our IB-PAEKS scheme satisfies multi-ciphertext indistinguishability.

Theorem 7 Supposing the Ring-ISIS problem is hard, our IB-PAEKS scheme satisfies multi-
trapdoor privacy.

Proof. Assuming that the PPT adversary Q can break trapdoor privacy of IB-PAEKS, there exists
a challenger P to solve the Ring-ISIS problem.

– Init: P obtainsm−k samples of decisional Ring-ISIS instances (a′, u) where a′ = (a1, · · · , am−k)T ∈
Rm−kq . Q sets w∗ as challenge keyword and sets ids, idr as the identity of the sender and receiver
respectively.

– Setup: P inputs the security parameter λ, calls Setup(1λ) → (mpk,msk). In detail, P runs
TrapGen(q, σ,a′, 0)→ (a,T), where a = (a′T ,−a′TT)T . For the challenge keyword w∗ and the
challenge identity idr, P sets a = (a,−hw∗gT−hidrgT ). Then P runs Derive(mpk,msk, ids)→
sks, and Derive (mpk,msk, idr)→ skr. Finally, P sends mpk, ids, idr to Q.

– Query phase 1: Q sends trapdoor or ciphertext queries to P for the keyword w 6= w∗.
1. Trapdoor query: P calls Trapdoor(w, skr, pkr) → tw to reply Q’s queries. Specifically,
P computes hw = H(w), hid = H(idr) and aw = (aT , (hid + hw)gT )T , then runs Sam-
plePre(T,aw, hw − hw∗ , ζ, σ, α, u)→ x, which satisfies aTwx = u.

2. Ciphertext query: P calls Encrypt(w, pkr, pks, sks)→ sw to reply Q’s queries.
– Forge phase: Q forges x∗ for challenge keyword w∗, which satisfies aTw∗x

∗ = u. Then we get
a′T (Im−k,−T)x′∗ = u, where x′∗ ∈ Rmq is the first m dimension of x∗. Set y = (Im−k,−T)x′∗,

then we note that ‖T‖ ≤ tσ
√

(n− k)n, therefore ‖y‖ ≤ (1 + tσ
√

(n− k)n)tζ
√
mn = β. Hence,

y is a solution for Ring-ISIS instances (a, u).
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Therefore, if Q can break trapdoor privacy of IB-PAEKS, there exists a challenger P to solve
the Ring-ISIS problem. Besides, the trapdoor algorithm of our IB-PAEKS scheme is a probabilistic
algorithm. Thus, our scheme satisfies multi-trapdoor privacy.

5 Performance Evaluation

In this section, we compare our schemes with other PEKS/PAEKS schemes (e.g. [6, 17]). We give
the experimental results in terms of storage requirements, computational efficiency and end-to-end
delay. As for commercial hardware, we use an AMD Ryzen 7 4700U laptop with Radeon Graphics
2.0 GHz CPU and 16 GB RAM. As for server, we utilize a Dell T630 with Intel(R) Xeon(R) CPU
E5-2650 v3 at 2.30 GHz and 128 SSD.

Table 3 shows the security comparison of our schemes with PEKS/PAEKS schemes of [17,
33, 6, 26, 36, 19]. Most schemes achieve MCI security and resist quantum attacks, only the scheme
of [19] and our PAEKS, IB-PAEKS scheme implement MTP security. Except for the schemes
of [19], BOYb and our schemes, which are implemented in the standard model, the other schemes
are implemented in ROM. We notice that only QCH+20 and our IB-PAEKS scheme introduce
identity-based techniques to simplify public key management.

Table 3. Security comparison of PEKS schemes.

Schemes CI MCI TP MTP QR PP Model Assumption
HL [17] Yes No Yes No No No ROM DBDH&mDLN

QCH [26] Yes Yes Yes No No Yes ROM CBDH
BOYa [6] Yes Yes No No Yes No ROM NTRU
BOYb [6] Yes Yes No No Yes No Standard LWE
ZXW [36] Yes Yes No No Yes No ROM LWE
LTT [19] Yes Yes Yes Yes Yes No Standard LWE

Our PEKS Yes Yes No No Yes No Standard Ring-LWE&Ring-ISIS
Our PAEKS Yes Yes Yes Yes Yes No Standard Ring-LWE&Ring-ISIS

Our IB-PAEKS Yes Yes Yes Yes Yes Yes Standard Ring-LWE&Ring-ISIS
(M)CI: (Multi-)ciphertext indistinguishability. (M)TP: (Multi-)trapdoor privacy.

QR: Quantum resistant. PP: Predigest key.

5.1 Storage Requirements

The estimation of storage requirements for implementing lattice-based PEKS schemes is described
in Table 4 and Table 5 respectively. For λ = 80, we set n = 512, |q| = 62 for our schemes. To resist
IKGA, our PAEKS requires additional ciphertext storage compared to the PEKS scheme. BOYa
scheme has a major storage advantage, which is based on NTRU and requires a small storage
overhead. Compared our scheme with it, our schemes has a smaller private key size. Compared to
LWE-based schemes, our scheme has a better advantage in public key, private key and ciphertext
storage.

5.2 Computational Efficiency

We compared the computational efficiency of our scheme with HL and BOYa. The results are shown
in Fig. 4. These schemes have similar trapdoor generation times, with our PEKS being slightly faster
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(a) Time of generating trapdoors. (b) Time of encryption keywords.

(c) Time of testing keywords. (d) Average running time of each algorithm.

Fig. 4. Computational efficiency of PEKS schemes.
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Table 4. Storage requirements of lattice-based PEKS schemes.

Schemes Public Key Private Key Ciphertext Trapdoor
BOYa [6] n|q| 4n2|q| 3n|q| 2n|q|
BOYb [6] m|q|((ι+ 2)n+ 1) n2|q| ε(|q|+ 2n|q|+ 1) 2n|q|
ZXW [36] nm|q| nm|q| (ι+ nι+ n)|q| n|q|
LTT [19] (2m+ nε+ nm(ι+ 2))|q| (n+mk + n2)|q| ε(|q|+ 2n|q|+ 1) 2n|q|

Our PEKS n|q|(|q|+ 3) 2n|q| n|q|(|q|+ 3) n|q|(|q|+ 2)
Our PAEKS n|q|(|q|+ 3) 2n|q| n|q|(2|q|+ 5) n|q|(|q|+ 2)

Our IB-PAEKS n|q|(2|q|+ 2) n|q|(|q|+ 2) n|q|(6|q|+ 5) n|q|(2|q|+ 2)
ε,m : They are related to the security parameter. n: The dimension.

|q| : The bit length of the modules. ι : The length of keyword.

Table 5. Storage requirements of lattice-based PEKS schemes when λ = 80.

Schemes Public Key Private Key Ciphertext Trapdoor
(Kb) (Kb) (Kb) (Kb)

BOYa [6] 11.5 23,552 34.5 23
BOYb [6] 351,111 1,114,699 2,286 229
ZXW [36] 29,259 29,259 1,257 114
LTT [19] 352,257 29,403 2,286 229

Our PEKS 2,015 62 2,015 1,984
Our PAEKS 2,015 62 3,999 1,984

Our IB-PAEKS 3,906 1,984 11,687 3,906

than the other schemes. We notice that for the timing of the encryption algorithm, our timing is
longer than BOYa. For each search query, the Test algorithm executes once on every keyword-file
pair. Hence, the efficiency of Test algorithm is especially important, which leads to computational
overhead. Note that the Test time depends on the security level, average length of the keywords and
the hardware. In our environment, if the security level is 80 bits and the average keyword length
is 4 letters, then the average Test time of our PEKS scheme is 0.21ms; if the security level is 192
bits and the average keyword length is 4 letters, then the average Test time of our PEKS scheme
is 0.99ms. If the average keyword length is 4 letters and the security level is 80 bits, the result is
gathered in Fig. 4. Compared with BOYa, the efficiency of Test algorithm is improved by about 8
times for 80-bit security, which gives us an advantage in end-to-end delay.

5.3 End-to-end Delay

End-to-end delay is extremely important for practical application of PEKS schemes. Since the
end-to-end delay of LWE-based PEKS schemes(e.g. BOYb, ZXW, LTT) is higher, we compare our
PEKS scheme with NTRU-based PEKS (BOYa [6]). Based on the complete implementation, the
simulation results are shown in Fig. 5.

We test the end-to-end delay, including client computation, communication, server computation
and server disk access. The server computation time is the time to execute the Test algorithm. The
Test algorithm needs to be run once for each keyword-data pair, which is linear with the amount of
keyword-data pairs, and the server computing time accounts for the total cost of end-to-end delay.
The server disk access is the process that the server traverses all files and takes out all matching
files. This is linear with the amount of keyword-data pairs, but it is more efficient than the Test
algorithm. To sum up, in BOYa, it accounts for 3% of the total time. In our PEKS, it accounts
for 1% of the total time. We have experimented with databases of different measurements on the
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(a) End-to-end delay of BOYa [6]. (b) End-to-end delay of PEKS. (c) End-to-end delay comparison.

Fig. 5. End-to-end delay comparison.

same server. As the amount of keyword-file pairs increases, the gap between our scheme and BOYa
increases gradually. For keyword-data pairs up to 200000, where the average keyword length is 8-10
letters, the end-to-end delay of our scheme is 8 times lower than BOYa.

6 Conclusion

In this paper, we construct three PEKS schemes based on Ring-LWE/ISIS. The basic scheme not
only enjoys high computational efficiency, but also supplies low end-to-end delay. Compared our
basic scheme with LWE-based PEKS schemes (e.g.ZXW [36], LTT [19], BOYb [6]), our PEKS
scheme has higher advantages in storage requirements. Compared with the NTRU-based PEKS
scheme(BOYa [6]) proved secure in the ROM, our basic scheme ensures high computational effi-
ciency, and provides high level of security. For 80-bit security, the efficiency of our Test algorithm is
improved by about 8 times for certain parameters. As a result, the end-to-end delay of our scheme is
8 times lower than BOYa. The two extension schemes provide more secure properties. To resist IK-
GA, the second scheme is a PAEKS scheme, the security proof indicates that the scheme meets both
MCI and MTP security. To predigest key management, the third scheme is an extended PAEKS
scheme (IB-PAEKS). This scheme not only meets both MCI and MTP security, but significant-
ly reduces the complexity of key management in practical applications. In summary, our schemes
provide a feasible solution for the PEKS scheme, which supplies high computational efficiency, low
end-to-end delay and anti-quantum attacks.
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