
Course-Correct to DeFi Lacking Default Deficiency
David W. Kravitz

Spring Labs
San Jose, CA USA

david@springlabs.com [0000-0001-8237-4425]

Mollie Zechlin Halverson
Spring Labs

Anaheim, CA USA
zechlinmj@gmail.com [0000-0003-3990-2805]

Abstract—This paper explores methods of assessing risk on-
chain by efficiently integrating off-chain identity- and attribute-
verification and on-chain transaction activity. While decentralized
finance (DeFi) is a well-suited application of permissionless
blockchains, it is severely constrained in its ability to reconcile
real-world identities and, as a result, to quantify their associated
transaction risk using solely on-chain data, limiting its realistic
applications. Opening the ecosystem to a broader range of
use cases requires consistent pseudonymity and quantifiable
reputation. Traditional finance quantifies risk by collecting and
vetting reputation information for an individual, such as credit
scores or payment history. We explore a mechanism to incor-
porate these traditional trust factors into the DeFi ecosystem
while both preserving individual privacy within a competitive
and fair environment and retaining compatibility with existing
platforms such as Ethereum. Even though blockchains are
inherently public, our solution gives users control over the
release of information that pertains to them. Consequently, our
contribution focuses on customized methods that balance the
level of disclosure of verfiable, provably-sourced user information
against the likelihood of the user successfully gaining access to a
desired resource, such as a loan under mutually-agreeable terms.
Our solution is consistent with the zero-trust model in that it
imports explicit trust from recognized sources through relevant,
continuously updated metrics.

Index Terms—Zero Trust, Encryption, Authorization, Smart
Contracts, Digital Signatures, Distributed Databases, Blockchains

I. BACKGROUND

A. Centralized vs. Decentralized Finance

Decentralized finance (DeFi) differs in several major ways
from centralized finance: transparency in the operation of
financial assets and products; user-exerted control over their
assets, including the degree to which users release information
about them; capability to create and deploy DeFi products is
widely accessible, leveraging infrastructure of a blockchain
and its distributed network of consensus management [1].
The architecture is non-custodial, thus streamlining the cost
structure. The permissionless nature eliminates blocking and
censorship. Open auditability ensures checks on collateraliza-
tion and overall system health. “Lego”-like structure allows for
composability of protocols constructed from a modest number
of basic well-understood building blocks. This enables rules-
compliant handling of capital while providing rich feature sets
for rehypothecation, i.e., the reuse of assets posted as collat-
eral [2]. The FLAX system [3] extends ERC-20, the Ethereum
standard for fungible tokens, to enable composable usage of
anonymous funds by other smart contracts, as instantiated

using existing anonymous payment schemes. [4] proposes a
model for disentangling DeFi protocols into their component
building blocks, motivated, in part, by a perceived ultimate
need to utilize the understanding of frequently used substruc-
tures to develop solutions for cross-chain composability.

B. Fill a Gap: Consolidate Off- and On- Chain Reputation

Smart contract- enabled blockchain platforms, such as
Ethereum, offer the power to bring financial services appli-
cations online within a more socially conscious and equitable
environment that can balance maintained public visibility and
the protection of individual privacy. However, mirroring the
decision processes of traditional lending practices requires
importing off-chain-established reputational aspects on-chain
without violating aspects of users’ choices regarding the extent
to which they disclose their personal information and under
what circumstances. If multiple users have personal informa-
tion of a given type of data, i.e., dataType, in common, in
traditional systems the secure communications overlay hides
correlation even under identical representation of such raw
attribute values. That does not apply when addressing con-
veyance of sensitive information on a blockchain, since smart
contract execution cannot use privately held cryptographic
keys without calling out to off-chain oracles. This would
undermine the desired assurance of availability and auditability
of transactions that decentralized ledger technology (DLT) can
offer. We opt instead to post attestations to the blockchain that
each carry a personalized version of a raw attribute value or
of a collection of intervals containing such value. Only the
specific user can unlock the information during a user-initiated
query designed to provide evidence of meeting requirements
set as preconditions to automatically access a resource. Within
decentralized finance, an example of such a resource is a
loan offered under stated terms upon a successful user trans-
action as determined by a Money Services Business (MSB)
smart contract. MSB smart contracts invoke a Know Your
Customer (KYC) smart contract which coordinator-generated
transactions call to post attestations to the blockchain. KYC
regulations and Anti-Money Laundering (AML) directives
constitute essential elements of business conducted by an
MSB. KYC is used to verify identity given specific infor-
mation and credentials as part of an extensive AML process
geared towards financial crimes detection/prevention.

Considerable time and effort have gone into establishing
an international framework of monetary policies that the

migration to blockchain should take advantage of. This paper
focuses on handling migration in a cryptographically sound
manner by offering a suite of customized solutions that do
not suffer from the complexity and computational burdens of
generic solutions. We achieve computational efficiency of the
users’ role in proofs about their attributes during query. We
do not consider it practical enough to efficiently manage only
the size of proofs and their verification for succinctness. This
theme is consistent with [5]. Unlike the unlinkable although
auditable transaction certificates of [6] and [7], and the zero-
knowledge- based proofs of possession of (non-revealed) self-
sovereign anonymous credentials of [8], we address attribute
management that is consistent with permissionless networks.

Assigning user-unique pseudonyms via multiparty com-
putation of tokenized user-identifying data, and associating
updateable secrets that only the intended users can reproduce,
together establish a foundation upon which we build out our
solutions. We predicate our approach on the realization that
there is inefficiency in backtracking from anonymity-based
methods to offer consistent pseudonymity that deters reputa-
tion laundering. Note that GDPR [9] defines “pseudonymisa-
tion.” Applying decentralization only to specific sub-processes
can result in overall inconsistency since there is an inherent
degree of centralization in off-chain verification of user cre-
dentials and import onto the blockchain of metrics such as
user credit scores. Only a limited number of services deserve
broad recognition as trusted to access the raw information
tied directly to users and to make such assessments. Note
that in the zero-knowledge context, there are potential vul-
nerabilities of an untrusted setup of common reference strings
(CRS) [10]. We avoid dependency on awareness by the system
infrastructure, which includes KYC processors (as issuers)
and an attesting coordinator, of MSB-specific application-level
considerations. Once a user has registered a blockchain wallet
into the system, preparation and posting of attestations bearing
on such a wallet occur without user involvement. Only at the
point of query does the user retrieve relevant components of
attestation, or re-attestation based on updated user-related data.

C. High-Level Workflow

Fig. 1 depicts the user onboarding, attestation, and query
workflow. A KYC provider verifies a user’s identity during off-
chain user registration, conducts off-chain user data retrieval,
and provides an attestation that the KYC provider has stored
the material used to perform verification. This attestation is
associated with the user’s wallet on-chain but made inaccessi-
ble without interaction from the user via the wallet. Auditors
can determine from KYC provider logs whether verification
had indeed occurred as a prerequisite to attestation. An MSB
that wants to verify that the user has gone through KYC
acquires permission from the user via its MSB smart contract
to access the on-chain data to verify and assess this attestation
via a KYC smart contract. User registration and access to
code for user-initiated query may be via an MSB, where
an independently provisioned root of trust, e.g., public key,
assures against undetected MSB-perpetrated malfeasance.

Fig. 1. High-level overview.

II. SYSTEM OVERVIEW

A glossary of terminology is included as Section II-A.
Registration of a user includes verification of user iden-

tity through one or more identity verification services. If
verification is successful, gathering of information such as
KYC/AML status, credit scores and/or other user data follows,
for use in attesting to the blockchain. Such an attestation ties
to a KYC processor- and wallet- invariant pseudonym, i.e.,
KYCid, explicitly generated for that user. The coordinator is
an entity delegated by the KYC processors to form and submit
attestations to the blockchain on their behalf. KYC processors
utilize nonces to isolate meaningful information exposure
through user-initiated query of attestations, as well as to
ensure replay detection against unauthorized reuse without
relying on compliance by downstream processes. Upfront and
later-repeatable deterministic signing by the user’s wallet of at-
testation-associated nonces enables controlled information ex-
posure during query without undesirable statefulness. nonces
discussed in this context emanate from KYC processors and
thus are not to be confused with native blockchain nonces used
to detect user wallet address-/account- specific transaction sub-
mission order and replay attempts. The KYC processor, acting
in combination with the tokenization processors, performs a
tokenization process described in further detail in Appendix A
to generate the KYCid, as well as attributeValueTokens in the
method introduced in Section III-B. The off-chain- vetted user
data becomes available to an MSB smart contract in some form
as attributeValues via user-initiated query. We define three
distinct combinable or stand-alone methods to incorporate a
representation of such user data into KYC smart contract- held
queryable attestations as hash commitments. hash() refers to
application of a one-way hash function to the parenthetical
argument. Due to the blockchain’s sequence-preserving nature
and signature-enforced immutability of transaction ownership,
the most recent attestation of the given type of data, i.e.,
dataType, with embedded attributeValue that corresponds to
the querying user is unambiguously accessible. This prevails
despite any user attempts to query against an attestation that

is earlier and/or of a different user because it includes a
preferable embedded attributeValue.

A. Glossary of Terminology
These terms are hyperlinked to defining text

using boldface: attestation; attestationNotFound;
attestationPointer; attestDn; attestUp; attributeValue;
attributeValueToken; blindedPersonalizationInfo;
blindedPersonalizedAttributeValueToken; coordinator;
dataType; fill; hash(); intervalLength; KYCid; KYC
processor; method 1; method 2; method 3; nonce;
nonceSig; nonceSigKD; nonceSig*; personalizationInfo;
personalizedAttributeValueToken; preimg; preimgDn;
preimgUp; preKYCid; proxy; proxySig; query; sandwich;
tokenization processor; uberProxy; uberSig; unterProxy;
unterSig; updateIndex; userTxnNonce; walletAddress;
walletSig; windowDn; windowing; windowUp.

B. Detailed Workflow
Fig. 2, Fig. 3 and Fig. 4 depict the workflow in greater

detail. walletSig is the user wallet- applied signature of
walletAddress, as an address derived from the user’s wallet
public key. nonceSig is the user wallet- applied signature of
nonce. updateIndex is a counter that tracks the updates on the
same KYCid, nonce and dataType. The coordinator-submitted
collection comprised of dataType, attestation, nonce, and
KYCid is retrievable from KYC smart contract stateful storage
by using as lookup, where || denotes concatenation:

attestationPointer = hash(hash(walletSig)

|| walletAddress) (1)

The KYC smart contract code includes the coordina-
tor’s whitelisted wallet address used to verify coordinator-
submitted transactions that each include attestationPointer,
dataType, attestation, nonce, and KYCid. The outer hash
in (1) hides walletAddress until the first query against the
attestationPointer. hash(walletSig) is a condensed form of
walletSig used during query transmission without sacrificing
the relationship to its antecedent, walletSig, as verified along
with nonceSig upon user registration.

nonceSigKD = hash(dataType ||
updateIndex || hash(nonceSig)) (2)

As a key derived from nonceSig, nonceSigKD is computable
by the user during query along with hash(walletSig) used to
rederive attestationPointer. (1) is relevant to all three methods
presented below, while (2) is relevant only to the first two.
Further clarifying Section I-C: a KYC provider is a composite
of a KYC processor, identity verification service, third-party
data service, tokenization processors and coordinator. attesta-
tions include hash commitments of (potentially personalized)
attributeValues. To mirror attestations, personalization occurs
live during query by a proxy with access to (non-personalized)
attributeValueTokens or directly by the user’s client. attesta-
tions are retrievable from the blockchain via rederivation of
attestationPointers as part of query.

Fig. 2. User registration; tokenization; attestation.

Fig. 3. User registration details.

III. INTRODUCTION TO SUITE OF SOLUTIONS

We now introduce our three (user-selectable or system-
chosen) customized methods. All three blind access to raw
attribute values until user-initiated query, which results in full
disclosure, proxy-assisted blinded matching of query against
attestation, or user-selectable level of disclosure, respectively.

A. Method 1: Release of Raw Attribute Value

In method 1 and method 2, attributeValue, as received by
the coordinator via a KYC processor, is an argument of the
resultant hash commitment:

attestation = hash(nonceSigKD||attributeValue) (3)

A query discloses a raw attribute value as an attributeValue
under method 1.

Fig. 4. On-chain query of attested-to attributes.

B. Method 2: Release of Personalized Attribute Value Token

method 2 enables an intermediary, i.e., proxy, to act on
behalf of an MSB as initiated by a user’s off-chain request.
Such proxy, as authorized by the MSB, assists in determining
whether the user has fulfilled the MSB’s policy requirements
to gain access via the blockchain to the requested resource.
Through the user’s on-chain transaction, the proxy makes in-
formation accessible to the corresponding MSB smart contract
that holds its ”whitelisted” signature verification public key.
Potentially dependent on meeting other requirements, such
information includes attributeValue as an opaque personal-
izedAttributeValueToken that cannot be correlated to other
users. Its reconstruction by the proxy represents non-vetted
user input as well as an attribute threshold set by the MSB.
This attributeValue is compared against that within the most
recent attestation that was posted to the blockchain for that
user wallet and dataType as a hash commitment that lies
dormant (i.e., blinded) until activated via user-initiated on-
chain query. For additional privacy and security, a proxy may
be split into uberProxy and unterProxy components. Users
then communicate directly with the whitelisted uberProxy,
while the unterProxy has private access to (non-personalized)
attributeValueToken values that each represent a specific range
of data values of a given dataType. The unterProxy is blinded
from the personalization aspects during joint communication
and processing with an uberProxy that results in conver-
sion of uberProxy-stipulated choice of an unterProxy-held
attributeValueToken to a personalizedAttributeValueToken. For
single-issuer, single-proxy, single-attribute use case support,
the proxy and issuer can be combined as a whitelisted entity.
The response to the user’s live attribute pull request is a signed
timestamped message indicating whether the user with that
KYCid meets the identified MSB’s threshold. This simplifi-
cation eliminates advance on-chain posting of MSB-agnostic
attestations. Appendix B includes details of method 2.

C. Method 3: Windows Around User’s Raw Attribute Interval

method 3 balances resource-access success against public
disclosure. If armed with awareness of MSB-specific transac-
tion success criteria, the user can selectively release via query
the maximally-sized window compatible with a successful
outcome if such a window that includes the user’s raw attribute
value exists. For example: an MSB may require credit scores
to be at or above a specified threshold, or the number of
past loan application rejections to be at or below a specified
threshold; an MSB may provide service only to users who
reside within a specified zip code range. Release of one or
more consecutive interval labels occurs, where users may
or may not be aware of the mapping of interval labels to
raw attribute values bounded by interval endpoints. A user
can determine from their blockchain-posted attestations what
specific interval label of m possibilities was associated with
the user for that dataType. This interval label, denoted by k, is
an attributeValue although the user releases a disguised form.

IV. QUERY: USER INVOKES MSB SMART CONTRACT

The user accesses their wallet via a client to gen-
erate walletSig as the signature of walletAddress, which
when hashed and combined with walletAddress produces
attestationPointer as in (1). This, along with List(dataType),
serves as a reference to attestations on the blockchain. The
body of the transaction includes, in part, hash(walletSig) and
List(dataType). walletAddress is derivable from the wallet
public key, which, in turn, is derivable from the message,
signature and a recovery identifier used to disambiguate. In
the case of method 1 and method 2, the transaction also
includes List(nonceSigKD), where nonceSigKD is expressed
in (2) for nonceSig values generated over nonce by the
user’s wallet private key for each nonce retrieved from the
blockchain as corresponding to an attestation of interest. In
method 3, the transaction includes preimgUp and/or preimgDn
as subsequently defined in (6) and (8), and (7) and (9),
respectively. The user generates these based on recomputation
of nonceSig from retrieved nonces, and solving for k of the
retrieved attestations. The user may be aware of the expected
value of k via a third-party source that monitors user data.

V. QUERY: KYC SMART CONTRACT CODE EXECUTION

The KYC smart contract spans across invocation by all MSB
smart contracts. The KYC smart contract attempts retrieval of
KYCid and dataType by using rederived attestationPointer in
(1) based on MSB smart contract- supplied hash(walletSig)
and walletAddress. If the attestationPointer is absent, the
KYC smart contract returns an attestationNotFound error. The
KYC smart contract chooses the most recently blockchain-
posted attestation of each dataType within List(dataType) for
recomputation of the attestation to check for a match. If
there is no match on a dataType, the KYC smart contract
returns an error for that dataType. If an MSB smart contract
includes attributeValues or preimgUp/preimgDn values within
its invocation of the KYC smart contract, the KYC smart
contract forms the attestation using the given values and
checks for a match. In method 1, if the MSB smart contract
does not supply attributeValues for the given dataType, the
KYC smart contract performs exhaustive search over possible
attributeValues of dataType until it finds a first match, if any.

VI. METHOD 3 CONSTRUCTIONS

We utilize one-way hash function chains, wherein anyone
can iteratively apply a one-way hash function but cannot fea-
sibly reverse the process to find hash preimages of values they
were not involved in generating in the forward direction. We
denote applying hash() a total of t times by hasht(bitstring),
where hash0(bitstring) = bitstring. An attestation authorizes
the user to initiate a query by creating an open or closed
“sandwich” to selectively reveal a window around their current
raw attribute value of a given dataType. An open sandwich
involves the user introducing a single bound (either lower or
upper), while a closed sandwich involves the user including
both bounds. In the open-on-top sandwich type, the user
chooses the disclosed lower bound interval label i ≤ k, where

k is the potentially hidden interval label corresponding to
the interval in which the user’s raw attribute value lies. The
dataType-specific value m denotes the number of raw attribute
intervals labeled consecutively from 1 to m. In the open-on-
bottom sandwich type, the user chooses the disclosed upper
bound interval label m + 1 − j ≥ k. A closed sandwich is
comprised of the conjunction of open sandwiches of both
types. The minimal disclosure open-on-top sandwich sets
i = 1, and the maximal disclosure open-on-top sandwich sets
i = k. Analogously, the minimal disclosure open-on-bottom
sandwich sets m + 1 − j = m, i.e., j = 1, and the maximal
disclosure open-on-bottom sandwich sets m+1− j = k, i.e.,
j = m + 1 − k. Regarding minimal disclosure, proving that
k ≥ 1 or k ≤ m might appear to be vacuous. But this will not
be the case when we subsequently introduce the concept of
raw attribute sub-intervals. Fig. 5 depicts both attestation and
query processing that we now explain in mathematical detail.
An attestation is comprised of an attestUp and attestDn pair:

attestUp = hashk(windowUp) (4)

attestDn = hashm+1−k(windowDn) (5)

fill = dataType || updateIndex || KYCid || hash(nonceSig); and

windowUp = hash(0|| fill) (6)

windowDn = hash(1|| fill) (7)

Unlike the similar-looking expression for nonceSigKD in (2),
we include KYCid here because, unlike method 2 detailed
in Appendix B, method 3 uses a consolidated attestation
generation method that does not deploy two-phase tokeniza-
tion. For certain dataTypes, the system configuration may
issue only either attestUp or attestDn. Additional granularity
of dataTypes is possible, such as subdivision of the credit
score dataType corresponding to credit bureau- specific credit
scores. Neither the tokenization processors nor the coordinator

Fig. 5. Sandwich value selection.

accesses information about k (to the extent that users do not
divulge later via selective disclosure) if KYC processors gen-
erate attestation values using privately held hash(nonceSig).

Let:
preimgUp = hashk−i(windowUp) (8)

and
preimgDn = hashm+1−k−j(windowDn) (9)

To provably narrow the window around k, during query the
user transacts via the appropriate MSB smart contract by
computing preimgs, i.e., a preimgUp and/or a preimgDn, for
each targeted attestation. The decision of which to submit
and the choice of the values of i and/or j depend on the
intended level of windowing. The outer hash function within
(6) and (7) avoids disclosure of hash(nonceSig), by the user
legitimately setting i to k or j to m + 1 − k, which would
jeopardize its future use. An MSB smart contract provides
List(preimg) when invoking the KYC smart contract. Note that
if we replaced k by k − 1 in (4) and (8), or m + 1 − k by
m− k in (5) and (9), there would be no way to prove that k
is bounded below by 1 or bounded above by m, respectively,
since setting i = 0 in (8) or j = 0 in (9) would not prove
anything. Heuristically, attestUp and attestDn provide only the
“haystack,” whereas preimg values narrow the window where
one should look to find the “needle.” Users set values of i
and/or j by balancing their tolerance for the level of exposure
surrounding their k value for the given dataType against
prioritizing a successful outcome. Fig. 6 depicts query using a
closed sandwich. Fig. 7 exemplifies the attestation-“widening”
extension of the basic sandwich method, as explained below.

The MSB smart contract provides the i and/or j values to
the KYC smart contract, or the KYC smart contract hashes a
received preimgUp as in (8) until the result equals attestUp
as in (4) or the number of hashes performed would exceed an
available upper bound. If the result equals attestUp, the KYC
smart contract determines i such that the user’s raw attribute
value occurs within raw attribute interval i or greater:

hashi(preimgUp) = hashi(hashk−i(windowUp)) = attestUp

Note that there is exposure of only i and not k. Similarly,
the KYC smart contract hashes a received preimgDn as in (9)
until the result equals attestDn as in (5) or the number of
hashes performed would exceed an available upper bound.
If the result equals attestDn, the KYC smart contract yields
j where the user’s raw attribute value is located within raw
attribute interval m+ 1− j or lesser (leaving k unexposed):

hashj(preimgDn) = attestDn

attestation transactions can incorporate dataType-specific m
values to set an upper bound. The MSB smart contract or
the KYC smart contract should check that the user-generated
received values are of hash-word length or so truncate them to
prevent a cheating user from successfully using their knowl-
edge of a hash preimage of windowUp to “prove” their raw
attribute value is located within raw attribute interval k + 1.

Fig. 6. Sandwich closed example.

Fig. 7. Closed example of sandwich method using attestation widening.

Such a check also ensures that the user’s knowledge of a
hash preimage of windowDn is insufficient to “prove” their
raw attribute value is located within raw attribute interval
k − 1. The system assures that an MSB smart contract that
invokes the KYC smart contract is authorized to do so if the
KYC smart contract includes code that processes an originator
signature. The user, as originator of a transaction that results
in an MSB smart contract invoking the KYC smart contract,
includes within that signed transaction the identifier of the
MSB smart contract and the intended epoch. The KYC smart
contract verifies the signature using the wallet public key
that matches the walletAddress of the attestationPointer, and
checks that msg.sender matches the address of the invoking
MSB smart contract. It also checks that the signed “epoch”
value is consistent with the current blockchain epoch.

We now extend the capabilities of the sandwich method
to give the user increased flexibility in their choice of user-
selectable windowing via query. windowing can manage arbi-
trary dataTypes with or without implied order of raw attribute
values across labeled intervals. However, users cannot prove
their raw attribute values lie within intervals more finely gran-
ulated than those set up through KYC processor- administered
assignment of interval labels on an MSB-agnostic basis.

There are two ways to divide raw attribute intervals. Sup-
pose we want to divide the intervals into four equal pieces
each. The first way establishes the attestUp and/or attestDn
using a k value between 1 and 4m. As an example, the
first interval originally labeled k = 1 is attestable using (4)

by hashing between one and four times depending on the
specific sub-interval the raw attribute value lies in. This is
an attestation-“deepening” solution, as the size of attestUp
remains unchanged at the expense of additional consecutive
hashing. Under an attestation-“widening” solution, m stays
constant throughout potentially iterative subdividing of in-
tervals. This maintains the original amount of hashing, at
least during a query. This second way to divide raw attribute
intervals establishes the attestation, i.e., attestUp and attestDn,
by distinguishing four types of raw attribute sub-intervals. If
we do not wish to reveal via the attestation which sub-interval
type the user’s raw attribute value lies in, then we must widen
the attestation to cover all four types. The inclusion of dummy
values as attestUp and attestDn placeholders corresponding to
those quarter-interval types (among 1st, 2nd, 3rd, and 4th)
that do not include the user’s raw attribute value would serve
the purpose of hiding within the attestation identification of
the populated quarter-interval type without sacrificing provable
conveyance during query of the non-dummy quarter-interval
type. Under this dummy value paradigm, the user necessarily
discloses their populated raw attribute sub-interval type during
a successful query, and there is a limitation in the user
releasing bounded windows using only the non-dummy raw
attribute quarter-interval type. We explore next an attestation-
widening solution that distinguishes raw attribute sub-interval
types without causing this unnecessary information leakage.

The goal is to ascertain a security profile that is identical
to that of the deepening solution. We exemplify the refined
attestation-widening method by using raw attribute quarter-
intervals, with fill as defined for (6) and (7):

windowUp0 = hash(000|| fill); windowUp1 = hash(001|| fill);

windowUp2 = hash(010|| fill); windowUp3 = hash(011|| fill);

windowDn0 = hash(100|| fill); windowDn1 = hash(101|| fill);

windowDn2 = hash(110|| fill); windowDn3 = hash(111|| fill)

Suppose a user’s raw attribute value occurs in the 2nd of four
raw attribute quarter-intervals of the kth raw attribute interval:

attestUpint = hashk−1(windowUpint), int = 2, 3;

attestUpint = hashk(windowUpint), int = 0, 1;

attestDnint = hashm+1−k(windowDnint), int = 1, 2, 3;

attestDnint = hashm+1−(k+1)(windowDnint), int = 0

The user performs a query by using one of the above
attestUpint and/or one of the above attestDnint. Using credit
score as an example dataType, suppose that a user’s ac-
tual credit score is 735, thus within the second (i.e., 725-
749) raw attribute quarter-interval of the previously config-
ured 700-799 raw attribute interval. For credit scores be-
ginning at 300 and raw attribute intervals of length 100,
we would have k = 5. Further suppose a particular MSB
requires a credit score that exceeds 570 to qualify for a
loan: The user reveals their credit score is at least as high

as in the 575-599 raw attribute quarter-interval by utiliz-
ing attestUp3 that (blindly) corresponds to the 675-699 raw
attribute quarter-interval. The user sets i = 3, so that
preimgUp3 = hashk−1−i(windowUp3) = hash(windowUp3),
which the user computes as hash2(011 || fill). There would be
greater information leakage in the presence of dummy values
for attestUp0, attestUp2 and attestUp3, since, to qualify for
a successful outcome, the user would have to reveal their
credit score is at least as high as 625 by setting i = 4
and utilizing attestUp1 blindly corresponding to the 725-749
raw attribute quarter-interval. If the user chooses to provably
reveal their credit score is in the 725-749 raw attribute quarter-
interval, they will use both attestUp1 and attestDn1, setting
i = 5 = k and m + 1 − j = 5 = k (i.e., j = 2 where
m = 6 to accommodate credit scores from 300 through
850). This would expose both windowUp1 and windowDn1,
but not hash(nonceSig). We further note that windowing is
configurable to enable the user to provably narrow within
the actual raw attribute interval in which their raw attribute
value occurs without the attestation process enduring the
communications or computational cost of quantizing to that
level throughout: exploiting a fractal viewpoint for the specific
raw attribute interval that contains the user’s raw attribute
value, we specify generation of an attestation that is comprised
of specialized values attestUpFinal and attestDnFinal. In this
case, we replace m in (5) and (9) by intervalLength that
conveys the number of discrete subdivisions of the kth raw
attribute interval (or of the raw attribute sub-interval within
the kth raw attribute interval). The granularity of subdivision
can be down to the level of all possible raw attribute values
within the kth raw attribute interval (or the appropriate raw
attribute sub-interval) for discretely populated dataTypes. In
our example, we would have (for intervalLength = 25):
attestUpFinal = hash11(windowUpFinal) (since 735 = 725 +
10) and attestDnFinal = hash25+1−11(windowDnFinal) for,
say differentiated windowUpFinal = hash(0111 || fill) and
windowDnFinal = hash(1111 || fill). Then the user can provably
further narrow within the raw attribute quarter-interval 725-
749, potentially down to 735. intervalLength is not neces-
sarily the same for all raw attribute intervals/sub-intervals
of a given dataType. Logically, each MSB smart contract is
coded to ignore output of KYC smart contract execution of
inputs purported to be specialized preimgs (i.e., preimgUpFinal
and/or preimgDnFinal) unless the necessary conditions are met.
Namely: the query successfully results in narrowing to a single
raw attribute interval (or single raw attribute sub-interval), i.e.,
i = m+1−j; the raw attribute sub-interval type, if any, of the
matched attestUp is the same as that of the matched attestDn.

VII. RELATED WORK

There are alternatives to our contributions that are less
private or more generic in their approach to the blockchain-
compatible release of user information relevant to success-
ful access to a resource. Unlike our methods, there is no
customized splitting of functionality and of access to secrets
across components per the least privilege principle.

A. NFT-Based Import of KYC/AML Status

ERC-1155 [11] enables a scaled-back version of KYC
import [12] with the limitation that direct on-chain attestations
of user attributes are immediately visible without a user-
initiated query. Without a coordinator, each issuer’s public
key is whitelisted within the KYC smart contract that the
issuer calls to register/update user KYC/AML status as as-
sociated with a user-specific KYCid. Across issuers, there is
uniform generation of KYCid values without outsourcing to
tokenization processors. Irrespective of the reliance on (non-
transferable) NFTs as representative of users’ status, only
authorized issuers can generate function parameters. Relative
to the pseudonymous but visible form of query, when a user
interacts with an MSB smart contract such transaction results
in a user status check via the wallet address associated with
the signed transaction. An off-chain issuer-invariant database
is lacking in this coordinator-less model. As an alternative to
our outsourced tokenization and attestation processing, the key
management here could potentially use Shamir secret sharing
and on-premise or cloud-based enclaves hosted by the issuers.

B. Zero Knowledge Meets Smart Contract

Semaphore [13], [14] is “a zero-knowledge signaling frame-
work highly inspired by Zcash, providing a method for users
who are part of a group to broadcast an arbitrary string
without exposing their identity.” It is a generic privacy-
preserving base layer on top of which Ethereum applications
are buildable. It uses zk Succinct Non-Interactive Arguments
of Knowledge (zk-SNARKs) to prove that the user registered
via the Semaphore smart contract an identity commitment
within a Merkle tree as a hash of their public key and
randomly generated secrets. It also assures that the signal was
only broadcasted once, and by the user who generated the
proof. Our reputation visibility and pseudonym consistency
requirements are inconsistent with Semaphore’s “anonymous
authentication, where members of a group can login to a
service without revealing which member of the group they
are and in the process hide their transaction history.”

As [15] points out, “Intuitively, one can imagine a naive
implementation of Zcash that copies Bitcoin’s unspent trans-
action output (UTXO) model, but where each UTXO’s data
is kept off-chain. In its place, a hash is kept on-chain, and
a zero-knowledge proof is used to prove that some address
has the right to consume the UTXO.” Cryptocurrency-only
transactions benefit from zk-based anonymity, such as that
offered by Zcash. However, for the De-Fi applications on
which we focus, we want the user to establish a pseudonymous
(KYCid-linked) on-chain reputation not subject to disavowal
except under stipulated authorized circumstances. This should
hold true even if a user changes their wallet and/or issuer (such
as a KYC processor) which they use to onboard or re-onboard.

C. On-Chain Attest via Decentralized Identity Management

[16] is predicated on a premise that centralized ID fed-
eration and management along with services that utilize tra-
ditional verification systems for identity authorization do not

provide sufficient trust for applications dependent on KYC.
Although the trust assumptions differ from ours, elements in
common include deployment on a permissionless blockchain,
and the avoidance of storage of user ID information on the
blockchain and thus the inherent complexities of regulatory
compliance such storage would imply. [16] is incompatible
with Ethereum. Its Delegated Proof of Stake (DPOS) con-
sensus mechanism distributes time slots randomly to active
participants to assure against monopolization of block creation.
Their blockchain executes two types of non-utility transactions
for consensus management (i.e., seed-part and evidence) and
three types of utility transactions that result in gain or loss
of tokens (i.e., payments, identity verification requests and
attestations). Unlike our use of a KYC smart contract, the
self-sovereign approach of [17] (which is designed to operate
as a parachain of the Polkadot blockchain) conducts claim
verification against an attestation off-chain: for each user
attribute within a claim, a Merkle proof incorporates either
its value and its nonce or the resultant hash of that pairing.

VIII. CONCLUSIONS AND FUTURE WORK

Our contribution to DeFi provides lenders with the capa-
bility to make automated decisions on prospective borrower
requests that account for users’ choice regarding the degree to
which they are willing to disclose provably-sourced relevant
data. Users can compare publicly advertised terms across
lenders, while lenders benefit from visibility into transactions
that users initiate with other lenders and into such lenders’
responses. We achieve these goals using three methods that
we customize for maximal efficiency and privacy preservation
specific to their operational setting. During query, the user
signs using a wallet that earlier submission of the attestation
now identified by the query had specified. Our sandwich
method enables the desired pseudonymous control by the user
over selective release of aspects of their attribute value with-
out encumbrance of a zero-knowledge-based setup procedure.
Certain aspects of these techniques have been patented [18].

In contrast to stateless reproducibility of deterministic sig-
natures generated by a single user wallet, one area of future
work would extend our model to accommodate: multiple
wallets corresponding to a single user pseudonym in a k-
out-of-n quorum environment; a business for which different
members or groups have (potentially hierarchical) signing
authority to ensure resilient and secure operation. This should
be achievable through a judiciously chosen combination of
multisignature, threshold signature and ring signature tech-
niques. However, the requirement for stateless generation by
wallets of a per-message uncorrelated random/pseudorandom
component within elliptic curve-/discrete log- based signatures
presents security and performance challenges [19].

Ideally, there should be a low probability of false negatives
in extracting data from user-presented forms of identifica-
tion corresponding to the same user as utilized to populate
fields used as precursors for identity tokenization. Conversely,
identity tokenization should be set up to gather sufficient
information to avoid false positives across different users.

A construct such as pairwise-pseudonymous decentralized
identifiers (DIDs) [20] can run counter to the goals of a
reputation-based system, as it would allow an individual to
have multiple context-dependent identities. Techniques such as
locality-sensitive/fuzzy hashing [21] are applicable, with the
caveat that there are constraints in practice based on privacy
concerns around retention for secondary screening of raw
data/images collected by identity verification services. Prefer-
ably, irreversible feature-extraction (deep learning) represen-
tations of such raw data are potentially usable instead [22].

APPENDIX A: TOKENIZATION SCHEMA

In this section, we present our multi-party token generation
methodology that is designed to address the pseudonymous
presence of the user on the blockchain, sanitization and sub-
sequent personalization of raw attribute intervals, respectively.

As mentioned in Section VII-A, issuers as KYC proces-
sors could directly tokenize such that the requirement of
uniform results across them is met. However, outsourcing
to independently operated tokenization processors that act
sequentially or in parallel renders the process decentralizable
and proactively refreshable without compromising the inputs.
Sensitive information is mapped to an elliptic curve point that
is transiently blinded via scalar multiplication by a random
value. The secret scalars held uniquely by each tokenization
processor multiply or add together to a constant, although each
scalar can be updated as an element of a resplitting operation
to thwart successful overall compromise. This remains true
unless compromise is so tightly orchestrated across all partic-
ipating tokenization processors as to succeed. Because of the
commutativity of scalar multiplication, sequential or parallel
multiplication by secret scalars does not impair the ability to
unblind final or intermediate results via multiplication by the
inverse of the random value previously applied as blinding fac-
tor. Combinations of the parallel additive and sequential mul-
tiplicative application of secret scalars comprehensively retain
the resplit capability that safely enables business continuity of
tokenized values. This is especially relevant in an immutable
blockchain deployment. Following up with the application of
HMAC keys that can be differentiated based on token type
renders the resultant tokens non-invertible even if these (non-
resplittable) keys are later compromised. Beyond the use of
multiple tokenization processors, each tokenization processor
can be partitioned, as can its partitions (reminiscent of the
fractal makeup of Merkle trees). In the case of tokenization
of the user’s identifying information, the resultant preKYCid
can be used as the ultimate KYCid, or the coordinator can
maintain in its database an associated randomly generated
value to be used as the on-chain KYCid. The latter approach
enables authorized severing of the association of the user to
a past-utilized KYCid, where such association can potentially
be reestablished via the user’s redeployment of a wallet that
was associated with such previously utilized KYCid. Provided
that the wallet has not been compromised, signing of a freshly
generated nonce proves the user’s association.

Table I shows the elliptic curve computations used within
Appendix B and demonstrates flexibility in varied circum-
stances, such as tokenization as requested of tokenization
processors by a KYC processor vs. personalization overlay
by an uberProxy of an unterProxy-held attributeValueToken.
The commutative Pohlig-Hellman encryption/decryption oper-
ations [23] use the same math as elliptic curve Diffie-Hellman
ephemeral key agreement for communications security such
as provided by the ECDHE-ECDSA TLS cipher. The Pohlig-
Hellman cipher has resurfaced due to its applicability to private
set intersection [24], e.g., COVID-19 contact tracing [25]. The
process outlined in Table I shows the requestor deriving an
elliptic curve point P from data, blinding P , and commu-
nicating the blinded P to Processor A1 and Processor A2

simultaneously to allow them to apply their respective secrets
(i.e., a1 held by Processor A1 and a2 held by Processor
A2). These two processors may be consolidated into a single
processor, Processor A, in which case that processor would
apply its single secret a. Upon receiving both processors’
results, the requestor adds them together and unblinds it
(where if there is a single processor, there is no addition as
only one result is received). The requestor then communicates
with Processor B, enabling Processor B to apply its secret b.
If there is only a Processor A, then the result of step 4 is baP .
Finally, Processor B applies an HMAC key, the value of which
is dependent on the token type. This processing can be utilized
to generate preKYCids and attributeValueTokens. In the case
of preKYCids, the input P can be derived from the user’s
identifying information. In the case of attributeValueTokens,
the input P can be derived from the raw attribute interval. The
input to derive P for attributeValueTokens may also include
the dataType. The requestor is the KYC processor, and the
secrets a1, a2 and b are the static secrets securely held by
Processors A1, A2 and B, respectively (i.e., the tokenization
processors). The KYC processor should have no knowledge of
the finalized preKYCid or the attributeValueToken. Hence, all
five steps should be used, necessitating use of Processor B.

APPENDIX B: DETAILS OF METHOD 2

The goal of method 2, as introduced in Section III-B, is to
utilize a 3rd-party proxy to minimize the amount of informa-
tion about the raw attribute value that is publicly disclosed via
query. While method 3 grants a greater degree of flexibility
in the granularity of user control than does method 2 there
may be circumstances in which users do not wish to pursue
participation in windowing. It may be essential to allow the
capability of method 2 for dynamic and/or private enforcement
of MSB-specific requirements levied on users for a successful
outcome where the MSB smart contract code does not reflect
such details. The use of a proxy does introduce complexity
that may not be considered a universally worthwhile tradeoff.

Bulk Attribute Value Tokens Generation and Proxies Setup

The dataType-specific attributeValueTokens (prior to person-
alization) may be precomputed in bulk by the KYC processor
in conjunction with the tokenization processors, stored at the

coordinator, and distributed on-demand to authorized proxies
during a setup procedure described herein. Efficient operation
requires precomputation of sets of [dataType, raw attribute
interval, attributeValueToken] tuples for proxies to receive
upon setup, for those dataTypes they are authorized to address.
An example of such a set is a collection of contiguous non-
overlapping credit score intervals that span the set of credit
score values. unterProxies that gain such access constitute part
of the core infrastructure in that, unlike uberProxies that are
denied such access, they are not MSB-specific. In addition
to blinding all raw attribute intervals for a given dataType to
request tokenization processing of these raw attribute intervals,
the KYC processor applies a permutation that is randomly
or pseudorandomly generated for each dataType to deny the
coordinator the capability to map raw attribute intervals to
tokens. These attributeValueTokens are independent of any
data/metadata ancillary to the raw attribute intervals (other
than dataType, if appended to the raw attribute interval when
submitted for tokenization to avoid potential collisions of
attributeValueTokens across multiple dataTypes). In particu-
lar, the attributeValueTokens are not yet personalized. An
authorized proxy receives [dataType, raw attribute interval,
attributeValueToken] tuples required to convert raw attribute
values/intervals received from users to attributeValues in the
form of personalizedAttributeValueTokens. The KYC proces-
sor sends to a proxy the dataType-specific permutation for
each dataType that the proxy is authorized to process. The
coordinator sends to the proxy the set(s) of locally stored
attributeValueTokens of the indicated dataTypes. The proxy
restores these permuted attributeValueTokens to their proper
order of associated raw attribute intervals.

Roles and Access: uberProxy vs. unterProxy

Deployment of proxies (whether of distinguished uberProxy
vs. unterProxy nature or as one monolithic proxy) enables a
user-specific tokenized form of a raw attribute interval as a
personalizedAttributeValueToken, as was introduced in Section
III-B. This validates that one or more user-associated raw at-
tribute values satisfy MSB-specific requirements (e.g., pertain-
ing to credit scores or zip codes) without exposing the granular
data to the publicly accessible immutable blockchain. It is
preferable that the KYC processors, tokenization processors,
coordinator, MSB smart contracts and KYC smart contract
each be able to operate under the following constraints: no
awareness of MSB-specific application-level policies, which
can change dynamically; no sacrifice of the capability to
validate (or reject) attestations through query usefully; no
need to update the code of the KYC smart contract (or even
that of the MSB smart contract); no need to modify the
construction of raw attribute intervals. It is the responsibility
of the proxy (or, more specifically, the uberProxy) to be
aware of and enforce aspects of MSB-specific policy. While
some such aspects may become publicly discernible based on
outcomes, others may remain proprietary to the relationship
between MSBs and their delegated uberProxies. Dependent on
implementation and regulatory constraints, users may be able

TABLE I
POHLIG-HELLMAN- AND HMAC- BASED TOKENIZATION AND PERSONALIZATION

Requestor Processor A1 Processor A2 Processor B
(1) Derives P ; blinds P with e ⇒ eP

(2(a)) Applies a1 to (2(b)) Applies a2
eP ⇒ a1eP to eP ⇒ a2eP

(3) Computes a1eP + a2eP ; applies e−1 ⇒ (a1 + a2)P
(4) Applies b ⇒ b(a1 + a2)P

(5) Applies appropriate HMAC key

to opt-in or out of such a granular data-suppression system
without affecting their ability to meet MSB-specific KYC
requirements for service fulfillment at the application level.

Users communicate directly with an uberProxy designated
by the MSB of interest, such as via whitelisting of the
uberProxy public key within the corresponding MSB smart
contract. The unterProxies have the attributeValueTokens used
to compute the personalizedAttributeValueTokens, but are at
least transiently blinded by the uberProxy from access to
user-specific information that could otherwise aid in targeting
specific users as victims of false-negative matching results
during KYC smart contract execution of queries. Typically,
each unterProxy possesses the set of attributeValueTokens for
a given dataType, although dataTypes may be divisible into
granular dataTypes with access by unterProxies potentially
refined accordingly. For example, a dataType comprised of
zip code information is divisible into subordinate dataTypes
corresponding to geographical regions. There may be multiple
unterProxies in charge of the same dataType for reason of
load-balancing. In this case, an MSB might be able to provide
a preference for which unterProxies it would like a designated
uberProxy to utilize in processing. An uberProxy can be split
and remain compatible with Ethereum by utilizing ECDSA
threshold signatures that are verifiable using an associated
public key that is invariant of the split-control specifics [26].

Proxy-Based Personalization of Attribute Value Tokens

We detail here how a proxy system involving an uberProxy
and unterProxy derives a personalizedAttributeValueToken to
be leveraged by the user. Expounding upon Fig. 3, this process
is depicted in Fig. 8 below. To begin utilizing a proxy, a user
communicates privately, via a client, with an uberProxy to
perform a query against attestations. The user accesses their
wallet to generate walletSig (via application of the wallet pri-
vate key), which in combination with walletAddress produces
attestationPointer as in (1). The attestationPointer and the
dataTypes in the selected List(dataType) serve as a pointer to
the attestations on the blockchain, which the MSB smart con-
tract is instructed to query against. Using attestationPointer,
the user retrieves List(nonce) and List(updateIndex), and
signs each nonce to form List(nonceSigKD) as in (2). The
user provides the uberProxy with their wallet public key,
List(dataType), List(nonceSigKD), walletSig, MSB smart con-
tract ID and raw attribute value or raw attribute interval
for those attributes that (based on dataType) are expressed

in tokenized form. The uberProxy begins processing by re-
computing attestationPointer. The uberProxy uses the re-
sult to retrieve from the KYC smart contract the KYCid,
List(nonce), List(updateIndex) and the latest userTxnNonce
for each dataType in List(dataType). The userTxnNonce is a
native blockchain nonce used within the blockchain infrastruc-
ture and incremented with each successive native blockchain
signature generated by the user wallet. The uberProxy incor-
porates the derived value, userTxnNonce + 1, as an argument
of its signature to enable the MSB smart contract to check
the freshness of the proxy signature as measured against the
natively signed transaction received from the user. The uber-
Proxy checks the MSB policy for the acceptable threshold(s)
for the dataTypes sent and any instructions concerning routing
to specific unterProxies. The uberProxy determines which
raw attribute interval to convert to an attributeValueToken
to be used in creating the personalizedAttributeValueToken.
For clarity in explanation, the description here shows only
the decision process for the credit score dataType. However,
the process will be similar for other dataTypes amenable to
partial or total ordering. In the description here, x represents
the MSB-specific policy threshold for acceptable credit scores,
where the MSB sets the credit score threshold as the highest
value within a raw attribute interval. Upon the input by
the user of the credit score (or a raw attribute interval of
scores), the uberProxy determines if the credit score is greater

Fig. 8. Personalization of attributeValueTokens.

than the necessary threshold x as determined by the MSB-
specific policy. If the credit score does not exceed x, then the
first raw attribute interval that would exceed x is used, i.e.,
[x+1, x+nint] where nint is the size of the raw attribute interval
in question. If the credit score is higher than x, then the raw
attribute interval of the submitted credit score is used. This
description focuses on why the choice of attributeValueToken
results in a match or not during query execution by the KYC
smart contract and therefore why the credit score would or
would not be approved by the MSB smart contract. Approval
of the credit score may be for one of two reasons: the user-
provided credit score or raw attribute interval matched the
attested raw attribute interval and exceeded the threshold of
x; or the attested raw attribute interval exceeded the threshold
of x, and this raw attribute interval matched the raw attribute
interval selected by the uberProxy as higher than that provided
by the user. If the credit score was not approved, then it may
be for one of three reasons: the incoming raw attribute interval
did not match the attested raw attribute interval, although they
both exceeded the threshold of x; or the attested raw attribute
interval was too low for the MSB policy and therefore did
not match the higher raw attribute interval submitted by the
uberProxy; or the attested score was higher than x + nint,
although the incoming raw attribute interval was lower than x
and the raw attribute interval of [x+1, x+nint] was submitted
by the uberProxy. To reduce the possibility of false negatives,
a proxy could send multiple personalizedAttributeValueTokens
for a single queried attestation, where dummy values are
added by the proxy to provide uniformity as a leakage re-
sistance measure. Note that non-uniformity in the number
of personalizedAttributeValueTokens corresponding to a single
attestation that are sent during query by a user targeting an
MSB smart contract could be a potential source of leakage of
information, dependent on the rationale (such as a disparity in
credit scores across credit reporting agencies and/or a credit
score that is at or near the edge of a raw attribute interval). In
lieu of or in addition to a query resulting in a proxy sending
multiple personalizedAttributeValueTokens per attestation, the
coordinator could send multiple attestations to the KYC smart
contract. These choices may have bearing on the lengths and
number of raw attribute intervals set by the system for each
dataType supported by the proxy method.

Prior to transmission to the unterProxy the uberProxy blinds

personalizationInfo = hash(KYCid || nonce) (10)

The uberProxy converts personalizationInfo to an elliptic
curve point P and applies a random scalar, e, to form

blindedPersonalizationInfo = eP (11)

The uberProxy transmits to an unterProxy equipped for the
relevant dataType: (a) blindedPersonalizationInfo; (b) desig-
nation of the submitted raw attribute interval(s); (c) uberSig,
as the uberProxy’s signature computed over (a) and (b). Upon
receiving such a request, the chosen unterProxy of the sev-
eral unterProxies utilizes its previously provisioned accessible
database of [raw attribute interval, attributeValueToken] tuples

for retrieval of the appropriate attributeValueTokens as based
on the raw attribute interval(s) designated within the request.
The unterProxy determines which stored attributeValueTo-
kens to use, applies a scalar representation, p, of each such
attributeValueToken to a provided eP to form a

blindedPersonalizedAttributeValueToken = peP (12)

and transmits to the uberProxy: blindedPersonalizedAttribute-
ValueTokens; unterSig = signed blindedPersonalizedAttribute-
ValueTokens. Upon receiving the response from the unter-
Proxy, after verifying unterSig, the uberProxy unblinds the
blindedPersonalizedAttributeValueToken by applying the in-
verse of the previously applied blinding factor, e, to form the

personalizedAttributeValueToken = hash(pP) (13)

The uberProxy signs MSB smart contract ID, hash(walletSig),
userTxnNonce + 1, List(dataType), List(nonceSigKD), and
tokens = List(personalizedAttributeValueToken) to produce
proxySig, as transmitted with tokens to the user.

Partitioning of unterProxy

Computation is parallelized in the case of a partitioned
unterProxy. The uberProxy, and unterProxy1 and unterProxy2
comprise the proxy. Using HMAC key K chosen for this
purpose, provision unterProxy1 for a given dataType with

p1 = HMAC(K, y) || HMAC(K, y + 1) mod n (14)

and provision unterProxy2 for the same dataType with

p2 = HMAC(K, y+2) || HMAC(K, y+3) mod n (15)

where y is the result of step (4) in Table I during the
tokenization of raw attribute values, and n is the order of the
elliptic curve.

The coordinator forms p1 and p2 where (p1+p2) (mod n)
is the attributeValueToken it subsequently personalizes.

unterProxy1 applies p1 to the blindedPersonalizationInfo
computed by the uberProxy, as in (11), and sent to
unterProxy1. Similarly, unterProxy2 applies p2 to the
blindedPersonalizationInfo computed and sent to it by the
uberProxy. unterProxy1 and unterProxy2 return, respectively:

blindedPersonalizedAttributeValueToken1 = p1eP (16)

blindedPersonalizedAttributeValueToken2 = p2eP (17)

The uberProxy then sums, unblinds and hashes to produce

personalizedAttributeValueToken1,2 = hash((p1+p2)P) (18)

Finally, we outline the proxy method considerations that
arise when relating the material included earlier in Ap-
pendix B to Sections III, IV and V and Appendix
A. Beyond the user’s wallet public key, hash(walletSig),
List(dataType) and List(nonceSigKD), also included in the
user’s transaction is proxySig and List(attributeValue) =
List(personalizedAttributeValueToken), where the proxy com-
puted each personalizedAttributeValueToken. The token com-
putation processing as presented in Table I is utilized during

the personalizedAttributeValueToken generation as completed
in (13) and (18). Only the first three steps should be used
here, as the uberProxy (as requestor) is the one that should be
in possession of the final value. In the scenario described in
Appendix A, Processor A1 and A2 are either combined as a
single unterProxy that holds a secret p as used in (12), or the
split is retained as unterProxy1 and unterProxy2. unterProxy1
holds the secret p1 as in (14), and unterProxy2 holds the secret
p2 as in (15). The input to derive P is the personalizationInfo
as (10). If the unterProxy is split, the uberProxy completes
step (3) as in Table I, followed by a hash to form (18). If the
unterProxy acts as a single processor, then the uberProxy does
the computation resulting in (13) without the addition portion
of step (3), as there is only one received value. The exhaustion
process discussed in Section V does not apply to attributeVal-
ues that are in the form of personalizedAttributeValueTokens.
If the KYC smart contract has attributeValueTokens available
to construct personalizedAttributeValueTokens, it defeats the
purpose of otherwise carefully limiting access. Knowledge of
attributeValueTokens (even without their raw attribute inter-
vals) would enable correlation of attributeValues across users
if the information required to complete the computation of
attributeValues were publicly available via the blockchain.

Achieving greater user privacy entails replacing the nonce
argument of (10) by a value that is not derivable from
data that surfaces on the blockchain, e.g., nonceSig* =
hash(hash(nonceSig) || updateIndex), as provided by the user’s
client to an uberProxy trusted to represent the MSB. This
defies after-the-fact reconstruction of (13) or (18) by an errant
unterProxy or partitioned unterProxy under collusive attack.
It prevents correlation against previously exposed personal-
izedAttributeValueTokens without impeding attestation gener-
ation, as the coordinator can compute nonceSig*.

REFERENCES

[1] K. Qin, L. Zhou, Y. Afonin, L. Lazzaretti, and A. Gervais, “CeFi vs.
DeFi - Comparing centralized to decentralized finance,” arXiv, vol.
abs/2106.08157, 2021. [Online]. Available: https://doi.org/10.48550/
arXiv.2106.08157

[2] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and
W. J. Knottenbelt, “Sok: Decentralized finance (DeFi),” CoRR, vol.
abs/2101.08778, 2021. [Online]. Available: https://doi.org/10.48550/
arXiv.2101.08778

[3] W. Dai, “Flexible anonymous transactions (FLAX): Towards privacy-
preserving and composable decentralized finance,” IACR Cryptol.
ePrint Arch., vol. 2021, no. 1249, 2021. [Online]. Available:
https://eprint.iacr.org/2021/1249

[4] S. Kitzler, F. Victor, P. Saggese, and B. Haslhofer, “Disentangling
decentralized finance (DeFi) compositions,” CoRR, vol. abs/2111.11933,
2021. [Online]. Available: https://doi.org/10.48550/arXiv.2111.11933

[5] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner, “Proof-
carrying data without succinct arguments,” in Advances in Cryptology
– CRYPTO 2021, T. Malkin and C. Peikert, Eds. Cham: Springer
International Publishing, 2021, pp. 681–710. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-84242-0 24

[6] D. W. Kravitz and J. Cooper, “Securing user identity and transactions
symbiotically: Iot meets blockchain,” in 2017 Global Internet
of Things Summit (GIoTS), 2017, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/GIOTS.2017.8016280

[7] N. Gaski, “Attributes support,” 2017. [Online].
Available: https://github.com/hyperledger/fabric/blob/
0c07573430f11c50dae713a0add596f3e9959633/docs/source/tech/
attributes.rst

[8] D. Khovratovich, M. Lodder, and C. Parra, “Anoncreds-
spec: Anonymous credentials with type 3 revocation,” 2022.
[Online]. Available: https://github.com/hyperledger/anoncreds-spec/
blob/main/spec/ursaAnonCreds.pdf

[9] “Article 4 GDPR: Definitions,” Intersoft Consulting, 2016, General
Data Protection Regulation. [Online]. Available: https://gdpr-info.eu/
art-4-gdpr/

[10] M. Bellare, G. Fuchsbauer, and A. Scafuro, “NIZKs with an
untrusted CRS: security in the face of parameter subversion,” IACR
Cryptol. ePrint Arch., vol. 2016, no. 372, 2016. [Online]. Available:
https://eprint.iacr.org/2016/372

[11] W. Radomski, A. Cooke, P. Castonguay, J. Therien, E. Binet,
and R. Sandford, “EIP-1155: Multi token standard,” Ethereum,
2018, Ethereum Improvement Proposals. [Online]. Available: https:
//eips.ethereum.org/EIPS/eip-1155

[12] “Getting started,” Quadrata, 2022. [Online].
Available: https://docs.quadrata.com/integration/introduction/
introduction-to-quadrata-web3-passport

[13] K. Gurkan, “Semaphore,” 2022. [Online]. Available: https://github.com/
appliedzkp/semaphore

[14] K. Gurkan, K. W. Jie, and B. Whitehat, “Community proposal:
Semaphore: Zero-knowledge signaling on Ethereum,” White Paper,
2020. [Online]. Available: https://docs.zkproof.org/pages/standards/
accepted-workshop3/proposal-semaphore.pdf

[15] T. Chen, H. Lu, T. Kunpittaya, and A. Luo, “A review of zk-SNARKs,”
2022. [Online]. Available: https://arxiv.org/abs/2202.06877

[16] V. Balahontsev, A. Tsikhilov, A. Norta, and C. Udokwu, “A blockchain
system for the attestation and authorization of digital assets,” Tallinn
University of Technology, Tech. Rep., 07 2019. [Online]. Available:
https://doi.org/10.13140/RG.2.2.25027.96807/1

[17] “KILT white paper,” BOTLabs GmbH Berlin, 2020. [Online]. Available:
https://kilt-protocol.org/files/KILT-White-Paper.pdf

[18] D. W. Kravitz, F. Cheng, M. B. Smith, and M. Z. Halverson,
“Method and apparatus for utilizing off-platform-resolved data as an
input to code execution on a decentralized platform,” May 2023, US
Patent 11,646,897. [Online]. Available: https://image-ppubs.uspto.gov/
dirsearch-public/print/downloadPdf/11646897

[19] F. Garillot, Y. Kondi, P. Mohassel, and V. Nikolaenko, “Threshold
Schnorr with stateless deterministic signing from standard assumptions,”
in Advances in Cryptology – CRYPTO 2021, T. Malkin and
C. Peikert, Eds. Cham: Springer International Publishing, 2021, pp.
127–156. [Online]. Available: https://link.springer.com/chapter/10.1007/
978-3-030-84242-0 6

[20] C. C. G. (W3C), “A primer for decentralized identifiers,” Nov. 2021,
draft. [Online]. Available: https://w3c-ccg.github.io/did-primer/

[21] A. Andoni, P. Indyk, H. L. Nguyen, and I. P. Razenshteyn, “Beyond
locality-sensitive hashing,” CoRR, vol. abs/1306.1547, 2013. [Online].
Available: https://doi.org/10.48550/arXiv.1306.1547

[22] R. Sudharsanan, P. Gopirajan, and K. S. Kumar, “Efficient feature
extraction from multispectral images for face recognition applications:
A deep learning approach,” Journal of Physics: Conference Series
1767 012061, vol. 1767, no. 1, Feb. 2021. [Online]. Available:
https://doi.org/10.1088/1742-6596/1767/1/012061

[23] S. Pohlig and M. Hellman, “An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance (corresp.),”
IEEE Transactions on Information Theory, vol. 24, no. 1, pp. 106–110,
1978. [Online]. Available: https://doi.org/10.1109/TIT.1978.1055817

[24] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena, K. Seth,
M. Raykova, D. Shanahan, and M. Yung, “On deploying secure
computing: Private intersection-sum-with-cardinality,” in 2020 IEEE
European Symposium on Security and Privacy (EuroS&P), 2020,
pp. 370–389. [Online]. Available: https://doi.org/10.1109/EuroSP48549.
2020.00031

[25] A. Berke, M. A. Bakker, P. Vepakomma, R. Raskar, K. Larson,
and A. S. Pentland, “Assessing disease exposure risk with location
histories and protecting privacy: A cryptographic approach in response
to a global pandemic,” CoRR, vol. abs/2003.14412, 2020. [Online].
Available: https://doi.org/10.48550/arXiv.2003.14412

[26] J.-P. Aumasson, A. Hamelink, and O. Shlomovits, “A survey of ECDSA
threshold signing,” IACR Cryptol. ePrint Arch., vol. 2020, no. 1390,
2020. [Online]. Available: https://eprint.iacr.org/2020/1390

https://doi.org/10.48550/arXiv.2106.08157
https://doi.org/10.48550/arXiv.2106.08157
https://doi.org/10.48550/arXiv.2101.08778
https://doi.org/10.48550/arXiv.2101.08778
https://eprint.iacr.org/2021/1249
https://doi.org/10.48550/arXiv.2111.11933
https://link.springer.com/chapter/10.1007/978-3-030-84242-0_24
https://doi.org/10.1109/GIOTS.2017.8016280
https://github.com/hyperledger/fabric/blob/0c07573430f11c50dae713a0add596f3e9959633/docs/source/tech/attributes.rst
https://github.com/hyperledger/fabric/blob/0c07573430f11c50dae713a0add596f3e9959633/docs/source/tech/attributes.rst
https://github.com/hyperledger/fabric/blob/0c07573430f11c50dae713a0add596f3e9959633/docs/source/tech/attributes.rst
https://github.com/hyperledger/anoncreds-spec/blob/main/spec/ursaAnonCreds.pdf
https://github.com/hyperledger/anoncreds-spec/blob/main/spec/ursaAnonCreds.pdf
https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/art-4-gdpr/
https://eprint.iacr.org/2016/372
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1155
https://docs.quadrata.com/integration/introduction/introduction-to-quadrata-web3-passport
https://docs.quadrata.com/integration/introduction/introduction-to-quadrata-web3-passport
https://github.com/appliedzkp/semaphore
https://github.com/appliedzkp/semaphore
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-semaphore.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-semaphore.pdf
https://arxiv.org/abs/2202.06877
https://doi.org/10.13140/RG.2.2.25027.96807/1
https://kilt-protocol.org/files/KILT-White-Paper.pdf
https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/11646897
https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/11646897
https://link.springer.com/chapter/10.1007/978-3-030-84242-0_6
https://link.springer.com/chapter/10.1007/978-3-030-84242-0_6
https://w3c-ccg.github.io/did-primer/
https://doi.org/10.48550/arXiv.1306.1547
https://doi.org/10.1088/1742-6596/1767/1/012061
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.48550/arXiv.2003.14412
https://eprint.iacr.org/2020/1390

	Background
	Centralized vs. Decentralized Finance
	Fill a Gap: Consolidate Off- and On- Chain Reputation
	High-Level Workflow

	System Overview
	Glossary of Terminology
	Detailed Workflow

	Introduction to Suite of Solutions
	Method 1: Release of Raw Attribute Value
	Method 2: Release of Personalized Attribute Value Token
	Method 3: Windows Around User’s Raw Attribute Interval

	Query: User Invokes MSB Smart Contract
	Query: KYC Smart Contract Code Execution
	Method 3 Constructions
	Related Work
	NFT-Based Import of KYC/AML Status
	Zero Knowledge Meets Smart Contract
	On-Chain Attest via Decentralized Identity Management

	Conclusions and Future Work
	Appendix A: Tokenization Schema
	Appendix B: Details of Method 2
	References

