
[Published in Topics in Cryptology – CT-RSA 2022, Cryptographers’ Track at the RSA Conference
2022 Proceedings, Steven D. Galbraith Editor]

A Pairing-Free Signature Scheme
from Correlation Intractable Hash Function

and Strong Diffie-Hellman Assumption

Benôıt Chevallier-Mames

Zama,
41 Boulevard Malherbes,

75008 Paris, France
benoit.chevalliermames@zama.ai

https://zama.ai

Abstract. Goh and Jarecki (Eurocrypt 2003) showed how to get a sig-
nature scheme from the computational Diffie-Hellman assumption, and
they introduced the name EDL for signatures of this type. The cor-
responding EDL family of signature schemes is remarkable for several
reasons: elegance, simplicity and tight security. However, EDL security
proofs stand in the random oracle model, and, to the best of our knowl-
edge, extending this family without using an idealization of hash func-
tions has never been successful.
In this paper, we propose a new signature scheme belonging to the EDL
family, which is simple, natural and efficient, without using the random
oracle model. Our scheme is based on the very same assumption than
the Boneh-Boyen scheme, namely the strong Diffie-Hellman assumption,
with the precision that our groups are not bound to being bilinear. We
also make use of a correlation-intractable hash function, for a particular
relation related to discrete-logarithm.
In addition to the theoretical interest of extending the EDL family with-
out the random oracle model, our scheme is also one of the very few
schemes which achieve discrete-log security properties without relying
on pairings.

Keywords: Public-key cryptography · Signature schemes · Standard model ·
Random oracle model · Correlation intractability · Discrete logarithm prob-
lem · Diffie-Hellman problem · EDL signature scheme · Boneh-Boyen signature
scheme.

1 Introduction

Signature schemes have existed since the introduction of public key cryptog-
raphy [26] and constitute one of the most essential tools in the cryptographic
toolbox. Among the various families of schemes that prevail, the so-called on-
line/off-line signatures have the nice property that one can precompute a part

of the signature beforehand, independently from the signed message, and com-
plete the signature generation very quickly once the message is known. Most
signature schemes derived from the Fiat-Shamir heuristic [31] are inherently
on-line/off-line signature schemes. These schemes are of particular interest in
implementations, especially in constrained environments, and have numerous
applications. Fortunately, there exist generic constructions that one can use to
transform any signature scheme into an on-line/off-line scheme [66] based on
chameleon hashing [52].

Before the advancement of (reductionist) provable security, designing a seem-
ingly secure signature scheme was mainly an art, but with the steady accumula-
tion of knowledge, security definitions and constructions [41, 42] have been more
and more precise, up to the point where the security of a signature scheme can
be formally proven under the assumption that some algorithmic problem is hard
to solve [67]. Classically, provably secure signatures divide into two categories:
the ones based on integer factoring such as RSA [62, 61], and the ones based
on the discrete log and Diffie-Hellman problems [30, 64]. A fundamental break-
through in security proving has been the now widely adopted Random Oracle
(RO) model [4, 5], a paradigm that models hash functions used in schemes as
randomly chosen functions. The RO model made it possible to prove the security
of discrete-log based signature schemes such as Schnorr under the discrete-log
assumption thanks to the so-called forking lemma technique [59]. A critical fea-
ture of security proofs, however, resides in the “quality” of the reduction that
goes along with the proof. A security reduction is said to be tight when its suc-
cess probability is close to the adversary’s success probability, otherwise it is said
to be loose [54]. Carefully assessing the tightness of a reduction allows to give
concrete security parameters for which the proof results in a meaningful security
assurance [5, 20, 65].

The fact that RO-based security proofs do not imply that a scheme is secure
in the real world is known for a long time [14, 40, 15]. Other works have shown
that separations between the RO and the standard models also apply on non-
pathological signature schemes such as Schnorr [58] and RSA [27, 57]. These
limitations as well as the wide adoption of pairings [49, 2, 9, 10] in cryptographic
design have empowered the search for new schemes that achieve provable security
in the standard model. This has resulted in the appearing of new intractability
assumptions such as the strong RSA assumption [36, 25] or the strong Diffie-
Hellman assumption on bilinear groups [6].

Even though numerous signature schemes are known today which security is
proven either in the RO model [43, 37, 60, 10, 70] or1 in the standard model [29,
23, 11, 12] (see also [32, 53, 19, 46, 47, 45]), it is striking to observe that, ex-
cluding the use of pairings, very few discrete-log-based signature schemes were
proven secure in the standard model. This includes notably the generic construc-
tion of signature schemes from one-way functions [56, 63], [22] (whose signature
size grows logarithmically with the number of signatures) and the generic trans-

1 We remark that other hash function idealizations or instantiations have also been
investigated, e.g., in [34, 45].

2

formation to turn an identity-based encryption (IBE) scheme into a signature
scheme [8, 69] with pairing-free but inefficient IBE proposed in [28]. We can
also list more recent schemes as [33, 1] with their proofs based on the DDH
assumption in the non-programmable random oracle model.

Contribution. This paper introduces a new, pairing-free signature scheme,
which extends the EDL scheme and its variants [16, 48, 38, 51, 18, 39] which are
proven under the computational Diffie-Hellman assumption in the random oracle
model. For our construction, we notably borrow ideas to Boneh-Boyen signature
scheme [6, 7], whose security proof is based on the strong Diffie-Hellman (SDH)
assumption in the standard model.

At a high-level view, the basic idea behind our construction is to prove that
some group element h is a solution of the SDH problem, i.e., that

h = g
1

x+α

for known g, α and secret (but committed) x. On its own, this part is sim-
ilar to the Boneh-Boyen scheme. However, while Boneh-Boyen signatures use
a bilinear map to prove that h is well-formed, we rather use proofs of equal-
ity of discrete logs for the same purpose, as other schemes in the EDL family.
As explained further in our security proof, we ensure equality of discrete logs,
unless a very unlikely type of collision (that we link to the notion of correlation-
intractability [14]) is found within one of the hash functions, which is typical to
EDL proofs.

We mention that our scheme runs two independent instances of a simpler
scheme and is therefore reminiscent to twin signatures [55] even though the
final signature is obtained in a specific way. Previous schemes like [25] have
also used the principle of a double key and (somehow) a signature which is like
the concatenation of two independent-key related underlying signatures. Finally,
our scheme has strong connections with OR-proofs [24, 33, 1], since our security
proof is essentially a proof of discrete-log equality in at least one of the two
independent instances.

Road-map. The rest of this paper is organized as follows: the next section pro-
vides some background on signatures and intractability assumptions. Section 3
describes the EDL and Boneh-Boyen signature schemes, as well as other relevant
state of the art regarding pairing-free discrete-log signature schemes. Section 4
is the core of our paper: we describe our new signature scheme and provide a
tight security proof based on the strong Diffie-Hellman assumption and the hash
function intractability. We finally conclude in Section 5.

2 Definitions

This section provides some rather informal background on signature schemes
and security notions attached to these. Most of these definitions are classical.

3

We also define the intractability assumptions on which are based the security
proofs of the EDL and Boneh-Boyen signature schemes.

2.1 Signature Schemes

A signature scheme Sig = (SetUp,GenKey,Sign,Verify) is defined by the four
following algorithms:

– The set-up algorithm SetUp. On input 1k, algorithm SetUp produces some
common parameters.

– The key generation algorithm GenKey. On input 1k, algorithm GenKey pro-
duces a pair (pk, sk) of matching public (verification) and private (signing)
keys.

– The signing algorithm Sign. Given a message m in a set of messages M
and a pair of matching public and private keys (pk, sk), Sign produces a
signature σ. Often, the signing algorithm is probabilistic.

– The verification algorithm Verify. Given a signature σ, a message m ∈ M
and a public key pk, Verify tests whether σ is a valid signature of m with
respect to pk.

Several security notions have been defined about signature schemes, mainly
based on the seminal work of Goldwasser, Micali and Rivest [41, 42]. It is now
customary to ask for the impossibility of existential forgeries, even against adap-
tive chosen-message adversaries:

– An existential forgery is a signature, valid and generated by the adversary,
corresponding to a message which was never submitted to the signature
oracle. The corresponding security notion is called existential unforgeabil-
ity (EUF).

– The verification key is public, including to the adversary. But more infor-
mation may also be available. The strongest kind of information is definitely
formalized by the adaptive chosen-message attacks (CMA), where the at-
tacker can ask the signer to sign any message of its choice, in an adaptive
way.

As a consequence, we say that a signature scheme is secure if it prevents existen-
tial forgeries, even under adaptive chosen-message attacks (EUF-CMA). This is
measured by the following success probability, which should be negligibly small,
for any adversary A which outputs a valid signature σ on a message m that
was never submitted to the signature oracle, within a “reasonable” bounded
running-time and with at most qs signature queries to the signature oracle:

SuccEUF−CMA
Sig (A, qs) = Pr

[
(pk, sk)← GenKey(1k), (m,σ)← ASign(sk;·)(pk) :

Verify(pk;m,σ) = True

]
.

When the signature generation is not deterministic, several signatures may
correspond to the same message. In this case, we do not consider the attacker

4

successful when it outputs a second signature on a message already submitted
to the signature oracle. Being given a message-signature pair (m,σ), providing a
second signature σ′ on the same message m is captured by the adversarial goal
of malleability [68].

2.2 Intractability Assumptions

Let us consider a cyclic (multiplicatively written) group G of prime order q
generated by g, i.e., G = {gi, i ∈ Zq}.

DL. Solving the discrete log problem in G consists, given g and y = gx for some
unknown random integer x ∈ Zq, in finding the value of DLg(y) = x.

CDH. Solving the (computational) Diffie-Hellman (CDH) problem is as follows:2

given (g, ga, gx) for unknown random integers a, x ∈ Zq, one must compute the
group element gax.

q-SDH (bilinear setting) [6, 7]. Let G1, G2 and GT be three multiplicative
groups of prime order q and e : G1 ×G2 → GT an admissible bilinear map [10,
3, 44, 35]. The q-strong Diffie-Hellman problem (q-SDH) consists in computing
a pair

(α, g2
1

x+α)

given a (q + 2)-tuple (g1, g1
x, ..., g1

xi , ..., g1
xq , g2, g2

x), for a random integer x ∈
Zq, generators g1 and g2 of G1 and G2 respectively, and a security parameter q.
The q-SDH problem on bilinear groups was further studied in [17, 7]. Note that
g2, g2

x may be omitted in the input tuple when G1 = G2.

In this work, we make use of the q-SDH in a general, non-bilinear context.

q-SDH (general setting) [6, 7]. Solving q-SDH in the general setting consists
in computing a pair

(α, g
1

x+α)

given a q-tuple (g, gx, ..., gx
i

, ..., gx
q

), for a random integer x ∈ Zq and a security
parameter q. Note that deciding whether a solution for the bilinear q-SDH prob-
lem is valid is easy since the pairing provides a straightforward way to verify it.
This is however not the case in the general setting, meaning that q-SDH admits
a non-trivial decisional variant.

In particular, q-SDH in the general setting is non-falsifiable. However, as
shown in Section 4.4, with auxiliary information (the (si, ci)’s of the scheme
described in Section 4.2), one can efficienly decide if a pair is a valid q-SDH pair.

2 Whether DL and CDH are equivalent is actually an open question.

5

3 Prior Art

We now review signatures schemes that enjoy a tight EUF-CMA security under
the discrete-log-related complexity assumptions discussed above. In this section,
`p, `q, and `r denote security parameters. The schemes make use of cyclic groups
G (resp. G1 and G2) of prime order q generated by g (resp. g1 and g2) where
q is a `q-bit prime. We assume that elements of G (resp. G1 and G2) can be
represented as binary strings in {0, 1}`p . The set of messages to be signed is
denoted M.

3.1 The EDL Family of Signatures

The EDL3 signature scheme, independently proposed in [16, 48], is defined as
follows.

Set-up: Let two hash functions, H :M×{0, 1}`r → G and G : G6 → Zq.
Key generation: The private key is a random number x ∈ Zq. The correspond-

ing public key is y = gx.

Signature: To sign a message m ∈M, one first randomly chooses r ∈ {0, 1}`r ,
and computes h = H(m, r) and z = hx. Follows a proof of logarithm equality
that DLh(z) = DLg(y): for a random number k ∈ Zq, one computes u = gk,
v = hk, c = G(g, h, y, z, u, v) and s = k + cx mod q. The signature on m is
σ = (z, r, s, c).

Verification: To verify a signature σ = (z, r, s, c) ∈ G × {0, 1}`r × Z2
q on a

message m ∈ M, one computes h = H(m, r), u = gs y−c and v = hs z−c.
The signature σ is accepted iff c = G(g, h, y, z, u, v).

In the random oracle model, the chosen-message security of EDL reduces to
the security of the computational Diffie-Hellman problem [38], by showing that
the EDL scheme is a proof that DLh(z) = DLg(y) = x. The scheme yields signa-
tures of (`p+2`q + `r) bits (for typical setting, `r = 111). In its classical use, the
scheme cannot be used with precomputations (a.k.a. coupons) before knowing
the message, but, as noted by Goh and Jarecki, one can use the technique of
[66] based on chameleon hash functions [52] to transform this signature into a
signature with coupons, at the price of larger signatures.

The Katz-Wang Variants. In [51]4, Katz and Wang proposed two variants
of EDL, one based on DDH assumption, and the other which yields shorter
signatures still with tight relation to the CDH problem.

3 The name EDL was proposed in [38], based upon the fact that the scheme is a proof
of equality of discrete-logarithms.

4 A remarkable unification of [38, 51] papers appeared in [39].

6

Being relatively generic to signature schemes with randomness,5 the idea of
Katz and Wang is to remove the randomness of r, and to replace it by unpre-
dictability. Namely, r is replaced by a bit b that can only be computed by the
signer (e.g., b is the result of a pseudo-random function, under a secret key in-
cluded in the signing key):6 the signatures are then (z, b, s, c), and so are shorter
than EDL signatures by 110 bits. This modification gives a signature scheme
with a signature length of (`p + 2`q + 1) bits. In this scheme, as in EDL, only u
can be computed off-line, and so the on-line part of the signature is two modular
exponentiations in G.

The Chevallier-Mames Variant. In [18], another EDL variant was proposed.
The main modification is how the value h is computed. Instead of being h =
H(m, r) as in EDL or h = H(m, b) as in Katz-Wang scheme, one sets h = H(u).

Set-up: Let two hash functions, H : G→ G and G :M×G6 → Zq.
Key generation: The private key is a random number x ∈ Zq, while the cor-

responding public key is y = gx.

Signature: To sign a message m ∈M, one first randomly chooses k ∈ Zq, and
computes u = gk, h = H(u), z = hx and v = hk. Next, one computes c =
G(m, g, h, y, z, u, v) and s = k+cx mod q. The signature on m is σ = (z, s, c).

Verification: To verify a signature σ = (z, s, c) ∈ G×Z2
q on a message m ∈M,

one computes u = gs y−c, h = H(u), and v = hs z−c. The signature σ is
accepted iff c = G(m, g, h, y, z, u, v).

The signatures are a little bit smaller than the EDL’s ones: they are only (`p+
2`q)-bit long. Interestingly, this scheme natively allows on-line/off-line signature
scheme, i.e., without affecting the efficiency of the signature or of the verification
nor the signature size. The scheme remains tightly related to the computational
Diffie-Hellman problem, still in the random oracle model.

Proving equality of discrete logs. A common part of the respective proofs
of the previous schemes (see [39, 18] for more details) consists in showing that
it is very unlikely that the forger can provide a valid signature with u = gk,
v = hk

′
and z = hx

′
with k 6= k′ or x 6= x′. More precisely, the forger would need

to find (m, k, k′, x′) such that7

c = G(m, g, h, y, z, u, v) = G(m, g, h, y, hx
′
, gk, hk

′
) =

k − k′

x′ − x
mod q

5 Notably, the very same idea can be applied on Probabilistic RSA-FDH to get a tight
signature scheme with a single extra bit.

6 In other words, in EDL, signing few times the same message would result in different
random numbers r, while doing the same with Katz-Wang scheme would give always
the same bit b.

7 Strictly, the equality is for Chevallier-Mames variant; for EDL or Katz-Wang, m is
not an input of G, without changing anything to the analysis.

7

which is doable only with a probability qG
q if G is assumed to be a random oracle

and qG is the number of requests to G oracle.
Remark that previous equation can be rewritten as follows, if one defines

β = DLg(h):

c = G(m, g, gβ , gx, gβx
′
, gk, gβk

′
) =

k − k′

x′ − x
mod q

which can also be seen as

G(m, g, ga1 , ga2 , ga3 , ga4 , ga5) =
a4 − a5/a1
a3/a1 − a2

=
a1a4 − a5
a3 − a1a2

mod q

In our scheme, we formalize the notion of discrete-log collision resistant hash
function (in Section 4.3) and use it to prove the security of our scheme (in
Section 4.4).

3.2 Boneh-Boyen Signatures

In [6, 7], a completely different way to prove that a tuple is a Diffie-Hellman
tuple was used: the pairing.

Set-up: Let G1, G2 and GT be three groups whose prime order is q, for which
it exists an efficient pairing e : G1 ×G2 → GT .

Key generation: Let g1 and g2 be two random generators of G1 and G2. Let
x, y be two random integers of Zq. Let u = g2

x, v = g2
y, z = e(g1, g2). The

private key is (x, y, g1) and the corresponding public key is (g2, u, v, z).

Signature: To sign a message m ∈ Zq, one first randomly chooses r ∈ Zq
(r 6= −x+my), and computes s = g1

1
x+m+y·r . The signature on m is σ = (s, r).

Verification: To verify a signature σ = (s, r) ∈ G1 ×Zq on a message m ∈M,
one checks that e(s, u · g2m · vr) = z. If true, the signature σ is accepted.

Boneh-Boyen signature scheme has the following notable differences with
EDL variants: its security is based on qs-SDH problem (where qs is the number
of signature queries), and does not require the random oracle model. A security
proof in the standard model rather than the RO model is arguably an important
improvement over pre-existing schemes. However, we stress that the result was
mainly achieved thanks to the use of pairings. Evaluating a pairing at verification
time may result in a slower and more complicated implementation as opposed
to when only common group operations are performed.

3.3 Existing Pairing-Free Discrete-log Signature Schemes in the
Standard Model

In the set of signature schemes provably secure under a discrete-log-kind assump-
tion, it is remarkable that most schemes rely on pairing. We succinctly describe

8

here two schemes which are pairing-free but significantly less efficient than the
scheme we propose in Section 4.2.

First, it is a classical result that signature schemes can be generically built
from one-way functions [56, 63]. This type of construction is however particularly
inefficient in term of signature size.

Cramer-Damg̊ard scheme In [22], Cramer and Damg̊ard have shown a generic
construction, which can be instantiated for the discrete-log case as described in
their Section 6. The principle relies on the following zero-knowledge protocol.

Key generation: Let d be a security parameter. Let xi be random elements
of Zq, and yi = gxi , for i ∈ {0, ..., d − 1}. The private key is {xi} and the
corresponding public key is {yi}.

Commit: The prover generates a random k ∈ Zq and sends u = gk to the
verifier.

Challenge: The verifier generates random ci ∈ Zq for i ∈ {0, ..., d − 1}, and
sends them to the prover.

Answer: The prover computes s = k +
∑d−1
i=0 ci · xi mod q and sends s to the

verifier.

Verification: Finally, the verifier checks whether gs = u ·
∏d−1
i=0 yi

ci .

With the use of an authentication tree, Cramer and Damg̊ard get a signature
scheme whose signature size is O(`p · log(qs)). The number of exponentiations to
compute or verify the signature also depends on the depth of the tree.

Generic transformation from an identity-based encryption scheme into
a signature scheme Another possibility to have a scheme based on a discrete-
log assumption without relying on pairings is to use the generic transformation
from an identity-based encryption scheme into a signature scheme, that was
proposed by Boneh and Franklin in seminal [8] (see [69] as well). Regarding the
purpose of this paper, this generic transformation can be combined with pairing-
free scheme proposed in [28] to get a signature scheme. However, as remarked
by Döttling and Garg, the scheme is particularly inefficient.

3.4 OR-based Signature Schemes

OR-proofs [24] are one of the fascinating techniques used to achieve security
proofs, which was notably recently used to achieve signatures schemes as in [33,
1]. In this section, we remind the reader of the first construction, which can
notably be instantiated to get a scheme based on the DDH assumption in the
non-programmable random oracle, in a scheme comparable to ours.

9

Fischlin, Harasser and Janson scheme The principle is to have two Sides
0 and 1, with their respective DDH tuple (yi, hi, zi) = (gxi , gai , gai xi). One Side
b ∈ {0, 1} is the preferred side. Roughly, the non-preferred side will be completely
simulated (and so x1−b is not needed in the signature processing), while the Side
b will go in a process very close to Katz-Wang DDH scheme [51]. However, for
the security of the construction, the role of the two sides remains completely
symmetric, such that they are non distinguishable.

Set-up: Let a hash function H : {0, 1} ×G7 ×G2 ×M→ Zq.
Key generation: Let b be a random bit and b̃ = 1 − b. Let g and hb be two

generators of G and xb be a scalar of Zq. Let (yb, zb) = (gxb , hb
xb). Finally,

let (g, yb̃, hb̃, zb̃) be another random DDH tuple. The private key is (b, xb)
while the public key is pk = (g, y0, y1, h0, h1, z0, z1).

Signature: To sign a message m ∈ M, one first pick a random kb ∈ Zq, then

compute ub = gb
kb and vb = hb

kb , which is the commitment of the Side
b. Then, the Side b̃ is completely simulated by picking a random sb̃ ∈ Zq,
and computing cb̃ = H(b,pk, ub, vb,m), ub̃ = gb̃

sb̃ yb̃
−cb̃ and vb̃ = hb̃

sb̃ zb̃
−cb̃ .

Finally, the Side b is completed, by computing cb = H(b̃,pk, ub̃, vb̃,m) and
sb = kb + cbxb mod q. The signature is σ = (s0, s1, c0, c1).

Verification: To verify a signature σ = (s0, s1, c0, c1) ∈ Z4
q on a message m ∈

M, one computes u0 = g0
s0 y0

−c0 , u1 = g1
s1 y1

−c1 , v0 = h0
s0 z0

−c0 and
v1 = h1

s1 z1
−c1 . The signature is accepted iff c0 = H(1,pk, u1, v1,m) and

c1 = H(0,pk, u0, v0,m).

The fundamental principle in this construction is that the commitment (u, v)
used in the computation of c is the commitment from the other side, which allows
the author of [33] to prove that their scheme has a tight security on the DDH in
the non-programmable random oracle model.

Regarding efficiency, we can note that the signature size is 4`q and that some
parts of the computations (more precisely ub and vb) can be done before the
message is known. Let us remark however that it is also possible for the signer
to know the discrete logarithm xb̃ as well, not to have to simulate the Side b̃, in
order to be able to precompute ub̃ and vb̃ as well.

4 Our Signature Scheme

4.1 Intuition of the Design

In this section, we explain how we finally came to our design, to explain its
difference with previous state of the art, and why we had to do these changes.

From the beginning, we wanted to extend the EDL family described in Sec-
tion 3.1 to the standard model. However, this will is blocked in its early steps
by the fact that, in these schemes, h is the output of the hash function H —
although the exact form of h is different from one scheme to the other — and
that there is some hx to compute: without the random oracle model, it seems

10

impossible to compute such quantities during the signature queries, unless by
having the secret key x. In other words, it seems at first glance that H has to
be a random oracle to allow the security reduction to compute pairs of the form
(h, hx) without key x.

Inversing the problem. To be able to achieve security without the random
oracle model (and notably, the programmability property), we had to fundamen-
tally change the design, and notably, we somehow inversed the problem, by —
let’s say — “making h hard to compute” and “z simple to deduce”. For this, we
borrow ideas from [6] and notably make use of a qs-SDH instance to essentially
replace the random oracle.

To this end, we now pose h = g
1

x+α for some α (which requires the secret key
x to be computed) and see that z = hx is easy to compute since

z = g
x

x+α = g · h−α.

Therefore, being given h, if one can prove that z defined by z = g ·h−α is such

that z = hx then the well-formedness of h — i.e., , the fact that h = g
1

x+α —
is automatically proven. As should be already clear to the reader, we are using
technique a-la EDL to prove that z = hx.

Checking equality of logarithms. However, our goal is still not achieved: the
second complicated part is to be able to prove that the two logarithms DLg(y)
and DLh(z) are equal (to answer signature queries), but at the same time, from
the signature forge, to learn something (to answer the qs-SDH challenge).

In the random-oracle proofs, achieving these two things at the same time is
easy, since one can simulate thanks to the random oracle model, and simulta-
neously, know a new z = hx from the forge, to solve the CDH problem. Very
informally,8 during signature queries, the random oracle allows to take random
s, c and deduce u, v, h, z from these quantities, and still “close the loop”, i.e.,
make that c = G(m, g, h, u, v, y, z). In the standard model, on the contrary, G
function cannot be bent to our will.

Consequently, a second major change of design in our scheme as compared
to the rest of the EDL family is to have a double-key mechanism. We have two
sides (see the full description in our next section), which are linked together by
a new degree of liberty e. In the security proof, the reduction knows one (and
only one) of the two keys, and can simulate the unknown side a bit like in the
random oracle model, and complete the signature with the known key. For this
aspect of the design and of the proof, we are very close to the OR-based schemes
described in Section 3.4. As we will show in the security proof, the known side is
indistinguishable for the adversary, and even with this new degree of liberty, the
security reduction can turn the forge into an answer to the qs-SDH challenge.

8 The reader is referred to original papers [38, 51, 18, 39] for more formal proofs.

11

4.2 Description

Our scheme is made of two instances of the same flow, which we will call Side
0 and Side 1. Note that this almost entirely symmetric design presents some
similarities with the approach undertaken with twin signatures [55] or other
schemes as [25, 33, 1].

The signature scheme is depicted as follows.

Set-up: Let `p and `q denote security parameters. Select a cyclic group G of
prime order q. Let G� be equal to G\{1}. Finally, select two hash functions,
H : G2 → Zq and G :M×G11 → Zq.

Key generation: Let g, g0 and g1 be three random generators of G. The private
key is made of two random numbers (x0, x1) ∈ Z2

q. The corresponding public
key is (g, g0, g1, y0, y1) with y0 = gx0 and y1 = gx1 .

Signature: To sign a message m ∈ M, randomly select (k0, k1, e) ∈ Z3
q, and

then proceed as follows

Side 0 Side 1
u0 = gk0 u1 = gk1

α = H(u0, u1)

h0 = g0
1

x0+α h1 = g1
1

x1+α

v0 = h0
k0 v1 = h1

k1

z0 = h0
x0 z1 = h1

x1

d = G(m, g, h0, y0, z0, u0, v0
h1, y1, z1, u1, v1)

c0 = d+ e mod q c1 = −e mod q
s0 = k0 + c0 · x0 mod q s1 = k1 + c1 · x1 mod q

If α + x0 = 0 mod q or α + x1 = 0 mod q, other randoms are picked. The
signature on m is σ = (h0, s0, c0, h1, s1, c1).

Verification: To verify a signature σ = (h0, s0, c0, h1, s1, c1) ∈ G�×Z2
q×G�×Z2

q

on a message m ∈M, one computes

u0 = gs0 y0
−c0 u1 = gs1 y1

−c1

α = H(u0, u1)
z0 = g0 · h0−α z1 = g1 · h1−α
v0 = h0

s0 z0
−c0 v1 = h1

s1 z1
−c1

d = G(m, g, h0, y0, z0, u0, v0,
h1, y1, z1, u1, v1)

The signature is accepted iff c0 + c1 = d (mod q).

12

As shown later, signatures as per our scheme provide a proof that either
DLh0(z0) = DLg(y0) or DLh1(z1) = DLg(y1) or both. One can note that this
“one of the DL-equalities holds” is exactly what one needs to create a ring
signature, and notably, we can see our construction as a kind of ring signature
with only two virtual signers, one per side.

As explained later, we base our security proof on the property that one of
the two sides can be perfectly simulated but not both at the same time.

Correctness. The scheme is consistent since, if the signature is well formed,
for δ ∈ {0, 1},

hδ = gδ
1

xδ+α , for α = H(u0, u1).

It follows that zδ = hδ
xδ = gδ

xδ
xδ+α = gδ

xδ+α−α
xδ+α , and consequently zδ = gδ ·hδ−α.

Discussion. The main features of our scheme is that it does not rely on pairings
and, at the same time, achieves chosen-message security (without the random-
oracle model) with a tight reduction. Our signatures are 2`p + 4`q bits. Our
construction also inherently supports on-line/off-line precomputations, i.e., one
can perform most of the computations before knowing the message m: only
remains the computation of (c0, c1, s0, s1) once the message is finally known.

A comparison with schemes of Section 3 could be the following:

– as opposed to the EDL family of schemes of Section 3.1, our scheme does
not need the random oracle model

– as opposed to Boneh-Boyen scheme of Section 3.2, our scheme does not use
pairings

– our scheme is more efficient than generic constructions of Section 3.3.

A comparison with OR-based schemes of Section 3.4 shows that results are
pretty close. [33] scheme is based on the DDH assumption, which is more classical
than the SDH assumption we use in our scheme (which, in a pairing-free group,
is non-falsifiable). However, SDH is a computational problem while DDH is a
decisional problem. Also, even if SDH is non-falsifiable, we argue in Section 4.4
that, with the auxiliary (si, ci)’s information of our scheme, one can check that
whether a pair is a valid SDH pair or not. Regarding the security model, the non-
programmable random-oracle model used in [33] is slightly stronger than simply
assuming correlation intractability of the hash function as we do. Finally, [33]
signature size is smaller than our signature size.

4.3 Introducing Discrete-Log Collisions

Let us start with a definition.

Definition 1 (Discrete-log collisions). Let G be a hash function mapping
tuples of M× Gn+1 to Zq. Let F be a function mapping vectors of Znq to Zq.

13

An algorithm is said to (εdlG,F , τ)-break the intractability of finding discrete-
log collisions of G with respect to F if, being given a fresh random genera-
tor g ∈ G,9 it can find, with a probability εdlG,F and within a time τ , a tuple
(m, g, ga1 , ga2 , ..., gan) such that

G(m, g, ga1 , ga2 , ..., gan) = F(a1, a2, ..., an)

Such a tuple is called a discrete-log collision of G with respect to F and g.

Correlation-intractability This security notion for hash function is actually
an instantiation of so-called correlation-intractability. As introduced in [14], a
hash function G is said correlation-intractable with respect to a relation R if it
is computationally infeasible to exhibit u such that (u,G(u)) ∈ R.

In the case of Definition 1, the relation RF can be defined as follows. Since
g is a generator, the function

Λ : M×Gn+1 → M×G× Znq
(m, g, ga1 , ga2 , ..., gan) 7→ (m, g, a1, a2, ..., an)

is bijective. So, to any u = (m, g, ga1 , ga2 , ..., gan) corresponds a unique v =
Λ(u) = (m, g, a1, a2, ..., an), and so a unique w = (a1, a2, ..., an) which we note
as w = Λa(u). We then say that (u, v) ∈ RF iff v = F(Λa(u)). Remark that
saying that (u,G(u)) ∈ RF is the same as saying that u is a discrete-log collision
of G with respect to F .

Building a hash function whose correlation-intractability is formally proved
is out of scope of this paper.10 Instead, in our scheme, we use a hash function
G, and show that a potential forge can be turned into showing that G is not
correlation-intractable (or some other hard problem is solved, see Section 4.4).

Checking discrete-log collisions One could note that verifying that a given
tuple is a valid discrete-log collision may be achieved in two ways: one way is to
provide the tuple (m, a1, a2, ..., an), i.e., to disclose all the discrete logarithms
a1, a2, ..., an. However, if the analytic form of F is simple enough (e.g., our
function F0 below), a verification that the collision is valid can be performed
“in the exponents”, i.e., by providing proofs of equations followed by the inputs
(see Section 4.4, Case 2.1).

For any hash function, having resistance against discrete-logarithm collisions
is actually a desirable property, even if not a classical one. As Λ is bijective,
when computing G(m, g, i1, i2, ..., in) for any (m, g, i1, i2, ..., in) ∈ M × Gn+1,
there is only one target value v = F(Λa(m, g, i1, i2, ..., in)) which can lead to
a discrete-log collision. Furthermore, g is picked randomly after F and G are

9 Notably, F and G definitions cannot suppose the generator g to be already defined.
10 One may read [50, 13, 21] for state of the art on this area of research.

14

defined.11 Thus, for cryptographic hash functions G — notably but not only
non-programmable random oracle hash functions [34] —, finding discrete-log
collision should be hard.

Setting a particular F for our scheme. In this paper, we are only interested
in n = 10 and function F = F0 defined as follows, which is a purely modular
rational function

F0(a1, a2, ..., a10) =
a1a4 − a5
a3 − a1a2

+
a6a9 − a10
a8 − a6a7

mod q,

resulting in that a discrete-log collision can be verified by providing equations
satisfied by ga1 , ga2 , ..., ga10 as shown in Case 2.1 of Section 4.4.

Relation to security proofs of EDL variants. Remarkably, the discrete-
logarithm collision notion was already present in EDL security proofs [38, 51, 18],
even if not explicitly defined (see as well the end of our Section 3.1). Notably,
the authors of these papers were using n = 5 and

F1(a1, a2, ..., a5) =
a1a4 − a5
a3 − a1a2

mod q.

4.4 Security Proof

In this section, we prove the security of our scheme under the q-SDH assumption
over the group G. Recall that G is an arbitrary prime-order group here, and is
not required to admit a bilinear map.

Before proving the security theorem, we refer to a useful lemma whose proof
can be found in [6, 7].

Lemma 1 (Proof of Lemma 9, [7]). Let f be the polynomial

f(X) =

j=qs∏
j=1

(X + κj)

for some κj in Zq, and let θ be a random integer in Zq. Given {gxi}i=0,...,qs ,

let us define g0 as g0 = gθf(x). It is easy to compute g0 and g0
1

x+κi for any

i ∈ [1, qs]. Furthermore, if one is given h = g0
1

x+α with α 6= κj, then one can

easily compute g
1

x+α .

We now state:

11 If F and g were chosen by the solver, this latter could trivially pick any
(m, g, ga1 , ga2 , ..., gan), precompute f = G(m, g, ga1 , ga2 , ..., gan), and choose F(a1,
a2, ..., an) as the constant function f .

15

Theorem 1. Let A be an adversary against our scheme that returns an exis-
tential forgery under a chosen-message attack with success probability ε within
time τ , after qs queries to the signing oracle. Further assume that H and G are
respectively (εH, τ) and (εG , τ)-collision secure and that finding discrete-log colli-
sions of G with respect to F0 is (εdlG,F0

, τ)-intractable, then the qs-SDH problem
over G can be solved with success probability ε′ such that

3ε′ + 3εdlG,F0
+ εG + εH ≥ ε

in time τ ′ with

τ ′ . τ +O(qs) · τ0

where τ0 is the time required to perform a group exponentiation in G.

Our proof combines techniques from [38, 39, 6] with new ideas. Intuitively
a signature in our scheme is a proof that either DLh0

(z0) = DLg(y0) (= x0) or
DLh1

(z1) = DLg(y1) (= x1) (or both), or that a collision (including the discrete-
log collision case) is found on one of the hash functions.

Proof (of Theorem 1). Our reduction is given a group G and a qs-SDH challenge

{gxi}i=1,...,qs . Let us call µi = gx
i

, for i ∈ [1, qs].
The reduction algorithm uses an existential forger A against our signature

scheme to solve this challenge, i.e., to find g
1

x+α for some α or to find collisions of
one of the three above types. The reduction picks a random integer δ ∈ {0, 1, 2}
and runs the subroutine Simulation δ described below.

Simulation 0

In this simulation, we simulate the Side 0 of the signature scheme while
knowing the private key associated with Side 1, i.e., the simulator knows x1
but not x0. The subroutine poses y0 = µ1, randomly picks x1 ∈ Zq and sets
y1 = gx1 . If y1 = y0, we know that x0 = x1 and so the qs-SDH challenge
can be solved easily. Therefore we assume that x0 6= x1. A random generator
g1 ∈ G is generated as well.

Initialization: The simulator prepares qs random tuples (s0,i, c0,i, k1,i) ∈ Z3
q

and computes

u0,i = gs0,i y0
−c0,i

u1,i = gk1,i

αi = H(u0,i, u1,i).

The simulator checks whether one of the αi’s is actually equal to q − x0,
in which (unlikely) case, the simulator sets x = q − αi and directly solves
the qs-SDH problem. Similarly, it checks that αi 6= q − x1, in which case
initialization is restarted. Thus we now assume that αi + x0 6= 0 mod q and
αi + x1 6= 0 mod q, and so are invertible modulo q.

16

Let f be the polynomial f(X) =
∏j=qs
j=1 (X + αj). Let g0 = gθf(x), for a

random θ ∈ Zq. By Lemma 1, g0 can be simply computed thanks to µi’s.
Now the simulator runs A on the public key (g, g0, g1, y0, y1) and the public
parameters (q,G,H,G).

Simulating signature queries: Let mi ∈ M be the i-th signature query.

Simulator 0 behaves as follows. Using Lemma 1, h0,i = g0
1

x0+αi is eas-
ily computed, without unknown secret x0. The simulator then computes
z0,i = g0 h0,i

−αi and v0,i = h0,i
s0,i z0,i

−c0,i .
Now that all variables from Side 0 are simulated, the simulator uses x1 to
generate the variables from Side 1 as

h1,i = g1
1

x1+αi

v1,i = h1
k1,i

z1,i = h1
x1

Finally, the simulator computes di = G(mi, g, h0,i, y0, z0,i, u0,i, v0,i, h1,i, y1,
z1,i, u1,i, v1,i) and set c1,i = di−c0,i mod q. Finally, s1,i = k1,i+c1,i ·x1 mod q
is derived.
As one can see, signature (h0,i, s0,i, c0,i, h1,i, s1,i, c1,i) is valid and distributed
as a regular signature (notably, DLh0(z0) = DLg(y0) and DLh1(z1) = DLg(y1)).

Simulation 1

In this simulation, we proceed exactly as in Simulation 0, except that vari-
ables from the two sides are swapped: Side 1 is simulated using the µi’s and
Side 0 is trivial since the key x0 is known by the simulation.

Simulation 2

The purpose of this simulation is not to solve the SDH instance, but to find
a discrete-log collision on G. Thus, in this simulation, the simulator knows
the two keys x0 and x1, and responds to the adversary’s signature queries
as per the definition of the signing procedure.

Solving the qs-SDH problem or finding collisions

This completes the description of our three simulation subroutines. Note
that the three routines yield perfectly simulated distributions and are in-
distinguishable from one another from the adversary’s perspective. We now
focus on what our reduction does assuming that a forgery is returned by the
forger at the end of the game.

Let σ = (h0, s0, c0, h1, s1, c1) ∈ G� × Z2
q ×G� × Z2

q be the valid forgery on a
new message12 m ∈ M. Our reduction algorithm easily computes the other
variables u0, v0, z0, u1, v1, z1, α, d by following the verification procedure. The
reduction then checks whether α = αi for some i = 1, ..., qs. Several cases
and sub-cases appear.

12 Hence, our scheme does not ensure strong existential unforgeability, but only exis-
tential unforgeability, which is sufficient in most usages.

17

� Case 1: α = αi. This case can be subdivided into three sub-cases.

Case 1.1: (u0, u1) 6= (u0,i, u1,i). Then, (u0, u1) and (u0,i, u1,i) is a pair which
forms a collision on H function. This probability is captured by εH.

Case 1.2: (u0, u1) = (u0,i, u1,i) and (c0, c1) 6= (c0,i, c1,i). If δ ∈ {0, 1} and cδ
6= cδ,i, the reduction directly finds x and subsequently solves the qs-SDH
challenge: indeed, we have equations uδ = uδ,i, uδ,i = gsδ,i yδ

−cδ,i (from the
signature queries) and uδ = gsδ yδ

−cδ (from the forge). Since δ is independent
from the adversary, δ ∈ {0, 1} happens with a probability 2

3 and cδ 6= cδ,i
knowing that (c0, c1) 6= (c0,i, c1,i) happens with a probability of 1

2 . This case
probability is thus upper-bounded by the 3 εSDH,1 term.

Case 1.3: (u0, u1) = (u0,i, u1,i) and (c0, c1) = (c0,i, c1,i). We know by the ver-
ification step that di = c0,i + c1,i mod q, and thus di = d. In other words,

(m, g, h0, y0, z0, u0, v0, h1, y1, z1, u1, v1)

and

(mi, g, h0,i, y0, z0,i, u0,i, v0,i, h1,i, y1, z1,i, u1,i, v1,i)

constitute a (classical) G collision.13 This probability is captured by εG .

Summing up, we get

εH + 3 εSDH,1 + εG ≥ ε · Pr[Case 1]

� Case 2: α 6= αi. Since h0 and h1 are generators of G (this is notably the
reason why we must check that they are not equal to 1 in the verification
step), there exists a unique tuple (k0, k

′
0, k
′′
0 , k1, k

′
1, k
′′
1 , x
′
0, x
′
1) ∈ Z2

q × Z�q ×
Z2
q × Z�q × Z2

q such that

u0 = gk0 , u1 = gk1

v0 = h0
k′0 , v1 = h1

k′1

z0 = h0
x′0 , z1 = h1

x′1

h0 = gk
′′
0 , h1 = gk

′′
1 .

Our goal is to prove that, with overwhelming probability, either (k0 = k′0
and x0 = x′0) or (k1 = k′1 and x1 = x′1), or both. This is somehow similar
to EDL’s proofs. By the verification step, we know that (all computations
being modulo q)

k0 = s0 − x0 · c0, k1 = s1 − x1 · c1
k′0 = s0 − x′0 · c0, k′1 = s1 − x′1 · c1

13 Remind that m 6= mi, since the forgery is assumed to be valid.

18

and that c0 + c1 = G(m, g, h0, y0, z0, u0, v0, h1, y1, z1, u1, v1).

Case 2.1: x0 6= x′0 and x1 6= x′1: if the Simulation 2 was not executed, the
reduction aborts. Else, the reduction knows the two parts of the signing key
x0 and x1, and can actually check that z0 6= h0

x0 and z1 6= h1
x1 , i.e., that

x0 6= x′0 and x1 6= x′1. Then, c0 =
k0−k′0
x′0−x0

mod q and c1 =
k1−k′1
x′1−x1

mod q. This

implies (modulo q)

k0 − k′0
x′0 − x0

+
k1 − k′1
x′1 − x1

= G(m, g, h0,g
x0 , h0

x′0 , gk0 , h0
k′0 , h1,

gx1 , h1
x′1 , gk1 , h1

k′1)

or written differently

k0 − k′0
x′0 − x0

+
k1 − k′1
x′1 − x1

= G(m, g, gk
′′
0 ,gx0 , gx

′
0 k
′′
0 , gk0 , gk

′
0 k
′′
0 , gk

′′
1 ,

gx1 , gx
′
1 k
′′
1 , gk1 , gk

′
1 k
′′
1)

or, in a more evocative form, with k′′0 = a1 and k′′1 = a6 not zero

k′′0 = a1 k′′1 = a6
x0 = a2 x1 = a7
x′0 = a3/a1 x′1 = a8/a6
k0 = a4 k1 = a9
k′0 = a5/a1 k′1 = a10/a6

and finally

a1a4 − a5
a3 − a1a2

+
a6a9 − a10
a8 − a6a7

= G(m, g, ga1 , ga2 , ga3 , ga4 , ga5 , ga6 , ga7 , ga8 , ga9 , ga10)

This provides a discrete-log collision on G function, for the function F0 de-
fined in Section 4.3, or, in other words, proves that G is not correlation-
intractable.
The reduction cannot provide the ai discrete logarithms, but this is not a
problem, since the discrete-log collision can be checked without them, by
giving away (x0, x1) and the equations followed by (m, g, h0, y0, z0, u0, v0,
h1, y1, z1, u1, v1). The probability of this event is counted by 3 εdlG,F0

.

Case 2.2: xδ = x′δ. Then, zδ = hδ
xδ and hδ = gδ

1
x+α . As the simulation

actually executed is unknown to the adversary, this happens with probability
1
3 . Thanks to Lemma 1, the reduction can return (α, g

1
x+α) as our answer to

the qs-SDH problem.

Summarizing, we have

3 εdlG,F0
+ 3 εq−SDH,2 ≥ ε · Pr[new]

which proves the theorem.

19

5 Conclusion

In this paper, we have introduced a new signature scheme which is efficient and
does not rely on pairings. Our scheme is provably secure under the strong Diffie-
Hellman assumption and the correlation-intractability of the hash function. This
scheme is our best attempt to extend the EDL family without the random oracle
model.

An open question remains in how to reduce the size of our signatures and
how to completely get rid of the assumption that finding discrete-log collisions
for G function is intractable. More generally, one may try to extend EDL family
in the standard model with other techniques, or to rely on weaker assumptions.

Acknowledgments. The author would like to thank the anonymous referees
and Marc Fischlin for their useful remarks, Pascal Paillier and Marc Joye for
their careful reading of this paper and finally Jeremy Bradley-Silverio Donato
for his edits. More personal thanks go to Amal and Mathieu for their continous
support.

References

1. Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rose, A.: Non-interactive
composition of sigma-protocols via share-then-hash. In: Advances in Cryptology -
ASIACRYPT 2020. pp. 749–773. Springer (2020)

2. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Advances in Cryptology – CRYPTO 2002. Lecture Notes
in Computer Science, vol. 2442, pp. 354–368. Springer-Verlag (2002)

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Selected Areas in Cryptography – SAC 2005. Lecture Notes in Computer Science,
vol. 3897, pp. 319–331. Springer-Verlag (2005)

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security – ACM CCS 1993. pp. 62–73. ACM Press (1993)

5. Bellare, M., Rogaway, P.: The exact security of digital signatures - How to sign
with RSA and Rabin. In: Advances in Cryptology – EUROCRYPT ’96. Lecture
Notes in Computer Science, vol. 1070, pp. 399–416. Springer-Verlag (1996)

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Advances in
Cryptology – EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027,
pp. 56–73. Springer-Verlag (2004)

7. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (2008)

8. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Advances in Cryptology – CRYPTO 2001. Lecture Notes in Computer Science,
vol. 2139, pp. 213–229. Springer-Verlag (2001)

9. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
Journal on Computing 32(3), 586–615 (2003)

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17(4), 297–319 (2004)

20

11. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Security in Communication Networks – SCN 2002. Lecture Notes in Computer
Science, vol. 2576, pp. 268–289. Springer-Verlag (2002)

12. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Advances in Cryptology – CRYPTO 2004. Lecture Notes
in Computer Science, vol. 3152, pp. 56–72. Springer-Verlag (2004)

13. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong kdm-secure encryption. In: Advances in Cryptology -
EUROCRYPT 2018. Lecture Notes in Computer Science, vol. 10820, pp. 91–122.
Springer (2018)

14. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revis-
ited (preliminary version). In: ACM Symposium on the Theory of Computing –
STOC ’98. pp. 209–218. ACM Press (1998)

15. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
Journal of the ACM 51(4), 557–594 (2004)

16. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Advances in Cryp-
tology – CRYPTO ’92. Lecture Notes in Computer Science, vol. 740, pp. 89–105.
Springer-Verlag (1992)

17. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Ad-
vances in Cryptology – EUROCRYPT ’2006. Lecture Notes in Computer Science,
vol. 4004, pp. 1–11. Springer-Verlag (2006)

18. Chevallier-Mames, B.: An efficient CDH-based signature scheme with a tight se-
curity reduction. In: Advances in Cryptology – CRYPTO 2005. Lecture Notes in
Computer Science, vol. 3621, pp. 511–526. Springer-Verlag (2005)

19. Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme
without hash function. In: Topics in Cryptology – CT-RSA 2007. Lecture Notes in
Computer Science, Springer-Verlag (2007)

20. Coron, J.S.: On the exact security of full domain hash. In: Advances in Cryptology
– CRYPTO 2000. Lecture Notes in Computer Science, vol. 1880, pp. 229–235.
Springer-Verlag (2000)

21. Couteau, G., Katsumata, S., Ursu, B.: Non-interactive zero-knowledge in pairing-
free groups from weaker assumptions. In: Advances in Cryptology - EUROCRYPT
2020. Lecture Notes in Computer Science, vol. 12107, pp. 442–471. Springer (2020)

22. Cramer, R., Damg̊ard, I.: Secure signature schemes based on interactive protocols.
In: Advances in Cryptology - CRYPTO ’95. Lecture Notes in Computer Science,
vol. 963, pp. 297–310. Springer (1995)

23. Cramer, R., Damg̊ard, I.: New generation of secure and practical RSA-based sig-
natures. In: Advances in Cryptology – CRYPTO ’96. Lecture Notes in Computer
Science, vol. 1109, pp. 173–185. Springer-Verlag (1996)

24. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Advances in Cryptology - CRYPTO
’94. Lecture Notes in Computer Science, vol. 839, pp. 174–187. Springer (1994)

25. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
ACM Transactions on Information and System Security (TISSEC) 3(3), 161–185
(2000)

26. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

27. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the Full Domain
Hash. In: Advances in Cryptology – CRYPTO 2005. Lecture Notes in Computer
Science, vol. 3621, pp. 449–466. Springer-Verlag (2005)

21

28. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Advances in Cryptology - CRYPTO 2017. Lecture Notes in Computer
Science, vol. 10401, pp. 537–569. Springer (2017)

29. Dwork, C., Naor, M.: An efficient existentially unforgeable signature scheme and
its applications. In: Advances in Cryptology – CRYPTO ’94. Lecture Notes in
Computer Science, vol. 839, pp. 234–246. Springer-Verlag (1994)

30. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

31. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Advances in Cryptology – CRYPTO ’86. Lecture Notes
in Computer Science, vol. 263, pp. 186–184. Springer-Verlag (1986)

32. Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In: Public
Key Cryptography – PKC 2003. Lecture Notes in Computer Science, vol. 2567, pp.
116–129. Springer-Verlag (2003)

33. Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-OR proofs. In:
Advances in Cryptology - EUROCRYPT 2020. Lecture Notes in Computer Science,
vol. 12107, pp. 212–244. Springer (2020)

34. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro,
S.: Random oracles with(out) programmability. In: Advances in Cryptology -
ASIACRYPT 2010. Lecture Notes in Computer Science, vol. 6477, pp. 303–320.
Springer-Verlag (2010)

35. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23(2), 224–280 (2010)

36. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: Advances in Cryptology – EUROCRYPT ’99. Lecture Notes in
Computer Science, vol. 1592, pp. 123–139. Springer-Verlag (1999)

37. Girault, M.: Self-certified public keys. In: Advances in Cryptology – EURO-
CRYPT ’91. Lecture Notes in Computer Science, vol. 547, pp. 490–497. Springer-
Verlag (1991)

38. Goh, E.J., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem.
In: Advances in Cryptology – EUROCRYPT 2003. Lecture Notes in Computer
Science, vol. 2656, pp. 401–415. Springer-Verlag (2003)

39. Goh, E.J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
security reductions to the Diffie-Hellman problems. Journal of Cryptology (2007)

40. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
FOCS. pp. 102–113. IEEE Computer Society (2003)

41. Goldwasser, S., Micali, S., Rivest, R.L.: A “paradoxical” solution to the signature
problem (extended abstract). In: Symposium on Foundations of Computer Science
– FOCS ’84. pp. 441–448. IEEE Press (1984)

42. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

43. Guillou, L.C., Quisquater, J.J.: A practical zero-knowledge protocol fitted to se-
curity microprocessor minimizing both trasmission and memory. In: Advances in
Cryptology – EUROCRYPT ’88. Lecture Notes in Computer Science, vol. 330, pp.
123–128. Springer-Verlag (1988)

44. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

45. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. Jour-
nal of Cryptology 25(3), 484–527 (2012)

22

46. Hohenberger, S., Waters, B.: Realizing hash-and-sign signatures under standard
assumptions. In: Advances in Cryptology – EUROCRYPT ’2009. Lecture Notes in
Computer Science, vol. 5479, pp. 333–350. Springer-Verlag (2009)

47. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Advances in Cryptology – CRYPTO 2009. Lecture Notes in Computer
Science, vol. 5677, pp. 654–670. Springer-Verlag (2009)

48. Jakobsson, M., Schnorr, C.P.: Efficient oblivious proofs of correct exponentiation.
In: Communications and Multimedia Security – CMS 1999. IFIP Conference Pro-
ceedings, vol. 152, pp. 71–86. IFIP (1999)

49. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: ANTS. Lecture
Notes in Computer Science, vol. 1838, pp. 385–394. Springer-Verlag (2000)

50. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Advances in Cryptology - CRYPTO 2017. Lecture
Notes in Computer Science, vol. 10402, pp. 224–251. Springer (2017)

51. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: ACM Conference on Computer and Communications Security
– ACM CCS 2003. pp. 155–164. ACM Press (2003)

52. Krawczyk, H., Rabin, T.: Chameleon signatures. In: Network and Distributed Sys-
tem Security Symposium – NDSS 2000. pp. 143–154 (2000)

53. Kurosawa, K., Schmidt-Samoa, K.: New online/offline signature schemes without
random oracles. In: Public Key Cryptography – PKC 2006. Lecture Notes in Com-
puter Science, vol. 3958, pp. 330–346. Springer-Verlag (2006)

54. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes.
Journal of Cryptology 15(1), 1–18 (2002)

55. Naccache, D., Pointcheval, D., Stern, J.: Twin signatures: an alternative to the
hash-and-sign paradigm. In: ACM Conference on Computer and Communications
Security – ACM CCS 2001. pp. 20–27. ACM Press (2001)

56. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, 1989. pp. 33–43. ACM (1989)

57. Paillier, P.: Impossibility proofs for RSA signatures in the standard model. In: Top-
ics in Cryptology – CT-RSA 2007. Lecture Notes in Computer Science, vol. 4377,
pp. 31–48. Springer-Verlag (2007)

58. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to
discrete log. In: Advances in Cryptology – ASIACRYPT 2005. Lecture Notes in
Computer Science, vol. 3788, pp. 1–20. Springer-Verlag (2005)

59. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Advances in
Cryptology – EUROCRYPT ’96. Lecture Notes in Computer Science, vol. 1070,
pp. 387–398. Springer-Verlag (1996)

60. Poupard, G., Stern, J.: Security analysis of a practical “on the fly” authentication
and signature generation. In: Advances in Cryptology – EUROCRYPT ’98. Lecture
Notes in Computer Science, vol. 1403, pp. 422–436. Springer-Verlag (1998)

61. Rabin, M.O.: Digital signatures and public-key functions as intractable as fac-
torization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer
Science (Janvier 1979)

62. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

63. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing
1990. pp. 387–394. ACM (1990)

23

64. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3), 161–174 (1991)

65. Seurin, Y.: On the exact security of Schnorr-type signatures in the random or-
acle model. In: Advances in Cryptology - EUROCRYPT 2012. Lecture Notes in
Computer Science, vol. 7237, pp. 554–571. Springer-Verlag (2012)

66. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Advances
in Cryptology – CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139,
pp. 355–367. Springer-Verlag (2001)

67. Stern, J.: Why provable security matters? In: Advances in Cryptology – EURO-
CRYPT 2003. Lecture Notes in Computer Science, vol. 2656, pp. 449–461. Springer-
Verlag (2003)

68. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: Advances in Cryptology – CRYPTO 2002.
Lecture Notes in Computer Science, vol. 2442, pp. 93–110. Springer-Verlag (2002)

69. Waters, B.: Efficient identity-based encryption without random oracles. In: Ad-
vances in Cryptology – EUROCRYPT 2005. Lecture Notes in Computer Science,
vol. 3494, pp. 114–127. Springer-Verlag (2005)

70. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear
pairings and its applications. In: Public Key Cryptography – PKC 2004. Lecture
Notes in Computer Science, vol. 2947. Springer-Verlag (2004)

24

